S,

APR-80 MAT~80 ,' o | VoL II HO IV
- AUSTRALIAN UNIX USERS GROUP NEWSLETTEZR

{

e

B T L g g T N S N T P E T T
This document may contain ipformation covered by one or
more licenses, copyrights and non-disclosure agreements.
Circulation of this document is restricted to holders of
a license for the UNIX software system from Western
Electric. Such 1license holders may reproduce this
document for uses in conformity with the UNIX license.

All other circulation or reproduction 1s prohibited.
FERERARRARIBAXARRERERARRREAAAERRERXARAXAAASAR R R Sdhk otk ik L hik

O X N X W
W o% ¥ ¥ 4 B

In This Issue

Another issue packed with goodies. 1In this issue you will find a few of the
geodies held back last month, material from the Canadian newsletter (Vol I Ho
I), local news and the inevitable mail. Recently I have not askad fo
contributions, but as the flow of material seems to be slowing, NOW IS THE

8

3]

~TIME for all you people out there to START WRITING.
.Reading the last issue of AUUGN, subscribers will have noticed the papar by

Bill Joy called "Comments on the performance of UNIX on the VAX." This
referred to another paper by David Kashtan from SRI, but at the time we were

unable to obtain a copy of thls paper. We have it now, so now the picture is
conplete. :

- If you have ever wished to marry a PDP1l to a VAX, them the paper "A PDP-11

Front-end for a VAYZ-11/780" is for you. Sorry about the poor quality of the
copy, but a good copy may be obtained from the DECUS conference proceedings.

If anyone out there is interested, we have an edlteu (note Ianj) tranmscript of
Ian Johnstones view of the last US meeting.

Next User Group Meeting

As most of you will know, the next meeting will be held Wednesday July 2ad at
the University Computing Centre, Sydney University. In case you lost the form
already mailed to you, there is another on the back of this issue.
This is not to be confused with the world UNIX meering in Melbourme dn
October. T will have much more detail on that meeting next issue.

AUBGN | . . B 1

UNIX Licenses

Prospective UNIX licensees often have numerous hurdles to cross on the way to
their first “login:”. Experiences at UNSW as well as elsewhere in Australia
where people not entirely knowing what to ask for, who to ask it of, and how
much to pay for it when they got it, have lead to a lot time wasting (even by
air-mail) correspondence. Irma Biren, Bell’s first line of defence in these
matters, is as helpful as she can be from that distance. Indeed, Ms Biren has
once or twice asked Ian Johnstome to ask the Australian User Group (by an
international network mail link) to help a prospective user sort out what they
want and the fastest way to get it.

The last time I did this, Ms Biren commented that a wide circulation of letter
might do a lot of good. Well, its in this issue. If you know someone who
wants a UNIX license, particularly an “Academic Use” omne, then the letter may
help smooth the way.

Bi-monthly Moan

The score so far is:

Readership 68
Site Surveys 10
Software Catalogue Offers 7

A Drop in the Ocean

Peter Ivanov

PO Box 1
Kensington 2033
AUSTRALIA

(02) 662-3781

2 , — , AUUGN

~ Dept. of Computer Sciemce
Electrical Engineering

GEQEGIZ TLCH
: SOETWARE TOOLS SURSYSTED
e L)
NEW TOOLS
‘pifft file comparator
Can produce summary of differences between files, editor script
to convert one fi{e intos anather, or formatter 1ﬁDUt text to
produce editi of a document with revision bars
YYref' Ratfor cross-reference neverat
tRsa' public-key cryptosystem
An imptementsztion of the Rivest=Shamir-Adleman system using
exponentiation module a composite modulus
"Memot* memorandum handler
CAllows the user to specify by a logical expression the times
a memo will ba displayed and the time at wnich it viil be
deleted ’ ‘ '
'Stacct cem;=l‘r conm 1l“r
Converts an extended FMF grammar ww*h 1mbeadeu actions into
a parser writtsn in Ratfor.
t Dy B - [L &IPS .
Rp' extended Ratfor preprocesscr
trjeldt columnar data manipulator
Cut=and=paste editing of dets fields, insertion of arbitrary
strings, stc.
"File' Tile attribute tester
Tests for existence, Llenqgth, nprotection attributes, etc.
'Help' on=line documentation retrisver
Select documentation by nare of prograr or subroutine,
by pattern match on reference marual index, or from
reference manus I table of contents.
"Also allovs Trieval of usage summary.
3

"Set' screen~uriented text editor

Upward
Allows

compatible with the line editor frem Software Tcools.
vertical and horizontal cursor motion, character
insertion, deletion, transtiteration.

'Sh* extended command larnguane interpreter (shell)

Pireline syntax extended to handle nonlinear process
networks; “"function calls" allow outout of procrams to
be substituted back intoc command lines dynamically;
"distribution" allows common text to he factored out of
many similar commands; "compound nodes'" c¢croup a number
commands intc a unit syntactically eaquivalent to a

command
control
command

{(for use in picelines, mostly); variabtes and
structures make extensive programming in the
languace easy and effective.

i

NEW LIBKARY ROUTINES

Binary Input/Qutput

num_words_read = readf (buffer, buffer_lencth, file)
pum_words_written = writef (buffer, buffer_Llerncth, file

File Position Control

curren

t

_position
success_or_error

markf (file)
seexf (file, position, relative_or_aza

1

Conversion Poutines

length
value
value
value
lenath
Ltength

tenath
length
length
tangth
Ltength

il

i

i

t}

H

ctop (string, start_pons, packed_string, maxlen
sctei (string, start_pos, default_base)
ctor (strins, start_pos)
ctod (string, start_pos)
“¢tov (string, start_pos, char_var_string, maxl

ctoc {(strincgt, string?2, maxlenoth)

rtoc (packed_strinag, delimiter, strinz, maxlen
¢gitoc (value, strino, maxlength, thase)

rtoc (value, string, width, decimal_places)
dtoc (value, strinm, width, decimal_places)
vtoc (char_var_string, strinc, maxlenath)

of

)

bsolute)

gth)

enath)

gth)

AUUGN

sttt e e et i it e LD S0 S T S D i it S it bt e S

New Statements
~ : 4
ction fron mutt1 Lle alternatives
t separate w.;zp1iczt1on
in-line generatiocn of symbol

Select? staterent for kEL

‘L1ﬁ&a;e' statement fo assis

PString_table! statement for
. tables

Multilevel 'break! and 'next!

tReturn® statement al expression to be returned as function
value '

"Internzl Procedures

2 ive internal procedures
Compound statements can beoin new scopes with local variables

Lexicatl {hanges

In-line character constants: ECS-terminated strings,
nacked strirags, PL/T character-varying

String continuation across Lline boundaries

Case significant in identifiers 4 «

Leng varjabile names with all charecters sianificant

Assignrent onerators (+=, *=, &=, etc.)

Arbitrary radix dnteger constants in the style of Algol 62
Keywords are NnowWw reserveq

Frofiline and Tracing
Subroutine execution profile (no. of calis and timing)
Subroutine trace during execution
Statement=-level execution profile

Migcellanesous
Macros with named arourments
Automatic inclusion of standard definitions
Shert-circuited conditions (£, ||) atlowed anvwhere Ratfor

parses conditions
togical expressions are simplified autematically

Implementatior
Irplemented with compiler-compiler written in Fatfar
Fultiple outnut streams eliminate need for declaration craurvnu
Mew varisbles may he generated without fgar of conflict with
user variables

SAMFLE *STACC' INFUT (FROM RATFOR PREPFOCESSCR)

qif_stmt =>- _

integer lab, neatab
integer lLabgen
nealab = laboen (1)
False_branch = neglab

par_bool_exor

7 state = ACCEFT
{ MEWLINE 3} '
ratfor_code
L ELSESYM

' Llab = labgen (1)

V' gcall cutgeo (Llahb)

¥ ¢call cutrum (neqglab, CCDED
? cal

L outnum {(neglab, CODE)
{ NEWLINE 3} ‘
ratfor_code
P ocall sutnum (lab, CODE)D
]

L X}

SAMPLE YSELECT® STATEMENT
#‘gatéiz -== peturn size of pattern entry at pat (n)
integer function patsiz {(pat, n)

character pat (MAXPAT)
intecer n

select (pat (n))
when {(CHAR) A

return (2)
when (B3L, EOL, ANY)
return (1)
when (CCL, MCCLD
return €pat (n + 1) + 2)
when (CLOSURED
. return (CLOSIZED
else
call error ("in patsiz: can't happen.'")

return
end

SAMPLE INTERNAL PROCEDURE

define (TETEERERPTH, 100)
define (LEFT {(noge), Mem (node)d)

define (DATA (node), Mem (node + 1))
define (RIGHT (node), Mem (node + 2))

procedure treerrint (node) recursive TREEDEPTH
if (node "= NIL) {
treeprint (LEFT (node))
call putdec (DATA (rode),
call puteh (NEWLINE, STDOUT) :
6 trezprint (RIGHT (nade)) : AUUGN
}

? call synerr ("missing condition."')

B T [e e e e e S e B, s e i it et i e) B At A g s S i s e it L R S0 0tk i e et i B e et et o

LOMG MAME HANDNLING

I¥f 2 name gontains
~ more than 4 characters >
-~ .an upper case letter o T
= a zero in nposition & o :

then it must be "unigued" as follows:

1. If the nawe has been seen before, simply return its

(2%}
°
o
o
[}

i

the name toc 6 characters with upper case "A".

La

« Map lower case to upper case.

B~

. Replace the sixth character with a "0©,

5. If the new name has never been seen or gensrated bhefore,
enter it as the replacement for the oriainal name.

6. Otherwise, “"increrent" the secend throuch the fifth
characters and no to step 5. '

A RUNNING EXAMFLE

input T output ueoicue nzme table

Q
Z
G
=
"]
=
-]

Longname tonaname

Lot § LONGHL
Lonaname? LONGOD lonename? LONGGO
MEM MEMAALD MEM MEMARD
bbbbhl BEFPR(. bbbbbo ERRBE(
longn(LONGPE tonaonQ LOMGFD
longname LOMGND ‘

1] {f'
AUUGN 7

sausd puur Uiel expeiase it they hope

I ee et VIRIMDELSIUP, O

shows and conterences, meanwhile, puter Science Department, Stanford

-
¥
32
*
£
i
&
T
3
by

3

e

by S

%‘!’l . = f.' : B .""“-ﬁ . LR R D
5 X e =

¥ R B ~ w : lg\

‘; e @ TN =g Ve

-.Now even someone with no computer pro-
- gramming background can be quickly trained to use
a powerful operating system. The UNIX™ System.
UNIX Systemsare time-sharing dperating systems
that are easy to program and maintain. So easy, in

- outside the Bell System. : S
... - UNIX Systemsgive fast, efficient data processing.
" " "They feature more than 100 user utilities. The result
 -is a computer that's easy to operate. More accessible.
UNIX System, Seventh Edition, and UNIX/
32V System. The new UNIX System, Seventh
. " Edition, offers greatly enhanced capabilities, includ- -

B

- cations. The Seventh Edition is designed for PDP-11
- minicomputers. For those needing its capabilities on
a larger machine, the '

UNIX is a Trademark of Bell Laboratories.

B e A 1T A T

operating systom that doesn’t reiauire
~a computer programimertouseft. -

: e U -

. fact, that more than 800 systems are aiready inuse - -

ing a larger file system and inter-machine communi- -

i to keep pace with technical innova- will take place Aug. 19-21 at Stanford University, Palo Alto, Calif. 94305. .
. . : . :] . .

: . T SR - SRR S s AR o '_~ - .

oo T T Nowthere's a computer . ’ L

Both the UNIX System, Seventh Eéition, and

‘theUNIX/ 32V System can support up to 40 users

with FORTRAN 77 and high-level “C" languages. -
- Programmer's Workbench. For large software
design projects, the PWB/UNIX System (Pro-

~grammer’s Workbench) allows up to 48 programmers

to simultaneously create and maintain software for

- many computer applications. The PWB/UNIX Sys-
~tem features a unique, flexible set of tools, including
“a Source Code Control System and a remote job entry

capability for the System/370.

Developed for our own use, UNIX Systems are
available under license from Western Electric and
come “as is”. With no maintenance agreements, no

. technical support. :

" For more information about UNIX Systems or -
other Bell System

UNIX/32V Systemn e = mm v o s m om0 £ 3 R S R S e e Rn S S Software, complete
is presently available § To: Bell System Soltware : g the couponand mail to
1 . forthe VAX-11/780. g P.0. Box 25000, Greenshoro, N.C. 27420 j BellSystem Software,
: i The Sevfinth gdét}i()tn S Please send me more information about Bell System software packages. i 1();.0. Box 230}%0.‘
N improve ?O E,l ! l - 0 UNIX Systems. -(J Other Bell System softwere packages. reenSerO’ .
= .. featuresallow users Rt . : § 27420.0rcall
: to adapt it more easily Name o B 919-697-6530.
:{ . toother computers. § Tite Company 1 Telex 5109251176.
a LT e LRl § Address - - b - ' R
' = i City State Zip . I o=
é ; R - I Te[e.p}i(me' Har&ware ‘ | :
o e
0

AINICN

INTRU(T1PS) PWB/UNIX Jan 80 ' INTRO(T1Ps)

NAME .
intro = intreduction to 11PFs

DESCRIPTION
dIiBs (the Tilbrook Information Processing System) is a data
pase management and an output system-for small text data
bases. It was designed and created by Uavid m., Tilbrook,
while he was at Human Computing Kesources, for Soft Arkiv
(both in Toronto, Canada), as a demonstration at the 10th
Sculpture Conference, which was held in Jui.e 1976 at York
University, in 7Toronto,

Inis manual section will brietly describe 11Ps data bases
ana sottware., More descriptions are available in the reier~
enced manual sections., A description of the installution ot
the system 1s included 1n tnls document,

THE LATA BASES : .
4 TlPs data base consists of & descriptive tile {(nhencefortn
called the protile), and one Or more data files. Normally.
4 uata pase is contained in & directory ot its own. There
will ve tnree files called profile.c, .eprofile, anc .fipro=
tile. These are the original initialization, and the
English and French profiles respectively, The data files
should be names "#*.,4°,

ihe profile contalins the names and structures of all classes
of information in the data pase, For a full description of
‘protiles and how they are constructed, see Makeprot(llEs).

v 1he data files are neormal UNIX text tiles (thus they can be
- edited and created witn standard UNIX-tools). They can con=
! : tain one or more complete entries. An entry can be thought
' Of as a setl 0f records describing a single opbject, Ffor
example, in a data base of sculptors, an entry would be the
bipliographic information about one artist.

All entries are divided intoc classes (i.,e., records) ot
information. Each record contains information about one
aspect of the entry, For example, In the artist data bpase,
there could pbe records fcr tne artist’s pirth date, adaress,
. or exhivitions. Eacn record nhas a unigue two letter iden=
. , tifier (henceforth called the tag).

For the most part, an entry can contain zero or more
occurrences ¢of any record. There is no required order tor
the records. The exception to the above is the *name’
record {(the tag is always °‘na’). Lkvery entry must begin
with an "na’ record, and the occurrence of a subsequent
line indicaftes the beginning of tne next entry.

. .

na

INTRU(TIPS) PWB/UNLIX Jan 80 INTRO(TIFs)

Kecords are entered as lines of text. The first four char-
acters of the first record line are an °*%°, the tag followed
py a tab character (ASCI! 01i). Such lines will hence forth
be called ‘tag lines.’ The text for a record ends at the
next tag line or tne End of File.

There are three different classes 0f records. These are: 1)
FI1ELDs; 2) LISTs; and 3) TeXl. The subentry’s type 1is set
in the protfile,.

F1ELDU records are used to contain information that consists

- 0ot related parts. For example, in the artist dgata base, the
artist’s address was contained in a FlkLyu record. 1Tne
fields were street, city, province or state, country, and
postal code. 1Inh the data ftiles, tielas are separated tron
each other by tab characters, or NewLInNES (ASC1I 012). The
last field of a FIELDs record can be narrative text. 1t nmay
contain literal tab characters. {(See Makeprof(TlPs) for
complete description of the text entrye.)

L1ST records are . used to contain . groups c©f eguivalent units
of information (e.g., the list of organizations an artist
veiongs to.) In the data tiles, a LISY recorag line can coh=
tain as many list elenents, sepsrated by tab characters, as
gesired.

TEXT records are used to contailn text. The text begins

imnmediately after the tab following the tag, ana continues

up to the next tag. Any containea tab characters are kept.
EXAMPLE DATA. BASE D1RECTORY

- ‘ The following could be a list of tiles in a sample TlPs data
base.

oeprotile Englisn protile
.fprofile French profile

datall.d a data file
datal2,.,d YADF {Yet another datd tile)

desc) A short description of data base.
.profile.c Profile initializaticn

The ‘desé’ file is optidnal; Its. contents are displaved by
guery for informational purposes.

A alternative language profile is not required to run the
system. 7The default profile is °.eprotile’, thus ‘.fipro-
tile® can be removed. (Sorry Rene.)

lhe ‘profile.c’ tile is required by Makeprof(TIPs) only.

Tne files ‘data®.d’ are the files containing tne TIPs
entries. AN example entry follows. For readability, tan

.

10 - -2 = AUUGN

LR R

INTRU(T1PS) « " PWB/UNIX Jan 80 - INTKO(TIFs)

characters are shown as * '<TAB> °, Each record in the entry
is numpered for reference,

1). *na <TAB> bmap <TAB> o0s/subr.c <TAB> 16

2) *us <TAB> os/rdwri.c <TAb> 46 <TAB> readi
it ({(bn = bmap(ip, ilbnl)) == 0) ’ ’

3) #*us <TAB> os/rdwri.c <TAB> 98
writei <TAB> it ((bn = pmap(ip, bn)) == 0)

4) *Ky <TAB> filesys <TAB> block

5) ¥un <TAB> 18~6 <TAB> 6415

6) *¥sy <TAb> pmap(ip,bn)

7) %de <TAB> kmap defines the structure of file
-system storage by returning the physical block
number on a device given the inode ano the
logical blocx number in a file.,
when convenient, it alsc leaves the physical
block number of the next block of the
file in rablock for use in read=anead.

8) *Ky <TaB> extra

The *na’ recora (#1) is the first record of the entry, The
entry continues up to put not including tne next *nz‘
record, or an End of fiie. :

“The *na’ record and the ‘us’ and ‘un’ records (#2, 3, 5) are
all FIELD type records. Each field in tne record holds a
different piece of information about the item referred to in
the record. For example, in the ‘us’® (Usage) records the
¢contained fields are: the source file name, the source line
- number, the containing function, and the contents ot the
line, in that order. Record 3 actually consists of two text
lines. The NEwLINE following the source line numoer tield
is interpreted as a TAB since the next line is not the start
0f a new record, It should pbe noted that there are two ‘us’
records, All records (with the exception of an *na’) can be
" repeated as many times as is required,

Records 4 and 8 are both ‘ky’ (keyword) records. The ‘ky’
record is a LIST type record. Eacn field of all the °ky’
- records are considered as elements in tne ‘ky’ list. L1S1
fecora elements ¢an be entered as individual records or as

part of the same record with separating tabs,

S The *sy*® and °de’ records (#6 and #7) are TEXT type records.,
E e In such records, the content 0of the record is the text
N stream upto but not including the next tagged line. For
example, record $7 is terminated by the occurrence ©f record
#8, Tne tabs and newlines in the text are considered part
0f the text. ,

THE SUFITWARE ‘ , :
TiPs consists of e#ight major programs or procedures, These
are Query, Lisi, Brofinio, Dped, Mkipl, Ipl, Dunptpl, and

AUUGN ' - 3 = : 11

@

INTRO(Z1Ps) PwB/UN1X Jan 80 INTRO(TIFS)

Maxepraf.

Query allows a user to interactively scan a data base., It
allows entry selection by a variety of techniques, and
aisplay of the text under selective control. FoOr example,
it is possible to scroll through tne data base, selecting
entries by query, index, or name, one by one, OrI a screen=
full at a time, and then ask for recoras or fields to be
listed automatically or by commana. 1t should be noted
that, in tne spirit of Canadian unity, this program is bil-
ingual., See Query'TIFs),

List allows the user to list a data base’s contents in a
variety of formats. An option allows listing ot only
entries that matcn a specified query. Another option checks
the data base files for syntax errors. The tormats otterea
by tnis program are fairly weak. The use ot Tpl (see pelow)
will allow the user more power and flexibility in structure-
ing the output. (See List(TIFs)).

