UNIX PROGRAM DESCRIPTION

Program Generic PG-1C300 Issue 2
Published by the UNIX Support Group

January 1976

e S

—

Wosiops

[y) . [— "il“ &

Rigwntes B o

CONTENTS
NUMBER ISSUE TITLE
PD-1C301-01 1 Operating System
PD-1C302-01 ’ 1 Device Drivers Section 1
PD-1C303-01 1 Device Drivers Section 2

ok

Bell Telephone Laboratories, Incorporated
PROGRAM SYSTEM SPECIFICATION . PD-1C301-01
Index
Issue 1}
AT&T Co SPCS

COMMON SYSTEMS
UNIX OPERATING SYSTEM

OPERATING SYSTEM

This index lists the authorized issues of the sections that form a part of the current issue of this
specification.

NUMBERS ISSUES AUTHORIZED TITLES

PD-1C301-01, Index. i Index

Section 1 1 Introduction :

Section 2 1 ALLOCO!1 - DISK ALLOCATOR

Section 3 1 "CLOCKO1 - SYSTEM CLOCK

Section 4 1 CONFO01 - CONFIGURATION TABLE
Section § 1 FIOO01 - FILE 1/0

Section 6 1 IGETO1 - I-NODE INTERFACE .
Section 7 1 LOWO! - LOW CORE CONFIGURATION
Section 8 1 MAINQ] - MAIN

Section 9 1 MCHO! - MACHINE INTERFACE CODE
Section 11 1 PRFO1 - PRINT FACILITY |
Section 12 1 RDWRIOI - READ/WRITE I-NODE:
Section 13 1 SIGO1 - SIGNAL ’
Section 14 1 SLPO1 - PROCESS SWITCHING

Section 15 1 SUBROI - SYSTEM SUBROUTINES
Section 16 1 SYS101 - SYSTEM CALL INTERFACE 1
Section 17 1 SYS201 - SYSTEM CALL INTERFACE 2
Section 18 1 SYS301 - SYSTEM CALL INTERFACE 3
Section 19 1 SYS401 - SYSTEM CALL INTERFACE 4
Section 20 1 - SYS501 - SYSTEM CALL INTERFACE 5
Section 21 1 SYSENT - TABLE OF SYSTEM ENTRY POINTS
Section 22 1 TEXTO1 - SHARED PROGRAM

Section 23 1

TRAPO1 - TRAP HANDLER

A

ISSUE 1t 1/30/76

THE CONTENT OF THIS MATERIAL IS PROPRIETARY AND CONSTITUTES A TRADE SECRET. IT IS
FURNISHED PURSUANT TD WRITTEN AGREEMENTS OR INSTRUCTIONS LISTING THE EXTENT OF
DISCLOSURE. ITS FURTHER DISCLOSURE WITHOUT THE WRITTEN PERMISSION OF WESTERN
ELECTRIC COMPANY, INCORPORATED, IS PROHIBITED.

Printed in U.S.A.

INTRODUCTION .

1. GENERAL

This document describes functions contained in

pidents from PR-1C301-01 as follows:

ALLOCO1 DISK ALLOCATOR

- CLOCKO01 SYSTEM CLOCK
CONFO01 CONFIGURATION TABLE
FIO01 FILE 1/0
IGETO! I-NODE INTERFACE
LOWO1 LOW CORE CONFIGURATION
MAINO! MAIN :
MCHO1 MACHINE INTERFACE CODE
NAMIO! FILE NAME STRING INTER-

PRETER
PRFO1 PRINT FACILITY
RDWRIO1 READ/WRITE I-NODE
SIGO! SIGNAL
SLPO1 PROCESS SWITCHING
SUBROI SYSTEMS SUBROUTINES
SYS101 SYSTEM CALL INTERFACE 1
SYS201 SYSTEM CALL INTERFACE 2
SYS301 SYSTEM CALL INTERFACE 3
SYS401 SYSTEM CALL INTERFACE 4
SYS501 - SYSTEM CALL INTERFACE 5
SYSENTO1 TABLE OF SYSTEM ENTRY
. POINTS

TEXTO1 SHARED PROGRAM
TRAPO1 TRAP HANDLER

2. PROGRAM CONVENTIONS

A. Systemn calls are made with the first argu-

ment in register RO. When the system call
is made, the contents of register R0 are
moved to the per user control
(user.h) in the variable called u.u_RO. The
remaining arguments of a system call are
moved into the per user control block array
u.u_arg (this means u.u_arg{0] is the
second argument).

. Arguments or results of executing some
functions are often left behind in the per
user control block. For example,
~ nami.c/namei decodes a pathname into an
inode pointer. In the process, a pointer to
the inode of the parent directory is left in
u.u_pdir. This means it is eady to make a
directory entry for a file since the inode for
the directory is available. (See the docu-
mented header user.h in PR-1C301.)

block -

““errno”.
- Manual for list of error conditions.)

- PD-1C301-0%
Section 1
Issue 1, January 1976

C. Inodes are always locked during manipula-

tions to prevent simultaneous update by
two processez. The procedure is to always
lock and increment the usage count of an
inode even if it turns out that a user does
not have access to that file. At the end of
processing of the inode, the usage count is
reduced by 1 if there was an error, and in
either success or failure, the inode is un-
locked.

. Error processing that reflects errors back to

the user are set in the per user control
block error flag (u.u_error). These error
conditions can be referenced by the user
program through the external variable
(See Section 2 of Programer’s

. If I/O processing is to be done on a device,

the particular driver for that device must be
called. Devices are known by major and
minor numbers stored in an inode.

The system calls the particular device driver
indirectly through the major device
number. A block switch table and character
switch table are defined at system genera-
tion time. The major device number is

used as a displacement into this table and

the appropriate routine is,called. For exam-
ple, the code:

(*bdevsw({majl.d_close)

will call the close entry point for the driver
associated mith major device "maj".

Bt 4

ALLOCO! - DISK ALLOCATOR
File: alloc.c

alloc

CALL

alloc (dev)
int dev;

RETURNS

A block number of allocated block if successful.
A NULL is unsuccessful.

SYNOPSIS

Alloc allocates disk blocks from the free list 6f
“the associated file system. Companion routine
with free.

DESCRIPTION

Alloc allocates disk blocks on device “dev”.
Alloc.c/getfs is called to get the pointer to the in-
core superblock for the file system on device
*dev". If the superblock is locked because of re-
plenishing of the free list then alloc will sieep un-
til it becomes unlocked.

The free list of blocks is maintained as a linked
list of tables of 100 entries. (99 free block
pointers and one pointer to the next member of
the linked list). The last table contains a zero
pointer to indicate the end. S_nfree is a poiater
into the first table of 100 entries which is kept in
memory in the superblock. When s_nfree is
Zero, alloc replenishes the memory table with the
next table in the linked list. If the linked list is
depleted an error indicator is set. Alloc returns
the block number pointed to by s_nfree.

badblock

CALL

badblock (aip, abn, dev)

int aip,abn,dev;

RETURNS

If no bad blocks return 0, otherwise print BAD
BLOCK message on console and return 1.
SYNOPSIS

Checks that a block number is in the range
between the ilist and the end of the file system.
In other words make sure that the block can be
used in block allocation.

PD-1C301-01
Section 2

Issue I, January 1976 -

DESCRIPTION

If the block number "abn" on the file system
pointed to by "afp” is less than isize+2 (isize is
the size of the ilist and block 0 is the boot pro-
gram and block 1 is the superblock) or greater
than fsize (the size of the file system) then
alloc.c/prdev is called to print the bad block mes-
sage for device "dev”. Otherwise return 0 as indi-
cator of success.

" free

CALL

free (dev, bno)
int dev, bno;
RETURNS
None

SYNOPSIS .

Free places the block number "bno" back on the
free list of the file system on device "dev". Com-
panion routine with alloc.

DESCRIPTION :
Alloc.c/ge:fs is called to get the pointer to the in-
core superblock for the file system on device
"dev".

The free list of blocks is a linked list of tables of
100 entries (99 free blocks and one pointer to,
the next table). When blocks are freed, they are
added to this linked list. The first tabie of 100
entries is kept in memory in the superblock.
Block allocation/deallocation takes place in this
table at the place pointed to by s_nfree. When
the table is full (s_nfree = 100) it is written to
disk, added to the linked list, and the incore
table is emptied.

getfs

CALL

getfs (dev)

int dev; ‘

RETURNS

A pointer to the in-core superbiock.

ALLOCO1 - DISK ALLOCATOR
File: alloc.c

SYNOPSIS .

- Getfs maps a device number, "dev”, into a
pointer to the in-core superblock associated with
the file system on that device.

DESCRIPTION C
Getfs searches through the Mount Table for a2
matching device number, "dev". The Mount
Table is composed of three word entries:

1. A device pointer

2. Apointer to the buffer containing the su-
perblock

3. A pointer to the i-node entry for the
mount point.

If the device is not present in the Mount Table a
PANIC "no fs" occurs. (This cannot happen).
Otherwise, the pointer to the buffer containing
the superblock is returned.

ialloc

CALL

ialloc (dev)
int dev;

RETURNS i
A pointer to the incore, allocated i-node.

SYNOPSIS

Allocation of i-numbers and i-nodes for use in
file creation. Companion routine with ifree.

DESCRIPTION

Ialloc allocates i-nodes for file creation and refills
the free list of i-numbers when it becomes emp-

ty.

Alloc.c/getfs is called to get a pointer to the in-
core superblock of the file system for device
“dev”.

If the free list of i-numbers (s_ninode) is locked
because it 1s under replenishment then ialloc
sleeps until it becomes unlocked.

If the free list is empty, ialloc locks it, then a
linear search of the ilist on disk device "dev" is
made looking for 100 free i-nodes. the i-number
of each free i-node is placed into the free list. If
the entire ilist contains allocated i-nodes then a
PANIC out of i-nodes occurs. The replenish-
mznt is complete when the free list is full or all
available ilist i-nodes have been put into the free

PD-1C301-01
Section 2
Issue 1, January 1976

list. The i-number pointed to by s_ninode, (the
pointer to the first available entry in the free list)
is used by iget.c/iget to load the associated i-node
into the System INODE Table. If the i-number
in the free list points to an i-node that is already
allocated a message BUSY I (busy i-node) is
printed and iget.c/iput is called to release the i-
node.

When an unallocated i-node is found, its mode
and address pointers are zeroed and a pointer to
this i-node is returned. A flag (s_fmod) for the
incore superblock is also set to indicate that the
superblock was modified, so on a subsequent up-
date of the disk (in which ail modified super-
blocks are written to disk) this superblock will be
written.

ifree

CALL

ifree (dev, ino)
int dev, ino;
RETURNS
None

SYNOPSIS]
Free the specified i-node, and associated i-

number, "ino", on the file system on device "

*dev". Companion routine with ialloc.

DESCRIPTION

A free list of 100 i-numbers are kept in the in-
core superblock. When an i-node is freed, its i-
number is added to the free list (s_inode) at the
entry pointed to by s_ninode (the next free siot).

When the free list is full, additional deallocated
i-numbers are ignored, since their associated i-
nodes are marked as unallocated and are written
back to the ilist where they can be picked up in a
subsequent search) of the ilist (see alloc.c/ialloc).

Alloc.c/getfs is called to get a pointer to the in-
core superblock of the file system on the device
"dev". If the free list is locked or full (s_ninode
= 100) then the i-number is abandonsad.

Oiherwise, the i-number is placed at the entry
pointed to by s_ninode and a flag (s_fmod) is set
to indicate that the superblock was modified.

Paaal

ALLOCO1 - DISK ALLOCATOR
File: alloc.c

iinit

CALL

iinit()

RETURNS

If the superblock of the rcot dxrectory cannot be
read a panic results.

SYNOPSIS

Mounts the root file system by building an emry
in the Mount Table.

DESCRIPTION

linit is called once during UNIX initialization to
read the superblock of the root device into
memory and place pointers into the Mount Table
for this superblock. If an error occurs during the
reading of the root device (rootdev is the entry
defined in the configuaration table conf.c) then a
PANIC IINIT is 1ssued which causes the system
to halt.

prdev

CALL
prdev(str, dev)
int str, dev;
RETURNS
None.

SYNOPSIS
Print out error messages on system console.

DESCRIPTION

Print the string "str” on the system console with
the major and minor device numbers for the dev-
ice pointed to by "dev".

update

CALL
update()

RETURNS
None

SYNOPSIS

Update is the system routine that writes all the
changed superblocks and i-nodes back to disk. In
normal system operation this occurs whenever
the SYNC command is issued, or by the UP-
DATE program every 30 seconds.

PD-1C301-01
Section 2
Issue 1, January 1976

DESCRIPTION

Because update is initiated by user programs, it
maintains a lock to prevent simultaneous updat-
ing before one complete pass is done. For each
non-zero entry in the Mount Table that has the
modified flag (s_fmod) set, is not locked for re-
plenishing the free list (s_flock) or ilist (s_ilock)
manipulation, and is not read only (s_ronly) the
superblock is written to the disk.

Each i-node in the System INODE Table (all
those associated with open files) are examined to
see if they are locked for modification by some
other function. If an i-node is unlocked, it is
locked by update to prevent other changes while
updating, and iget.c/updat is called to write the
i-node to the disk ilist if it was modified.
Pipe.c/prele is then called to release the locked
i-node.

CLOCKO01 - SYSTEM CLOC
File: clock.c .

clock

CALL
clock(device.sp,r1,newps,r0,pc,oldps)

RETURNS
No value is returned.

SYNOPFSIS

The clock interrupt handler. Supplies system
timing.

DESCRIPTION

Clock.c/clock is the clock interrupt handler. It
maintains the system clock and any time depen-
dent services supplied by the system. As there
are a number of these software services the inter-
rupt processing for the clock will be described
first. :

There are currently two clocks available for the
PDP-11 series of computers; the KWI11-L and
KWII-P clocks. The KW1l-L is simply a line
frequency clock, while the KW11-P is a pro-
grammable clock which can count at 10KHz,
100KHz or on the basis of an external trigger in
addition to line frequency. UNIX can accomo-
date either of these clocks, however, only the
line frequency option is used. The clock that is
present on the system (the clocks have different
Unibus addresses) is determined by the
main.c/main function when the system is initial-
ized. The Unibus address of the clock is placed
in the external variable "lks". If no clock is
present on the system or if the clock is malfunc-
tioning when the system is booted, the system
panics ("PANIC NO CLOCK"). The
main.c/main function is the first to turn on the
clock so that interrupts are generated once every
sixtieth of a second. The clock interrupt handler
thereafter reenables succeeding interrupts so that
interrupts occur. (The clock never stops count-
ing so that no delay is encountered by the need
to reenable interrupts.) The clock interrupt
handler generates an interrupt at bus request lev-
el 6. which is higher than that of all hardware
controliers on the system. Only traps have a
higher priority (7). In line with the fact that in-
terrupt handlers on UNIX are non-reentrant, the
clock interrupt is processed at the same priority
that the interrupt request was generated. The
bits that must be set in the clock status register
to reenable clock interrupts are:

PD-1C301-01
Section 3
Issue 1, January 1976

1. Bit 6 reenables interrupts. This is the only bit
that need be set for the KW11-L.

2. Bit 3 selects repeat interrupt mode (KW11-P
only).

3. Bits 2 and 1 select the tﬁode. If bit 2 of the
bpair is set, the KW11-? will count at Line fre-

" quency.

4. Bit 0 turns the counter in the clock on.
(KW11-P only)

The clock interrupt handlers are called is called
in the same way that other interrupt handler
from the mch.s/call interface. It has arguments
(on the stack frame built by mch.s/call) available
to it so that it can check the Previous Mode of
the processor, the Program Counter, etc.

The following software functions are performed
by the clock interrupt handler:

Clock/clock.c updates the system’s notion of the
time of day. The time of day is kept in a two
word array (a long integer) "time[]" with the least
significant bit (in “time{1]") being in units of
seconds. As a clock interrupt is generated once
every sixtieth of a secorfd, a count of the number
of sixtieths of a second is kept in "lboit". The
"lbolt" is incremented on every interrupt and
when it reaches 60, the system time is updated.
The time of day must, however, be initialized to
the proper yearly value via the date systemn call.

The clock interrupt handler keeps track of the
amount of time a process spends in User mode
and Kernel mode. This time is kept in two
separate locations (“u_time® and "u_stime") in
each process’s U block. The time is kept in six-
tieths of a second. '

The clock interrupt handler wakes up processes
that are delaying éxecution (i.e., processes that
have made the sleep system call). The external
variable "tout{]"&#which has the same form as the
time of day, is set to the date that the earliest
sleeping process is to be awakened. When the
time has elapsed, ¢/l processes that have issued
the sleep system call (the address of "tout[]" is
used as the synchronizing event) are awakened.

The clock interrupt handler maintains an event
called the lightning bolt which is used by some
drivers to achieve long delays. The address of
"lbolt” is used as the synchronizing event and all
processes that sleep on this event are awawak-
ened when the clock reaches a 4 second interval.

T

S, [P——

[eI,

,
e ——
.

CLOCKO1 - SYSTEM CLOCK
File: clock.c

The magnetic tape drivers use the lightening bolt
to wait for gap shut down when closing the dev-
ice.

The age of a process is updated by the clock in-
terrupt handler. The "p_time" entry for each pro-
‘cess in the Process Table contains the length of
time in seconds that a process has been in
memory or on the swap device. Once every
second these ages are updated.

Since the Scheduler uses the age of a process as
its chief criteria in swapping a process into or out
of memory, the clock notifies the Scheduler
when these ages change. The Scheduler is
notified only if it is waiting ("runin") for available
memory to bring a process into memory.

The console display is updated once every clock
interrupt by calling mch.s/display.

In tine with profiling a process, the clock handler
aids the profiler by calling mch.s/incupc when
profiling is selected ("u_prof{3]" turns profiling
on). .

The clock interrupt handler provides for the de-
layed execution of a function. This is done by
maintaining a list, "callout[]", of functions tc be

executed after a time period. Each entry in "cal-

lout{]” contains a pointer to a function ("c_
func”), an argument ("c_arg") to be passed to the
function and the relative time ("c_time") at
which the function is to be executed. The time
entry is in sixtieths of a second so that the exe-
cution of a function may be delayed up to 32K
sixtieths of a second (about 9 minutes).
Clock.s/timeout inserts an entries into the "cai-
lout[]" list, however, the clock interrupt handler
must maintain the list. The time values "c_time"
that are inserted in the array are times relative to
that of the previous entry. Relative times are
used so that the clock interrupt handler does not
have to scan the entire array to update each en-
try. Rather, only the first entry need have it’s
time decremented. The appropriate function is
called by the clock handler when the (relative)
time value has reached zero. At this time, the
entry must be removed from the “callout{]” list
and the list is compressed (all entries are moved
down). Since delayed function execution is typi-
cally used by character and block device interrupt
handlers, some precautions must be exercised in
executing them. In particular, since interrupt
handlers are not reentrant and since the clock in-
terrupt may cause the stacking of one of these in-

PD-1C301-01
Section 3
Issue 1, January 1976

terrupts, it is dangerous to allow a deiayed func-
tion to be executed when the clock has caused
the stacking of interrupts. The delayed function

- might attempt to access some list whose linkages

were only partially established, etc. To avoid
these complications and to prevent restrictions
being placed on the delayed functions, the clock
handler does not execute a delayed function if
the clock interrupt occurs while the processor’s
priority is nonzero. (That is, the processor was
already engaged in processing an interrupt, or the
processor was in the midst of a critical region of
software. The processor’s priority is always zero
when the processor is in User mode so that de-
layed functions can always be executed if a user
is interrupted.) This means that the function
must wait at least until the next clock interrupt
before it can be executed. In order to prevent
the remaining functions from being delayed be-
cause of this, the relative time must be allowed
to become negative and the first non-zero time in
the list must be decremented to insure that the
other functions in the array do not incur the de-
lay. When a clock interrupt finally occurs while
the processor’s priority is zero (processor in User
mode or in Kernel mode but not within a critical
region) all the functions that should have been
executed previously are executed. After all func-
tions that are to be executed are completed. they
are popped from the list and the list is
compressed. T

The clock handler plays an important role in
identifying and penalized CPU bound processes.
Since the consecutive execution time of a process
is not (as yet) kept (only cumulative time "u_
utime”), UNIX depends on an averaging type
effect to identify CPU bound processes. This
scheme ‘examines the Processor Status once
every second to determine whether the clock in-
terrupt occurred while the processor was in User
mode. If this Js the case, then the process that
was interrupted is penalized by having it’s priori-
ty ("p_pri" in the Process Table) lowered by 1
(the penaity scheme is only allowed to lower the
priority as far as 105) and the processor is taken
from the process. (Slp.c/swich is called to select

"another process.) Since the floating point regis-

ters may not have been saved when the interrupt
occurred, mch.s/savfp must be called before the
process is preempted. Also, because signals are
caught by a process only when the process calls
on the system for service, a check must be made
(by calling sig.c/issig) to see if there are any sig-

CLOCKO0! - SYSTEM CLOCK
File: clock.c

nals pending for the process. If this were not
done, a CPU bound process could not be killed
from its controlling teletype via the quit or inter-
rupt keys. Since the operating system is not
reeatrant, processes cannot be preempted if the
clock interrupt occurred in the midst of executing
a critical region.

Note: :
Critical regions of code are areas where it is
necessary to raise the processor’s priority. to

prevent interrupts from occurring or other

processes from executing the same code.

timeout

CALL

timeout(function,argument,delay)
int (*function) ();
int argument, deiay;

RETURNS
No value is returned.

SYNOPSIS
Inserts an entry in the list of functions whose ex-
ecution is to be delayed.

DESCRIPTION

The “caliout{]” array consists of three word en-
tries which specify a function {"c_func"), an argu-
ment to be passed to the function ("c_arg") and
the amount of time a function is to be delayed
("c_time"). The time entry ("c_time") is the time
relative to the previous entry that the function is
to be executed, and is in sixtieths of a second.
The first time entry is relative to the clock. In-
serting an entry in the “callout[]” array is done
by taking the "delay" and finding the appropriate
position in “callout{]” to insert the entry. The
"delay” is then translated into an appropriate rela-
tive time and inserted in "c_time". Since “cal-
_ lout{]” is an array all succeeding entries must be
pushed down to make room for the new entry.
Also, since the clock handler (clock.c/clock) up-
dates the time in the “callout[]” array and- ar-
ranges for the deletion of entries, clock interrupts
must be locked out and traps prevented (by set-
ting the priority to 7) while the new entry is in-
serted. The arguments "function” and "argu-
ment” are the address of the function to be exe-
cuted and the value of an argument to be passed
to that function.

*{‘.‘7&

R

. PD-1C301-01
Section 3
-Issue 1, January 1976

RER N

..
-

P

=

CONFO01 - CONFIGURATION TABLE
File: conf.c

CALL
none

RETURNS
none

SYNOPSIS -

Character Device Switch Table and Block Device
Switch Tabie. Also contains definition of the
root device and the swap device.

DESCRIPTION

UNIX divides devices on the system into two
classes; character devices and block devices. The
distinction is basically between devices that are
byte oriented and those that are oriented to
transferring larger groups of data. As such, there
are two different tables which are used to select
the proper device. The Character Device Switch
Table ("cdevsw") contains five entries for each
device. These are the open ("d_open”), close
("d_close”), read ("d_read”), write ("d_write")
and sgtty ("d_sgtty”) entries. These entries are
invoked when opening, closing, reading, writing
or setting the modes for a character device. The
Block Device Switch Table has a similar format.
Here there is” an open ("d_open”), close ("d_
close”), strategy ("d_strategy”) and device queue
("d_tab") entry. These are the open, and close
routines for the device, the strategy routine for
reading and writing the device and the device
queue entry. Each table has a specific order in
which devices may appear. The order is listed in
the file and any device not listed may be added
to the end of the table. A block device may have
entries in both tables. In this case, the entries in
the Character Device Table are used for physical
1/0. Entries in the tables for which it is an error
to reference the entry are filled in with the
trap.c/nosys function, while entries which should
produce no error are filled in by trap.c/nullsys.

There are four other variables in this file which
allow the specification of the root filesystem and
the swap device.

"rootdev” - This is the major and minor device
number of the root filesystem. The high order
byte contains the major device number and the
low order byte contains the minor device
number.

PD-1C301-01
Section 4

Issue 1, January 1976

"swapdev” - This is the major and minor device
number of the swap device.

*swplo” - This is the offset in 512 byte disk
blocks into the swap device that the swap area
begins. This entry is present so that the root
filesystern and the swap device may be on the
same minor device. This number may not ever .
be 0.

"nswap” - This is the number of 512 byte disk
blocks allocated to the swap area.

+

F1001 - FILE 170
File: flo.c

access

CALL

access(aip, mode)
int *aip;

int mode;
RETURNS

On success return 0 otherwise return 1 and set
appropriate error flag.

SYNOPSIS

Compare the "mode® argument with the mode
permissions in the i-node pointed to by "aip®. If
permission is granted return zero, else one.

DESCRIPTION .
The "mode” argument is READ, WRITE, or
EXEC.

PD-1C301-01
Section §
Issue 1, January 1976

closef

If the mode is WRITE the read-only status of the .

file system is checked and if it is read-only set
the per user control block error indicator (u.u_
error) to EROFS (read-only file system) and re-
turn 1. Similarly if the i-node points to a text
image (read only code) than the file cannot be
written upon as long as anyone is using the text
image. If the i-node points to a text image set
the error indicator to ETXTBSY (Text Busy).

If the user id is that of the super-user (userid =
0) then all permissions are granted except for
EXEC where at least one of the EXEC bits must
be on. :

The mode is shifted to match against the permis-
sions for the owner, group, or foreigners depend-
ing on the match of the user id against the owner
id, and group id in the i-node. If the mode does
not match acceptable permissions, the error con-
dition EACCES is set to indicate illegal access
and return 1.

CALL
closef (fp)
int *fp;
RETURNS
None.

STNOPSIS

Internal form of close. Decrements usage count
(f_count) of the System File Table (file.h) entry
pointed to by "fp” and completes close when the
count is zero.

DESCRIPTION

If the entry in the System File Table pointed to
by "fp" is a pipe then it must be treated separate-
ly. Otherwise, the usage count is decremented
and when it becomes zero, fio.c/closei is called to
close the i-node.

closei

CALL

closei (ip, rw)
int *ip;

int rw

RETURNS
None

SYNOPSIS

Close the i-node pointed to by "ip". Closing an
i-node implies decrementing a reference count
(done by fio.c/closef) and when it goes to zero
rewrite the i-node to disk. Comparion routine to
openi.

DESCRIPTION

If the reference count is not zero just return. If
the i-node pointed to by "ip” in the System
INODE Table finode.h) is a special file (device)
then the appropriate device driver is called to
close the device. This is done by switching on
the major device number which is stored in
addr[0] of the i-node. .

Otherwise igét.c/iput is called to write the i-node
to disk.

F1001 - FILE 1/0
File: fio.c

falloc

CALL
falloc()

RETURNS

A pointer to the first available System File Table
entry or NULL if any errors.

SYNOPSIS

Allocate a user file descriptor from the per user
control block (u.u_ofile), and build an entry .in
the System File Table (file.h).

DESCRIPTION

Falloc calls fio.c/ufalloc to.get the first available
file descriptor in the per user control block (u.u_
ofile). If no file descriptors are available the fal-
loc returns a NULL as an error indicator.

A search is made for the first available System
File Table (file.h) entry by looking for an entry
where the count of connected processes (f_
count) is zero. The System File Table entry is
initiated and_the file descriptor is sel to point to
this entry.

If the System File Table is full print an error in-
dication on system console and return NULL.

getf

CALL

getf (f)
int f;
RETURNS

On error set the per user control block error code
(u.u_error) and return NULL. On success return
a pointer to correct System File Table (file.h) en-

try.
SYNOPSIS
Checks for valid file descriptor values.

DESCRIPTION

Check to see that the file descriptor "f" is in the
valid range (0-NOFILE); currently (0-15).

Check that the file descriptor points to an open

file and return pointer to the System File Table
Structure (file.h). If not a valid file descriptor or
the file is not open then set error code (EBADF)
in the per user control block | return NULL.

PD-1C301-01
- Section §
Issue 1, January 1976

openi

CALL

openi (ip, rw)
int *ip;

int rw;
RETURNS

On error, sets the per user control block error
flag u.u_error to ENX1IO, no such device or ad-
dress.

SYNOPFSIS

Openi is the routine to open special files (dev-
ices) whose associated i-node is pointed to by "ip”
with read/write permissions "rw". Companion
routine with closei.

DESCRIPTION

Openi is called every time a physical device must
be opened. This accurs during the mounting of
file systems as well as handling of devices.

Openi calls the open entry in the device driver
for the character or block device identified in the
i-node pointed to by "ip". Since this is the physi-
cal opening of a device, and each one acts
differently the particular driver must be refer-
enced for open processing. The only check made
in openi is to make sure the major device
number is within the range of the number of
devices defined in a particular‘¢onfiguaration.

-

owner

CALL
owner()

RETURNS

On success return a pointer to an i-node. On
failure return NULL.

SYNOPSIS
Check a pathname for ownership.

DESCRIPTION

Use nami.c/namei to lookup a pathname in user
space and return a pointer to an i-node. If the
uid of the i-node matches the uid in the per user
control block (u.u_uid) then return the pointer
to the i-node.

e
£,

FIO91 - FILE 1I/0
File: flo.c

Call fio.c/suser to check if the effective userid of
this user is super-user and if so return the
pointer to the i-node. Otherwise, return NULL.

suser

CALL
suser()

RETURNS .
Suser returns a flag if successful, otherwise, sets
an error condition in the per user control block
(u.u_error) indicating wrong owner (EPERM).

SYNOPSIS
Check to see if user is super-user.

DESCRIPTION

The superuser is known internally as userid 0. If
the uid in the per user control block (u.u_uid) is
zero then return the success flag. Otherwise, set
an error indicator.

ufalloc

CALL
ufalloc()

RETURNS

A file descriptor if successful otherwise, return
negative.

SYNOPSIS

Allocate a user file descriptor from the per user
control block (u.u_ofile).

DESCRIPTION

File descriptors are numbers between 0 and 15
that represent a displacement into a list of
pointers to System File Table entries.

Search the list of user file descriptors (current
maximum 15) for the first empty slot and return
the file descriptor. If all file descriptors have
been used then return -1 as an error indicator.

vk

PD-1C301-01
Section §
Issue 1, January 1976

IGETO1 - I-NODE INTERFACE
File: iget.c

iget

CALL

iget (dev, ino)

int dev;

int ino;

RETURNS

A pointer to 2 locked, incremented i-node if suc-

cessful. Otherwise, a panic situation if the Sys-
tem INODE Table (inode.h) is full.

SYNOPSIS

Look up the i-node associated with i-number,
"ino”, on device, "dev", and return a pointer to
the locked, incremented i-node.

DESCRIPTION .

I-nodes are locked whenever they are created,
updated, or written to the disk. The protocol if
an i-node is locked is to set a bit requesting the
i-node, then to sleep until it becomes unlocked.

Iget searches through the in-core System INODE
Table (inode.h) for a matching i-number, "ino”
and device, "dev". If it is present and is a mount
point (i.e., some file system has been mounted
on it) an indirection takes place to resume the
search in the root directory of the mounted file
system. The Mount Table contains the new dev-
ice name for this mount point.

When the i-node is found, the usage coant is in-
cremented, it is locked, and a pointer to the i-
node is returned.

If the i-node is not present in the in-core System
INODE Table then the i-node is fetched from the
disk ilist of the appropriate device, "dev". The i-
node is read from the disk at block number B
where B = (i-number + 31)/16
since there are 16 i-nodes per block and i-
“number | starts in block 2. The remainder from
the above calculation, R, is used to locate the i-
node within the block. The i-node is moved into
the System INODE Table, the count is incre-
mented, and the i-node is locked. The pointer to
this i-node is returned.

PD-1C301-01
Section 6
Issue 1, January 1976

iput

CALL

iput (p)

struct i-node *p;

RETURNS
None

SYNOPSIS
Deallocate the i-node pointed to by "p".

DESCRIPTION

Iput decrements the usage count (i_count) of the
i-node pointed to by "p". If the usage count indi-
cates that there are other processes connnected
to this i-node then return.

If this is the last reference (the usage count is
zero), then the i-node is freed and may be writ-
ten back to the disk ilist. This is done by locking
the i-node to prevent other processes from con-
necting to it while it is de-allocated.

If the link count (i_nlink) is zero, the file has
been removed by all users so that the i-node can
be freed. Iget.c/itrunc is called to release all data
blocks and indirect blocks used in this i-node.
Alloc.c/ifree is called to put this i-number back
on the freelist of i-numbers.

Iget.c/iupdat is called to update the modify date
and time and write the i-node back to the ilist if
necessary. -

In all cases pipe.c/prele is called to unlock the i-
node.

itrunc

CALL
itrunc (ip)
int *ip;
RETURNS
None

SYNOPSIS

-+

‘Free all the blocks associated with the i-node

pointed to by "ip". (Truncate the file to zero

length).

IGETOL - I-NODE INTERFACE

" File: iget.c

DESCRIPTION

Itruac frees all the blocks associated with an i-
node. That means if the file is small it searches
through the i-node and frees each block ad-
dressed in the i-node. If the file is large, it reads
each indirect block pointed to by the i-node into
memory and frees each block in that indirect
black. lirunc continues until all blocks are freed,
then the file size is set to zero, the file mode to
small, and the update flag is set. If the mode is a
special file {device), no blocks are associated so
just return,

iupdat

CALL

iupdat (p, tm)
int *p;

int *tm;
RETURNS:
None:

SYNOPSIS

Check accessed and update flags on the i-node
pointed to by "p" and if either flag is on, update
the date and time ‘with the values pointed to by
"tm”. Write the i-node back to the disk ilist."

DESCRIPTION

Iupdat calls fio.c/getfs to get the pointer to the
superblock of the appropriate file system. If this
file system is mounted as read-only then the i-
node cannot be updated and the routine returns.

The block, B, within the ilist containing this i-
node is calculated as

B = (i-number + 31)/16

The remainder of the above calculation, R, is
used to locate the i-node within the block.

If the access flag is on, the last access time is up-

dated from the user time. If the update flag is on
the last modified date and time is updated from

“the time pointed to by "tm". The i-node is then

re-written to the ilist.

- PD-1C301-01
Section 6
Issue 1, January 1976

maknode

CALL

maknode (mode)
int mode;

RETURNS _
A pointer to the i-node of the file just created.

SYNOPSIS

Build an i-node for a new file with the read/write
permissions specified in "mode”.

DESCRIPTION

A new file is added to the directory found in the
per user control block entry u.u_pdir. Maknode
calls alloc.c/ialloc to allocate an i-node from the
file system superblock associated with the direc-
tory in the per user control block. It marks the
i-node as allocated, set the link count to one, sets
the uid (owner) and gid (associated project) from
the per user control block (u.u_uid, u.u_gid).
Iget.c/wdir is used to write the directory entry for
this i-node. The directory entry is composed of
an i-number and a 14 character file name.

wdir

CALL

wdir (ip) #
int *ip;

RETURNS

None

SYNOEFSIS

Write a directory entry for the i-node pointed to
by "ip".

DESCRIPTION

Directory entries are composed of a two byte i-
number and a fourteen character file name. The
name is taken“from the per user conirol block
where it was left on the previous call to
nami.c/namei. The structure u_dent within the
per user control block defines the format of
directories. Wdir copies the filename from the
per user control block temporary area (u_dbuf)
to the directory entry area (u_dent). Wdir calis
rdwri.c/writei to write the update directory back
to the disk. It then calls iget.c/iput to deallocate
the directory i-node.

o

EE

LOWO1 - LOW CORE CONFIGURATION
File: low.s

CALL
none

RETURNS
none

SYNOPSIS

Low core vectors including jump table to involk
interrupt handlers and the trap handler.

DESCRIPTION .
DEC PDP-11 hardware controllers are wired to

vector their interrupts to specific locations in low
memoery. The low.s file contains the new proces-
sor status word for each device. The processor
status word consists of two words, the new pro-

gram counter and the new processor status.

The new program counter is the address of a
jump table entry (also in low.s) which calls a re-
gister save function (mch.s/call) before calling
the interrupt handler. The new processor status
word contains the priority at which the interrupt
is handled and when there are more_than one
controller of the same type, it contains a number
(the minor device number) in the low order 4
bits.

Since the operating system itself is not reentrant,
the priority placed in the new processor status is
the same as the priority at which the interrupt is
handled.

?&n—;w

PD-1C301-01
Section 7
Issue 1, January 1976

MAINOT - MAIN
File: main.c

estabur

CALL
estabur(text, data, bss)

RETURNS
No value is returned.

SYNOPSIS

Determines whether a process with a given text,
data and stack size can fit within the limits of
user virtual address space and loads prototype
segmentation registers.

DESCRIFTION

With a 16 bit address, only 64K bytes of virtual
address space is available to a user process.
(When 1 and D space is implemented for user
processes it will allow 64K bytes of text and 64K
bytes of data, bss and stack.) The main.c/estabur
function is called whenever the size of a process
is to be changed (e.g. when an overlay is done,
when a procass needs more stack space , etc.) to
make a test fit and insure that the process can
take on thwe new size. The first check that is
made also insures that the text, data, stack and U
block areas, which are loaded contiguously do
not exceed the total amount of available user
memory "maxmem".

Viain.c/estabur insures that the text, data and
stack are protected appropriately. The different
areas are segregated into different groups of
Memory Management registers.

the arguments "text”, "data" and "stack” have a
different meaning depending on whether the
process being tested is reeatrant or not. For
reentrant processes the arguments represent the
size of the text, data and stack areas respectively
in memory blocks. For nonreentrant processes
the "text” argument are zero and the the text and
data is included in the "data” argument. The
"data” argument in all cases includes the bss and
data areas for a process. Reentrant processes
must have their Memory Management Registers
write protected and any portion of a register (less
than 4K words) that is unused cannot be used to
map data. Similarly, since the stack expands
downward, it must be segregated from the data
registers.

PD-1C301-01
Section 8
Issue 1, January 1976

Processes are loaded into memory with the U
block, text, data and stack area physically con-
tiguous. The U block is not, however, included

_in the user’s virtual address space. For reentrant

processes, the text may be loaded elsewhere.
With this in mind, a check is made to see that
the text, data and bss area will not exceed the
number of memory management registers avail-
able (8). '

If any of the checks fail, an error ENOMEN is
posted (in "u_error®) and a -1 is returned to the
caller to ‘indicate that the process should be
aborted.

Processes that satis{y the above memory require-

ments can have their prototype segmentation re-
gisters loaded. "U_uisia{]" is the corresponding
prototype User Instruction Address Register ar-
ray (8 words) and "u_uisd{]" is the prototype
User Instruction Descriptor Register array. Text
registers are set up first (only for reentrant pro-
grams). Text registers have the Access Control
Field in the prototype descriptor registers set to
read-only to preserve their reentrancy. If text
only partially fills the virtual address space
mapped by one of the registers, there will be a
gap in the virtual address space of the process, as
that register cannot be used to map the data por-
tion. (The UNIX loader has forseen how the
program will be loaded and relocated the object
program appropriately.) The data portion is load-
ed into the succesding registars and the access
control is marked read/write. A virtual address
gap will lie between the data and stack and any
unused portion of a Memory Managemeant regis-
ter in the data area cannot be used to map stack
space, because the . expansion directions are
different even though the access control permis-
sions are the same. The prototype registers for
the stack area are loaded starting at the high vir-
tual address* end. [Each register is marked
read/write, but the expansion direction is marked
so that the stack grows downward in physical
memory.

When the prototype registers have been set up,

main.c/sureg is called to load the prototype regis-

ters into the User Memory Managzment regis-
ters. :

e

MAINOL - MAIN
File: main.c

A ze10 is returned to the caller of main.c/estabur
to indicate that the process will it in user virtual
address space. . .

» main

CALL
main()

RETURNS
No value is returned.

SYNOPSIS
Initializes the system.

DESCRIPTION
This function initializes all system puffers,
mounts the root file system and creates the
Scheduler and INIT processes- Since the Operat-
ing System is not__ loaded with either the C or as-
sembly languag® library, there is no startoff func-
tion (crt0.s) 10 involk main.c/main. Instead, the
mch.s/start function involks main.c/main. An
arrangement also exists between main.c/main
and mch.s/start for bringing up the INIT process.
Mch.s/start sets upP the virtual address space for
the operating systerr{ and creates 2 stack (which
will be owned by the Scheduler). The functions
performed by main.c/main are:

1. The version number (release pumber) is print-
ed on the system console.

2. The amount of memory available for user
7 asses is determined and is cleared. This is
o » by setting up User Instruction Address Re-
‘.s\ ¢ 0-and User Instruction Descriptor Register

- map successive meémory blocks (64 bytes)

- hd' the address space of the operating Sys-
tem. The mch.s/fubyte function is used 10 fetch
the first byte in 2 memory block. If a trap OcCuUrsS
as a result of this fetch, the clearing operation is
terminated. Mch.s/clearseg is called to zero
each memory block and the external variable
maxmem” 1S used to count the number of

memory blocks. As each block is cleared, it is al-

located (by calling alloc.c/mfree) to the free
memory table’ ("coremap”). At the end of this
operation, the amount of memory available for
user processes will be in *maxmem" and the
*coremap” array will be initialized t0 contain all
of user memory as its first and only piece of
available core. N

PD-1C301-01
Section 8
Issue 1, January 1976

3. The total amount of available memory may be
limited by the system constant "MAXMEM" (see
param.h). The external variable "maxmem” is
set to the minimum value of "MAXMEM” and
the amount of memory that was experimentally
determined.

4. The amount of swap space ("nswap” in conf.c)
and its jocation specified in *swplo” is eatered in
the ' "swapmap” array. The external variable
*gswap" contains the number of blocks (512
pytes) available on the swap device. The exter-
pal variable *swplo™ is the offset (in blocks) on
the device (specified in "swapdev”) that this area
begins. This offset cannot be zero as block ze10
has a special meaning to the system.

S. A determination is made as to which one of
the two available clocks (KW11-L or KWI11-P) is
on the system. This is done in a manner similar
to that by which the amount of available memory
was determined. That is, a fetch is first attempt-
ed on the status register associated with the
KWwWil-L (using mch.s/fuword). If this fails (i.e-,
a trap occurs) 2 fetch is attempted on the
KW11-P status register. If neither fetch
succeeds, then 00 clock is present and the system
panics ("PANIC NO CLOCK"). For the KW11-
L clock, it is only necessary to set the interrupt
enable bit to start the clock counting at line fre-
quency. For the KW11-P clock, the line fre-
quency rateé must be selected-and repeat interrupt
mode set (see DEC Peripherals Handbook).

6. The Process Table entry for the Scheduler is
then set up. The Scheduler is a process which
runs entirely in Kernel Address space. It is al-
ways process zero in the Process Table and is al-
ways locked in memory. (The SLOAD flag in
p_flag” is always set and 2 special indicator SSYS
is also set to mark it as the Scheduler.) The size
and location of ‘the Scheduler do not correspond
to the location and size of the function
slp.c/sched. ghe location of the Scheduler is tak-
en to be the start of the U block and its size is
taken to be that of the U block. This is done be-
cause the INIT process is created by the Operat-

* ing System forking and as small a core image as

possible should be used. The U block created by
mch.s/start is allocated to the Scheduler.

MAINOT - MAIN
File: main.c

7. The block device buffers are initjalized by
bio.c/binit and the character device buffers are
initialized by tty.c/cinit. These routines also
determine the number of block and character
devices on the system. The root file system is
mounted (by calling alloc.c/iinit). The root
inode is retrieved from the root file system (via
iget.c/iget), and an external variable "rootdev” is
loaded with the address in the Inode Table entry
of the root inode. ' The working directory entry
"u_cdir” is also set up so that it indicates the root
directory. (This is done so that when the INIT
process is spawned, it will have the root inode as
it’s workirg directory.)

