
March 1982 Vol IV No II

Australian UNIX Users Group

NEWSLETTER

Editorial .. 1

Yet another tiresome operating system comparison 2

A bastardizedpaging UNIX 12

More on 11/70 UNIX profiling 18

Informal machine survey ... 20

Proposed extensions to the VAX instruction set 22

Snipits ... 25

Dear Abby ... 27

Netmail ... 29

EXTERI OR: CRONULLA BEACH SCENE I

An expanse of beige sandhills and blue sky.

FRONT TITLES begin and continue over the following scenes.

On the SOUNDTRACK the title song begins, "Come up to Kernel Mode".

A long stretch of beach and of surf-fringed sea. At one end apartment
blocks encroach almost on to the sand. The beach here is covered fairly
thickly with sunbathers and picnickers - family groups, children, men
and women - and dotted with brightly coloured umbrellas. People swim
between the flags. At the other end of the beach great stretches of
sand dunes taper to a distant view of oil refineries. The groups of
near-naked bodies are sparser here and the age groups younger. The water
is dotted with

What! . . . what do you mean it’s not at Cronulla, who’s organising this
meeting anyway . . .

EXTERIOR: HUNTER VALLEY SCENE i

An expanse of rolling hills carpeted in lush vines.

FRONT TITLES begin and continue over the following scenes.

On the SOUNDTRACK the title song begins, "Hello Unix".

A lone rider, just a speck on the horizon, snakes his way down the long
smoothly winding road. The camera switches to the distant riders view.
The sound of the bike bursts onto the soundtrack, almost drowning out
the title song. We switch back to our original perspective just as the
rider sweeps over a low rise. The sound of the bike is suddenly just a
subdued drone in the distance, the bike a speck again. An insect buzzes
lazily across the cameras view and

What! . . . Katoomba! You must be joking. . . Ok, but if you change your
mind once more, that’s it.

EXTERIOR: KATOOMBA SCENE 1

Lots of rocks and cliffs and all that junk.

FRONT TITLES begin and continue over the following scenes.

On the SOUNDTRACK the title song begins, just use anything from the
library.

The camera sweeps round all these cliffs and rocks and scree and mist
and . . . Oh you know all that sort of stuff you get in the mountains.
Just use your imagination. Anyway you keep this up till the titles are
over. And, er, um . . . Dammit, I don’t know. Write your own
newsletter. . .

AUUGN Vol IV No II 1

Yet another tiresome operating system comparison

Norman Wilson

Caltech High Energy Physics Group

ABSTRACT

A paper by David Kashtan of a few years ago presented
some performance comparisons between DEC’s VAX/VMS and
UNIX.* These tests seemed to show a considerable advantage
to VMS. This paper describes another set of tests using
more recent versions of both the systems and with more
emphasis towards general timesharing rather than single,
huge applications. The newer tests seem to show UNIX to be
generally even with VMS; in a few tests UNIX is substan-
tially better in performance, in none is it substantially
behind.

Introduction

This is a summary oflsome performance comparisons between VAX/VMS

and UNIX running on a VAX. They were somewhat inspired by a similar set
of benchmarks run by David Kashtan of the SRI a year or two ago. Kash-
tan was interested in the two systems’ behaviour when dealing with huge
images, huge data files, and lots of cooperating performances, which
were expected to occur in the applications for which SRI had bought
their VAX. My area of interest is more toward general timesharing, as
characterised by lots of command execution (which means process creation
under UNIX and often under a decently clothed VMS), and lots of accesses
to probably fairly small files; i.e., the things often done during pro-
gram development and text processing, which are quite different from the
needs of huge applications. Therefore my tests are somewhat different,
and don’t exactly correspond to Kashtan’s.

It should be made obvious at the outset that no decision about
which operating system to use hung on these tests. I consider the pro-
gramming environment of UNIX to be vastly superior to any other system
I’ve dealt with, and certainly to be light-years ahead of VAX/VMS. I am
quite willing to put up with some inefficiancy in the operating system

* UNIX is a Trademark of Bell Laboratories.
i. Before I forget: VAX, VMS, MASSBUS, and lots of other goodies
are trademarks of Digital Equipment Corporation.
2. David L. Kashtan, "UNIX and VMS, some performance comparisons".
Presumably available for the asking from SRI International, at a
specific address which I’ve forgotten.

2 AUUGN Vol IV No II

in exchange for the gz°eat increase in my efficiency UNIX offers. I have
a very strong pro-UNIX bias; I ’re tried to compensate for this, but the
reader should be aware of it and view my co,~nents with suspicion.

2. Preliminary info

The tests were run on a VAX-I1/780 with ~ megabytes of memory, and
FP780 floating point accelerator, and an RM03 disk hooked up via a
MASSBUS. The hardware was second-hand but freshly installed (which is
why it was convenient to use it for bench,narks), and believed to be in
good working order, except for a peculiarity in the memory controller
which was caught by diagnostics but seemed not to bother either opera-
ting system.

VMS tests were run under VAX/VMS version 2.2, using progrn,ns writ-
ten mostly in FORTRAN. UNIX tests were run with an extensively hacked
version of the system, using bits from UNIX/32V, UNIX/TS, and Berkeley’s
~.0BSD. The individual progrn*ns were written in C. Some further i~for-
marion about how the systems were tuned can be found in appendix A. For
each test, two times were recorded. ’Real time’ is the ~ount of the
real-world elapsed time the test took, to the nearest second. ’CPU time’
is the time spent computing, as opposed to sitting idle while the disk
seeks or transfers. CPU times were measured to the nearest tenth of a
second, and include both time spent in the user progrol, and operating
system oyez’head. Both times are expressed as Ima.ss in the tables, where
,~.a is ~inutes and ss is seconds.

Almost everything done on a timesharing system in some way involves
accessing a disk. Executing a co~mnand usually means reading an executa-
ble image of the system disk; text editing and progro!n development
involve many reads and writes of a user’s own files. Most of this I/O
usually involves going through a file sequentially (for ex~unple, a cola-
piler reading through a progrn,, source, or the system reading a
pzogrn,n’ s binary).

Kashtan’s tests involved writing very large files (4000-8000 512-
byte blocks), both sequentially and at random. Such things are rather
unco,m~on in the situation in which I’m interested. Modern progr~!m,ing
disciplines emphasize progr~,mning in small modules; this also is a con-
venient and useful way to organize documents. Therefore, performance in
dealing with many small files is probably more important than that when
using huge ones. As with any good idea, many people don’t apply modu-
larity in real life; still, there are probably very few progr~n and
document sources in existence which are as big as the multi-megabyte
files Kashtan used.

3. ~e appendicies are not reproduced here but ,nay be obtained
upon request. (ed.)

AUUGN Vol IV No II 3

3.!. I_/O to sequential files

This test simply read or wrote through a file sequentially, using
buffers of 512 bytes. Three sizes of files were used; 4000 512-byte
blocks (read or written once), i00 blocks (with 40 passes), and i0
blocks (400 passes). Each test therefore involved 4000 blocks of data,
which allowed some interesting comparisons between tests under the same
system. When a file was dealt with more than once, it was completely
closed and reoppened each time; thus the smaller files give some idea of
the speed of file lookups as well as that of simple reads and writes.