Makeprof is the procedure used to create a new profile for a
data base. The profile is actually three tables, and a
string area, that is written into a %“ile by a program. 7o
create a profile, the user must write the initialization of
a C program structure. (A template is provided.) 1This
"structure is then compiled by tne C compiler (see Cc(l)),
and linked with two provided modules. Wwhen the resulting
. pinary is executed, the tables are checked for validity, and
‘the tables are written out into tnhe profile files, one for
‘English and another tor French. .
Profinfa will produce, on standard output, information about
the profile. This informatjion is available in a variety of
tormats. One of the formats is used by Dped(TIPs) {(the Qec
TiPs entry editorl.

Ipl is a report generating program. The user prepares a
template which is compiled and then interpreted ftor each
selected entry in the data base. (See HMKtpl(TiPs) tfor
description of template.) The template can contain strings,
tag names, output controls, and flow constructs. This pro=-
gram is useful for creating other data bases, oI preparing
data tor processing by other URlX tools (e.g., Nroft(l)).

AL

Mktpl is used by Ipl to compile the template, The resulting
object is stored in a file that can be interpreted by Zpl.
1t may be run stand alone to syntax check templates.

Luaptpl is a program tnat will read a Tpl template object
tile and output the code in a readable form. Its major use
was for debugging Mxipl; however, it has not been removed,
because it may have a future use,

12 =4 AUUGN

- INTRO(TIPs) PWH/UNIX Jan 80 INTRU(TLPs)

bped is a set of Qed (I) butfers that support tne entry ana
editing of T1lPs entries and files.

INSTALLATION
TiPs has been installed on a varlety of UNIXs and PDPils.
lt does not reqguire any special drivers or system calls,
Some difficulty may arise due to the version of Yacc being
used, however, conversion petween Vb and PwB Yaccs is fairly
straight forward. Unfortunately, Ti1Ps does not use Stdédio,
but it does use a tairly standard Lipc. The known differe-
ences are that it uses four extentions to Libc. These are:
Printd == printf where first argument is the fid ot the tar-
get output file; Stringt == printf where the output is put
into the string addressed by the first argument; and Derror
== a perror where the error message is proviaed, ana it the
third argument is non=zero exit is called; and a moo to
Printt(Ill) == a ftield widtn beginning with *0° is zero pad=
dea., .

TlPs should have its own directory which contains direc=
tories ‘help.d’, ‘sourcesmlin’, and *source/olib‘,

when the qua2ary program is running, the ‘help.d’ directory
snould contain: ‘short.e’, *short.f’, ‘commands.e’, and

commands f’s. These are the short and long command descrip=
tions in English and French. initially °*commands.(efl]’ may
not exist, but *f[efl.comm’ (whicn should) can be Nroff‘ed to
give them.

:Tne path names tor the ‘*help.d’ directory is reguired in
Yuery and List, All usages are constants which are defined
in *files,h’ in the *hd’ directory.

*mlib’ and ‘olib’ are necessary if data bases are going to

be Created or moditied using Makeprof(TIPs), Makeprof is a
shell file that links object modules found in these direc-

tories,

TlPs uses two magic file numpers (in the ¢first word). These
are 043344 in the *,[eflprotile’ files, and 04334S in tem=-
plate object files. The appropriate modification to File
(I) may be desirable,

H

s SEE ALSU : - ;
R Query(TIPs), List(TIPs), Makeprot{(TIPs), Profinto(TiPs),
e Dbed(T1Ps), Tpl(TIPs), Mktpl(TIPs), Dumptpl(TIPs),

?/tips/nelp.d/commands. {efl.

FILES
?/tips/help.,d/commands,. (ef] = long command descriptions in
kEnglish & French
?/tips/help.d/{efl.,comm = Kroft(i) input for commands.lef)
?/tips/help.d/short.letl = short command table in English &

INTRO(T1Ps) PAB/UNIX Jan 80 INTRU(TIPs)

Frencnh
name/profile.c, name/.leflprofile (name is DB’s directory
name) = profiles in C, English, and French in the data
base’s directory.
+ name/#%¥,d (name is DB’s directory name) = data files ior Db
Cwe .o Dame . '

" 'AUTHOR
bDavid Tilbrook
BUGS
Une major problem, that has never been fixed (you Know how
"t is), is that entries are stored in core, but as they are
read in, there is no check tor overtlow. Thus a large entry
may overwrite the in-core copy of the profile.

CUMMENT :
~ TiPs was done as a demonstration system for non technical
people, As such, some parts of the implementation may seem

inappropriate or not in Keeping with the standard UNIX
style. Furtnermore, TIPs, like Topsy, Jjust ‘grewed’, and
thus a lot of planned features have never been fully imple~
mented, Some hcoks are provided and will be baitec when
time permits. Good luck, and constructive criticism will be
appreciated, : '

pavid M, Tilbrook,
247 Brunswick Ave,.;
Toronto, Ontario
Canada
M58 2Mb
Telephone: (416) 925-8168
DR
B=N Software Research IncC..,
14th floor,
T 522 University Ave.,
Toronto; @ntario
MSG 1W7

Telephone: (416) 598=0196

i et et e S, < oA S e st - i < o S 0

AUUGN

Invitation to a General Access UNIX* Network

Tom Truscott, Duke University

'Invitation

) A group of UNIX systems at Duke University and the University of

- North Carolina, Chapel Hill, have established a uucp-based computer

- communication network. Admission to the net is open to all UNIX
licensees. 1In addition to providing the "uu" services available in
the Seventh Edition of UNIX (remote mail, file transfer, ijob execu-
tion), it will provide a network news service. A prospective node
must have a call-in facility, call-out facility, or some other means
of communication with another UNIX net system. The node must have, or
be able to legitimately obtain, uucp and related software.

Systems which do not call-out to the net must be polled cccasion~
ally. We will poll any system that so requests, and will bill the
polled system for phone costs. The phone costs are expected to be
$10-20/month. Requests fcr an application should be sent to

James Eliis

Department of Computer Science
Duke University

Durham, NC 27706

Telephone: (919) 684-~-3048

- Services

The initially most significant service will be to pr vide a rapid
access newsletter. Any ncde can submit an article, which will in dQue
- Course propagate to all nodes. A "news" program has kEkeen designed
which can perform this service. The first articles will prcbably con-
cern bug fixes, trouble reports, and general cries for help. Certain
categories of news, such as "have/want" articles, may become suffi-
~Ciently popular as to warrant separate newsgroups. (The news program
mentiocned above supports newsgroups.)

The mail command provides a convenient means for responding to
intriquing articles. In general, small groups of users with common
interests will use mail to communicate. If the group size grows suf-
‘ficiently, they would probably start an additional news group.

‘*UNIX is a Trademark of Bell Laboratories.

AUUGN

15

-2 -

Complete programs and other machine readable text are inappropri-
ate for transmission via (ordinary) news. On the other hand, if a
news contributor announces a new version of "x.c", he could be innun-
dated with requests such as "please mail dod!mum a copy of x.¢." To
avoid that, he could make his copy of x.¢ directly accessible to any-
one via the uucp file copy program. In order to reduce uucp traffic,
copies could be made at the more central nodes of the net. Traffic
will be reduced further by extending news to suppor* "news on demand."
X.c would be submitted to a newsgroup (e.g. "netbulk") to which no one
subscribes. Any node could then request the article by name, which
would generate a sequence of news requests along the path from the
requester to the contributing system. Hopefully, only a few requestks
would locate a copy of x.c. "News on demand" will require a network
routing map at each node, but that is desirable anyway.

It is hoped that USENIX will take an active (indeed central) role
in the network. There is the problem of members not on the net, so
hardware newsletters should remain the standard communication method.
However, use of the net for preparation of newsletters seems like a
good idea. : . :

Implementation

The hardware and software requirements for a system to join tne
net were mentioned above. The uucp system has been retrofitted to run
on the Sixth BEdition of UNIX, so both Sixth and Seventh Edition Sys-~-
tems can join. Each node must have a unique name, so all names must
be cleared by the network administration. Duke will provide the ini-
tial administrative functions, and will also provide software for the
network news to function. -

Although we can supply a news program, individual sites may
prefer to adapt their existing programs. This requires the ability to
print and receive articles in the news transfer format. The format
used to transmit an article between systems is given below. The
transferred file consists of a sequence of 0 or more formatted arti-
cles, followed by a line consisting of the character “.”. The first
character of the article identifies the format and will be used to
simplify inevitable changes in article formats. The rest of the first
line is a unique system-wide name, which also identifies the originat-
ing necde. The article name is used to prevent the unlimited duplica-
tion of news articles that might otherwise occur. It has a side bene-
fit of simplifying the implementation of a "news on demand® facility.
Support for newsgroups (line 2) is required. All neitwork newsgroups
will have the prefix "net". Support for contributor name (line 3) and
contribution date (line 4) are recommended. A “deletion date” is not
supported; it is up to each node to delete ancient news. There is no
article title per se, although the first line of the article text
could be used for that purpose.

AUUGN

News Article Format

line example ‘ ‘description

1 Aunc.173 ' ‘ ~Articles begin with the char-
: ' - acter "A”. The originating
system is “unc”, which gave
the article the unique name
“unc.173”.

2 ~ netsys7:netnit o & ‘NeWSgroups to which this
' article belongs.

3 duke lunc!smb The net path to the contribu-~
' tor. This 1line changes as
the article passes from sys-

tem to system.

‘4 Thu Jan 24 01:39:20 EST 1980 The date the article was sub-
' & : mitted to news at the ori-
ginating system. :

Délete‘line 221 of cron.c: The text of the news article.
E *Cp++ - ,p\n_a; B .
Not needed. It confuses ps.

® . ~Nou

.- _ : Article terminator.

Article and newsgroup names are restricted to 14 or fewer charac-
ters. A news transfer file consists of a sequence of formatted news
articles folliowed by “.” alone on a line.

AUUGN A 17

Questions Answered

1.

18

Won“t this be expensive? '
Not at all. Night time phone costs are perhaps $0.50/3 minutes,

"in which time uucp could transfer perhaps 3000 bytes of data (300

baud). Daily polling would then cost $15.00/Month, which is half
what Duke pays just for an office phone. ‘

Could Duke really handle all the phone calls? .

Sure. We have two call-ocut lines: at five minutes/call, we can
handle 24 calls/hour. Other nodes can also volunteer to perform
the call-out function.

What does Duke get out of this? .
We avoid phone charges ourselves, and we get news sooner than
anycne else. : : ’

What about abuse of the network?

In general, it will be straightforward to detect when abuse has
occurred and who did it. The uucp system, like UNI¥, is not
designed to prevent abuses of overconsumption. Experience will
show what uses of the net are in fact abuses, and what should be
done about thenm. :

Certain abuses of the net can be serious indeed. As with ordi-
nary abuses, they can be thought about, looked for, and even pro-
grammed against, but only experience will show what matters.
Uucp provides scme measure of protection. It runs as an ordinary
user, and has strict access controls. It is safe to say that it
poses no greater threat than that inherent in a call-in line.

Who would be responsible when something bad happens?

Not us! And we do not intend that any innocent bystander be held
liable either. We are looking into this matter. Suggestions are.
solicited. :

This is a sloppy prcposal. Let”s start a committee.

~ No thanks! Yes, there are problems. Several amateurs colla-

borated on this plan. But let”s get started now. Once the net
is in place, we can start a committee. And they will actually

‘use the net, so they will know what the real problems are.

Okay, so a few systems get the net started. What next?

AUUGN

r |
SOUTHERN ONTARIO UNIX USERS GROUP MEETING, 15 JAN 1980

Introduction

An informal meeting of JNIX users in the Southern Ontario region was
held al the Defence and Civil Institule of Environmenta! Medicine {DCIEM) on 15 Jan
1980. It was atlended by 33 people representing 17 sites distributed from Ottawa
and Kingston to London, Ont. The major questions discussed wers about relations
with DECUS and wilh USENIX, as well as the organization of the local group. Some
matlers of substance were also discussed, including problems of Canadian software

“distribution, local standard utilities, conversion to Edition 7 UNIX, Networking, and

problems of UNIX in a commercial environment.
o

ol
S

" ORGANIZATION AND RELAT]ONS WITH DECUS AND USENIX
There was considerable discussion as to how the local users would be best

organized. To some extent, the discussion proceeded as if the group represented
all Canadian users rather than just a local group. It is intended that these notes

-should reach all Canadian UNIX sites, and comrments, criticisms, and offers of aid

from those not present at the meeting will be much appreciated.
;

Some History: UNIX in Canada got off to a fairly slow start, and the relatively
few users managed to interchange software and ideas through connections involving mainly

‘the Universities of Toronto, Waterlco end Queens. At the February 1878 meeting of DECUS,

18 members attending a UNIX Birds-of-a-Feather session organized an ad-hoc UNIX DECUS
SIG comimittee of about 5 members, chaired by Martin Taylor of DCIEM. In March 1979, the
Canadian DECUS Executive Board recognised a UNIX SIG, bul only on the condition that
DECUS supply no financial resources. In June 1§79, the USENIX meeting was held in Toronte
under the auspices of the University of Toronto and DCIEM, but the DECUS SIG as such was
not directly involved. To date, the origingl DECUS UNIX ad-hoc committee has not met, and
may be considered moribund. It was o clear up this state of aflairs, and to consider the

 value of working through DECUS and through USENIX that the DCIEM meeting was called.

Discussion: Three main functions of a user group were discussed: local
and national meetings, software distribution, and news distribution. UNIX users
have been reasonably well served by the twice-yearly USENIX meeling alternating
between Lastern and Western Norlh America. 1t was thought useful, however, to
have a more local weeting, which might well be incorporated with the DECUS Cana-
dian Symposium. There was discussion about the cosl of attending the DECUS
Symposium, contrasling the $125 cost for the 2.5 day meeting with the $20 cost for
the 3.5 day USENIX meeling. Although the DECUS meeting has more altendees
than the USENIX meeting, it is nol significantly larger, and higher attendance
should reduce rather than increase the cost per participant. In contrast to DECUS,

g R S g] e s e T ¢ e

20

SOUUG Meeting, 15 Jan 1980
!

USENIX has recently initiated membership fees. USENIX is not subsidized, whereas
DECUS is subsidized by DEC. USENIX charges $100 per installation and $12 per
individual mernber. Much of this money goes to pay permanent staff equivalent to
the DECUS Chapter and Headquarters staff who are largely on the DEC payroll

The overall conclusion of the discussion was that there was probably some
benefit to a UNIX presence at the DECUS Canada Symposium, but there did not
seem to be great enthusiasm for attending at the price. '

DECUS has facilities for publishing and distributing SIG Newsletters. Since
this is the main means of communicating within a SIG, developing and distributing
a newsletter is quite important. There exist UK and Australian UNIX newsletters in
addition to ";login:”, which goes to all USENIX members. These regional newsletters
often carry duplicate items, but also contain matters of local and general interest
that are not available elsewhere. It was decided that it would be valuable to
enquire of DECUS whether they could distribute a Canadian UNIX SIG Newsletter,
and if so, what would the cost be toc the SIG. Mike Tilson (Human Computing
Resources, 10 St Mary St, Toronto M4Y 1P9) volunteered to act as Newsletter editor
on the basis that his job would be to collate camera-ready copy and send it in for
distribution. ’)

Installation membership in USENIX provides the member with one copy of
each software distribution tape. Receipt of Lthese tapes in Canada has proved awk-

~ward because of uncertainties about the behaviour of Canada Customs. It would be

much better if the distribution tape went to just one centre and was circulated
from there. DECUS in Kanata would be a natural place for this to occur. No UNIX
licence would be required, since the distribution function consists in making a sim-
ple bit-for-bit copy of the original tape. No media conversion or interpretation is
required. Again, it is necessary to determine whether DECUS Canada is willing to
perform this funclion, and if so, at what cost to the SIC.

All atlendees at this meeting used DEC computers for running UNIX, so
that there would be no bar to their joining DECUS Canada. In the absence of a
DECUS US UNIX SiG, US DECUS members could also join according to the DECUS
Bylaws. They might cause some problems if included in the software distribution,
because of the inverse border problem. Another potential problem fof the future
involves all the potential UNIX users not running on DRC equipment. Clearly a
DECUS SIG cannot be the only grouping of UNIX users in Canada.

- Resolution: Having considered all these arguments, the group had a straw
vote as to whether io be primarily a USENIX subset or to put some strength into
the exisling DECUS UNIX SIG. A large majority was in favour of going with DECUS,
and all who were not DECUS members agreed to submit applications for DECUS
membership. The financial and other implications relating to USENIX and DECUS
must be resolved by discussions with those organizations. Clearly, if DECUS agrees
to perform the Canadian UNIX software distribution, it will create a financial burden
on DECUS and relieve one on USENIX. Possibly the USENIX Board would agree to
reduce installation membership fees for Canadian DECUS members. A possible

8- AUUGN

e O FPCSPRNERERY V-

S0UUG Meeting, 15 Jan 1880

difficulty in this arises with the DECUS software distribution policy -- distribute on
request for a specific fee. The UNIX SIG would not expect programs to be distri-
buted, only complele distribution tapes. These would not ordinarily be distributed -
on request, although they should be available; they would be distributed to all
installalion members of the. SIG. Some route would have to be found to deal with

_non-DEC UNIX users if and when they appear.

To consider the guestions and to interact with DECUS and USENIX, the
meeting selected the following ad-hoc committee:

s Chairman Dr M.M.Taylor, DCIEM, Box 200@, Downsview, Ont M3M 3B2
« Secrelary M.I.Tuori. DCIEM, Box 2000, Downsview, Ont M3M 388

* Newsletter Editor M.D.Tilson, Human Computing Resources Carp. 0 Bt
Mary St., Toronto, Ont M4Y 1P9

» Member D.Tilbrook, Bell Ncrthern Software Research, 510 University Ave-
nue, Toronto, Ont

_.* Member D Sherman, Computer Systems Research Group, University of
Toronto, 121 St Joseph St., Toronto, Ont.

This list is heavily loaded from Toronto. Members from other parts of Canada are
desired, and should anybody wish to belong to the committee or wish to nominate
somebody, please let any of us know.

OTHER BUSINESS

Boulder Meeting of USENIX

Previcus USENIX meetings have featured & software distribution centre.

At the Toronto meeling in June 1979, the input and output demands overwhelmed

the capabilities of the machines and volunteers to do the job in the time available.
At Boulder, software will be accepted for distribution, and a 4th software distribu-
tion will be made in March or April. Greg Hill {U of Toronto) agreed to collate
Toronto software for the conference. Greg currently holds copies of all available
software distributions (e.g. USENIX 1, 2, and 3; UK, New South Wales, stc), and is

willing to circulate them to an extent limited by licencing agreements and
volunteer manpower availability, '

Steve Pozgaj and Martin Tuori agreed to take notes at the Boulder meet-
ing and report back to the local users. (Underlying Lhis idea was the notion that
“ilogin:" had not appeared for a long time and was not trusted as a medium of
rapid communication).

. . 21

22

SouUUG 'Mee_ting, 15 Jan 1880

V6 to V7 conversion

There was a short discussion on who was going to convert from V8 to V7,

and on local standards for doing so. Most users intend to convert, Greg Hill at U

of Toronto (a PWB site), and HCR being exceptions. As for standards, it was
emphasised that distribulion software should assume a vanilla V7, especially since
the Shell is apparently embedded into a lot of V7 software. A lot of makefiles will
have to. be changed, and some cooperation is possible in this area. Nelworking
should be via V¥'s wucp and cu, rather than via the local yfr and cu. ~

UNIX in a comunercial environment

Steve Pozgaj, of Northern Telecom, raised the question of using UNIX in a
commercial environment. A commercial environment is defined as one in which
there are a large number of probably naive users, and in which unexpected service
interruptions with loss of data are intolerable. The large number of users refers
both to the user community and to the number of users on-line at any one time.
Data security is also an important consideration, both from the point of view of
unauthorized access, and safety when multiple authorized accesses occur simul-
taneously. To answer this last requirement, Northern Telecom has instituted a

~scheme for protecting file blocks at different levels. This invoives a new system
call, S

Some response time problems had been observed, and meoenitoring system
performance showed the paradoxical result that raw file 1/0 was slower than regu-
lar file 1/0, due lo the process being locked in core and limiting the swapping
capabilities of the system. Purdue is known to be going for 80 on-line users to an
11/70, as opposed to the normally assumed saturalion limit of around 45 users. A
major requirement is some sensible replacement for "panic". Several users pointed
oul that automatic reboot and rebuild systems were running in various installa-
tions, so that "panic" usually meant a short interruption of service rather than a
darnaging delay. Under these circumstances data was seldom lost.