8. The INIT process is spawned. This is done by
a trick in which a tiny program is hand crafted in
memory and exescuted. This program (a copy of
which is in the "icode[]" array”) simply requests
an overlay of the INIT process. The actual pro-
cedure is as follows: :

a. The slp.c/newproc function is called to do a
fork of the Scheduling process. From 6 above,

the size of the Scheduler was set to the size of

it's U block, so a fork replicates the U block.
The slp.c/newproc function creates a new process
within the system which is an identical copy of
‘ihe original process. Both processes begin exe-
cuting at the return from slp.c/newproc. The
only difference is that since only one process can
be executing at a time, one process (the child)
will actually return from the slp.c/swtch func-
tion, and not slp.c/newproc. The child procass
(forerunner of INIT) will call for the creation of
a one memary block {64 bytes) area for the pro-
gram (by calling slp.c/expand) and will set up the
prototype segmentation registers "u_uisa[]" and
"u_uisd{]", so that main.c/sureg can be called to
actually load them. Main.c/sureg sets up as a de-
fault a 32 word memory block An offset (USIZE)
is setup in the prototype segmentation address
register "u_uisa{0]", so that the physical ares of
memory where the program is loaded is directly
behind the Scheduler’s U block. Once this has
been done, the “icode[]l” program is copied into
the user's address space (by mch.s/copyout). (It
should be noted that the child process is essen-
ually creating itself.) The mch.s/start function is
set up so that upon a return to it from
main.c/main a system call is simulated. This is
done by setting up the system stack so that a re-
turn from trap (RTT) instruction is executed,
which wiil take the execution into User address

PD-1C301-01
: Section 8
Issue 1, January 1976

space at virtual address 0. The "icode{]" program
execules and makes an exec system cail to over-
lay itself with the /etc/init process.

The parent pracess (in this case the system) only
creates the U block for the pew process. The
child actually loads the “icode[]” program. This
is essentially a combination of a fork and exec
system call. The parent calls the function
slp.c/sched which is the endlessly looping
Scheduling process. The Scheduler receives no
signals, so that it cannot be killed and thus need
never be respawned.

sureg

CALL
sureg()

RETURNS
No value is returned.

SYNOPSIS

Loads User Memory Management're_gisters from
their software prototypes. : -

DESCRIPTION

In order to dispatch any . process, that process’
virtual address space must be setup. Also, when
any growth in the size of a process (stack growth
or memory allocation) occurs, the virtual address
map in the Memory Mansgement Unit must be
changed and reloaded. The main.c/sureg func-
tion sets up the user virtual address space by
loading the Memory Management registers from
the prototype address and descriptor registers
("u_uisa[]" and "u_uisd[]") which contain the vir-
tual address map for the process relative to abso-
lute location 0. In order to load the Memory
Management Unit, the address registers ("u_
uisall”) must be relocated to the proper physical
address. In particular, the "p_addr” entry in the
Process Tabl€ contains the physical address (in
memory blocks) of the process. This value is ad-
ded to each of the instruction address prototype
("u_uisal]") registers when they are loaded into
the User Memory Management Address Regis-

~ters. (When the prototype registers were set up

by main.c/estabur, allowance was made for the
position and size of the U block.) Since reentrant
processes may have the text segment loaded zlse-
where, a further adjustment of the registers map-
ping the text area may be necessary. Reentrancy
can be checked for by examining the "p_textp”

MAINO1 - MAIN
File: main.c

entry in the Process Table. If this is zero, the
process is not reentrant. If nonzero, it contains a
pointer to a Text Table entry which contains the
address of the text ("u_caddr”). A relative
correction (p_addr” - "x_addr") can then be ap-
plied to the reentrant text address registers when
the prototype descriptor register ("u_uisd{]") are
loaded. Registers mapping reentrant text must
also have the write only bit set in the Access
Control Field of the descriptor register while
those for stack and data (including nonreentran
text) are read-write. :

At

PD-1C301-01
Section 8
Issue 1, January 1976

MCHO0! - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

aretu

CALL

aretu(save)
int °®save [I;

RETURN
No value is returned.

SYNCPSIS

Restores the stack position of a process. Used as
part of a nonlocal goto within the operating sys-
tem.

DESCRIPTION

This function is similar to mch.s/retu. The only
difference is that it does not alter Kernel Instruc-
tion Address Register 6 (KISA6) on 11/4Q0’s or
Kernel Data Address Register 6 (KDSA6) on
11/45’s and 11/70’s which perform the virtual
address mapping for the U block. It is used to
transfer execution back several levels of
subroutines without returning via the intervening
functions. In the case of processes .which are
catching their own signals it is used to transfer
contro! to the user process as soon as the pres-
ence of a signal is detected even at the expense
of aborting a system call. For processes that
have performed their own swapping, without in-
teracting with the Scheduler, it is used to transfer
control to the area of code within the system that
did the swap rather than simply returnidg from a
roadblock (slp.c/sleep).

The nonlocal goto is performed by using
mch.s/aretu to restore the system’s RS and SP
from values previously saved(in "u_rsav", u_
usav” or "u_qsav"). Since the PC for a return
from a Cfunction is also on the stack(just above
where the stack frame pointer RS is pointing),

PD-1C301-01
Section 9
Issue 1, January 1976

backup

CALL

backup{framep)
int *framep;

RETURN
A zero is returned to indicate success.

SYNOPSIS

Attempts to back up an instruction. This is al-
ways possible on 11/45 and 11/70 processors but
not always on 11/4Q0’s due to the makeup of the
11/40 hardware.

DESCRIPTION

If a Stack Violation(Segmentation Violation) oc-
curs while executing a user process, it is neces-
sary to undo the portion of the instruction that
had been executed before Iincreasing the
process’s.stack size. The Memory Managemeant
Unit generates a trap when an illegal virtual
memory address occurs and on 11/45 and 11/70
processors a register (Memory Management

‘Status Register 1) is loaded as each instruction is
.executed with information about what register

when a return by a C function(jump cret) is exe-

cuted. A return is made to the function specified
on the stack, instead of returning to the actual
caller. This PC is the return address of some
higher level function. mch.s/savu. The opera-
tion appears as il the function which last cailed
mch.s/savu returned to it's caller.

Since changing stack positions is a delicate opera-
tion, the processor’s priority is raised to 7 to lock
out all interrupts while the stack position is
changed. The processor’s priority is then
lowered to zero so that all pending interrupts
may be processed.

has been modified and by how much. This regis-
ter is unavailable on the 11/40 processor and
since there are autoincrement and autodecre-
ment instructions on PDP-11's. not every in-
struction may be restarted: (The restrictions
governing 11/40’s will be listed below.) A Stack
Violation is distinguished from other possible
Segmentation Violations by the trap handler
which checks the position of the SP relative to
the size of the stack. The trap handler calls
mch.s/backup to adjust the stack frame before
restarting a process, and if this cannot be
done{on 11/40’s this is a possibility) an indica-
tion of failure is returned so that the process may
be aborted. The trap resulting from the Segmen-
tation Violatioh may have been the result of an
illegal memory(stack) reference by either the
source or destination fields of an instruction, so
that only part of the instruction may have been
executed. The ability to determine what part of
an instruction aborted is a crucial factor in the .
determination of whether an iastruction can be
backed up or not. Another important determina-
tion is that of how much and which source
and/or destination registers have been increment-
ed or decremented by the use of the autoincre-
ment, deferred autoincrement, autoincrement
and autodecrement deferred addressing modes.
For 11/45 and 11/70 processors, Memory

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

Management Unit Status Register 1 contains this
information. (11740 processors do not have this
register so that the software must make this
determination.) Restarting an instruction on
11745 and 11/70 processors is simply done by
using the information in Status Register 1 about
how much a source and/or destination register
has been changed to adjust the registers to their
values before the ‘instruction was executed.
Status Register 1 contains two bytes. The high
order § bits of the first byte contain the amount
(positive or negative) that the source register has
been changed by incrementing or decrementing.
The lower three bits contain which source regis-
ter was modified. The second byte contains simi-
lar informamation about the destination register.
When a trap occurs, the user process’ registers
(context) are saved on the system stack so that
to restart an instruction, the registers modified by
autoincrement or autodecrement need only be
adjusted and the PC moved back to restart the
instruction.
mch.s/backup is an address on the stack frame
where the registers may be found and the array
“reloc”(see trap.c/trap) is used as an offset map
to find the proper register (ses mch.s/call
description) on this stack frame.

11/40, 11/45 and 11/70 processors use common
features of the mch.s/backup routine to adjust an
instruction, however, on 11/40’s there is addi-
tional software which attempts to simulate the
operation of Status Register 1. In most cases the
simulation can back up the instruction, however,

The argument “stackp” passed to .

there are some classes of instructions which can-

not be backed up by software.

‘Rather than give a detailed description of the al-
gorithms used in the 11/40 software to determin-
ing which class of instructions the faulting in-
struction belonged to and how much increment-
ing or decrementing of registers occurred, a dis-
cussion of which instructions can and cannot be
backed up will be given. The DEC Processor
Handbook may be consulted for instruction for-
mats and the KB11-A Central Processor Mainte-
nance Manual Fig. 6-10 may be consulted for the
microprogrammed decoding of the opcode field
for those interested in how opcodes are mapped
into instruction types. Some of the simplifying
assumptions made in the simulation of an in-
struction will be pointed out.

PD-1C301-01
Section 9
Issue 1, January 1976

The key factors in the instruction fetch/execute
cycle that must be remembered are,

1. Instructions consist of at most two operands;
source and destination. The Stack Violation
could only be a result of a bad address con-
structed for the destination in the case of sin-
gle operand instructions but may be the result
of either the source or destination for double

operand instructions.

If the addressing modes consist of any incre-
menting (autoincrement, autoincrement de-
ferred) or decrementing (autodecrement, au-
todecrement deferred), these are performed
up to the point that the instruction aborted.
For example, the instruction

mov (sp)+,(r5)+

would have the first incrementation (only)
performed if the reference using the SP
caused the abort. If the reference using RS
caused the abort both incrementations would
occur. A similar case occurs if the registers
are decremented.

With these two factors in mind , the following
conclusions may be drawn.

1. All single operand instructions can be backed
up as their only memory reference must have
caused the abort.

For double operand instructions, a determina-
tion of which operand caused the abort must
be made. To do this, the mch.s/backup
routine must simulate the fetch of both the
source and destination. If an error occurs
while doing the simulated fetch of the source
then the iostruction must have aborted at this
point and the destination could not have been
incremented gr'decremented. Unfortunately,
to do this sinfulation on instructions which in-
crement or decrement both source and desti-
nation, it must be assumed that the registers
involved can be unincremented (or undecre-
“mented) before Ssimulating the instruction
fetch of source or destination. Instructions of
the following form

operator(rA)+,(rA)+

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

(any combination of autoincrement and au-
todecrement is included and rA is an abbrevi-
ation for any register) present a problem since
it cannot be determined how far the register
should be backed up. (That is, one cannot tell
whether both incrementations occurred since
the same register rA is specified in source and
destination fields.)

The characteristics of instructions on the 11/40
that cannot be backed up are as follows. (The
instruction must satisfy all of the following condi-
tions.)

a. Double oberand.
b.

c.

Uses same register for source and destination.

Destination involves incrementing or decre-
menting.

than mode 0 (register mode addressing).

Only a few instructions fall into this category and
they are not generated by the C compiler. The
user must avoid using them in coding assembly
language programs that will run on 11/40 proces-
sors. :

In simulating the fetch cycle for the source field

on double operand instructions, an assumption

about addressing is made for simplicity. When

simulating an autoincrement source fetch, the re-

gister can be adjusted to its original value before

the simulation, Thus, in the following instruction
cmp (sp)+,(r5)+

the SP is moved back before simulating the
source fetch. For the decrementation modes, it
is assumed that if the adjustment is not made the
same error will occur. Thus, for example, it is
assumed that the instryction

cmp -(sp), (r5)+

will give the same violation with or without ad-
justing the Stack Pointer(SP).

Floating point instructions cannot be executed on
the 11/40 (no floating point processor option is
available) so they are not backed up. Branches
(br, jsr, jmp) are not backed up either as it is as-
sumed that it is an error for the user process to
attempt to jump to an address that is not already
within his virtual address space.

Source involves an addressing mode other

PD-1C301-01
Secticn 9
Issue 1, January 1976

call

CALL
jstr RO, call; _function -

RETURNS _
No value is retumed.

SYNQOPFSIS

Builds a stack frame so that a smooth interface to
a C language interrupt handler or the trap
handler may occur. Also does any context saving
including floating point registers.

DESCRIPTION

The assembly language function mch.s/call is
complicated as it serves as a common interface to
the trap and C language interrupt handlers.
There are also differences in its operation based
on whether the processor has a floating point unit
or not. The basic operation of the routine that is
common to 11/40, 11/45, and 11/70 processors
will be explained first and differences discussed
afterwards. The common features of the call
function ‘are: .

1. Tt builds a stack frame for an interface to in-
terrupt handlers and the trap handler. When
an interrupt or trap occurs the PDP-11
hardware causes a new Program Counter (PC)
and Processor Status (PS) to be loaded from
the low core vector area (see low.s discus-
sion) and the old PC and old PS to be pushed

. onto the stack specified by the Current Mode
field of the low core PS. (The Kemel mode
stack is used for all cases under UNIX.) As
part of the operation of loading the new PS
from low core, the PDP-11 hardware sets the
Previous Mode field of the Processor Status
so that it indigates the mode that the proces-
sor was in when the interrupt occurred. Upon
entering anz;C language function, the save re-
store sequence (mch.s/csv, mch.s/cret) saves
registers R2-R7 so that only registers RO and
R1 need to be saved by mch.s/call. It should
also be mentioned that the stack that is used
by the operating system resides in the bottom

 portion of the U block of the currently exe-
cuting process. The stack frame that is built
in the U block stack area every time an inter-
rupt or trap occurs consists of the following
entries in the following order:

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

a. old Ps - Processor Status when the inter-
rupt or trap occurred(saved by hardware
interrupt mechanism).

b. old PC - Program Counter when the inter-
rupt or trap occurred(saved by hardware
interrupt mechanism).

c. Register RO of General Register set
0(UNIX only uses General Register set 0).

d. new PS - Processor Status that was loaded
from low core when the iaterrupt oc-
curred. The Previous Mode field has,
however, been set to the appropriate
value,

e. Register R1 of General Register set 0.

SP from Previous Mode - There is one
stack pointer for each of the three proces-
sor modes; User, Kernel, Supervisor.
This stack pointer is saved as a conveni-
ence for the trap handler so that Stack
Violations may be easily fixed and argu-
ments for system calls may be readily
found. .

g. The remainder of General Register Set 0
is saved when the mch.s/call function calls
the interrupt or trap handler(all C
language). The register save sequence is
described under mch.s/csv. The order is
basically; the PC containing the return ad-
dress, RS, R4, R3, R2. Register R6(the
Stack Pointer - SP) does not need to be
saved as it can be located relative to the
contents of RS.

h. Minor device number - The lower § bits of
the low core PS contains the minor device
number of the device initiating the inter-
rupt or the type of trap that occurred.
This is placed on the siack as a conveni-
ence to both the trap and interrupt
handler. Doing this saves the interrupt
handler from having to check the attention
flags on each device.

Besides building the stack frame, the
mch.s/call function is responsible for clearing
off the stack frame and executing a return
from the trap or interrupt(RTT instruction)
when the trap or interrupt handler is finished.

PD-1C301-01
Section 9
Issue 1, January 1976

2. The mch.s/call function calls the appropriate

trap or interrupt handler. The low core vec-
tors reference what are essentially jump table
entries just below the floating vector section
of low core. The jump table entries are of the
form

jst RO, call; _handler

The entry _handler is the address of the ap-
propriate interrupt handler. The mch.s/call
function calls the appropriate interrupt
handler by retrieving this entry.

. The mch.s/call function determines whether

the process that was running when the inter-
rupt or trap occurred may be preempted. Any
interrupt that results in a process being awak-
ened indicates that the currently running pro-
cess should be preempted. Because of reen-

~ trancy requirements in the system, preemp-

tion can only accur if the interrupt occurred
while the processor was in User mode or

- when a system call completes. Since system

calls are made by trapping and the trap inter-
face _uses the interface provided by
mch.s/call, the logic for making this determi-
nation is built into the mch.s/call function.
The Previous Mode field of the PS will indi-
cate whether the interrupt occurred out of
User or Kernel mode and the external vari-
able "runrun” is used by the slp.c/wakeup
function to indicate whether the interrupt
resuited in another process being awakened.
As mentioned previously, interrupts occurring
while the processor is handling a system
call(or a trap) cannot result in a preemption
until the system call is compieted. The
mch.s/call function calls the process Switcher
(slpc/switch) dijrectly to preempt a process
when an interrupt is finished or when the sys-
tem call comg]ctes.'

. For processors that have floating point regis-

ters (11745 and 11/70 only), the mch.s/call
function calls the mch.s/savfp function to
save the floating point registers(in the U
block) and restores the registers when the
process resumes. The floating point registers
only need to be saved if the process is being
preempted as the operating system does not
use floating point. When restoring the stack
frame the processor’s priority must temporari-
ly be raised to 7 to prevent another trap or in-
terrupt from destroying the values on the

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s)

stack frame.

calll

CALL
jsr r0,calll; _trap

RETURN
No value is returned.

SYNOPSIS _ 4
-Saves register RO for the trap handler.

DESCRIPTION

This is a special entry point to the mch.s/call
function used for the trap handler(see
mch.s/trap).

clearseg

CALL’
clearseg(addr)
int *addr;

RETURNS
No value is returned.

SYNOPSIS
Zeros a 32 word memory block.

DESCRIPTION

Mch.s/clearseg is very similar in operation to
mch.s/copyseg. The argument "addr” contains
the high order address of a 32 word memory
block to be cleared. The argument "addr” can be
loaded directly into the address portion of a
Memory Management Address Register.

For 11/45 and 11/70 processor’s the Supervisor
Memory Management registers are available to
perform address mapping. Data Address Register
0 of the Supervisor Memory Management regis-
ters is used to perform relocation and the Previ-
ous Mode of the Processor Status is adjusted so
that Supervisory mapping will be used when
fetching and storing across address spaces
(MFPI.MTP{,etc.). :

There is no Supervisory state on 11/40 proces-
sors so User Instruction Address Register 0 is
saved and restored so that it can be used for
mapping. In this case, the processor’s priority
must be raised to 7 to prevent any interrruption
while the User Memory Management Register is
modified.

PD-1C301-01
Section 9
Issue 1, January 1976

copsu

CALL
jst pe, copsu

RETURN
No value is returned.

SYNOPSIS

Common subroutine used by mch.s/copyout and
mch.s/copyin.

DESCRIPTION

In moving data between the user’s address space
and the system’s buffers, both the mch.s/copyin
and mch.s/copyout routine execute a tight loop
which move data between address spaces. The
mch.s/copsu function sets up registers for both of
these functions and has access to the three argu-
ments passed to them. The cailing sequence of
these two functions are

copyin(vuser, vsys, count)
copyout(vsys, vuser, count)

The "vsys" and "vuser” arguments are the virtual
addresses within the system and user address
spaces respectively. The "count® is the byte
count for the transfer.

A

Mch.s/copsu sets up registers R0, RI, and R2 to
contain these parameters. Registers RO and Rl
are scratch registers when copyin or copyout are
called since they are only called from parts of the

-system that are written in C. Register R2 must,

however, be saved on the stack. The registers
are setup as follows:

RO - Argument 1 (either "vuser” or "vsys")

R1 - Argumert 2 (either "vsys" or "vuser”)

R2 - Argurz;nt 3 byte "count® multiplied by 2
to give®the word count, since both
mch.s/copyin and mch.s/copyout transfer
words across address spaces.

Since both the mch.s/copyin and mch.s/copyout
functions move data across address spaces, the

‘possibility of aborting due to bad virtual ad-

dresses specified in the call exist. In order to al-
low both mch.s/copyin and mch.s/copyout to
dectect these errors, mch.s/copysu sets up the
external variable "nofault” (see mch.s/trap discus-
sion) so that if any trap occurs mch.s/copyin or
mch.s/copyout will be notified by the trap

b4

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

handler and they can return an error indication
(-1) to their caller(rdwri.c/iomove).

copyin

CALL
copyin{vuser, vsys, count)
int *vuser, *vsys;

int count;

RETURNS
Zero on success, -1 on failure.

SYNOPSIS

Copys data form user virtual address spaces to
systemn address space(word by word).

DESCRIPTION

In order to buffer /O between a user’s process
and the devices on a system there are a number
of system buffers. Moving data from the user’s
virtual address space to the buffers which are in
the system's virtual address space is done by
mch.s/copyin (a higher level routine
rdwri.c/iomove does address calculation, buffer
allocation, etc.).)

-

The number of bytes specified by "count™ are
moved, word at a time, starting at the user’s vir-
tual address “"vuser” to the system’s virtual ad-
dress "vsys". The move is done by using the
Move From Previous Instruction Space(MFPI)
processor instruction in a tight loop. The routine
mch.s/copysu initializes this loop and provides
error recovery in case a trap should occur in
moving data across address spaces.

copyout
CALL

struct block|
int b{32]:
I3

copyout(vsys, vusr virtual, count)
struct block *vuser, *vsys;

int count;

RETURNS

Zero on success, -1 on failure.

PD-1C301-01
Section 9
Issue 1, January 1976

SYNOPSIS

Copies data from system(Kernel) v'irtual address
space to user address space (word by word).

DESCRIPTION

Comparable function to mch.s/copyin, perform-
ing the complimentary operation of transferring
data from the system to a user process.

copyseg
CALL

struct block|
int b{32];
|

copyseg(source, destination)
struct block *source, *destination;

RETURNS
No value is returned.

SYNOPSIS

Copies a memory block (32 words) from one area
of physical memory to another.

DESCRIPTION

Creating a new process, expanding the size of an
existing process or correcting a stack violation re-
quire copying a process from one area of core to
another. Since the transfer of data may be to any
place in core (128K word maximum on 11/40,
11/45, and 2M word on 11/70’s) the Memory
Management Unit must be setup to transfer the
data.

The Supervisor Memory Management registers
are available for this operation on 11/45 and
11/70’s processors so that the transfer may be
effected by simply loading two of the Supervisor
Memory Management registers so that they ad-
dress the 32 word “"source” and the 32 word "des-
tination”. By setting the Previous Mode field in
the Processor Status and using a tight loop which
first fetches (MFPD - Move From Previous In-
struction Space) from the source area, then
stores(MTPI - Move To Previous Instruction
Space) into the destination area, the data may be
transferred. Two of the Data Space Address Re-
gisters of the Supervisor Memory Management
Unit are used for mapping the source and desti-
nation on 11/45 and 11/70°s.

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

On 11/40’s the Supervisory state does not exist
so that two of the User Instruction Space Ad-
dress Registers are used for mapping the transfer.
(Their original contents must be saved and re-
stored on the stack.)

cret

CALL
jmp cret

RETURNS
No value is returned.

SYNOPSIS
Restores general registers for C functions.

DESCRIPTION

At the end of every compiled C function,
mch.s/cret is called to restore the registers that
were saved by mch.s/csv and thereby to reset the
stack frame to that of the calling function. Re-
gister R6(SP) is not saved as part of the register
saye sequence because it is used in conjunction
with register R5(the stack frame pointer). The
registers are restored in the same sequence-that
they are saved (see imch.s/csv). Any local
storage allocated on the stack frame (below the
register save area) is cleared off by in line in-
structions generated by the C compiler. Argu-

ments to functions are also passed on the stack .

frame and in line instructions are generated fol-
lowing the subroutine call to clear them from the
stack.

CSYy

CALL
jsrrS, csv

RETURNS
No value is returned.

SYNOPSIS
Performs register save at the beginning of every
C function.

DESCRIPTION

Every function(i.e., subroutine) that is compiled
for the C language calls this function to save the
general registers before any computation is done.
Registers RO and R! are regard=d as scratch by
the C language and therefore need not be saved
when a function is called. When any subroutine

PD-1C301-01
Section 9
Issue 1, January 1976

is called in C, register RS is setup to point to the
current stack location. This is the beginning of a
stack frame for the called subrputine. At the be-
ginning of this stack frame the general registers
are saved in the order RS(saved by the call to -
mch.s/csv), R4, R3, R2. The stack pointer(SP)
is set up to point to the first free location on the
stack below this Register save area. The SP is
used as a local stack pointer within the stack
frame. Since it can be located in relation to RS,
there is no need to save it. Only General Regis-
ter Set 0 is used by the processor so the
mch.s/csv function is the same in the operating
system as for compiled user programs. Once a C
function has saved the general registers and
created a stack frame by calling mch.s/csv,
storage for local variables in the stack frame is al-
located. (The C compiler generates in line in-
struction within each C functions to do this.)

display

CALL
display()

RETURNS
No value returned.

SYNOPSIS

Displays the contents of a memory Iocauon on
the console lights.

DESCRIPTION

Display reads the - contents of the console
switches and displays the contents of that virtual
memory address on the coasole’s data display re-
gister lights. The virtual address is taken from
kernel address space if bit zero of the console
switches is zero, otherwise the address is taken
from user address space. This function does an
immediate retyfn without displaying the contents
of a memory focation on an 11740 system. On
an 11/45, the data display select knob must be
set to DISPLAY REGISTER in order to have the
memory location’s contents displayed.

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

dpadd

CALL

dpadd(dbl, sing)
int dbl(2], sing;
RETURNS

No value returned.

SYNOPSIS
Adds a single word integer to a double word in-
teger.

DESCRIPTION

Dpadd adds the single word "sing” to the double
word that is pointed to by "dbl".

dpcmp

CALL

dpemp(fT01, fl1], s[0], s[1D
int f12}, s{2];

RETURNS

The difference between the two double word
values if tHe difference is between -512 and 512.
Otherwise, a -512 or 512, depending on whether
the difference is negative or positive.

SYNOPSIS
Subtracts two double word values and guarantees

the returned resuit to be in the range -512 to
512.

DESCRIPTION

Dpcmp is useful for comparing two double word
values " and "s", which the system does fre-
quently when doing file /0. The difference
between these double words (i.e., f-s) is re-
turned if it is between -512 and S512. If the
difference is less than -512 or greater than 512,
then -512 or 512, respectively, is returned.

PD-1C301-01
Section 9
Issue 1, January 1976
dump
CALL
jmp dump
RETURNS
No value is returned.
SYNOPSIS

A postmortem memory dump to magnetic tape.

DESCRIPTION

This is a utility program for dumping the con-
tents of memory on magnetic tape if the system
crashes. Registers R0-R6 and Kernel Instruction
Address Kegister 6 are saved (in that order) in
low core starting at absolute location 4. The
mch.s/dump function is started after crashing by
loading absolute address 044 into the program
counter and depressing the start switch. All of
core, or all of core until the first magnetic tape
error occurs is dumped onto tape unit zero in
512 byte blocks. An end of file is also written on
the tape. The mch.s/dump function will not
operate unless relocation has been turned off(bit
0 of Memory Management Status Register 0 is
0). A mch.s/dump routirie exists for both the
TM11 and TU16 magnetic tape units. Before as-
sembling mch.s the proper dump routine is
selected by setting one of the condmonal assem-
bly flags (.tm). For 11/45 and 11/70 systems,
the mch.s/dump routine is loaded in low core
and is mapped by D Space Address Registers
since it is only used post mortem when relocation
is off. This is done in order to allow the operat-
ing system to have as large a virtual address

'space (Instruction Space) as possible. -

fetch /
CALL E
mov addr,RO '

jsr pe, fetch

" RETURNS

The instruction at User virtual address "addr” is
returned in register RO. A -1 is returned if the
virtual address does not exist.

SYNOPSIS

Simulates the instruction fetch or operand fetch
cycle of an instruction. Used in backmg up an
instruction.

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

DESCRIPTION

This function is used by mch.s/backup in simu-
lating the instruction fetch and operand fetch cy-
cle of a PDP-11 instruction when backing up an
instruction on 11/40 processors. Because of the
possibility of improperly accessing across virtual
address spaces, mch.s/fetch must be ready to
catch a trap that might be generated. It does this
by se'ting the external variable "rniofault” to the
address of its own internal error handling
routine. The trap handler checks "nofault” to see
if it is set and transfers to this error routine in-
stead of the trap handler(trap.c/trap) if the fetch
aborts.

fubyte

CALL

fubyte (virtual)
char “*virtual;

RETURNS

The byte specified by the argument “virtual” is

returned. A -1 is returned if the byte cannot be
accessed.

SYNOPSIS
Fetches a byte from a users virtual address space.

DESCRIPTION

This function is used to determine the amount of
memory when the system comes up and for
moving characters between the [/0Q subsystem
and the user’s virtual address
space(subr.c/cpass).

Most of the work in fetching a byte "from the
user’s virtual address space is performed by the
subroutine mch.s/gword. Mch.s/fubyte merely
determines which byte is to be returned to the
caller.

-9.

T PD-1C301-01
Section 9
Issue 1, January 1976

fuword

CALL

fuword (virtual)

int *virtual;

RETURNS

A -1 on failure.

SYNOPSIS .

Fetches a word from user’s virtual address space,

DESCRIPTION

Used to fetch arguments to system calls by trap
handler and argumeants for the exec system call.

Mch.s/fuword uses the common subroutine
mch.s/gword for accessing the user’s virtual ad-
dress space and catching any errors in fetching
across virtual address spaces.

getc

CALL

getc(cp)
struct clist *cp; |

RETURNS

A -1 is returned if there are no characters on the

teletype queue "cp”.

SYNOPSIS

Used to get a single character off a teletype
queue returning character buffer storage area to
the free list ("cfreelist”) as needed.

DESCRIPTION

Several queues are associated with each character
device, an input queue("t_rawq"), a canonical
queue(™t_canq") 4nd an output queue("t_outq”).
The mch.s/getc.function will remove one charac-

“ter from the quéue specified by "cp”.

Character buffer storage is allocated to a queue as
a linked chain of storage. Each increment of
buffer ("cblock™) contains one pointer word and
six characters of buffer space. Each queue
header("clist”) contains a count of the characters
that are allocated to the queue(“c_cc™), a pointer
to the first character in the first buffer("c_cf") and
the next available character posit("c_cl") in the
last buffer on the queue.

3
§
a

R ARy

el

it

i

-10-

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

It should be emphasized that queues maintains
pointers to the first and last characters respective-
ly and not the first and last buffer on the queue.
This can be done because in allocating and ini-
tializing space for the character queues, care was
taken to insure that each character buffer began
on an eight byte memory address boundary.
With this arrangement, the queue pointers reveal
not only the (first and last) character but the
buffer which they are in.

are zero if there are no characters on a queue.

Mch.s/getc removes the first character on the
queue (pointed to by "c_cf”), and retums it to
the caller. If the character removed is the last
one in a character buffer, the character buffer is
unlinked from the queue and returned to the free
list of character queue (“cfreelist”). The free list
of buffers is organized as follows:

I. "Cfreelist” is a one word pointer to the begin-
ning of a queue of free buffers. If there is no
free storage then “cfreelist” is zero.

2. Each free buffer on the queue uses its pointer
entry as a link to the next free buffer. The
last buffer on the queue contains a zero in its
pointer entry.

3. When a character buffer is returned to the
free list. it is placed at the head of the queue.

Since mch.s/getc is called by many character
driver interrupt handlers it is necessary to raise
the processor’s priority to § to lock out interrupts
from character devices while mch.s/getc is un-
linking pointers to a queue.

The character removed from the queue is
returned{in RO) or a -1 is returned to indicate
that the queue was empty.

The first character
pointer, last character pointer, or the byte count.

PD-1C301-01
Section 9
Issue 1, January 1976

gword

CALL
mov addr, rl
jsr pc, gword

RETURNS
A -1 is returned on failure.

SYNOPSIS

Common subroutinc used by mch.s/fubyte and
mch.s/fuword to fetch data from the virtual ad-
dress space of a user process.

DESCRIPTION

The Move From Previous Imstruction Space
(MFPI) instruction on the PDP-11 is for fetching
data from another address space. The Previous
Mode field of the Processor Status (PS) indi-
cates the address space from which the data is to
be fetched. The operand field of the MFPI in-
struction specifies the virtual address that is to be
used for retrieving the data. Execution of the
MFPI instruction results in the desired word be-
ing placed on the Current Mode stack(Kernel in
this case). These instructions operate only on
even addresses and there is no analogous byte
oriented instruction.

Whenever data is moved across address spaces,
there is 2 possibility that the desired address .
does not exist in the target address space. A
Segmentation Violation trap will occur if an ille-
gal virtual address is generated so that
mch.s/gword must be ready to catch these faults.
It sets up the address of it’s own error routine in
"nofauit” so that the trap handler will transfer
control to this error routine instead of calling the
system trap handler(trap.c/trap).

idle &
CALL

idle()

RETURNS

No value is returned.

SYNOFPSIS

The processor goes into the WAIT state until the
next interrupt occurs.

-1l -

MCHOI - MACHINE INTERFACE CODE
File: m40.s/m45.5/m70.s

DESCRIPTION _
The ~process Switcher(slp.c/switch) selects
processes to use the CPU. I there are no
processes in the system or no processes that are
ready to run, the mch.s/idle routine is called to
place the processor in the WAIT state. The
mch.s/idle routine is called only by the process
Switcher and executes the WAIT instruction after
it has saved the Processor’s Status and lowered
the processor’s priority to zero(to allow any in-
terrupt to occur). When an interrupt does occur,
it is processed and then control is returned to the
mch.s/idle fuaction. The Processor Status is re-
turned to its original value and control is re-
turned to the process Switcher. When the pro-
cessor has no work to do (e.g., overnight), the
clock will continue to interrupt once per sixtieth
of a second so that the process Switcher will run
at this frequency and will idle the processor in
between.

incupc

CALL

incupc(pc, prof)
int pc, *prof;,
RETURNS

No value returned.

SYNOPSIS -
Does the actual profiling of a user process.

DESCRIPTION

Incupc is the function that actually performs
profiling, whereas sys4.c/profil only enables and
"disables the profiling process. When called with
a value for the user’s program counter ("pc”) and
the address of the profiling arguments ("prof™)
found in the U block (u_prof{]), this function
evaluates the expression:

(pc - profile offset) ° profile scale

If the result is less than the profiling buffer size,
then that word within the profile buffer is incre-
mented by one.

PD-1C301-01
Section 9
Issue 1, January 1976

ldiv

CALL

Idiv(divid, divisor)
int divid, divisor;

RETURNS
The quotient of two integers.

SYNOPSIS
Divides two integers.

DESCRIPTION

Ldiv returns the quotient from the division of
*divid" by "divisor". The dividend is always re-
garded as an unsigned number. This permits
division of sixteen bit values and assures that the
quotient will always be positive. There is no
check to ensure that the divisor is not zero. See
also mch.s/Irem.

Irem

CALL

Irem(divid, divisor)

int divid, divisor;

RETURNS

The remainder from division of two integers.

SYNOPSIS

Finds the remainder from division of two in-
tegers. :

DESCRIPTION

Lrem returns the remainder from the division of
*divid" by "divisor". The dividend is regarded as
an unsigned number. This permits division of
sixteen bit values and assures that the remainder
is always positive. There is no check to ensure
that the divisor is not zero. See also mch.s/1div.

Arnd

-12-

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

Ishift

CALL

Ishift(dbl, bits)

int dbi(2], bits;

RETURNS '

The low 16 bits from the shift of a double word.

SYNOPSIS
Shifts a double word to the right or left a desig-
nated number of bits.

DESCRIPTION

Lshift shifts the double word "dbl" to the right
(i.e., division) or the left (i.e., multiplication) by
"bits" number of bits. If "bits” is negative, the
shift is to the right, otherwise it is to the left.
The low order 16 bits of the result are returned.

putc

CALL
putc{c, cp)
char ¢
struct clist *cp;

RETURNS

A zero is returned if a character is successfully
placed on a teletype queue; a nonzero value if
not.

SYNOPSIS
Places a character on a teletype que,ue allocating
character buffer storage as needed.

DESCRIPTION

Mch.s/putc performs the complimentary opera-
tion to mch.s/getc. It places the character "c¢" at
the end of the teletpe queue specified by "cp”.
The queue is organized as described under
mch.s/getc with a character count("c_cc”) and
first and last character pointer("c_cf","c_cl”
respectively). The first character pointer gives

the address of the character at the head of the -

queue. while the last character pointer("c_ci")
gives the address of the next available position at
the end of the queue. When placing a character
on a character queue, the last character pointer is
changed to reflect the addition of a new character
The character count is also incremented by one.
If, however, there is no space avazilable on the
queue a new character buffer is allocated from
the free list("cfreelist”). Allocating 2 new buffer
to the queue and inserting the character is done

PD-1C301-01
Section 9
Issue 1, January 1976

zs follows:

1. A character buffer is deallocated from the
queue of free buffers("cfreelist”). The first
buffer on the queue is chosen. The organiza-
tion of this queue is described under
mch.s/getc.

2. If the queue onto which the character is to be
placed is empty, the first character
pointer("c_cf") must be set in addition to the
normal setting of the last character
pointer("c_cl”). If there are character buffers
already allocated to the teletype queue, the
new storage is added to the end of the linked
queue. The last buffer on the teletype queue
has its pointer field set to zero so that addi-
tion is accomplished by merely changing this
field to point to the new buffer and zeroing
the pointer entry in the new buffer.

3. The last character("c_cl") pointer is adjusted
to point to the address of the next free char-
acter position in the buffer.

4. The character count("c_cc") is incremented.

If there are no buffers left("cfreelist” empty) in
the buffer pool, a nonzero value is returned to
the caller of mch.s/putc, a zero is returned for
success. ' ’

pword

CALL

mov word, r0
mov addr, rl
st pe, pword

RETURNS
-1 on failure.

SYNOPSIS _
Common subrouéne used by mch.s/subyte and
mch.s/suword to store a word into the user’s vir-
tual address space.

DESCRIPTION

Performs the inverse operation to that of
mch.s/gword. It uses the Move To Previous In-
struction Space(MTPI) instruction to move
*word” to the user virtual address specified by
*addr”. As with the mch.s/gword routine, a trap
(Segmentation violation) might occur because of
an illegal address ("addr") so that the -trap
catcher("nofault”™) is set up.

-13.

MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

retu

CALL

retu(addr)
int *addr;

RETURN
No value is returned.

SYNOFSIS)
Restores the stack position(U block) of a process
and places a user’s per process information
within the system’s virtual address space. Used
for restarting a process.

DESCRIPTION

The address “addr” is the location of a process.
(It is the contents of the "p_addr" entry of a Pro-
cess Table entry. The U block is the first 1024
bytes at this address and the data and stack seg-
ments of the process follow immediately.) It is in
memory block(32 word) granularity so that it
may be directly loaded into Memory Manage-
ment Registers(Kernel Instruction Address Re-
gister 6 - KISA6 for 11/40’s or Kernel Data Ad-
dress Register 6 - KDSA6 for 11/45 or 11/70
processors). Mch.s/retu places a user’s U block
in the system’s virtual address space and helps
restart the process by restoring athe stack posi-
tion of the process from the U block. A higher
level routine(slp.c/swich) will issue a C
subroutine return(jmp cret - return statement)
which will restore the general purpose registers
and the PC from this stack frame. Mch.s/retu al-
ways restores SP and RS from the array "u_rsav”®
in the U block ("u_rsav” is the first entry in the
per process information area of the U block.)
The stack position(SP and R35) was saved previ-
ously by the function mch.s/savu.

Mch.s/retu is not called unless a process is in

corg as the "p_addr™ entry contains the swap ad-

dress of the process when it is non resident. All
. interrupts must be disabled to insure that the
context can be changed without interruption. To
do this, the processor’s priority is raised to 7
while the SP, RS and KISA6 (or KDSA6 on I
and D space systems) is being restored. The
processor’s priority is then lowered to zero to al-
low processing of all pending interrupts.

PD-1C301-01
Section 9
Issue 1, January 1976

savip

CALL
jst pe, _savip
savip()

RETURNS
No value is returned.

SYNOFPSIS

Saves floating point registers. A dummy routine
is used for machines that do not have floating
point. ’

DESCRIPTION

If a process is to be preempted as the resuit of an
interrupt waking up another process or of a sys-
tem ‘call completing, the floating point registers
must be saved. (This is true, of course, only for
machines that have a floating point
unit11/45,11/70.)

The registers are saved in the U block area ("u_
fsav") in the following order:

Floating Point Status Register
FRO - Floating Register

FR4 :

FRS

FR1

FR2

FR3

Special precautions must be taken in saving regis-
ters FR4 and FRS as they cannot be referenced
using addressing modes other than zero (direct
addressing - se¢ DEC Processor Handboak).

NownsLN-

The mch.s/savfp function is a dummy routine on
machines that do not have floating point
hardware. UNIX uses double precision floating
point at all times so that each saved register
represents 4 words. (The floating point status re-
gister is only ofie word for a total of 25 words to
be saved in "u_fsav").

-14 -

- MCHO1 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

savu

CALL

savu(save)
int *save(];

RETURN
No value is returnied.

SYNOPSIS

Saves the stack position of a process executing
within the operating system.

DESCRIFTION

C language functions store the subroutine return
address on the stack. The first action performed
in the call function is to build a stack frame. Re-
gister RS is set to the current position of the
stack pointer{(SP) as the beginning of this stack
frame and the general purpose registers are saved
on the stack. Local variables are allocated on the
stack frame directly below the register save area.
Register R6{(SP) is set up just below the local
variables and acts as a local stack pointer.

By saving RS and SP and by establishing a con-
vention about relinquishing the processor, only
registers R5 and SP need be saved to save a
process’'s context.. The general registers are
saved (by mchs/csv) and restored (by
mch.s/cret) on the stack every time an interrupt
or trap occurs and every time a C language func-
tion is called so that as long as the location of
these registers(i.e., RS is saved) the process can
be restarted.

The mch.s/savu, function performs the service of
saving the current value of R5 and SP of the cail-
er of mch.s/savu in the array specified by "save".
When a process is to be restarted, a converse
operation, in which the SP and RS are restored (
mch.s/retu or mch.s/aretu) is performed. It is
also necessary to restore the general purpose re-
-gisters (including the PC) of the restarted user.
‘This can be done by merely executing a C
subroutine return (mch.s/cret) once the SP and
RS have been restored.

The process Switcher saves the general registers
and context{mch.s/savu) of a procéss as it is the
common routine used to change execution from
one process to another. However, by having
several arrays("u_rsav","u_gsav","u_ssav") where
the stack position(SP and RS) can be saved, a
process may resume by returning from a function
other than the process Switcher.

PD-1C301-01
Section 9
Issue 1, January 1976

In particular, the "u_rsav” area is used to save
the stack position of processes that willingly re-
linquish the processor(slp.c/sleep) or are
preempted. The "u_ssav® area is used by
processes that do their own swapping(excluding
the Scheduler) and is set up so that once the pro-
cess is brought back into memory, it will be res-
taried in the code that did the swapping and not
by returning from the process Switcher (A flag
must be set SSWAP in "p_flags" to inform
slp.c/swich to restore the stack position from "u_
ssav” and pot "u_rsav".) The last area "u_qgsav" ic
a special area which has the stack position of a
process saved every time a system call is made.
It is useful, not for resuming a process at a
non-standard place, but in aborting a system call
when a signal is caught. The "u_rsav" area is also
used by the sip.c/expand function to restart exe-
cution of a process after moving it to a different
location in memory. :

Because of the critical nature of saving contexts
mch.s/savu must raise the processor’s priority to
7 to insure that no interrupts modify any regis-
ters until the context is changed.

setreg

CALL
mov instr, 10
Jst pc, setreg

RETURNS

Returns in the lower byte of register R2, the re-
gister that was modified by the destination field
of an instruction and the amount that it was
modified by. The high byte of register r2 is un-
touched.

SYNOPSIS

An assembly laxlguage function used by the
mch.s/backup fugction on 11/40’s to simulate
the operation of Memory Management Status
Register 1.

DESCRIPTION

The amount that a register can be incremented
or decremented(automatically) in a PDP-11
machine language instruction is dependent on the
addressing mode and on the type of
instruction(byte or full word). The amount of
the modification for the addressing modes is;

-15 -

MCHOt - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

a. Autoincrement {+1 for byte instruction,
"~ 42 for full word instruction).

b. Autoincrement deferred (+1 for byte
and +2 for full word).

¢. Autodecrement (-1 for byte, -2 for full
word).

d. Autodecrement deferred (-1 for byte
~ and <2 for full word).

This function examines the destination field
in the instruction "instr® passed to it and
places in the low byte of register R2 the
number of the register that was modified by
the destination field and the amount that the
register was incremented or decremented. It

is put in the same form as the Memory .