Under VMS, sequential files with 512-byte fixed length records were
used. The i/O was done through RMS, indirectly via the FORTRAN I/O
library. For UNIX, 512-byte buffers were fed directly to read and write
calls. Since some of the tests dealt with the same file a number of
times, all of them were fed pre-existing files of the appropriate size
(actually done by running the writing part of each test once before
actually timing). This means that the recorded times involve only get-
ting data out to the disk, and do not include time spent allocating
blocks to a file.

4000 blocks once:
write
read

i00 blocks 40 times
write
read

i0 blocks 400 times
write
read

real time cpu time
UNIX VMS UNIX VMS

:29 :40 :27.5 :1%.2
:43 :38 :42.5 :11.5

:34 :43 :33.8 :15.0
:31 :42 :30.2 :12.4

:08 1:20 :07.8 :22.3
:09 i:01 :08.3 :22.1

Some interesting points stand out immediately. Probably the most
spectacular is the speed with which UNIX seems to be able to read small
files. This is actually spurious. UNIX uses a pool of buffers as a
data cache through which all file system I/O flows. The size of the
cache in the UNIX kernel used for these test was 70 blocks; thus,
especially with no other users around, files smaller than that will tend
to stay in the cache, and the system will do almost no disk accesses
after initially reading the file. Performance like this won’t actually
happen on a busy system, although the cache obviously helps.

A peculiarity seems to stand out in the VMS numbers as well; the
amount of processor time spent on the I/O appears rather small (less
than half of the real time). This is because VMS delegates a great deal
of the work involved in the file system processing to a system called an
’ACP’ (ancillary control process). The CPU times shown record only that
of the process requesting the I/O; ACP time is not accounted for.

Less easily dismissed is the apparent strain put on VMS by dealing
repeatedly with a I0 block file. Since it seems unlikely that there’s a
special problem involved in small files, the next best guess is that

AUUGN Vol IV No II

looking up a file is quite expensive.

I/0 in UNIX centers round a structure called an ’inode’, which con-
tains such information as file permissions and modification dates, and
also the block numbers for the first ten blocks of the file. The remain-
der of the file is mapped out in ’indirect blocks’; the eleventh pointer
in the inode points to a block full of pointers to blocks full of poin-
ters, and the thirteenth to a block of blocks of blocks of blocks.

The inode remains in-core for each file that some process has open.
This explains why UNIX reads 4000 block files a bit more slowly than
i000 block ones; the additional time is spent fetching blocks full of
pointers.

VMS, on the other hand, uses a structure called a ’file header’,
which contains its retrieval pointers directly. Parts of a file which
happen to be contiguous on the disk can be described with a single poin-
ter, unlike UNIX where each block of the file is described indepen-
dently. Unless a file is extremely large or is very fragmented, the file
header fits into a single disk block. Thus VMS doesn’t have much addi-
tional work in deciding to which blocks belong to a 4000 block file, and
seems to be slowed down a little rather than sped up by the i00 block
file.

None of this explains why UNIX was able to write 4000 blocks as
quickly as it did; this is not yet understood.

Under VMS, it’s possible to set a per-process number called the
’multi-block count’ to cause more than one block to be read from the

disk at a time. The numbers above were run with the default value (which
is rather small; 4 to be exact), under the assumption the DEC had some
reason for setting it as they did. For comparison, however, the VMS
tests were run again with the multi-block count set to 32 (the number of
sectors per track on the RM03 disk that was used). This yielded the fol-
lowing numbers:

real time cpu time
VMS(4) VMS(32) VMS(4) VMS(32)

4000 blocks once:
write :40 :ll :14.2 :09.6
read :38 :i0 :11.5 :07.0
i00 blocks 40 times:
write :43 :17 :15.0 :10.8
read :42 :13 :12.4 :07.9
i0 blocks 400 times:
write 1:20 i:00 :22.3 :18.4
read i:01 :34 :22.1 :17.5

With large, and even moderate-size files, the performance is very

4. Not to mention the likelihood that few users will think of
changing it!

AUUGN Vol IV No II 5

impressive: VMS with a multi-block count of 32 reads a 4000-block file
in essentially the time UNIX can copy a 10-block file 400 times from its
in-core buffers. However, for small files, the performance is not ama-
zingly good for reads, and still quite dismal for writes. Evidently
something other than reading the disk is dominating the time spent.

Random-access I_/~

I don’t really feel that random access, especially to large files,
is terribly important for timesharing. However, as it was convenient and
would be interesting to compare with Kashtan’s figures, a test was run
consisting of picking a block a random from a 4000 block file and wri-
ting it. VMS relative files were used.

real time
UNIX VMS

I0000 random accesses:
write 4:02 3:12

cpu time
UNIX VMS

3:58.5 :40.7

VMS appears to have a bit of an edge, presumably because it needn’t
do disk accesses just to find the block number it wants. The amount of
work done by ACP under VMS is again evident.

File lookups

The simplest explanation that springs to mind for the slowness of
VMS when dealing with small files is that searching fora file and open-
ing it is very expensive compared to UNIX. It’s reasonable that this
might be so, as the two systems are very different in the way they
handle the concept of the ’working directory’ (the directory with which
the user is currently dealing, from which files with no explicit direc-
tory name are read). UNIX keeps the inode (described above) for each
process’s working directory in memory, and keeps track of that directory
by simply recording the address where the inode is stored. Thus, looking
up a file in the working directory means searching just that directory,
without worrying about its parents. VMS, however, stores an ASCII
string giving the name of the current directory; each time a file in the
working directory is referenced, the saved string is prepended to its
name, so that all directories and subdirectories in that path are sear-
ched. For example, the file looked up in the test below was called
[norman.b__~m]fo___qo; to find this file, VMS must first search [~,~] (the
master directory for the volume) for norman.di___~r, searches that for
bm.dir, and finally looks for fo___~o. Recent versions of VMS have caching
schemes for such things a blocks of directories, which are meant to
speed up this process.

To try to understand how VMS is slowed down by extra directory
searches, UNIX was asked to search for the file a_/b_/c_/d_/e_/f_/~/h which
has eight directories named. Since the directory names are explicitly
specified, UNIX is actually obliged to go out and look at each of them.
VMS was fed an additional file as well; it was asked to look up
[~,~]indexf.sys, which is a file in the master directory of the disk
volume and therefore requires only one directory search.