-~ 4 - . AUUGN

Southern Ontario UNIX Users
Meeting o

Defence and Civil Institute of Environmental Medicine
171383 Sheppard Ave West
, Downsview, Onlario
Friday, April 25, 1980, 13:30 - 16:30

THEME
UNIX in Real Tl.ne Applications and Modlﬁcatmn

Anybody who has enything to say about real-time practice and problems in the use
of UNIX, or who has considered or implemented system modifications to imm ove its
real-time performance, please come and talk about it. Please phone DCIEM (416)
833-4240 and ask for Martin Taylor (ext 280), Martin Tuori (ext 204) or Sandra
Wright (ext 300), to let us know you are coming, and whether you want some time
allotted for you to talk, :

Main Speaﬁcers:

) Dcug Reoss (Andyns Computing, utd Kingston) - will discuss the modifications
Andyne is developing under contract to DCIEM for time-shared real-time operation.
Processes containing real-time phases must declare their parameters te a reserva-
tion system. The reservalion sysiem can then calculate the feasibility of providing

i the required responses. At run-time, a mechanism known as a "fuser” must ensure

"~ that the real-time process keeps its side of the bargain. Both reservation system
- and fuser seem to be essential components of a time-shared real-time system.

» David Tilbrook (Bell Northern Soffware Research, Toronfo) - wili lalk about the
implementation of MASCOT primitives within UNIX. MASCUT is a general system for
describing and impiementing cooperaling parallel task structures, whichk may run
under an operating system, or which may fnrm an operatmg szHm on & bare
machine.

Other Business will be covered at the wishes of the attendees. Let us knm{' of anything you
would like to have discussed.

Cetting to DCIEM
By car - Starting fiom Highway 401 and the Allen (Spadina) Expressway, go North

along the Allen and continue North along Wilson Heights Blvd from the end of the express-
way. Turn left at the second traffic light, alnng Sheppard Ave. (Il you are coming from the

~ North or Northeast, get to Sheppard and Wilson Heights and go West on Sheppard). After
-about 500m Sheppard turns North, and you will see the DCIEM buildirg on your lefl. Turn

left and left again through the first open gate, and park where you can fird a spot. The
main door Is on the West face of the building (facing away from Sheppard), and the meeting
is in the room to the right ance you get in the door.

By T7C -~ Take a ?nr\pp.xrd West bus from the Sheppard station {Yorpe St subway
line), or a Keele Nerth or Downsview bus from Lhe Wileon station (Spadira tine). Get off
when you see the DCIEM building on your left. {If the Sheppard West bns has a label stop at
the gale to the DCIEM compound. Other buses stop on ‘whvppard) Walk in the gale and find
the main door as above.

¥*#% The minutes of this meeting will cppear in the next issue, #%#%

[oF Spu%’:‘:\l]

24

UNIX and VMS
Some Performance Comparisons

by
David L. Kashtan
SRI International

AUUGN

e e o P

R T —

Lis Taladpul

AUUGN

S e R L

S S gl N

This report describes the results of running various banchmarks

on a recently acquirad VAX-11/730. The banchmarks ware used to compare

performance, in spacific areas, of the two ogerating syétems now available
for the VAX, VAX/VMS varsion 1.6 andeM UNIX Berkeley version 2.1. The
benchmarks were chosen to measure those aspects of the operating systems
expected to influence the development and u1t1mate performance of the ARPA
Image Understanding Testhed, for which SRI 1is the integrating contractor:
a) Access to large images will require both an eff1cient paging
mechanism, tor when the image is in memory, and an efficient
file access system to bring that data intoc memory.
b) The current p?adéyfor the Image Understanding Testbed call for
very heavy communication between many cooperating processes. This
wil1wrequira an afficient, high bandwidth Interprocess Cdmmunicatien

facility and an efficient context switching machanism.

The acceptance testing period for the VAX was a perfect time to
attempt this parformance avaluation. The system had no users to interfere

with the measurements being takan or to complain about the extensive switching

botween the VMS and UNIX gperating systems.

The same programs were run on both systems wherever possiblia. The
differences in the implementations cf‘some.faci?ities.neccessit;ted differant
programs on the two systems for some of the benchmarks. Where this occured
much effort went into filtering out the effects of these differences so that

an accurate picturs of each systsm’'s perfarmance could be formed.

!
The hardwaras configuration of the VAX used to rum the benchmarks was

as Tollows:

1 VAX-11/780 processor with Floating Point Accelerator
2 Megabytes of memory

1 RPO6 disk with massbus adaptler

1 TU45 magtape with massbus adapter

2 8-line DZ-11 terminal contro?lera

fhe UNIX operaéing system was run as configured on the distribution
tapa. There were few parameters in UNIX that could be tuned and the tuning
required recompiling the operating system after any changes. It was decided
to assume ihat the distributors knew what they ﬁeréidggng when they configured
the.system fcr distribution and that the various system parameters were not
unreascnable.

" The VMS operating system was run as configured by the software
representative of the Digital Equipment Corparation when he installed VMS.,
One parameter was changed, but only for the paging benchmark, when it was
discovered that it had significant affeét on the system's'performance. The
following are some of the major VM3 system parameters:

PFCDEFAULT = 64, the number of pages VMS will attempt to read
in a single I/0 request.

SYSMWCNT = 64, % the number of pages VMS will use as the working =

set for the pageable system code and data.

BALSETCNT = 40, the maximum numbar of processes VMS will try
T to keep in memory simultaneously.

VIRTUALPAGECNT=12288, the largest virtual address space allowed per
‘ process (6 megabytss}).

QUANTUM = 30 x 10 ms., the scheduling quantum (300 milliseconds).

MPWeWRTCLUSTR = 32;' the number of modified pages VMS will attempt
to write to the disk in a single I/0 request.

MPWeHILIM = 128, the threshold at which the modified page writer
: begins writing pages to the disk. {this was
changed to 4096 for the paging benchmarks)

- MPW~LOLIM = 96, "~ zhe threshold at which the modified page writer
. stops writing pages to the disk.

Paging Performance:

UNIX and VMS have very different paging systems.A It may be useful to

briefly describe'them. The UNIX paging scheme uses a clock algorithm to

implement a Least Recently Used page replacement scheme. Page replacement

decisions are made globally. Page I/0 is performed on a "Page at a time”
basis but the software has been used make the page size look 1ike 1024 bytes.

(A1l benchmarks assumed a page size of 512 bytes, which is the hardware page

- N i B AUUGN i

. T——

_ABUGN

size of the machine). The vius paging schema uses akfirst {1 First Cut page

replacement scheme local to each prccess'{the'pages of a process that are

- currently valid for it to raferance is called {ts 'workihg set”). To oifset

this, VMS maintains a list of free pages and a list .of modified (i.e. must be
written to the disk befere they may be re- used)'pages which ara not in any

process’'s working set. These two 1ists act as a global page cache from which

_ processes may reclaim pages that have been thrown out of their working sets.

There arae various thresholds which control the sizes of thesa two lists. One
threshold on tha modified 1ist triggars tha modified page writer to begin
writing pages from that 1ist onto the disk and place the pages in the free
1ist. A second threshold stops the modified page weiter to keep it from

antirely cleaning out the modified list. There is a threshold on the free

. 1ist which also triggers the modified phge writing/swapping mechanism when

the available memory becomes low. Pages are regarded as being 512 bytes long

put VMS will attempt (when possible) to read and write them in clusters in

- arder to increase the page throughput to the disk. The mod1f1ed page writer

has a clustar parameter which tells it how many pages in the modified list to

attempt to gather together in order to transfer them in a single disk request.

-When readfng pages from the disk other cluster factors may be-used {these may

be specified at a level of detail down to various areas of program or data).

! : ;
The paging benchmarks were an attempt to characterize how both systems

perfcrmed when presented with programs that accessed large virtual address

spaces (4Mbytes was chosan as the array size since we did not wish to re-

‘compile the UNIX system and since 4Mbytes was considerably larger than the

2Mbytes of physical memory on the VAX). Three types of page access were
chosen to represent various IU programs: | ' 7
1) Sequential page access to a 4Mbyte array was used to
simulate programs which make a linear pass over
jmage data. such as simplia transformations and
picture dispiay routines.

- 2) Random page accass (with a yniform ﬂnstribution) took

. 7

care of the worst case paging activity in which there
was no correlation between the current page and

the next page to be accessed. This did not measurs
the worth of the various page replacement policies
but did force paging to accur in both systems so that
system response to heavy paging could be measured.

3) Random page access (with a gaussian distribution about
‘ the current page) was used to simulate more general
programs. A small standard deviation in the gaussian
distribution simulated programs with considerable
locality of reference and a large standard deviation
simulated programs with little locality of reference
(such as large 1isp systems).

The sequential page access program was a 100p that touched one byte on
each page of the 4Mbyts array in order. This loop repeated 10 times to make

sure that a steady state had been reached and that no zero-fill pages were

being fauited into the program's physical memory.

VMS © UNIX
4:32.0 Real 20:16.0 Real
39.2 Cpu 1:43.0 Cpu

The siateﬂ UNIX times should, in fact, be slightly longer (21:46.0/1:48.6)'
sinéa the full 4Mbyte array could not be used without re-compiling UNIX.
This is the only casa where different sizes of benchmarks were used. |
(The irray used in UNIX was 7500 pages Vs 8192 pages in VMS). The 5:1
diffaerence in rea1.times can be attributed to VMS making good usé of
its page clésteringfscheme. When a fault for a page necessitated reading
jt from the disk, some of the following pages were reéd in to memory during
the same disk transaction in antiéipation of their use. This seems to be
a good poficy, given that the disk seek andvrotétiona1 latency times far
exceed transfer times. It is worth lengthening the disk 1/0 request a few
milliseconds to bring in eitra pages in the hope that they will be needed.
One ﬁas only to make a correct guess occasionally to make up for the extra
time spent in the disk transaction.

The random page access program (1inear distribution) was a loop,

executed 30,000 times, which picked a page at random in the 4Mbyte array and

7 AUUGN

AUUGN : ' 29

RN A

wrote a 1 into a location in that page.

-

VMS) - - UNIX

8:00.0 Real o 17:24.0 Real
31.0 Cpu , L 1:09.4 Cpu

- It was quite a supriséfto find the 3:1 difference in execution times.-
It was expacted thai the extra work VMS did in bringing in additional pages
would be a wasta of time. Mo explanation has yet beesn found for these results.
1 , , |
The random page access program (gaussian distribution) used the same
loop as the linear distribution program but éa1lad a gaussién distribution

random number generator to decide how far from the current page the next page

access would be.

In the course af these runs it was discovered that when the MODIFIED

~page Tist "high 1imit" threshold (the point at which the modified page writer

is notified) was set higher than the physical memory available on the machine
VMS's strategy became a global modified LRU page replacement strategy with
results very similar to the paging strategy used on UNIX. This strategy was
used for the entire run, although figures are pre;ented (whare available) for
the low threshold run as a comparison. Two different working set sizes were
used in the low threshcld runs to see what effect the differentfwbrking set
sizes had on the péga fault rate {and therefore the execution time).

A additional run was made with a standard deviation of 10 but with

no zero-fill pages (to observe what happens when -data must be paged in off

‘the disk). This more closely models a program which pages in its data {e.g.

an imagsj.

Std. |
Dev. VMS{ws=256) VMS{ws=512) VMS with big modified 1ist UNIX

-un - - oo . TE 2 w4 @t - - - oo = - - L L L T TR T P T - -

1 15.9 Real 15.9 Real 15.8 Real 15.0 Real
15.5 Cpu 15.5 Cpu | 15.5 Cpu 14.8 Cpu

10 22.1 Real 19.8 Real _ 17.9 Real 16.0 Real
19.8 Cpu 18.3 Cpu 17.8 Cpu 15.6 Cpu

30 I - 24,7 Real 18.9 Real

e wane e Emice

- & |
P L I - 24.3 Cpu 17.5 Cpu
i 40 - - © 47.31 Real 1:08.0 Real
i . 7 - -- ‘ 26.63 Cpu 21.0 Cpu
L 0 . - - 1:21.0 Real 3:54.0 Real
: , - - ’ - 30.0 Cpu 35.0 Cpu
60 - == 1:53.3 Reatl §:46.0 Real
- - - . 32.7 Cpu 3.6 Cpu
80 - - .3:04.5 Real 6:38.0 Real
- T - » 36.7 Cpu 45.0 Cpu
100 4:24.0 Real 4:23.8 Real 3:27.4 Real 8:28.0 Real
41.0 Cpu 39.0 Cpu 39.73 Cpu 51.6 Cpu
No zero
fin _ o
10 24.6 Real 21.8 Real - 26.0 Real
j 19.7 Cpu 18.9 Cpu - ~16.4 Cpu
| o ,
: Completion Times vs Standard NDeviation
t {secs) ? - '
UNIX asymptots
1000 clemrememeee e m e ——————— B etttk iy
(Std. Dav. = ianfinity) - . :
960 -
920 -
880 -
-840 -1
g0 -| - e o .
760 -
720 -
680 -
640 -
600 -
560 -
X
520 -
- 480 -
440 -
| X
400 - :
. ViS asymptote

380
320
280
240
200
160
120
- 80

40
20

----- - n 4D W Om e B W - -“"“‘995-‘--—‘x"‘--‘."----“‘--“-----‘-‘_-—-

(Std. Dav. = infinity)

20 30 40 50 60 70 80 90 100

e = YMS, X=UNIX standard Deviation

One can compare the gaussian benchmark performance of the two systems

 under three distinct circumstances:

sStd.
Dev,.

:10 ,
20

1) The amount of computation done between paga faults is

vary large. Parformance should be very close to the
same in both systems when computation time dominates
paging time. B

The amount of computation done between page faults is
moderate. -We can see this from the completion times

"~ of the benchmark, since the new page location must be

calculated before the page is accessed. The computation
is moderate since a Square root, Cosine and Logarithm
must be calculated for each pags reference. In fact,

the computation time in the benchmark is quite small
(30000 accesses in 15 seconds = 500 microsaconds/accaess).

The amount of computation done between page faults is
very smali. We can see this by subtracting off the
completion times when the standard deviation 1s very
small (since virtually no paging occurs}. The rest of
the time is the time spent pacing.

1ittle(zero) computation modarate computatien
(0 microsecaonds/access) ,(500‘micraseconds/access)
MS UNIX Ratio(speed) Ratio(speed)
0.0 0.0 1:1 ‘ 1:1
2.0 1.0 1:2 11
8.9 3.0 1:3 1:1.3
31

32

e e s

- 40 31.5 . 53.0 1.8:1 , - 1.4:1
0 £:05.2 3:39.0 3:1 - 3:1
60 1:37.5 5:31.0 3:1 3:1
80 2:48.7 6:23.0 2:1 | 2:1
100 3:11.8 8:11.0 2:1 211 :
infinity §:45.0 17:09.0 3:1 | 3
!

~ What might better illustrate the behaviour of these two systems is

~to look at thse average time required for each page access given a specific

standard -deviaticn., This will show how much computation is required between

accesses to make the access time look reasanable:

Std.
Dev. VMS . UNIX
1 - . 0 microseconds/access .0 microsecénds/access
10 .. B8 microseconds/access 33 micraosaconds/access
30 SQD.microssconds/access 100 microseconds/access
40 1 millissconds/access - 2 milliseconds/access
50 " 2 milliseconds/accass 6 milliseconds/accsss
60 - 3 milliseconds/access ' 10 milliseconds/access
80 . 8.5 milliseconds/access 12 miliisaconds/access
100 . 6.5 milliseconds/access 16 milliseconds/access
~infinity 12 milliseconds/accass 34 milliseconds/access

! . :
‘ The superior performance of UNIX when the standard deviations of the

page references are between 10 and 30 is not quite as good as it may seem from
tﬁe above tables. Even doing small amounts of computation, as in calculating
the gaussian random number, between page accesses reduces UNIX's advantage in

these areas to very small quantities (see the moderate computation column).

Given a small standard deviation in the page references both systems, in fact,

have about equal performance. VOnce_the standard deviation goes up., VMS has

 a decided advantage. Its ability to sustain high page traffic to and from

' AUUGN
Y

the disk makes a great deal of differance in its psrformance.
UNIX's paging system seems to perform reasonably until {t is required

to move pagas to and from ‘the disk. 1Its excelient parformanca'at a standard

 deviation of 30 became very poor when two such programs were run together.

Since ths standard deviation of 30 made the area of locality of sraeference

about the same size as the physical memory on tﬁe machine, UNIX increased the
amount of physical memory being usad to support the virtual memory of this
program and used most of the VAX's memory. Oncs an identical sacond program
was added to the system, unix could no longer aﬁ?acate 211 the memory to a
single program and it began paging, with the result that the singie program
exacution time rosa from 18.0 to 3:51.0.

1
Paging Summary:

I

large chunks of data, such as images, into memory it can be about 5 times aé
fast and forbpaging progfams with moderata to little locality of referencs,
such as large lisp systems, it can be 3 times as fast (since the paging times
will dominate‘the computation times). When pragrams have significant lucélity
of referance,_both paging systems will perform abeut equally. |

Prospects for further jmproving ths VMS paging System look very guod.

The various parameters that control the paging system {e.g. the modified 1ist
upper and lower thresholds and write cluster size) can by dynamically varied

while the system is running. 1In addition, much information about how well

 yMS is performing at any time §s readily available. One can easily conceive

~of a process running under VMS which looks at the performance figures andi

‘dynamically varies system parameters 19 i{mprove the system's performance as
demands for rasources change. There is also code in the system tc bring scme
recency of use informaticn into the working set page replacement policy {now

FIFO) which is turned on by informaticn in a process's "process control blk”

A 33
,2

: [4‘“’“’”'Tha Fesuits show that the VHS paging systesm performance varies from ﬁi}
rabout as good as” to "much better than® the UNIX paging system. For paging
4 ‘much D=t _SysSLew !

[

andtwhich may be varied to control how much effort is to be spent by the
systém in acquiring and usihg recehcy of use 1nformation.-
The most distinct difference in perfofmanca af the two systems fis
. evfdent when heavy paging activity is occuring; UNIX*s response to other
ﬁsers (other than the program(s) causing the heavy paging activity) can go
from very poor (10-20 second responsa) tc non-existant (users can be locked .
out for minutes at a time, and often until tﬁe program causing all the paging
activity stops). When heavy pagfng occurs on VMS, response is only slightlyv’
~ degraded (what seemad like immadiate response may lengthen to about 1 second).
Vary oftsn one can not even notice when a heavily paging program is running.

4
File I/0 Performance:

Since much of a system's parformance Ean be impacted by its ability
v to move data to and from files, it is uéeful to measure the abilities of both
VMS and UNIX in this-regard, Two specific tests werebperformed. one was a
sequential write test and one was a random write test.

The sequential test consisted of writing 4000 Blocks of zefos into
a new file. The test was run with 512 byte buffers (the size of a singie .
diSk sector) but when it was discovered that UNIX was using a block size of
1024 bytes a second run of the test was made with 1024 byte buffers. 1In
g addition, the VMS tests wers run with various values for the RMS (Record
Management Services) multi-block parameter to note its effect on file I/0
performance. The RMS multi-block count instructs RMS on how many blocks it
§s to attempt to read or write in é sinéie 1/0 6peration.

dne VMS run used the RMS éequentia? }/0 se;vices and a setond run
used 2 FORTRAN program io sequentially write into 2 random access file
(although this introduced the overhead of the FORTRAN runtime system it did

test the RMS relative access services).