Management Status Register 1 reports it for
11/45 and 11/70 processors. This functions is
used only on 11/40’s to sirmulate the opera-
tion of Status Register 1. For a full descrip-
tion of instruction backup see mch.s/backup.

spl0 .
CALL ’

splo ()

RETURNS

No vaiue returned.

SYNOPSIS
Changes the processor’s priority to 0.

DESCRIPTION
Spi0 changes the hardware priority of the proces-
sor (found in the processor status word) to 0.

spll
CALL
spl1{)

RETURNS
No value returned.

SYNOPSIS
Changes the processor’s priority to 1.

PD-1C301-01
Section 9
Issue 1, January 1976

DESCRIPTION

Spll changes the hardware priority of the proces-
sor (found in the processor status word) to 1.

spl4

CALL

spl4()

RETURNS

No value returned.

SYNOPSIS .

Changes the processor’s priority to 4.

DESCRIPTION

Spl4 changes the hardware priority of the proces-
sor (found in the processor status word) to 4.

spls

CALL
spiS0

" RETURNS

No value returned.

SYNOPSIS
Changes the processor’s priority to S.

DESCRIPTION

Spl5 changes the hardware priority of the proces-
sor (found in the processor status word) to 5.

splé

CALL

spl6 ()

RETURNS _

No value returged.

SYNOPSIS

Changes the processor’s priority to 6.

DESCRIPTION

Splé changes the hardware priority of the proces-
sor (found in the processor status word) to 6.

2

-16 -

MCHO0! - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

spl7
CALL
spl70

RETURNS
No value returned.

SYNOPSIS
Changes the processor’s priority to 7.

DESCRIPTION

Spl7 changes the hardware priority of the proces-
sor (found in the processor status word) to 7.

start
CALL
jmp start
RETURN

No value is returned.
SYNOPSIS

Sets up the virtual address space for the operat-
ing system.

DESCRIPTION

The difference between initializing the operating
system’s virtual address space for 11/40’s is
sufficiently different from that of 11/45 and
11/70’s that a separate discussion of each will be
given.

On 11/40 processor’s, there is only are one set of

General Purpose Registers(set 0) and there are
only two sets of Memory Management
Registers(User and Kernel). Each set of Memory
Management Registers does not have a Data
Space Register Set in addition to the normal In-
struction Space Register Set. The Memory
Management Unit on the 11/40 also does not
possess a register(Status Register 1) which aids
in backing up instructions(see mch.s/backup dis-
cussion). When UNIX is booted into memory
by one of the BOOT programs(UBOOT,
HPBOOT, RKBOOT, TBOOT, MBOOT, etc), it
is in the same form as a standard object file on
the system. That is, there is an 8 word header
followed by the text(instructions) segment. This
is foilowed by any initialized data and any unini-
tialized data(bss). The size of the uninitialized
data(bss) is indicated in the header. The end of
the three respective areas are indicated by the

PD-1C301-01
Section 9
Issue 1, January 1976

foitlowing threc addresses supplied by the UNIX
losder *_etext®, "_edata®, *_end".

When UNIX is booted into memory, relocation
by the Memory Management Unit is off(bit 0 of
Status Register 0 turns relocation on). All ad-
dresses are mapped into the lower 32K words of
memory. Since the operating system is the only
software to interact with the device registers, the
virtual address map for the Kernel must be set
up to access this region. Also, the operating
system’s stack shifts from area(U block) to area
within the full range of memory depending on
which process is executing. To perform the ad-
dress mapping required for these functions Ker-
pel Memory Management Instruction Address
register 7(KISA7) is set up to map virtual
memory references 28K-32K word in Kemel vir-
tual address space into the high memory Unibus
address area (18 bit pysical addresses 124K-
128K). Kernel Memory Manzagement Instruction
Address register 6 (KISAG6) is used for mapping
the system stack and the U block area. The U
block area is a block of memory 1024 bytes in
size which contains per process information. The
"u" array is in the low physical address part and
the system’s stack area is in the high physical ad-
dress part of the U block. The first six Kernel
Instruction Address registers are set up to map
the first 24K of physical memory into the
corresponding first 24K of virtual address space.
The boot programs bring the operating system
into this area of memory so no rearrangement of
the object file is necessary as on I and D space
systems(see below). The area taken up by the
operating system may actually be smaller than
the 24K that can be accessed by the memory
map ,however, the address map is not adjusted to
constrain the operating system. Two other func-
tions must be perférmed before the system can
be initialized(by gmain.c). The system allocates
the first 1024 by¢e area (on a 64 byte address
boundary) as a U block for the Scheduling pro-
cess. The Page Length Field in all of the Kerne!
Instruction Address registers is set up to map a
full 4K word area and the access contrcl permis-
sions for read/write no abort(ACF = 06 is set).
KISA6, which maps the U block, is set up with
the same permissions but mapping for only a 1K
byte area. Once the Kernel virtual address map
has been set up, relocation can be turmed on(by
setting bit 1 of Status Register 0 in the Memory
Management Unit) and the uninitialized
data(bss) and Scheduler U block area can be

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

zeroed. The bss area is the area between
edata” and "_end". Before calling main.c to ini-
tialize the system, the Processor Status is set up
so that the Current Mode field indicates Kernel,
the Previous Mode indicates User and the
processor’s priority is lowered to zero. This is
dene because it is an appropriate start off state
for the processor, allowing interrupts and appear-
ing as if a system call ‘from a user process was
made.

There is one additional function performed by
mch.s/start. This is in conjunction with main.c
which spawns the INIT process. A return{(RTS)
to the mch.s/start routine is executed by main.c
an behalf of the INIT process after it has haad-
crafted a small program(“icode”) in user virtual
address space. This program will cause an exec
system call to be issued and the INIT process to

be brought into memory. The whole operation .

appears as if a system call was made by the
(nonexistent as yet)
mch.s/start program simulates the return from
the system call by setting up the system’s stack
so that a return from trap(RTT) instruction can
be executed. An appropriate PS(indicating both
Previous and Current Mode of the processor to
be User) and PC(set to resume execution at vir-
tual address 0 in user virtual address space) is
lcaded onto the stack before executing the RTT.

For 11/45 and 11/70 processors there is a better
Memory Management Unit which allows larger
virtual address spaces. In particular, there are
three sets of Memory Management Registers;
Kernel, User, Supervisor. Each Memory Map is
divided into two sections, one for mapping in-
struction fetches(Instruction space) and one for
mapping data fetches (Data space). To take ad-
vantage of the expanded virtual address space
available in these processors the object file is re-
located differently. The major reason for this is
that when an interrupt or trap occurs the new PS
and PC loaded from the low memory vector area
are mapped by the hardware into the low virtual
D space area. The low core vectors are however
hardwired to low physical core. This means that
‘at least low physical core virtual Data must be in
low memory. Also, by arranging that the system
buffers have the same physical and virtual ad-
dresses, relocation need not be performed when
doing buffered 1/0. The approach taken for
UNIX [and D space systems was ta rearrange
the object file for the system{using the SYSFIX

-17-

INIT process. The

PD-1C301-01
Section 9
Issue 1, January 1976

command) so that the data precedes the text.
Several text portions of the system, notably the
C interface area, the post mortem dump
(mch.s/dump) and the mch.s/start routine are
loaded in Data Space. This is done to save In-
struction space or because the routines are used
only once. The boot programs are exactly the
same as for the 11/40, the only difference being
the interchange of the text and data portions of
the object file which are transparent to the object
programs. The virtual address mapping set up by
the mch.s/start routine is also different and the
meaning of the symbols "_etext”, "_edata” and "_
end" supplied by the loader is different. In addi-
tion, the operating system must be loaded u3ing
a special option on the loader.

When the loader performs relocation on an ob-
ject file that is to have I and D separation, all of
the text is loaded assuming that the first location
is virtual address 0 in /astruction Space.. The data
and bss segments are loaded assuming that the
first location available for data is also virtual ad-
dress 0 in Data Space. The meaning of "_etext”,
"_edata” and "_end" at this point is as follows,

_etext” - This is the last address occupied by
instructions in Instruction Space and since the
text has been loaded at virtual address 0, it
also corresponds to the size of the text.

_edata” - This is similar to the "_etext” sym-
bol since the data is loaded in its own virtual
address space starting at virtual 0. It also
corresponds to the size of the data segment.

Data Space. The size of the bss area is *_end"
- *_edata®.

The SYSFIX commmand must be run on UNIX
cbject files thaj are to be separated into [and D
space. This prégram interchanges the position of

the data and text portions of the object file (text

is normally first) and also relocates the text por-
tion so that the first address is at 4K word virtual
Instruction Space. This means that "_etext” is in-
creased correspondingly and no longer represents
the size of the text.

With the new object file provided by the SYSFIX
program, some adjustments of the position of the
text(to make room for the bss) in physical
memory is still necessary when the system is
booted into memory. In order to utilize fully the

_ address space provided by the Kernel Data Space,

_end” - This is the last virtual location in -

o

, =-18-

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

it is desirable to place the bss segments between
the data and text. To do this, the text must be
shifted in physical memory to a higher address
area which may be beyond the 32K word address
space that can be addressed with relocation off.
The Memory Management Registers must there-
fore be setup to accomplish this and relocation
turned on to do the move. (This was not neces-
sary on non I and D space systems since the total
text, data and bss area was limited to 32K
words.)~The Data Space registers are setup so

that their 32K virtual address space maps into the

first 32K of physical memory. The last seven of
the Instruction Address Space Registers are setup
so that they map 28K of wvirtual address

space(beginning at 4K virtual) into the physical

area of memory that the text is to reside
in(immediately below the data and bss). Instruc-
tion Address Register 0 is set up so that the first
4K virtual Space overlaps the 4K physical area al-
ready mapped by Kernel Data space Register 0.
{This is done because mch.s/start is in the data
area as is the C interface area and they must re-
side in Instruction Space to be executed. Reloca-
tion may now be turned on and the text moved
to higher physical memory by using the MTPI in-
struction with the PS setup to indicate that the
Current and Previous Modes are Kernel. The
bss. area is then zeroed. Finally it is necessary to
setup Data Space Address Register 6 to point to a
U block for the Scheduler(as was done for the
11/40). Space for the U block is allocated from
the first available memory beyond the operating
system. It is cleared and a stack is established
in the lower portion of the U block for the sys-
tem. Data Space Address Register 7 must be set
up to map the Unibus addresses. (There is a
contradiction in terms at this point as one cannot
set a data location which is not already within
your virtual address space once relocation has
been turned on.) This is done by using an ad-
dressing mode escape(see DEC Memory
Management Maintenance Manual) for the MTPI
instruction which allows the 1/O area to be ac-
cessed and therefore Data Space Address Regis-
ter, to be set even though no mapping exists for
that area. All of the Memory Management Re-
gisters are set up to map 4K regions of memory,
except for Data Space Register 6 which maps the
1K byte area of the U block. All Memory
Management registers are set up for read/write
no abort/trap action (Access Control Field -
ACF = 06) and for the expansion direction to be

PD-1C301-01
Section 9
Issve 1, January 1976

toward high physical addresses(ED = 0). The
operation of the mch.s/start routine in conjunc-
tion with main.c and the INIT process is the
same as for 11/40’s.

The 11/70 processor is capable of addressing
more memory than either the 11/40 or 11/45 by
turning on 22 bit mode addressing in the
Memory Management Unit(bit 4 of Status Regis-
ter 3 is set). Currently only 18 bit
addressing(i.e., 11/40, 11/45 mode) is supported
on 11/70 processors.

subyte

CALL
subyte(virtual, c)
char «c;
char *virtual;

RETURNS

A -1 is returned if the character "¢" cannot be
placed in the user’s virtual address spaces.

DESCRIPTION

This is the analog of mch.s/subyte. Most of the
work in storing a byte in the user’s address space
is done by mch.s/gword(get a word from user
virtual address space) and mch.s/pword(place a
word in user virtual address space).

Because the oaly instructions available for mov-
ing data between address spaces(MFPI, MTPI,
etc.) operate on words, the full word that con-
tains the byte to be overwritten must first be
fetched(by mch.s/gword) and the byte carefully
inserted before the word is replaced in the user’s
address space(by #mch.s/pword). Both
mch.s/pword and mch.s/gword are equipped to
deal with errors occurring in storing across ad-
dress spaces and wilf' result in mch.s/subyte re-
turning a -1. They set up the external variable
"nofault” so that it contains the address of their
own intermnal! error handler so that the trap
handler will return control to them instead of
processing the error as a trap.

This function is used chiefly in moving characters
from the 1/0 subsystem to the user’s address
space(see subr.c/passc).

-19 -

MCHO01 - MACHINE INTERFACE CODE
File: m40.s/m45.s/m70.s

suword

CALL

suword(virtual, word)
int word;

int ®virtual;
RETURNS

-1 on failure.

SYNOPSIS
Stores a word in user virtual address space.

DESCRIPTION

Mch.s/suword and mch.s/subyte use the common
subroutine mch.c/pword to place a word in the
user’s virtual address space at the address "virtu-
al®,

trap |

CALL
jmp trap

RETURNS
No value is returned.

SYNOPSIS .

Trap is an assembly language interface which per-
forms some additional work for interfacing to the
trap handler(trap.c/trap).

DESCRIPTION

Additional work is required in handling traps be-
sides the normal stack frame buildup that is done
by the mch.c/call routine. First of all, the status
registers in the Memory Management unit con-
tain information about memory faults and infor-
mation that will allow instructioas to be backed
up and restarted when a segmentation violation
occurs. The three registers and the information
they represent are, (For exact details see DEC
Processor Handbook.)

L Memory Management Status Register 0 -
type of memory violation occurring.

2. Memory Management Status Register 1 -
records any autoincrement/autodecrement
of general purpose registers. (Necessary for
backing instructions up instructions on
11/40Q’s).

PD-1C301-01

Section 9 -

Issue 1, January 1976

3. Memory Management Status Register 3 -
contains. the virtual PC when the trap oc-
cured.

The trap interface saves the contents of these re-

gisters in a three word array "ssr” so that they

may be used by the mch.s/backup routine. Once
these registers are saved, relocation may be
turned on by setting bit 1 in Memory Manage-
ment Status Register 0.

Since all traps are handled by the same C func-
tion (trap.c/trap) there is no jump table entry in
low core as there is for the interrupt handlers.
These low core jump table entries are, however,
responsible for saving register R0O. The assembly
language mch.s/trap routine must do this by exe-
cuting the following sequence,

jsr r0,calll; _trap

This is in the same format as the low core jump
table entries and is used both to save register r0
and to interface to the mch.c/call routine. The
function mch.s/calll is a special entry point in
the mch.c/call routine for the trap handler. It

" merely adjusts the stack pointer so that the inter-

face to the mch.c/call routine will be smooth and
lowers the processors priority to zero so that any
interrupts that may be pending can be processed.
(Note - The low core vectgrs indicated that the
processor’s priority should be raised to 7 when
handling a trap). This is to prevent another trap
from destroying the contents of the Memory
Management Status registers before they could
be saved and relocation restarted.

In moving data between address spaces, (using
mch.s/copyseg, mch.c/fuword, mch.s/copyin, etc.
- i.e.,any routine which uses the MFPI, MFPD,
etc. instmc‘tions)g_:there is the possibility that the
user process has’ improperly specified to the sys-
temn the virtug}l address to or from which data is
to be moved. UNIX allows these specialized
routines do their own trap catching. These as-
sembly language functions place in a external
variable "nofault” the address of their own error
handler. If a trap occurs, the mch.s/trap function
will transfer to the address specified by “nofault”
rather than calling the trap handler(trap.c/trap).

Hamate W8

RDWRIOI1 - READ/WRITE I-NODE
File: rdwri.c

Because the offset is a 24 bit number, readi calls
many auxillary functions to handle the arithmet-
ic. Readi will read into a buffer from the buffer
pool, §12 bytes at a time, starting at u_offset
within the file pointed to "aip®. U_count bytes
are moved from the buffer pool into the user
area pointed to by u_base.

UNIX block 1/0 is read or written in multiples of
512 (one block) bytes. If u_count is less then
512 only one block need be read. If u_count is
not a multiple of 512 bytes, the correct byte posi-
tion within a block must be located. If u_count
plus u_offset is greater than the size of the file,
all data to the end of file must be read.

The i-node is first marked for updating the last-
accessed time. If the i-node is a character special
file (device) then the appropriate device read
routine will be switched to using the major dev-
ice number found in the first address entry of the
i-node.

If the offset is greater than the size of the file
then the file is position to the end-of-file and
readi returns. ‘

In ieading block special files, readi maintains a
read ahead protocol that saves the next block
number and does a read ahead.

The a!gorithrh is to do repeated reads of blocks
and moves to the user’s area until u_count bytes
have been read.

Subr.c/bmap is called to get a buffer from the
buffer pool. Bio.c/bread is called to read the re-
quired biock. Rdwri.c/iomove is called to move
data (either the entire block or some portion)
into the buffer pointed to by u_base. Bio.c/breise
is called to release the buffer back to the pool.

writei

CALL

writei (aip) ,

struct inode *aip;

SYNOPSIS

Write the file associated with the i-node pointed

to by "aip®. Companion routine to readi. Both
are the workhorses for file system [/0.

PD-1C301-01
Section 12
Issue 1, January 1976

DESCRIPTION

Writei uses informiation in the per user control
block to help write the file associated with the i-
node pointed to by "aip". The variables are:

u_base core address of user’s 1/0 buffer
u_offset byte position into the file
u_count pumber of bytes to be written

. u_segflg flag for 1/0; user of kernel space

Writei will move u_count bytes from the user’s
program at u_base to buffers in the buffer pool.
It will then write the buffers to the file pointed to
by "aip” at the position u_offset.

Since UNIX I/0 is block oriented, data is written
in multiples of 512 bytes. If u_offset is less than
the size of the file, then part of the file is being
overwrittenn. The block at u_offset must then be
read, the appropriate bytes replaced and the block
rewritten.

If thé file is positioned at the end-of—ﬁle, new
blocks must be allocated and written.

The i-node is first marked to update the last-
accessed and last-modified times. If the i-node is
a character special file (device) then the appropri-
ate device write routine will be switched to using
the major device number found in the first ad-
dress entry of the i-node.

The block containing the offset is read into a
buffer from the buffer pool. The minimum (N)
of the number of bytes remaining in the block or
the u_count is obtained. If this minimum is ex-
actly 512 bytes a new block must be obtained. In
either case, rdwri.c/iomove is called to move N
bytes from the user area to the buffer obtained
from the buffer pool by calling subr.c/bmap.
Bio.c/fwrite is called to write the block.
Bio.c/frele is called tp release the buffer.

If the size of the gle is less than the offset then
the size is set to the new offset value. This is re-
peated until u_count bytes have been written.

SI1GO01 - SIGNAL
File: sig.c

core

CALL
core()

RETURNS

A one is returned if a core image is successfully
produced.

SYNOPSIS

Produces a core image as a result of the standard
system action on reception of certain signals.

DESCRIPTION

For program debugging purposes, it is convenient
to have a system function which makes a copy
of an aborted process in a file. The format of a
UNIX core image is simply the 1024 byte U
block followed by the data and stack areas. For
non-reentrant processes the data area contains
the text, data and bss areas however, for reen-
trant processes, the text is not included. The DB
and CDB commands under UNIX can examine
these images post mortem as an aid in debug-
ging. The U block will contain the general pur-
pose registers (inctuding virtual PC) so that all
information about the state of the program when
it aborted is known.

All core images are produced in a file "core” in
the working directory of the aborted process.
The sig.c/core function esseatially simulates a
create system call followed by two writes into the
file. The steps in the production of the core im-
age are as follows, :

1. A search is made to see if a file named "core”
already exists in the working directory of the
process. The nami.c/nami function performs
this service. The file name "core” is passed to
nami.c/nami by setting up "u_dirp". (Normal-
ly the trap handler sets up “u_dirp” for open,
create, link, etc. system calls.) The address of
a special routine used by nami.c/nami to fetch
the string name (narmmi.c/schar) must be
passed as an argument to nami.c/nami. If any
errors occur due to conflicts in access permis-
sions on an existing "core” file or if directory
permissions are not correct, the core image is
aborted.

2. If the file does not already exist, then an i-

node is allocated for it and given read/write "

by all access permissions (0666).

PD-1C301-01
Section 13
Issue 1, January 1976

3. For an existing file with the name “core”, the
access permissions for the file must be
checked to see if writing is allowed
(fio.c/access). There are some serious bugs
in the access checking setup for producing
core images. For the super user, access
privileges are ignored so that any directory
named "core” could be overwritten.

4. Once a file has been established and access
granted, the file is truncated (iget.c/itrunc).

5. The U block is then written out by setting up
- parameters for the rdwri.c/writei function.
The file offset "u_offset” is set to zero, the ad-
dress ("u_base") where the transfer is to begin
is set to the address of the U block
(0140000). "U_count® is set to the size, in
bytes, of the U block and finally a flag, “u_
segflg” is set to indicate to rdwri.c/writei that
the data is within the operating system’s vir-
tual address space. (The core image is actual-
~ly produced by the terminated process. The
mechanism is such that when a process deter-
mines that there is a signal pending for which
a core image is required, it produces the core
image itsell before making itself a ZOMBIE).

3. The data and stack area are written into the
file "core” by reloading the User Memory
Management registers s§ that they are set up
as if the entire -program was only data.
(Main.c/estabur is called to setup the proto-
type Memory Management registers. It calls
main.c/sureg to actually load the hardware re-
gisters.) "U_base” is set to the address (0)
in the user’s. virtual address space where the
transfer is to begin, "u_count” is set to the
size in bytes to be written and "u_segflg" is set
to zero to indicate (to rdwri.c/writei) that the
write is to occur on data located in the user’s
virtual addgess space.

When the core image has been produced the i-
node for the "core” file updated on the filesys-
tem (iget.c/iput). Any errors occurring in the

write procedure above will result in only part of

the core image being written out. A successful
core image is indicated by sig.c/core returning
zero (to sig.c/psig).

=

PRFOI - PRINT FACILITY
File: prf.c

panic

CALL

panic(str)
char *str;

RETURNS
No return.

SYNOPSIS
Idies the processor.

DESCRIPTION

Panic is used to gracefully bring down the system
when a fatal error (i.e., out of swap space, out of
i-nodes etc.) is encountered. After updating any
mounted file systems (see alloc.c/update) and
printing the message pointed to by “str” on the
system console, the processor is placed in an
endless idle loop.

printf

CALL
printf{format,al,...,a%,aa,ab,ac)
char *format;
Arguments al-ac may be one of:
char *al;
int al; ,
int al; (one char in low byte)

RETURNS
No value returned.

SYNOPSIS
Prints messages on the system console with for-
mat control.

DESCRIPTION _

The systemn’s printf function performs exactly
like the C library’s printf, except that it always
prints on the system console and only a subset of
the format control directives are available. In
particular, within the format control string "for-
mat”, only the conversion specifications ¢, d, |, o,
and s are recognized and honored.

PD-1C301-01
Section 11
Issue 1, January 1976

printn

CALL

printn(num, base)
int num, base;

EETURNS
No value returned.

SYNOFSIS

Prints a number on the system console in any
base.

DESCRIPTION

Printn is used to print on the system console the
value of "num"” in base "base”. This is accom-
plished by having printn recursively call itself to
print the quotient of "num” divided by “base®.
The recursive calling is terminated when this
quotient reaches zero. The remainder from each
division is then printed as the system crawls back
up the chain of printn calls. This has the effect
of printing the remainders from the divisions in
inverse order, which yields the desired resuit.

putchar

CALL

putchar(c)

int c;

RETURNS

No value returned.

SYNOPSIS
Prints a single character on the system console.

DESCRIPTION

Bypassing the device driver’s write routines,
putchar prints the character “¢” on the system
console by manipglating the device’s registers
directly. The chgrdcter is not printed if the con-
sole switches areet to zero.

RDWRIO1 - READ/WRITE I-NODE
File: rdwri.c

iomove

CALL

iomove (bp, o, an, flag)
struct buf *bp;

int o, an, flag;
RETURNS

None

SYNOPSIS)

Iomove moves "an” bytes from the byte position
*o" in the buffer pointed to by "bp" to the users
area according to “flag” (READ means from the
pool to users area; WRITE means from the users
area to the pool).

DESCRIPTION)
lomove uses information in the per user control
block. The variables are:

u_base core address of user’s 1/0 buffer
u_offset byte position into the file

u_count number of bytes to be read/written
u_segflg flag for 1/0; user or kernel space

If the source address: destination address, and
count are all even in a copy to user’s space; then

mch.s/copyin or.mch.s/copyout is used to move

words.

If the addresses are not even, then subr.c/cpass
or subr.c/passc are used to move a byte at a time.
The copying takes place from u_base to the
buffer pool address "bp" plus the offset "o for
"an” bytes.

If either copy operation fails, an error ‘indicator
EFAULT is set in the per user control block er-
ror code (u.u_error). :

The base pointef, u_base, is incremented by

*an”. The count, u_count, is decremented by

*an".

PD-1C301-01
Section 12
Issue 1, January 1976

max
CALL

max(a,b)

char *a, *b;

RETURNS

The maximum of "a" or "b".

SYNOFSIS

Return the logical maximum of two arguments
"a" and "b".

DESCRIPTION
Compare "a" and "b" and return the maximum.

min ~ -
CALL

min(a,b)

char *a, *b;

RETURNS

The minimum of "a" or "b".
SYNOPSIS

Return the logical minimum of two arguments
"a" and "b".

DESCRIPTION
Compare "2" and "b" and refurn the minimum.

readi

CALL

readi (aip)

struct inode *aip;

RETURNS

None /.

SYNOPSIS

Read the filefassociated with the i-node pointed
to by "aip". Companion routine with writei.
Both are the workhorses for file system 1/0.
DESCRIPTION

Readi uses information in the per> user control

" block to help read the file associated with the i-

node pointed to by "aip”. The variables are:

u_base core address of user’s /O buffer
u_offset byte position into the file
u_count number of bytes to be read

u_segflg flag for 1/0; user or kernel space

">

-1-
NAMIO1 - FILE NAME STRING INTERPRETER

File: nami.c

nami

CALL
nami(func, flag)
int (*func) (3, flag;

RETURNS .
Pointer to the (locked) inode table entry for a
file or its parent directory; zero if an error occurs.
See the following description for specifics regard-
ing return values.

SYNOPSIS .
Nami is the basic mechanism for converting a file
pathname to an i-number and a system inode
table entry. It is used to either locate an existing
file, or, prior to creating or deleting a file, to lo-
cate the parent directory.

DESCRIPTION

The file pathname that nami is to manipulate is
pointed to by the U block directory pointer vari-
able (u_dirp). The first argument (“func”) is the
address of the function to be used to obtain the
characters of the file’s pathname (nami.c/schar if
the name is in kerne! space, nami.c/uchar if in
user space). The second argument ("flag®) indi-
cates what operation is to be performed:

0 if the name is to be located
-1 if the name is being created
2 if the name is being deleted

The algorithm'used to translate the pathname to
the file's i-number is as follows:

1. If there are unprocessed filename com-
ponents remaining in the pathname, then
the component just matched must be a
directory. This pathname component will be
referred to as the “current component™. In
the first pass through the algorithm, the
*current component” is either the current
directory (u_cdir) or the root directory, as
determined by the pathname. At this point
it is verified that the user has execute per-
mission for that directory (ie. the "current
component”).

2. Get the "next component” of the pathname
and place it in a workspace (u_dbuf).

3. Read the "current component” file (which is
a directory) block by biock, searching for an
entry for the "next component”.

PD-1C301-01
Section 10
Issue 1, January 1976

¢. When the "next component” is matched, ob-
tain its i-oumnber and make the "next com-
ponent” the “current component”.

§. Repeat the above process until the end of
the pathname is reached.

Exits from the preceding algorithm are made at
appropriate locations whenever either an error is

"~ detected or the function call has been satisfied

(as determined by “flag”). It should be noted
that the purpose of nami is always to locate files,
gever to actually create or destroy them, even
when called for creation or deletion (flag = 1 or
2). When called for these reasons, mami oaly
traces the file’s patbhname and verifies that the
file may be created or destroyed (that is, ensures
that the user has write permission in the file’s
parent directory).

The return values from nami depend upon the
reason it was called.

Reason Return Values

Find (flag=0) Zero if the file is not
found. If the file is found, a
pointer to a (locked) system
inode table entry (inode(]) for
the file.

Create (flag=1) Zero if the file does not
exist; in this case, u_pdir points
to the system inéde table entry
of the file’s parent directory, u_
offset[1] is the offset to an emp-
ty directory slot in the parent
directory, and u_dbuf is the last
component of the filename. If
the file already exists, a pointer
to the file’s (locked) system
inode table entry is returned.
Nami is often called with flag=1
wheg a file’s existence is in
question and it is to be created if
it doesn’t exist.

Delete (flag=2) Zero if the file is not
found. If found, a poiater to a
(locked) system inode table en-
try for the file’s parent directory
is returned, u_dent contains the
file’s directory entry in the
parent directory, and u_offset{1]
contains the offset in the parent
directory to the entry immedi-
ately following that of the file.

_ , R I

NAMIOL1 - FILE NAME STRING INTERPRETER . PD-1C301-01

File: nami.c Section 10
Issue 1, January 1976

If any errors (ec.g. access, permission, invalid responsibility to check the character returned by
pathname, etc.) are encountered during nami uchar for an end-of-string indicator (which is
processing, the appropriate bit(s) will be set in vsually a null character).

w_error.

schar

CALL
schar()

RETURNS
A character from kernel space.

SYNOPSIS

Schar is used, usually when parsing directory
names, to obtain the next character in the name.

DESCRIPTION

- Schar returns the character pointed to by the
U block’s directory name pointer (u_dirp). The
address is interpreted as a kernel space address
and is then incremented to the next character.
This function is typically used by nami.c/nami
when parsing a file pathname that is contained in
karnel space. Note that it is the caller’s responsi-
bility to check the character returned by schar for
an end-of-string indicator (which is usually a null
character). The nami.c/uchar function performs
a similar service for names in user space.

uchar

CALL
uchar{()

RETURNS
A character from user space or a -1 on error.

SYNQOPSIS . -
Uchar is used, usually when parsing directory : -
names, to obtain the next character in the name.

DESCRIPTION

Uchar returns the character pointed to by the
U block's directory name pointer (u_dirp). The
address is interpreted as a user space address and
is then incremented to the next character. This
function is typically used by nami.c/nami when
parsing a file pathname that is contained in user
space (see nami.c/schar for the kernel space ver-
sion). A return of -1 indicates an error; typical-
ly, a memory fault while trying to access the
specified address. If this occurs, the error bits
(u_error) are also set. Note that it is the caller’s

—

e

SI1Go1 - SIGNAL
File: sig.c

_issig

CALL
issig{)
RETURNS

A 1 is returned if a signal has been sent to a pro-
cess and some action by the system or the user is
required.

SYNOPSIS
Determines whether a signal requiring action is
pending for the currently running process.

DESCRIPTION

Processing of signals only occurs when the pro-
cess that is sent a signal determines that a signal

- is pending. Sig.c/issig is used to make this check.

Signals are posted in the "p_sig" entry of each
Process Table entry. If the entry is nonzero, a
signal is pending and the value in "p_sig" is the
signal number. This is used as an index into the
Signal Table ("u_signal[]") of the Per Process in-

" formation area (U block). There is one entry in

this array for each possible signal and the value
of the entry determines what action is to be tak-
en. An odd value in the table indicates that the
signal is to be ignored. Nonzero even values in-
dicate that some action is to be taken by the user
process, while zero entries indicated that the
standard system action is to be taken.

psig

CALL

psig(h

RETURNS

No value is returned.

SYNOPSIS
Signal processor.

DESCRIPTION

Signals may be ignored or caught by a user pro-
cess, or the standard system action may be taken.
The Signal Table, "u_signal{]" in the user Per
Process information area (U block) determines
what the action for a particular signal is to be.
There is one entry in the “u_signal{]" array for
each of the 20 possible signals. A zero in an en-
try indicates that the standard system action is to
be taken, while an odd value indicates that the
signal is to be ignored. Any even value indicates
that the user process is to handle the signal and

PD-1C301-01
Section 13
Issue 1, January 1976

is the virtual address of a jump table in the signal
library function in the program. This jump table
contains the address of the function within the
user’s program to be executed when a particular
signal is received. The transfer is made through
an intermediate jump table in the user’s library
function so that the general purpose registers
may be saved and restored on the user’s stack.
In order to provide for the continued execution
of a program once the user’s process has handlad
the signal, there is a mechanism for returning the
process to pormal execution. This is done by
baving sig.c/psig adjust the user’s stack so that
the library functions can execute an RTT instruc-
tion. In summary, signal processing is done as
follows:

1. The signal is reset (0) so that the standard
system action will be taken on the next oc-
currence of the same signal.

2. The Program Counter and Stack Pointer, -
saved when the user process made a system
call, is placed on the,user’s stack. This is
done so that when the signal library function
within the user’s program has done it’s work,
a return can be made to the system call that
was aborted (via a RTT executed in the user’s
signal library interface function). It is unfor-
tunate that the aborted system call is not res-
tarted, so that some arrangément is necessary
to check that the system call was completed.

3. The Program Counter saved on the stack
frame is set to the value in the appropriate
Signal Table (*u_signal) entry. This is the ad-
dress of a table in the user’s library interface
to the signal system call and is essentially a
jump table for calling the user’s signal
handler.

The standard system action on reception of the
following signa!s‘é}is to produce a core image in
the working directory of the process receiving the
signal.

1. Quit

. 2. lllegal Instruction
3. Trace Trap
4. 10T Instruction

SiGO01 - SIGNAL
File: sig.c

EMT Instruction
Floating Point Exception

5
6
8. Bus Frror

9. Segmentation Violation
10. Bad System Call

The remaining signals, Hangup, Interrupt, Kill,
and that are undefined do not produce a core im-
age as a standard system action, but cause the
termination of the process. ’

Before the process is terminated, the lower 8 bits
of the user process register RO and the type of
signal received are saved in the "u__arg[O]" entry
of the U block, so that they may be found by the
parent of the terminated child. The truncated
value of RO is placed in the high byte and the
signal number in the lower byte. A successful
core image is indicated by having the high order
bit in the signal byte set.

Determining whether a signal is pending is done
at three significant points within the system.

1. On every return from a system call, sig.c/issig
is called. This checks to see if a signal is
pending for active (executable) processes
within the system. '

For processes that will roadblock at a low
priority (WAIT priority), a check is made be-
fore and after the process is roadblocked to
see whether a signal is pending. This is done
because the interval that the process is road-
blocked may be long, and because some of
the system cails (notably wait and sleep) will
continuously roadblock a process until the
desired event has occurred. By making the
check a standard part of this loop the signal
can be processed and the system call aborted
if needed. This will result in either the stan-
dard system action (termination of the pro-
cess) being taken, or preparation for allowing
the user to handle the signal. If the user is to

PD-1C301-01
Section 13
Issue 1, January 1976

signal (usually quit, interrupt or a kill sent by
the kill system call).

psignal

CALL

psignal(p, sig)
struct proc *p;

RETURNS
No value is returned.

synopsis
Sends the signal "sig" to process "p".

DESCRIPTION

- Signal sending does not result in any immediate .
. action. Rather, the signal number("sig") is post-

process the signal, the system call is aborted.

and a nonlocal gato (mch.s/aretu) to the trap
handler is done after the signal catcher in the
user’s process is set up.

3. The last check is made in the clock interrupt
handler (clock.c/clock), - when it preempts
CPU bound processes. This must be done to
insure that CPU bound processes (which nev-

er make system calls) can be terminated by a

ed in the Process Table entry for that process
("psig") the process. This number is used as an
index into a table in the U block for that process
("u_signal{]"), which contains the appropriate ac-
tion to be taken for each signal.

Processes that are roadblocked at low software
priority must be notified that a signal is pending
as the event which they are waiting for may nev-
er occur. No wakeup is sent to the process, since
the location of the process in the Process Table
(argument "p") is known ("u_uprocp” in the U
block). The process need ‘only be made ready
("p_stat” = SRUN) and the event for which the
process was roadblocked ("p_wchan”) is zeroed.
A situation may exist where there are no ready
processes in memory and the process that was
awakened is resident on the swap area. The
Scheduler is awakened in this case. (The
Scheduler would be roadblocked with the exter-
nal variable "runout” set to a nonzero value, if
there were no ready processes in memory.)

-
S
Iy

%

SIGO1 - SIGNAL
File: sig.c

signal

CALL
signal(tp, sig)
struct tty *yStp;

RETURNS
No value is returned.

SYNOPSIS _
Sends the signal "sig” to all processes whose con-
trolling teletype is "tp".

DESCRIPTION

Most processes spawned under UNIX are gen-
erated as a result of action at a user’s teletype.
The teletype is made the controlling teletype for
these processes and has the ability to terminate
these processes when either the special characters
quit or interrupt is sent by the teletype.

The sig.c/signal function is used by the teletype
[/0 subsystem to send the quit and interrupt sig-
nals generated by a user at his controlling tele-
type to all of the processes having that teletype as
it’s controlling teletype. Since each Process
Table entry contains a pointer "p_ttyp” to the
controlling teletype, the Process Table need only
be scanned and all entries having "tp” (a pointer
to the teletype) as the controlling teletype are
sent (by calling sig.c/psignal) the signal "sig".

Rornt

PD-1C301-01
Section 13

Issue 1, January 1976

SLPO1 - PROCESS SWITCHING
File: slp.c

expand

CALL
expand(newsize)

RETURNS
No value is returned.

SYNOPSIS
Enlarges or contracts the size of an existing pro-
cess.

DESCRIPTION

This function is used to increase or decrease the
area occupied by a process. It knows nothing
about the contents of this area except that it is
contiguous. As such the two functicns
(trap.c/trap and sysl.c/sbreak) which use it for
stack growth and dynamic storage allocation,
respecitvely, must do any shifting of parts of the
program to adjust virtual addresses.

Since there may not always be. enough memory
available to grow a process in core, several cases,
similar to those of slp.c/newproc occur.

1. If a process’s size is to be decreased ("newsize”
is the new size of the process including U block
and it can be compared to the existing size "p_
addr") the extra memory is freed (by calling
malloc.c/malloc). Memory is freed from the high
{physical address) end of the existing area.

2. If the process is to grow in size, physical
memory must be added contiguously to the end
of the existing process. Instead of attempting to
add the increment of core to the existing area, a
request is made (malloc.c/malloc) for a new area
of memory having size "newsize" (old plus new).
This is appropriate as the memory allocation
scheme uses a First Availabie Fit aigorithm to al-
locate memory and the chances of an incremental
portion of core being available directly below a
process are slim. Since the memory may not be
available, two procedures are used,

a. If memory is available, the process is simply
copied into the new area. The old image is aban-
doned (malloc.c/mfree) and the user’s Memory
Management registers are reset (mch.s/sureg).

b. If memory is not available, then a scheme
similar to that used by sip.c/newproc is used. No
tricks nead by used in this case, since only one
process is involved. The process merely saves
it's stack position (in "u_ssav"), swaps itself out

PD-1C301-01
Section 14
Issue 1, January 1976

so that its coatext will be restored from “u_ssav®
and not "r_sav” and calls the process Switcher
(stp.c/swtch) to relinquish the processor. It may
seem strange that a process can continue execu-
tion after having swapped itself, however, the
processor is relinquished immediately after the
swap 1/0 is completed- (slp.c/swich)so no prob-
lems occur. In preparing for the swap,
text.c/xswap frees the memory that was occupied
by the swapped process.)

newproc

CALL
newproc()

RETURNS
A zero is returned.

SYNOPSIS _
Spawns a new process in the system.

DESCRIPTION _

This is a subroutine used by sysl.c/fork to spawn*
a new process. It provides for the inheritance of
essential characteristics of the new process. The
new formed process is an image (exact copy) of
the parent (spawning) process. The chief
features of the newly created process are:

It receives a new unique process ID ("p_pid").

It inherits the controlling teletype ("p_ttyp") of
the parent.

It inherits any shared (reentrant) text. The use
count "x_count” and memory usage count "x_
ccount” are increased for that text entry in the
Text Table ("p_textp”).

It inherits the ser ID ("u_uid").

It is marked .o'indicate the identity of it's parent
(the parent’s process 1D is kept in "p_ppid").

It’s age is set to 0, as it is newly created.

1t inherits all of the open files belonging to the
parent process ("u_ofile{]") and the instance

~count ("f_count”) of each file in the File Table is

incremented.

It inherits the context, working directory, signals,

(text.c/xswap), marks itself (SSWAP in "p_flag") -

etc. of the parent. In short, all information kept
in the per pracess (U block) area is inherited.

PRI

SLPO1 - PROCESS SWITCHING
File: slp.c

A parent process creates the child as a result of
executing the sysl.c/fork system call, There may
not be enough memory to replicate the process
in memory, so a procedure for replicating the
process on the swap area must be available. The
steps in actually spawning the image once the
Process Table entry has been set up are:

1. The stack position of the parent is saved ("in
"u_rsav"). This is done so that when the child is
created as an independent entity, it will resume
execution by executing a return from
sip.c/newproc. The value returned by the child
will actually be a 1 (since even though the stack
position is restored by sip.c/swtch,the return that
is executed is from sip.c/switch). The
significance of this is that the sysl.c/fork function
calls slp.c/newproc as a subroutine and uses the
value returned to it to identify the child so it can
initialize the accumulated execution time of the
child. Thus, when a process makes a fork system
call (sysl.c/fork), two processes will return from
the slp.c/newproc call. One of the processes (the
parent) will actually execute the return from
slp.c/newproc, returning a zero. The child pro-
cess will appear to have returned from
slp.c/newproc, but this will seem this way be-
cause it’s stack position was saved by the parent.
It will return a 1 since the process Switcher re-
_turns a |.

2. A chunk of contiguous memory equal to the

size of the parent process 1is requested
(malloc.c/malloc). There are two cases which
may occur:

a. If memory is available, then a new image
can.be created simply by doing an in core copy
of the parent. The copy is done by copying
memory blocks (mch.s/copyseg) from the
parent.

b. If a piece of contiguous memory is not avail-
able, the the image must be made on the swap
area. (It might be considered that the forking
process could be delayed until memory was
-available, however, for processes large enough
to fill user memory the copy would have to be
made on the swap device anyway.) The parent
process is placed in an idle state ("p_stat” =
SIDL) to insure that the Scheduler will not
swap the process. out. The context is
saved(mch.s/savu) again {in "u_ssav"). This is
done becuase a process is being swapped by a
system function other than the Scheduler. A

PD-1C301-01
Section 14
Issue 1, January 1976

swap out is requested (text.c/xswap) and the
parent process is roadblocked while this occurs.
(It should be remembered that the parent is
doing ail of the work associated with creating
the child and therefore, incurs any delay in ac-
complishing this. It should also be remem-
bered that text.c/xswap determines whether a
process is reentrant and thereby need only
swap out the data and stack portions if the
parent is reentrant.) When the swap is com-
pleted and the parent is allowed to continue
the cireation process, it marks the child process
("p_flag” = SSWAP), so that when the child is
restarted, it’s stack position will be restored
from "u_ssav” and not "u_rsav". The parent is
removed from the idle state and made ready
("p_stat” = SRUN). In the process of creating
the child a trick is used, so that the child ends
up in the proper state when the swap is com-
pleted. The child process is made to assume
the identity of the parent (by adjusting it’s pro-
cess size “p_size” and address "p_addr” in the

" Process Table entry to assume those of the

parent). Thus the child will is roadblocked
while the swap occurs and consequently, the
child is awakened ("p_stat”™ = SRUN) wifen
the swap is complete. After the swap is com-
pleted, the identities are restored.

Once the image has been produced, the parent
simply returns (a 0) to the caller. The child
will eventually be selected by the process
Switcher to run and will execute a return (re-
turning a 1) from slp.c/newproc through the
process Switcher (slp.c/swtch).

If the Process Table is full when slp.c/newproc
is called, the system panics ("PANIC NO
PROCS").

The slp.c/newprdc function is also used at
startup time (main.c/main) in handcrafting the
INIT process. €Essentially, the operating sys- .
tem forks to create a mirror image (of the
system's U block) before the "icode(]” program
is installed in the child process (forerunner of

INIT).

SLPO1 - PROCESS SWITCHING
Fiie: slp.c

sched

CALL
sched()

RETURNS
No value is returned.

SYNOPSIS
The UNIX Sclieduler.