6 AUUGN Vol IV No II

Lookups under UNIX were done by invoking the open call; under VMS,
the FORTRAN open statement was used. In both cases, the programs claimed
that they wished only to read the file (mode 0 was used under UNIX,
readonly was specified under VMS).

i0000 file lookups:
current directory
a/b/c/d/e/ f/g/h
[0,0]. indexf, sys

real time cpu time
UNIX VMS UNIX VMS

:56 6:03 :56.4 3:42.9
5:21 5:20.6

5:44 3:38.7

Even when its best case is compared to UNIX’s worst, VMS looks
pretty bad. It could be claimed that UNIX’s buffering scheme makes it
faster, but VMS is meant to be caching too when dealing with direc-
tories. Some time could be being wasted by some obscure part of the FOR-
TRAN runtime library, but this seems unlikely when the real times are
compared to the CPU times. Either much time is being spent waiting for
the disk, or a lot of work has been done by the ACP for each lookup.

¯

Text files

The I/O test described above were done with big buffers and (under
VMS) huge records in the file. This is somewhat unrealistic. Although
both systems access files a block at a time when executing programs,
much I/O under a timesharing system will be done to files containing
more structured data like ASCII text. Under VMS, files with small,
variable-length records are generally used for this sort of data. UNIX
doesn’t impose a record structure on files, but most programs do their
I/O through a standard library on a character-by-character basis; the
library actually does reads and writes of 512-byte buffers, but addi-
tional overhead is involved in handingout individual bytes.

Since VMS tends to think in records while UNIX works with charac-
ters, it’s not clear how to compare the two. It’s not even clear that it
is reasonable to do so, since programs under the two systems tend to be
written somewhat differently because of the different I/O approaches. A
reasonable guess seemed to be to read a file as records under VMS, and
as both records and characters under UNIX. accumulating a line at a
time. In real life, UNIX programs don’t do this very often, but it
seemed fairest to include it.

The file dealt consisted of the same line of 35 characters of text
(plus newline) repeated 30000 times. It was written a line at a time
under both systems. (Again, UNIX actually does things a character at a
time, but for output it’s quite common to feed a lineful of text to a
formatting routine, which then send out the bytes). In both cases, the
file was created afresh rather than just being overwritten as in the big
block tests. The file was then read in a record at a time under VMS, and
both byte-by-byte and ~ine at a time (via getchar and f~ets respec-
tively) under UNIX.

AUUGN Vol IV No II 7

real time cpu time
UNIX VMS UNIX VMS

30000 text lines:
write (lines) :31 :24 :30.7 :21.8
read (lines) :26 :27 :26.1 :26.7
read (chars) :25 :25.6

The two systems are about even for input, but UNIX is a bit behind
for output. It seems rather strange that UNIX writes faster than it
reads when dealing with big blocks, but reads faster when dealing with
text. Perhaps fprintf, which was used to format the output, is slow; or
perhaps UNIX is slow at allocating blocks to files.

This test was also run under VMS with an RMS multi-block count of
32. The results were hardly different:

real time cpu time
VMS(4) VMS(3~) VMS(4) VMS(32)

30000 text lines:
write (lines) :24 :22 :21.8 :21.5
read (lines) :27 :26 :26.7 :24.8

Simple interprocess communication

One of the more unusual features of UNIX is the ability to connect
multiple processes in such a way that the output from one becomes the
input of another. Although program development and text processing don’t
greatly need a more general IPC, this ’pipe’ mechanism turns out to be
extremely powerful, and is frequently used. To be worthwhile, pipes
require reasonably fast process creation, and a reasonably efficient
interprocess communication facility.

Although the designers of VMS don’t seem to have thought of pipes a
such, there are corresponding (although messier to use) mechanisms. They
become quite important in UNIX-emulating packages such as INTERACTIVE’s
IS/I and SRI’s EUNICE. The closest equivalent of the pipe under VMS is
the ’mailbox’; this was used for the tests below. It is also possible to
construct one’s own IPC facility using shared memory under VMS; Kashtan
did this as he was dissatisfied with the performance of mailboxes, but
it seemed too much trouble to bother with here.

To get the following numbers, I0000 512-byte blocks were shoved
through a pipe on each system. First a process was asked to write into a
pipe and immediately read the result back; later, writes to a pipe being
continuously read by another process were tried. In the latter case,
o~ily the wz’itez w~s timed.

AUUGN Vol IV No II

real time
UNIX VMS

i0000 blocks through a pipe:
write to self :23 :29
write to other :27 :36

cpu time
UNIX VMS

:23.7 :23.6
:13.8 :14.0

UNIX seems to be a bit faster. Strangely, VMS uses about the same
CPU time as UNIX, but more real time. This can’t be explained the same
way as for disk I/O, since mailboxes don’t have ACPs.

UNIX will buffer up to 8 blocks of data in a pipe, VMS has the
amount of buffering specified when the mailbox is created. Since only
512 bytes were asked for in the numbers above, it was decided later to
re-run the VMS tests with 8 blocks of buffering. The results were:

i0000 blocks through a pipe:
write to another process,
8 block buffers

real time cpu time

:34 :13.0

The difference seems insignificant.

5. Command execution

Execution of user and system programs is obviously something that
happens frequently in a timesharing environment. It’s difficult to com-
pare UNIX and VMS directly in this, as the way commands are executed
differs a great deal between the two systems. In UNIX, a new process is
created every time a program is run; under VMS, a magical command inter-
preter usually invokes different images within the same process. Pro-
cess creation is still important under VMS if a UNIX environment is
being simulated, although in practice it’s often unnecessary.

With this in mind, both systems were asked to create a new process
executing a program which immediately exited. This means a fork and exec
for UNIX, or a SYS$CREPRC under VMS. VMS was also asked to execute the
same image a lage number of times within the same process. This was con-
trolled by a small program written in the language of the VMS command
interpreter, DCL. Since DCL is notorious among its users for being slow
to execute some kinds of control flow statements, the same command file
was run again without the image invocation to get an idea of the
overhead involved.

Under both systems, the do-nothing programs were written in assem-
bler to avoid any overhead from language-specific runtime startup code.
On VMS, the process creation program was written in assembly language as

well, since the system call~ involved are extremely unpleasant to use
from higher-level languages. ~

5. Actually, they’re no treat in MACRO, either.

AUUGN Vol IV No II 9

On both process-creation tests, the CPU time shown is that of the
creator. The real time accounts for everything, though, as the parent
always waited for the child to die before creating another.

i0000 processes:

i0000 image activations
benchmark time
DCL overhead
difference

real time cpu time
UNIX VMS UNIX VMS

6:27 ,}2:46 6:21.9 1:37.0

19:26 13:22.9
1:44 1:44.4

17:42 11:48.5

The immediately obvious thing is that UNIX is very much faster at
creating new processes. As with the disk I/O, VMS seems to show very
little of the CPU time involved; this is probably related to the fact

that the job controller (a separate system process) is doing some of the
work, but this is not well understood. The most surprising result is
that VMS is almost a factor of three slower in executing a new image in
an existing process than UNIX in creating a new one. This isn’t well
understood either.

6. Tests that were not run

Kashtan compared paging performance of the two systems, when
dealing with various types of faulting behaviour in a four magabyte pro-
cess (on a machine with two megabytes of physical memory). I consider
this to be of little interest for a general timesharing load, as I’ve
observed on my own system (running UNIX, with four megabytes) that

memory is almost never seriously short; in fact one or two megabytes are
usually sitting around free! Memory is cheap enough these days that
high-performance paging seems irrelevant, at least with moderate
timesharing loads on a VAX.