RMS

34 - ~ : AUUGN

7 AUUGN

Multi- VMS ot . UMS

Elock (Sequential RMS) (Relativa RMS) UNIX
44 ' 14.5 Real 8.0 Real S 25.0 Real
11.5 Cpu 6.0 Cpu o 16.0 Cpu
22 17.0 Real | 8.7 Real
: 11.5 Cpu 5.3 Cpu
0 33.1 Real ' 20.8 Real
(actually 4) 14.0 Cpu ' 7.6 Cpu
1024 byte buffers
RMS
Multi- ‘ VMS
. Blogck : ‘ (Relative RMS) UNIX
44 3.3 Real ©13.0 Rea!l
4.4 Cpu 11.7 Cpu
22 9.8 Real
4.8 Cpu
0 :) 23.5 Real
(actual!y 4) S 16.68 Cpu

The multi-block count of 0 actually defaulted to the system muiti-
block count which was 4. The poorar performance of the RMS sequential I/0
sarvices ssems to result from RMS placing additional data in the disk file
(a record size count) which caused the 512 byte buffer size to'actua11y be

514 bytes. This caused records to straddle sector boundaries. The RMS

relative services were given fixed length 512 byte records and they went

untouched onto the disk. It is clear that you want to use a reasonable RMS
multi-block parameter when doing file 1/0 (22 seems a good figure as the
performance increase at 44 is not very great). The results also show that
parformance is hardly impaciad by the size of the user's buffer. If the buffer
size is exceptionally small one would expeci the CPU time to rise sharpliy due
to the high number of calls to the RMS service routinss,

UNIX great]y benefited from raising the user’s buffer size to 1024

dytes. It seems, that to get the best peformancs out of the UNIX fzia 170
P 4 - — - 35

R . . L g o i .+ i R 08 = it | e e 1t gy

system ong's program must be cware of the block si{ze of the disk. UNIX uses

a scheme of read ahead & write behind when sequentia1~1/0 is being performed.

iIn addition, the disk is initialized to have its free block list in such an

order that when blocks ara allocated they leave some space between successive
blocks in a file so that there is a high likelyhood that the disk head will
be in the corraect place when the user requires the next block of the file.
This scheme does degrade when there are many allocations going on together
for different files and when the disk becomes used (as blocks are raturned

to the free 1ist in the order they ar; deallocated). A1l this still does

not offset the advantaga VMS has due to its multi-block I/0. The VMS run

was itill 50% to 300% fastsr. In addition, the heavy 1/0 to the disk in

'UNIX had the same bad effects on other users respanse times as did the heavy

paging, Thaese effects were not felt under VMS.

The random test consisted of picking a block at random from an 8,000
biock file and writing a buffer to it. This was done 30,000 times. The VHS
tésts used the RMS relative sarvices only, since the sesquential services did
not support random access. Two runs were made on'aach system, one with a
block size of 512 bytes and one with a block siie of 1024 bytes. The 1024
byte versidn onTy used a loop of 15,000 accass due to general impatience at
length of time the tests were taking to run.

512 byte blocks (30,000 accesses)

RMS
Multi- , : A
Block : .~ VMS : UNIX
22 ; 11:37.5 Real 22:49.0 Real
1:54.3 Cpu 2:28.3 Cpu
6 11:40.0 Real '
(actually 4) 1:57.1 Cpu
1024 byte blocks (15,000 accesses)
RMS
Multi- , -
Block - VMS T UNIX

- o - - - e - - =

Vo
22 8:23.5 Real g8:48.0 Real
1:14.6 Cpu 1:21.5 Cpu
0 6:23.0 Real
{actually 4) 1:15.0 Cpu
The gain to UNIX of using the 1024 byte block size was not that

gréat (30.000 accessas = 17:38.0 vs 22:49.0) and the loss to VMS was also

not that great (30,000 a.cesses * 12:46.0 vs 11:40.0). It is, once again,

quite surprising that, as in the random paging tast. the extra data written
to and read from the disk by VMS did not impact its performanca. Thus, vis

bettar UNIX. The heaﬁy

random access 1/0 performanca can be from 40% 1o 2007%

disk I1/0 under UNIX had the same affact on other users as in the previous test

but the VMS effects wexe very sma]]

, F11e 1/0 summary:

* the usar's 1/0 buffer.

- greatest result in faver

AUUGN

-----—---—-----

The sequential and random I/0 tests show that VMS will outperform UNIX

in file I/O. In additdion, VMS is considerably less sensitive to the size.of
It is advisable, though, to not use 2 system dafault

RMS multi-block count of 4, 22 should prov1de much better performanca. The

of VMS here is the fact that while it it fis providing
batter file I/0 per!armance.other usars do not find that the system's Fesponss

to their requasts becomes excassively long when some program is doing heavy

file 1/0.

----‘_—-—----—————_- - - WD -

1o measure the performancs

The context switching benchmark was meant

of both systems when there are many cooperating processes which gquickly pass
control from one to another, as is expected tc be the cass for the ARPA Imag
Undérstanding Testbed project. The benchmark program was designed to measur
how quickly each sysiem’s scheduler can save the context of one process, Tin
the next process to be run and restore its context; 1t consisted of a proce

which signaled another process and waited for that process to signal it hack

-

The second process wa1ted for a signal from the first process and then sent
the signal back. This was repeated 100 000 times on VMS but only 10,000 t1mes
on UNIX (the UNIX scheduler was slow enough that it became desireable to 11m1t
this loop in order to have the test finish in reasonable time). The intent
of this was to force the scheduler to switch back and Torth between the

two processas as quickly as possible. Each pass through the loep requjred

two switches by the system. The same program was run having it signa}.itself'
instead, to measurs the time required to do the signaling so that scheduling
time could be determined by subtracting the signaling time from the total

time.

!
VHS

: yd
100,000 x 2 schedules in 1:43.8 = 2000 switches/second.

When run alone, the program took 34.1 seconds. The two
programs together tcok 1:08.2 saconds, leaving 35.8 seconds
spént in the scheduler. This is equivalent to a maximum

switching rate of 5600 switches/second.

UNIX

10,000 x 2 schedules in 1:35.0 = 210 switches/second. -
When.run alone, the program tocok 24.0 seconds. The two
programs together took 48.0 seconds, leaving 47 seconds
spent in the scheduler. This is equivalent to a maximum

switching rate of 425 switches/second.

UNIX, as currently implemented, has to do considerably more work
when scheduling a process. In addition, UNIX must do a context switch to
process number 0 in order to make the decision as to which process is to
be run next. Even this cannot explain the greater than 10 to 1 difference

~in the performance of the two systems.

e T | AﬂﬂJGN 2

! ,
Interprocess Communication Pevformance:

-——-o--—--—-—--..---—..n------.—--—----u--—

- MWith cooperating proceéses.,there must be sohe way for them to
communicate with sach othar. In UNIX this is done by pipes and in VMS
4t is done with mailboxes. The benchmarks were used to test how quickly :
‘the two systems could mova data through their 1ﬁterprocess communication
facilities. A1l tests on both systems‘wera run with two different message
sizes, 512 bytes and 4 bytes, to determine if the size of the message would
affect the throughput of the system.
" The first test consisted of a singie process using the IPC facility
to write a message to itself, which it would then read. The process wrote to
jtself in order tc keep any system scheduling overhead out of the results. The

1PC write/read combination was repeated 10,000 times in each run.

vMS ~ . UNIX

512 bytes +27.6 Real (370/sec) 30.0 Real (333/sec)
27.3 Cpu 29 8 Cpu
4 bytes 22.4 Real (440/sec) 27] Rea1 (370/sec)

22.0 Cpu ~25.3 Cpu

The second test consisted of two processes in which one process wrote
using the IPC facility and the second process read the data from the i1st one,
discarding it. This was used to measure the effectiveness of any buffering

schemes in the IPC facility.

VMS

-

§12 bytes 39.4 Real (253/sec)

20.4 Cpu for the writer

UNIX

39 0 Real (zsslsec)
18.2 Cpu for the writer

34.0 Real (294/sec)

4 bytes - 33.6 Real {297/sec)
16.9 Cpu for the writer

18.0 Cpu for the writer

The third test had the second process send the message back rather
than discard.it. FEach process, in turnm, read and then wrote that same

AUUGN ’ ‘ ' .
e L o . %

%§.miz~<; s

message to the other process. This forced the system to switch contexts
after each write, since each process waited for the message to return after

it wrcteAit. The test was designed to show what would happen when the IPC

- facility couid no longer buffer the data, a situation expected to crop up

frequently with a set of processss which cooperate by sending messages.
The very poor performance of both sysiems prompted a 1/2 hbur attempt
at constructing an iPC system using the shared page and "common event flag”

facilities of VMS.
VMS ' VHS ' UNIX

{mailboxes) (shared pages) (pipes)
6§12 bytes 1:07.3 Real 13.0 Real 1:21.0 Real
35.8 Cpu 7.0 Cpu 37.9 Cpu
(298/sac) (1540/sec) ' (246/sec)
4 bytes 55.3 Real 110.0 Real 1:11.0 Real
' ' 29.2 Cpu’ 5.0 Cpu 32.7 Cpu

(363/sec) ‘ (2000/sec) {281/seac)

i.ifheuparformancauof_the systems is almost identical (with a slight
advantage given to'VMS‘wheh"the messages cannot be buffered);:both goor.
Surpr%singly,‘the amount of data being pushed through the IPC mechanism on
each call has 1ittle effect on the numbaé of IPC calls per second both
systems will support. It is clear thét the kind of IPC féciligy required
by the ARPA I&age Understanding testbed project is not currently available
on either system.

 The performance of the quickly consiruc;ed shared page facflity, on
the other hand, was quite spectacular. This system {as shown in the above
iabie) can‘outperform both the standard IPC mechanisms in VMS and UNIX by a
factor of from 5:1 to 7:1, depending on the message size. The same.faci1i£y
could not be constructed on the curreat vefsicn of UNIX since it lacked both
? shared page facility and a true interprocess signaling facility.

Conclusion

The benchmark results show that VMS has a considerable edge over

AUUGN "

LNIX in thg‘araas df systam performance that are 1ikely to affect the ARPA
Image Undéfstanding Testbed. When heavy paging occurs VMS is Tikely to be
between 374nd 5 times faster than UNIX. When heavy file I/0 occurs VNS is
likely to Se between 1.4 and 3 times faster than UNIX., This advantage is
augmented by the tendency of UNIX to lock out other users whén the disk (s

in heavy demand. The ordar,of-mégnitude difference in context switching

times and the promise of vastly ;uperior intérprocess communication taroughput
seems to make VMS preferrable for the kind of environment expected of the Image

‘Understanding Testbed.
!

APPENDIX
BENCHMARK SOURCE PROGRAMS

This appendix contains the source text for the various
‘benchmark programs. A set of numeric functions from the unix library
was transferred to VMS to guarantee that the random number saquences
wara identical. #Note that some of the VMS programs were written in
Fortran rather than C. This is not because any of the raquired UNIX
~ system calls (except for fork) would have been difficult to dirsctly
map into VMS calls through an appropriate subroutine library, but
becausa we wanted toc measure performance using the direct YMS system
calls, and because of time pressure to compiete the benchmarks. Also
note that some of the C programs for the VMS benchmarks make direct
calls to VMS system sarvices. It is not intended that portablie zode
directly use such calls, but instead use a subroutine library which
jmplements & much simpiier environment, '

We intend to repeat these benchmarks using the identical C
source code on both systems using a more complete UNIX emulation
package for VMS. However, we expect no measurable change in ths
benchmark timings.

IUNIX - sequential pagé access

o WP P TR D WP R R W S A AR T AR =D P W S WO AR S em . -

static char *1i;

static char *j;

char *valloc():

int loopcount;

j=valloc(7500°512}:
for‘(1copcount=a;1009count<10;Tcopcnqnt+*)

wsby

for(i=§;i¢j+(7500°512);i=i+512)
i= |

& Lo
we G

-

VMS - sequential page access

- O SR n e D WS OB (S B OB W W D D

gtatic char memory[8192][512] :

static char *{;

static char *j = memory:

int loopcount;

for (Ioopcount=0:1oopcount<10:Ioopcount++)

{
for(i=j;1<]+(8192+512):i=1+512)

*i=1;
UNIX - random page accass

static char *i;
static char *j:
int rand{):
char *valloc():
int loopcnunt,ssed=1;
j=valloc(7801%512);
for (loopcount=0;Toepcount<30000:loopccunt++)
: *(j+(512*(rand(saed)/275318)))=1;
}.

VMS - random page access

static char *1i;

static char *j;

int rand():

char *valloc():

jnt loopcount,seed=1;

j=valloc(7801*512};

for (100pcount=ﬂ;1oopcount<30000;laopcaunt++)
(j+(512(rand(seed)/275318)}))=1;

=
UNIX - gaussian page access

main()

register int pagenumber,delta;
float gauss();
-register char *j;
char ®valloc():
register iat lcopcount;
j=valloc(7801°512);
pagenumber=0; .
for (loopcount=0:ioopcount<30000;10bpcount++)

delta=gauss(SD,0.0);

42 : » c%/

AUUGN

- - a——

-

while ((pagenumber+de1ta < 0) 1 {pagenumber+delta $7800})
deltaﬂgauss(SD.0,0); : , -

pagenumber=pagenumber+delta:

‘(j+(int)(pagenumbar‘SIZ))=1;

3
f1oat gauss(SD,MEAN)
float SD,MEAN;

{ .

fioat rnd():

float sqrt().Tog(),rnd().cos();

register float qa,qb; '
ga=sqrt(log(rnd())*(-2.0)):
qb=3.14159‘rnd();
return(qa“ccs(qb)‘SD+MEAN):

float rnd{)

static int seed=1;

static int biggest=ux7fffffff;
int rand(): .
) : return((float)rand(seed)/(f]aat)biggest);

1

VMS - gaussian page access
#define SD 30.0

main()

register int pagenumber,delta;

float gauss(): '

static char memory[7800*512];

register char *j=memory:

register iat Joopcount;

pagenumber=0;

for (1009count=0:1oopcount<30000;]oopcaunt++)

: de1ta=gauss(50.0.0); ,
while ((pagenumber+delta < 9) il (pagenumbar+de\ta >7800))
delta=gauss(SD,0.0}: ,
pagenumber=pagenumber+de?ta;
Vi printf("page #%d\n" ,pagenumber);®/
'(j+(int)(pagenumber‘SlZ))=1;

}
float gauss(SD,MEAN)
float SD,MEAN;

{
filoat end():
float sqrt().]og().rnd().cos():

" pegister floatl qa,qb;
qassqrt(log(rnd())'(-z.ﬂ));
qb§3.1415§‘rﬂd(};

: return(qa“cos(qb)'$D+MEAﬁ);

} : o
float rnd()

T s

Etatic int sead=1; , ,)
static int biggest=0x7f{fffff; :
int rand{);
return((float)rand(saed)/(float)b1ggest)
}

1
UNIX = sequent1al fils 1/0

ghar buf[512];
int outfile,locpcount;
outfile=creat{"test",0755);
for(loopcount=0:loopcount{4000;lcopcount++)
write(outfile,buf,512);

} |
VMS - sequential file I/0

byte buf(512)
open{unit=1,nama="test’',type="new' ,access="direct’,
i initials ize=4000,recordsize=128)
: do 10 i=1, 4000

10. write(1'i)buf .
stop
end

!

UNIX - random f11e 1/0

long pos:
static char buf{512];
~int rand():
int loopcount,seed=1,fd;
fd=open("test”,1); .
for (loopcount=0;locpcount<30000;loopcount++) :

pos=(512*(rand(seed)/275318)) ; S
1seek(fd,pos,0);

write(fd,buf,512); -
) . _ c ,

VMS - random file I/0
byte buf(512)
-integer rand,seed
data seed /1/
open{unit=1,nama="'test’,type=‘old’, access=‘d1rect'
initialsize=800Q, re:-nrric*x?n—iﬂﬂ\

do 10 i=1,30000 4
ipos=(rand(seed)/275318)/2+1
10 write(1'ipos)buf

stop

end

Y

44 " ' -
R X S et

UNIX - contaxt switching
{nt otharpid;
main()

{

int fork().getpid().sigsub{):

int (*func)()=sigsub:

int pid,i;
: signal(15,func);

otherpid=getpid():

pid=fork():

if(pid 1= 0) {otherpid=pid; kill(otherpid,15):)

for (i=0;i<10000; i++)

pause():

sigsub()

~static int (*func)()=sigsub:
“int signal():
signal(15,func):
kill(otherpid,15);

}

UNIX - signal without context switch
int othsrpid;
main{)

{

int getpid{),sigsub():
int (*fune)()=sigsub;
int pid,i;

signal(15,func):
otherpid=getpid(}:
"kill(otherpid,15);
}
 sigsub()

static int (*func)()=sigsub;

static int i=0;

int signal():
if (i++ € 5000} (
signal(15,func);
kill(otherpid,15);

call sysSascefc{%val(64),'tast’,,)
do 10 i=1,100000 .
call sysSsetef(%val(65))

ak

45 -

call sysSwaitfr{%val(64)) ! Process 1
call sysSclref(%val(64)) :
10 continue
’ stop
end

call sysSascefc(%val(65), 'test’,,)
10 continue '
call sysSwaitfr{%val(65))
call sysSclref(%4val(a5)) ! Process 2 :
call sys$setef(%val(64)) .
goto 10 ‘
stop
end

VMS - signal without context switch
call sys3ascefc(%val(64), test’,,)
do 10 i=1,100000
call sysSsetef(%val(64))
call sys$waitfr(%val(54))
call sysSclref(%val(64))
10 continue
stop
< and

!

UNIX - IPC (write to self)
#define n 512

main()

‘ ghar bufn]; : ,
fd{0]=10000; ' B .
fd{1]=1000G;
pipe(fd);
for (i=0;i<10000; i++)
o { »
write(fd[i].buf,n);
read(fd[0].buf,.n);

}

VMS - IPC (write to self)
#define n 512
main()

extern sysScrembx(),sysSqiow(),ioS~readvblk,ioS~writevblk;
char buf[n]; ‘ - :
int i,chan;
struct {int achar;

char *ptr:

} name;

name,nchar=2;

name.ptr="IN";)

sysScrembx(0,&chan,512,0,0,0,&name);

for (i=0;1i<10000;i++)

{

~

i
L]

SysSqicw(O.chan.&ioswwritevb1k+48.0.0,0,buf ,0,0
sysSqiow(0,chan, &io%+readvblk,0,0,0,buf,n,0,0,0,0

}
!

UNIX - IPC (write and d1scard)
'#define n 512
main()

ghar buf{n]:
int fork():
int {,fd[2];
fd[0]=10000;
fd[1]=10000;
pipe(fd);
if (fork() =3 Q)
{ for (i=0:;1<10000;1++) read({fd{0].buf,n);}
else .
{ for (i=0;i<10000:i++) write(fd[1].buf,n}:}

}
VMS - IPC (write and discard)

#define n 512
main()

extern sysSassign().sysSqiow(),i03~writevblk, 1o$*readvb1k
char buffn];
int i,chan;
struct {int nchar;
char *ptr;
}name;
name,nchar=2;
name.ptr="IN";
sysSassign(&name,&chan,0,0); : /* Process 1 */
for (i=0;i<10000;i++)
sys$Sqiow(0,chan,&ioS+writevb1k+48,0,0,0,buf,n,0,0,0, 0)
} .
#define n 512
main() .

. extern sysScrembx(),sysSqiow(),ioSewritevblk,ioS«readvblk;

char bufin]; :

int i,chan;

struct {int nchar;
char *ptr;

}name; -

name.nchar=2;
name.ptr="IN"; ’ ,
sysScrembx{0,&chan,512,0,0,0,&name); /® Process 2 */

‘ for (1=0;i<10000;i++) :

}‘ sysSqiow(0,chan,&io%+readvblk,0,0,0,buf,n,0,0,06,0});

!