DESCRIPTION)

The Scheduler is an endlessly looping process
that runs entirely in Kernel Address space. It is
always process zero in the system, is always
locked in core, and does not receive any signals.
The main.c/main function creates and involks the
Scheduler. No return to main/main.c ever oc-
curs. The Scheduler has it’s own U block, which
is borrowed by the process Switcher when it
changes execution. from one process to another.
The Scheduler’s only function is to determine
which processes are to be allowed into core and
which processes are to be swapped out.:

The Scheduler uses the age of processes in deter-
mining which processes are to be swapped into or
out of memory. The age of a process is kept in
"p_time" and is updated by the clock interrupt
handler once every second. Since age changes
once per second, the Scheduler will run approxi-
mately once every second. The Scheduler runs
in a piecemeal fashion, selecting a process to
swap in or out, roadblocking while the swap I/O
occurs, then rerunning. The amount of rear-
rangement doae is limited by the amount of phy-
sical memory available and by the Scheduling cri-
teria. The Scheduler is not the only function
within the system which does swapping.
Processes may swap themselves out or create
copies of themselves (via sysl.c/fork) on the
swap area however, the Scheduler is the only
function that can bring a process into memory.

The Scheduler will roadblock itself at thres times:

1. While swap 1/0 occurs, the Scheduler is road-
blocked.

2. If there are no processes on the swap area in
the ready state, the Scheduler sets the "runout”
flags and roadblocks itself. When any process is
awakened (by slp.c/wakeup) the Scheduler is
awakened.

- PD-1C301-01
Section 14
Issue 1, January 1976

3. When there is not enough core available to
bring a ready process on the swap area intg
memorty, the Scheduler sets the "runin” flag and
roadblocks itself. The first process that is willing
to give up core (e.g., terminates or goes into the
WAIT state) causes the Scheduler to be awak-
ened. L

The algorithm used by the Scheduler in rearrang-
ing memory is:‘

1. The oldest process on-the swap area that is in
the ready state ("p_state” = SRUN) is found. If
there are no ready processes on the swap area,
the Scheduler sets the "runout” flag and road-
blocks itself. When the Scheduler is awakened,
the algorithm is repeated.

2. The total size of the selected process is deter-
mined. If the process is reentrant and the text is
not already in core (core usage count "x_ccount”
is zero) this means that the size of the text ("x_
size”) must be added to the memory require-
ments for the process ("p_size").

3. A check is made to see if there is enough
available memory to bring the process into
memory without removing any process from
memory. If memory is available, the swap-in
procedure is begun (see below) and the algor-
ithm is repeated (1). :

4. If not enough memory is available, some pro-
cess must be removed from core. The following
criteria are applied:

a. All of the processes in the Process Table are
examined and the first process that is in the
WAIT state ("p_pri® = SWAIT, i.e., road-

; blocked at low priority), or the first process
that is in the stopped state ("p_stat” = SSTOP,
this is a new state for processes that are being
examined:by the interactive C debugger) is
selected t& be swapped out.

b. If the process selected in 1 as a candidate to
be brought into memory has been on the swap
device for less than three sazconds, the entire
procedure is dropped and the Scheduler road-

- blocks after setting the “runin® flag. This
essentially means that the Scheduler waits for
core to willingly become available or for the
age of processes to change.

SLPO01 - PROCESS SWITCHING
File: slp.c

c. If the process selected in 1 has been on the
swap area for longer than three seconds, then
all of the Process Table entries are examined
again and the oldest process in mermory that is
in the ready state ("p_stat® = SRUN) or is in
the sleep state (p_stat® = SSLEEP) is found.
No distinction is made between the two. If the
process seiected by this criteria has been in
memory for more than 2 seconds, it is swapped
out, otherwise the procedure is dropped and
the Scheduler roadblocks (“runin® is set) until
core is available or the age of processes
change.

Swapping a process out is simply done by mark-
ing it as non-resident (SLOAD flag is reset in
"p_flags") and arranging for it to be swapped
(text.c/xswap).

Swapping a process in may require two swaps if
the process is reentrant and the reentrant text is
not already in memory. Since reentrant text is
maintained on the swap area as a separate quanti-
ty, it need never be swapped out. By checking
the "p_textp” entry in the Process Table, it can be
determined whether reentrant text is associated
with a process and it’s location and size can also
_be obtained ("x_caddr", "x_size"). The reentrant
text (if it is not already in core), is brought in
first and the memory usage count ("u_ccount”)
for that text is incremented. The remainder of
the process (data, bss and stack) is then brought
in. When this portion is brought into memory,
the space that it occupied on the swap device is
freed (alloc.c/mfree). Any reentrant text is not
freed as it cannot be modified and leaving it
there will save the trouble of swapping it out.

~cess goes into the WAIT state .

When the last process using the reentrant text .

leaves the system,

the text is destroyed (by
text.c/xfree). :

The Process Table entry for the swapped in pro-
cess must be updated to reflect the changed
status of the process. In particular, the swapped
in process must be marked as loaded (SLOAD in
"p_flag™), its age ("p_time") must be reset to zero
and its address in physical memory ("p_addr")
must be set.

If any errors occur in attempting to swap a pro-
cess in or out, the system is halted. The device
drivers usually make 10 retries when an error
occurs, so that any swap 1/0 that terminates ab-
normally for the Scheduler is assumed to be an
unrecoverable hardware error.

PD-1C301-01
Section 14
Issue 1, January 1976

The Scheduler, having finished swapping a pro-
cess in or out, cycles back to begin its search (1)
for processes to bring into memory. The age re-
quirements placed on processes that can be
swapped in or out prevent the Scheduler from
thrashing.

In conjunction with the criteria established for
swapping a process in or out of memory, the
Scheduler is always notified when an in core pro-
This is done
only when the Scheduler caonot find enough
memory to bring a process on the swap device
into memory. The notification results in the
Scheduler being the next process (the Scheduler
always has the highest priority) to run and the
roadblocked process will probably be swapped
out. When searching the Process Table it is
necessary to raise the Processor’s priority to 6 to
prevent the status of the processes being exam-
ined from changing.

setrun

CALL <

setrun{p)
struct proc *p;

RETURNS
No value is returned.

SYNOPSIS
Awakens one process.

DESCRIPTION)
This places the process "p” in the ready state
("p_stat” = SRUN). In addition, it notifies the
Scheduler if the process is not in core and the
Scheduler is waiting’ for processes on the swap
area to become ready. The external varialble
"runout” is set when the Scheduler is in that
state. .

SLPO1 - PROCESS SWITCHING
File: slp.c

sleep

CALL
sleep(event, priority)

RETURNS
No value is returned.

SYNOPSIS
Roadblocks a process.

DESCRIPTION

This is the complementary routine to
slp.c/wakzup. It synchronizes the roadblocking
and unblocking of a process. When processes
under UNIX relinquish the processor, they post
(in "p_wchan") an event whose occurrence they
are awaiting. This "event” is some mutually
agreed upon value (usually an address within the
system) which is used to signify the occurrence

of an event. A process also specifies the software

priority it is to be assigned when the “event” oc-
curs. Priorities are values (kept in "p _pri”) which
range from a high of -100 to a low of +127, and
are used by the process Switcher in selecting a
process to use the CPU. A process which relin-
quishes the CPU at high priority (negative priori-
ty) is put in the sleep state ("p_stat" = SSLEEP),
while processes that relinquish the CPU at low
priority (positive priority) are put in the wait
state ("p_stat” = SWAIT). Processes which road-
block at high priority (negative) are quaranteed
to be awakened in a short time (usually deter-
mined by device speed and device queuing),

while those that roadblock at a low priority are

not. As such, roadblocking is handled

differently for the twa cases of priorities.

For processes that roadblock at high priority, no
precautions need be taken, so that the process
Switcher (slp.c/swtch) is simply called. Before
doing this, however, the processor’s priority is
lowered to zero (the processor’s priority is saved
first), so that a/l pending interrupts may be pro-

“The process Switcher.

cessed. This is done because any pending inter-

Tupt may awaken a roadblocked process, thereby
producing another candidate for the process
Switcher. It is assumed that the process will be
blocked for only a short period of time so that
signal processing is delayed until the process is
awakened and the system call that the awakened
process was making is completed. (i.e., the trap
handler checks for the presence of a signal).

PD-1C301-01
Section 14
Issue 1, January 1976

Processes that roadblock at low priority may be
roadblocked for a long period of time (e.g., wait-.
ing for a child process to terminate, etc.), so that
it is necessary to check (sig.c/issig) whether any
signals are pending for the process before and
after it is roadblocked. If a signal is pending and
is to be handied by the user process, then a non-
local goto (mch.s/aretu) is executed to abort the
system call and return control to the trap
handler. As with the high priority case, the
processor’s priority is lowered before the process
Switcher is cailed to process all pending inter-
rupts.

swtch

CALL
swtch()

RETURNS
A one is returnad.

SYNOPSIS

DESCRIPTION

Selection of a process to use the CPU is a distinct
operation from that of selecting a process to be
brought into memory (slp.c/sched). The
Scheduling process uses the age ("p_time") of a
process in determining whether a process should
be swapped in or out of memory. The process
Switcher uses the priority ("p _pri”) of a process
as its sole basis for selection. Of course, it can
only select from among processes that are already
in core and are ready to execute.

Since changing execution from one process to
another entails changing U blocks, and thereby
changing system stacks, a problem arises in mak-
ing the transition from one U block to another.
The dilemma pccurs because there may occur a
situation in which only one process can fit in
core. There would then be no place for the
system’s stack in the interim that when no user
process was in memory. Also, if the U block of _
the current process is retained, even though

.there may be no other processes to run, all of the

system tirne during the idle period would be ac-
crued to that process unless special arrangements
were made. Conceptually, it is also nicer to to-
tally disassaciate the system from a process which
is relinquishing the CPU. To this end, whean the
slp.c/swtch function is exccuted, the Scheduler’s

" is found.

SLPO1 - PROCESS SWITCHING
File: slp.c

U block is grabbed and used until a new process
If none are available, the processor is
placed in the wait state (by the WAIT instruc-
tion) until a process goes into the ready state. In
this manner, all processor idle time is accrued to
the Scheduler.

The process Switcher must be made unbiased in
the sense that it must not give preference to one
of several processes with the same priority ("p_
pri”) due to any positional advantage in the Pro-
cess Table. To do this, the identity of the pro-
cess selected by the process Switcher is remem-
bered and the search for a new process to exe-
cute is started at this entry in the Process Table.
In this way, Round Robin service is given to
processes with the same priority.

The steps in the selection of a ready process are:

1. The context of the process relinquishing the
CPU is saved (mch.s/savu) in the appropriate
place in the U block "u_rsav".

2. The U block belonging to the Scheduler is ob-
tained {(mch.s/retu) for use as the system stack.
As the Scheduler is simply another process to the
process Switcher and as the process Switcher
must be executed before the Scheduler runs, the
Scheduler’s stack is cleared off and is not affected
by the Switcher using it.

3. The Process Table is examined to find a pro-
cess in memory ("p_flag® = SLOAD) with the
highest priority that is ready ("p_stat® = SRUN).
The search begins at the entry in the Process
Table succeeding that of the currently running
process and continues (wrapping around the Pro-
cess Table) until the entry for the curreatly run-

“tarts if.

PD-1C301-01
Section 14
Issue 1, January 1976

5. Once 2 prbccss has been selected, it’s U block
is obtained (mch.s/retu) for the system stack.

6. The User Memory Management registers for
the sclected process are loaded from the proto-
type registers ("u_uisa[]", "u_uisd[]").

7. In most cases the process being restarted was
roadblocked by calling slp.c/sleep, which caused
the process’s context to be saved (see 1 above).
To restart these processes, the context is restored
from "u_rsav" and a return from sip.c/swich res-
Some processes, however, relinquish the
processor in order to swap themselves out
(slp.c/expand), or to create a new process
(sysl.c/fork). The functions that do this usually

. contain two algorithms, one for use when there is

ning process is reached. The highest priority pro-

cess (lowest value of "p_pri”) is selected..

4. If there are no ready processes, then the pro-
cessor is placed in the wait state (by calling
mch.s/idle). The processor will remain in this
state until the first interrupt occurs. Since inter-
rupts usually awaken some roadblocked process,
there is a good chance that a process will become
ready after the interrupt is processed. When a
return from the mch.s/idle function occurs, the
search is reinitiated and begins with the same
Process Table entry as before.

enough available memory to perform the opera-
tion and the second for use when the operation
must be done on the swap device. These
processes need to regain control at a point other
than that specified by "u_rsav” so that a nonlocal
goto (mcb.s/aretu) is done if the swap flag
(SSWAP in "p_flag”) is set. The return executed
by slp.c/swtch will not return to the caller of
slp.c/swich, but will return from the function
that last saved the context in the array "u_ssav".
This is extremely useful .in doing in memory ex-
pansions of a process and in spawning and res-
tarting new processes (sysl.c/fork).

A one is returned by the process Switcher to dis-
tinguish parent and child processes (see
slp.c/newproc)). The sysl.c/fork function will
thus have a one returned from the child process
and zero returned by the parent (from
slp.c/newproc) and will use this in resetting accu-
mulated execution times for the child. The
main.c/main function also uses this returned
value in the process of spawning the INIT pro-
cess. o

SLPO1 - PROCESS SWITCHING
File: slp.c

wakeup

CALL
wakeup(event)

RETURNS
No value is returned.

STNOFEIS
Awakens roadblocked processes.

DESCRIPTION A
This is the complementary function to
slp.c/sleep. It places processes that are road-
blocked waiting for "event” to occur in the ready
state ("p_state” = SRUN). A simple scan of the
Process Table checking the "p_wchan" entry
versus "event” shows which processes should be
awakened. It is the responsibility of the awak-
ened process to insure that the event has actually
occurred. Sip.c/setrun is called to place an indi-
vidual process in the ready state ("p_pri® =
SRUN). If any process is awakened, the "run-
run” flag is set. This is a flag checked by the in-
terrupt and trap handlers. Setting this flag allows
the currently executing process to be preempted
once the interrupt or system call is completed.
" Since the operating system is not reentrant, this
scheme is necessary so that preemption may be
done. Preemption as the result of a wakeup
(usually a wakeup is sent by an interrupt
handler) is only allowed at the end of an inter-
rupt if the interrupt occurred while the processor
was in User mode. Preemption is also allowed
at the end of a system call.

PD-1C301-01
Secticn 14
Issue 1, January 1976°

SUBRO1 - SYSTEM SUBROUTINES
File: subr.c

bcopy

CALL

tecopy(from, to, count)
int *from, *to, count;

RETURNS
No value returned.

SYNOPFPSIS

Copies a specified number of words from one lo-
cation to another. '

DESCRIPTION

Bcopy copies "count” words from memory loca-
tion “from” to memory location “to". Both “from”
and "to” must be on word boundaries.

bmap

CALL

bmap(ip, blk)
struct inode *ip;
int blk;

RETURNS
Block number on a device. Zero on an error.

SYNOPSIS

Converis a logical block number of an ordinary
file or directory into the block number on a dev-
ice.

DESCRIPTION

Bmap is used to convert, for other than special
files, a file’s logical block number "blk" into a
block number on the logical device containing
the file. This function is not performed for spe-
cial files, since the logical block number is always
construed to be the physical block number. The
file is identified to bmap by a pointer "ip" to its
system inode table entry (inodel]). The manner
in which the file logical block number to device
logical block number mapping is done depends
on whether the file is small (eight blocks or less)
or large (between nine and 2048 blocks).

For small files, the logical block number is used
as an offset within the inode table entry (from i_
addr) to find the device block number.

However, for large files, the logical block number
must be divided by 256, which is the number of
block pointers in each indirect block of a large
file. The quotient of this division is used as an
offset within the inode table entry (from i_addr)

PD-1C301-01
Section 15
Issue 1, January 1976

to find the device block number of an indirect
block, which is read. The remainder from the
division is then used as an offset within that in-
direct block to obtain the device block number.

Regardless of whether the file is small or large, if
thiere is no device block allocated for the logical
biock number in question, a disk block is au-
tomatically allocated and added to the file as that
logical block number. In the case of small files,
this may also entail conversion of the file to a
large file.

A return of zero indicates an error; the appropri-
ate error bits are set in u_error. Otherwise, the
device block number is returned.

¢pass

CALL
cpass()

RETURNS

A single character from an /O buffer; -1 on er-
ror or the completion of a write request.

SYNOPSIS B

During processing of a write system call, obtains
a single character from the requester’s [/O buffer.

DESCRIPTION

During processing of a-write system call, cpass is
used to obtain a single character from the
requester’s 1/0 buffer (which is pointed to by u_
base). The method used to extract this character
depends on whether the buifer is in system or
user space (as determined by u_segflag). After
getting the character, the file offset (u_offset)
and address of the 1/0 buffer (u_base) are in-
creased by one, and the byte count for the write
system call (u_count) is decreased by one. The
character obtainéd is then returned to the caller.
A -1 return value indicates that the write request
byte count has been satisfied (on the previous in-
vocation of cpass) or that an error occurred. In
the latter case, an error bit is set in u_error.

SUBROI - SYSTEM SUBROUTINES
File: subr.c

.nodeyv

CALL
nodev()

RETURNS
No value returned.

SYNOQOPSIS
A dummy routine.

DESCRIPTION

Nodev does nothing but return after setting an
error bit in u_error. It is most commonly used in
the configuration table conf.c as a placeholder for
a device driver routine that it is erroneous to call
(e.g. the read routine for the line printer).

nulldev

CALL
nuildev()

RETURNS
Always zero.

SYNOPSIS
A dummy routine.

DESCRIPTION

Nulldev does nothing but return. It is most
commonly used in the configuration table conf.c

as a placeholder for a device driver routine that

should be ignored {e.g. an open routine for a
device that does not require any special open
processing). .

passc
CALL
passc{char)
int char;

RETURNS

Zero when the character has been passed; a -1 on
error or the completion of a read request.

STNOPSIS

Places a single character into the requester’s 1/0
buffer during processing of a read system call.

PD-1C301-01
Section 15
" Issue 1, January 1976

DESCRIPTION

During processing of a read system call, passc is
used to move a single character "char” from the
system I/O area to the requester’s /O buffer
(u_base). In performing this duty, passc must
know whethsr the requester’s buffer is in system
or user space (as determined by u_segflg). After
moving the character, the file offset (u_offset)
and address of the 1/O buffer (u_base) are in-
creased by one and the number of bytes request-
ed by the read system call (u_count) is decreased
by one. A return value of zero indicates that the
character was successfully passed. A -1 return
indicates that the read system call byte count was
satisfied by the character just passed or that an
error occurred passing the character. In the latter
case, an error bit is set in u_error.

frent

W e

~position for the virtual address map.

SYS101 - SYSTEM CALL INTERFACE 1
File: sysl.c

break

CALL
break ()

RETURNS
No value is returned.

SYNOPSIS
Sets the program break. Break system call.

DESCRIPTION .
The break system call sets the program break
which is the highest address in a program. It is
used for dynamic storage allocation (alloc and
free system calls).

The program break may be set to increase or de-
crease the existing size of a program. The single
argument that is passed (indirectly in "u_arg{0]")
is the address of the new break, not an increment
to be added or subtracted from current break.
Sysl.c/sbreak uses this absolute value to calculate
the difference between the old size and new size.
New space is added or subtracted from the data
area ("u_dsize®). No area can be added to reen-
trant text ("u_tsize") or the stack ("u_ssize")
area. To insure that the program break can be
set to the new value, main.c/estabur is called to
test fit the new virtual address space and load the
User Memory Management registers.

If the new program break decreases the existing
size, then the user’s stack is moved down in the
program’s physical area, so that it is in the proper
The
sip.c/expand function is then used to release the
extra area. For break calls that increase the size
of the program, a larger physical space must. be

- acquired before any internal adjustments are

made. Slp.c/expand is used to increase the phy-
sical space- occupied by a process. It may road-
block the break call if there is not enough
memory available. (see slp.c/expand). When
the physical area is finally enlarged, sysl.c/sbreak
moves the stack downward to the proper position
for the virtual address map and the new data area
is initialized to zero.

PD-1C301-01
Section 16
Issue 1, January 1976

€xec

CALL
exec()

RETURNS
No value is returned.

SYNOPSIS
Overlay system call.

DESCRIPTION

This function performs the exec {(overlay) system
call. Overlaying is a multi-siep procedure in the
systemn fraught with difficulties. The chief hazard
is that since the exec system call requires two
buffers, one to hold systern arguments and one
te read the program in, a deadly embrace is pos-
sible. The risk of this is currently reduced by
restricting the number of simultaneous exec’s
that can be going on at one time.

The exec system call passes the name of the pro-
gram to be executed along with any arguments to
that program. It is the responsibility of
sysl.c/exec to determine whether the program is
reentrant-or not and to pass these arguments to
the program. In line with the hierarchy of
processes under UNIX, overaying programs in-
herit certain attributes of the antecedent process.
The chief attributes inherited are:

1. The working directory is 'iﬁherited.

2. All open files of the preceding process are
inherited.

3. The age and process id are inherited. In
short, all Process Table information is inher-
ited.

4. All per process information (U block) with
the exception of signals and context informa-
tion are inherited. Ignored signals are inher-
ited but usel handled signals are not.

The steps in doing an overlay are:

1. The system determines what program is to
be executed. The first argument to the exec
system call is the name of the overlaying
program. The i-node for the file containing
the program is brought into the Inode Table

" (nami.c/nami). If no such named program
exists, the exec is terminated and an error is
posted by nami.c/nami is returned to the
user.

SYS101 - SYSTEM CALL INTERFACE 1
File: sysl.c

In order to forestall the occurrence of a
deadly embrace, the count of the number of
processes currently doing an exec (" execnt”)
is checked to see if it has reached the limit
NEXEC (4). If it has, the process calling for
the overlay is roadblocked until the count
drops below NEXEC. (The count is decre-
mented as each process finishes the exec and
a wakeup is issued if any process is road-
blocked awaiting use of the exec function.)
This procedure does not absolutely prevent
the occurrence of a deadly embrace, but
does decrease its probability significantly.

Once entrance to the exec function is per-
mitted, a system buffer is allocated
(bio.c/getblk) to hold the remaining argu-
ments from the exec call. The buffer is allo-
cated to the "bfreelist” queue ("b_forw", "b_
back” list), so that no device association oc-
curs. The arguments are then fetched from
the user’s address space (using
mch.s/fubyte). (The exec system call passes
an array of arguments. The array contains
pointers to the actual arguments. The argu-
ments themselves must be ASCII strings ter-
minated by -nulls, octal 0, or must appear to
be strings terminated by nulls.) The
pointers to the actual arguments are fetched
and eventually discarded. Only the argu-
ments themselves, separated by null charac-
ters, are placed in the argument buffer.
Only 511 characters of argument strings and
their (null) separators are allowed. If this
limit is exceeded, the overlay is terminated
and the system error E2BIG is posted in "u_
error”. The arguments are taken from the
program in the same order that they appear
in the system call.

The first 8 bytes of the program to be exe-
cuted is read into the argument array ("u_
arg{]") in the U block. This is done in a
manner similar to that in which a core image
of a process is produced (sig.c/core). The
variables "u_count”, "u_offset{]", Ju_segflg"
and "u_base" are set to the number of bytes
for the transfer, the offset into the file (0),
whether the transfer is into the system (1)
and the virtual destination address ("u_
uarg{0]") in the system before calling
rdwri.c/readi. If any system errors occur in
doing this read, the exec is terminated. The
header (first 16 bytes) of every object file

PD-1C301-01
Section 16
Issue 1, January 1976

contains the following information:

a. Majic number. This indicates whether
the program is reentrant (410) or not
(407) and in the future will indicate
whether the program is to be separated
into I and D space (411).

b. Text size in bytés.
Data size in bytes.
d. Bss size in bytes.

e. The remaining 4 words contain informa-
tion about the symbol table and reloca-
tion bits (see UNIX Programmers
Manual, A.QUT(V)).

These arguments are checked and regrbuped.

Any file not beginning with one of the majic
numbers is assumed to be unexecutable and
the exec is terminated. For nonreeatrant
programs, the text and data area size are
combined in what is called the data. This in-
sures that they will not be separated when
the prototype Memory Management registers
are Set up (main.c/estabur).

The prototype Memory Management regis-
ters are set up after rounding the text and
data sizes up to the nearest memory block
(64 bytes). The initial<stack size (SSIZE) is
set up for 20 memory blocks (1280 bytes).
If the program is too big or there is physical-
ly not-enough user memory on the machine,
the exec call will be terminated and the sys-
tem error ENOMEM will be posted by
main.c/estabur. A check is also made to in-
sure that no program is updating the file
which is to be overlaid. Rather than wait for
the update to occur, the exec is terminated.

At thts point,,the program has satisfied all of the
criteria for bdmg allowed into the system. The
procedure for bringing the program into memory

is as follows: .

1. Any text associated with the oId process is
freed (text.c/xfree).

2. The remainder of the old process is truncat-
ed to the size of the U block, (slp.c/expand).

3. Any reentrant portion of the program is read

in and a copy placed on the swap device if
there is not already a copy in the system
(text.c/xalloc). This may result in the exec
call being delayed while necessary I/O oc-

SYSi101 - SYSTEM CALL INTERFACE 1
File: sysl.c

curs.

The U block (truncated from the original

process) is expanded to the size of the data .

and stack. (The data size consists of data
and bss for reentrant programs and includes
the size of the text for nonreentrant pro-
grams.) The allocated memory is cleared.
Because of the way memorv expansions are
done. a swap may occur at this point to grow
the process size.

The user’s Meniory Management registers
are set up so that there is only a data area
(no stack), and the data (and bss) portion of
the program is read in. The read is accom-
plished by setting "u_base®, "u_offset(]", "u_
count™ and "u_segflg” to indicate that the
read is to be done into the user’s virtual ad-
dress space (starting at virtual 0), is to begin
in the object file after the 16 byte header, is
to include all data (and text for nonreentrant
programs) and is to be done into the user’s
virtual address space.

The correct virtual address space is set up
for the program (main.c/estabur) , the User
Memory Management registers are loaded
and the size of the process is recorded (in
"p_size”). When setting the correct virtual
address space, the reentrant text is included
and an initial stack area (SSIZE) of 1280
bytes is used.

The arguments to the overlaid program are
set up. This is done by storing the (ASCII
string) arguments onto the user’s stack. The
argument strings are placed on the stack in
the same order that they were taken from
the calling program. Pointers to each string
are loaded directly below this.

There are 2 indicators in the file access per-
missions associated with each file. These
two indicators allow the user id or group id
of a program to assume those associated with
the i-node rather than those of the user exe-
cuting the program. These two indicators
are referred to as the "set-user-id” and "set-
group-id® bits and sysl.c/exec changes the
user or group id to the appropriate value if
they are set.

PD-1C301-01
Section 16
Issue 1, January 1976

As mentioned previously, only ignored sig-
nais are inherited by the orverlaid processes.
User processed signals are reset so that to
the standard system action is taken.

10. The user’s registers must be zeroed (includ-
ing floating point registers), so that the oves-
laid process starts out with all registers ini-
tialized to zero. Since the system and user
processes use the same set of registers (Gen-
eral Register Set 0), the registers cannot be
zeroed directly. Rather the context informa-
tion saved when the exec system call is
made is zeroed. The PC on the stack is set
to zero so that when the overlaid program
begins executing it will start executing at vir-

" tiual address zero.

I1. The i-node for the overlaying file can be
" released and the buffer used for holding ar-
guments can be released (bio.c/brelse) to the
pool of available buffers.

12. Any processes that were roadblocked be-
cause they attempted an exec and there were
too many processes in the midst of doing an
exec are awakened. The naumber of
processes doing an exec ("execnt”) is decre-

mented.

exit
CALL
exit()

RETURNS
No value is returned.

SYNOPFSIS

Terminates a process, that is, makes a process a
ZOMBIE. - ‘

DESCRIPTION &

When a process terminatas, it eaters the zombie
state ("p_stat™ = SZOMB) until a parent find it.
Besides the need to pass back termination status
of children processes, the cpu time (user and sys-

~tem) used by the child is accumulated by the

parent. As CPU times are kept in the U block
and as a parent may have many children
processes, it is convenient to keep the U block of
the deceased process around until the parent

- disposes of it.

SYS101 - SYSTEM CALL INTERFACE 1
File: sysl.c

Since the parent process may disappear from the
system before any of its children, a mechanism
must exist so that the children can be disposed
of. The INIT process in the system is the pro-
cess that spawns the line monitor programs. It
allows user's to log on and off so it is always in
the system. (Since it is a user process though, it
can be killed.) If a parent dies before any of it’s
children, then INIT is made their parent and will
dispose of them when they terminate.

The steps in the termination of a process are:

1. All of the process’s signals are reset so that
they are ignored. This is done since subse-
quent steps may require the process to road-
block, at which time a signal might be
caught. _

2. All of the files that the process had open are
closed.

3. The i-node corresponding to the working
directory is released from the Inode Table.

4. Any . reentrant text is.
(text.c/xfree).

abandoned

5. Space is allocated on the swap device to
place the zombie. The zombie is only 256
bytes in size, but 8 times that much space is
allocated to reduce fragmentation. This is
done because although most processes
dispose of zombies quickly (by waiting for
them), a zombie remains in the system until
a parent finds it. Overallocating space on the
swap device reduces fragmentation (hopeful-
ly).

6. A system buffer is obtained to copy the first
512 bytes of the U block into. Since the
relevant information in the U block is in the
first S12 bytes ("u” array), buffered I/O can
be used rather than doing physical 170 to the
swap device. A synchronous buffered write
is performed to insure that the data reaches

the swap device and does not linger in the

-I70 subsystem.

7. The memory occupied by the process is
freed and the process state is changed to that
of a zombie ("p_stat = SZOMB), and the ad-
dress of the process on the swap device is set
up ("p_addr”). The data and stack areas
could have been freed (malloc.c/mifree) be-
fore the copy was made in 6, but the U
block would then have to be freed and frag-

PD-1C301-01
Section 16
Issue 1, January 1976

mentiation in memory would probably be in-
creased. :

8. Arrangements are made for the disposition
of the terminating process and all of it’s chil-
dren. .

a. The Process Table is searched for the
parent of the terminating process. If the
parent is found, INIT is awakened first.
This is done because INIT will inherit
all of the terminating process’s children
as its children. As some of these chil-
dren may already be deceased, INIT can
dispose of them. A wakeup
(slp.c/wakeup) is also issued to the
parent process. The Process Table is
rescanned and all of the children of the
terminating process are made children of
INIT (process number 1). Finally, the
processor is relinquished by the ter-
minated process.

b. If the parent of the terminating process
cannot be found, then the terminating
process is made a child of INIT and the’
procedure in a is repeated.

If the INIT is somehow destroyed in the
Process Table, a system panic 0OCCurs
("PANIC NO INIT PROCESS"). INIT
may be killed and“become a zombie it-
self, however, since there will no longer
be a process to remove zombies as
described above they will accumulate in

the system.
fork
forkQ . B
RETURNS ¢

Pasts an error if there is not room in the system
to create a new process. Also, returns the identi-
ty of the created child process to the parent and
the identity of the parent to the child.

'SYNOPFSIS

Fork system call. Creates a new process in the
system.

SYS101 - SYSTEM CALL INTERFACE 1
File: sysl.c

DESCRIPTION

Fork is the mechanism by which a new process
enters the system. It creates a mirror image copy
of the process making the fork call.

Most of the work in creating the mirror image
process is done by slp.c/newproc. This function
creates the new image and sets up a aew Process
Table entry for the child. After it completes it’s
work, there will be two processes in the system

which will return from the sip.c/newproc func-

tion. The parent will return directly from
slp.c/newproc, returning a zero, however, the
child will return through the process Switcher
(slp.c/swich) and will return a one. Sysl.c/fork
uses this distinction to allow it to perform some
additional initialization for the. child. In particu-
lar. it zeroes the cumulative user and system
times ("u_utime" and "u_stime") of the child and
the cumulative user and system time of the
child’s children (“u_cutime(]" and "u_cstime(]").
In addition, it returns the ID of the parent to the
child. (The actual C library interface for the fork
system call causes a zero to be returned to the
child.) For the parent process, sysl.c/fork re-
turns the 1D of the child and advances the PC for
the parent process (on the stack frame), so that a
different point in the C library is entered.

Before starting the creation of the child,
sysl.c/fork scans the Process table to see if there
is a slot available. If there is none, then an error
EAGAIN is posted.

rexit

CALL
rexit()

RETURNS
No value is rglumed.

SYNOPSIS
The exit system call.

DESCRIPTION

This is the System Entry point corresponding to
the exit system call. The exit system call can
pass a one byte status indicator as an argument.
Sysl.c/rexit saves this value (passed in RO) in

"u_arg{0]" for convenience and calls sysl.c/exit

to terminate the process.

PD-1C301-01
: Section 16
Issue 1, January 1976
wait
CALL
wait)
RETURNS

A system error is posted if a process waits, but
has no children.

SYNOPSIS

" The wait system call. Wait for a child process to

die.
DESCRIFTION

When a process dies, it becomies a zombie until
the parent finds and disposes of it. If a parent
does not wait for the child, then the zombie will
rernzin in the system for the lifetime of the
parent. If the parent leaves the system before
the child dies, then the child is made a child of

_ the INIT process.

Making a process a zombie allows status and exe-
cution time of the child to be examined. In par-
ticular, the exit status of the deceased child is
passed back to the parent and the cumulative ex-
ecution time (user and system time) of the de-
ceased child and all of it’s children is added to
that of the parent.

The wait system call does not wait for the death
of a particular child process. Rather, the call re-
turns when the first child: process terminates.

When sysl.c/wait is called, a linear search of the
Process Table is done. If the process making the
wait system call has no children then a system er-
ror (ECHILD) is posted (in "u_error”) and the
wait is terminated. If the process does have chil-
dren, but pone are yet deceased, the process is
roadblocked (at low priority, "p_pri" = PWAIT).
when a child does terminate the roadblocked
parent is reawakened and the linear search is re-
peated. ;

When a zombie child is found, the following
steps are performed to dispose of it.

1. The process ID of the deceased child is re-
turned in register RO and the status of the
dead child is returned in register Rl. The
status consists of two bytes. The low order
byte contains the number of any signal that
may have been received by the process to
cause termination and an indication of
whether a core image was produced. "The
high order byte contains any status informa-

Pd

SYS101 - SYSTEM CALL INTERFACE 1
File: sysl.c

tion returmed by the child.

2. The U block of the zombie is read into one .

of the system buffers by doing a synchro-
nous buffered read (bio.c/bread) from the
swap device and the area occupied by the
zombie on the swap area is freed. It should
be remembered that this area was gverallo-
cated (8 disk blocks rather than one) to
reduce fragmentation on the swap area.

3. The Process Table entry of the deceased
child is cleared. Only the important entries
are zeroed, "p_stat" - process state; "p_pid” -
pracess ID; "p_ppid" - parent ID; “p_sig” -
indication of pending signal; "p_ttyp" - con-
trolling teletype; "p_flag” - location of pro-
cess and flag indicators for process.

4. The execution of the deceased child and all
of it’s children is added to that of the parent.

Associated with every process there are several
time values kept.

1. "u_utime" - This is a one word entry which
records the cumulative user CPU time of the
process. (that is, time actually spent execut-
ing the user’s program). The entry is kept
in sixtieths of a second and is only an ap-
proximation since it cannot discount any in-
terrupt handling processed between clock
ticks (1/60 second).

2. “u_stime" - This one word entry records the

' cumnulative system CPU time used by the
process. It records all of the time spent by
the system in handling system calls for the
process and is subject to the same limitations
as 1. -

3. "u_cutimel]" - This is a two word entry (long
integer) used to record the cumulative user
time of all children of the process.

4. "u_cstime(]" - This is a two word entry used
to record the cumulative system time of all
children processes.

When a process terminates, the (user and
system) execution time of the deceased are
added to the cumulative times ("u_cutime(]"
and "u_cstime(]") of the parent. That is, the
parent’s times are adjusted as follows:

PD-1C301-01
Section 1§
Issue 1, Jaguary 1976

*u_cutime(]” = "u_utime™+"u_cutimef]"
"u_cstime(]” ="u_stime™+"u_cstime”

In both of these equations, values on the left
correspond to parent times, while all values

- on the right correspond to child times.

The system buffer containing the zombie U
block is released to the buffer pool -
{bio.c/brelse).

locked and incremented i-node.

SYS201 - SYSTEM CALL INTERFACE 2
File: sys2.c

close

CALL
close()

RETURNS

None

SYNQPSIS

Close system call interfce - close a file.

DESCRIPTION

The argument to close is the file descriptor of the
file 1o be closed. Close calls fio.c/getf to check
that the file descriptor is a valid value and points
to a open file. Close then zcros the file descrip-

tor entry in the per user control block (u.u_

ofile). Close calls fio.c/closef to decrement the
usage count in the System INODE Table (i-
node.h) to see if the entry can be purged (if the

PD-1C301-01
Section 17
_ Issue 1, January 1976
link
CALL
Link()
RETURNS

If successful none. An error occurs if the file al-
ready ~exists (EEXIST) or a link to a file on
another device is requested (EXDEN). The er-
ror code is set in the per user control block
(u.u_error).

SYNOPSIS

Link systemn call interface - a link is a pointerin a
directory to a file.

DESCRIPTION
Link is called with two arguments: the pathname

of the file to be linked to, and the name to call

i-node is not shared by other processes). If the.

count goes to zero, the i-node is updated in the
ilist and the entry is freed.

creat

CALL
creat()

RETURNS

On error the appropriate code has been set in the
per user control block (u.u_error). On success
the file descriptor for this file is returned to the
user in register RO.

SYNOPSIS

Creat system call interface - to creat new files.

DESCRIPTION
Like OPEN, creat takes a string of characters

representing a pathname and calls nami.c/namei

to decode the pathname into the appropriate
If the filename
does not exist (creating a new file) then
iget.c/maknode is called to allocate a i-number
and free i-node, put the i-node into the System
INODE Table (i-node.h) and write a directory
entry.

Sys2.c/openl is called to complete linkage from
the System File Table (file.h) and the user’s File
Descriptor Table (u.u_ofile).

the link. Nami.c/namei is called with the first ar-
gument to translate the pathname into a i-node
pointer. The returned pointer to a incremented,
locked i-node. Links to directories are illegal
(except by the super-user) so if the file is a direc-
tory and the user is not super-user, an error flag
is set, iget.c/iput is called to unlock this i-nods
and decrement the usage count by one.

The i-node is unlocked so that nami.c/namei can
be called again with the second argument to re-
turn a locked, incremented i-node for the second
argument pathname. If the file already exists the
error code EEXIST is set in the per user control
block (u.u_error) and iget.c/iput is called to un-
lock the i-node and decrement the use count.
Links cannot exist across devices because identi-
cal i-numbers appear in separate file systems and
the link is only an i-number reference. If the
directory i-node of the second argument is not on
the same device as the first argument file then
the error code EXDEYV is set in the per user con--
trol block (u.u_error). Otherwise, iget.c/wdir is
called to write a«directory entry from the infor-
mation left behin® by the call to namei. The link
count of the i-node is incremented by “one and
the i-node is marked so that the "last modified”
date and time can be updated. Iget.c/iput is
called to unlock the i-node, and reduce the use
count by one.

SYS201 - SYSTEM CALL INTERFACE 2
Fite: sys2.c

mknod

CALL
mknod()

RETURNS

On success none. On failure, if the name already
exists sets the error code EEXIST in the per user
coatrsi block (u.u_error).

SYNOPSIS .
Mknod system call interface - make a directory
{called from mkdir) or a special file
{/etc/mknod).

DESCRIPTION

‘Mknod is called with three user supplied argu-
ments: a pointer to the pathname of the file, the
mode of the new file, the major and minor dev-
ice classes for special file (zero for directory).

Mknod can only be called by the super-user for
directory creation. Nami.c/namei is called to
decode the pathname, create a i-node entry in
the System INODE Table (i-node.h), and return
a pointer to the locked, incremented i-node. If
the pathname does not exist the error code
(EEXIST) is set-in the per user control block.
Iget.c/maknode is called to fill in the new i-node
with the "mode” from the second argument.
Maknod also calls iget.c/wdir to write the directo-
ry entry for this i-node. The first address field in
the i-node, addr[0], is set to the third argument.

open

CALL
open()

RETURNS :

On error the appropriate code has been set in per
user control block (u.u_error). On success the
file descriptor for this file is returned to the user
in register RO,

SYNOPSIS

Open. system call interface _
files.

DESCRIPTION

Open takes a string of characters representing a
pathname and on successful return has brought
in the i-node for that file into the System INODE
Table (i-node.h), built an entry in the System
File Table ffile.h), and has built a file descriptor
entry in the File Descriptor Table in the per user

to open existing

-INODE Table (i-node.h). If the access is illegal -

PD-1C301-01
Section 17
Issue 1, January 1976

control block (u.u_ofile). Open calls
nami.c/namei to decode the pathname, find the
i-node of the associated file, and is returned a
pointer to the appropriate i-node in the System
INODE Table (i-node.h). The pointer is to a
locked, incremented i-node. SysZ.c/openl is
called to complete the ltakage from the System
File Table (file.h) and the user’s File Descriptor
Table (u.u_ofile).

openl

CALL

openl (ip, node, trf)

int *ip, node, trf}

RETURNS :

If successful return nothing. If permissions are
illegal set the error code in the per user control
block (u.u_error).

SYNOPSIS

Complete linkage of control blocks tq open a file.

DESCRIPTION

Openl checks the requested "mode” against the
file access permission by calling fio.c/access with
the pointer, "ip", to the i-node in the System

the error code is set in the per user control block

(u.u_error) and iput.c/iput is called to decrement -

the usage count in the System INODE Table and
unlock the i-node. Anytime i-nodes must be
changed they are locked to prevent simultaneous
change by several processes.

If open! was called by CREAT (sys2.c/creat), the
file is new or to be re-written. The "trf” flag is
set to indicate this and openl calls iget.c/itrunc
to truncate the file. Pipe.c/prele is called to un-
lock this i-nodej-

This file may be a special file (a physical device)

and fio.c/openi is call to make this check and
open the device il necessary. Fio.c/falloc is
cailed to find the next available file descriptor in
the user’s File Descriptor Table (u.u_ofile), and
the first available slot in the System File Table
(file.h). The System File Table is then set to
point to the allocated i-node in the System
INODE Table (inode.h).

?\}

SYS201 - SYSTEM CALL INTERFACE 2
File: sys2.c

rdwr

CALL

rdwr (modé)
int mode;

RETURNS

On an error, rdwr will set the appropriate error
code in the per user control block (u.u_error).
On success the count of the number of bytes
read/written is returned is user register RO.

SYNOPSIS

Read or write data from a file pointed to by a file
descriptor.

DESCRIPTION

Arguments to the read or write system call are
the file descriptor, the address of a buffer, and
the number of bytes to read or write. The file
descriptor is in the user’s register RO and the
buffer address and number of bytes are in the per
user control block (u.u_arg{0], u.u_arg{1]). The
file descriptor is connected to a pointer to the
System File Table entry (file.h) for this open file
by fio.c/getf. If the file descriptor is invalid or
the mode of the file does not match the mode in-
put argument then the per user control block er-
ror code is set (u.u_error) to bad file description
(EBADF).

If the System File Table entry indicates that this
file is a pipe then the read or write is accom-
plished by pipe.c/readp or pipe.c/writep. Other-
wise the read or write is done by ordinary file I/0
routines rdwri.c/readi or rdwri.c/writei. In either
case, the number of bytes read/written is placed
in the per user control block (u.u_count) and re-
turned to the user in RO.

read

CALL
read()

RETURNS
None

SYNOPSIS
Read systemn call interface.

PD-1C301-01
Section 17
Issue 1, January 1976

DESCRIPTION

Fead call the sys2.c/rdwr routine with a read
mode. Rdwr does all the work.

seck

CALL
seek()

RETURNS

If successful none. If failure the error code is set

in the per user control block.

SYNOPSIS

Seck system call interface - moves the read/write
position pointer by blocks or bytes absolutely or
relative to the current positions.

DESCRIPTION

Seek is called with three arguments: the file
descriptor which is placed in user register RO, the
amount of the offset (u.u_arg{0]) and a flag
defining blocks or bytes, and abslute or relative
(u.u_arg(1]). The flag is as follows:

BytesBlocks
Absolute Position 03
Relative to Current Position14
Relative to End of File2$

Seek calls fio.c/getf to check the validity of the
file descriptor value and. that it points to a open
file. A pointer to the entry in the System File
Table (file.h) is returned.