Kashtan also did tests of context-switching performance, and of
various flavours of IPC. These are of interest for real-time applica-
tions, but not for normal timesharing loads, unless performance is
exceptionally bad.

Tests that should have been run

The overhead associated with terminal I/O, particularly fairly high
speed output, is reasonably important for timesharing use. However it’s
difficult to think of a way to get good numbers for this, at least
without poking hooks into the operating-system. Further, the only ter-
minal interface on the VAX available for testing (other than the con-
sole) was an ABLE DH/DM; UNIX can use it, but no driver is available for
VMS.

6. In fact, I don’t well understand how VMS goes about creating a
process.
7. SMP notwithstanding.

lO AUUGN Vol IV No II

All the tests described herein were run on a single-user system.
They would be much more useful if run under some kind of simulation of a
multi-user environment. Since this is non-trivially hard, and there were
significant time constraints, it was decided not to bother with this.

These tests were designed only to try out some of the primitives
implemented by the operating system kernel. The overall performance and
desirability of a system are determined by many other things, such as
the ease of the use and the quality of the available utilities, especi-
ally compilers.

Non__-conclusions

Given my acknowledged bias toward UNIX, I’m wary of trying to draw
conclusions; I’d rather leave that as an exercise for the reader. I
don’t think any of the data shows VMS to be terribly exciting, though.
Certainly none of the results make me want to switch operating systems,
but this is hardly surprising.

AUUGN Vol IV No II ii

A bastardized paging UNIX*

Norman Wilson

Caltech High Energy Physics Group

ABSTRACT

One of the VAXes in the Caltech High Energy Physics
Group runs a peculiar hybrid of several versions of UNIX.
Its principle claim to fame is that it is recognizably a
variant of UNIX/TS, but has virtual memory code grafted in
from Berkeley’s 4BSD. It is also compatible with the UNIX/TS
system run on our PDP-II/45.

This paper is meant to give some idea of what our sys-
tem is, why it exists, and how much effort went into its
creation.

i. Intruduction

Our system, which for barely good reasons is referred to as
UNIX/VM, started life as UNIX/TS. This is a Bell Systems internal

release of UNIX which Caltech had obtained under special agreement~ as
part of a joint project with the local Computer Science department. TS
is a somewhat cleaned-up descendant of Seventh Edition UNIX; despite a
few dubious features, it is small, simple, reliable, and fairly con-
venient to use and administer. Particularly important to us are a very
simple and straightforward mechanism for specifying the hardware confi-
guration to the kernel, and a high degree of compatibility between the
systems on the VAX and the PDP-II; fo~ example, we have many device
drivers which run essentially unmodified- on both systems.

The problem with TS is that its VAX incarnation is a swapping sys-
tem; to be runnable, a process must be fully resident in physical
memory. For much of our load this is fairly irrelevant, but a few of our
users need to run with huge address spaces (particularly a group working
on a large symbolic manipulation program). It therefore became inevita-
ble that we run a system with virtual memory support. After considering
various alternatives, we decided to put paging into our TS system by
lifting the virtual memory code out of Berkeley’s Fourth Software Dis-
tribution (4BSD).

~ UNIX is a Trademark of Bell Laboratories.
I. UNIX/TS has now been released as UNIX 3.0 (ed.)
2. Between zero and five lines of difference; the changes involve
setting up UNIBUS mapping registers on the VAX.

12 AUUGN Vol IV No II

The paging conversion accounts for the greater part of the dif-
ference between our system and normal UNIX/TS. Other changes include
performance improvements from various sources, a few bug fixes, and some
miscellaneous fiddling.

Paging

~.~. Why bother?

On first thought, it seems wasteful and silly (not to say un-UNIX-
like~) to create one’s own paging kernel when one already exists. Some
elaboration of why we did so anyway is probably in order.

Paging first became apparently (though not urgently) necessary in
early 1980. At that time, there were two versions of UNIX with virtual
memory support in existence for the VAX. John Reiser of Bell Labs had a
paging system, but it was claimed to be significantly unclean as yet and
in any case was very difficult to get since it was not officially licen-
sable from Bell. The University of California at Berkeley had an easily
available paging system. However, early versions of this system (3BSD)
did not sound very worthwhile: different sites running it gave us widely
differing reports of its reliability, performance, and~ for that matter
whether it would run at all! As we had other things to think about
anyway, the paging issue was sidelined for a while.

In fall3 of 1980, Berkeley came out with a new release (4BSD).
This system was much more reliable and had quite good performance.
Unfortunately, Berkeley had done a great many other things to their sys-
tem; the result was both unpalatable and impractical to us.

Our objections to straight 4BSD can best be divided into the fol-
lowing areas:

Portability - As mentioned above, we have a PDP-II as well as a VAX. We
not infrequently move devices between the two machines. It is also
extremely useful to have essentially the same system running on all
computers; it avoids confusion for users who might otherwise have
to learn two ways to do things, and makes for a lot less work for
system people who have only one set of system software to worry
about rather than two. Thus, the high degree of compatibility
between the VAX and the PDP-II flavours of TS is of great impor-
tance to us.

Berkeley, however, seem somehow set on making UNIX as non-portable
as possible. Their VAX kernel is full of explicit VAX dependencies,
such as overuse of the asm keyword and the way they’ve rewritten
the UNIBUS and MASSBUS interfaces, and implicit ones such as the
huge amount of code added for features of doubtful utility.

3. Their Autumn - roughly our spring (ed.)

AUUGN Vol IV No II 13

Stability - Berkeley seem set on changing many fundamental parts of the
system; in the past they have redesigned a.out format, rewritten
the terminal driver and the shell, and twice made it necessary to
dump and restore all filesystems. They warn that further such
changes (in particular, yet another filesystem rewrite) are
iminient. Our users are not interested in relearning the system
with every release, and our system people aren’t fond of the idea
of dumping and restoring 800 megabytes of disk every few months.

To be perfectly honest, at the time 4BSD came out we had been run-
ning TS for some time. We therefore weren’t too fond of even one
drastic changeover unless it promised great benefits.

Philosophy - We feel that many of Berkeley’s changes to the system and
the supporting programs are unnecessary, un-UNIX-like, and lust
plain silly. To take a favourite example: anyone who will add a
flag to ca__~t to make it number lines, remove blank lines, and make
control characters visible, rather than writing separate filters,
simply doesn’t understand what UNIX is all about.

We needed paging; it would have been silly to attempt to write it
ourselves; but the only available paging system was one we didn’t want
to use. It therefore seemed correct to pick out those parts of the
paging system we wanted, and insert them into the system we liked.

~.~. Chronology

To give you some idea of the amount of time and effort involved in
the conversion, here is a rough chronology of the paging effort. It’s
not especially accurate, given that this document is being written about
a year after the fact.