UNIX - IPC (write back)

#defxne n 5§12
main()

,

X

{ .
.char buf[n];

int fork():
int i,fd[2],fd2[2]:
pipe(fd);
pipe(fd2);
if (fork() == 0)
' { for (i=0;1<10000;i++) {read(fd[0],buf,n);
Cwrite(fd2[1].buf,.n);

alse
{ for (i=0;1<10000;i++) {write(fd[1],buf,n);
read(fd2[0].buf.n);

}
}

VMS - IPC (write back)
#define n 512
main{)

extern sysSassign().sysSqiow().ioSbwritevblk.ioshreadvblk:
char buf{n]:
int i,chanl,chan2;
struct {int nchar; .
‘ char *“ptr;
}namel;
struct {int nchar:
char *ptr;
}name2;
namel.nchar=2;
namgl.ptr="IN";
name2.nchar=3;
name2,.ptr="0UT";
sys$assign(&namel,&chan1,0,0); . /* Process 1 */
sys$Sassign(&name2,&chan2,0,0);
for (i=0;i<10000;i++)

sysSqiow(O.chanl.&ioS«writevb1k+48.0.0.0,buf.n,o.o.
sysSqiow(O.chanZ.&ioS«readvb1k.0.0.0.buf.n.O.D,0.0);

}
#define n 512
main()

extern sysScrembx(),sysSqiow{),iaS~writevblk,joS~readvbik;
char buf[n];
jnt i,chanl,chan2;
struct {int nchar;
char *ptr;
}namel;
struct {int nchar; -
char *ptr;
}name2;
namel.achar=2;
namel.ptr="IN";
name2.nchar=3;
name2.ptrs"OUT";

AUUGN

v

sys$crembx(0,&chan1,512,0,0,0,&namel); /* Process 2*/
sysScrembx(0,&chan2,512,0,0,0,&name2); :
for (1=0;1<10000;i++)

(-
sys¥qiow(0,chanl,&io$+~readvblk,0,0,0,buf.n,

n,o
;ysSqiow(O.chanz,&ichwritevb1k+48.0.0.0.buf

0,
.0,

L4
]

A SUMMARY OF THE VAX/VMS VERSUS VAX/UNIX DEBATE

G. H. MacEwen
Queen's University
Kingston, Ontario

D.

F. Athersych, D. J. Ross

Andyne Computing Limited

Kingsten, Ontario

ABSTRACT

In many research institutions where the VAX-11/780
is being considered, there has been much discussion
" on the relative merits of two available operating

systems:
on issues of support,
and maintainability.

VAX/VMS and VAX/UNIX.

The debate centres

functionality, flexibility,
This paper focuses on the

arguments presented for and against each system,
and attempts to summarize current thinking.

Introduction

Many research and development laboratories
and universities have found the PDP-11/
UNIX operating system to be a friendly
environment for software development and
specialized application work. Many of
these same institutiors are considering,
or have already moved to, the VAX-1ll as a
hardware base. A major consideration for
the research and development community is
access to software developed elsewhere and
‘the complementary ability to make one's own
software generally available. As a conse-
quence it is of some importance, in the
view of many, to have a common operating
system in use.

The production of VMS as a time-sharing
system for the VAX-11 raises the question
as to whether or not it is a viable re-
placement for UNIX, or more precisely for
VAX/UNIX, which has been released by Bell
Laboratories. This question has aroused
some vigourous debate, especially among
installations on the ARPA network, much of
which consists of subjective opinions
rather than carefully considered evaluation.
Nevertheless, some important questions have
been raised and debated in intormal unpub-
lished documentation.

The unbiased observer (if one can indeed
qualify as such) is confronted with masses
of technical documentation which requires
much time to study, opinions stated from
biased viewpoints, and unanswered ques-
tions, the solutions to which are hidden
somewhere within the documentation, the
supplier's organization, or perhaps only in
the systems themselves.

to summar-
raised in
is based

This paper represents an attempt
ize the guestions that have been
the current VMS/UNIX debate. It
on copies of generally available informal
documentation, limited access to VMS docu-
mentation, and rather better access to UNIX
documentation. Our hands-on experience
with UNIX has been moderate but not

Proceedings of the Digital Equipment Computer Users Society

50

861

extensive and one of us has had a very
brief encounter with VMS,

Organization of the Paper

The remainder of the paper is divided into
sections each of which examines one aspect
of the systems under study. In each sec-
tion we try to establish some requirements
for the particular environment in which we
are interested, namely the research and
development lab. We then make some comments
on VMS and UNIX. Since some of our infor-
mation has not been confirmed by direct
examination, much of the following material
should be taken as questions for considera-
tion rather than as conclusions. We try
carefully to indicate specifically where
our information is accurate.

Maintainability and Modifiability

The ability to examine a system and care~
fully alter or extend its function is
probably the single most important require-
ment for specialized application and
development work. Indeed, it is unlikely
that any research facility is not heavily
modified. For this to be possible a system
must be written in a high-level language
and designed in a well modularized struc-
ture. Device driver insertion effort is a
common measure of this ability.

VMS is written largely in assembler, a
surprising fact to almost everyone familiar
with current software technology. The
system is large although reported to be
relatively well structured. Manuals are
generally perceived to be verbose and
rather varying in level of presentation.
Although opinion varies on the effort to
install device drivers the weight is on the -
side of difficulty. It is possible,
however, to install a driver dynamically
(without rebuilding the entire system).

UNIX is written in C, a relatively unre-

straining, but nevertheless high-level
language. This single fact has probably

Toronto, Ontario — February 1980

AUUGN

given UNIX its current acceptance, It is
relatively small which mitigates against
its lack of modularity. as a consequence
most people find it quite understandable -
after a short time. Device driver inser=-
tion is not difficult, but does require re-
building the system.

Utilities

The program used directly more than any -
other is prcbably the editor. A good edi-
tor can contribute encrmously to product-
ivity. Although other utilities are worth
considering in an evaluation the editor
certainly dominates. A full screen editor
with the ability to save the state and in-
voke the command interpreter is a minimum
requirement. i

Neither UNIX nor VMS comes equipped with
such an editor. Most UNIX installations
have written their own and VMS installa-
tions are probably doing so. The failure
of DEC to provide this capability is also
surprising although it may have been
influenced by terminal handling within the
hardware architecture. Recent hardware
announcements may have removed this prob-
lem.

Input/Output ;

~In an R&D installation
I/0 support is that it
it not impose unwanted structure or
efficiency constraints. The ability
construct apprcpriate access methods
top of the standard I/O schema should
“satisfy a divergent set of application re-
quirements. Viewing an external process
as a random addressable sequence of bytes
(sequential where required) provides a
device independent base for other I/0
mechanisms. The option of synchronous or
asynchronous I/0 operations is desirable.

for
that

a requirement
be simple and

an

There must also be the ability for any non-
privileged process to have full control
over its associated terminal. The varia-
tion amongst available terminals and the
function available in the more intelligent
of these demands such a capability. This
includes, of course, a raw untranslated
8-bit byte-stream mode.

The most unfortunate design decision in
VMS is the placing of the Record Management
System (RMS) at a low level thus requiring
its use by all processes regardless of
need. RMS imposes a line-oriented access
mode on all users and consequently all DEC
utility software uses it. Although it can
be bypassed with difficulty it remains as
the base of almost all VMS software. VMS
is claimed by some to be slow for simple
tasks {e.g. copying data). It is possible
to'do asynchronous I/0. Complete terminal
control requires a privilege level which
also gives access to the entire system
including the system disk.

AUUGN

862

UNIX provides one basic byte-stream access
mode and allows full terminal -control by
unprivileged processes. Asychronous I/0
primitives are not provided although some
concurrency can be achieved. Lacking,
however, are more structured access modes
which ‘are useful in certain applications.

Both VMS and UNIX are designed on the
principle that there be a common file
access mode for all software thus unifying
software processing and communication
interfaces. The problem for specialized
wogk is that this must be a quite primitive
mode.

File Structure

The kinds of installations we are discus-
sing have users with overlapping projects
and much interchange and cooperation in
software development. A file structure to
model this environment can have few
structural limitations. The ability to
Create symbolic links between directories,
to share sub~directeories, and to associate
users with a "home" directory distinct
from the current directory are minimal
needs. A well defined search sequence for
named files that are not found in the
current directory allows public software
and private software to be uniformly
available. Finally, for such dynamic
structures reference counting of files
should be automatic with space reclaimed
upon the reference count reaching zero or
the directory being deleted.

File directories can be created to eight
levels in VM5. This is probably sufficient
although it seems an arbitrarily low
number. There ares no symbclic references
possible between users' structures, and
names not found in a user's directory
receive no further processing. There are
at least two disconcerting problems in
addition to these structural problems: A
deleted directory results in the file
space being lost and new versions of files
(all files are maintained as a sequence of
historical versions requiring explicit
deletion to reclaim space) do not inherit
the protection attributes of the old
version.

A simple hierarchical file structure char-
acterizes UNIX. A search sequence for
named files makes public and sharable soft-
ware uniformly available although there is
no concept of "home" directory. No
symbolic directory references or shared
sub-directories are possible.

All physical resources can be accessed via
the file naming structure giving a very
nice uniformity to program interfaces in
UNIX. This feature is one of the major
reasons for the accepted view of UNIX as a
cleanly designed system. ’

51

Process Control and Communication

The ability of one process to exercise
control over another in a debugging mode is
needed for development wurk. This includes
the ability to save a process image as a
file and restart it some time later.

For more general structuring of systems as
communicating processes the ability to
create subprocesses and to communicate with
any process on a global name basis is re-
quired. Process creation should not be an
expensive operation.

Named mailboxes and global events in VMS
provide a communication means between any
pair of processes. Process creation speci-
fies the image to be executed by the new
child.

" In UNIX pipes and signals can only be used
between a child and its parent and/or its
siblings. Pipes, however, appear as files
and so a very clean I/0O redirection
mechanism results. Also, a child can
inherit open files making this indirection
transparent to a process. Process creation
copies the image of the invoking process
for execution by the new child.

Neither UNIX nor VMS possesses particularly
good parent,/child control as suggested
above. 1In each, a particular flavour of
_process creation has been chosen suggesting
that the method be an option to the pro-
grammer. A problem in UNIX particularly is
that the copying is often unnecessary as
the new process typically executes a
different program.

Command Language

The user of a multi~process system needs
control commensurate with the underlying
available mechanism. In particular, a user
should ke able to exercise active control
and communication with a tree of processes.
Avoiding waiting time at the terminal can
be achieved while at the same time carrying
on related tasks each running as a separate
process.

The VMS command interpreter, DCL, provides
no explicit concurrency mechanism although
the system primitives seem to provide
sufficient support. The shell in UNIX,
the other hand does provide for "piping”
between processes and the creation of
multiple processes. The necessary communi-
cation channels to and from such processes
are not provided however. Although some
find the shell to be too cryptic (What does
cat mean?) it is a cleanly designed and
powerful tool. :

on

System Calls

The interface to operating system routines
must, above all, be clean and easy to use.
Of almost as much importance is the pro-
vision of a uniform interface from a

863

variety of languages.,

UNIX has a relatively small set of clean
primitives implemented as calls from C.

VMS provides a uniform ¢alling sequence-
from all languages and what some experi-
enced programmers feel is a good error
return mechanism. The call interface,
however, is very complex and, consequently,
difficult to learn and use. 1In addition,
the set of primitives is very large.

Sharing

Processes should he able to share code and
data segments. The latter can be provided
by mapping files into process address
space. For the former, library files
should be automatically sharable.

‘'VMS allows sharable code segments, sharable

libraries, and permits files to be mapped
into user space. UNIX is much more limited
allowing only a single sharable code seg-
ment per process, no library sharing, and
no file mapping into user space.

Protection

Development environments tend to comprise
overlapping projects. Consequently, an
overlapping protection group structure is
needed to model the situation. Users
should be able to establish membership in
multiple groups. It should also be
possible to establish at least one level of
privilege hierarchy within a group. Many
situations require a supervisory structure
within groups. ’

Both VMS and UNIX provide a strict user/
group/global structure with VMS providing
one additional more privileged system
level. Neither meet our requirements here.

Resource Control

Resource quotas are not essential for most

-development environments since quotas

always represent arbitrary limitations, and
administrative controls are usually
effective. They are, however, convenient
to have and in some situations, such as a
mixed teaching and research facility,
absolutely essential.

Available documentation indicates that VMS
has a resource gquota mechanism. UNIX
certainly does rot. However, at least. one
VMS installation is known to be operating
without any resource control and is of the
opinion that VMS cannot provide it.

Summary

We do not intend to state any conclusions
with respect to the superiority of VMS or
UNIX for a development environment. Any
such pronouncement, in addition to being
subjective, would not be credible if based
on such an informal study. Rather our
intent has been to try and look at some

characteristics 6f the "forests" in
question without being drawn into discus~-
sions about the "trees”

. While not stating conclusions, we do have

opinions. We find the use of assembler in
VMS very surprising and disappointing.

(It has been suggested that this was a
marketing decision.) UNIX wins in this
regard and also in its 1I/0 and file acces-
sing facilities. Placing RMS in the path
of users seems unnecessary. On the other
hand VMS seems to have rather more general
sharing and inter-process communication.
Finally, the VMS system call interface has
not been received well by those who have
been exposed to it.

Given our choice we would lean to UNIX,
primarily because it represents less of an

obstacle and more of a friendly tool.

864

SRR

RS-

N U R E

.) . .] April 1380
A ‘ . . ™) N

”@“Mw»ﬁj{;

A PCP-11 FRONT-ZIND FOR A VAX-11/780°

M. J. Brecwne, Charles Cranieri, D. J. Sherden, Leon J. ¥Weaver
Stanford Linear Aczelerator Center ‘ :
Stanford, Californtia

DECUS
ABSTRACT - ~ 19 30‘

An unputlicized feature of the VAX-11/730 {s the \ :SQDKJ}JC
provision for attaching a PDP-11 to the VAX UNY3U3 Co ™
Adapter, This con glve significently {(mproved 1I/0 pﬁe:tjikkﬂ
performance for =zpplications wnhnich are limited by :
overhead in the VAX I/0 dr 1ve. rether than by the

transfecr speed of the UNIBUS {4seirl. We have

implemented such & system using a PDP-11/0U4 2s a
"front-end” to 2 CAMAC agata 2equisition system.
Both the PCP and the VAX have full access %o the
UNIBUS. That portion of the PDP address space
which does nct nave UNIBUS mecmory can bde mapped o
buflers in the VAX memory, allcwing the PDP to
access ViX memcry zn to initiate ©DMA transflers
"directly to the VAX., The VAX 3lso has full sccess
to the 70P memcry, providing a convenient means for
developing and dounlsacing the FDP software,

.

INTRODUCTIC 13 =small (vy
re

slcelly several hunmcred bytes),
) ‘ : the high repszitiosn rate, ccmbined with tha
As online computers have progressed from fact that «c¢azh event rsequires severs.
sinple %o =more zompliczied machines such as 32parate P27 lsingle wore Sronslfer) ond DVA
tne VAX-11/730 many of he more diffizult tlock trans’fer) ¢peraticns, introduces
tasks bhave Dbeen made e23y,-But many of the significant software overhead.
simple tasxs have been macde cdifficult, Cne -
Such area is {n the readlng of time-critical As the sysiem was originally set up, =%he
cata, While mclern computers offer usaful event %3 were read Ly the VAX using 3
feclilivtiss for user proutectica, DMA locally written ZAMAC 1/0 software driver
caozdility, and I/0 jueueing znd Suffering, {235, T3 minimize softwars cvernsad tals
the softw<are ovsernead in tne inter-upt system provides {or list-driven muitiple
servizing and I/0 3ystens hes ‘n some cases CAMAC cperetions 2aad mulvtizie interrupt
outpaced the ‘n»rea:iwg speed of the Servicing within 3 sinrgle SI0 syston service
tombu ers. Fortunately, such problems are c2ll (note tnat the software overhesd of a
well suited ¢ micre-ccmputer applications. single SI0 22l s comparadls, %35 the time
i between events), lndependent ol the
In this pzper ve describe a means of overnesad involved in the QI0 call {tself {-2
connecting F PIP-11 omputer {in our msec), eacn-TAMAC PDT cperation requires -30
“application a PDP-11/0U) to the VAX-11/780, usec, each CMA operatisn ~egquires -390 usec,
=nich &llows the two to {nteract in 3 very ARd esch ovent interrupt recuires ~23C0 usen.
2oL flexidle fasnion. We ncote that Shis scheme dith this system, the reading of event cata
s .. is an unpublicized design feature of the required “Z5% of he tctal CPU power of “ha
(= VAX, and hence credii for the system. should . csmputer. Psrticularly <hen comparea tc tha
2o - to . Digital, although - 'we . sccept .- ime ‘availzble far the &nalysis of events,.
~responsidility for ony misstatements in tais | this is a quitc significant ovarnead, which,
.p2per, and, should it make anyone f[eel - with the present scheme, is almcst enzlrely
bet:er. b-au for &ny of its fairlures, : eliminzted :througn the use of a "front-enc”

PDP-11/04 to read the cata.
n cur particular application a YAX-11/7%0

ls wused for the acguisiticn z2nd analysis of :) . THE SECRET PCRT
2ata for elementary particle ’physics
experiments in Ind 3tation A of the Stanford In the most naive picture, one lnagines *he
Lirear Accelera:a; Tenter. Communicetion UNIBUS adayter (UBA) hanging from the 32
with the experimental equicment is with the UNIZUS emanating from the UBA, a8
zcecomplished through a3 CAMAC {1] systom shewn {n Figure 1. The UNISUS arbi:ra:'cn
ysing three JorwWay Model 41! Sranch Drivers functions are mentalily zssocisted with the
12%. Time critical data are acquired st UBa. Thers are e separate UNIBLS
rates of wup o 260 “Mevents" per secand. erbitraticen funztions: Hen-Preceszor
“hile the amount of ¢data read Isr each svent Request (NPR) arbditrztion and Bus fequest
*work supported Ty che Debarizent of Inergy, cosiract SL-AC03-765700515. ‘

Presenzed az the 1380 Sprimg SECUS U. 5. Sy=posium, Chiszago, Illinols, Asril 22 - 25, 1980

Ce e e e - APUGN e

AT VAX ~ S vaX
: MEMORY MBA cee MEMORY MBA ceo
Yax] ST J l . vax 1] ‘
- ¢PU 58 cPy 581
UBA UBAl
DEVICE : ! i ' DEVICE | ™
@ 2 | : UNIBUS = WPR 4 *|
@ ARBITRATOR| o
= DEVICE 2 DEVICE
#*2 3 o 2
Y) i . . . ,’ .
: - ot . "o o=80 ’ . *
-1 FIGURE 1 . Inrcat Az ' FIGURE 2 '
: R naive view of tre UBA,. A slightly less naive view showing the

o . 4 1 -
{ER) interrupt processing., .¥hile the UBA separation of UBA anc NPR arbiirator,

Zoes contain a 2P interrust processcr, the

WP2 arhitrator ls separate frsm “he UBA, as VAX
shcwn in Flgure 2. The U24 may, for most MEMORY MEA ‘e
Furposes, be consicdzred 23 an NPR device on -
the UNIBUS. The NPR arbitrator is VAX é { l
functionally {dentical to that {n any cPy SBI
PLP-11, so ocne con sisply replace the
ardiirator card with a sizndard UNIBUS cabile
t2 3 FOF-11 withcut a2dverse eflfect, as shown . ' o
in- Figure 3, ' UBA

THE UNT2US ADAPTER ’ - ‘,
Almost 311 of tne ({nformation in this POP j DEVICE
section is readily available frem the MEMQRY v #{
VAZ~15/780 Hardware Yandbook. We] ~
nernetheleas present the 1infarmatian here =
3inees 1L {3 relevant %o understanding the \ > CEVICE _
YAX/FDP interactiion. o PDR—11 2 :

. . . i

Sne of the mcst i{mportant functiona of %he : ° '
US4 {2 to mapr the UNIBUS address apace : T :
3C3000-757777(8) to VAX nmemory. For this A -)
surpose, the U34 contains %6 map reglsters, nesd - - FIGURE 3

sllowing one to map eacn zage of UNIBUS UBA with NPR arditrator repla;ed by PCP-1}
3cdress space to VAX nmemory, Zecause the ’ B - .
PGP has Its own memcry on the UNIZUS, one : .

needs a mechanisnm for disabling the simply maps some portion of PDP address

Terreaponding map registers {in the USA. For space without UNIBUES memory te the deaired
this purpose (or to acccrmmodate external pages of VAX momery. Note that for PDP
UNIBUS memcries, in general) DEC provides mocels <ithout memory manzgcment, the sum of
the Mip Reglister Disabtle fileld {bits 26:30) POP memcry plus PCP-accessanle VAX memory s
=f the UNI2US 4Aidzpter Control Register thus limited to £2¢¥ words, The UNIBUS
{UacRa). Thia fleld may be loacded with the dddress space . allecation for _aur
Junber of 4K word blocks of externzl UNIRUS . configuration (PDP-%1/0U <ith 8K words of
memory, which must bdegin at UNISUS address memery) Is {llustrated {n Figure &, S
C. With the corresponding map ragisters S '
diltabled, the VAX has zomplete sccess ts the #3 long as the map Tegistars remain
UNTZUS memory; the disadbling simply prevents unchanged, the PDP may treat the zsscciated
tne UBA from attempting tc 23sociate these VEX memory as though it were its own. Since
reges with VAX (S5BI) memcry. The fact that the PCP also has acecess to the UNIBUS I1/0
the VA €2n access the PDP memory directly space (760000-7777F77(8)), it may initiate
srevicdes, among other things, an extremely 170 from a UNIBUS dewvice directly to or from
simple method of dcwnloacing programs to the VAX memory.
£Dp. '
- Becouse the UBA has {ts ewn BR interrupt

The PDP can Ye given access o VAY memory processor, it {ntercepts 3R i{nterrupts from
wsing the UBA map registers. Here one all UNIBUS devices ﬁcan:tre;m of the UBA

) .