If seek was called on a file descriptor that points
to a pipe the error code (ESPIPE) is set in the
per user control block (u.u_error) because seeks
are illegal on pipes. Seek uses the flag argument
(u.u_arg{1]) to determine how to apply the offset
to the read/write pesition pointer in the slot in
the System File Table (file.h).

IS

‘%j.

SYS201 - SYSTEM CALL INTERFACE 2
File: sys2.c ’

write

CALL
write()

RETURNS
None

SYNCPSIS
Write system call interface.

DESCRIPTION ' g
Write calls sys2.c/rdwr routine with a writs
mode. Rdwr does all the work.

PD-1C301-0t
Section 17
Issue 1, January 1976

At

SYS301 - SYSTEM CALL INTERFACE 3
File: sys3.c

dup

CALL
dup()

RETURNS
System primitive.

SYNOPSIS
Duplicates an open file descriptor.

DESCRIPTION o
Dup is the system primitive used to duplicate a
user’s open file descriptor. This is easily accom-
plished by placing another pointer to the system
file table entry (file[]) for the open file in the
user’s open file table (u_ofile) and increasing the
file’s use count (f_count).

fstat

CALL
fstat()

RETURNS
Systemn primitive.

SYNOPSIS

Allows the caller to obtain the vital statistics of
an open file by using the file descriptor.

DESCRIPTION

Fstat is a system primitive that enables a user to
obtain certain information about an open file by
using the file descriptor. Therefore, the file’s
name (which could be that of a special file or a
pipe) need not be known. The real work of ob-
taining this data is done by sys3.c/statl, and
fstat’s principle duty is to translate the user’s
fstat arguments (file descriptor and buffer ad-
dress) into a correct stat! function call. A secon-
dary responsibility of fstat before returning is to
compute the correct file length if the file is a
pipe. and replace statl’s view of file length with a
more meaningful value. In particular, from the
read end of a pipe, the file length returned by
fstat is the number of unread bytes in the pipe;
from the write end, the length is the number of
bytes currently in the pipe, whether read or not.

PD-1C301-01
Section 18 .
Issue 1, January 1976
getmdey
CALL
getmdev()
RETURNS |
The device number of a block device.
SYNOPSIS

Used while mounting and unmounting file sys-
tems to determine the device number of a block
soecial file.

DESCRIPTION

The routine getmdev is used internally by the
system when mounting and dismounting file sys-
tems (sys3.c/smount and sys3.c/sumount, respec-
tively) to translate the special file’s pathname
into a device number. It is expected that this
name resides in user space. Certain checks are
performed to ensure that the special file is that of
a valid block device that is configured into the
system. The device number is returned unless
the device fails to pass the validation tests, in
which case the appropriate error bits are set (u_
error).

smount

CALL
smount()

RETURNS
System primitive.

SYNOPSIS

Mounts a file system on a specified directory or
regular file.

DESCRIPTION '

Smount is the system primitive that effects the

mounting of a file system on an existing file or

directory (whiclfis called the mount point). The

restrictions regarding this procedure are: the

mount point may not be currently in use by the

requester or another user, the mount point may-
not be a special file, and the file system (device)

being mounted may not already be mounted.

Failure to fulfill any one of these requirements

results in the file system not being mounted. If
these restrictions have been satisified, the mount

is accomplished by placing the file system’s su-

. perblock (struct filsys) in memory in a block 1/0

buffer, building an entry in the mount table
(mount(]) and marking the mount point i-node

'SYS301 - SYSTEM CALL INTERFACE 3
File: sys3.c

as a mount point.

stat

CALL
stat{)

RETURNS
System primitive.

SYNOPSIS
Allows the caller to obtain the vital statistics of a
file by using the file’s name.

DESCRIPTION

Stat is a system primitive that enables a user to
obtain information about a file whose name is
known. Since sys3.c/statl does the real work in
obtaining this data, stat’s principle function is to
translate the file's pathname into a meaningful
statl function call.

statl

CALL

stat] (ip, addr)
struct inode *ip;
int *addr;

RETURNS
No value returned.

SYNGCPSIS
Returns a fle’s vital statistics to a user in
response to a fstat or stat system call.

DESCRIPTION

Statl does most of the work involved in fulfilling
fstat and stat system calls. To ensure that the
most current information regarding the file
(especially the access and update times) is avail-
able, the file’s inode table entry, pointed to “ip”,
is first written to the file system. The file's i-
node is then read directly from the file system.
The information requestad by the fstat or stat call
is transferred directly to the user supplied area
starting at "addr”.

PD-1C301-01
Section 18
Issue 1, January 1976
sumount
CALL
sumount()
RETURNS
System primitive.
SYNGPSIS
Dismounts 2 mounted file system.
DESCRIPTION
Sumouat is the system primitive that unmounts a
file system previously mounted by

sys3.c/smount. This can be done only if no files
in the file system are being used (i.e., have no
system inode table entries). A sync is performed
to ensure that all incore data regarding the file
system is actually written to the device. The
dismount is then completed. by clearing the
mount table entry (mount(]), frecing the buffer
used for the superbiock, and removing the
mount point stigma from the mount point file.

Mt

SYS401 - SYSTEM CALL INTERFACE 4
File: sysd.c '

.chdir
CALL
chdir ()
RETURNS
System primitive.

SYNOPSIS
Changes a process’s current working directory.

DESCRIPTION

Chdir is the system primitive that allows a pro-
cess to change its working directory. The new
working directory must be a bona fide directory
for which the user has execute permission. The
actual switching of directories is easily accom-
plished hy altering the U block’s current directo-
ry pointer (u_cdir) to the new directory’s inode
table entry.

ghmod

“CALL
chmod()

RETURNS _

Systern primitive.

SYNOPSIS

Alters a file’s mode (i.e., permissions).
DESCRIPTION

Chmod is a Vsystem primitive that allows the
mode of a file (i.e., its permissions) to be restat-

-1-

_PD-1C301-0¢
Section 19
Issue 1, January 1976

DESCRIPTION .

Chown is the system primitive that enables a
user to change the ownership of a file. Only the
super-user or the file’s owner may change the
ownership (that is, a file may only be given away,
it canniot be taken). The userid of the new own-
er is guly recorded in the file’s ownership field
(i_uid). An interesting side effect is that, unless
done by super-user, changing file ownership
negates the set userid aspect of the file’s mode.

getgid
CALL

getgid()

ed. This may be done only by super-user or the .

owner of the file (as determined by the effective
userid). The actual mode changing is completed

by placing the new mode in the file’s mode field

(i_mode).

chown

CALL
chown()

RETURNS
System primitive.

SYNOPSIS
.Changes the owner of a file.

RETURNS
System primitive.

SYNOFSIS

Enables a process to determine the real group id
under which it is running. o
DESCRIPTION

Getgid is a system primitive that returns to the
user the real (as distinguished from the effective)
group id (u_rgid) under which the process is run-
ning. :

getpid

CALL

getpid)

RETURNS

System primitive.

SYNOPSIS

Enables a process to determine its process id.

DESCRIPTION + |
Getpid is a systfm primitive that returns to an
invoking process its process id (p_pid).

*

SYS401 - SYSTEM CALL INTERFACE 4
File: sysd.c

getswit

CALL

getswit O

RETURNS

System primitive.
SYNOPSIS

Reads the console switches.
DESCRIPTION

Getswit is a system primitive that returns the
contents of the consale switches to the user.

getuid
CALL
getuid)

RETURNS
System primitive.

SYNOPSIS

Enables a process to determine the real userid
under which it is running. :

DESCRIPTION

Getuid is a system primitive that returns to a
process the real (as distinguished from the
effective) userid (u_ruid) under which it is run-
ning.

gtime

CALL

gtime()

RETURNS

System primitive.
SYNOPSIS

Returns time of day to user.

DESCRIPTION

Gtime is a system primitive that returns the time
of day (time{]), in one second granularity, to the
user.

PD-1C301-01
Section 19
Issue 1, January 1976

kill

CALL
kill()

RETURNS
System primitive.

SYNOPSIS :
Sends a specified signal to another process.

DESCRIPTION

Kill is the system primitive that enables one pro-
cess to send a signal to another. Before the sig-
nal is sent, verification is made that the sending
process is either the super-user or that both the
sending and receiving processes have the same
(effective) userid. o

nice
CALL)
nice() .)

RETURNS
System primitive.

SYNOPSIS
Allows a process to alter its priority.

DESCRIPTION
Nice is a system primitive that provides a process
a limited amount of flexibility in altering its
priority. For a normal user, the argument to nice
must be a value between zero and twenty. This
value (u_nice) is ultimately added to the
process’s sysiem determined priority value,
effectively lowering its priority. Super-user is al-
lowed to specify nice values between -220 and
20; hence, a raising of priority is possible.
. *

.
b

F=y

A

profil

CALL
profil()

RETURNS
System primitive.

SYNOFSIS
Activates the execution profiling of a process.

SYS401 - SYSTEM CALL INTERFACE 4
File: sys4.c

DESCRIPTION

Profil is the system primitive that activates pro-
cess execution profiling. To do so, it records, for
lates system use (see mch.s/incupc), the values
(u_profl]) used by the system in fulfilling the
profiling request. :

setgid
CALL
setgid ()

RETURNS
System primitive.

SYNOPSIS

Changes the ‘effective, and possibly the real,'

group id of a user process.

DESCRIPTION

Setgid is a system primitive that enables a pro-
cess to change the group id under which it is ex-
ecuting. A normal user may change only the
effective group id (u_gid) of the process to what-
ever the real group id (u_rgid) already is; super-
user may change both the real and effeciive
group id to anything desired.

setuid

CALL

setuid()
RETURNS
System primitive.

SYNOPSIS
Changes the effective, and possibly the real,
userid of a user process.

DESCRIPTION

Setuid is a system primitive that enables a pro-.

cess to change the userid under which it is exe-
cuting. A normal user is only allowed to change
the effective userid (u_uid) of the process to
whatever the real userid (u_ruid) already is:
super-user may change both the real and
effective userid to anything desired.

PD-1C301-01
Section 19
Issue 1, January 1976

smdate.

CALL
smdate()

RETURNS
System primitive.

SYNOPSIS
Alters the last modified time for a file.

DESCRIPTION)

Smdate is a system primitive that enables a user
to change 2 file's "last modified time” (i_mtime)
to any time desired. Only the super-user or the
fle’s owner may do this. This is done immedi-
ately to the i-node entry in the file system and an
interesting by-product is that it forces the incore
inode table entry for the file to be written to the
file system.

ssig

CALL
ssig()

RETURNS
System primitive.

SYNOPSIS

Permits a process to specify the action to be tak-
en when it is sent a signal.

DESCRIPTION

Ssig is a system primitive that allows a process to
specify which of three ways a particular signal
sent to it should be handled: default system ac-
tion, ignored, or control be given to a user
specified function (catch the signal). This is ac-
complished by entering the necessary value
(zero, an odd integer, or the address of the func-
tion, respectively) in the proper u_signal{] slot.
The kill signal may not be caught or ignored, and
if the signal in iuestion has already been sent to
the process, but has not yet been fielded by the
system, it is thrown away.

SYS401 - SYSTEM CALL INTERFACE 4
File: sys4.c

stime

CALL

stime()

RETURNS

System: primitive.
SYNOPSIS

Sets the time of day.

DESCRIPTION

Stime is a system primitive used to set the time
of day (time{l). The caller must be super-user.
A secondary function performed is to wakeup all
processes sleeping on a time of day. This en-
sures that none oversleep. ' o

sync

CALL

sync()
RETURNS
System primitive.

SYNOPSIS _
Syncs all mounted file systems.

DESCRIPTION

Syncis a system primitive that syncs all mounted
file systems. That is, it causes ajl incore informa-
tion about the file systems to be actually written
to their devices.

times

CALL
times()

RETURNS
System primitive.

SYNOPFSIS
Provides exscution time infounation about a pro-
¢ess and its children.

DESCRIPTION

Times is a System primitive that provides to a
Process the user and system CPU time used by
itself and the cumulative user and system CPU
time used by al] of its terminated child processes.
All of the times returned have 1/60 second
granularity.

PD-1C301.01
Section 19
Issue |, January 1976
unlink
CALL
unlink()
RETURNS
System primitjve,
SYNOPSIS
Removes a link to a file from a directory.
DESCRIPTION

Unlink is a sysiem
directory entry to a fle (unlinks it). Super-user
is the only person permitted to unligk a directo-
ry. The process of unlinking involves zeroing
the file’s i-number in its entry in its parent direc-
tory and decreasing its link count (i_nlink) by
one. The file is physically removed from the fila
System when its link count becomes zero and aj]
processes using it have closed it. There is no
verification that the user owns the file, but the
user must have write permission for the parent
directory. . .

ﬁ}-?m&

primitive that removes a

. SYS501 - SYSTEM CALL INTERFACE 5
File: sysS.c

Iflags

CALL
flags()

RETURNS
No value returned.

 SYNOPSIS
System cal} interface for semaphores.

DESCRIPTION

Semaphores are currently implemented as
lock/unlock conditions. Lflags is called with an
action code in u_arg{0] and the semaphore
number in u_arg[l]. The action code is one of
the following:

1. Lock - If the semaphore is locked, wait until
it becomes unlocked. When the semaphore
becomes unlocked (or if originally unlocked)
lock it and return.

2. Unlock - Clear the semaphore and wake up al!
processes waiting on it.

3. Tlock - If the semaphore is unlocked, lock it
and in either case (locked or unlocked) re-
turn. '

The process id of the locking process is saved in
the semaphore to allow the gystem to know who
has certain semaphores. If the semaphore value
is out of range return the EINVAL error. If the
action code is not cne of the above return the
ENOENT error.

At

PD-1C301-01
Section 20
Issue 1, January 1976

-1-

SYSENTO01 - TABLE OF SYSTEM ENTRY POINTS PD-1C2301-01
File: sysent.c Section 21
Issue 1, January 1976

sysent
CALL
RETURNS

SYNOPSIS
System Entry Point Table.

DESCRIPTION

This table is used by the trap handler
(trap.c/trap) to call the appropriate system func-
tion when a system call is mads. The table con-
sists of two word entries. The first word of each
gntry is the number of arguments that are to be
fetched from the user’s program as arguments to
the system function. This number does not
correspond to the number of arguments to a sys-
tem call as specified in the UNIX Programmers
Manual since some arguments are passed in re-
gisters (see trap.c/trap). Individual descriptions
of system functions should be coasulted for the
manner in which arguments are passed. The
second word of each entry is the address of the

function in the system that implements the sys- - .
tem call. Currently, there are 64 entries in the
table.

The TRAP instruction is executed when a system
call is made (SYS pseudo-op in assembly
language). This instruction contains an 8 bit
field reserved for a trap number. UNIX uses the
lower six bits of this number as an identifier for
the type of system call and hence an index into
the "sysent[]" table.

Unused system call entries have the function

trap.c/nosys entered in the table. This function

posts an error if a system call is made using that

as the index. The first eatry in the table (index A

0) is filled in with the trap.c/nullsys function. A » p
zero index in the trap instruction is recognized as -
an indirect system call. The trap.c/nullsys entry
in the table insures that multiple levels of in-
direct system call cannot be made.

iyt

TEXTO0! - SHARED PROGRAM
File: text.c

xalloc

CALL

xalloc(ip)
struct inode *ip;

RETURNS
No value is explicitly returned. It does, howev-

- -er, set a process’s text pointer ("p_textp").

SYNOPSIS

Creates a reentrant text segment in the system or
finds the text if it is already present.

DESCRIPTION

Text.c/alloc is a subroutine of sysl.c/exec. It is
used to create the Text Table entry for a process
that has recntrant text and to read the reentrant
text into memory. The Text Table contains the
following entries for each reentrant text segment.

"x_count” - This is a count of the number of
processes. using the text.

"x_ccount” - This is a count of the number of
processes in memory that are using a text.

"x_caddr" - This is the memory address (in
memory blocks) of the text. This entry is only
valid if the memory usage count ("x_ccount®) is
nonzero.

Ny

"x_daddr” - This is the address (in 512 byte

blocks) of the text on the swap area. Since reen-
trant text is managed separately on the swap area
from the nonreentrant portion, it need never be
swapped out. Thus, reentrant text remains in the
same position on the swap device until the last
process using it leaves the system at which time
the text is destroyed.

"x_size” - This is the size in bytes of the text.

"x_iptr" - This is a pointer to the Inode Table en-
try containing the i-node from which the text is
to be read.

In setting up a reentrant text segment in the sys-
tem, the following steps are taken:

. The Text Table is scanned to see whether
the reentrant text from i-node "ip” has ai-
ready been set up. If it has, then steps 2-6
are skipped. The text pointer ("p_textp”) in
the Process Table is set up and the use
count "x_count” is incremented in this case.
If the text is not already known to the sys-
temn, a Text Table entry is allocated. If there
are too many entries in the Text Table the

PD-1C301-01
Section 22
Issue 1, January 1976

system panics ("PANIC OUT OF TEXT").

The Text Table entry is initialized by setting
the use count ("x_count”) to one and the
in-memory use count ("x_ccount") is zeroed

since the text has not been read into
memory as yet. Since text.c/xalloc is a
subroutine of the exec system call

(sysl.c/exec), the size of the text is available
in "u_argl1]”. (Sysl.c/exec has already read
the 16 byte header of the object file.) This
byte value is rounded up to the nearest
memory block, converted to memory block
granularity and placed in "x_size".

Space is allocated on the swap device to hold
the text. If there is no space available, the
system panics ("PANIC OUT OF SWAP
SPACE"™). The address of the text ("x_
daddr”) on the swap area is set at this time.

Before calling text.c/xalloc, sysl.c/exec fresd
all of the memory space occupied by the
overlaid process. Only the U block is re-
tained so that the overlaying process may in-
herit some of the characteristics of the
parent. This memory space is now expanded
to encompass both the U block and the
space required for the text. In addition, the
User Memory Management registers are
loaded so that a virtual .address space that
can be read or written (equal to the size of
the text) is set up in this area (directly below
the U block).

The text is read into memory by setting up
the "u_base”, "u_count®, "u_segflg", and "u_
offset{]” entries so that rdwr.c/readi can be
called. "U_segflg” has already been set by
sysl.c/exec to indicate that the 1/0 will be
transfered to the user’s virtual address space.
The offset ("u_offset(]") is set so that the 16
byte headerjis skipped and the destination is
set up so that the data is copied to virtual
address O in the user’s address space.

Once the reentrant text is in memory, a copy
is made on the swap device of the text
(only). While this is being done the process
must be locked in memory.

After the copy of the text is made oa the
swap device, the process doing the exec is
unlocked. The text pointer is set ("p_textp”)
and the Inode Table entry for the text is
marked (ITEXT), so that the text cannot be

TEXTO01 - SHARED PROGRAM
File: text.c .

modified on the filesystem until the last pro-
cess using the text leaves the system.

8. The process is now truncated to the size of
the U block (that is, the text in memory is
discarded.)

9. For text that must be created fresh or for ex-
isting text that must be read in because it is
not in mermory, the following procedure is
used:

a. The context of the process is saved (in
"u_rsav" and "u_ssav") and the process is
swapped out. At this time, the process
consists only of it’s U block.

b. The process is marked (SSWAP in "p_
flag"), so that when the process resumes
it will return to sysl.c/exec and the pro-
cessor is relinquished (slp.c/swtch).
Thus, the text is effectively abandoned
until the process is again brought into
memory by the Scheduler.

10. For procssses which are executing a reen-
trant text that is already in memory, none of
the procedures 2-9 need be done. Only the
in-memory count "x_ccount” need be updat-
ed (incremented by 1).

xcedec

CALL

xcedec(xp)
struct text *xp;

RETURNS
No value is returned.

SYNOFPSIS

Decrements the in-memory usage count of a
reentrant text.

DESCRIPTION

Reantrant text is maintained as a separate entity
on the swap device and in-memory. It is there-
fore necessary to keep track of the number of
processes that are using the in-memory copy so
that the memory can be freed when ail of the
processes using it leave the system.
Text.c/xccdec decrements the in-memory usage
count ("x_count”) and if it becomes zero, frees
the memory occupied by that text.

PD-1C301-01
Section 22
Issue 1, January 1976
xfree
CALL
xfree()
RETURNS
No value is returnied.
SYNOPSIS

Decrements the usage count of reentrant text
and removes the text from the system when the
last process using that text leaves the system.

DESCRIFTION .

This function decrements the usage count of a
reentrant text. It is the complimentary function
to text.c/xalloc. Associated with each reentrant
text in the system is a Text Table entry. (These
are described under text.c/xalloc.) Text.c/xfree
simply determines whether a process has a reen-
trant text portion ("p_textp® is nonzero) and de-
crements both the in-memory usage count ("x_
count”) and the usage count ("x_count®). The
in-memory usage count is decremented by calling
text.c/xccdec. A check is made by text.c/Xfree to
see if all of the processes using the reentrant text
have disappeared from the system. When this
occurs, text.c/xfree deallocates the space that was

- occupied by the text on the swap area and

releases the i-node for that text. While a reen-
trant program is being exefuted, it's i-node is
kept in the Inode Table. This is done to elim-
inate the need to read that i-node if another in-
stance of the program is invoked and to prevent
the reentrant text from being overwritten while
there is a copy of that text executing in the sys-
tem.

Xswap v

CALL 1
xswap(p freeflag,oldsize)
struct proc *p;

RETURN -
No value is returned. -

SYNOPSIS)

Performs housekeeping required to swap a pro-
cess out. ‘

LS

TEXTO01 - SHARED PROGRAM
File: text.c

DESCRIPTION

Two indicators are passed to text.c/xswap. The
first (“freeflag”) indicates whether the memory
occupied by the swapped process should be freed.
The only time that the memory occupied by a
process is to be retained after 2 swap is when a
parent creates a child by forking. The second ar-
gument ("oldsize™) tells text.c/xswap what the
former size of the .process was. This is necessary
when swapping is used to grow the size of a pro-
cess (slp.c/expand) so that while a space large
enough to hold the new size is allocated on the
swap area, only the former size will be placed in
that area. The steps in swapping a process out
are,

1. ‘Space is allocated on the swap area to place
the process. Since a copy-of reentrant text
remains on the swap area even when a reen-
trant process is brought into memory, there
is no need to swap it out. If there is no
space on the swap area for the process, the
system panics ("PANIC OUT OF SWAP
SPACE"). . »

The memory usage count ("x_ccount”) of
any reentrant text for the process is decre-
mented and if there are no processes in
memory using the text, the memory occu-
pied by the text is freed.

[

3. The process is locked in memory ("p_flag” -
SLOCK) until 1/0 for the swap is completed.

4. The swap function (bio.c/swap) is called to
swap out the process and if any errors occur,
the system panics ("PANIC SWAP ER-
ROR").

/Tl -4 5. The memory associated with the
process (not including reentrant text) is
freed unless a swap to do a fork is occurring.

6. The location of the process ("p_addr”) is set
to it's location on the swap area and the pro-
cess is marked as non-resident ("p_flag® =
SLOAD) and is unlocked.

7. Since a process has moved to the swap dev-
ice, the Scheduler is notified if there were
formerly no ready processes on the swap
device.

QVM

PD-1C301-01
Section 22
Issue 1, January 1976

TRAPO1 - TRAP HANDLER
File: trap.c

nosys

CALL
nosys()

RETURNS
A fatal system error is posted {"in u_error").

SYNOPSIS
A placeholding entry in function tables which
results in a fatal error being posted.

DESCRIPTION

Thea address of this function is placed in any table
of functions (System Entry Point Table, Block
Device Switch Table, Character Device Switch
Table, etc.), where no entry is required and
where calling the function correspoading to that
entry is an error. The fatal error code 100 is
posted in "u_error” so that the trap handler can

properly notify the process which originated the

bad systemn call or table reference (i.e., terminate
it or allow it to handle the Bad System CaJl signal
which is sent).

nvullsys

CAaLL
nullsys()

RETURNS
No value is returned.

SYNOPSIS

A system call that does nothing. It’s address is
used to fill in tables of functions in the system
~ where no error should be posted when the entry
is called.

"DESCRIPTION

This entry is used in any table of functions in the
system (System Entry Point Table, Block and
Character Device Tables, etc.), where calling the
function corresponding to that entry should
result in no action and no error being posted. A
delibarate use of the trap.c/nullsys entry is made
as the first entry in the System Entry Point
Table. This prevents multiple levels of indirect
system calls (see trap.c/trap).

PD-1C301-01
Saction 23
Issue 1, January 1976

trap
CALL

trap(dev,sp,rl,newps,r0,pc,oldps)
char *sp;

RETURNS

Any minor errors encountered in processing a
system call are reported to the user process and
any major errors result in the process being sig-
nalled (and usually terminated).

SYNOPFSIS
The system trap handler.

DESCRIPTION

All system calls are made by trapping to the
operating system using the TRAP instruction.
This is the most common trap generated.
Hardware traps are also generated for illegal in-
structions, addressing violations, etc. UNIX can
recover a user process from these errors either by
terminating the process or allowing the process
itself to regain control and recover from the er-
ror. The operating system does not, however,
recover if any of these traps are generated while
system functions are executed. These result in a
system panic ("PANIC TRAP").

For every process in the system, UNIX maintains
a set ("u_signal{l" in each U block) of signal ac- -
tions (20) that can be received by that process.
A signal may be sent to a process via the kill
system call, however, within the system, many of
the signals correspond to specific hardware events
(traps) and result in a signal being seat to a pro-
cess. The following is the list of traps that can be
generated by the PDP-11 hardware and the sig-
nals that are sent (if any),

. Bus error - signal 10 - SIGBUS.

. INegal Instruction - signal 4 - SIGINS.

. Trace trap - signal S - SIGTRC.

. IOT instruction - signal 6 SIGIOT.

. Power Fail.

. EMT instruction - mgnal 7 - SIGEMT.

. Trap instruction (i.e., system call).

. Programmed Interrupt.

. Floating Point Violation - signal 8 - SIGFP.

10. Segmentation Violation - signat 11 - SIGSEG.

O 00 3O W s WK -

The remainder of the signals are reserved for
user initiated or system initiated commuaication
with a process. As mentioned previously, sig-
nals corresponding to hardware errors may be
sent via the kill system call and a procasss may

TRAPO1 - TRAP HANDLER
File: trap.c

choose to ignore or to handle any or all of these
traps (by using the signal system call). Only one
signal cannot be caught or ignored (the kill sig-
nal, SIGKIL = 9).

Like the clock interrupt handler, the trap handler
performs a variety of functions. The fuactions
will be described in the order of their most fre-
quent use.

The trap handier is called to interface every sys-
tem call to the operating system. For the most
part, a user program involks a library (C library
or assembly language library) routine to properly
set up the arguments to the system call, howev-
er, there is no reason why a program need involk
the library routines. There are two basic forms
of system calls. The first formn is the direct sys-
tem call:

sys 22
arg |
arg 2

/trap instruction
/argument number 1
/argument number 2

The SYS pseudo instruction is recognized by the
UNIX assembler as the TRAP instruction. The
number (22 in this case) is an index into the Sys-
tem Entry Point ("sysent{]”). This instruction is
assembled as a one word instruction with the
lower 8 bits reserved for the trap number. UNIX
has only 64 system entry points at present, so
only 6 bits of the trap number are recognized.
Immediately following this are the (one word) ar-
guments to the system call. Some system calls
pass the first argument (as specified by the sys-
tem call descriptions in the UNIX Programmers
Manual) in register R0O. (The C compiler recog-
nizes the fact that registers RO and R1 are
scratch.) Arguments assembled after the trap in-
struction are not necessarily in the order specified
by the format of the system call in the UNIX
programmers Manual. The number of arguments
assembled after the trap instruction must be the
number expected by the system as the trap
handler advances the Program Counter to skip
over these arguments.

Since some arguments are assembled after the
trap instruction and these arguments are typically
not constant values, they must be set up just be-
fore the system call is made. This, however,
proves a problem for reentrant programs as the
text segment is write protected. Thus, for all
practical purposes, this form is useful only for
system calls which have no argument or one ar-
gument which is passed in RO.

PD-1C301-01
Section 23
Issue 1, January 1976

The sccond form of system call is the indirect
systern call:

.text
sys 0 /indirect system call
addr /address of real
/system call
.data
9:
sys 22 /system call
arg 1 /argument 1
arg 2 /argument 2

System call zero is reserved for the indirect sys-
tern call. This system call passes as its one and
only (constant value) argumcnt, the address of
the real system call. A template for the real sys-
tem call is assembled in the data area just as it
would bave been if the first form had been used.
The advantage is, however, that since the tem-
plate is in the data area it may be modified even
if the program is reentrant. This is used for all
multiple argument system calls by the C library
to ipsure that any program may be made reen-
trant. The first entry in the System Entry Point
Table is for the trap.c/nullsys function. This
function does nothing and its presence as the first
entry in the table insures that multiple leveis of
indirect system cails can not be done.

The System Entry Point Table is an array consist-
ing of 64 two word entries. “The first word of
each entry contains the number of arguments
that niust be fetched from the user’s virtual ad-
dress space and the second is the address of the
function within the system which corresponds to
the system call. Once it has been ascertained
that the trap is actually a system call, the type
(direct or indirect) of system call is determined

" by checking the trap number.

For the direct system calls, the number of argu-
ments (specifiedy in the System Entry Point
Table) are fetche8 from the user’s virtual address
space. The Program Counter is saved automati-
cally on the system’s stack (U block) by the
hardware trap mechanism and is available as an
argument to trap.c/trap so that it can be found
eéasily. Since the TRAP instruction is a one word
instruction, the PC was automatically advanced
to the next location when the trap occurred, so
that it is only necessary to advance the PC to
skip over the arguments following the TRAP in-

-struction. The per process information in each U

block can accomodate up to § arguments (in the

TRAPO1 - TRAP HANDLER
File: trap.c

array "u_arg(]") making a total of 6 that may be
passed. (RO is usually used to pass an argument
by saving and restoring registers in the library in-
terface. More could be passed in registers and in
any event, the Argument Array “u_arg({l” could
be enlarged.) Each argument fetched from the
user’s address space is placed in the Argument
Array.

For indirect system calls it is only necessary to
step the PC by 2 to bypass the one argument to
the indirect system call. Arguments are loaded
into the Argument Array as with the direct sys-
temn call.

Some system calls pass the address of a string as
a file name or a path name. Ultimately, the
nami.c/nami function is called to do pathname
searches on these strings so that the variable "u_
dirp” is set to "u_arg[0]" (the first argument
fetched from the user’s address space) as a con-
venience. This means that a string argument for
cails like open, create, link, etc. follow.the con-

vention that a pointer to the string name is setup -

as the first argument in the system call. Another
convention used is that for system calls that in-
volve file descriptors, the descriptor is passed in
register RO.

Once all of the arguments have been set up, the
system call can be made by selecting its address
from the System Entry Point Table. In order to
allow system calls to be prematurely terminated,

as when a signal is sent to a process, entry into

the system must be made in a particular manner.
The function specified in the System Entry Table
cannot be calied directly. Rather, a dummy
routine (trap.c/trapl) must be usad. . This is
done because the execution of nonlocal gota’s
(mch.s/aretu) within the operating system
depend on a variation of the context saving and
restoring method to operate. Mch.s/aretu mani-
pulates registers RS and SP which are saved (by
trap.c/trapl) in "u_gsav®’. The manipulation
makes the execution of mch.s/aretu appear as if
the function trap.c/trapl returned (prematurely
to trap.c/trap). The two word array "u_gsav" in
the U block is used to save the stack position of
the dummy function trap.c/trapl and to restore it
when mch.s/aretu is called (by slp.c/sleep).

PD-1C301-01
Section 23
Issue 1, January 1976

The chief use of this setup is to terminate system
calls prematurely when signals are caught. In
particular, for processes that relinquish the pro-
cessor at low system priority (wait priorities, "p_
pri” value is greater than zero) a check is made
before the processor is relinquished and after it is
regained to see whether there is a signal pending.
If there is a signal pending, then the Signal Pro-
cessor sig.c/psig is called. The Signal Processor
determines whether signals are to have the stan-
dard system action (see sig.c/psig) or are to be
handled by the user process. If the signals are to
be handled by the user, then slp.c/sleep executes
a non-local goto to return to the trap handler so
that the user’s program is entered at the proper
point. No error is posted when the system call is
aborted.

For processes that relinquish the processor at
high priority, the system does not have to worry
about a long period of time that the process
might asleep, so that it is sufficient to allow the
system call to complete and to check in the trap
handler to see if there are any signals pending.
Before making this check however, the trap
handler checks to see if any errors were posted
(in "u_error") by the system call and if a fatal er-
ror ("u_error” > = 100) has been posted, a bad
system call signal (signal 12 - SIGSYS) is sent to
the process. This will resuit in the process being
terminated if standard system action is in effect .
When a minor error occurs ("u_error” < 100) in
processing a system call, the error aumber is re-
turned by the trap handler in register r0 and the
C bit is set in the Processor Status word so that it
can be tested by the C library interface. The li-
brary function can thus determine whether an ac-
tual value is being returned or whether an error
has occurred.

The second most frequent use of the trap handler
is in resolving Sfack Violations, that is in allocat-
ing more stack space to a process. Whea the
Stack Violation occurs, the instruction that was
executing aborts. The abort only occurs at the
end of a fetch cycle, so that it can be guaranteed
that at least part of the instruction was exscuted.
The Program Counter (PC) is updated before
any fetches occur, so that it will indicate the next
location or next portion of the instruction after
the abort. (The length of an instruction depends
on the addressing modes used and the type of in-
struction; single operand, double operand, etc.
Before each portion of an instruction is fetched,

TRAPO1 - TRAP HANDLER
File: trap.c

the PC is incremented.). Determining what type
of instruction aborted and how much to adjust it
is not an easy matter since the PDP-11 possesses
several addressing modes, autoincrement and
autodecrement, which cause automatic updating
of registers.

Once it has been determined that the trap is a
Segmentation Violation and that the user’s stack
pointer is indeed beyond the area that has been
allocated to him,
whether the PC can be backed up so that the
aborted instruction can be restarted. The
mch.s/backup function backs up instruction.
This is easily done for 11/45 and 11/70
processor’s, as they possess a hardware register
{(Memory Management Status Register 2), whic

contains the amount by which any of the regis-
ters have been autoincremented or autodecre-
mented. The registers can easily be adjusted to
their old values and the instruction restarted. On
11/40 processor’s, this register is not present and
the fetch cycles of the instruction must be simu-
lated to determine which fetch caused the abort.
The autoincrement, autodecrement addressing
modes pose problems for instruction backup on
certain forms of instruction. In particular, in-
structions of the form: :

cmp -{sp),-(sp)

cannot be backed up (see mch.x/backup for de-
tails).

If the mch.s/backup routine indicates that the in-
struction can be (and has been) backed up, a
stack growth procedure may be started. The first
step in this procedure is to determine whether
adding stack space to the user’s virtual address
space will produce any address overlap or
overflow the virtual address space already allocat-
ed to the process. This is done by calling
main.c/estabur to make these checks and actually
set up an image of the new Memory Manage-
rnent registers in the U block.

The amount of stack space added each time a
stack violation occurs is 20 memory blocks (1280
bytes). Once it has been determined that there is
enough user virtual space for the addition, the
expansion can be done by calling slp.c/expand.
This function will copy the existing process (in-
cluding U block) to a new (larger by the incre-
ment) area of memory, or if not enough memory
is available, will swap the process out to an area

it is necessary to determine

PD-1C301-01
Section 23
Issue 1, January 1976

encompassing the new size. In either case, the
copy results in the addition of the new area to
the end of the physical area occupied by the pro-
cess. Since stack segments grow downward in
physical and virtual address space, the added
memory should be lower (in physical core) and
contiguous to the existing stack area. This is ac-
complished by simply copying the existing stack
to the added physical memory. (Effectively the
stack is shifted down by 1280 bytes in memory.)

The third most frequent use of the trap handler
is for bandling traps generated by executing the
SETD instruction on processor’s that do not have
the Flozting Point Processor option (ail 11/40°s).
The start off function (crt0.s) within every C
language program issues the SETD instruction.
This instruction turns on double precision float-
ing point mode. On processor’s not having
Floating Point hardware this instruction generates
an illegal instruction trap, so it must be ignored.

There is 2 Floating Point software package (fp.s)
which may be loaded with any program not pos-
sessing floating point hardware to simulate the
operation of floating point instructions. In order
to use this package the user program must use
the signal system call to direct any illegal instruc-
tion traps to the floating point package. The trap
handler sends an illegal instruction signal to the
process and calls the Signal Processor sigc/psig.
every time a floating point instruction is executed
on a processor not having floating point
hardware. The floating point interpreter will exe-
cute a BPT (which produces a BPT trap) instruc-
tion if any non-floating point illegal mstrucnons
are executed.

Execution of the IOT, EMT, and BPT instruc-
tions by user processes produce a trap and a fatal
error unless other arrangements have been made
(via signal systemgcall). Similarly, all bus errors
and unrecoverabl® Segmentation Violations pro-
duce fatal errors.

All traps occurring while the processor is in Ker-
nel mode result in a system panic. It is assumed
that the operating system is completely debugged
and cannot produce errors unless the hardware is
in trouble. When this occurs, the message

KA6 = numl
APS = num2

TRAPO! - TRAP HANDLER
File: trap.c

is printed on the system console. The quantity
numl is the contents of the Memory Manage-
ment Address Register that maps the system'’s
stack (U block - for non I & D space system
Kernel Instruction Address Register 6 is printed,
while for 1 & D space sysierns Kernel Data Ad-
dress Register 6 is printed). This is the physical
memory block (64 byte granularity), which
corresponds to the begianing of the U black (vir-
tual address 0140000 or 24K word). The second
quantity, num2, is the virtval address within the
U block of the stack frame built for the trap
bandler. The stack frame is described under
mch.s/call and contains such things as the PC
and PS at the time of the trap, the type of trap,
etc. The physical address of the start of the stack
frame can be computed as follows:

addr = KA6°0100 + APS - 0140000

The physical 18 bit address from this calculation
may be usad at the processor console to examine
the stack frame when the system crashes. The
stack frame is simply the arguments to the trap
handler (see CALL above) in order from right to
left (oldps to dev).

Once this message is printed, the processor is
placed in the WAIT state. If the continue switch
on the processor console is stepped, the message
"PANIC TRAP" is printed.

The last function performed by the trap handler
is in conjunction with penalizing processes that
use too much system time. Processes that hog
system resources are divided into two categories;
system bound and CPU bound.

CPU bound processes are identified and penal-
ized by the clock interrupt handler. System
bound processes spend most of their time exe-
cuting system calls. In order to prevent system
bound processes from monopolizing the proces-
sor, a scheme whereby the number of consecu-
tive systemn calls made by a process before it
roadblocks is kept. If a process makes seventeen
consecutive system calls before being road-
blocked, the process is preempted and it’s priori-
ty is lowzred by one point. This is a one time
penalty and the next time the process has the op-
portunity to run, its priority is restored to its nor-
mal value.

PD-1C301-01
Section 23
Issue 1, January 1976

The trap handler insures that a process’s priority
is restored to it’s user mode priority when it re-
turns to user mode execution. When a process is
awakened, it receives the (software) priority that
it roadblocked at. It is selected by the process
Switcher (slp.c/swtch) on this basis and retains
that priority until it roadblocks again or until the
process returns to User mode execution. At this
time, the priority is set to PUSER + u_nice.
PUSER is defined as a low value (100) and "u_
nice” is any user specified penalty or reward for
the process (specified via the nice system call).

trapl

CALL

trap1 (function)

int (*function) ();
RETURNS 7

No value is returned.

SYNOPSIS

Calls the appropriate entry point in the system
when a system call is made. Necessary in order
to terminate a system call to process a signal.

" DESCRIPTION

This is a dummy system call made necessary by
the way nonlocal goto’s are .executed within the
operating system. When a signal is caught before
a process roadblocks (slp.c/sleep) or just after if
is awakened, the system call is terminated prema-
turely by using the mch.s/aretu function. Execu-
tion of this function by sip.c/sleep causes the
trap.c/trapl function to appear to have returned.
(That is, control is passed to trap.c/trap.) In ord-
er to be able to execute the nonlocal goto, the
stack position of tgap.c/trapl must be saved. RS
and SP are saved in the U block in "u_gsav".
(See trap.c/lrapé for a more complete explana-
tion.) o

Bell Telephone Laboratories, Incorporated
PROGRAM SYSTEM SPECIFICATION . » PD-1C302-01

Index
Issue 1
" AT&T Co SPCS

COMMON SYSTEMS
UNIX OPERATING SYSTEM

DEVICE DRIVERS SEC.1

This index lists ihe authorized issues of the seciiens that form a part of the current issue of this
specification. ’

NUMBERS ISSUES AUTHORIZED TITLES

PD-1C302-01, Index 1 Index
Section | 1 Introduction
Section 2 1 'BIOO1 - BLOCK 1/0
Section 3 1 DCO01 - DC-11 COMMUNICATIONS INTERFACE
Section 4 1 DHO! - DH-11 COMMUNICATIONS MULTIPLEXOR
Section § 1 DHDM - DHDM MODEM CONTROL INTERFACE

1

Section 6 DHFDM - DHFDM NULL MODEM CONTROL IN-
TERFACE

Section 7 1 DNO1 - DN-11 ACU INTERFACE

Section 8 1 DPO1 - DP-11 201 SYNCHRONOQUS INTERFACE

Section 9 1 HPO! - RP04 MOVING HEAD DISK INTERFACE

Section 10 1 HSO1 - RS03/04 INTERFACE -

Section 11 1 HTO! - TU16 MAGNETIC TAPE INTERFACE

Section 12 1 KLO1 - KL-11 OR DL-11 ASYNCHRONOUS INTER-
FACE

Section 13 1 LPO1 - LINE PRINTER INTERFACE

At

ISSUE1 1/30/76

THE CONTENT OF THIS MATERIAL IS PROPRIETARY AND CONSTITUTES A TRADE SECRET. IT IS
FURNISHED PURSUANT TO WRITTEN AGREEMENTS OR INSTRUCTIONS LISTING THE EXTENT OF
DISCLOSURE. ITS FURTHER DISCLOSURE WITHOUT THE WRITTEN PERMISSION OF WESTERN
ELECTRIC COMPANY, INCORPORATED, IS PROHIBITED.

Printed in U.S.A.

INTRODUCTION _ PD-1C302-01
Section 1
Issue 1, January 1976

1. GENERAL S reduced by 1 if there was an error, and in
This document describes functions contained in lec:::’;i::l success or failure, the inode is un-
pidents from PR-1C302-01 as follows: ’ i

D. Error processing that reflects errors back to

B100! BLOCK I/ D .
the user are set in the per user control
Dcoi FD.E.C-ZIEI COMMUNICATIONS INTER- block error flag (u.u_error). These error
. conditions can be referenced by the user
DHOI ?{ELEEOMMUNICATIONS MULTI- program through the external variable =

‘errno®. (See Section 2 of Programer’s

DHDMOL = DHDM MODEM CTL INTERFACE Manual for list of error conditions.)

DHFDMO! DHFDM NULL MODEM CTL INTER-

FACE E. If 17O processing is to be done on a device,
DNOI DN-11 ACU INTERFACE the particular driver for that device must be
DPO1 DP-11 201 SYNCHRONOUS called. Devices are known by mzjor and
INTERFACE minor numbers stored in an inode.
HPO1 F;_ggé\;a\é?(} HEAD DISK - The system calls the particular device driver

indirectly through the major device

HS01 RS03/04 INTERFACE _ .
HTO1 TU16 MAGNETIC TAPE INTER- nu‘mt;ler. b? blockdsngtch table and character 2
FACE iwuc g ta e-?;e e ged :: §ystem ggnerg-)
ion time. ¢ major device number is ¢
KLOI &l,‘_l:;s;gicgl"“ ASYNCHRONOUS used as a displacement into this table and
LPO1 LINE PRINTER INTERFACE the appropriate routine is called. For exam-

ple, the code:) 4

(*bdevswimajl.d_close)

2. PROGRAM CONVYENTIONS

will call the close entry point for the driver

A. System calls are made with the first argu- associated mith major device "maj".
ment in register RO. When the system call
is made, the contents of register RO are -

moved to the per user control block
(user.h) in the variable called u.u_RO. The
remaining arguments of a system call are
moved into the per user control block array -
u.u_arg (this means u.u_arg(0] is the .
second argument). : - :

B. Arguments or results of executing some
fuactions are often left behind in the per
user control block. For = example,
nami.c/namei decodes a pathname into an
inode pointer. In the process, a pointer to
the inode of the parent directory is left in
u.u_pdir. This means it is eady to make a
directory entry for a file since the inode for
the directory is available. (See the docu-
mented header user.h in PR-1C301.)