The real effort towards a paging system started in Feburary of
1981. Initially, I wasted some time in an attempt to insert the desira-
b~e parts of TS into 4BSD; this was abandoned when it became apparent
that the majority of TS was desirable. This effort was, however, useful
in that it taught me a great deal about the innards of 4BSD.

After a month or so of work without much tangible progress, I
decided to back off and consider the opposite approach: rather than
inserting the nice parts of TS into 4BSD, graft 4BSD paging code and
some of its performance improvements onto TS. I spent two weeks compar-
ing the systems module by module (and doing other things to get my mind
off the probleml). This comparison convinced me that this was the right
approach; the real work was undertaken and within a few weeks more I

’had a bootable system. It took about a month of exercising the new sys-
tem to shake the more obvious problems out of it. The paging system came
up for users sometime in June, and has run fairly happily ever since.

Although init dumped core the first time I brought it up.

AUUGN Vol IV No II

3. Other local chanqes

Every UNIX site hacks their system a bit; we’ve probably done so
more than most. As a result, UNIX/VM contains many local changes, some
of dubious utility. Except as noted all this code was conceived and
written locally; although parts of it duplicate functions in other sys-
tems (eg 4BSD also knows how to autoreload), our code was invented
independently and generally before hearing of other people’s attempts at
the same goal.

3.1. Autoreload

Normal versions of UNIX loop forever (until someone comes to help)
if the system detects an inconsistency and calls panic. In our system,
panic has been hacked to request an auto-restart and then halt (allowing
restart to occur). Recursive calls to panic cause a halt without res-
tart. Machine checks and invalid kernel stack traps also halt without
restarting; the assumption is that these are caused by errors serious
enough that someone knowledgable should check things out before the sys-
tem is brought back.

The autoreload just causes the console to execute restar.cmd off
its floppy; currently this loads a standalone program which copies all
of memory to a known place on one of the disks, then reboots.

3.2. Push-button reload

In conjunction with the auto-restart, the system has been fiddled
so that if someone just types BOOT to the console, the system will come
up to multi users mode (after checking filesystems for consistency)
wihtout user intervention. This involves perhaps two lines in the assem-
bly language start routine and three in icode, all involved in passing
info to /et_~/init which does the real work.

3.3. Terminal driver

Everyone rewrites the terminal driver. So we did. Among the sillier
things are several more control characters and infinite settability;
~mong the useful ones, a few fiddles to make the system know the dif-
ference between a hardwired line run with three wires (for which the
carrier is always true), a line connected to an answer modem, and one
connected to an originate modem. Code for this sneaks into tty.~ because
it really is device-independent, and we are using two different kinds of
interface.

I have regret~ about what I did to the terminal driver when I was
young and foolish, and intend to clean it up someday . . .

5. Well, more so than I am now, anyway.

AUUGN Vol IV No II 15

-3.~. Confiquration cleanup

Some VAX-dependent parts of device configuration and initialization
have been cleaned up. Our code allows the TS-style configuration file to
specify which MBA a MASSBUS device will live on, instead of building it
into the driver and an assembly language interupt dispatcher. W%,en the
system boots, it is reasonably careful about making sure I/0 adapters
really exist, and prints a specific message (and still comes up) when
they don’t instead of bombing with a machine check. These seem trivial
changes but have come in handy on a few occasions.

_3.5. ~ ,..fixes

A few bugs existed in the TS system as it arrived. The worst of
these were a problem in the mknod system call which sometimes left pro-
cesses hung instead of returning EPERM, and two lines of code ~lich had
to be interchanged to prevent pipes from garbling data when the sytem
was busy. It’s worth noting that both of these bugs were in code new to
the release of TS we had; someone inside Bell Labs needs to learn care
in adding features, too.

Ideas which were thrown out

It might be interesting to touch briefly on some parts of
Berkeley’s system that weren’t adopted.

~_.I. Autoconfigurinq

This seems a lot of work and bother for a trivial result. TS is
connfigured quite cleanly at system build time (all device and vector
addresses live in one file); we consider this quiet sufficient for our
needs. The only time it matters is when a device disappears for a while,
and all our current drivers are sufficiently robust to handle that as
long as noone actually tries to do I/O to a broken device.

~.~. Filesystem blocksize

Berkeley have changed the filesystem to use 1024-byte blocks, and
claim that this is the only possible way to make their system work, We
have found the latter to be untrue, and in any case consider the benefit
of huge blocks to be offset by the conversion time, the lack of compati-
bility with other UNIX sites (including our own 11/45), and the many
insidious effects of such a change unless Berkeley’s entire system,
including their utility programs, are adopted (eg, a.out format depends
on blocksize). Disk I/O is certainly the traditional bottleneck for UNIX
systems, but we feel there are more general and useful ways to attack
the problem, such as enlarging the buffer cache.

4.3. Vread and vwrite

These calls are of limited apparent utility, poke dirty fingers all
over the code that was formerly clean, and claimed by the Berkeley peo-
ple to be deprecated; we therefore avoided the Christmas rush and remo-
ved them now.

16 AUUGN Vol IV No II

4.4. Etc

Job control, complete rewrites of the UNIBUS device driver inter-
face, a second signalling mechanism, two or three terminal drivers at
once, polling DZII’s for input in the clock interrupt routine, teaching
the device drivers the ASCII names of all the error bits, spewing the
configuration on the console whenever you reboot, are symptoms of a phi-
losophy which we do not share. Systems should be small, simple, and
correct; features such as the above aid none of these goals.

AUUGN Vol IV No II 17

More on 11/70 UNIX* profiling+

Kevin Hill

(kev:elecvax)

Bob, some profiling results I have just obtained from the 11/70
system that may be of interest to AUUGN readers. The profile was taken
during our last week of session, with the machine fairly loaded, for a
period of almost 30 minutes. Only those routines scoring over 2% of the
kernel time are shown, sorted by %. It should be emphasised that the
profiling is only approximate due to its coarseness of one longw~rd
count per 4 bytes of text (e.g. noie the 0 calls recorded for sched)-.

Name #ncall %time
cret 6016 8.3
_dzstart 1078 5.3
_dzxint 608 5.2
call 1556 4.9
csv 5810 3.8
_getc 1330 3.6
_putc 1207 2.9
_trap 171 2.7
_ttyoutp 750 2.6
_sched 0 2.5
_splx 4902 2.4
_swtch 106 2.4
_fuword 466 2.3
_dzscan 38 2.2
_sureg 99 2.2

Plainly, there are no real hogs of CPU time as such. Some minor
work can be done to speed a few routines up, but will not result in vast
improvement.

~ UNIX is a Trademark of Bell Laboratories.
+ See "A brief note on UNIX system preformance", AUUGN Volume 1
nun~ber 4, May 1979.
i. "ncalls" is guessed from the number of clock ticks accumulated
at function entry. (ed.)