2

W e e S e g et - . -

AUUGN | . | : 55

“interrupsts the VAX,

*-deSireabIe, to

‘for this purzose 3 simple

S UHI3US se

- pregram coparstion,

UNIBUS ADDRESS SPACE ALLOCATION
7T

760000,

UNIBUS I/0 SPACE.

NCN -POP ACCRESS SPACE
e {mopabis to VAX memory
for non=-P2P functions)

POP ADDRESS SPACE
(mcpcbls 1o VAX memory)

POP MEMCRY
I{mop registers discbled}

040000,
000600,

FIGURE & 1104e

a =

"?A UNIZUS) ang
pCe. 2R
the U34A

received

This

{or,

s{iden of the
not the
interrusts f-om deviczes u:s"ﬂem of
(~“he "PoP sice" of the UNI2US)
by the PDP .and not
arrangegent czn be altered o
more p*-c‘s-- , by not
.nu-'r';. leld Switesn { 4
.In this :zsc the U234
interrupts is the PDP.

(the

HARDWARE

Bardware assoclated wit the FLP=-11/04 . in
Sur system s shcwn schematic2lly {n Flgure
5. The PDP {3 pcvered up and down with the
VAX CPU. When the system is pocwered up, PDP
control {3 ‘transferred .to the RCM of the
M9301-YA bootsirap module., Since the UBA is
fnftially vunmapred, %t is important to
prevent the PDP frem accessing its
memory wuntil *the UACR Ma2p 3e2gister Disadle
Fl2lg has been properly init {zed, {Note
that the M9301 RZM ls in
-the UNIBUS,-which s alway
.external ty . the UBA.Y -
‘provide a
‘eemmunication between the . VAX 3nd.
whiech 4 id not require the use cf{.?5P memory,
interface module
was build wusing an MDE-1710 feundation
siodule {4) plugged i{nto the °5P side of the
that the ?DP rather than the YVAX
receives {ts interrupts. The {interface
module consists of a control register (CSR),
-iwo data registers, and two interrupts. Cne
register i3 used by the VaX to [ni{tiate
while the sccond is left
user applications. The [irst
interrupt i3 used to signal an svent, while
“he Second i3 used Sy the YAX to terminate
PCP program operation, {(As deslgned, oither
{nterrupt czn Ye fired from hardware or {rom

{31t

the

)
Hence 1t -

means .. -of

free for

1/C =spate of
known to Dbe.
was

the PDP .

VAX
MEMORY MB8a cen
VAX i — | !
cPy =51
CONSOLE
LsI uBa

° T 80 Ei::gH
- N
v #! I oRIvER #t
TERMINAL]
80
- #*2
oLi-8
[%]
EVENT 2 .
INTERRUPY z "
3 22
Mi7iC ‘
1 oTmer
e UNTEUS
POP
MEMORY CEVICES
L]
PDP
H/ca
a0 FIGURE $ 381043

PDP-2ssocfated harzware for our sysitem.

softwzre,) 7o ;rovide for FUP Prsgras
dewnloeding a2 nple mogifignticn wzs made
Lo the MoiDd1 1~H program. The progrEn
In{21a"ly toads an 5dc¢ number into tne zZzie
. reglster of the interface mocdile. In
“addition te locking for inzur from tne
tL-118B (L{.e. the nrcrmal conscle e=mulator
routine) the »rogram also lcokas 3t the zZata
register, After =he YAX nhas downigcaced =-e
program intec the PCDP memeory, 1% slaces the
(cvcn) starting sddress in the. Jata
reglister., This {8 reccgnized by tne P0P and
used to begin pregram executlisn, Sufffclern:
unused space exista in the 46307-YS thas zhe
downloading [sature could be added wizhout
eliminztion of any (2atures of the stanrfard
ROM. - oo . . : :
In the stancdard RCM = console emulsior
routine, a START command .causes the RIM
program - toc - execute & . RISET tefcre
transfering sontrel to the requested
address, Since this instruetizn -esets atll
‘devices on the UNIBUS, its execution 2f%eor
the VAX has Gteen Doooistrapped would hzve
disastrous recznsequences. Hence <<he RBISET
{nstruction was climinated Jfrom the 3C¥
program.

Iin addition to the VAX/PDP
POP 2130 has 3 DL-1'B serial line
and an M7346 floppy 4isk coantroiler,

{nterface, the
3
which are vused solely for :ie;ﬂo:ti
-
-
k.

T L3
interf?

ourposes. The DL<1'B can be connected
oene of the terminals used oy

nor=aally ‘
VAX, @and the MTSUb into th

can de pluggec

" AUUGN

L3}

3f the UACR for the 3K words of PDP UNI 3US
._iépofy -nzch is at: ecned. },::::Aﬁi. Lt

Y

Al
‘3/:tem we note
:?

VU)W gt

VAX LsI.
2ation of the relisbility of the
that the terminal has not
an connected to the PDP since the initial
bugging of the PDP program, and, apart
from verifying that the MN7346 module worked,

nor=elly used Sy the conacle

an 1ing!

~ L
e

tne f[loppy disk has never been connected teo
the PDP, . :
The only unexpected problem which arose 1In
ringing up the system occurred in the
bootstrap sesguence, With the 3swiiches of
the MQ3I01 bootstirap module properly set, %he
sower up sequence should cause the PDP %o

interrupt to the MS3I01 ROM. This {ndeed

"occurred when power wz2s initially zpplied to
the CPUs,
up scqQuence can 3130 be generated

sower fall and power
from VAX
by: (L) 'SBI UNJAM, (1i) sstiting
Adapter Iniz field (Bit 0) i{n the UACR,
cr {(Li1) setting (and resetting) the UNIBUS
Power Fail field (Bit 1) in the UACR. At
Least one of these methads (3 employsd by
the VAX toctstrap procedure, It was found
nat for the software genarazted power up
ﬂuwﬁce, the AC LO signal was decsserted
multaneously with DC LO rather than the
scridbed >5 usec later. This caused <*he
to trap o locatica 2% {power fail)
er than to the »oo:istrap ACM., while a
brutal approsch (s probably possible,
the protlem by cutting a ‘trace on

However, the

saf>«are
whe

'i

TR u
e §

-
-Dwuu\)i-
o

LY
C
-
>
[a8

Lhe M3301 module.

e It

’ "-.’

el

SCFTAARE

A VA

/UMS I/O?gri
the "front-end”®

ver was written to support

PCP-11/04. ¥hile not
wecnnically nezszssary, the I/0 driver farmat
=28 chosen tecause (t offered a cenvenient
3nd well deocumented means ol accezsing both
“MS system routines and UNT2US addresses,
Trhere is, houever, one speclal feature sbout
*his driver, In order to alloszates the UZA
map registers s,e*:"‘ ally aszcciated with
*rxe PLP, the PD driver must be losded
Defore the .v:r: of any other devices
wnmich 3ccess :he UNIZUS.

POP
performs

‘driver
the

it i8 ., losded, the
ialfizatisn reutine
in

wing functions:

vaery -

R B

Yy
Vo sae 0y

permanently 3llgcates within VMS the
first Z23X words of UNIBUS addresnes {{.e.
“ne PDP addreaxs apace)., L .

‘sets the Yap Register Disable

It sets up ”H: svstnn page *able entries
that the 3K of UNIBUS memcry mayv be read
written directly frem the VAX
s=nerated virtual addresses far

pE NS I ¥ I
[3Y

LT R)
]

.
(7]
o
.

through
QI0

VAYX user programs may access the PDP
uaing the standard

:3s~em s»rv:ce. The PDP driver 5upport3 the
fzllewing functions:
. write to PCP memory. L.
- . . l’
*
{

"AUUGN

'eigy

‘" reads-

and saves
later

2. Read from PDP memory. -

3. Read VAX/PDP {nterface rcsis:era.. .
4, MWrite VAX/PDP {nterface registers,

S. Iﬁ:errupt :he‘PDP by writin {nto the
VAX/PDP interface CSR register,

6. Set up a "never-ending" QIO which maps

UNIBUS sddresses bdetween 2K and 28K into VAY
memory to allow the PDP program to read dats
directly into or from the VAX memory.

Down-1cading of programs from the VAX to the
PDP 13 sccomplished by 2 user level routine
using the CIC facility described above. PDP
preograms are prepared, assrmdlad, and linkad
using the ccmpatibility-mode RSX-11M
facilities of the VAX. The down-loading
routine reads the load module to Zetermine
the program 1length, (first oaddress, and
starting addrezs, as well 2as %the program
itself. Using the QIO factility, the program
is written to PDP memory, and the aszarting
address {s written to the VAY/FDF interface
module data reglster to initiate progranm
eperation,
CPERATIONAL EXPTRIZNCE

In our particular application one of the
three CAMAC branch drivers s dedicatad
exclusively %o the reading of event data,
This restriction was present {n the orizinal

VAX-based system and has deen carried cver
to the PDP system. The other two Sranch
drivers are used for I/0 which occurs at

repetition rates =igni{ficantly lcwer than
that of the event data, and remain driven by

the YAX rather than the PDP. The isclzticn
of the event brsnech was sdogted 1o aveid
handshaking and interlocking

prodlems
bs2ween the VAX and the PDP. . o
The event {nterrupt wss moved from :he VaX
to the PDP. The event bdranch driver,
however, was left on the VAX side of the-
UNIBUS so that dilagnostic programs can Ye
Tun from the VAX when the PDP {3 not running
its normal event reading progranm. This
prohibits the ?DP from receiving DHA
cempletion fnterrupts from the branch
driver. However, since CPU time on the 7PDP
{s not at a premium, {t 13 a simple matter -
for the FDP to monitor the C3R of the “ranch

driver until ’re u%A opnration l: c*npleted..fifl‘ff

Upon receipt c{ an: event lnterrupt

event data along with
information from the bdranch driver
into a circular »uffer {n VAX

the

memory. The .

buffer is large encugh to contain roughly 20.

events. A VAX program, which is activatsed
rouvghly 10 times. per second, retrieves data
from the buffer for analysls and lagging on
magnetic tape.

Because the PDP could be progrzmmed to reac
data 1in a more brute fcorce fashion than the
l{st-driven VAX I/0 system, the PDP was Zble
to duplicate the functions of the VAY-bazed
system vusing less real time. In practice,-

57

PDPifT,W .
sstatus’’ o
directly .

*3

.

Y
+

.

- esmpletion.

5.

the PDP prcgram was expanced

to provide
error chacking with retry capability, and s
format the cata in & forn more zoavenicent o
the 'speclifle experiment than that of the
Cre generzl VAX-tased systenm. The final
PCP program reads svents in e,prcxi:ately
‘the sezme time as did the ori ginal VAX
system. While most of the FOP program {s
specific .to the current experiment, 1% was

written with sulflcient benerality -that
reprogramming for an auriliary experiment
w23 acccmplished in less than a day.

The PLP system Nhas DSeen in 1se for aix
months, =znd has not enczuntered Frcdlems {n

‘that tiame.

while we nave been extremely saztisfled with

‘the system, we must add that it is not all

tiings to all people.

ce Jhe system is effective {n eliminating
softuare cverhead Ddut dses not improve
harZwsre performance., In particular, sinze
the PDP requires UNIBUS cveles 1o sccess its
Own Demory, UNI3US serforamsnce wiil Se
degraded rather Lhan e»*a ced. Ncte,
however, that the PSP {iself has “Se lowest
UNIBUS priority and the WAIT insruccion can
oe used 2 inhidit PIP activity Suring {dle
eriods.

2. For PUP mocsels {inzluding the 2DP-11/04)

walzch use <hs JAT.?-yA O (reacd-nogify-urize)
sequancenio write 5 memory, he ”EA jirect
dala path zust Ye used, rdselting in heavier
traflic on the S3I, Even for models using
the DATD seguencze, tNe usse Af z UBA Suflered
€3ta zath would Zestrsy the feziure of 4§
“Dit readcm acceas ts VAYX memdry 2y the PDP,
8.1n0ush chne cculd rave 3Z or S4 %ii 3ccess.
Similarly, for any mecel, the FOP could
initiete MY transfecs from 170 devices o
*he VAX trnrough a duffsred data path ([-the
tlock size were alwzys in Integral units of
32 or 64 bivs, or if the vaXx vere
interrupted.ts purge the data path after IHA

3. YAX dufrers -n,gh are to Se vused by the
PCP must be pace alig in VA4 nmemory since
" the UBA map registers c=1 only mzp a psze of

VAX =memory to a page of UNI3US acdress

spaee.

e

the 2DP-11/0%) hangs-the UNI3US
\ x

disabled) UNI3US 3dcresses 3)so zauses the

~VAX to crasa. Son't do that either.

"6, One of thx VAX 11cro d‘ag*osti*: Agﬁvcs'

an error cendition wnen th POP is
connected. ' We nsve not anves.izated this
further, but simply disconnecs the pDp

Yefsre running “he micro-cizgnostics.,

T Crzsh rescovery fs not zn {mporiant
sspect of Sur sSystem &nd we have not. paid

e

“This <ork was-supported

' S vl ool VAX/VMS SYSTIMS, Pro
ructidﬁfﬁd ‘scme’ PDP 5cdélaiﬁ~.Apr;1 15 579.
ta erzsh, Don't *o'.hat.1 :jff‘

ACC°35 by the PJP to unmappad (and not:

T a4

detatled attention to %he relative power up
and :Odn sequences cf the YiX CPU, PSP CPU,
and UNI3US ecapter,

8. As previously menticned, no general
scheme exisls for the sharing of interrupts.

9. While it is {n principle possible ‘o
share & common 1/0 device between the YaX
and the PDP, provision must obviously »se
msde In harcware and/or sofiware to hand.e
the assoclated handshaking and iock-out
prodlems.,

SUMMARY) ’

The System described provides a simple means
of {nterlacing a PDP-11 cemputer ta a
VAX=11/780, and offers the following
featurea:

1. Coﬁpfé:e 2ccess to the UNI3US by bdoth
PDP and VAX zemputers.,

2. Complete a2ccess o PDP memory by ‘the
VAX.® '

3. Limfted access %o VAX memory by the PDP,

L. Initiation by the POP of I1/0 dlirectly
frem UNIBUS devizes to YAX memory.

S. Availabilizy of RSY=i1'M facilie
the VAX, sroviding a corvenient means
program cdevelognent

ACKNCWLIDZIMINTS
we would 1ike %2 thank M

r
of the DEC VAX-Y1/750 ing
als advice fna this srojec

¢t e s

LIS |
)
[,]

ooy
O
3

o

"t v
M)

LA
vy
n
+
b1}
)
vy
.

& oy

cf Lnergy under
DE»A:D‘-TSS.CFSIS.

At
.

REFZRENCES

{13 Cam u*or Ay
T

mated Monitorin
Control (C MACY, £

Stsndard 5383-1¢

{2) Jorway Corporatisn, westéury, N

> .
-
-
-

{2 Cﬁar;es -C?anieri
REAL-TIM DATA CCLLEC
ce

Equipment Users uoc1=ty

P

[J] NDB ﬂysgnﬂsA-nc:;qugnéé.

A TYETY.maT

d

AUUGN

Macros for Analyzing C Prograin Arguments
J. Lions
Bell Laboratorics
Murray Hill, New Jersey 07974

ABSTRACT

Two sets of macros are described for use in the analysis of the arguments to C pro-
grams. The advantage of their use should be a considerable reduction of program-
mer effort and improved Lomplehvn‘;!bxhty of pr ogmms

1. lnfroduction

One of the areas of program implementation in UNIXT systems that does not seem to have

- progressed very far in recent times is the analysis of the arguments passed to a program by its

precursor {usually the shell). This paper describes two sets of macros, each of which provides a
mechanism for defining and setting internal flags and variables bﬂsed on the argumcms passcd

to the program. The aims of the present proposal are:

1. above all, simplicity and ease of use;

2. sufficient range and fiexibility to handle the requirements of most existing UNIX com-
mands. ‘ ' ‘

© A survey of existing UNIX commands reveals many diverse styles of syntax and semaatics {or

command arguments. However, amongst all these, there are a number, including many of the
most important and heavily used commands, that conform to a fairly standard approach. The
essential features of this approach are:

1. The division of arguments into **key’” and *“‘non- key arguments, with the latter most fre-
qu:,ntly being the names of files.

2. The use of ‘=" or ‘+’ to introduce *‘key”” arguments.

3. The use of single character ‘“keys”’, possibly followed by a number, another cl.ancte;, a
- string, or, occasionally, s:ome combination of these.

4. The independence of the various keys, that may appear in arbitrary combinations and ord--

ers, and may be divided in various ways among one or more key arguments.

There is a relatively a small number of existing commands whose current argument usage is
sufficiently exotic that they will most probably never be included in a general argument analysis
scheme, and that certainly fall outside the scheme just described. This comment applies partic-
ularly to commands that are seasitive to the ordering of several, syntactically similar arguments,
e.g. sort, or comnmnds with a strong tradition chh as dd and find, that use mulii-character key-
words.

The existence of a set of' macros of the type described here does not of itself impose a stan-
dard, but it should discourage the creation of non-conforming commands in the future. Of the
existing commands, those that are clearly non-conforming are likely to remain so; those that
are already conforming may still gain in clarity and ease of maintenance by being rewritten to
take advantage of the macros.

At the time the initial version of these macros was being written, it was brought to the writer’s

attention that there existed a proposed standard for standardizing the format of UNIX com-
mands. (See UNIX Conumand Syntax, by A. S. Cohen, S.B. Olsson and G. C. Vogel, internal
BTL memorandum.) The proposed standard is intended to impose a much stricier view on the

t UNIX s a trademark of Bell Luborateries.

59

.

~

60

. 2.

way argumcnts to commands may be presented than the luissez faire approach of the past and
proposes a drastic simplification of practice and the elimination of many present idiosyncrasies.
It has the merits of simplicity and rigidity and holds the promise of simplifying the lives of less
experienced users. 1t is also fair to say that it is not without its controversial aspects. -

On the other hand, the proposed standard is not entirely compatible with current practice, so
that the macros that implement it differ in some respects from the set which was originally
designed. Accordingly, as a way of accommodating a diversity of opinions, two sets of macros
have been formulated. These two are largely compatible in appearance and usage. The second
set, which is found in the file nsrdargs.h in Appendix B, is considerably larger and has consider-
ably more options (reflecting current practice) than the first set. The latter, which implements
the proposed standard command syntax, is found in the file stdargs.h in Appendix A. Since
stdargs.h is the simpler, it is the first to be described in detail below.