C. Inodes are always locked during manipula-
tions to prevent simultaneous update by
two processes. The procedure is to always
lock and increment the usage count of an
inode even if it turns out that a user does
not have access to that file. At the end of
processing of the inode, the usage count is

Ao

B1061 - BLOCK 1/0
File: bio.c

bawrite

CALL
bawrite(bp)
struct buf *bp;

RETURNS
No value is returned.

SYNOPSIS

Performs an asynchronous write to & block dev-
ice.

DESCRIPTION

Most write operations to a block device under
UNIX are either delayed or performed asynchro-
nously. This means that a process miay not ex-
perience any of the latency time or transfer time
associated with outputting to a device. Only de-
lay time due to scarcity of available system
buffers will be experienced. In addition, per-
forming the write asynchroncusly allows
efficiency gains when multipie references to the
same block occur. Bio.c/bawrite write sets up an
asynchronous write for one 512 byte block.s The
process requesting the write does not wait for
completion.

When bio.c/bawrite is called, the block to be
written has already been moved to the appropri-
ate device queue by a higher level function so
that no allocation of a buffer to a device queue is
needed as for reads. The device strategy routine
(rp.c/rpstrategy, rf.c/rfstrategy, etc.) is called to
queue the block for 1/O by bio.c/bawrite. Errors

detected by the strategy routine are posted (in -

"u_error”) by calling bio.c/geterror. Bio.c/bawrite
uses common code from bio.c/bwrite to call the
strategy routine and report any errors.

When 1/0 is completed, the block will be re-

turned to the queue of available blocks on the
freelist (by the higher level routine calling
bio.c/brelse), however, it will also remain linked
to the device queue so that any future reference
to that block (by bio.c/getblk) will find it in the
system.

~

PD-1C302-01
Section 2
Issue 1, January 1976

bdwrife

CALL

bdwrite (bp)
struct buf *bp;

RETURNS
No value is returned.

SYNOPSIS
Performs a delayed write to a block device.

DESCRIPTION

Most write operations need not be done immedi-
ately. It is convenient in most -cases to merely
return a buffer that is to be written onto a block
device to the pool of free buffers ("bfreelist”) un-
til some mare convenient tinie to write it out. In
this way, a subsequent read or write request
which required data within that block will find
the data within the system and extraneous opera-
tions can be eliminated. The buffer, however,
must be marked ("b_flags") with an indicator
(B_DELWRI), so that if free buffers are required
by other processes, the block will be written out
(asynchronously by bio.c/bawrite) and andther
chosen. The delayed write block would then be
returned to the free queue but would not be a
candidate for reallocation. ‘

The buffer that is to be written will thus experi-
ence the following movements:

1. The buffer will be allocated to a device queue
by some higher level function using
bio.c/getblk. This means a buffer is removed
from the [reelist and placed on the device’s
queue. (The block may already be in the sys-
tem so that there would be no need for allo-
cation.)

The data is théﬁ copied into the buffer by the
higher level gputine.

When the delayed write is issued, the buffer
is marked (B_DELWRI in "b_flags") and
placed at the end of the queue of available
blocks on the freelist. The buffer is still,
however, linked on the device queue.

The block will linger on the freelist until
another request for that block is made (by
bio.c/getblk) or until a free buffer is needed.
If a buffer is on the free list long enough to
reach the head of the free queue, and free
buffers are needed, an asynchronous write
(bio.c/bawrite) is issued for the delayed write

BiQ0t - BLOCK 1/0
File: bio.c

block and the next available block is chosan.
The asynchronous write will result in the
buffer being unlinked from the free list and
placed on the device’s I/Q queue until the
write is completed.

§5. When the write is completed, the buffer is re-
turned to the end of the free list, however, it
is still linked to the device queue so that if
that block is referenced by some process, the
block will be found in the system.

6. The block will linger on the available list as in
3 until either another free buffer is needed
and the buffer has reached the head of the
free list or until some other process requests
the data in that buffer.
needed, the buffer no longer must be written
out so that it can be allocated to the requester
as a free buffer. Only at this time does the
block disappear from the device queue.

7. In order to prevent very active devices on

the system from accumulating a large number

of delayed write blocks, the sys3.¢/sync func-

tion causes all___ delayed write blocks to be
written out at least at the frequency that the
UPDATE process runs (in multi-user every
30 seconds). This also minimizes discrepan-
cies between in memory data and device data
if the system crashes.

Since magnetic tape is a sequential medium, de-
layed writes must be disallowed as blocks must
be written sequentially and allowing blocks to ac-
cumulate on the freelist as delayed write blocks
runs the risk of disturbing the order in which the
blocks reach the magnetic tape. Delayed writes
are, however, allowed for DEC Tape (TCl11)
since it is really a random access device even
though it is a sequential medium. This makes it
necessary to flush out delayed write blocks when
the DEC Tape is closed (tc.c/tcclose). (This is
done by calling bio.c/bdwrite from bio.c/bflush.)

If a free buffer is.

- PD-1C302-01
, Section 2
o Issue 1, January 1976
bflush
CALL
bflush(device)
RETURNS
No value is returned.
SYNOPFSIS

Flushes write behind blocks out of the I/O sub-
system for a particular device or for all devices.

DESCRIPTION

The inertia built into the block 1/0 subsystem by
use of the write behind feature (delayed writa -
see bio.c/bdwrite) allows a number of redundant
I/0 operations on- the same block to be eliminat-
ed. . This is done by allowing write behind blocks
to be returned to the system’s available buffer
queue until a later-time when they are written
out. This could, however, produce probiems if
the system crashes, as those blocks would not be
updated since they were allowed to lie in the /O
subsystem. To flush these write behind blocks
out of the /O subsystem, the bio.c/bflush func-
tion is «called by the the UPDATE
(alloc.c/update) process once every 30 seconds.
The delayed write blocks are written out (by
bio.c/bflush) asynchronously (see bio.c/bawrite).

When each dealyed write buffer is written, it is
temporarily removed (bio€/notavail) from the
available list and made busy (B_BUSY in "b_
flags"). It is returned to the end of the available
list once the write has been completed. Since the
block is returned to the available list and its link-
age on the device queue ("b_forw”, "b_back” on
"devtab") is undisturbed, the block still appears
on the device queue. The only difference is that
it has been assured that the block has been up-
dated on the blogk device.

Detaching any filesystem or closing a DEC Tape
(the TC1l1 # a random access device even
though it is a sequential media) requires that all

* write behind blocks for that device be flushed

out. Bio.c/bflush is called by both
sys3.c/sumount and tc.c/tcclose.

If bio.c/bflush is called with "device” number
NODEV (-1) then the write behind blocks asso-
ciated with devices are flushed out, otherwise
only those write behind blocks associated with
"device” are flushed out. The UPDATE process
calls bio.c/bflush with NODEV as an argument.
Since the available queue of buffers ("bfraelist®)

BIOO1 - BLOCK /0
File: bio.c

is examined to find delayed write biocks and this
queue is the one from which all allocation and
deallocation of buffers occurs, the processor’s
priority must be raised to 6 to prevent interrupts
from changing the status of buffers or altering
linkages.

binit

CALL

binit()

RETURNS

No value is returned.

SYNOPSIS

Initializes the block device buffers and deter-
mines the number of block devices on the sys-
tem.

DESCRIPTION

UNIX possesses a2 pool of 512 byte buffers

("buffers”) which ere used for buffering reads or
writes from any device or can be used by the
system for holding any data and whose size does
not exceed 512 bytes. Associated with each
block device is a device queue ("devtab"), which
links together all of the blocks that have current-
ly been read or written from that device. There
is also a queue of available buffers ("bfreelist”)
which chain buffers together. The linkages on
the device queue ("devtab") and available queue
are arraniged so that a buffer may appear on both
queues at the same time.

Each buffer has a header ("buf") which contains
linkages, byte count information, status flags,and
a pointer to an associated 512 byte buffer. A
buffer header ("bfreelist”) which has no associat-
ed buffer is used as the anchor linking together
all available buffers in a ring. Al buffer headers
contain two pairs of pointers; "av_forw", "av_
back" and "b_forw", "b_back”. Each pair contains
a forward and backward pointer so that in search-
ing through the list, neighboring buffers on any
queue may be found immediately. One pair of
pointers ("av_forw" "av_back”) is used to link to-
gether a ring anchored by "bfreelist” containing
all of the buffers that are currently available for
allocation. The second pair of pointers ("b_forw"
and "b_back”) are used to link the buffer onto a
device queue. “Bfreelist” also uses these pointers
so that it may act as a device queue. This queue

- is used for linking together blocks which are allo-

PD-1C302-01
Section 2
Issue 1, January 1976

cated for some purpose other than device I/0
and for which it is undesirable to have them as-
sociated with a device.

The device queue also has two pairs of pointers
but uses them for different purposes. The frst
pair ("b_forw”, "b_back") are used to link togeth-
er all buffers that have been used or are being
used for 170 to the device. This queue is also ar-
ranged as a ring with "devtab” as anchor. The
second pair of pointers ("d_actf", "d_actl") are
used to order buffers that are currently queued to
be read or written. The arrangement here varies
with the device but is usually a single thread
ciiain ordered according to the strategy used to
access that device (First Come First Served -
FCFS, SCAN, SSTF, etc.).

A block may appear on both the available list and
the "b_forw", "b_back” list of the device (since
the block, though available for use by other
processes was last accessed from the device).
This allows the elimination of many 1/0 opera-
tions since the desired block may be found on
the device queue. ' '

Initializing the block device buffers is done by
setting up the pointers in the buffer headers and
allocating each buffer to the free list. The algor-
ithm used by bio.c/binit is essentially as follows.

_First, a ring with no buffers is created with

"bfreelist” as its sole member by initializing all of
its pointers to itself. " Thereafter, a buffer is allo-
cated to this queue (by calling bio.c/brelse) and
header information is added to each buffer.
Coincident with this, each buffer is allocated to
the null device queue ("b_forw", "b_back"
pointers in “bfreeelist”) so that the "b_forw" and
"b_back” pointers are initialized. The process is
repeated for each of the system buffers. The
header informati? that is initialized is as fol-
lows: :

The "b_dev" entry must be set up so that no
buffer starts out as associated with any device
("b_dev" = -1).

- The buffers ("buffers”) are allocated separately
from the buffer headers("buf{]”) so that a
pointer ("b_addr®) in the buffer header must be
set to point to the address of the buffer. Buffer
headers and buffers are allocated as an array

- and buffer header i ("buf[i]") is associated with
buffer i ("buffers(i]”). The reason that the
headers are not allocated as part of the buffer
is so that physical I/O may be interfaced to the

-

BiOQ01 - BLOCK 1/0
File: bio.c

block I/Q subsystem by simply using a special
buffer header which points to the data in the
user’s process. Alsa, when debugging a core
dump, all of the information about buffer
status can be obtained by dumping the headers
without the necessity of dumping buffers.

The buffer must be marked ("b_flags") busy
(B_BUSY) until all of the linkages have been
properly set up. Bio.c/brelse will reset the busy
flag once the available pointers "av_forw", "av_
back” have been set up.

Another function performed at initialization time
is to determine how many block devices there
are on the system so that major device numbers
may be checked by higher level function. Table
("bdevsw") contains a 4 word entry for each dev-
ice on the system and one blank (zero) entry fol-
lowing zll of these entries to indicate the end of
the table. Bio.c/binit scans the table looking for
the first zero entry, counting each entry as it
scans. The total number of block devices is load-
ed in an external variable ("nblkdev").

bread

CALL
bread(dev,blkno)

RETURNS
A pointer to a buffer containing the block "bilkno”

is returned. (Actually, a pointer to the buffer
header is returned.)
SYNOPSIS

Performs a synchronous 512 byte read of a block
device. :

DESCRIPTION

Since a program cannot operate on data until it is
available, only synchronous reads are used under
UNIX (i.e., any higher level request for a block
is forced to roadblock until the data is availagle).
A certain amount of inertia is built into the block
1/G buffering scheme so that there is a possibility
that the desired block "blkno” may already be in
one of the system’s buffers. This is more likely
to be true if a process is attempting to read data
in 512 byte chunks. If the block is in the sys-
tem it can be grabbed before it leaves the system
thus saving a read operation. A new buffer can
be allocated from the pool of free buffers
("bireelist™) if the block is not already in the sys-
tem. All reads result in a request for 512 bytes

PD-1C302-01
Secticn 2
Issue 1, January 1976

of data, even though the higher level function
calling for the read may only need a small por-
tion of this data. The buffer is set vp for a 512
byte read (the word count "b_wcount” is set to -
256) and the buffer is marked for a read (B_
BREAD set in "b_flags"). In both cases, the
buffer is marked ("b_flags") as busy (B_BUSY)
for the period of time that the read is scheduled
to take place and/or while the data is required for
use by a process.

If the block must be read, the buffer is placed on
the appropriate block device queue by calling the
device strategy routine. The argument “device"
indicates the major device number so that the
proper device strategy routine may be selected
from the Block Device Switch Table ("d_strategy”
in "bdevsw"). There is no possibility of a refer-
ence to the table being out of bounds since the
major device number was checked at higher lev-
els of software (against "nblkdev”). The process
that requested the read is roadblocked until the
read, has completed by calling bio.c/iowait.
When the read is complete,d the device interrupt
handler will mark the buffer as having been flled
by setting the done indicator (B_DONE) in the
"b_flags" entry of the buffer. Aay errors occur-
ring in the read will be reported by the device in-
terrupt handler. P .

breada

CALL
breada(device,blkno,rablkno) .

RETURNS
A pointer to a buffer containing the block "blkno”

is returned. (Agtually, a pointer to a buffer
header is returned.)

synoesis ¥

Performs read ahead on "device”.

DESCRIPTION

Read ahead is a technique whereby an attempt is
made to anticipate where the next read request
on a device will be and to preread that data. In
this manner, the program requesting the read will
not be subjected to positional and rotational la-
tency or device queuing, if read ahead is com-
pleted before the next block is requested. There
are different stratzgies that can be used for-daing
read ahead. Oun UNIX, all reads (not including
physical 1/0) result in a full 512 byte block being

-

%

£ R

~ BIOO1 - BLOCK 1/0

File: bio.c

read from the device. Smaller amounts of data
could be read if a program requested it, however,
since disks transfer times are small in comparison
to positional and rotational latency times, any ex-
tra transfer is inconsequential. Also, most DEC
disks are designed around a 512 byte sector and
while fewer than 512 bytes may be specified, the
disk controller is busy until a full sector has been
transferred. By reading the full 512 bytes, any
subsequent read or write which references data
within that block will not have to be read (if the
block does not leave the system). Besides the
advantage gained by reading a minimum of 512
bytes instead of the desired quantities, the next
block is anticipated and read under certain condi-
tions. Thus, one request will spawn several read

- requests to bring data into the system. A

routine for finding a block that is already in
memory (bio.c/incore) must be available to
determine whether any reads need be done and
the read ahead strategy must be capable of deter-
mining when read ahead should be discontinued
so that superfluous reads are not generated.

The strategy adopted under UNIX is to pursue
read ahead as long as a process is reading (512
byte blocks) sequentially through a file or a dev-
ice. When the first non sequential read is re-
quested, read ahead is discontinued and is not
restarted until sequential accesses begin again.

Bio.c/breada carries out the read ahead opera-
tion. Starting and stopping read ahead and deter-
mining which block number in a file or on a dev-
ice is the read ahead block ("rablkno”) is done by
the higher level function rdwri.c/readi.

In implementing the read ahead strategy,
bio.c/breada makes use of bio.c/incore to deter-
mine whether a block is already in memory. For
the desired biock "blkno", the bio.c/breada func-
tion behaves exactly like bio.c/bread. That is, a
synchronous read is performed and the process
requesting the read is roadblocked until it is com-
pleted. Since the desired block may already be
within system, bio.c/incore is called to look for
that block among the buffers on the freelist
("bfreelist™). If the block is already in memory,
bio.c/bread is called to get the buffer. If the
desired biock has not already been read by a pre-
vious read operation then bio.c/getblk is called
to see if the biock is possibly on a device queue
waiting for its turn to be read. If that is not the
case. a buffer is allocated for the read and the
appropriate device strategy routine is called.

PD-1C302-01
Section 2
Issue 1, January 1976

Bio.c/breada does not wait (yet) for the read to
complete. Rather, it goes through a similar
operation for the read ahead block “rablkno”.
Bio.c/incore is called to search the free list of
buffers ("bfreelist”) to see if the block was read
in a previous read operation. Nothing will be
done, of course, if the read ahead block is in
memory. If it is not in memory, bio.c/getblk is
called to search the device queue for it or to allo-
cate a block so that it may be read. The device
strategy module is called to read the read ahead
block, however, the buffer will be marked (B_
ASYNC in "b_flags") so that when the read com-
pletes thie buffer is returned to the pool of avail-
able buffers. Bio.c/breada then waits for the
read of the the ‘desired block to complete. It
does not wait for the read ahead block.

- An external variable "raflg” is available for tum-

ing off all read ahead on aildevices. "Raflg" is in-
itialized to one, however, by changing it to zero
read ahead is eliminated. As with bio.c/bread
any error detection is done as a result of the in-
terrupt handler indicating an error to bio.c/incore
and a system error (in "u_error") being posted.
These errors are of no concern to bio.c/breada or
bio.c/bread and are used only at higher levels of
software to return errors to the user.

s

brelse

CALL

brelse(bp)
struct buf *bp;

RETURNS
No value is returned.

SYNOPSIS

Releases a buffef to the queue of available
buffers on the freelist ("bfreelist").

DESCRIPTION

This function takes the buffer "bp” and places it
on the queue ("devtab") of available buffers. Nei-
ther the data in the buffer nor it’s linkage to the
device queue are destroyed, however, so that the
block appears on both queues. (The available
queue “bfreelist” and the queue it was released
from, "devtab”.) In this way, the block appears as
available for allocation, yet it retains the identity
of the data that resides in the buffer. It is this
fact that allows subsequent references to the

/

block to eliminate unnecessary 1/O operations.

BIO01 - BLOCK 1/0
File: bio.c

The “av_forw" and "av_back® pointers in the
buffer headers link together available blocks on
the freelist ("bfreelist”). By simply inserting the
buffer "bp" at the end of the freelist (it will be-
corne the last block on the "av_forw" chain) it be-
comes an available buffer. Changing buffer link-
ages must not be interrupted sc that the
processor’s priority is raised to 6 to lock out in-
terrupts from all block devices.

Several conditions must be checked before a
block is released to the available list.

1. A check must be made to see if there is a re-
quest for this block by some other process
(B_WANTED set in "b_fiags"). The B_
WANTED flag is set if a process requests a
block when it is busy (B_BUSY set in "b_
flags"). The busy flag is set when a buffer is
found or ailocated by bioc.c/getblk and is not
reset until the buffer is released
(bio.c/brelse). Thus, any reference to the
block while it is busy will result in the wantad
flag being set in the buffer and the process
that references the busy block being road-
blocked. It is the duty of bio.c/brelse to
awaken all processes that are waiting for this
buffer (by calling slp.c/wakeup).

2. If the available queue of buffers on the freel-
ist is empty, then bio.c/breise must notify
bio.c/getblk that one buffer is now available.
(Bio.c/getbik will roadblock any process that
requires a buffer if there are none available.)

3. If the buffer being released was never read or
written properly (B_ERROR set in "b_flags")
then in order to prevent any other process
from finding the buffer containing bad data
the minor device number ("d_minor") of the
device number ("b_dev") is destroyed (set to
-1 to destroy any associativity). The buffer
will still be handled as any other block, that
is, it will appear on two queues, but the dev-
ice number which is checked by bio.c/getbik
is destroyed so that even though the block is
still on the device queue it will not be recog-
nized. It can, however, be allocated as a free
buffer.

PD-1C302-01
Section 2
Issue 1, January 1976

hwrite

CALL

bwrite (bp)
struct buf *bp;

RETURNS
No value is returned.

SYNOPFSIS

Performs a synchronous 512 byte write on a
block device.

DESCRIPTION

Most write operations in the block I/O subsystem
are performed asynchronously, however, there
are several operations (updating superblocks, up-
dating i-nodes, updating freelists, etc.) which
caninot be delayed. Functions within the system
that require writes have already allocated a
buffer (by calling bio.c/getblk) so that there is no
need to pass a device number to bio.c/bwrite as
is done with the read functions. The device
number is already set in the buffer header ("b_
dev") so that bio.c/bwrite need only set the write
flag in the buffer header ("b_flags") and queue
the buffer on the device for writing by calling the
device strategy routine. (Actually, since a buffer
may be used only for reading or writing, the ab-
sence of the read flag, B_READ, indicates that a
write is to be performed.) “Since the write is to be
performed synchronously, the process requesting
the write is roadblocked until the write is com-
pleted.

Bio.c/bwrite provides common code for
bio.c/bdwrite and bio.c/bdwrite, however, they
will be discussed under their respective functions.

clrbuf
CALL &
cirbuf(bp)
struct buf *bp;
RETURNS

No value is returned.

'SYNOPSIS

Zeros a 512 byte system buffer.

Ve

B1001 - BLOCK 1/0
File: bio.c

DESCRIPTION .

Clearing a buffer of its contents is really a service
provided to higher level functions and is not
used by any of the functions in bio.c. It is used
by the magnetic tape strategy routine to pad out a
block with zeros if a block smaller than 512 bytes
is to be written. It is also used every time a
- block is allocated to a file in the file system. This
is done so that there is no old data residing in a
file if the file’s length is not a multiple of 512
bytes.

devstarti

CALL

devstart(bp,devloe,devblk,hbcom)
struct buf *bp;
int *devloc;

RETURNS
No value is returned.

SYNOPSIS)
Loads a block device controller’s registers to ini-
tiate a transfer.

DESCRIPTION
Since the controller registers on most block dev-

ices manufactured by Digital Equipment Corpora-

tion have the same form and relative positioning,

a common routine may be used to load the dev- -

ice registers. The new PDP-11 common controll-
er RH11 has a slightly different format so that a
comparable routine rh.c/rhstart is used for these
devices.

The parameters passed and the register which the
are loaded are:

1. "bp” - This is the address of the buffer header
which contains information about the buffer
to be written. The header contains location,
word count, memory extension, device
number, operation, etc.

2. "devloc” - This is an address in the device
controiler. It is the Unibus address of the
cylinder (or possibly sector) register of the
controller. Only controllers which have the
following four registers in the following order
may use bio.c/devstart.)

PD-1C302-01
Section 2
Issue 1, January 1976

Command and status
Word Count

Bus Address

Cylinder, Sector or Track Address Regis-
ter.

3. "devblk" - This is either the Cylinder, Sector
or Track to be loaded into register 2d above.
This value is computed by the device startup
routine (rp.c/rpstart, rk.c/rkstart, etc.).

an = p

4. "hbcom™ - This is a flag indicating whether a
read or a write is to be issued to the controll-
er. The Command and Status Register is the
last register to be loaded as it actually initiates
the transfer. '

Bio.c/devstart is called by block device start
routines (rp.c/rpstart, rf.c/rfstart, etc.).

getblk

CALL
getbik(device, blkno)

RETURNS

Returns a pointer to a system buffer. If a device
number that is out of range is passed to getblk, a
system panic will occur ("PANIC BLKDEV").

SYNOPSIS

Determines whether a given block from a device
is already in the system and if not, allocates a
buffer. :

DESCRIPTION

Bio.c/getblk is used by any function within the
system that must do, 512 byte I/0. It retrieves
the desired block if it is already within the system
or allocates a freslf buffer if it is not within the
system. With the linkage setup as described
under bio.c/binit, a block remains associated with

- the device that it was last used for even though

it has been returned to the available queve. In
this way, the presence of a buffer which had pre-
viously been read or written may be detected and
unnecessary /O eliminated. In addition, write
behind operations (see bio.c/bdwrite) actually
return buffers to the available list without being
writtenn. This is done in the hope that the block
will be accessed soon afterwards, so that several
writes to the same block will result in only one
transfer to the device. Write behind blocks can-
not be allowed to lie in the /0 subsystem forev-

- 10 -

" B1001 - BLOCK 1/0
File: bio.c

the buffer will remain busy until after the process
has finished using the data. When the buffer is
released (bio.c/brelse) any other processes re-
quiring the data in that buffer will be notified
(via slp.c/wakeup). In order to prevent a redun-
dant wakeup being issued by bio.c/brelse when
busy bufers are released, bio.c/iodone resets the
B_WANTED bit before issuing a wakeup. For
asynchronous [/0, the buffers are released .im-
mediately by calling bio.c/brelse, so this is not 3
problem.

iowait
CALL

iowait(bp)
struct buf *bp;

RETURNS

No wvalue is explicitly returned, however,
bio.c/iowait does cause any [/O errors to be post-
ed ("u_error").

SYNOPSIS

Roadblocks a process until the block "bp" has
been read or written.

DESCRIPTION

All synchronous reads or writes must wait for
1/0 to complete. Waiting for [/O to complete is
done by the higher level routines (bio.c/bread,
bio.c/breada, bio.c/bwrite) calling bio.c/iowait to
rcadblock the process requesting the read or
write until the I/0 is completed. The process is
roadblocked at priority PBIO (-50) to decrease its
likelihood of being swapped. The process is

roadblocked until the B_DONE bit in the "b_

flags” entry of the buffer is set by the interrupt
handler. If the I/Q cannot be completed by the

device driver, the B_DONE bit and the B_.

ERROR bit in "b_flags” is set by the device inter-
rupt handler. Bio.c/iodone is called to set the
completion flag (B_DONE) but the interrupt
handler sets the error indication (B_ERROR) it-
self. Bio.c/iodone sends a wakeup to all
processes waiting (in the bio.c/iowait function)
for the buffer. When a process that is waiting for
the buffer is awakened, bio.c/iowait will find the
B_DONE bit set and will call bio.c/geterror to
post (in "u_error") any error that may have oc-
curred.

PD-1C302-01
Section 2
Issue 1, January 1976

physio
CALL
physio(strategy, bp, device, rdflg)

struct buf *bp;
int (*strategy) ();

RETURNS

No value is explicitly returned, however, if an er-
ror occurs it is posted ("u_error”).

SYNOPSIS

Performs address mapping and checking for phy-
sical 1/0.

DESCRIPTION

Physical unbuffered I/O is the only means by
which 1/0 can be done. There are a number of
advantages and disadvantages to using physical
/0.

1. In addition to no filesystem mapping being
performed, the [/O is unbuffered. This
means that the data is read or written directly
from the user’s address space. To allow this
two things must be done.

a. The start address and end address of the
user’s buffer area must be checked to see
that it lies within the yser’s virtual address
space. For normal buffered I/O this need
not be done. The rdwri.c/iomove function
catches any memory violations when copy-
ing data from a user’s process into one of
the system'’s buffers.

b. The bio.c/physio function has no idea as
to which block devices are word orientad
so that transfers must specify an even
number of bytes.

2. Since the 120 occurs directly from the user’s
program, tKat program must be locked in
core.

3. Since I/0 occurs directly to or from a user
program, all of the advantages of read ahead
and write behind are lost to a program doing
physical I/0. This means that all of the laten-
cy (positional and rotational) to perform the
I/0 will be experienced by processes doing
physical [70. While it is true that none of the
overhead of copying data from the user’s pro-
gram to a system buffer is encountered, this is
a small amount of time in comparison with
the average positional or even the average ro-
tational latency of the secondary storage dev-

B

f cnaens: Nt TSN

* ey 5 manat [e——

-11-

BI1001 - BLOCK 1/0
File: bio.c

ices that are currently available. There is a
point at which physical 1/0 will give more
throughput to a device than buffered UNIX
{70, however, this point varies with the speed
of the processor (11/40, 11/45, 11/70) and
the average rotational latencies of the devices
(RK11, RF11, RS04, KP03, RP04, etc.). Ad-
ditiona! positional delays on spiral reads may

also effect the crossover point on the smaller

devices (RK11).

4. Physical 1/0 like swap I/O uses a special
buffer header for each device ("rptab”,
*rkiab", etc.). Since there is only one of these
headers per (major) device, only one physical

/O operation to each .controller at a time can .

be queued. (Most controllers are busy - i.e.
not available while read or write operations
are occurring.)

With the above background in mind the opera-
tion of bio.c/physio will be described.

When any /0 operation is requested, a common
function sys2.c/rdwr is called to determine what
the target file(i-node) is. There are three other
quantities which can be determined by
sys2.c/rdwr.

1. The current position in the file. This may be
found in the "f_offset{]” entry in the File
Table and is transferred to the "u_offset(]" en-
try in the U block to avoid repeated indirect
addressing when referencing it.

2. The virtual address (in user space) where the
transfer is to begin can be obtained from the
second argument of the read or write system
call. This is a byte address and is placed in
“u_base” for convenience.

3. The number of bytes to be transferred can be
obtained from the third argument of the read
or write system call. This byte count is placed
in "u_count”. With the values in "u_base" and
"u_count”, the virtual area from or to which
I/0 is to be directed is defined.

Since all block device controllers work from phy-
sical addresses instead of virtual addresses, it is
necessary to relocate "u_base”. (For regular 512
byte UNIX [/0, relocation need not be per-
formed because the system buffers have the same
physical and virtual addresses.) Since the operat-
ing system assigns physical space to a process
when it is created and since a process may only
initiate /0O on data within its own address space

PD-1C302-01
Section 2
Issue 1, January 1976

and there are no holes in physical memory (that
is, it is contiguous from beginning to end)
Bio.c/physio need not check to see that the buffer
area is beyond the limits of physical memory. It
is sufficient to insure that the buffer is within the
virtual address space of the user’s process.

One additional restriction is placed on the user’s
buffer. The buffer must not be within the text
area of the user’s process. It may only be within
the dats or bss area of the user’s process. This is
done because requesting a physical write into the
text area of a reentrant program would cause a

‘Segmentation Violation by the controller. (The

ability of a program to write it’s own text out is
also lost.) No equivalent restriction exists for
rcgular 512 byte UNIX 1/0, so that a program
may read or write into it’s own text area.(If the
prgram is reentrant, requesting a write into the
text area will result in a Segmentation Violation
since reentrant text is write protected by the sys-
tem. The rdwri.c/iomove function would detect
this when the system buffer was copied into the
write protected text.) At present, when user pro-
grams are separated into I and D space areas,
the issue of reading or writing the text area will
become superfluous.

Checking whether the buffer is within the data,
stack or text area can be done by checking the
quantities “u_dsize”, "u_ssize” and - "u_tsize".
These are the size of the text, data and bss area
in memory blocks (64 bytes). In order to do the
checking, bio.c/physio must know how the text,
data and stack areas are loaded (by
main.c/estabur) in the systemn. The text area is
loaded in the low physical (and virtual address
space), followed by the data (and bss) area. The
stack area is allocated (physically) directly below
the data area (h ywever, in virtual address terms
the stack is in the high virtual address area).
The checks that are made are:

1. A check is made to see that the user’s buffer
begins on an even address boundary and that
the byte count specifies an even number of
bytes (i.e., ends on a word boundary). This
done is because most block devices cannot
transfer an odd number of bytes or feich from
an odd address.

BI0O01 - BLOCK 1/0
File: bio.c

2. A check is made to see that the buffer does
not extend beyond the limits of the virtual
address space of the program. This is done by
checking to see that the address of the end of
the buffer ("u_base” + "u_count®) is greater
than the address of the beginning of the
buffer ("u_base”).

A check is also made to sze that the buffer is
not within the text area. This is done by exa-
mining the address of the user’s buffer ("u_
base”) to see if it is beyond the last address in
the text area ("u_tsize”). Before this check
can be made, the "u_tsize" address must be
rounded up to the nearest 4K virtual memory
address. This is due to the way virtual ad-
dress space is allocated by main.c/estabur and
the way programs are loaded by the UNIX
loader. This address is compared with the
starting address of the buffer "u_base” to see
if the buffer begins within the (adjusted) vir-
tual address space of the text.

3. Another check tests to see that the transfer
does not span the virtual address gap between
the end of the data area.and the beginning of
the stack area. This is done by determining
whether the end of the buffer is within the
data area of the program (the start of the
buffer was checked above) or the start of the
butfer is within the stack area (extending
beyond the virtual address space of the pro-
gram was checked in 2).

With the above checks made, it can be
guaranteed that the /O will not abort due to ad-
dressing errors unless there is a genuine
hardware problem. (The I/O may also abort due
to an illegal disk address specified - i.e., "u_
offset(]”.) .

After the above. checks have been made, the
buffer header can be set up for the transfer.
Since there is only one buffer header per major
device, use of this buffer is restricted to one pro-
cess at a time. To accomplish this, access to the
physical buffer header is restricted so that only
one process can do I/0 to a particular device at a

time. This is achieved by setting the busy (B_’

BUSY) flag in the "b_flags" entry of the buffer
header when a process enters the address compu-
tation part of bio.c/physio. The busy flag is reset
by bio.c/physio only after the /O has been com-
pleted. (The device interrupt handler will indicate
the completion of 1/O by setting the B_DONE

PD-1C302-01
Section 2
Issue 1, January 1976

flag.

Any processes which tries to do physical I/0 to a
device on which physical I/O is already being
done (B_BUSY set) is roadblocked and the want-
ed flag (B_WANTED) is set in the header.
When the process doing physical I/0 on the dev-
ice has finished using the buffer header all
processes waiting to do physical I/0 on that dev-
ice are awakened and the B_WANTED and B_
BUSY flags are reset. (Under physical I/0, there
is no need to copy the data into the user’s ad-
dress space as for normal I/O, so the buffer
header is busy only as long as it takes to set up
and do the 1/0.)

Setting up the physical /O buffer header is done
in a manner similar to that of bio.c/getblk for
buffered /O The chief difference is that memory
extension bits must be calculated and the virtual
address specified in the read must be relocated to
a physical address. The physical address is detar-
mined by consulting the User Memory Manage-
ment registers and determining what physical
area of memory is currently mapped by the virtu-
al addresses and adjusting the buffer address ap-
propriately. The quantities that are set in the
buffer header are:

"b_addr® is set to the. physical address
corresponding to the start of the user’s
buffer.

"b_flags" is set up to contain any memory exten-
sion bits, to indicate that the buffer header is
busy (B_BUSY) and to indicate whether a
read or write (the argument "rdflg") is to be
performed.

"b_blkno" is set to the block on the device where
the transfer is to start. This means that
reads or wyites are restricted to begin on 512
byte boun%Baries on the device (on record
boundaries for magnetic tape). Requesting
information that does not begin on a 512
byte boundary results in the read or write
starting at the nearest 512 byte boundary
anyway.

"b_wcount” is set to the word count for the
transfer. This has implications for use on
certain block devices(all disks) as transfers
that involve transfers smaller than a sector
size (sector sizes vary among disks from the
word addressable RF11 to the 512 byte
larger disks RP03, RK11, RP04, etc.). On

-13-

BI1O01 - BLOCK /O
File: bio.c

these devices, a request for [/O that is not a
multiple of the sector size will result in zeros
being padded in the last sector written.(This
would destroy any data that existed in the
remainder of that sector.)

"b_error” is set-to zero. This is for future use in
reporting individual error numbers from
devices.

"b_dev" is set to the device number for the
transfer "device”.

Once all of these parameters have been set up in
the buffer header, the device strategy routine
("d_strategy” in "bdevsw") can be called to queue
the header on the device. It should be noted
that unlike buffered 1/0 wheie the buffers are
chained onto the device queue (by bio.c/getbik)
so that they may be found later. the physical 1/0
headers are not queued on the "b_forw", "b_back”
chain of the device queue.

One additional precaution must be taken when
doing physical /0. That is, the process must be
locked in core so that it is not swapped out while
the 1/0 is occurring. To do this, the SLOCK bit
is set in the appropriate Process Table entry ("p
flag"). Once the 1/0 is completed the lock bit is
reset.

Error reporting is done in the same manner as
for normal I/0 (by calling bio.c/geterror). Any
of the addressing errors checked are reported
directly in "u_error” by setting the system error
EFAULT.

Physical I/0 uses the residual word count entry
("b_resid") in order to allow the device drivers to
report exactly how many words were read or
wrmen

swap

CALL

swap(blkno, coreaddr, count, rdflg)
RETURNS

Returns a 1 on error.

SYNOPSIS
Performs physical 1/0 to the swap device.

PD-1C302-01
Section Z
Issue 1, January 1976

DESCRIPTION

This is essentially a stripped down version of
bio.c/physioc (which does I/0O directly from the
user’s address space). The reason that it is a
separzte function is that the physical I/0 function
is serially reusable (per device) and multipie re-
quests for /O to the same device are queued
(i.e., only one can take place to a device at a
time). Using only one common function might
niean that the swap would compete with physical
1/0 if the swap device was on the same device as
the physical 17/0. Another reason for their
separation is that since the system has control of
its resources (i.e., it knows how much memory
or swap space is available and where it is), there
is no need to worry about validating any of the
addresses or word counts.

A special buffer header ("swbuf”) is used for the
swap device. The information in this header is
filled in as is done by bio.c/getblk for normal
[/0. The data filled in is:

"b_flags® - The B_BUSY flag is used to indicate
whether the buffer is in use or not and the B_
WANTED flag is set if any other process requires
use of the swapper. (The Scheduler is not the
only process that does swapping. A process may
swap itself out.) The B_READ flag is also set
based on the value of “rdflg" passed to
bio.c/swap. (A 0 in the B_READ bit position in-
dicates that a write is to be done.) Address ex-
tension bits are computed for placing in "b_flags”
based on the value of “coreaddr”. This argument
contains the number of memory blocks (32
words/block) that are to be swapped out. When a
process is swapped it is swapped in one of two
forms.)

1. If it is reentrant tbe U block and data (data,
bss and stacg) are swapped as one piece.
When the process was created the reentrant
text was created and remains separately on
the swap area so that it need never be
swapped out.

2. If it is nonreentrant the U block, text and
data (data, bss, stack) are swapped as one
picce.

The parameters loaded are:

-14 -
BIO01 - BLOCK I/0 PD-1C302-01
File: bio.c , Section 2
Issue 1, January 1976

"b_dev” - set to the swap device "swapdev" which
was specified when the system was compiled
(conf.c).

"b_addr™ - set to the lower 16 bits of the address
from or to which data is to be swapped. The
argument “coreaddr” is in granularity of
memory block (32 words/block) and so must
be adjusted to a byte address (left shift &
bits).

"b_count® - set to the word count for the
transfer. It is obtained from the "count” ar-
gument which is in memory blocks (left shift
S bits for word granularity).

%

"b_bikno” - this is the logical block number of
the destination from "bikno".

The process requesting the swap is roadblocked
until the swap is completed and any other process
requesting a swap while the swap buffer is busy is
roadblocked until the swap buffer is free. Swap-
ping has the highest software priority in the sys-
tem when roadblocking a process(even higher
than normal I/0). Any error occurring during
the swap is reported by returning a nonzero value
to the caller and in the case of the Scheduler any
error results in a system panic ("PANIC SWAP
DEVICE").

DCo1 - DC-11 COMMUNICATIONS INTERFACE

File: dc.c

dcclose

CALL

dcclose{(dev)
int dev,

RETURNS

No value returned.

SYNOPSIS

Logically closes a terminal attached with a DC11.

asynchronous interface.

DESCRIPTION

In order to logically close a terminal attached
with a DCIl1 interface, dcclose only has to
change the software state (t_state) for the proper
minor device (dcll{dev.d_minor}) to closed ang,
after forcing any data on the output queue (t_
outg) to be transmitted, flush the device’s 1/0
queues (see tty.c/wflushtty).

dcopen

CALL

dcopen(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Logically opens a terminal attached with a DC11
asynchronous interface. -

DESCRIPTION

The dcopen routine does a logical open of a ter-
minal attached with a DCI11 interface. Dcopen
must first filter out requests to open invalid dev-
ices. Assuming that the device number “dev" is
satisfactory, the device’s control structure
(dc11{dev.d_minor]) is selected and the device is
placed into a waiting-to-open state (t_state).
Note that for the purpose of selecting an actual
DCI1l. the minor device number plus one
corresponds directly to the DC11's position in
the system. For example, minor device two
causes the third DCI11 on the system to be
selected.

If the device is not already in the open state (i.e.,
the device was closed; it is permissible to invoke
dcopen more than once without intervening
closes). the terminal control structure (struct tty)
for the device and the DC11’s hardware status
registers are initialized, and the state of the dev-

PD-1C302-01
Section 3
Issue 1, January 1976

ice iz set to open. Note that the initial line speed
selection is always for the next to lowest that is
aveilahle on the DCI1. '

At this point, the device, whether previously
opciied or being opened for the first time, is
simultaneously in the software states (t_state) of
open and waiting-to-open. All that remains for
dcopen te do is to await a carrier signal on the
DCIl1 (see dc.c/dcrint) if one is not already
present. Once carrier is detected, the waiting-to-
open stigma is removed and the opening of the
device is complete.

dcread

CALL

dcread(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

Read routine for terminals attached with a DC11
asynchronous interface.

DESCRIPTION

The dcread routine is the DC11 driver’s interface -
to the general purpose function§ of UNIX that
handle terminal I/O. All read requests to termi-
nals attached with a DCl11 interface must pass
through dcread. If the DCI11 device "dev” still
has a carrier signal, then dcread merely has to in-
voke tty.c/ttread to obtain input data from the
canonical queue (t_canq).

dcrint

CALL

dcrint{dev)

int dev;

RETURNS

No value returned.

SYNOPSIS

Handles interrupts that occur in the receive por-
tion of the DC11 asynchronous interface.

ﬂﬁ;‘rw

File: dc.c .

DESCRIPTION

As the interrupt handler on the receive side of a
DC11 interface, derint must diagnose the DC11’s
state in order to decide what to do about the in-
terrupt. ‘

In particular, dcrint must first determine if a car-
rier signal is still present on the DCIll device
*dev". If there is no such signal, the software
state of the device (t_state) is altered to reflect
loss of carrier. Additionally, if the device is not
in the waiting-to-open state (see dec.c/dcopen),
than it was open for some user and the carrier
dropped for some reason. This nccessitates disa-
bling the receiver, flushing the device's /0
queues (see tty.c/flushtty), and signaling to the
user that carrier has been lost.

The action taken when a carrier signal is present
on the line depends on whether or not the DC11
has sensed an error. If an error is indicated
(which could signify a carrier transition or be a
ring indication) and the DCI11 is in the waiting-
to-open state (see dc.c/dcopen), the device’s
state is changed to reflect presence of the carrier
and dc.c/dcopen is awakened so that it may con-
clude open processing. Otherwise, the interrupt
is assumed to have been caused by receipt of a
character by the device. If the character’s parity
is allowable under the mode of the terminal (t_
flags), it is placed on the device’s raw input
queue (t_rawgq; see tty.c/ttyinput); otherwise, it
is discarded.

desgtty

CALL

desgtty(dev, array)
int dev, *array;

RETURNS
No value returned.

SYNOFSIS

Determines or modifies the mode of a terminal
attached with a DC11 asynchronous interface.

DESCRIPTION

A nonzero value of "array” signifies that informa-
tion about the current state of the terminal at-
tacked to the DCI11 device "dev" is desired in
response to a gity system call {(see tty.c/gtty). In
this case, "array” is assumed to be a three word
array into which dcsgtty places the current line
speeds (t_speeds), zero, and the current state

-2-
DCO1 - DC-11 COMMUNICATIONS INTERFACE

PD-1C302-01
Secticn 3
Issue 1, January 1976

(t_flags) of the device and its associated terminal.

Couvearsely, 2 7er0 value of "array” implies that
the state of the device is to be respecified in
response to 3 stty system call (see tty.c/stty).
Pending output (t_outq) is first written and the
device’s I/O queues are flushed (see
tty.c/wflushtty). The speeds (t_speeds) and
mode (t_flags) of the terminal are then
respecified as requested. If the requested speeds
are reasonable (that is, the DCI1 is wired for the
speeds specified by the user), the DCIl's
transmitter and receiver status registers are al-
tered to reflect the new line speeds. Whether or
not a speed for the transmitter or receiver is rea-
sonable is determined by the presence of 2
nonzero entry in the proper position of the DC11
driver’s dctstab(] or dcrstabl] table, respectively.

dcwrite

LCALL

dewrite(dev)
int dev;

RETURNS)
No value returned.

SYNOPSIS 4

Write routine for terminals attached with a DC11
asynchronous interface.

DESCRIPTION

The dcwrite routine is the DCI11 driver’s inter-
face to the general purpose functions of UNIX
that handle terminal I/O. All write requests to
terminals attached with a DCI11 interface must
pass through dcwrite. If the DCI11 device "dev”
still has a carrier signal, thea dcwrite merely in-
vokes tty.c/ttw@e to place the data on the output
queue (t_outq) and initiate transmission.

5y

-3
DCO1 - DC-11 COMMUNICATIONS INTERFACE PD-1C302-01
File: dc.c Section 3
Issue 1, January 1976

dcxint

CALL

dcxint(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS .
Interrupt handler for the transmit portion of 3
DC11 asynchronous interface.

DESCRIPTION

The dexint routine receives control whenever an
interrupt on the transmit side of a DCI11 inter-
face occurs. Transmission of the next character
in. the output queve (t_outg) of device "dev” is
initiated (see tty.c/ttstart). If this queue is empty
or has reached its low water mark, all processes
waiting for such events are awakened. The form-
er event is waited on by tty.c/wilushtty; the
latter, by processes waiting for the queue to .
shrink to a reasonable length before putting more
data on it.

Brod

DHO1 - DH-11 COMMUNICATIONS MULTIPLEXER

File: dh.c

dhclose

CALL

dhclose(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS _
Logically closes a terminal attached with a DH11
asynchronous interface.

DESCRIPTION

In order to logically close a terminal attached
with a DH11 interface, dhclose has to change the
software state (t_state) for the proper device
(dhl1[dev.d_minor]) to closed, and, after forcing
any data on the output queue (t_outq) to be
transmitted, flush the devices I/0 queues (see
tty.c/wflushtty). '

dhopen

CALL

dhopen(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Logically opens a terminal attached with a DHI1
asynchronous interface.

DESCRIPTION

Before actually attempting to open a terminal
connected with a DH11 device, dhopen must
filter out requests to open invalid devices by
checking the plausibility of the device number
"dev". Assuming that this test is passed, the con-
trol structure for the device (i.e., terminal) is
selected (dhll{dev.d_minor]) and the device is
placed in a waiting-to-open state (t_state). When
mapping device numbers to actual communica-
tions lines, the minor device number is taken to
be the corresponding line in the DH11. For ex-
ample, DH11 minor device three is taken to be
line three in the DHI1! itself. It should be noted
that this version of the DHI1 driver does not
support multiple DHl1s on a system.

Section 4
Issue 1, January 1976

If the line (i.e., minor device) is not already
open (i.e., the device was closed; it is permissible
to open the device more than once without inter-
vening closes), the device’s (terminal’s) control
structure (struct tly) is initialized and the
bardware line parameters are set (see
dh.c/dhparam). All that remains to be done in
order to conclude the open is to wait for a carrier
signal on the line. Exactly how this is done
depends on whether the device has a DMI1!
modem control (see dhdm.c/dmopen) or not
(see dhfdm.c/dmopen). Once a carrier signal has
been detected, the opening procedure is complet-
ed by changing the device’s state from waiting-
to-open to open.

dhparam

CALL
dhparam(tp)
struct tty °ip;

RETURNS
No value returned.

SYNOPSIS

Sets line parameter information in the DHI11
asynchronous interface. Py

DESCRIPTION

Information about the characteristics of a com-
munications line must be set in the DHI11 inter-
face for each line that is to be active. This is the
purpose of the dhparam routine. In particular,
given a terminal descriptor structure (struct tty)
pointed to by "tp", dhparam must analyze the line
speed (t_speeds) and parity (t_flags) information.
The hardware cofitrol information corresponding
to this softwage line speed and parity is then
loaded into theDH11's Line Parameter Register.
The net effect is to force agreement between the
software and the DHI1l hardware for the speed
and parity of the line in question.

PD-1C302-01 -

DHO1 - DH-11 COMMUNICATIONS MULTIPLEXER

File: dh.c :

‘dhread

CALL

dhread(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS
Read routine for terminals attached with a DH11
asynchronous interface.

DESCRIPTION

The dhread routine is the DH11 driver’s inter-
face to the general purpose functions of UNIX
that handle terminal 1/0. All read requests to
terminals attached with a DHI1l interface must
pass through dhread. If the DHI11 device "dev"
still has a carrier signal, then dhread only has to
invoke tty.c/ttread to obtain input data from the
canonical queue (t_cang).

- dhrint

CALL
dhrint()

RETURNS
No value returned.

SYNOPSIS
Handles interrupts that occur in the receive por-
tion of the DH11! asynchronous interface.

DESCRIPTION

As the receive interrupt handler for the DHI1l
interface, dhrint is called whenever a character is
received by the device. (Note that this version
of the DH11 driver does not use the silo feature
of the DHI11 to its fullest extent, as the silo
alarm level is left at zero.) Dhrint determines on
which line the character was received, and dis-
cards the character if either the corresponding
device has not yet been opened or there was a
parity error in receiving the character. Other-
wise, the received character is placed on the raw
input queue (t_rawg) of the device corresponding
to the line on which it was received (see
tty.c/ttyinput).

“(tty.c/ttstart)

PD-1C302-01
Section 4
Issue 1, January 1976

chsgity

CALL

dusgtty (dev, array)
int dev, ®array,;

RETUKNS
No vajue returned.

SYNOPSIS

Datermines or modifies the mode of a terminal
sttached with a DHI11 asynchronous interface.

DESCRIPTION

A rionzero value of "array” signifies that informa-
tion about the current state of the terminal at-
tached to the DH1l device "dev® is desired in
response to a gity system call (see tty.c/gtty). In
this case "array” is assumed to be a three word
array into which dhsgtty places the current line
speeds (t_speeds), zero, and the current state
(t_flags) of the device and its associated terminal.

Conversely, a zero value of "array” implies that
the state, of the device is to be respecified in
response to a stty system cgll (see tiy.c/stty).
Untransmitted data on the output queue (t_outq)
is transmitted and the device’s input queues are
flushed (see tty.c/wilushtty). The speeds (t_
speeds) and mode (t_flags) of the terminal are
then reset as requested. This also entails reset-
ting the DHI11 hardware’s concept of the speed
and mode of the communications line (see
dh.c/dhparam).

dhstart

«CALL

dhstart(tp)
struct tty *tp;

RETURNS H
No value returned.

SYNOPSIS

Special start routine for initiating the transmis-
sion of characters on 2 DH11 asynchronous intec-
face.

DESCRIPTION

Because the DHI1 is a sixteen line multiplxer,
the general purpose device start routine of UNIX
is not sufficient for initiating
transmission. The routine dhstart is invoked by
tty.c/tistart to fulfili this device start function for
the DHI11 interface. Dhstart initiates transmis-

DHO1 - DH-11 COMMUNICATIONS MULTIPLEXER

File: dh.c

sion of an output character to the terminal
described by the control structure pointed to by
"tp". No action is taken, however, if the line is
already busy with a transmission or there are po
characters on the output queue (t_ouiqg).

Once a character has been obtained from the
device’s cutput queue, a determination niust be
made as to whether or not it is a delay character
(e.g., a delay character would precede a carriage
return). For “"normal®, nondelay characters,
transmission of the character on the appropriate
communications line is initiated, the state (t_
state) of the device (i.e., line) is changed to
show that it is busy, and the driver’s bit map of
DHI11 lines (dhsar) is altered to show that
transmission was initiated on that line. This bit
map is used by the DHI1 transmitter interrupt
handler (dh.c/dhxint) to determine the lines for
which transmission has completed. Delay charac-
ters are handled by requesting a system timeout
(see clock.c/timeout) after the delay time has ex-
pired.

Regardless of the nature of the character ob-
tained from the output queue, dhstart’s final
responsibility is to check the length of the
device's output queue. If sufficiently short, any
processes waiting for it to shrink before putting
more characters on it (i.e., write to the device)
are awakened. '

dhwrite

CALL

dhwrite(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

Write routine for terminals attached with-a DH11
asynchronous interface.

DESCRIPTION

The dhwrite routine is the DH11 driver’s inter-
face to the general purpose functions of UNIX
that handle terminal 1/O. All write requests to
terminals attached with a DH11 interface must
pass through dhwrite. If the DHI1 device "dev”
still has a carrier signal, then dhwrite merely in-
vokes tty.c/ttwrite to place the data on the
device’s output queue (t_outq) and initiate
transmission. 3

PD-1C302-01
Section 4
Issue 1, January 1976

ahxint
CALL
ghxint(Q

RETURNS
No value returned.

SYNOPSIS

Baadles interrupts that occur {rom the transmit
portion of the DH11 asynchronous interface.

DESCRIPTION

Because the DHI1l is a multiplexer and a
transmitter interrupt may be caused by any one
of the sixteen lines, the DHI1 driver’s
transmitter interrupt handler, dhxint, must first
determine exactly which line{s) caused the inter-
rupt. This is done by comparing the current state
of the DHI1l's Buffer Active Register (which
shows the lines for which transmission is active)
against a bit map (dhsar) that shows the lines
that have had transmissions initiatad (see
dh.c/dhstart). The product of this comparison is
a bit map of all the lines whose transmission has
completed since the last interrupt. The software

status of each such line is changed to inactive -

(i.e., not busy) and transmission is reinitiated on
the line (dh.c/dhstart).

-

e nin

-1-

DHDMO01 - DHDM MODEM CTL INTERFACE
File: dhdm.c :

dmint
CALL
dmint{)

RETURNS .
No value returned.

SYNOPSIS
Handles interrupts from the DM11 miodem con-
trol.

DESCRIPTION

As the interrupt handler for the DM11 modem
control, dmint must determine which line caused
the interrupt and what the carrier tranasition was
(i.e.. was carrier attained or lost). The action te
be taken depends on the line's new carrier state.

If carrier is not present, the control structure for
the line is changed to reflect absence of carrier
(1_state). Additionaily, if the device was not
wailing-to-open (i.e., was - open, see
dh.c/dhopen), . the loss of carrier indicates a
hangup situation. In this case, a hangup is sig-
naled to the process(es) associated with the line
and the device’s 1/0 queues are flushed (see
tty.c/flushtty).

The only other possibility is that "a carrier signal
is present. The device’s software state (t_state)
is changed to reflect this fact and
dhdm.c/dmopen, which is awaiting a carrier sig-
nal before continuing open processing for the
device, is awakened.

dmopen

CALL
dmopen(dev)

int dev;

RETURNS

No value returned.

SYNOPSIS
Logically opens a DM11 modem control.

DESCRIPTION

This version of the dmopen routine is used in
conjunction with the DHI11 driver (dh.c) when-
ever the DM1! modem control is used on the
DH11l. A fake routine, dhfdm.c/dmopen, is used
in lieu of this routine for those DHlls that do
not have a DM11.

PD~1C302-01
Section §
Issue 1, Jaauary 1976

Dmapen is invoked by dh.c/dhopen each time 2
line attached to the DHI11 is opened. It must
check to see if a carrier signal is already present
on the line corresponding to device "dev". If this
is riot the case, dmopen is obligated to wait until
carrier has been received (see dhdmi.c/dmint) be-
fore continuing. In any event, once the line has
2 carrier signal, dmopen may return to dhopen
for the conclusion of open processing.

et

-1-
DHFDMO1 - DHFDM NULL MODEM CTL INTERFACE PD-1C302-01

File: dhfdm.c Section §
: Issue 1, January 1976

dmopen

CALL

dmopen(dev)
int dev;

RETURNS
No value returned. %

SYNOPSIS . , g
Fake open routine for the DM11 modem control. ’

DESCRIPTION

When a DH11 device is opened, the dh.c/dhopen
routine calls upon dmopen to logically open the
DM11 and await a carrier signal on the line being :
opened. The version of dmopen found in.
dhfdm.c is used in conjunction with those DHlls :
that do not have a DM11 modem control; the
routine dhdm.c/dmopen is used when modem
control is available.

Since dhfdm.c/dmopen is essentially a fake
routine that emulates the real DM11 driver, at
least as far as the DHI1 driver is concerned, it
need only change the state (t_state) of device
dev” to indicate presence of a carrier signal.

DNO1 - DN-11 ACU INTERFACE
File: dn.c

dnclose

CALL
dnclose(dev)

int dev;

RETURNS

No value returned.

SYNOPSIS
Logically closes the DN11 ACU interface.

DESCRIPTION

In order to logically close the DN11 device "dev",
dnclose only has to clear the device’s status re-
gister. ‘

dnint

CALL

dnint{dev)

int dev;

RETURNS ,
No value‘returned.

SYNOPSIS
Interrupt handler for the DN11 ACU interface.

DESCRIPTION

As the interrupt handler for the DN11, dnint
only has to awaken dn.c/dnwrite so that the next
digit of the call may be dialed.

-

dnopen

CALL
dnopen(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Logically opens the DN11 ACU interface.

DESCRIPTION

In order to logically open the DN11, dnopen
must choose the proper ACU as determined by
the device number "dev” and verify that the unit
is available for use. If unavailable, an error is in-
dicated (u_error). Otherwise, dnopen enables
the chosen ACU. It should be noted that the ar-
gument "flag” only serves o maintain syntax
compatibility with other device open routines.

PD-1C302-01
Section 7
Issue 1, January 1976

Griwrite
CALL

dnwrite(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS
Write routine for the DN11 ACU interface.

DESCRIPTION

As the write routine for the DNI11, dnwrite is
responsible for interpreting and dialing a tele-
plione number written to the DN11 device "dev™.
This is accomplished by serially obtaining each
digit of the number and presenting it to the
DN11 for dialing. Before obtaining each digit,
however, dnwrite must first ensure that the
DN11 is ready to accept a digit for dialing. If the
device is not yet ready, then dnwrite is, of
course, obligated to wait wuntil it is (see
dn.c/dnint). Once the unit is ready, a digit may
be obtained from the user’s buffer and given to
the DN11 for dialing. This sequence is repeated
for each digit of the telephone number until ei-
ther an error occurs or the «all is completed
(answered). :

A special case in the handling of the telephone
number’s digits is that of the hyphen (-) charac-
ter, which is not written to the DN11. Rather,
this character causes dnwrite to delay eight
seconds before continuing the dialing sequence.
This is useful for such things as waiting for a

second dial tone.

Wit

File: dp.c

dpclose

CALL
dpciose()

RETURNS
No value returned.

SYNOPFSIS
Logically closes a DPI1 synchronous interface.

DESCRIPTION

In order to logically close the DP11, dpclose
must disable transmit and receive interrupts from
the device, indicate the device is no longer in use
by any process (dp_proc), and, relinquish the 1/0
buffer that was obtained by dp.c/dpopen (dp_
buf).

dpopen

CALL
dpopen(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS :
Logicaily opens a DP11 synchronous interface.

DESCRIPTION

Before logically opening the DP11 interface, dpo-
pen must verify that it is not aiready open for
some other user (actually, process); in which
case, an error condition is indicated (u_error)
and the open is not done. The user process that
first opens the DP11 may open it as many times
as desired without intervening closes. On the in-
itial open, an I/O buffer is obtained (see
bio.c/getblk) and the driver’s internal timer (dp_
timer) is set for a minute (see dp.c/dptimecut).
Dpopen sets the sync character to octal 26 and
initializes the DP11 device's transmitter and re-
ceiver registers.

The arguments "dev” and "flag” are not used by
this routine, but serve to maintain syntax compa-
tibility with other device open routines.

-1-
DPOI1 - DP-11 201 SYNCHRONOUS INTERFACE

PD-1C302-01
Section §
Issue 1, January 1976

dpread

CALL
dpread()

RETURNS
No value returned.

SYNOPSIS

Read routine for-the DP11 synchronous inter-
face.

DESCRIPTION

As the read routine for the DP11 driver, dpraad
is invoked each time the user reads from the
device. An immediate return is done if a check
of the DP11 device’s status reveals that it is no
longer in a ready state (see dp.c/dpwait). If any
characters have been received and placed in the
I/0 buffer (dp_buf: see dp.c/dprint), then they
are moved to the user’s I/0 buffer and the read
request is considered complete. Note that the
number of characters actually given to the user is
always the minimum of the number requested
and the number avaijlable. .

However, it may be that no data has yet been re-
ceived. In this case, dpread checks to see if a
timeout has occurred (see dp.c/dptimeout); a
timeout reveals that at least five seconds have
passed without any data b%ing received. Rather
than continue to wait for receipt of data, a retumn
is done with no characters returned to the user.
Otherwise, the routine waits for a device status
change or timeout to awaken it (see
dp.c/dpturnaround), at which time it goes back
through the algorithm just described.

dprint

CALL 1
dprint() ¥
RETURNS

No valu_e returned.
SYNOPSIS -

Handles interrupts on the receive side of the
DP11 synchronous interface.

DESCRIPTION

As the receive interrupt handler for the DP11,
dprint is given control whenever a character
(seven data bits plus one parity bit) is received
by the device. The character is retained oaly if
the device is in a READ state (dp_state) (to

DPO1 - DP-11 201 SYNCHRONOUS INTERFACE

File: dp.c

prevent overwriting the 1/0 buffer if it contains
data being transmitted, see dp.c/dpwrite) and the
1/0 buffer is not already full (a full buffer results
if the user is lax or unable to read data that has
been received). Before the character is placed in
the I/0 buffer, it is converted to odd parity if not
already so. '

Note that after synchronization has been
achieved by receipt of the initial two (consecu-

tive) sync characters (octal 26), this DP11 driver

causes any further sync characters ta be retained
and treated as normal data characters until the
synchronization is broken (see
dp.c/dpturnaround). ‘

dpstart

CALL
dpstart()

RETURNS
No value returned.

SYNOPSIS

Transmits a character on the DP11 synchronous
interface.

DESCRIPTION

Every character that is transmitted on the DP11
device must pass through dpstart before actually
being sent. This routine resets the driver’s inter-
nal timer (dp_timer) to five seconds; this allows
ample time to do an actual transmission. A
failure to complete the transmission in this
amount of time results in a timeout and the
flushing of any untransmitted characters that are
in the I/O buffer (see dp.c/dpturnaround).
Dpstart then checks to see if there are more
characters to be sent (dp_nxmit). If there are
none, it switches the device state (dp_state) to
READ to indicate that the buffer is now free to

be reusaed; otherwise, the first untransmitted -

character in the buffer (*dp_bufp) is converted to
odd parity .and placed in the DP11’s transmitter
buffer.

PD-1C302-01
Section 8
Issue 1, January 1976

dptimeout

CALL
dptimeout()

RETURNS
No value returned.

SYNOPSIS

Performs timing function for the DP11 synchro-
nous interface driver.

DESCRIFTION

The dptimeout routine is called once a second by
the system (see clock.c/clock and
clock.c/timeout). It decrements the driver's
internal timer (dp_timer). If the timer goes to
zero, the DPI1l is turmed around (see
dp.c/dpturnaround) and the timer is reset to one
second to ensure that dp.c/dpread knows that a
timeout occurred. Its last responsibility to re-
quest another wakeup by the system in one
second. ‘

dpturnaround
CALL
dpturnaround()

RETURNS #
No value returned.

SYNOPSIS
Turns around the DP11 synchronous interface.

DESCRIPTION

The dpturnaround routine is invoked either be-
cause of a timeout situation in the DP11 driver’s
clocking mechanism (see dp.c/dptimeout) or be-
cause of a change in the device’s status that may
affect data reliability (see dp.c/dpxint). The
driver’s timer (dp_ imer) is reset to five seconds
and the device’s receive active bit is turned off
(the ramifications of this are described below).
In addition, if the device was in the WRITE state
(dp_state), the state is changed to READ and
any untransmitted characters in the I/0 buffer
are discarded. Finally, those waiting to read or
write to the device are awakened.

The net effect of the above actions is that, in-
sofar as reading from the device is concerned, a
resynchronization of the device (two consecutive
sync characters) is required before data may be
received (i.e., reenable the receive active bit).
As far as writing goes, any characters written to

HPO1 - RP04 MOVING HEAD DISK INTERFACE

File: hp.c

hpstart

CALL
hpstart()

RETURNS
No value returned.

SYNOPSIS
Initiates the actual IO to an RP04 device.

DESCRIPTION -

If there are any 1/0 requests on the RP04 queue
(chained from d_actf in hptab), hpstart marks the
RPO4 as active (hptab d_active) and initiates /0
{or the first request in the queue. The real work
of activation is done by rh.c/rhstart but hpstart
must fill in an RP04 controller register that is not
filled in by rhstart. Although the physical block
address has already been computed by
hp.c/hpstrategy, hpstart must complete the logi-
cal to physical device mapping by selecung the
actual physical drive.

hpstrategy

" CALL

hpstrategy (bp)
struct buf *bp;

RETURNS
No value returned.

SYNOPFSIS
Places an 170 buffer on the RP04’s queue of [/O
‘buifers to read/write.

DESCRIPTION

The strategy routines for disk and tape drivers
provide two major services: to place 1/0 requests
on the device’s queue of pending requests in an
order that is most efficient for that particular dev-
ice, and, to verify that the request’s logical block
address conforms to the logical (i.e., minor) dev-
ice policy of the device driver. In particular, disk
and tape strategy routines do the following
specific things for each [/O request, which the
driver sees in terms of a pointer "bp” to a buffer
header (struct buf):

1. Verify that the block address given in
the 1/0 request is a plausible address for
the logical device being read/written.
That is, ensure conformity to the logical
device policy of the driver. Since there
are 22 sectors per track and 19 tracks

PD-1C302-01
Section 9
Issue 1, January 1976

per cylinder, 418 blocks are on each
cylinder.

2. For devices that have several logical
devices on a single physical device,
translate the block address on the logical
{i.e., minor) device to a lrue block ad-
dress on a physical device. The
remainder of the translation (selecting
the physical drive) is peformed else-
where, usually in the driver’s start
routine. Note that for drivers that map
a logical device to one or more physical
devices this step is omitted and the ad-
dress transiation is done elsewhere, usu-
ally in the driver’s start routine.

3. Place the J/O request in the device’s
queue of pending 1/O requests (work to
do queue). The location within the
queue where the request is placed
depends on the queuing strategy being
employed for the device. The queue it-
self is chained from d_actf in the
device’s devtab (e.g., hptab, hstab, etc.)
Immediately prior to rechaining the
queue to insert the - request, the
processor’s hardware priority must be
raised to that of the device to disable in-
terrupts from the device. o

4. Cause physical I/0 to be initiated if
there are no previous requests currently
being serviced.

The strategy routine for the RP04 disk, hpstra-
tegy, performs all of the above functions. The
logical to physical device mapping is accom-
plished by dividing the logical (i.e., the minor)
device number by eight. The quotient of this
division is inteppreted as the controller drive
number and thefremainder is the logical file sys-
tem on that drive. For example, a minor device
number of 13 is construed to be logical file sys-
tem five on physical drive one. Each physical
drive is divided into eight logical file systems as
follows:

file cylinders # of blocks
0 0-23 9614
24 - 43 UNUSED

(Can be swap arza)
44 - 200 65535
201 - 357 65535
358 - 407 20900
0-99 40600

S U R e

PN

[N Y

-3-

HPG1 - RP04 MOVING HEAD DISK INTERFACE PD-1C302-01
File: hp.c Section 9
Issue 1, January 1976

S 100 - 199 406090

6 200 - 299 40600

7 300 - 399 40600

The queuing strategy used is the "elevator” tech-
nique. That is, when a request is made, if there
are none or one other request on the queue, the
new request is placed at the end of the queue
(First In First Out (FIFO) strategy). If there are
already two or more pending requests, the new
request is inserted so that all requests on the
queue are in cylinder number order. Whether-
this order is increasing or decreasing by cylinder
number is established when there are two re-
quests on the queue. All requests for the same
cylinder are handled in a FIFO manner.

hpwrite
CALL

hpwrite{dev)
int dev;

RETURNS
No value returned.

SYNOPSIS -
Interface to RP04 driver for "raw" mode write re-
quasts.

DESCRIPTION

The write routines for disk and tape drivers are
the functions that handle "raw” mode write re-
quests for their respective devices. That is, they
are the interface betwesn users making such re-
quests and the I/O subsystem, and are called
whenever a write is done to the raw device.
They wusually do little more than invoke
bio.c/physic to do the real work involved with
"raw” /O, but are vitally necessary, as they in-
form physio of such things as the device strategy
routine to invoke to make the 1/0 request.

'ﬁ‘.-;ﬂ«-!

Hpwrite merely verifies (see hp.c/hpphys) that
the "raw" write request will remain entirely
within the bounds of the RP04 logical device in
guestion before calling physio.

HSG1 - RS03/04 INTERFACE
File: hs.¢

hsintr

CALL
hsintr{)

RETURNS
No value returned.

SYNOPSIS
Handles interrupts from the RS03/RS04.

DESCRIPTION

Hsintr, as the interrupt
RS03/RS04 disk, performs
described in rp.c/rpintr.

for the
functions

handler
the

hsread

CALL

hsread(dev)

int dev;

KRETURNS

No value returned.

SYNOPSIS

Interface to RS03/RS04 drivei for "raw" mode
read requests.

DESCRIPTION

Hsread handles raw mode read requests to the
RS03/RS04 disk by calling bio.c/physio. See
rp.c/rpread for a discussion of raw mode device
read routines.

hsstart

CALL
hsstart()

RETURNS
No value returned.

SYNOPSIS
Initiates the actual 1/0 to an HS03/HS04 device.

DESCRIPTION

If there are any /O requests on the HS03/HS04
queue (chained from d_actf in hstab), hsstart
marks the HS03/HS04 as active (hstab.d_active).
After filling in the disk address extension error
register, hsstart initiates I/0 for the first request
in the queue by invoking rh.c/rhstart. The argu-
ments to davstart reflect the logical device palicy
of the driver (see hs.c/hsstrategy), as they are

PD-1C202-01
Section 10
Issue 1, January 1976

the translation of a logical device block number
to a physical device address.

hsstrategy

CALL

hisstrategy (bp)
struct buf *bp;
RETURNS

No value returned.

SYNOPSIS

Places an 1/0 buffer on the RS03/RS04’s queue
of 1/0 buffers to read/write.

DESCRIPTION
Hsstrategy performs for the RS03/RS04 disk the
general strategy functions described in

rp.c/rpstrategy. The [/0 buffer queuing strategy
employed is strictly First In First Qut (FIFO).
The logical device policy of the driver is that the
lcgical device number (minor device) is used to
identify the type of disk and the physical drive.
Minor device numbers 0-7 define eight drives
respectively on an RS03, wherzas minor devicss
8-15 define 8 drives on an RS04.

hswrite

CALL
hswrite(dev)

int dev;

RETURNS

No value returned.

SYNOPSIS

Interface to RS04/RS03 driver for “raw” mode
write requests. '

{4
DESCRIPTION *

Hswrite handles raw mode write requests to the
RS04/RS03 disk by calling bio.c/physio. See
rp.c/rpwrite for a discussion of raw mode device
write routines. :

HTO01 - TU16 MAGNETIC TAPE INTERFACE
File: ht.c

hcommand

CALL

hcommand (unit, com)
int unit, com;

RETURNS
No value returned.

SYNOPSIS
Issues a command to the TUl6 magnetic tape
controller.

DESCRIPTION

Before issuing a command to the TU16 controll-
er. hcommand ensures that the controller is
ready and that no other magnetic tape 1/0 re-
quests are active (d_active in httab). The logical
"unit” is mapped onto a physical unit (Unit 4-7
map into drive 0-3). Once these conditions are
met, the controller command "com” is issued for
drive "unit”.

htclose

CALL

hiclose(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Performs a logical close for the TUI16 magnetic
tape.

DESCRIPTION

Certain cleanup functions must be performed
after a user has completed use of a TU16 mag-
netic tape device. These are done by htclose,
which is called when the magnetic tape file is
closed. In particular, the drive "dev" is marked
as not in use (h_openfldev]) so that others may
now use it, a double end-of-file is written if the
device was opened for writing ("flag™ = 2). If the
unit is 0-3 or 8-11 the tape is rewound.

-1-

PD-1C302:01
Section 11
Issue 1, January 1976

Lktintr
CALL
htintr()

RETURNS
No value returned.

SYNOPSIS
Handles interrupts from the TU16 magnetic tape.

DESCRIPTION

As the interrupt handler for TU16 magnetic tape,
hiintr’s first responsibility is to determine if an
error occurred on the controller command.
There are many possibilities if an error occurred.

1. If the error was not an end-of-file, is
deemed recoverable, and was from an
‘actual 1/0 request (as distinguished
from the tape positioning initiated by
ht.c/htstart), then the number of I/0 er-
rors that have already occurred for this
request is checked. If fewer than ten er-
rors have occurred, then action is taken
to reposition the tape and retry the re-
quest. Otherwise, the request is aban-
doned as hopeless, is not retried, and
becomes subject to the checks described
in items 2 and 3 below.

Any error that does not result in a retry
and which was not an end-of-file or
from a raw mode 1/0 request causes the
drive to be marked as unusable. Note
that tape positioning errors and unrecov-
erable I/O errors fall into this category.
This stigma holds until the device is
closed. ‘

All requests that are not retried are
marked as ig error and then ultimately
handled as if they were successfully
completed actual I/0 requests (the han-
dling of which is described below). This
includes an end-of-file condition.

All successfully completed actual I/0 requests are
marked as complete and removed from the
queue; for successfully completed tape position-
ing commands (done as a prelude to the actual
1/0 for those requests needing tape positioning,
sece htc/htstart) the current block number
counter (h_blkno(]) is adjusted to reflect the
tape’s position and the request remains as the
first in the gueue. Ht.c/htstart is then invoked
for the first request in the queue.

HTO01 - TU16 MAGNETIC TAPE INTERFACE
File: ht.c

On an end of file if the request was for block
1/0, the device is shut down (made unavailable
for further reads) to prevent read ahead from
moving the tape forward. This is to zilow
multifile tape processing. '

htopen

CALL

htopen(dev, fiag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS -
Performs a logical open for the TU1é magnetic
tape. -

DESCRIPTION

Because of magnetic tape’s sequeatial nature,
only one user is allowed to access a given drive
at one time. The function of htopen’is to en-
force this restriction by checking the availability
of the specified device "dev”. If the drive in
question is already in use (h_openf(l), then ap-
propriate error bits are set (u_error). Otherwise,
the drive is marked in use (h_openfldev]) and
the block counters (h_blkno{] and h_nxrec(]) are
initialized. The flag "flag”, which indicates
whether the open is for reading and/or writing, is
not used and only serves to maintain syntax
" compatibility with other device open routines.

Units 0-7 are mapped into 800 BPI where as un-
its 8-15 are mapped into 1600 BP! and the ap-
propriate controller bits are set.

htphys

CALL

hiphys{dev)

int dev;

RETURNS _
No value returned.
SYNOPSIS

Computes the starting block number for raw
mode 1/0 requests to TU16 magnetic tape.

-2-

PD-1C302-01
Section 11
Issue 1, January 1976

DESCRIPTION

Prior to doing raw mode /O to magnetic tape,
the starting block number for the transfer must
be calculated. This is necessary so that the tape
may be properly positioned before starting the
I/0 (see ht.c/htstart). This duty is performed by
btphys, which then records its findings in the
block number indicator for drive “dev” (i.e., h
bikno(l). -

hiread

CALL

htread(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

Interface to TU16 driver for "raw” mode read re-
quests.

DESCRIPTION

Htread handles raw mode read requests to TU16
magnetic tape. See rp.c/rpread for a discussion
of raw mode read routines. Before calling
bio.c/physio to do the real work, the starting
block number of the request. must be calculated
by ht.c/hiphys.

htstart

CALL
htstart()

RETURNS
No value retumeé‘.

SYNOPSIS -

Initiates the acfual I/0 procedure for TU16 mag-
netic tape.

DESCRIPTION

If there are any 1/0 requests on the TU16 queue
(chained from d_actf in httab), htstart initiates
the 1/O procedure for the first request in the
queue. This entails first verifying that any previ-
ous [/O to the device did not result in an unre-
coverable 1/0 error (see ht.c/htintr) and that the
controller is ready to accept commands. Failure
to pass these two tests results in the /O request
being marked complete but in error and remov-
ing it from the 1/0 queue. Otherwise, a controli-

HTO01 - TU16 MAGNETIC TAPE INTERFACE
File: ht.c

er command is issued for the situation that per-
tains to the request.

1. If the tape is not correctly positioned to
“do the read or write, then a command is
issued to advance or rewind the tape to
the correct block.

2. In all othier cases the actual I/0 for the

first request in the queue is initiated.

-3-

In either case the function being performed is:

recorded (in d_active) for later use by the inter-
rupt handler (see ht.c/htintr).

htstrategy
CA4LL
htstrategy(bp)
struct buf *bp;
RETURNS

No value returned.

SYNOPSIS

Places an 1/0 buffer on the TU16’s queue of I/O
buffers to read/write.

DESCRIPTION
Histrategy performs for TU16 magnetic tape the
general strategy functions described in

rp.c/rpstrategy. The I/O buffer queuing strategy
employed is strictly First In First Out (FIFO).
As might be expected, the logical device number
is taken to be the physical drive number.

The block address verification for magnetic tape
is, because of the medium’s sequential nature
and the attempt to have it emulate a disk file sys-
tem, more complex than that of most strategy
routines and therefore merits elaboration. A

block number counter (h_nxrec(]) is maintained -

for each drive. An 1/0 request may not be ini-
tiated to a block number exceeding the value of
the drive’s counter. Specifically, when the device
is opened (see ht.c/htopen), the value of this
‘counter is set to the size of the largest permissi-
bie file (65535 blocks). As long as only read re-
quests are made, the value of the counter does
not change. However, whenever a write request
is made, the counter’s value is set to the request-
ed block number plus one (which will be, for al-
most all cases, the number of the block that will
be written next). For every read or write re-
quest, the block number of the request ‘is
checked against the counter. If the request’s

PD-1C302-01
Section 11
Issue 1, January 1976

tlock number exceeds the counter value, then
the request is marked as complete but in error
(u_error). Otherwise the request is considered
valid. A special case is the situation where a read
request is made for a block number that equals
the counter's value. This could occur, for exam-
ple, if records are being read and written and a
read is issued for block n + 1 immediately after
writing block n. In this case no actual I/O takes
place, but the user’s I/O buffer is zeroed and the
I/0 request is marked as completed.

htwrite

CALL

htwrite{dev)

int dev;

RETURNS

No value returned.

SYNOPSIS

Interface to TU16 driver for "raw” mode write re-
quests.

DESCRIPTION

Htwrite handles raw mode write requests to
TU16 magnetic tape. See rp.c/rpwrite for a dis-
cussion of raw mode write routines. Before cal-
ling bio.c/physio to do the real work, the starting
block number of the request must be calculated
by ht.c/htphys.

A

KLO1 - KL-11 OR DL-11 ASYNCHRONOUS INTERFACE

File: klc

klclose

CALL

kiclose{dev)

int dev;

RETURNS

No value returned.

SYNOPSIS
Performs a logical close of a terminal attached
with a KL11 or DL11A asynchronous interface.

DESCRIPTION

Kiclose logically closes terminals attached with
KLil or DLI1A interfaces by invoking
uy.c/wilushtty for the appropriate device “dev".
This causes all characters on the device’s output
queue (t_outq) to be transmitted and flushes any
characters on the device’s input queues (t_rawq,
t_canq).

klopen

CALL

klopen(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS

Performs a logical open of a terminal attached
with a KL11 or DL11A asynchronous interface.

- DESCRIPTION
The klopen routine does a logical open of a ter-
minal attached with a KL11 or DL11A interface.
This primarily entails the initialization of the ter-
minal control structure (struct tty) for the ap-
propriate minor device (kil1{dev.d_minorl).

This entails computing the address of the

device's registers, and certain assumptions are
made in this respect. In particular, minor device
zero is assumed o be the system console, since
the console is typically connected with a KL11
or DL11A interface. Further, it is assumed that
the minor device numbers for any additional ter-
minals attached with a KL11 or DL11A interface
have been assigned consecutively starting with
minor device one. For example, if a system has
three XL11's, then they must be given minor
device numbers zero (system console), one, and
two. A final responsibility of klopen is to enable
interrupts in the device's read and wrile status
registers and to enable the reader, so that charac-
ters may be received from paper tape on the ter-
minal {e.g.. a teletype terminal).

PD-1C302-01
Section 12
Issue 1, January 1976

The argument "flag” is not used by klopen since
the terminal is always opened for both reading
and writing, but serves 10 maintain syntax com-
patibility with other device open routines.

klread

CALL

kiread(dev)

int dev;

RETURNS

No value returned.

SYNOPFSIS

The read routine for terminals attached with
KL11 or DL11A asynchronous interfaces.

DESCRIPTION

The kiread routine is the KL11/DL11A driver’s
interface to the general purpose functions of
UNIX that handle terminal [/O. In particular, all
read requests to terminals attached with KL11 or
DL11A interfaces must pass through kiread,
which does nothing more than invoke
ty.c/ttread for the appropriate device "dev".

klrint

CALL

kirint(dev) A
int dev;

RETURNS
No value returned. -~

SYNOPSIS

Handles interrupts that result when a character
is received from a terminal attached with a KL11
or DL11A asynchronous interface.

DESCRIPTION

The klirint routine receives control whenever an
interrupt on #he receive side of the KLI11 or
DL11A interface occurs. The character is re-
trieved from the read data buffer and placed on
the raw input queue (i_rawq) for device "dev”
(see tiy.c/ttyinput). The reader is then reenabled,
so that characters may continue to be received if
they are coming from paper tape (e.g., a teletype
terminal).

KLO1 - KL-11 OR DL-11 ASYVCHRONOUS INTERFACE

File: kl.c

kisgtty

CALL

kisgtty(dev, array)
int dev, ®array; '

RETURNS
Ng¢ value returned.

SYNOPSIS
Determines or modifies the mode of a terminal
attached with a KL11 or DLI1A asynchronous
interface.

DESCRIPTION :

A nonzero value of "array” implies that informa-
tion about the current state of the terminal is
desired in response 10 a gtty system call (see
uy.c/gity) by the user. In this case Klsgity as-
sumes that "array” is a three word array and
piaces the current state (t_flags) of the terminal
into the last word.

Converseiy, a zero value of "array” implies that
the terminal’s state is 10 be changed in response
10 a sty system call (see uy.c/stty), but only
after any pending output to the devnce has been
physically transmitied.

Note that kisgtty totally disregards device speeds,
both when determining and modifying the state
of the device.

klwrite

CALL

klwrite(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

The write routine for terminals attached with
KL11 or DL11A asynchronous interfaces.

DESCRIPTION

The kiwrite routine is the KL11/DL11 driver’s
interface to the general purpose functions of
UNIX that handle terminal [/O. With one ex-
ception. all write requests (o terminals attached
with KL1! or DLIIA interfaces must pass
through kiwrite, which does nothing more than
invoke uy.c/uwrite for the appropriate device
"dev".

Tie system console is normally attached with a
KL1! or DLI1A infrface. Since UNIX itself
manipulates the device registers directly when
printing system messages on the console (see
pric/putchar), sysiem writes to the console do

PD-1C302-01
Section 12
Issue 1, January 1976

nci go Lhrough kiwrite.

kixint

CALL
kixini{dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

Handles interrupts that result from transmitting
to a terminal attached with a KL11 or DLIlA
asynchronous interface.

DESCRIPTION

The kixint routine receives control whenever an
interrupt on the transmit side of the KL11 or
DL11A interface occurs. Transmission of the
next character in the output queue (t_outq) for
device "dev" is initiated (see ty. c/ustart). If the
oulput gqueue is short enough, then processes
waiting for it to shrink to an acceptable length
before placing more characters on it (i.e., write to
the device; see lty.c/utwrite) or to empty (see
ty.c/wflushtty) are awakened.

it

LPO01 - LINE PRINTER INTERFACE
File: Ipc

Ipcanon

CALL
Ipcanornfc)
int ¢;

RETURNS
No value returned.

SYNOPSIS
Edits characters written to the LP11 line printer.

DESCRIFPTION

The lpcanon routine edits (ie., translates as re-
quired) the character "c” being written 1o the
LP11 printer and causes the resuitant
character(s) (which may include new lines or
page ejects) to be placed on the printer’s output
gueue. There are essentially two phases of edit-
ing. the first being done only for half ASCII (64
character) printers, and the second being done
for all printers.

Lpcanon must be compiled for either a 64 or 96
character printer; it is not able to dynamically
determine which it is being invoked for. In par-
ticular, a parameter within the driver is available
for specifying the character set (CAP). If

tpcanon was compiled for a 64 character printer,

then an initial editing of certain characters is
done as follows.

Character Mapped Into
athruz AthruZ

{ (-

})-
| +,

The oversiruck characters are actually generated
by invoking lpcanon for the first character of the
overstrike, backing up the perceived column
counter (see below) lo give the impression of
backspace, and then proceeding into the second
ediling phase with the second character of the
overstirike.

Regardless of the printer's character sey, ali char-
acters pass through a "second” editing phase
(although. strictly speaking, it is really the first
and only phase for 96 character printers). Three
counters are maintained: a perceived column
counter {cce), that indicates into which column
the next character should go: the actual column
counter {mcc), that indicates into which column
the next character will actually go (ie. the
column position of the printer itself); and a line
counter {mic), that keeps track of the number of
lines printed on a page. Each character being
printed has a different affect on these counters,

PD-1C302-01
Section 13
Issue 1, January 1976
as shown below.
Character

Tab

Mapping

St perceived column counter
next tab stop (every eight columns).
WNew Page Pul "new page” character on output
gueue. Reset both column counters
and the line counter to zero.
New Line Put new line on output queue, un-
less the per page line limit has been
reached. If so, change new line to
new page character and put on output
queue. Adjust the line counter as
niecessary and reset both column
counters to zero.

CR Reset perceived column counter o
: zero.)
Backspace Back up perceived column counter
one position.
Blank Advance perceived column counter

one position.

All Others If the perceived column exceeds the
characters per line limit, merely add
one to the perceived column counter
and discard the character. Otherwise,
adjust the perceived
counters as necessary to make them
agree. (That is, if the perceived pre-
cedes the actual, place a carriage re-
turn and encugh blanks on the out-
put queue to align the counters. If
the actual precedes the perceived, put
enough blanks on the output queue to
realign the counters.) Once the
counters are aligned, the character is
placed on the output queue and the
perceived and actual column counters
are incremented.

Notice that the notion of a perceived and an ac-
tual column counter permits the printing of
overstruck characters and attempts to minimize
the number of blanks being printed (lines with
all blanks arg translated to just a new line and
trailing blanks on a line are not printed).

and actual -

oo
e

o e

LP01 - LINE PRINTER INTERFACE
File: Ipc

Ipclose

CALL
Ipclose(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Logically closes the LP11 line printer.

DESCRIPTION

Lpclose logically closes the LP11 by causing the
paper to be ejected to top-of-form and marking
the device as closed (lpll.flag}.

Ipint
CALL

Clpint()

RETURNS
No value returned.

SYNOPSIS
Interrupt handler for the LP11 line printer.

DESCRIPTION

As the interrupt handler for the LP11 printer,
Ipint must reactivate the printer for the next
character in the output gqueue, if any. A second
responsibility is to awaken lIp.c/lpoutput if the
output queue length has shrunk to an acceptable
length, so that more characters may be placed on
it.

Ipopen
CALL

Ipopen{dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPSIS
Logically opens the LP11 line printer.

DESCRIPTION

The Ipopen routine logically opens the LP11 line
printer. In particular, it ensures that the device
is not already being used by another user and
that the printer itself is ready to be used (on
line. power on, etc.). The device is not opened
and an error is indicated (u_error) if one of these
tests fail. If all is well, the device is enabled,
marked as open (Ipl1.flag), and it is ensured that
the paper is at top-of-form (or, at least, insofar as
the driver is concernead).

PD-1C302-01
Section 13
Issue 1, January 1976

Ipeutput
CALL
Ipoutput(c)
intc;

RETURNS

No value returned.

SYNOPSIS

Places a character on the LP11’s output queue
and activates printing.

DESCRIFTION

Before placing the character "c” on the LPIl’s

“output queue, lpoutput verifies that there are not

already too many unprinted characters on the
queue. If the queue is too long, it waits until the
queue shrinks to an acceptable length (see
Ip.c/lpini). The character is then placed on the
outpul queve and steps are taken to activate ac-
tual printing (see lp.c/lpstart).

Ipstart

CALL
Ipstart()

RETURNS
No value returned.

SYNOPSIS
Activates the LP11 line printer for a character.

DESCRIPTION

If the LP11 printer is ready to print a character
and there are any characters to be printed in the
output queue, the printer is passed the first char-
acter in the queue.

Ipwrite I3
CALL
Ipwrite()

RETURNS
No value returned.

SYNOESIS
The write routine for the LP11 line printer.

DESCRIPTION

The Ipwrite routine is the interface between the
user writing to the LPI1l line printer and. the
device driver itself. Therefore, it is called when-
ever the user issues a write reques! to this dev-
ice. Lpwrite collects from the user’s output
buffer as many characters as necessary to satis{y

LP01 - LINE PRINTER INTERFACE
File: lpc

the write request’s byte count and causes them
to be translated (see lp.c/lpcanon), as necessary,
and placed on the LP11’s output queue.

PD-1C302-01
Section 13
Issue 1, January 1976

Bell Telephone Laboratories, Incorporated
* PROGRAM SYSTEM SPECIFICATION

PD-1C303-01
Index

Issue 1
AT&T Co SPCS

COMMON SYSTEMS
UNIX OPERATING SYSTEM

DEVICE DRIVERS SEC.2

This index lists the autborized issues of the sections that form 2 part of the current issue of this

specification.

NUMBERS

PD-1C303-01, Index
Section 1 A
Section 2

Section 3

Section 4

Section 5§

Section 6
Section 7
Section &
Section 9
Section 10

Section 11
Section 12

Section 13

ISSUE 1 1/30/76

ISSUES AUT HORIZEAD TITLES

Index

Introduction .
MALLOCO1 - MEMORY ALLOCATOR
MEMOI! - CORE MEMORY

FARTARO] - TABLE OF TTY PARAMETERS

PCO1 - PC-11 PAPEKR TAPE READ/PUNCH INTER-
FACE

PIPEO] - INTERPROCESS CHANNEL

RFO01 - RF11/RS11 FIXED HEAD DISK FILE
RHO1 - RH DEVICE INTERFACE

RKO1 - RK-11/RK03(05) DISK INTERFACE

RPOI - RP11/RP03 MOVING HEAD DISK INTER-
FACE)

TCO1 - TC-11/TUS6 DEC TAPE INTERFACE

TMO01 - TM-11/TU-10 MAGNETIC TAPE INTER-
FACE

TTYO! - GENERAL TYPEWRITER SUBROUTINES

st

THE CONTENT OF THIS MATERIAL IS PROPRIETARY AND CONSTITUTES A TRADE SECRET. IT IS
FURNISHED PURSUANT TO WRITTEN AGREEMENTS OR INSTRUCTIONS LISTING THE EXTENT OF
DISCLOSURE. TS FURTHER DISCLOSURE WITHOUT THE WRITTEN PERMISSION OF WESTERN
ELECTRIC COMPANY, INCORPORATED, IS PROHIBITED.

Printed in U.S.A.

INTRODUCTION

1. GENERAL D.

This document describes functions conizined in
pidents from PR-1C303-01 as follows:

MALLOC0I MEMORY ALLOCATOR
MEMOI CORE MEMORY
PARTABO] TABLE OF TTY PARAMETERS

PCOl PC-11 PAPER TAPE READ/PUNCH
INTERFACE .

PIPEOL INTER PROCESS CHANNEL

RFO! RF11/RS11 FIXED HEAD DISK FILE

RHO1 RH DEVICE INTERFACE

RKO! RK-11/RK03(0S) DISK INTERFACE

RPOI RP-11/RP03 MOVING HEAD DISK
INTERFACE .

TCOI TC-11/TUS56 DEC TAPE INTERFACE

TMO! TM-11/TU-10 MAG. TAPE INTER-
FACE

TTYO! GENERAL TYPEWRITER SUB-
ROUTINES -

2. PROGRAM CONVENTIONS

A. System calls are made with the first argu-
ment in register R0. When the system call
is made, the contents of register RO are
moved to the per user control block
(user.h) in the variable called u.u_RO. The
remaining arguments of a system call are
moved into the per user control block array
u.u_arg (this means u.u_arg[0] is the
second argument).

B. Arguments or results of executing some
functions are often left behind in the per
user control block. For example,
nami.c/namei decodes a pathname into an
inode pointer. In the process, a pointer to
the inode of the parent directory is left in
u.u_pdir. This means it is eady to make a
directory eatry for a file since the inode for
the directory is available. (See the dccu-
mented header user.h in PR-1C301.)

C. Inodes are always locked during manipula-
tions to prevent simuitaneous update by
two processes. The procedure is to always
lock and increment the usage count of an
inode even if it turns out that a user does
not have access to that file. At the end of
processing of the inode, the usage count is
reduced by 1 if there was an error, and in
either success or failure, the inode is un-
locked.

PD-1C303-01
Section 1
Issue 1, January 1976

Error processing that reflects errors back to
the user are set in the per user control
block error flag (u.u_error). These error
conditions can be referenced by the user
program through the external variable
"errnio”. (Sec Section 2 of Programer's
Manual for list of error conditions.)

If 170 processing is to be done on a device,
the particular driver for that device must be
called. Devices are known by major and
minor numbers stored in an inode.

The system calls the particular device driver
indirectly through the major device
number. A block switch table and character

switch table are defined at system genera-

tion time. The major device aumber is
used as a displacement into this table and
the appropriate routine is called. For exam-
ple, the code:

(*bdevsw(majl.d_close)

will call the close entry point for the driver
associated mith major device "maj".

MALLOCO01 - MEMORY ALLOCATO
File: malloc.c .

malloc

CALL

malloc{mp, size)
int size, *mp;

RETURNS

Address of a memory/disk area of the desired
size. Zero if requested amount of memory/disk
space is not available.

SYNOPSIS

Malloc is used to obiain (allocate) space from ei-
ther main memory or the swap device.

DESCRIPTION

The malloc and malicc.c/mfree functions are
used to allocate and deallocate, respectively,
space either in main memory or on the swap
device using a first fit, low address first algo-
rithm. Two tables of free space are maintained
by the system, one for free core (the array
coremap(l) and the other for free swap space
(the array swapmapll). Each table entry con-
tains the free area size, in 64 byte granuianty for
memory and 512 byte granularity for swap space,
and the free area’s starting address, expressed as
either a memory segment number or disk block
number. The entries within each table are or-
dered by ascending starting address.

When called, malloc does a linear search of the
table pointed to by the first function argument
("mp") for the first entry whose size is equal o
or greater than the second argument (size").
Because no conversion of "size” to the next 64 or
512 byte value is performed and because of the
table updating requirement, the granularity of
"size” must already be in the proper units.
When a free area of sufficient size is found, the
size and starting address of the table entry are
adjusied 1o reflect the allocation of the requested
space by decreasing the size and increasing the
starting address. In the case where the requested
"size" was equal o the size of the free area avail-
able (i.e. the updated size value is zero), that en-
try in the table is eliminated and all of the fol-
lowing entries are moved up. The starting ad-
dress of the ailocated space (either a memory
segment number or a disk block address) is re-
turned. A zero is returned in the case that all
free areas were smaller than the requested size.

PD-1C303-01
Section 2
Issue 1, January 1976
miree
CALL

mfrec (mp, size, addr)
int size, addr, *mp;

RETURNS
No value returned.

SYNOPSIS

Mfrez is used to free (deallocate) space from ei-
ther main memory or the swap device.

DESCRIPTION

Mfree is the complementary function of
malloc.c/malloc, in that it frees (deallocates) the
memory/swap area of “size" that begins at "addr".
In deallocating memory, both "size” and "addr"
are expressed in memory management units (64
bytes), whereas for deallocation of swap space,
"size" is in 512 byte units and "addr” is a disk
block nnumber. See the description of malloc for
an explanation of the tables used to maintain a -
mapping of free space in memory and on the
swap device. :

" A linear search of the free space table pointed to

by the first argument ("mp”) is made 10 find the
first entry Ei whose starting address is greater
than that of the area being freed ("addr®). If
there is no such entry, then Ei is the first
unused slot in the table. The space being freed
(the new free area) is then gntered in the table
(deallocated) in one of four ways.

1. If the free areas described by entries Ei-1
and Ei do not abut the area being freed,
then entry Ei and all following entries are
moved down in the table and the entry for
the new free area is inserted in the ith slot.

2. If the preceding entry Ei-1 abuts the new
free area, then "size” is added to the size of
entry Ei-1.

3. [If the entry Ei abuts the new free area, then
its size is gncreased and its starting address
decreased by “size”.

4. If the new free area abuts both Ei-1 and Ei
(i.e. the area being freed is the hole
between these two free areas). the size of Ei
and “size” are both added to the size of Ei-1.
Entry Ei is then removed and all following
entries are moved up in the table.

VEMO0! - CORE MEMORY
File: memg

mmread

CALL

mmrezad(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS
Read routine for the memory device driver..

DESCRIPTION

Because of the hardware enforced segmentation
of physical memory into virtual address spaces, it
is not possible for a user process to directly
reference any memory locations outside its own
address space. The memory device driver
mem.c. which consists of mmread and mmwrite,
provides the capability to make such references.
In particular, once entries for mmread and
mmwrite are placed in the configuration table
confec (in the cdevsw(] table, since these two
routines emulate raw mode device driver rou-
tines) and the appropriate special files have been
created, the user is free 10 treat physical memory
as if it were a regular file (read, write, seek, open,
close). Of course, the usual restrictions regarding
file access permissions (for the memory special
files) still apply. The minor device numbers
recognized by this memory device driver are as
foilows.

0 All addresses (i.e., file offseis) are interpret-
ed as physical memory addresses.

! All addresses (i.e., file offsels) are interpret-
ed as kernel space addresses.

2 All read requests resuil in a no bytes read
condition; this emulates a zero length file.
Although all write requesis appear to com-
plete, no writing is ever done; this is the
personification of the "bit bucket”.

On any request to read minor device two (low
byte of "dev”). mmread does an immediate re-
wurn. thereby indicating to the 1/0 subsystem an
unfulfilled read request (end-of-file).

For minor devices zero and one it is first neces-
sary to compule the memory segment number
(i.e.. 64 byte boundary) of the segment contain-
ing the physical or kernel address, respectively,
10 be read. When this value has been placed
inlo user space Memory management register
zero. a character (byte) may be read (see
mch.s/fubyte). After restoring the user space
memory management register o ils original con-
ents, the character is passed to the user’s [/O
buffer. This algorithm continues until either
there is an error or the byte count of the read re-
quest is satisfied.

PD-1C303-01
Section 3
Issue 1, January 1976

mmwrite

CALL
mmwrite{dev)

int dev;

RETURNS

No value returned.

SYNOPFSIS
Write routine for the memory device driver.

DESCRIPTION

See memc/mmread for an overview of the
memory device driver, of which the mmwrite
routine is the write portion.

For all write requests to minor device two (low
byte of "dev"), the user’s 1/0 request parameters
(u_count, u_base, and u_offsel) are modified to

reflect the completion of a write request, but no -

data is ever actually written (i.e., the "bit buck-
el").

For minor devices zero and one, a character is
retrieved from the user’s 1/0 buffer. The
memory segment number {(i.e., 64 byte boun-
dary) of the segment containing the physical or
kernel address, respectively, to be written is
computed. After this value is placed in user
space memory management regisier zero, the
character may be written (see mchs/subyte) to
the desired location in memory. The user’s
memory management register is then resiored (o
its original contents. This algorithm continues

until either there is an error or the byte count of

the write request is satisfied.

_‘5"#7«*&

1-

PARTABO1 - TABLE OF TTY PARAMETERS
File: partab.c

partab

CALL
None

RETURNS
No value returned.

- SYNOPSIS

Translation Table to distinguish legal and illegal
ASCII characters.

DESCRIPTION

Several character drivers and tty.c use pariab to
differentiate map ASCII characters into special
functions. The table is made up of translation
values with 0200 ORed in appropriately to pro-
vide the parity bit to the seven bit ASCII charac-
ter. The lower seven bits have the followin
meaning: :
regular character

non-printing character

backspace ‘

newline .

horizontal tab

vertical tab

carriage return

AW e W -0

'&'7«%

PD-1C303-01
Section 4
Issue 1, January 1976

PCO1 - PC-11 PAPER TAPE READ/PUNCH INTERFAéE

File: pc.c

pcclose

CALL
peclose(dev, flag)
int dev, flag;

RETURNS
No value returned.

SYNOPFSIS

Logically closes the
reader/punch.

DESCRIPTION

If the PCll was open for writing (“flag”
nonzero), pcclose logically closes it by punching
a leader in the tape (see pc.c/pcleader). Howev-
er. if the PC11 was being used for reading ("flag”
=), then all characters that were received from
the device but not yet read by the user are
flushed from the input queue (pcin), the reader
is disabled, and the device’s state (pcstate) is
changed to indicate that the reader may now be
used by other users.

PCl1 paper tape

pcleader

CALL
pcleader()

RETURNS -
No value returned.

SYNOPSIS
Punches a leader on paper tape.

DESCRIPTION

Whenever paper tape is used for output, pcleader
is invoked at the time the PC11 paper tape
reader/punch is logically opened (see
pc.c/pcopen) or closed (see pe.c/peclose). This
routine merely punches a leader of a hundred
zero characters.

PD-1C303-01
Section 5
Issue 1, January 1976

pcopen

CALL

pcopen{dev, flag)
int dev, flag;
RETURNS

No value returned.

SYNOPSIS

Logically . .opens the PCl1
reader/punch for input or output.

DESCRIPTION

The pcopen routine logically opens the PC11 pa-
per tape reader/punch. The specific actions that
are taken depend on whether the device is being
opened for reading ("flag" = 0) or writing (“flag”
nonzero).

paper tape

If the PC11 is being opened for reading, pcopen
verifies that the device is not already open for
reading by some other user (pcstate). If it is,
pcopen returns with an error (u_error), since al-
lowing multiple users to read the same tape will
usually prove unacceptable to all of them. Other-
wise, the device’s state (pcstate) is set to WAIT-
ING and pcopen waits for the state to change. A
change of state signifies that a character has been
actually been received (see pc.c/perint); this ploy
ensures that there is tape in the reader and that it
is online. ‘

If the PC11 is opened for writing, pcopen merely
punches a leader in the tape (see pc.c/pcleader).

pcoutput

CALL
pcoutput(c)

int c;
RETURNS

No value returned.

SYNOPSIS

Places a character on the PCI1's output queue
and activates punching.

DESCRIPTION

Before placing the character "¢” on the PCll’s
output queue {pcout), pcoutput must verify that
no device errors have occurred punching any pre-
vious characters. If an error did occur, pcoutput
indicates that fact {u_error) and returns, as any
further attempts to punch would be futile. In the

-2-
PCO1 - PC-11 PAPER TAPE READ/PUNCH INTERFACE

File: pc.c

absence of errors, this routine places the charac-
ter "c" on the output queue and activates the
punch (sec pc.c/pestart). Note that if the queue
is too long, pcoutput may have to wait until it
shrinks to an acceptable length (see pc.c/pepint)
before placing the character on it.

pepint
CALL
pepint()

RETURNS
No value returned.

SYNOFSIS .
Interrupt handler for the PC11 paper tape punch.

DESCRIPTION

As the interrupt handler for the PC11 paper tape
punch, pcpint must reactiviate the punch for the
next character in the output queue (pcout), if
any. It is also responsible for awakening
pc.c/pcoutput if the output queue length has
shrunk to a reasonable length, so that more char-
acters may be placed on the queue.

pcread

CALL
peread()

RETURNS
No value returned.

SYNOPSIS

The read routine for the PC11 paper tape
reader/punch. :

DESCRIPTION

The pcread routine is the interface between the
user reading from the PC1! device and the dev-
ice driver itself. As such, it is called whenever
the user issues a read request to this device.
Pcread attempts to pass to the user’s buffer as
many characters from the input queue (pcin) as
are necessary to satisfy the read request’s byte
count. If there are not enough characters avail-
able on this queue, pcread activates the PCll
reader, waits for more characters to be received
and placed on the input queue (see pc.c/pcrint),
and then continues to pass characters to the user.
Pcread will return once the user's request is
satified: however, it will return prematurely if an

PD-1C303-01
Section §
Issue 1, January 1976

end-of-file is sensed on the PC11 reader (EOF in
pestate, see pe.c/perint) or an error occurs while
passing characters to the user’s buffer.

perint

CALL

periat()

RETURNS

Ne value returned.

SYNOPSIS .

Interrupt handler for the PC11 paper tape reader.

DESCRIPTION

The perint routine receives control when inter-
rupts are received from the PC11 reader. If the
state of the reader (pcstate) is WAITING and a

 character was successfully received from the

PC11, the state is changed to READING (see
pc.c/pecopen for an explanation of the significance
of this). This character is then handled as is any

_other chdracter that is read when the PCl1 is in

the READING state (see below).

When an interrupt is received (i.e., a character is
received) with the PC11 in the READING state,
perint checks to see if an error occurred. Any er-
ror is interpreted as end-of-file and the device's
state is changed to reflect this fact. Correctly re-
ceived characters are placed on the input queue
(pcin) and the reader is reactiviated if there are
not already. too many characters on the input
queue. Whether the interrupt was from a prop-
erly received character or an end-of-file (i.e., an
error), pec.c/peread is awakened in case it was
waiting for more characters to be received and
placed on the inp}_.n queue.

ﬂ!f«'?«'-k

pcstart |

CALL

pestart ()
RETURNS

No value returned.

SYNOPSIS

Activates the PC11 paper tape punch for a char-
acter.

-3.
PCO1 - PC-11 PAPER TAPE READ/PUNCH INTERFACE
File: pc.c

DESCRIPTION

If the PCl1 punch is ready to punch a2 character
and there are any characters in the output queue
(pcout), then the punch is passed the first char-
acter in the queue.)

pcwrite
CALL
pewrite()

RETURNS
No value returned.

SYNOPSIS
The write routine for the PCI1 _paper tape
reader/punch.

DESCRIPTION)

The pcwrite routine is the interface between the
user writing to the PC11 device and the device
driver itself. As such, it is called whenever the
user issues a write request to this device.
Pcwrite collects as many characters from the
user’s output buffer as necessary to satisfy the
write request’s byte count and causes them to be
placed on the PC11's .output queue (pcout; see
also pc.c/pcoutput). '

Rt

PD-1C363-01
Section §
Issue 1, January 1976

RFU1 - RF11/RS11 FIXED HEAD DISK FILE
File: rf¢

rfintr

CALL

rfintr()

RETURNS

No value returned.

SYNOPSIS
Handles interrupts from the RF11.

DESCRIPTION

-1-

Rfintr, as the interrupt handler for the RFI11

disk, performs the functions described in

rp.c/rpintr.

rfread

CALL .
rfread(dev)
int dev:

RETURNS
No value returned.

SYNOPSIS

Interface 10 RF11 driver for "raw” mode read re-
quesis.

DESCRIPTION

Rfread handles raw mode read requests to the
RFI1 disk by calling bio.c/physio. See rp.c/rpread
for a discussion of raw mode device read rou-
lines.

rfstart

CALL
rfsiart()

RETURNS
No value returned.

SYNOPSIS
[nitiates the actual 170 10 an RF11 device.

DESCRIPTION

If there are any 1/0 requests on the RF11 queue
(chained from d_actf in rfiab), rfstart marks the
RF11 as active (rflab.d_active). Afier filling in
the disk address extension error register, rfstart
initiates 1/0 for the first request in the queue by
invoking bioc/devstart. The arguments 1o
devstart reflect the logical device policy of the
driver (see rfc/rfstrategy). as they are the trans-
lation of a logical device block number 10 a phy-
sical device address.

PD-1C303-01
Section 7
Issue 1, January 1976

ristrategy
CALL

rfsirategy (bp)
struci buf *bp;
RETURNS

No vaiue returned.
SYNOPSIS

Piaces an 1/0 buffer on the RF11’s queue of I/0
buffers 1o read/write.

DESCRIPTION
Rfistrategy performs for the RF11 disk the gen-
eral strategy functions described in

rpc/rpsirategy. The 1/0 buffer queuing strategy
employed is strictly First In First Out (FIFO).
The logical device policy of the driver is that the
logical device number (minor device) is taken o
be that value plus one physical devices. For ex-
ample, RF logical device two is viewed as a sin-
gle device consisting of the concatenation of the
three physical drives 0, 1, and 2. The actual logi-
cal device block number to physical device ag-
dress translation is performed by, rf.c/rfstart

rfwrite

CALL
rfwrite(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS
Interface to RF11 driver for "raw” mode write re-
quests.

DESCRIPTION _
Rfwrite handles raw mode write requesis to the
RF11 disk by «cdiling bioc/physio. See

rp.c/rpwrite for a discussion of raw mode device

write routines. i

-9-

RKO01 - RK-11/RX03(05) DISK INTERFACE
File: tk.c

2. If greater than 7, say, 7+4n, then it is the
block interlezving of the first n RKQS drives.
Thus, logical device 9 is the interleaving of
blocks on drives 0 and 1.

The actual logical block number to physical dev-

ice address translation is performed by

rk.c/rkaddr.

rkwrite

CALL
rkwrite{(dev)
int dev;

RETURNS
No value returned.

SYNOPSIS
Interface to RKO3 driver for "raw” mode write re-
quests. ’

DESCRIPTION
Rkwrite handles raw mode write requests to the
RKO5 disk by calling bio.c/physio. ~See
ep.c/rpwrite for a discussion of raw mode device
write routines.

Wit

PD-1C303-01
Section 9
Issue 1, January 1976

[
s

f—

RPO1 - RP-11/RP03 MOVING HEAD DISK INTERFACE

File: rp.c :

rpintr

CALL
rpintr()

RETURNS
No value returned.

SYNOPSIS
Handles interrupts from the RP03.

DESCRIPTION

The block device driver interrupt handling
routines receive control when an interrupt from
their respective devices occurs. All of these
routines perform the samie basic functions.

1. Mark the device as inactive (d_active in the
device’s deviab).

2. Check to see if an error occurred on the
transfer. If so, certain actions unique to that
particular device may need to be taken (e.g.,
reset the controller). The transfer is usually
then reinitiated and is regarded as incom-
plete. An [/O request may be retried up to
ten times before being abandoned as hope-

less: (B_ERROR in the buffer header’s b_

flags).

3. Mark completed requests as such. This is
done both to requests that have completed
successfully and to those that have been
deemed hopeless because of 1/0 errors.

4. Remove the completed re(quests from the
device’s 1/0 queue and initiate 1/0 for the
next request in the queue.

rpphys
CALL
tpphys{dev)
int dev;
RETURNS

Zero if a "raw” I/0 request will exceed the logical
device’s upper bound;, one if it remains in
bounds.

SYNOPSIS

Verifies that a raw mode /0O request to an RPO3
logical device will remain within the upper bound
of that device.

PD-1C303-01
Section 10
Issue 1, January 1976

DESCRIFTION

Because 1/0 requests to RP03s are made to 2 log-
ical (i.e., minor) device and there are many logi-
cal devices on a single physical device, it is
necessary to impose software checks to ensure
that 2 raw miode 1/0 request can be fulfillec
within the confines of the logical device.
Whereas rp.c/rpstrategy ensures that the starting
biock address is valid, rpphys verifies that the
number of bytes to be transferred will not cause
the transfer to overrun the end of the logical
device. A omne is returned for a valid /O re-
quest, otherwise, zero.

rpread

CALL

rpread (dev)
int dev;

RETURNS
No value returned.

SYNOPSIS

Interface to RPO3 driver for "raw” mode read re-
quests.

DESCRIPTION

The read routines for disk and “tape drivers are
the functions that handle "raw” mode read re-
quests for their respective devices.. That is, they
are the interface between users making such re-
quests and the /O subsystem, and are called
whenever a read is done to the raw device. They
usually do little more than invoke bia.c/physio to
do the real work involved with "raw” /O, but are
vitally necessary, as they inform physio of such
things as the device sjrategy routine to invoke to
make the 1/0 request.

-

Rpread merely ven"ées (see rp.c/rpphys) that the
"raw” read request will remain entirely within the
bounds of the RP03 logical device in question
before calling physio.

RPO1 - RP-11/RP03 MOVING HEAD DISK INTERFACE

File: rp.c

rpstart

CALL
rpstari ()

RETURNS
No value returned.

SYNOPSIS
Initiates the actual 1/O to an RP03 device.

DESCRIPTION

If there are any /0 requests on the RP03 queue
(chained from d_actf in rptab), rpstart marks the
RPO3 as active (rptab.d_active) and initiates 1/0
for the first request in the queue. The real work
of activation is done by bio.c/devstart, but rpstart
must fill in an RPO3 controller register that is not
filled in by devstart. Although the physical block
address has already been computed by
rp.c/rpstrategy, rpstart must complete the logical
to physical device mapping by selecting the actual
physical drive.

rpstrategy

CALL

rpstrategy (bp)
struct buf *bp;

RETURNS
No value returned.

SYNOPSIS ‘
Places an 1/O buffer on the RP03’s queue of /O
buffers to read/write.

DESCRIPTION

The strategy routines for disk and tape drivers
provide two major services: to place 1/0 requests
on the device’s queue of pending requests in an
order that is most efficient for that particular dev-
ice. and, to verify that the request’s logical block
address conforms to the logical {(i.e., minor) dev-
ice policy of the device driver. In particular, disk
and tape strategy routines do the following
specific things for each 1/O request, which the
driver sees in terms of a pointer "bp" to a buffer
header (struct buf):

1. Verify that the block address given in the
1/0 request is a plausible address for the log-
ical device being read/written. That is, en-
sure conformity to the legical device policy
of the driver.

PD-1C303-01
- Section 10
Issue 1, January 1976

2. For devices that have several logical devices
on a single physical device, translate the
lock address on the logical (i.e., minor)
device to a true block address on a physical
device. The remainder of the translation
(selecting the physical drive) is peformed
elsewhere, usually in the driver’s start
routine. Note that for drivers that map a
logical device to one or more physical dev-
ices this step is omitted and the address
translation is done elsewhere, usually in the
driver’s start routine.

3. Place the 1/O request in the device’s queue
of pending /O requests (work to do queue).
‘The location within the queue where the re-
quest is placed depends on the queuing stra-
tegy being employed for the device. The
queue itself is chained from d_actf in the
device's devtab (e.g., rptab, rftab, etc.) Im-
mediately prior to rechaining the queue to
insert the request, the processor’s hardware
priority must be raised to that of the device
to disable interrupts from the device.

4. Cause physical /O to be initiated if there are
no previous requests currently being ser-
viced.

The strategy routine for thg RPO3 disk, rpstra-
tegy, performs all of the above functions. The
logical to physical device mapping is accom-
plished by dividing the logical (i.e., the minor)
device number by eight. The quotient of this
division is interpreted as the controller drive
number and the remainder is the logical file sys-
tem on that drive. For example, a minor device
number of 13 is construed to be logical file sys-
tem five on physical drive one. Each physical
drive is divided into eight logical file systems as
follows: 2

*
Cylinders

File # # of blocks

0 0-202 40600

1 203 - 405 40600

2 0-45 9200

3 360 - 405 9200

4 0-327 65535

5 78 - 405 65535

6 unused

7 unussd

-3-
RPO1 - RP-11/RP03 MOVING HEAD DISK INTERFACE PD-1C303-01
File: rp.c Section 10
‘ Issue 1, January 1976

The queuing strategy used is the “elevator” tech-
nique. That is, when a request is made, if there
are none or one other request on the queue, the
new request is placed at the end of the queue
(First In First Out (FIFQ) strategy). If there are
already two or more pending requests, the new
request is inserted so that all requests on the
queue are in cylinder number order. Whether
this order is increasing or decreasing by cylinder
number is established when there are two re:
quests on the queue. All requests for the same
cylinder are handled in & FIFO manner.

rpwrite

CALL

rpwrite(dev)
int.dev;

RETURNS
No value returned.

SYNOPSIS

Interface to RP03 driver for "raw” mode write re-
quests.

DESCRIPTION

The write routines for disk and tape drivers are
the functions that handle "raw" mode write re-
quests for their respective devices. That is, they
are the interface between users making such re-
quests and the [/O subsystem, and are called
whenever a write is done to the raw device.
They wusually do little more than invoke
bio.c/physio to do the real work involved with
"raw” I/O, but are vitally necessary, as they in-
form physio of such things as the device strategy
routine to invoke to make the 1/0 request.

Y

Rpwrite merely verifies (see rp.c/rpphys) that the
"raw” write request will remain entirely within
the bounds of the RP03 logical device in ques-
tion before calling physio.

frone

TCO1 - TC-11/TUS6 DEC TAPE INTERFACE
File: tc.c

teclose

CALL

teclose{devi
int dev;

RETURNS
No valus returned.

SYNOPSIS
Logically closes the TC11 DECtape.

DESCRIPTION

Tcclose is the device close routine for DECtape.
[t accomplishes its function by merely forcing all
of the write behind buffers for the device "dev”
to be written (see bio.c/bflush).

teintr

CALL
teintr()

RETURNS
No value returned.

SYNOPSIS
Handles interrupts from the TC11 DECtape.

DESCRIPTION

As the interrupt handler for DECtape, tcintr’s
first responsibility is to determine if an error oc-
currred on the controller command. If this is the
case and it is the twentieth error to occur for the
current DECtape 1/0 request, then the 1/0 is
marked as complete but in error and abandoned
as hopeless. Otherwise, the error is handled by
issuing a read block number command for the
block for which the transfer failed. This necessi-
tates reversing the tape’s direction, which in
essence means that the block search is reinitiated
for the block number of the I/0 request. Tcintr
then returns, as it will receive control again when
the read block number command completes and
causes an interrupt.

In most cases, however, an error will not occur.
Tcintr continues the block search that was initiat-
ed by tc.c/testart, or, as described above, by
tcintr itself. This entails merely comparing the
current block number with that of the current
pending 1/0 request, and issuing a read block
number command for the forward or reverse
direction as appropriate. Thus, the tape is ad-

~vanced in the proper direction to locate the

desired block. Since a DECtape interrupt is gen-

PD-1C303-01
Section 11
Issue 1, January 1976

erated anew for each read block number com-
mand, it is necessary for tcintr to return after
each such command to prevent recursive stacking
of tcintr calls. -

Vhen the block number of the desired block is
encountered while advancing the tape in the for-
ward direction, a command to actually read or
write the user’s data is issued and tcintr returns.
If the tape block search is proceeding in the re-
verse direction, then the search is actually made
for the desired block pumaber minus three.
When this block is encountered, the tape direc-
tion is reversed (to the forward direction) and
the search resumed. Of course, the desired block
is found almost immediately and the 1/0 is per-
formed as previously described. This three block
tactic is vital to ensure that the tape is up to
speed in the forward direction before attempting
the actual 1/0.

When tcintr receives control after a completéd
read or write, the I/0 request is marked as com-
pleted and, if there are any requests remaining
on the queue, tc.c/tcstart is called to initiate [/0
for the next request in the queue.

testart

CALL
testart()

RETURNS
No value returned.

SYNOPSIS

Initiates the actual 1/Q procedure for TC11 DEC-
tape. '

DESCRIPTION

If there are anz 1/0 requests on the TC11 queue
(chained from d_actf in tctab), tcstart initiates
the actual 1/0 procedure for the first request in
the queue. Because of the random block access
property of DECtape, it is first necessary to
determine the tape’s current position. Tcstart
merely initiates this process; the remainder of the
positioning to the proper tape block is carried out
by tc.c/tcintr.

7

If the last commmand to the DECtape controller
was not to the same logical device as the current
[70 request, a command to stop all transports is
first issued. Note that for DECtape, the logical
device number is interpreted as the physical drive

Lo

TCO1 - TC-11/TU56 DEC TAPE INTERFACE
File: tc.c

number. The controller is then issued the read
block number command for the drive the current
1/0 request is for. This command is usually for
the forward direction, but if the drive is not up to
speed (i.e., the stop all transports command was
previously issued), it is for the reverse direction.
In any event, the command is always issued with
interrupts enabled, so that upon command com-
pletion the DECtape interrupt handler tc.c/tcintr
receives control and evaluates the results.

testrategy

CALL

tcstrategy (bp)
struct buf *bp;

RETURNS
No value returned.

SYNOPSIS

Places an 1/0 buffer on the TC11’s queue of 1/0
buffers to read/write.

DESCRIPTION _

Tcstrategy performs for DECtape the general
strategy functions described in rp.c/rpstrategy.
The [/0 buffer queuing strategy employed is
strictly First In First Out (FIFO). As might be
expected, the logical device number is taken to
be the physical drive number. .

-

-2-

At

PD-1C303-01
Section 11
Issue 1, January 1976

TMOL « TM-11/TU-10 MAG. TAPE INTERFACE
File: timc

The block address verification for magnetic tape
is. because of the medium’s sequential nature
and the attenipt o have ji emulate a disk file
Sysiem, more complex than that of most strategy
routines and therefore merits _elaboraiion. A
block number counter (t_nxrecl) is maintzined
for each drive. An I/G request may not be inj.
tiated 10 a block number exceeding the valye of
the drive's counter. Specifically, when the dev-
ice is opened (see tm.c/tmopen), the value of
this counter is set 10 the size of the largest per-
missible file (65535 blocks). As long as only
read requesis are made. the value of the counter
does not change. However, whenever a write re-
quest is made, the counter’s value is set to the
requested block number plus one (which will be,
for almost all cases, 1he number of the block that
- will be written next). For every read or write re-
quest, the block number of the request is
checked aguinst the counter. If the request’s
block number exceeds the counter value, then
the request is marked as complete but in error
{u_error). Otherwise the request is considered
valid. A special case is the situation where a
read request is made for a block number that
equals the counter’s vajue, This could occur, for
example, if records are being read and wrilten
and a reud is issued for block n + | immediately
after writing block n. In this case no actual [/0
takes place, but the user's /O buffer is zeroed
and the 1/0 requesi is marked as completed.

tmwrite

CAaLL
tmwrite(dev)
int dev:

RETURNS
No value returned.
SYNOPSIS

Interface 10 TM1] driver for "raw” mode write
requests.

DESCRIPTION

Tmwrite handles raw mode write requesis (o
TM11 magnetic tape. See rp.c/rpwrite for a dis-
cussion of raw mode write routines. Before caj-
ltng bio.c/physio 10 do the real work, the starting
block number of the request must be calculated
by tm.c/tmphys.

3.

PD-1C303-0] l
Section 12
Issue |, January 1976 "

1
1

ﬂ@‘,—:&’?

TTYO01 - GENERAL TYPEWRITER SUBROUTINES

File: tty.c

canen

CALL

canon{atp)
struct tty *atp;

RETURN

An indication of whether any characters have
been transferred from an teletype input queue to
a teletype canonical queue is returned.

SYNOPSIS

This is the Canonicalizer. It transiates a line of
input into a standard Form (called Canonical
Form) and performs erase-kill processing.

DESCRIPTION

Basically, a teletype may select one of two pro-
cessing modes; line at a time processing or char-
acter at a time processing (raw character 1/0Q).
The difference between the two as far as the
response seen by a user is that for line at a time
processing, a read of a teletype does not return
until a whole line of input is accumuiated while
for character at a time processing, a read returns
one character, regardless of whether a whole line
has been received or not. Erase-kill processing is
performed for line at a time processing but not
for character at a time processing, and special
characters, such as quit, interrupt and EOT lose
their meaning in raw mode

The input queue (or raw queue "t_rawq") con-
tains delimiters to mark off the amount of input
that is to be examined by tty.c/canon. The del-
imiter used is 0377 (octal). For. character at a
time processing, the delirniter is placed after each
character, while for line at a time processing the
delimiter is placed after each line feed or carriage
return (by tty.c/ttyinput). Tty.c/canon is called
by tty.c/ttread to read a teletype and put one del-
imited string of input in Canonical Form so that
it can be transferred to the user process. Pro-
cessing of a delimited string is handled as fol-
lows:

1. A check is made to see if any delimited string
has beeh accumulated from the teletype. If
none has been accumulated, tty.c/canon road-
blocks the process that requested the Canoni-
calization of input. The process is roadblocked
at priority TTIPRI and remains roadblocked
until a delimited input string has been accu-
mulated. The tty.c/ttyinput function awakens
a process when a delimited string has been
received. Before roadblocking the process, a

PD-1C303-01
Section 13
Issue 1, January 1976

check is made to see if carrier has been
dropped on that teletype by checking the "t
state” flag in the associated teletype structure.
The receive interrupt handler for the indivi-
dual line interface drivers can detect whether
carrier has been dropped and will set an
indicaior(CARRIER) in the teletype
structure(in "t_state”). To prevent the status
of the teletype from changing while the check
is made, interrupts from character devices are
locked out by setting the processors priority
to §.

. Characters are transferred one at a time to the

Canonical Buffer "canonb” until one of the
following occurs,

a. There are no more characiers on the in-
put queue("t_rawq").

b. The first delimiter(0377) is reached.

c. The size of the Canonical Buffer has
been exceeded (currently 256 characters).

. As the characters are transferred to the

Canonical Buffer, they are put into Canonical
Form and erase-kill processing is performed.
The following transformations are made:

a. If a teletype is set for upper case only
mapping, then the following transforma- -
tions are made

Input Canonical Form

(2 Characters) (1 character)
v .

\! |

\‘ > -

\ \

\ o

Y, 8 }

\lower case upper case

alphabetic ®

b. The character "#° erases the previous
character from the input stream. No char-
acter before the first character on a line
may be deleted.

alphabetic

¢. The character *@’ «kills an entire line of
input. All of the input up to and including
the @ is deleted from the input string. No
lines before the line ‘n which the '@’ ap-
pears can be deleted.

| -2-
TTYO! - GENERAL TYPEWRITER SUBROUTINES

File: tty.c

4 As characters are placed in the Canonical
Buffer ("canonb”), they are deleted from the
input queve (“t_rawq"). Once a string bas
been placed in Canonical Form and erase-kill
processing performed, the canonicalized string
is transferred to the canonical queue ("t_
cang") associated with the teletype and an in-
dication that processing has been completed is
returnied to the calling routine (tty.c/ttread).

cinit
CALL
cinit().

RETURNS
No value is returned.

SYNOPSI
The character buffers ("clist™) are initialized.

DESCRIPTION

The character buffering scheme used in the
UNIX Operating System utilizes a pool of six
byte buffers that are available to all of the charac-
ter devices on the system. The buffers are or-
ganized as a linked list (“clist™) and each six byte
buffar contains one extra word which is used as a
pointer for queuing a buffer on 2 device. One
hundred buffers are normally allocated for char-
acter storage. A globally known pointer (“cfreei-
ist") contains a pointer to the first free buffer.
Each free buffer contains a pointer to the next
buffer and the last on the "cfreelist” queue con-
tains a zero in the pointer entry.

After UNIX is booted into memory the "clist” is
initialized as part of the startup procedure.
(Main.c/main calls it.)

In order to simplify the work that must be done
by the assembly language functions mch.s/putc
and mch.s/getc in allocating and deallocating
character buffers, a trick is used in initializing the
storage that is used for the “clist” buffers. The

method forces the allocation of each character -

buffer to occur on an eight byte memory address

even though the buffer definition may not occur

on an eight byte boundary. This means that

even though the overall storage called for is

defined 2s one hundred character buffers, only

ninety-nine may be present because of the boun-
ary adjusiment.

PD-1C303-01
Section 13
Issue 1, January 1976

Another function performed by tty.c/cinit is to
determine how many character devices there are
on the system so that higher level functions may
chieck major device numbers (o insure that they
are within range when accessing the Character
Device Switch. Table. The global variable
*nchrdev” is set to the number of character dev-
ices (i.e., effectively the maximum value that the
major device number may be for a character dev-
ice).

flushtty

CALL

flushtty (atp)
struct tiy *atp;

RETURN .
No value is returned.

SYNOPSIS

The input queue, canonical queue and output
queue associated with a particular character dev-
ice is emptied and the buffer storage returned to
the freelist.

DESCRIPTION

There are a number of reasons why the queues
associated with a character device should be
flushed out. For character devices which are
connected o a computer over Comumon carrier
lines, the possibility exists that the connection

- may be broken at any time so that outputting

characters to that teletype is impossible. Charac-
ters accumulated in the input ("t_rawq"), canoni-
cal ("t_cang”) and output ("t_outq’) queues
would then be a stranded. They would be
queued on a character device which would no
longer be able to accept output or stimulate input
processing and thus empty their queues. The
tty.c/flushtty fBnction allows the interrupt
bandlers associated with each line interface driver
to clean out the queues if they detect that the
connection has been broken (carrier dropped).

Flushing everything in the queues associated

‘with one teletype is also done when some process

closes a teletype. This must be done so that if
input is accurnulated before the close is issued,
the characters in the input queue will not be
stranded. A teletype’s queues are also flushed
when either of the special characters quir (delete)
or interrupt (control FS) are received from a tele-
type. These characters have a special meaning to

R

/=; e -::-‘ - ,«,Q l ’“4/”,

rva

P i‘ ey s o FRR
T e T i - ”

M Py " N .“

)

TTYO01 - GENERAL TYPEWRITER SUBROUTINES

File: tty.c

the system when the teletype is set up for line at
a time processing. They indicate to the system
that processes which are controlled by the tele-
type issuing the quit or interrupt should be ter-
minated (unless they have made other arrange-
ment via the signal system call). In this case it is
desirable to flush the output to the controlling
teletype as well as input from the teletype so that
output from the terminated program is not print-
ed and any commands that have not yet been
acted upon can be dropped.

Flushing out of the three queues is a delicate
operation. Both the canonical ("t_canq”) and
output queues ("t_outq") may be flushed without
any precautions, however, all processes waiting
for input from the teletype or waiting to do out-
put to the teletype must be awakened to insure
that there will be no processes hung in the sys-
tem waiting for /O that can never occur. In ord-
er to flush the input queue, interrupts from char-
acter teletypes must be locked out so that a race
between flushing and accumulating characters
does not occur. Once the input queue is flushed,
the delimiter count ("t_delct") is zeroed to indi-
cate that there are no lines of input in the raw
queue.

gtty
CALL
gty O
RETURNS

The tty.c/gtty routine does not explicitly retuin a
value however, a three word array containing the
speeds and mode of a teletype is returned as a
result of calling it.

SYNOPSIS

Implements the gtty system call. " Obtains the
modes and line speed of a teletype.

DESCRIPTION

" This function performs the inverse operation of

the tty.c/stty function, that is, it returns to a pro-
cess the line speed and modes for a given charac-
ter device. The three word array that is returned
to the process making the gtty system call is as
described under tty.c/stty. Both tty.c/gtty and
tty.c/stty use the tty.c/sgtty function as a com-
mon subroutine to interface to the sgtty function
associated with a character device.

PD-1C303-01
Section 13
Issue 1, January 1976

sgity

CALL
sgtiy (vector)
struct {

int v[3];
} *vector;

RETURNS
No values are returned

SYNOPSIS

Interfaces tty.c/stty and tty.c/gtty to the ap-
propriate character device sgity function
(dk.c/dhsgtty, de.c/desgtty, ete.).

DESCRIPTION

Sirice the functions of the stty and gtty system
calis are similar, a common subroutine is used
to interface them to the character device sgtty
functions (dh.c/dhsgtty, dc.c/desgtty, etc.). The
argument "vector” is either the address of a three
word array within the system in the case of
tty.c/gtty (so that the device characteristics may
be returned in the array) or in the case of
tty.c/stty, “vector® is zero. The pointer "vector"
is passed to the character device sgtty function
and is used to determine whether the existing
characteristics are to be returned or whether new
characteristics are to be set up:

As part of the stty or gtty system call, the file
descriptor and hence the device number for the
character device is passed. The calls have the
following form,

stty (fildes, arg)

int fildes;

struct |
char ispeed; ospeed,
int unused;
int mode;

} *arg;

and
gty (fildes, arg)

The file descriptor is passed in register RO when
the system call is made and the tty.c/sgtty func-
tion must obtain it from the stack frame so that
it can be used to find the major and minor davice

‘number of the device. The function fio.c/getf is

used to get the i-node associated with this file
descriptor. In order to protect the devices on the
system or the system itseif from a bad file
descriptor passed in the system call, tty.c/sgtty