18 AUUGN Vol IV No II

The % times spent at various priority levels were as follows:

Level

0
1
2
3

5
6
7

%

43.7
0.4
0.0
0.0
1.6

33.4
20.9

unmeasurable

The amount of time spent at level 6 is of interest - this includes
clock interrupts as well as any spl7() calls from the C code (most of
which were altered to set the priority to level 6). Obviously the
amount of time at level 7 cannot be determined, as the profiling clock
interrupted an this level.

Of final interest is the proportion of time spent in kernel mode to
the amount spent in user mode - this was 78% to 22%. ~is ratio was
much lower under our old level 6 system - something like 60% to 40%.

More, and different, profiling is planned for the coming year.

AUUGN Vol IV No II 19

Informal UNIX machines survey

If you are in some sense responsible for a machine running UNIX, or if you
feel that no-one else will bother, we would like you to answer these ques-
tions. We’re not going to give you the chance to object to having the results
published, just don’t say anything you don’t want known. Send the completed
questionnairs to:

AUUGN
c/o Bob Kummerfeld
Basser Department of Coiputer Science
Madsen Building F09
University of Sydney
NSW 2006
Australia

Photocopies are fine. If you’re on the network you can netsend the results to
auugn:basservax. Blank forms can be found in %auugn/survey on both basservax
and basser40.

Who are you? (You, your institution and your relationship to it.)

Why do you have a computer anyway?

What is it used for? Who and how many are your users?

What type of licence do you have, and what versions of UNIX are you licenced
to run?

What version of UNIX do you run? (Give us some history if you can, and an idea
of how much you’ve hacked it.)

20 AUUGN Vol IV No II

Tell us all about your configuration. Things like:

a) Your CPU (give a cpu number in case of multiple returns), its memory and
attachments of note. . .

b) Total mass storage, and the hardware involved. . .

c) Tape facilities, hardware and how you like your data stored and
transfered. . .

d) What sort of terminals and how many do you run. Don’t forget the baud
rates. . .

e) Printers?

f) Graphics?

g) Network hookups and miscellaneous links?

h) Anything else you’d like to say. . .

AUUGN Vol IV No II 21

Proposed extensions to the VAX instruction set

Karlos Mauvtaque

There really are lots of goodies for the assembly language
programmer tucked away in the VAX instruction set. However there are a
number of areas where a little more life could be injected.

Character String Instructions

Yes we have MOVTUC, and CMPC3, and those ridiculous LOCC and SKPC.
To help DEC New Products marketing division to document their hardware,
their microcode hackers really should be working on MOVTACS - Move
Translated and Correct Spelling. Truly a must for the para-serious text
processor.

Special Instructions

I was really impressed by the wide range of bit field instructions,
and REMQTI (pronounced rem-cutie) really knocked me out! But for the
serious system programmer there is definitely a need for multiple
register processor status self relative variable length bit address
manipulation instructions. I propose POPEXTPSLATI, that’s Pop and
Extract Field from Processor Status Longword Address At Tail
Interlocked.

For those difficult conversions you need CVTPUF, Convert to
Previously Unthought-of Format which can really benefit Cobol compilers.
Note that a "That’s not been unthought of" fault can be generated from
this instruction.

The FFB, find first bug, is an essential addition to the ’go get me
one of these’ instructions. And for those difficult flow control
constructs why not ACBFC, Add Compare Byte and Forget Context, surely an
instruction for the Pascal ’goto 99’ connoisseurs.

Procedure Calling

In addition to the infamous CALLS and CALLG we need a CALLV (Call
with Virtual argument list) for Pascal programmers who like to pass
around global variables as va~r parameters.

Information hiding, or ’eyes off my private partsI, will play an

See iAPX 432 Object Primer

22 AUUGN Vol IV No II

important role in the future of computing. Thus a RIPE instruction,
Return Ignoring Previous Error, is necessary to hide those private
little errors that you don’t want the rest of the program to know about.

Addressing Modes

Well I don’t have a lot to add here. Nine out of ten Californian
Programmers can’t tell the difference between autoincrement deferred
indexed mode and a dead rat. I would however quite like an Absurdly
Deferred Addressing Mode, O^#*@(Rn~), for those difficult indirections.

System Instructions

For the Software Reliability guys out there, you need TSTPF, Test
Probability of Fail-because-I’m-a-750. This is quite essential for
those MOVTUCs with overlapped operands.

For Richard Grevis and friends we need LDPCAV, Load PC with Absurd
Value. You can then make your VAX croak without having to resort to the
LSI-II. Others in this field include ROCPUB -. Rip Out CPU Boards, TOAC
- Turn Of Air Conditioning, oh I don’t know, use your imagination.

The CTPR, Convert To Privileged Register, would encourage the
casual user to come on up to Kernel Mode to access those intimate
variables. CSBR, Complement System Base Register, is a must for those
esoteric resource allocation schemes.

The critics of the VAX memory management would go bananas over a
PMPP, Predict Most Popular Page, instruction. A whole family of psychic
resource management instructions could be implemented to make life a lot
easy for that poor tired operating system.

Processor Status Longword

Those well worshipped MBZ bits in the PSL can be replaced with new
and exciting status information.

Patent Pending

Your Fault

13 8

First Part Wrong

Double fault

Cinzano Bit
(Must Be The Drink For Today)

Unsafe Political Atmosphere
in the Middle East

(M~O)

AUUGN Vol IV No II 23

Hardware Upgrade

The hardware could be spruced up a bit. There is a great need for
a VAX Ii/750mi CPU (that’s Capuccino Processing Unit) so we can upgrade
from our current heavily overworked model. A PTII Precognitive Terminal
Interface would help handle the student load and complement
magnificently the memory management instructions.

Dat___~Types

I feel that the current move towards exotic data types like the
recently announced ’octaword’ is generally misguided. A pentaword
specifically designed for the United States Defence Department would be
a welcome addition.

Emulation

One of hhe sweetest gestures by DEC designers was the PDPII
emulation. I propose emulation of the Turing Machine, the Analytical
Engine, the IAPX 432., and the Wankel Rotary Engine. This would solve a
real need.

AUUGN Vol IV No II

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

UNIX ¯ XENIX ¯ ONIX ¯ IS/1 ¯ SYSTEM III ¯ MEMIX ¯ VENIX ¯ UTS ¯ TNIX ¯ IDRIS ¯ CROMIX I UNIFLEX I

x

Z
>-

¯

Z

©

Z

©

or

Do you use UNIX*
any Unix-based or Unix-like system?

You ma-y be interested in the
European Unix User Group

Our next meeting will be held in Paris where we shall also be holding an
Open Meeting. At this the major vendois of Unix and Unix-like systems will
be exhibiting and giving presentations on their products. For further
information on membership of the EUUG contact

Hugh Conner
EUUG Membership Secretary
Department of Electrical and Electronic Engineering
Heriot-Watt University
Mountbatten Building
31 -35 Grassmarket
Edinburgh EH1 2HT
Scotland

and for details of the meetings

Open Meeting- April 14th
lan Perry
Group Inforrnatique
L.E.R.S.
58 Rue de la Glaciere
75013 Paris
France

Members Meeting -- April 15th/16th
Bernard Martin
Laboratoire d’lnformatique
CNAM
292 Rue St. Martin
751 41 Paris
France

*UNIX is a trademark of Bell Laboratories

I

z
0

¯ OS-1 ¯ UNOS ~l UNIX I SYSTEM III ¯ MEMIX ® VENIX ~1 UTS ® TNIX t IDRIS ¯ CROMIX t UNIFLEX ¯ UNIX

Existing Unix Users should contact their installation
correspondent for further details on either of the above meetings.