2. The Flavour

The intent of the present proposal is that the programmer should be able to replace the section
of his or her program that analyzes argc and argv with something like

ARGBEGIN(=)
FLAG (f, {flag);
FLAG (t’, tflag);
NUMBER (w’, wval);
STRING (1", hptr);
ARGEND;

°

The function of the above set of instructions is to analyze the argument list, looking for argu-
ments that begin with *—’. Each of these is analyzed character by character:

1. if an ‘f’ is encountered, the variable fflag is incremented.
2. if a ‘¢’ is encountered, the variable tflag is incremented.

3. if a ‘W’ is encountered, the variable wval is given the numeric value of the unsigned
numeric string immediately following (if the string is null, a fatal diagnostic is generated).

4. if an ‘h’ is encountered, t‘rhe pointer /iptr is set to point to the remainder of the current
argument, or, if this is null, to the next argument in the argument list (and this would not
be further examined during this phase of argument analysis). '

An important feature of the present proposal is that after the ARGEND statement, any argu-
ments that were not processed (i.e., in the above example, that did nct begin with ‘~’, and
were not ‘‘captured’ by an ‘h’) are available via a compacted list in the usual argclargv format.

Under the proposed standaid, and with the use of the present proposal, if the program xyz
incorporates the above code, it would find the following lists identical and acceptable:

—t —f —w10 —h junk able elba
=t —wl0 —h junk able —f elba
—hjunk able —tf elba —w 10

and it would increment each of flag and tflag once, set wval to 10, would set Aprr to point to

“junk”, would leave argc with a value of 3, and would leave argv pointing to the strings “‘xyz”’,
“‘able”, “‘elba™, 0. o

. , AUUGN

e
BT

3. The Proposed Standard

Because the proposcd standard has not yet been wadcly promulgated, it will be described here
first before the macros that implement it are iniroduced. A BNF description of the proposed
standard format of commands (other than those recognized directly by the shell) is as follows

command = commandname options names
commandname = {name of an executable file}
options = {null} | options {white space} option
names = {null} | names {white space} name
oplion = flagoption | stringoption
flagoption = "—’ flagkey | flagoption flagkey
stringoption = "' stringkey separator string

- flagkey, stringkey = {letter}
separator = {null} | {white space]
name A = "—"| {string not beginning with "—}
string = {character string containing no unquoted white space)

Under this proposed standard the following forms of the prx command would be acceptable and
equivalent:

ptx —ft —w 70 infile outfile
ptx —f —t —w 70 infile outfile
. ptx —ft —w70 infile outfile
ptx —f —w70 —t infile outfile
ptx —f —w 70 —t infile outfile
while the following are not acceptable:

“ptx —ftw 70 infile outfile
ptx —fw70t infile outfile
ptx —f —w —t infile outfile

From the point of view of implementation, the most controversial feature of the proposed stan-
dard is the optional white space separator within a string option, because such white space is
normally ‘processed’’ by the shell before the command is invoked.

4. The Standard Macros

In the descriptions that are given bclow, c, v, and p stand for a character value, an mtwer vari-
able, and a character pointer, respectively. The two macros, ARGBEGIN and ARGEND, form
the head and tail respectively of a switch statement, within which FLAG, STRING and
NUMBER represent individual cases.

MAIN Has the value ““main (argc, argv) char =argv[];”

USAGE Declares a “‘usage’ message to-be displayed before termination if argu- -

ment errors occur. Must be used between MAIN and ARGBEGIN to
be effective.

ARGBEGIN{c) Sets up code to search the argument list, looking for arguments whose
first character is ¢. Set up code to search the second and remaining
characters of such arguments via a switch statement, keyed on indivi-

dual characters.

‘ARGEND Terminates the switch statement opened by ARGBEGIN and ter-

minates processing if errors have occurred.

61

e

re g

’ FLAG (c,y) If the option key ¢ occurs, increments y.
: " STRING (C.D)~ _1If the option key ¢ occurs, sets p to point to the string of characters

BB A b e by e i e L e e e e e

remaining in the current argument, or if this is null, to the next entire
argument in the list. In the latter case, the argument will be removed
from the list and not scanned. -

NUMBER (c,y) If the option key ¢ occurs, takes. the string that follows (located accord-
ing to the same rules as for STRING described above) and evaluates it
as a decimal number. Reports an error if the string contains any non-
numeric characters.

The following macros, for ARGINIT, ARGCOUNT, NEXTARG and ARG, together with the
one for MAIN already given, are somewhat controversial, depending on whether one believes
that the variables arge and argv should, or should not, be explicitly recognized by the applica-
tion programmer.

ARGINIT Initializes variables for NEXTARG when ARGBEGIN and ARGEND
are not used,

ARGCOUNT(c1,c2) Checks the number of arguments, usually after the options have been
analyzed. If the number of arguments in the argv list is less than ¢/, or
greater than c¢2 (given that ¢2 > ¢/), then the usage message is

- displayed and the program terminates. Note that argv(0/, the command
name, counts as one argument here.

NEXTARG Gives a pointer to the next argument {rom among those arguments

which remain in argv[]} after earlicr processing.
ARG Denotes the value -previously returned by NEXTARG (initially
argv{0]).

The relevant portions of a version of the command ptx that would conform to the proposed
standard are contained in the following short C program:

#include <stdargs.h>
int tflag, fflag, wnum;-
MAIN {
USAGE "—ft —w[l{n} [infile [outfile 11
" ARGBEGIN('=")
FLAG (f, fflag);
FLAG (', tflag),
NUMBER({'w’, wnum);
ARGEND;
ARGCOUNT({, 3
‘ fin. = fopen (NEXTARG, "r"); .
} fout = fopen (NEXTARG, "w");
The result after this program was passed through the C preprocessor (to expand the macros)
and cb (to clean up the result), is given in Appendix C. The following features may be noted:

1. stdargs.h will include stdio.h and crype.h if these have not already been included.

2. A semicolon may not appear immediately after ARGBEGIN, but is optional after
ARGEND. '

3. The method for argument analysis which is used does not enforce a clear separation
between ‘“‘options’’ and ‘‘names’, i.e., the (w0 can be inter-mixed.

62 ' . AUUGN

Lne

S AU SN

5. The Regular Macros

. The file nstdargs.h includes all the macros mentioned in sidargs.it plus several additional ones.

AUUGN

One small difference exists between the two sets. With the regular macros, an argument con-
)

sisting of a single *—’ will not necessarily be classed as a ““name’ but may be treated as an
“option”’ (see OCCURS and STANDIN below).

As before, in the descriptions that follow, ¢, y, p, and a stand for a character value, an integer
variable, a character pointer and an array of integers respectively.

‘ARGELSE(C) Formally equivalent toc ARGEND; ARGBEGIN(c)

SUFFIX (c,p) ~If the option key ¢ occurs, sels p to point to the remainder of the
- current argumert and does not scan the current argument iurther.

NAME(c,p) - If the option key ¢ occurs, sets p to point to the next entire argument
in the list. This argument will not be scanned subsequently.

NUM(c,y) If the option key ¢ occurs, evaluates the numeric string that follows
immediately in the current argument, and assigns its value to y. Con-
tinues analysis at the next non-numeric character of the current argu-
ment. A null string has the value —1.

NUMLIST (c,a) If the option key c occurs, takes the remainder of the current argument
as a list of unsigned integers scparated by strings of non-numeric char-
acters.. The numeric strings are converted to integers and stored in

- successive elements in the integer array denoted by a. The list entry
beyond the last valid entry is set io —1.

CHARNUM(c,d,y) If the option key ¢ occurs, looks for a single, optional‘non—numeriﬁ

character, followed by an optional unsigned numeric string. The
optional character is assigned to d, and the value of the string to y.

VALUE(y) If the current argument contains an ‘‘unattached” numeric string,
assign its value to y.

OCCURS(y) If the current argument consists only of the single lead character, e.g.
-~ =", increments the value of y.

STANDIN If the current argument consists only of the single lead character, e.g.

—’, treats it not as an option but as a name (i.e., one which is left in
the argv list).

Note that OCCURS and STANDIN are mutually exclusive, and that thz latter is assumed impli-
citly in “‘standard’’ macros; also that NUM is a restricted version of NUMBER: that will not
reject null digit strings, and that the territory covered by S’I RING is divided between SUFFIX
and NAME.

ii Example

The following is a larger example that illustrates the coding needed to handle the argument lists
for the pr command:

/+* sample for pr command */
#include <stdargs.h>
#include <stdio.h>

int firstp, ncols, aflag, mflag, ...
int xval = —1;
char #eptr, <hptr, *nptr, *sptr;

63

s
-

T

64

MAIN |

USAGE "+k —k —adm —eCK —nCK —wK —oK —IK —h N —pfrt —sC" ;
ARGBEGIN (+) . ;
VALUE (firstp); /* first page =/
ARGELSE (") |
VALUE (ncols); /* k column outputx/
FLAG (a’, aflag); /» print across page+/
FLAG (m’, mflag); /* merge =*/
FLAG (d’, dflag); /= double spacing+/
SUFFIX(e’, eptr); /» tab settings +/
SUFFIX('n’, nptr); /+ line numbering+/
NUM (X, xval); ~ /= old line numbers+/
NUM {w, wval); /* page width +/
NUM (o', oval); /+offset +/
NUM (1, lval); /+ page length */

- NAME (N, hptr); /* header #/

-FLAG C(p’, pflag); /+ pause for cach page*/
FLAG (f', fllag); /* use form-feeds+/
FLAG (r’,rflag); /= no diagnostic reports=/
FLAG (t’, tflag); /+ no header or trailer*/
SUFFIX (s, sptr); /* column separators/

ARGEND;

o

/+ analyze sptr, nptr, eptr */

/+ process files */
if (argec > 1) .
while (fopen (NEXTARG, "r") != NULL) {
}
}
Note that variables, such as
firstp, ncols, aflag, ..., hptr,...
in the example, must be predeclared, preferably as external variables. For most of these, the

default initialization to zero will be adequate, but for some, explicit initialization may be
needed.

Because the standard macros do not include processing of the peculiar kind required by the n

and e options, the suffixes to these characters have been separated for later processing. In the
case of the ‘s’ option, it is possible to replace the line relating to s by something like

case 's": sval = *(4+p); continue
This assumes a variable sval, rather than a pointer sptr, and some knowledge of the internal
workings of the macros. The pointer p is a local variable in the block initiated by ARGBEGIN.
7. A Comment

It has been suggested that the present proposal, by disturbing the initial argv/] structure, will
interfere with the ‘““normal” expectations of the command ps. However there is no long-
established tradition that commands do not alter argvll, and in fact, some commands (e.g.
passwd, crypt) modify their arguments as quickly as possible for security reasons. Moreover,
under the present proposal, while the dope vector that points at argument strings may be

AUUGN

b 4

3

ot g

-7-

" - modificd, the value of argv/0] and the argument strings themselves are not modified, so that

the problem for ps does not become impossible.

8. Action and Reaction

The circulation of early drafts of this memorandum produced two reactions. The first was the

suggestion of many more features that could be supported by suitable expansions of the macro

package. (The formulation of these presented a challenge which could be accepted with pleas-
ure.) The second, in many ways a delayed reaction to the first, was to decry the proliferation of

macros and to argue for severe economy. Of late, the author has inclined towards the second

view. The macros in the file ‘‘stdargs.h’* are available through the UNIX stockroom. The oth-
ers have been invented and hence exist. They can be reinvented and reinstalled when, and if,

‘popular demand dictates.

9. Acknowledgments

The assistance of Aaron Cohen, Ted Dolotta, Dick Haight, Andy Hall, Andy Koenig, Doug
Mcllroy, Bert Olsen, Larry Rosler and Jerry Vogel in reviewing and commenting on earlier
drafts of this memorandum is gratefully acknowledged. ' '

65

o

66

. Appendix A, stdargs.h
#ifndef FILE

#include <stdio.h>
#endif

#ifndef isdigit
#include <ctype.h>
#endif

int A_errent = 0
int A _index = 0;
int A _done = 0
char *A_usage;
char *A 1gv0,

int A_atoi(d) char *+d; { /* convert string to number */
register int i; .
register char +*p;
p = +d;
if p==NULL || »p=="\0) i = —1;
else { _
while (rp=="") p++;
i = ((sdigit(*p)) ? atoi(p) : —1); .
} while (isdigit(xp)) p++; .
«d = ——p;
return (@);

0

int A_message (n, c) register int n; register char c; {
static char cc; ,
static char *A_mm [] = |
"usage: %s\n", .
“"Warning: use of option %c is non-standard\n",
"Option %c not recognized\n",
. "No string for option %c\n",
- "Bad number for option %c\n",
"Too few arguments\n",
"Too many arguments\n",

0
o 15
again: fprintf (stderr, "%s: ", A _rgv0);
if m==0) {

if (A_usage) .
fprintf (stderr, A mm[0], A usage);
exit (1); : '

if € !=cc) | : -
fprintf (stderr, A_mmin], c);
if (n>4) { n=0; goto again; }

. if @>1) {cc = c; A errent++; }

return (n);

"

AUUGN

#define A_MESS(n) A_message(n, *p)

#define A_MESS1(n) A _message(n, 1)
#define A_BEGSW({k) if(+»q==k){ for(p=(xq) +1;; p-++){ switch (+p){

#define A_ENDSW default: if (+p) A MESS(2);)/+end switch *p#/\
if(,p=="\0f A_done) break; }/+cnd for p*/ }/+end il *+q+/

#define A_SUFF (A_done++, (o+1))

#define A_NEXT (ql1] 7 +(++q) : (A_MESS(3), NULL))

#define A_STR ((«q!=(p—1)&&A_MESS(D), (+p&&(pl1]=="0")) 7A_NEXT:A_SUFF))
{tdefine STANDIN case \0": if (*q==(p-—i)) goto A_SAVE |

#define ARGBEGIN(k) {char *+q, **qq, *p, *pp, A _rgv0=argv[0]; argc=1; \
for(q=qq= &argv[il;*q;q++){ A_done = 0; A BEGSW(k)

- #define ARGEND STANDIN; A_ENDSW else A_SAVE: (x(qa++)= +q; argc+-+; }\

}/*end for q+/ if(A_errcnt) A MESSI(O) ;*qq=0; ARGINIT;}/+*end block+/
#deﬁne ARGINIT A _index = 0

#deﬁne ARGCOUNT (ca,ch) {if(argc<ca)A_MESSl(5);if((cb>ca)&&(argc>cb))A__MESSl(6);}

_{tdefine ARG argv [A index]

- #define NEXTARG argv [ARG ? ++A_index @ A_index]

#define ARGDISPLAY (printf("(%d) ",arge); do printf ("%s ",ARG); \
while(NEXTARG); putchar(\n’); ARGINIT;}

#define FLAG (a, aflag) case a: aflag+ +; break

#define NUMBER (c,cnum) case c¢: pp=A_STR; cnum=A atox(&pp) \
if (pp[l || cnum==—1) A MESS(4); break

| #deﬁne STRING s, sptr) case s: sptr = A_STR; break

#tdefine USAGE A _usage =

- #define MAIN main (arge, argv) char #argv [1; int arge;

67

- 10 -

68

Appendix-Bi-nstdargs:h

#include "stdargs.h"

#undef ARGEND

#define ARGEND A _ENDSW else A SAVE: {+(qq++)= *q; argc++:} \
}/+end for q+/ if(A_crrent) A_MESS1(0):+qq=0; ARGINIT;})/+end block+/

#define ARGELSE(c) A_ENDSW else A BEGSW(c)

#define SUFFIX(c, ptr) case c: pir = A_SUFF, break

#define NAME(c, ptr) case ¢: ptr = A_NEXT, break

#define NUM(c, cnum) case c: cnum = A_atoi(&p); break

#define NUMLIST(c,a) case c: do { while(p && lisdigit(*p)) p++; \
if (.p=="\0") break; alA_done++]=A atoi(&p); \
} while (+(++p)); alA_done+-+] = —1; break

#tdefine CHARNUM(c,d,y) case c¢: d = (sdigit(«(++p)) 2 \0" : *p++); \
= A atoi(&p); break :

#define VALUE(y) case "0" : case 1" : case 2" : case ‘3" : \)
case ‘4" :case 'S :case 6" : case 7" :case '§ :case 'Y : \
y = A atoi{&p); break

#define OCCURS(y) case "\0": if (*q==(p—1)) y++; break

AUUGN

-11 -

Appeadix C. Sample Program

extern slruct _iobuf {
) char * ptr;
int _cnt;

char *_base;
char _flag;
char _file;

}

~_iob[20];

struct _iobuf «fopen();
struct _iobuf sfreopen();

~struct _jobul *fdopen();

long fteli();

char *fgets();

extern char ctype [];

int A _errent = 0,

int A_index = 0,

int A _done = 0,

char *A usage;

char *A_rgv0;

char *A mm [] = |{
"usage: %s\n", '
"Warning: use of option %c is non-standard\n",
"Option %c not recognized\n",
"No string for option %c\n",
"Bad number for option %c\n",
"Too few arguments\n",
"Too many arguments\n",
0 .

-k

AUUGN

int A_message (n, c) int n;
char c; A
{ .

‘static char cc;
if (¢ != cc) {

cc = ¢
again: ’
fprintf ((&_iob[2]), "%s: ", A _rgv0);
if m==0) { : ‘
fprintf ((&_iob[2]), A_mm[0], A usage)
exit (1);
else {
fprintf ((&_iob[2]), A mmlnl, ¢);
if (a>1) A errcnt++;
if ((>4) (
n=0;
" goto again;
}
}

return (0);

struct _iobuf «fin, *fout;
int tflag, fllag, wnum;
main (arge, argv) char =argv [];

3

69

-12-

int arge;
A_usage = "—ft —w[l{n} [infile [outfile 1]";

char *xq, **Qq, *P, *pPp;
A _rgv0=argv{0l];
arge=1;
for(q=qq= &argv|[l];*qq+ +){
A _done = 0;
if(rrq=="-"){
for(p=(xq) +1; ; p++)|
switch (+p) {
case ‘f":
fllag 4+ +;
break;
case 't
tflag+ +;
break;
case ‘'w':
wnum =atoi (pp=((+q!=(p—1))&&A _message (1,*p),
(Gp&&(plll==""))?
(qf1]1?7+(+ +q):(A_message(3,+p),0)):
(A_done++, (p+1))));
while ((Cetype_+1) [+ppl&04))pp + +;
if (+pp) A _message(d, =p);
break; ,
if (\q==(p—1)) goto A_SAVE;
default:
if (¢+p) A _message(2, *p);

case

if(#)p==""|] A_done) break;
}
else A_SAVE:
| *(qq++) = +q;
arge+ +;
}
}
if (A_errcnt) {
A_message (0, 1),

exit(1);

-k ~

*qq =0

A _index = 0,
)
{ .

if(argc<1) A _message(5, 1);
} if((3> 1D&&(arge> 3)) A _message(6, 1);
fin = fopen (argv [argv [A_index] ? ++A index : A index 1, "r");
fout = fopen (argv { argv [A_index] ? ++4A_index : A_index |, "w");

-4\

AN

' THE UNIVERSITY OF NEW SOUTH WALES

P.O, BOX 1 « KENSINGTON » NEW SOUTH WALES ¢« AUSTRALIA « 2033

TELEX AA26054 + TELEGRAPH: UNITECH, SYDNEY + TELEPHONE 663 0351
_Jmﬁ -) EXTN.3781
ey PLEASE QUOTE

5 | e
B | - : May 19, 1980

" SCHOOL OF ELECTRICAL ENGINEERING
David R Woodrow,
St Petars Lutheran College,
Harts R4,
Indooroonilly, ‘ -
Queensland 4068. 7 o

Dear David,

It has come to my attention, via a long and devious route that you
have written to Western Electric requesting a distribution of UNIX, on
RKO5s for a PDPL11/34. Chris Maltby, from the Basser Dept. of Computer
Science, also points out that you do not appear to have supplied all the
information necessary for this to be accomplished quickly and with a
‘mInimum of paperwork.