AUUGN Vol IV No II 25

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS
~login:

[]

1982 Application for New Membership
USENIX Association

Individual or Public Membership

Individual ($12, Institution has Source License)
Institutional Affiliation:
Nature of Affiliation:

[] Individual ($12, Institution has Binary License Only)
Institutional Affiliation:
Nature of Affiliation:

[] Public ($12, Not covered by Non-Disclosure)

Mailing Address (Individual Members must use institution address)’
Name:

Phone:

[] Overseas airmail, add $5.00

[] Invoice required, add $3.00 bookkeeping~charge for invoice or receipt
[] Receipt required

Check enclosed: $

Return completed form to:

USENIX Association
Box 8

The Rockefeller University
1230 York Avenue

New York, NY 10021

(For Institutional Membership or membership renewal contact the Association offices at the address
above or at 212-570-8934.)

26 AUUGN Vol IV No I I

DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY

From gregm Mon Mar 8 18:25:53 1982
To: abby
Subject: Dear abby

I don’t understand why the VAX doesn’t know the time (all the
time). If Nifty (*) can make sense of it why can’t Vaccy?

Dear Greg,
(signed) Worried.

Basically it all comes down to the fact that i January 1970 was
a Thursday. (You have to know these things when you’re a systems
programmer). The trouble starts when programs try to be internationalist
by interpreting the UNIX-wide date (number of seconds since 1 January
1970 GMT) themselves, instead of using a standard library to interpret
it for them. This is why it was never considered prudent to nroff a
document near four o’clock in the afternoon, because your document ,nay
get a date revision between pages six and seven. We have now fixed this
bug, despite the cries of outrage we receive when old-timers come
barging into the system supervisor’s office at midnight complaining that
nroff thinks the date has changed. We hope that we have weeded out all
the programs which look at GMT (over which Nifty Nev has no
juristiction).

Yours very truly,
Abby

(~) "Nifty" is the nickname of Neville Wran, the Premier of New South
Wales, renown as a champion of power-saving extentions to su~,er time.
He has resisted the many arguments against it, which have won in the
darker state of Queensland. The more interesting of these arguments
assert that it fades curtains, makes grass grow excessively, as well as
disturbing the daily rhythms of cows and computer systems.

From 8153758 Thu Mar ii 08:26:14 1982
To: abby
Subject: UNIX

Dear Abby,
Is it true that UNIX with paging (virtual memory) would
be no great advantage as what was gained in memory space
would be lost in speed?

Yes, Virginia, there is a trade-off. If Sydney Uni ran a popular
paging system instead of our local system, the maximum nu,mber of users
would drop from 85 to about 40. Of course, those lucky few who could
log on would be able to run programs much larger than 200k, and root
might even be able to run objects larger than IM! At the moment we have
to give up such dreams so that our large student population can
actually use a computer.

Yours very truly, Abby

From doug Mon Dec 21 13:40:08 1981
To: abby
Subject: your letter

Your reply was a great help to me. It bucked me up and put new feeling
into my tendonitis-ridden typing finger. I once more thrill to the
sight of my latest achievment: ’hello world’.

Many Heartfelt Thanks,
Doug

AUUGN Vol IV No II 27

DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY

From root Fri Mar 19 11:23:10 1982 netmail from chemeng
To: abby :basservax
Subject : Compatibility

How can I explain to the users of my system the lack of
consistency introduced by renegade software from UCB?

W%,y would anyone write a progr~n that operated exactly opposite
to something it was trying to replace?

I refer of course to the command ’nice’, now intrinsic to Bill
Joy’s cshell.

The manual entry that I have for nice describes its usage as

nice -number command [arguments]

but what does Mr Joy’s shell do?

Well when you say ’nice -i0 fred’ to the cshell it generally
~gnores your intention of lowering the priority of your job (it
won’t of coure tell you of your ’mistake’) unless you happen to
be the super-user in which case it embarrasingly paralyses the
system.

How do I break the news to my users that you really must type
’nice +i0 fred’? How do I explain this?

What is next on the agenda from UCB? Perhaps changing ’~n’ so
that it removes all of the files not named or changing the
ordering of the arguments to ’cp’?

Deus.

Dear Deus,

I receive many troubled letters about the Californian software
and entertainment industries, mainly from people who have followed
their practices and find they can’t handle it. The obvious solution is
not to use Mr Joy’s shell. If you are addicted to its powerful
features, you must either learn to cope with its side effects, or find
a substitute. I notice that people at Sydney Uni are working on a new
shell, perhaps you could mail your complaints to chrisb:basservax.

One can hardly expect the UNIX philosophy to survive unchanged
the voyage across the American Continent, let alone the Pacific Ocean.
The people, their needs and their ambitions are different. The best we
can do is look at each other’s work, and use what seems best for local
conditions. This may entail writing local software. The moral here is
to document it well. Don’t worry too much about UCB, they can take
care of themselves. As for your users, you could try telling them that
just as the seasons are reversed in the Northern Hemishpere, so the
nice priorities, too are reversed. I don’t think this is very meaningful,
but it will probably help the,, remember it, or at least confuse them
sufficiently that they won’t bother you.

Yours very truly,
Abby

28 AUUGN Vol IV No II

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAILNETMAIL

From peteri Fri Mar 19 09:57:35 1982 netmail from elecvax
To: auugn:basservax
Subject: do you have a copy of this?

From pwbcclandrew Tue Mar 16 16:07:37 1982 netmail from usa

COMP SCI SERENADE
SUNG TO THE TUNE OF MY BONNIE LIES OVER THE OCEAN

I) MY PROGRAM LIES UNDER THE BACKLOG,
MY CARD DECK’S ALL OVER THE FLOOR,
THE PLOTTER IS USING A CRAYON,
AND I JUST CAN’T TAKE ANYMORE I

CHORUS: BRING OUT, BRING OUT,
OH, BRING OUT MY PRINTOUT TODAY, TODAY!
BRING OUT, BRING OUT,
THE ONE YOU RIPPED OFF YESTERDAYI

2) THE CARD READER CHEWED UP MY JOB CARD,
AND SO~IEONE ERASED ALL MY FILES,
THE SYSTEM HAS BEEN DOWN FOR HOURS,
WHILE PEOPLE COLLAPSE IN THE AISLES.

CHORUS: FLUNK OUT, FLUNK OUT,
I WORKED LIKE A DOG EACH AND h~v-ERY DAY.
FLUNK OUT, FLUNK OUT,
TWELVE PROJECTS WERE DUE YESTERDAY!

3) SECURITY HOLES I’VE DISCOVERED,
THE RECORDS OF GRADES ARE NOW MINE,
WHAT ONCE WAS A ONE POINT FIVE AVERAGE,
WILL SOON BE A THREE POINT NINE NINE.

CHORUS: SEND OUT, SEND OUT,
OH, SEND OUT THE GRADES TO BIG COMPANIES,
SEND OLd, SEND OUT,
THEY’LL ALL WANT A SCHOLAR LI~LE ~E!

TERRY BOLLING& THE WATT FIVE
COMP SCI DEPT, UNIV. OF MISSOURI, ROLLA
FROM CREATIVE COMPUTING, MAR/APR 1977

-- Courtesy of John "Med.Soohoo"

From chris Tue Apt 13 12:34:19 1982
To: auugn
Sl~ject: From Norman Wilson

From ucbvax!citheplnorman Wed Apr 7 19:52:31 1982 netmail from usa
Subject: No close sometimes

Have you ever had the obscure problem that a device which tries to
allow only one open at a time sometimes gets closed without its
exclusion flag being ~leared, as if the last close of the device didn’t
call the driver’s close routine? If so (and even if not) you should
move the two lines that set fp->f_flag and fp->fp_inode from after to
before the code that calls itrunc in sys2/copen to avoid a possible
race with the loop at the end of fio/closef. I have been looking for
this one for at least a year!

AUUGN Vol IV No II 29

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL

From pwbcc!andrew Tue Mar 16 16:07:05 1982 netmail from usa

I wrote this ballad a couple of weeks ago, and gave a premiere
perfomnance at USENIX with esquire!psl at the keyboard, and a chorus of
hackers in the background. We were dubbed "Andy and the Free Inodes."
The tune is the sa~ne as "Deep Elem Blues, " recently covez’ed by the
Grateful Dead. Mail additions to floyd! trb.

It has about ik verses to go, but, by popular demand, here it is,
The VMUNIX Blues :

VMUNIX Blues 21-Jan-82 by Andy Tannenbaum
(c) 1982 by Andy Tannenbaum
Profits to go to the Smithsonian Hacker Folk Music Archive.

When you bring up VMUNIX,
Just to have a little fun,
You’d better have your Western License,
When the Board of Regents come.

Oh, sweet m~na, hacker’s got the VMUNIX Blues,
Oh, sweet m~na, hackex’s got the VMUNIX Blues.

Once I met a pinstripe,
Knew his doubly nested do,
He logged in to VMUNIX,
Now his FORTRAN days are through.

Oh, sweet mama, ...

WT, en you debug a C progr~,,
Don’t know what the hell to do,
Segmentation violation,
It’s a structure pointer screw.

Oh, sweet mama, ...

It comes ti,ne to clean up shit work,
You type r m foo space star,
By the time you realize it,
You won’t know where those files are.

Oh, sweet In~sa, ...

When you run on an eleven,
With a quarter meg of core,
And some loser cranks an nroff,
There ain’t no response no ~nore.

Oh, sweet m~na, . . .

Ar as at,
Bc dc adb,
Df du dd,
It don’t mean a thing to me.

Oh, sweet m~una, ...

W~,en you argue with a netnews fl~ner,
Be prepared to lose,
Because that burnt out fl~ner’s got,
The VMUNIX Blues,

30 AUUGN Vol IV No II

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL

From peteri Mon Mar 1 09:17:31 1982 netmail from elecvax
>From pwbcclandrew Sat Feb 27 22:26:32 1982 netmail from usa

(a0457) r a PM-Lights 01-23 0411
?^PM-Lights,420<
^On The Light Side<

BOISE, Idaho (AP) - Idaho has introduced a new variety of
animals to its 1982 fishing regulations - the ’’wildwife.’’

The breed was entered on state records when the Idaho Fish and
Game Department printed regulations allowing Idaho taxpayers to
donate income tax refunds to a fund promoting hunting of non-game
animals.

The message advised sportsmen to ’’Help Promote Non-Game
Wildwife.’’

The first 140,000 copies containing the typographical error were
sent out before the rest of the 350,000-copy press run was
corrected.

CASA GRANDE, Ariz. (AP) - It didn’t make a dime of difference to
Shirley Jean Kelly’s lawyer how her former husband paid the divorce
fees.

Truck driver Frank Kelly cleared the books Friday by paying the
$354 tab in pennies - 35,450 of them. Kelly, 47, said he threw in
an extra roll of 50 pennies just in case his count was off.

’’We’ll take them,’’ said Shirley Jean’s lawyer, Richard
Clemons, when the pennies were pitched his way. He gave Kelly a
receipt.

Kelley said he had been saving pennies since he was 19 and said:
’’I still have an ample supply.’’

It was his third marriage.

COSTA MESA, Calif. (AP) - Mention Vegemite to displaced
Australians or New Zealanders and a dreamy, faraway expression may
come over their faces as they recall a predilection similar to the
American taste for peanut butter.

But until recently, most Australians or New Zealanders were as
likely to find a kangaroo in the United States as Vegemite.

Now the Vegemite drought is over, according to two Costa Mesa
importers who have 30,000 6-ounce jars of the stuff sitting in a
warehouse waiting for a distributor.

Diana R. Todd and Jess Dines of Australasia Ventures hope not
only to appease the Down Under transplants but also to convert the
masses to the health and diet wonders of Vegemite, as applied to
crackers, grilled cheese and meats, soup, stews, gravies, milk,
grated carrots, raisins and chopped nuts and ’’cooked mashed
brains.’’ Some claim Vegemite is the richest dietary source of
vitamin B complex.

Ms. Todd, a native of Australia, has been marketing Australian
products in this country for 13 years. But Vegemite is a real
challenge. She often runs into attitudes like those mentioned by
the Los Angeles Herald Examiner Friday.

’’Some detractors say the creamy, tangy, dark brown yeast
extract tastes like coal tar, axle grease or dried anchovy-flavored
varnish,’’ the paper said.

?AP-NR-01-23 0525EST<

AUUGN Vol IV No II 31

AUUGN is produced by volunteers from the Australian Unix Users
Group. To sustain~ the fine standard of journalism which our
discriminating clientele have come to expect (or will soon, anyway), we
solicit material from readers. This means YOU! Yes YOU! Send your
material to the editors at the addresses given below. We prefer to be
netsent the unformatted file, but hard copies are gratefully accepted
and reproduced intact. Also, material should be in the public domain.

Now about that other thing. Money. We need to increase our
readership,.° so get anyone you can to join the Australian Unix Users
Group. For a mere $24 you will receive six issues of AUUGN over a
period of one year. Please send your cheques in Australian currency.
Do not send purchase orders. So mail your subscription fee to this
address:

AUUGN
c/o Bob Kummerfeld
Basser Department of Computer Science
Madsen Building F09
University of Sydney
NSW 2006
Australia

Electronic corresponence should be addressed toz

auugnzbasservax (on the SUN)