You may not know this, but there is a large and growing UNIX User
Group in Australia and it is as editor of the newsletter for this group
that I am writing to you with some information that may be of help.

‘Nomally requests for UNIX licenses are directed to:
Irma B. Biren,
Supervisor, :
MH Computing Information Library,
600 Mountain Aves.,
Murray Hill,
. NeJ. 07974
U.S.A.

Ms. Biren requires the following information in order to start the ball
rolling at her end.

1 Thé class of license required:
i. Cbmmercial Use
i;. Educational Institution Administrative Use
iii. Educational and Academic Use

If you intended to purchase either of i) or 1ii) above you should
write to:

AUUGN . S ' S 71

Mr A. L. Arms

Patent Licensing Manager
Western Electric Co. Inc.

P.0. Box 20046

Greensboro, North Carolina 27420
U:.S.A.

-Should you require a license of the third type, as you apparently
do, then you should supply:

@ The address of your institutions administrative offices
& A description of the intended use of the software

& The specific address of the data center at which you plan to use
the software (including street address and room number)

B The type and serial number of the central processing unit on which
_the software is to be implemented

" Should Ms Biren agree that you qualify for an Educational and Academic
Use license, you will, in duve course, be forwarded a contract for your
approval and. execution. Payment of any fees vrequested, covering
duplication and documentation costs, should be made by cheque, made out
to Bell Laboratories, payable on a U.S. banke Purchase orders and the
like are not acceptede. ‘

Our contact at Bell also said that you had not made clear the
particular version of UNIX that you require. There are many different
flavours of UNIX, but the two you are probably interested in are V6 and
V7. '

UNIX/V6 will run as distributed on a PDPll/34, with one or two
trivial alterations, but V7 has a number of extra features and utilities
as described in the attachments to this letter. Unfortunately, V7 will
not run unaltered on a PDPl1/34, requiring a PDP with separated I and D
spaces because of the increased size of the system. At first sight, it
would seem that you want a V6 license and its associated distribution,
but our contact at Bell says it is possible to obtain a combined V6/V7
license and so get the best of both worlds.

Further, we recently learned that it is possible to obtain
‘Academic Use’ licenses free, if you do not require Bell to send any
magnetic tapes or documentation. Obviously you must arramge to obtain
these things locally from other UNIX users, and to this end here is a
list of contacts in Queensland.

72 ' ‘ - ' - AUUGN

AUUGN

Clary Harridge,)
Department of Electrical Engineering,
University of Queensland,

St. Lucia, :

Brisbane 4067,

Australia

Ross Gayler,

Psychology Department,
University of Queensland,
St Lucia,

Queensland 4067

C Stubbs,

Dept of Human Movement Studies,
University of Queensland,

St. Lucia,

Brisbane 4067,

Queensland

If your machine does not have a magnetic tape unit, then it is probable
that you will have to contact omne of these gentlemen, for it is no
longer Bell Lab’s policy to make software distributions on RKO5 discs.
For an experienced user it would be a fairly simple matter to copy the
tape distrlbut ion onto a few RKO5s.

As I mentioned earlier, I am the editor of the “Australian UNIX
Users Group Newsletter’ (AUUGN for short). Sixty seven UNIX sites, both
in Australia and overseas, feel that this publication is sufficiently
interesting to pay a modest yearly subscription. I have, or am in the
process of obtaining, exchange agreements with UNIX groups in the United
Kingdom, U.S.A. and Canada. This exchange of information and software
distributions combined with local news makes AUUGN particularly
interesting to a new site such as yours. I have enclosed invoices for
Vol 1 (backissues) and Vol 2 (current subscription) should you wish to
subscribe. Only UNIX license holders may subscribe, so a photocopy of
the relevant pages of your agreement should accompany your subscription.

- I hope the above information has been of help to you. I tried to
call you last week, but was told you would not be available until the

20th of May so -I decided to write this letter instead. Should you have
any questions please contact me. :

Yours sincerely,

Peter Ivanov

‘Newsletter Editor,

Australian UNIX Users Group

73

g

74

- Attachmerit 1

CATEGORIES OF LICENSE
Bell System Software Packages

Commercial Use

Educationa! institutions, as well as governmenta!l agencies and commercial entities, may be
granted the right to use selected Bell System software packages under appropriate licensing
terms such as the payment of an appropriate fee for each central processing unit on which the
software is used, the holding of the sofiware in confidence, and the use of the software solely
for the licensee's internal business purposes.

Educational institution Administrative Use

Qualified, nonprofit educational institutions may be granted rights to use selected Bell System
software packages at reduced fees for "administrative purposes" subject to an obligation to
maintain the software in confidence. Use for "administrative purposes" means use directly re-
lated to the institution's internal administratior and operation. Such use excludes, without limi-
tation, commercial use such as the developn. .t of software for sale or license, or use in
research funded in whole or part by a third party in consideration for preferential access or
rights to the fruits of such research, even though such exciuded use may provide financial sup-
port for, or otherwise further, the "administrative purposes” of the institution.

Educational and Academic Use

It is our current practice, in appropriate circumstances, to honor requests by nonprofit educa-
tional institutions, having on-going teaching or degree-granting programs in compliance with
applicable governmental regulations, for licenses -without fee for selected software. A smali
service fee, however, will be charged for the reproduction of tapes and documentation. Such
software is provided subject to an obligation to maintain it in confidence, and the sole author-
ized use of such software pursuant to a royaliy-free license is limited to "academic and educa-
tional purposes,” meaning purposes directly related to such teaching or degree-granting pro-
grams. Accordingly, all other uses of such software by or cn behalf of your institution are unli-
censed and would require a separate license agreement, .whether or not such uses by your stu-
dents or faculty are to provide financial support for, or to otherw:sp further, your educational
and academic functions. Unlicensed uses include, without limitation, administrative uses, com-
mercial uses such as the development of software for sale or license, and ali uses for research
funded in whole or part by a third party in consideration for preferential access or rights to the
fruits of such research or for research not directly related to the teaching or degree-granting
programs.

CIs-2-10/78 -

S . . " AUUGN

E

™

‘CLAYTON VICTORIA AUSTRALIA 3168

TELEPHONE: 03 541 0811 TELEGRAMS: Monashuni Melbourne
TELEX: MONASH 32001

DEPT. OF COMPUTER SC /
IENCE i __ 5—"“ / ? 8 @
Deer Peber : | | |
[closed s Cur sde Sur Vij . % The ehd , @F

thrs 7’%"@‘.{ g SALJJ_ have a con ﬁf}ur ”%5‘?“’_’3 which (5 Ve,

-~
Similac o Meltowne (Ual s — 1S M byfe 2 x RMES
s R . s ~ 1 7 . s PR 5 . .‘ -) t)
2F Feminad (ines G Wl alse b€ yunnd G Ak
adonest= joloat, cal CNK RS o s NG re b, Berlee lr ¢, .

Y Ny e i " » ' » £
{777 N rx /’F} i U, -J]/ /"7&’[4@!;({,7@ ,:7/,)53;(‘\} (f/’é}; cArivier éL’f*::::)

7z /Wé"m abonad (e s ;}7@,&}3} ‘S nNef a Hos -
cate / <3 /' hed eac ler 74> reshedonie f At e
. rd .

AT S | Aave @ Ved (e ’ﬁv 7‘,{;3_ ER ,63 cveld acAf /;5; <

, ..-- . -’é@-ﬁfr’»i""“ &”’/2. S.%\’O (,A(,r{dl é&f_ /-’? 719“ C,A; 340/» /i:/j’] 4“.4_{,“?}'4%

A e (;”Iéf,f‘(;g ;7 5.

/‘gﬁj wrl§
/6‘1,./ | /t/// (B()/(- ety
AUUGN v » | ' | - | 75

76

°

Kevin Hill
AGSM
21lst Aprii, 1980.

GeWe Gerrity,
Department of Computer Science,
RMC Duntroone.

Dear George,

Some weeks ago you asked me several questions regarding the early
stages when UNIX is first booted into core on 11/45s. At the time I

was unable tc. give -exact answers, but I have since studied the code
for the AGSM 11/70, and can now provide much greater detail. As the
UNIX on both machines runs in separated I and D spaces, I will discuss
my case, but it should not be too different from yours. The following
discussion assumes some familiarity with the UNIX a.out format (text,

data, bss; relocation bits; header) (see A.QUT(5)).

In 170.3 and m70.s (145-3 and m45.s in your case), the interrupt

vector page and startup routine, plus dumper, are all put in the data
segment. The actual text does not start until the trap handlers
(code00, codell, ectc.). The standard 407-type a.out produced by
assembling these things with the libraries is thus different from a
normal a.out, in that the code that must be =xecuted first is at the
front of the data segment.

However, this 407-type a.out is not used directly. A program called
"sysfix" is used to convert it into the unix that lives in your root
directoryv. Sysfix performs several checks which have to do with
max imum allowable sizes. It then produces the file unix which differs
from the a.out fed into it in several important ways. First, the text
and data segments are swapped around (the header information is not
altered). Second, the data references and symbols are made relative
to zero (the 407 a.out assumes text and data are contiguous, and so
data references are offset by the size of the text segment). The data
segment must be altered in this manner, because it will eventually be
separated from the text segment, and will start at 0 in the data
space. Third, the text references and symbols are made relative to a
starting address of 8192 (instead of 0). This is because the first
instruction space page will actually be pointing to the first data

. space page wheun the system is running.

I have illustrated the process over the page.

AUUGN

AUUGN

407 header ' . 407 header
text data
(rel. to 0)) {rel. to 0)
data text
(rel. to size of text) (rel. to 8192)
text relocation bits ===> SYSFIX =w=> symbol table
data relocation bits _etext = size of text + 8192
_edata = size of data
_end = size of data + size of bss
Smmoltﬂde

s

It is because the resulting unix is not a normal a.out (407, 410, 411,
cor 412) that "db" tends to play up with it. A standard 407 header is

left on it, simply so that db can be used on the data space (as the
data is at the start of the file, and relative to zero courtesy of
sysfix, and as the 407 header implies text and data are contiguous, db
is fooled into doing the correct thing). = Thus it is quite safe to
patch the data segment of unix using db. However, as db will look at
the start of unix for the text segment, it cannot be used for patching
the text space (by simply referring to text space symbol names). The
text can only be patched by subtracting 8192 from the text symbol

~address (as report by "mnm" for example), and then adding the data

segment size. Thus, for example, nm tells me that the symbol _chmod
lives at 041152T. I can get to the actual text by feeding db the
address 041152 - 020000 + 05152 (cctal numbers) = 026324 (where I used
"size" on unix and converted the data size to octal to get 05152).
However, as the addresses and text symbols deo not correspond, it is
rather difficult to do anything useful! Nonetheless, as the symbols
have been adjusted for the final in-core resting places, the symbol

‘table of unix can be used (by db) without fear on /dev/kmem (kernel

data space) and /dev/kimem (kernel instruction space). nm will show
the correct in-core values.

Getting back to unix, there is still a lot to be done! The bootstrap
simply reads in the entire file (skipping the 16 byte header), and so
lays unix in core exactly as it appears in the file /unix, i.e., data
first, followed (contiguously) by text. On jumping to location zero,
the first part of unix to be executed is thus the start of the data
space. Hence the start-up code .in 170.s/m70.s is marked as belonging
to the data segment, and not the text segment (which is miles away in
high core). ‘

77

What has to happen now (apart from routine hack tasks like setting up

segmentation registers and clearing the bss) is that room must be made

for the bss segment, which must of course be contiguous with the data
segment. Thus the text segment must be shifted in core by the size of

the bss segment, plus the necessary wasted space to take it to a 64-

byte boundary. It is in the code that performs this manoeuvre that
various limits are set on the maximum size of unix, e.g., it is

necessary to be able to access all of the text plus data segments with
the 8 data space segmentation registers, and so the maximum allowable

text plus data size is 64K bytes (rather than each having this limit,

as is the case for a normal separated I and D space program). (My

bootstrap places a further 1limit here: I can only load a maximum of

54K bytes.) Note that these are only limits because of the way it is.
being done - the method could be changed to allow much larger programs

to be loaded.

In a little more detail, soon after unix is read into core and starts
executing, the segmentation registers are set up as illustrated below.
Memory management is still disabled, so there is no problem executing
the start of the data area. However, as the bss segment may be quite
large (and is), the text segment cannot be moved by simply using "mov"
dinstructions, ‘as the physical address of its new location may be
unreachable -using 16 ‘bit -addressing. Thus the instruction space
"registers are set to the places indicated on the illustration, memory
management enabled, and the copy done by the interspace 'mtpi"
instruction, wusing a temporary one-~word stack set up in the data
segment. ~Note that instructicn space register 0 must point to the
same place as data space ‘register 0, because the code doing this
‘shuffling is at the start of the data segment. Imnstruction space
register 7 points to the I0 page, so that this page is not lost (think
about it! If contact is lost with this page, it is then impossible to
-alter the segmentation registers (which live in the IO page) to re-
access it). Instruction space register 7 is used because all the data
space registers are being used in the copying to allow for the maximum
possible textidata images

I0 Page KIA7
= =
KIAbG
KIAS
KIA4
KDA7 KIA3
KDA6 « KIA2
KDAS _end KIAl
KDA4 "’“‘? """ ‘
KDA3 . text
KDA2 bss area
KDAl ﬁ , _edata
KDAO data . KIAOQ

AUUGN

AUUGN

On completion of the copy, the bss area is cleared, and data space

~register 7 is set to point to the IO page (using an "mtpi"

instruction, and the fact that 4dnstruction space register 7 is
pointing to it). Finally, the per-process data area for process 0 is
set up and cleared, the stack set up correctly, and a "jsr pc, main"

. &xecuted, at which point the instruction space proper is entered, and

the real text commences execution. The set up just prior to setting
up process 1 1is dillustrated ‘below. Note that I am wusing a
"MAPPED_BUFFERS" system, in which the buffer pool is paged by data
space register 5. _ . '

KDA7 ' 10 Page . KIA7
= —
N KDAS buffer pool
kernel area | ; KIAG
KDA6 o (process 0) KIAS
‘ KIASG
5 1 KIA3
text : KIA2
‘ KIAlL
KDA4
KDA3 bss
KDA2
KDAl :
KDAO data , KIAO

Two final points should be noted. First, the core dumper must be in
the first data page, so that when the machine is started at location
44 (which resets the memory management unit back to 16 bit
addressing), it can be directly executed {(remember that the text
segment is miles away in high core). Second, all of the start up code
mentioned above, to the point where the infamous "jsr pc, main; mov
$170000,-(sp); clr ~-(sp); rtt" occurs, must be im the first data page
(8192 bytes). This is because the first instruction page is set to

point to the first data page (so that executiom continues smoothly

when memory management is enabled very early in the story). If the
start up code crossed the page boundary, execution would continue in
the second instruction page (which is much higher in core), instead of
where the actual code would be (in the second data page).
Effectively, the first instruction page is lost, limiting the text to
56K bytes (as the 8th page is also lost, the limit is actually 48K
bytes). :

. ~ 79

30

After all this, you may well ask, "Is it all worth it?". Why go to
all this trouble (sysfix, shuffling core, etc.)? The answer may be
that the interrupt vector page 1is mapped through kernel data space
page 0 -~ thus the standard a.out format of text followed by data would
have the effect of placing the interrupt vectors much higher in core
(certainly not in the first physical 512 bytes as on 11/40s etc.).
Does this matter? On this matter I am not sure - Peter Ivanov, who
has dome a DEC 11/70 Hardware Maintenance Course, assures me that no
interrupts/aborts/traps cause memory management to be reset (on
11/708), and so it should not matter if the intervupt vector page is
in high memory. To amuse myself, I am in the process of recoding
170.5/m70.5 to do exactly this, and will let you know if it works.

I hope this has been of help. 1In case anyone else is interested, I
have asked the AUUGN editor (Peter Ivanov) to consider this letter for

publication in the next AUUGN. ©Please contact me 1f I can be of
further assistance.

Yours sincerely,

Kevin Hill

AUUGN

AUUGN

-1 -

Adrian Freed

- AGSM, :
Ualversity of New South Wales
P.0s Box 1
Kensington 2033

Dear Pete,

I would like to prompt some discussion in the User’s group and would .
appreciate it if you published this in the newsletter.

Firstly, the issue of terminal drivers. I would like to turn the
groups attention away from the implementation details of various individuals
terminal drivers to the question: What does the ideal UNIX terminal look
like from the USER’s point of view? It would be an interesting and almost
useful task to design such a terminal. The implementation in firm-ware
would be straightforward, using micro-processors. '

The next question is related to the fact that with Level 7, came a
stable definition of the C language. Could the group agree on a formatting
standard for C? Judging by the number of different styles of formatting I
see at AGSM and at Elec. Eng., this is unlikely. This questions the useful-
ness of programs like “para’ or “cb’. I suggest that if we can agree on a
style that is not too abhorant to most people, the group sponsor”s someone
to adapt ‘cb” to produce C in this style. This program could then be dis-
tributed around the UNIX sites and it would be up to individuals to ’custom-
ise’ from this standard.

I hope'I am not making too much of this issue, but to start the ball
rolling I have included a listing of the output of the local ‘para’, which
satisfies many people on this campus.

Next to the question of Standard I/0. People are easily confused when
talking about I/0 libraries. There is only ONE Standard I/0 library and it
is documented in the Level 7 manuals as the ONLY I/0 library. It is the one
with ‘fopen("filename", "r")“. In the interests of portablility can I sug-
gest that everyone makes an attempt to use this library. Can I also suggest
that any complaints about the library be voiced.

Finally, some people may be aware of the UNIX reference card, printed
at Bell Labs. How many times do you forget the flags to find(I) or the
argument order for comm(I)? This is just when the card would be handy as it
summarises the manual entries. It has sections for UNIX commands, Command

.details, Troff and Nroff, C system calls, Site-dependent commands. Is there

any interest in producing a local one? This is probably best done when the
issue of upgrade to Level 7 is resolved. ‘ ‘

-1 am sure you will agree, Pete, that the newsletter lacks contribu-
tions, in general. Let’s hope my comments initiate some discussion.

Come on, everyone cut there, get those letters rolling in!l!

Adrian Freed

81

int argi;
int ldivr;
main(arge, argv)

int arge;
~ char *argv[];

{ ‘
' register char *cp;
register wd;

arge~-—;
for(argi = 1; argi <= argc; argi++)’
{
for(cp = argvlargil; *cp; +tcp)
{
if(*cp == ")
{
if(*++cp == ‘n’)
A
putchar(“0);
continue;
}
else if(*cp == “c¢’)
. exit(0);
else if(*cp ==)
{
- putchar(’’);
_ continue;
}
else if(*cp == “07)
{
wd = 0)
while{(*++cp >= ‘07 && *cp <= “77)
{ .
wd =<< 33
wd =| (*cp-707);
}
putchar(wd)};
==CP3}
continue;
}
else
’ ‘ ==Cp;
}
putchar(*cp);
} .
putchar(argi == arge?’0:” %);
} : «
exit(0);
}
putchar(c)
char c;
{ ' :
write(l, &c, 1);
}

8 ' .~ AUUGN

" 1=KEPLY PLEASE QUOTE: 5 : TELEPHONE: 692 3491
) ' 692 1122
EXT 3491

UNIVERSITY COMPUTING CENTRE
THE UNIVERSITY OF SYDNEY
NSW 2006

28 May 1980

It's that time of year again - AUUG meeting time. This
me is to be held at - ,

Seminar Room :
University Computing Centre HOS
Sydney University

on Wednesday, July 2nd, 1%80 from 0930 to 1600. 1Its
cost will be $10 which will include a midday nosh.

Fill in, tear off, and post the form below (+ cheque/
postal note/money order) to - .

Unix Users Group
University Computing Centre H08
Sydney University

. e am me @ e M s e G Gm M mE eE me MR I SR WR SR M G Mm M e Ew e am Bm Wm Se e me mm mw me em wm wm am

I/We will be sending _ person/people to the AUUG
meeting. Enclosed is a cheque/postal note/money order
for ¢ to cover everything.

I/We would/would not like to give a talk entitled ~
to the rest of the

group.

Name (s)
Affiliation:

Signature:

