
July 1982 Vol IV No IV

Australian UNIX Users Group

NEWS L E T TEN

Editorial 1

How to Port UNIX to a Microcomputer 2

F77 Performance .. 8

Sign Extension and Portability in C 15

Dear Abby ... 24

Netmail ... 26

LiST ISSUE OF AUUGN [
I hope that. got. your attention because that is what. you will see on an is-
sue of AUUGN in the near .future if we don’t get more contrqbutions. The
most difficult, apsect of producing AUUGN is not the physical z~roduction,
printing etc but getting sufficient articles t.o print. There has been
criticism that marly articles recently hays beer, reprJnt.s from other jour-
nals or Uni× conference proceedings. Other articles tend to come fr"om peo-
ple at the University of Sydney or the University of NSW, this is because
these people are nearby and car, be badgered into producing something. If
you don’t, like this situation then only YOU can change it.

& short, one page article describing your current project, would be a st.a~-t.
Alternatively you could describe your system, what. changes/improvements you
have made, the configuration and what your users do with it_.

I would also like to propose that we have ~.pe_.ial issues of AUUGN devo<.ed
to particular topic.s. For example a special issue on teaching with Unix
systems would be of interest to many university users. Special issues
could be produced on graphics, real time applications., commercial software
or any other topic that would be of interest to Uni×-users. Potential guest
editors should contact me if they are interested.

If you really can’t, think of an article to write then we would still like
to hear from you. Your ideas on what hUUGN should contain would be most
prec tared.

Bob Kummerfeld

AUUGN Vol IV No IV 1

How to Port UNIX to a Microcomputer

Alan Whitney

Microsoft, Inc.
XENIX Group*

Bellevue, WA 98004

ABSTRACT

This paper will describe the mechanics of the
process.Microsoft has used to port UNIX to various¯

microprocessor systems. At the end of 1980, our
group accepted the challenge of porting UNIX to
several microprocessor systems on a tight
schedule. This paper describes some of the tools
and techniques that we used to accomplish that
goal. ¯

The minimum hardware and software require-
ments for a target machine and the hardware confi-
guration for our host machine are described. The~

process of turning a t~sted kernel into a market-
able product is also discussed.

Introduction

At the end of 1980, our group was.faced with the pros-
pect of porting UNIX to three microprocessors: the ZS000,
the 8086 and the 68000. We felt that it was absolutely
necessary to develop some basic strategies that would allow
us to efficiently debug the system, even in light of
hardware problems and deficiencies.

Hardware configuration

I will start by describing the configuration of our
development machine° We have a PDP 11/70 with 1 Mbyte of
memory, two 300 Mbyte disks and three Able DHs. For each of
our port targets, we use two. of the DH lines; one for down-
loading and the other for a terminal on the 11/70.

A hardware configuration suitable for porting XENIX
includes a 16 bit microprocessor with some memory management

*XENIX is a Trademark for Microsoft’s version of UNIX.

AUUGN Vol IV No IV

schem~, at]east 256 Kbytes of memory, and at least two~

serial interface lines. A hard disk and controller is
required at some point, but it is not needed early in the
porting process. Some removable storage medium is also
helpful~ but is not required. An 8086 based ¯ system also
requires additional ~ hardware to implement a system/user
state and reserved instruction traps.

Target machine software support

In addition to the minimum hardware described above,
the target must have a ROM monitor capable of changing and
displaying memory and loading programs over the serial line.
A breakpointing capability and subroutines that will print
data to the console are ~also helpful. A useful alternative
to the breakpointing capability is a hardware device that
controls the CPU, such as an in-circuit emulator.

Debugging tools

To aid the porting process, we have developed several
software tools. For the debugging phase of the kernel, we
have implemented a protocol for using the second serial line
on the target as a mass storage medium. This technique,
which we call a "simulated disk," allows us to proceed with
the port before the disk hardware has been delivered. We
have created a block type disk driver which talks to our
11/70 over the serial line, requesting disk blocks to be
read or written. A program on the 11/70 then performs the
read or write on a file and in the case of a read, sends the
data back over the serial line.

The simulated disk is used as the root file system
early in the port process. An option to the program on the
Ii/70 allows us to display the disk blocks being accessed.
The transactions are also recorded in a log file. This
allows us to understand what is happening with the file sys-
tem without putting any instrumentation into the system
itself. When the kernel is healthy enough to reside on the
hard disk and the disk driver has been tested, we copy the
simulated file system to the hard disk and start running
with the root there. At this point we start using the
serial line as a "simul~ted tape" to transfer Tar format
files to the target.

We have developed a subroutine called "debug" that we
load with the kernel. Debug allows us to display and change
memory, set breakpoints and display process status. This
subroutine, together with copious debugging printouts, makes
debugging the kernel straightforward.

However, these techniques are not sufficient to address
timing and performance problems. In cases where hardware
performance monitoring techniques are difficult or

inconvenient, we have written specialized code to collect
performance statistics. Unfortunately, we ~have found this
software performance analysis to be somewhat unproductive.
It generally involves writing very specialized, throw-away
code. In addition, the code to collect the information typ-
ically affects the information being collected.

Program testinq

To verify the operation of the system, we have written
a set of test programs which will verify the operation of
the system calls. We usually run a very simple program as
the initialization process in the early debugging phase.
This may be either a simple shell or one of the test pro-
grams described above. Once we have verified the basic
operation of the system, we install the standard init and
shell. In this way, we can exercise much of the system code
before running any significant user programs.

We have also developed a set of shell procedures that
will exercise the utility programs. At present, this set of
tests is incomplete and is not ~exhaustive, but it does test
some of the larger and more complex utilities. Bugs in the
more commonly used utilities show up through casual use dur-
ing the early phases of the port.

Distribution systems

To aid in tracking changes to the system software, we
have developed a mechanism to save copies of all our
released software. This system also allows us to keep track
of changes made for our local use. The system is modeled
after SCCS (Source Code Control System) at the functional
level, but is oriented toward the large number of files on a
distribution tape.

To allow distribution of the system for machines
without magnetic tape ~drives, we have developed a mechanism
for distributing the system on floppy disk. The distribu-
tion set created by this mechanism consists of a floppy
based system diskette and several tar format diskettes con-
taining the distribution. ~

How to

Up to now, I’ve described the environment in~ which the
system is developed. I will now describe the sequence in
which we typically~ attack a port.

Write the downloader program.

Often this task has already been done once for a similar
loader format and will not have to be repeated.

4 AUUGN Vol IV No IV

2. Write a standalone program for the machine°

Our first program generally just prints some message on the
console~ and exits. It gives us a simple test of the com-
piler and assembler. If this is the first port to a new
processor type, some assembly code has to be written for the
machine language startup. If another port to a system~ with
the same processor has been done before, the existing assem-
bly~ code has to be modified.

3. Modify the simulated disk driver and run it standaloneo

This step is one of the most important in the early phase of
the port. This test program is the first significant pro-
gram for the machine and can turn up some serious problems.
This test provides a good workout for the compiler and
assembler and can point out some bugs in a new compiler.
Because this program does lots of things with the serial
line, the peculiarities of the serial interface are
uncovered. Timing and interrupt latency problems rear their
ugly heads. This is also a good test of the OEM’s documen-
tation: we try to unlock the secrets of the hardware from
cryptic notes, fragments of device drivers (for example,
CP/M) and more successfully, the schematics. Once we com-
plete this step, we have become intimately acquainted with
the hardware.

Write the memo~ management code.

The next step is to lock oneself into one’s room for a week
(two weeks for some of us, but we go home in the meantime)
and write the memory management specific section of the sys-
tem. This task also includes writing or modifying the~ bulk
of mch.s; the startup, the trap handling and the low-level
memory management routines. The C language section of the
system is easier to port because of some things we did in
our first port. The main part of the system has been parti-
tioned into three directories; mdep for the machine depen-
dent C code, sys for the machine independent part of the
system and io for the device drivers. We have also isolated
most of th--~ memory management code into a single module
which is very portable "to a paging typ~ of memory management
scheme. This code is debugged up to the point at which the
read of the super block takes place early in the startup
code.

5. Install the simulated disk driver into the system.

Since the simulated disk driver has already been thoroughly
~ested, this step ~ is a "piece of cake." At this point, we~
can attach the simulated disk to a file system and run the
kernel up to the point of exec-ing the initialization pro-
cesso The final bugs in the simulated disk driver and many
of the bugs in the MMU code can be exterminated in this

AUUGN Vol IV No IV 5

step.

6. Run the kernel test programs.

The next step is to.run some of the kernel test programs as
the initialization process. This works out bugs in the sys-
tem call code, particularly problems in the MMU code having
to do with the normal running of user programs. By the time
this step is finished, the fork, exec, and brk system calls
are well tested.

7. Install /etc/init and /bin/sh.

A debugging version of /etc/init and /bin/sh is installed
and can be used to run more of the kernel test programs.
The simulated disk driver should now be a solid, trusted
piece of code. This is a good time to test the signal sys-
tem call. Once this is done, there is no reason not to
install the standard init and shell.

8. Write and debug the hard disk driver.

The next step is to debug the hard disk driver. If the disk
hardware is not yet ready, this step can be postponed some-
what, but the timetable suffers if much development must be
done on the simulated file system. While the simulated disk
is a useful development tool, it is too slow for the debug-
ging that follows this step.

The hard disk driver is generally developed and tested
first in a standalone environment, then installed into the
system for more testing. When the driver has been .debugged,
the simulated file system is copied to the hard disk. It is
typically copied as an image and then the file system size
is patched to reflect the size of the hard disk. The root
and swap file systems are changed to reside on the hard
disk.

9. Download utilities and test.

The next step is to download the system uti~lities and test
them. Once confidence in the system is gained, we apply
what we call the "torture test," in which we start up many
processes to simulate a heavy user load. We try to run the
torture test for a long period of time, e.g. over a weekend.
The torture test can point up many remaining problems in the
system that do not show up in casual use.

iO. Port the compiler°

~f this is the first port to a particular processor, we
install the compiler, assembler and loader onto the machine.
Also, if it has not been done already, adb and any other
machine specific tools are modified and installed.

6 AUUGN Vol IV No IV

i__i. Prepare for distribution.

The next step is to prepare the system for distribution°
This involves verifying that all the files to be distributed
are there, that they have the correct permissions and own-
ers, and that an effective distribution mechanism is in
tact. Typically, the distribution mechanism is tested by
creating a distribution set, putting up the system on
another machine, and then checking that the resulting file
system is similar to the one from which the the distribution
set was created.

AUUGN Vol IV No IV 7

F77 Performance

David A, Mosher
Robert P. Corbett

Computer Systems Research Group
University of California

Berkeley, California 94720

Apri2 1, 1982

ABSTRACT

The Fortran compiler under UNIX~ has been the object of many
heated batt.les. This paper describes work done to improve the
performance of the Fortran compiler to a level comparable with
the Fortran compiler under VMS:~ on a VAX$.

Introduction
Fortran, though not a dominant language in our 4fork, is still heavily used in

other research efforts and in the commercial world. Many companies have
invested millions of dollars in programming efforts usir~ Fortran. In addition,
there are a number of applications oriented tools (such as SPICE) used by
research organizations which are written in Fortran for reasons of portability.
Converting these programs to other languages would be costly and time consum-
ing. Thus, having a Fortran compiler on a system is imperative.

The original UNIX Fortran 77 compiler was written to be portable. F77 has
been bro~ght up on new machines in as little as two days. The performance of
the compiler was considered a secondary factor in tht; design of the original
compiler. The only real criterion was thai. it should produce correct code for
Fortran 77 programs on a wide variety of machines.

For serious Fortran applications, the efficiency of the object programs is
almost as important as correctness. A large percenta~;e of Fortran prograras
are compute bound, and so the relative efficiency of codes produced by different
compilers is easily noticeable. Many VAX users have expressed concern abc.ut
the efficiency of the codes produced by the original f77 compiler. Therefore, an
effort was organized at Berkeley to add an optimizer tofTZ

The remainder of this paper discusses our improvements to the f77 com-
piler and our analyses of the problems yet to be solved.

UNIX in a trademark of Be].1 Labaratories
:~VAX and VIdS are trademarks of D’ig:i’t.a] Equipment Corporation

hUUGN Vol IV No IV

Addition of a Simple Optimizer
Our initial goal was to add a basic optimizer to the compiler. To provide a

framework for the addition of these optimizations, a scheme was coded to buffer
incoming statements into an internal buffer of a fixed size. The fixed size was
necessary to maintain compatibilty with machines which have smaller address
spaces. Since there was no guarantee that enough informationcould be
buffered to take advantage of more than a simple block of statements, the
optimizer only works over blocks of statements which are known to have a single
entry point.

The two initial optirnizations were common subexpression elimination for
basic blocks and invariant code motion for DO loops. A simple example where
these optimizations take place is:

dimension integer a(2800, ii00)
do 10i= I, I00

do 20j=I, 200
n=i*5+j*3
m=n*2+j’3
a(m,n) = 1
a(0,n) = P.

=
20 continue

i0 continue

This program segment includes both the implicit and explicit occurrences of the
types of codes we expected to optimize. The two instances of the subexpression
’j * 3"are examples of explicit common subexpressions. The common subex-
pressions generated by the array references ’a(rn, n)’ and ’a(0,n)’ are implicit.
The address calculations for those references include the implicit subexpres-
sions ’2800 * n’. In both cases, the optimizer will produce code to reuse the
value obtained from the first instance of each of those subexpressions in place of
the code to reevaluate them. Sinfi!arly, the explicit expression ’i’5’ and the
implicit address calculation for ’a(i, 1)’ are invariant over the inner loop and both
will be moved out of the loop.

Optimizing array references has proven particularly troublesome. Special
consideration is needed to utilize the VAX addressing modes which support array
indexing. Applying optLrnizations without checking for special cases results in a
substantial performance degradation.

Adding those optimizations proved to be of significant benefit for most of
our benchmark programs; however, the benchmark ,fit was still much slower
than the version compiled u~ing the VMS compiler. Close analysis of]It showed
that the optimizations performed by our basic optimizer had already been car-
tied out through careful hand optimization of the source code.
, A significant deficiency of the compiler was its lack of global register alloca-

tion. Adding a simple register allocator promised a large payoff.
Allocating registers for simple variables and common subexpressions had a

minimal impact on the speed of]]2. However, after the compiler was changed so
that registers could be used as base registers for arrays, its speed improved
dramatically.

The basic optimizer was completed but did not achieve expected results.
Analysis of the optimized code led us to believe that the differences in the exe-
cution times of the codes produced by 1[77 and VMS Fortran could not be traced
solely to the lack of global optimizations.

AUUGN Vol IV No IV 9

The Re~l Problems
By comparir~ t~he codes produced by the VMS Fortran compiler and the

second pass of the portable C compiler, we discovered two major problem areas.

One problem was that double precision calculations and functions were
often generated where single precision was sufficient. An error was found in the
backend code ~enerator which forced calculations followin~ a unary operator to
be done [n double precision. The use of double precision math functions was
~rlewed as a problem but we could not accurately assess the cost because of the
complexity of the benchmark programs. Further analysis revealed that the
conversion from single to double precision took 5 th’nes lon~er than instructions
which would have accomplished the same result. An integer to floating point
conversion took 10 times as long as a simple move instruction. Conversion of
numeric.al types turns out to be very expensive and should be avoided.

Durin~ our investigation of the aforementioned problem, ~’e noticed that
the YMS Fortran compiler used integer move instructions to move fffoat[r~ point
numbers instead of the corresponding floatin~ point instructions. At first
glance, this seemed to be an u~ly abuse of the instruction set. Later, we con-
eluded that the integer move instructions could be used without ill-effect as long
as the next instruction was not a conditional branch. But the question remained
"why use the integer instructions?°’ Tirnin~ of these instructions showed that the
floatfn~ point move instruction took 3 times as long to execute.

With the addition of a global register allocator, we noted that the portable C
compiler required two registers be assigned to every floatin~ point value.
Further, those registers must be paired and al~ned on an even register boun-
dary. Since the VAX needs only one register to hold a single precision value, and
makes no alignment requirements, those requirements are extremely wasteful.
Because all floating point operations generated by the C compiler are double
precision, that pattern of register allocation has been ingrained in the code gen-
erator. We are continuin~ to work on this problem.

The second problem was that the compiler did not generate [ndexin~
modes.]n timing tests, we found that an arithmetic shift was extremely expen-
sive and that the equivalent elementary code to replace indexing modes was
s~niftcantly more expensive than the use of indexin~ modes. Allocating regis-
~;ers to serve as hawse registers for arrays caused some index mode instructions
1.o be produced. However, there were still man}’ instances in which index mode
instructions should have been generated but ~’ere not. In an attempt to under-
stand the problem, a patch was added to the code generator to produce index
mode instructions where applicable. Still the problems persisted. After a care-
ful study of the code generator, we determined that the common subexpression
optimization was inhibitin~ the use of indeX mode. We also found that the trees
produced by the original f77 compiler were not of the form the portable C com-
piler recognized as candidates for index mode. To resolve this problem, special
cases had to be introduced into the optimizer for producin~ subscript codes for
the VAX. While implementin~ those special cases, we uncovered a codin~ error
in the original compiler which was responsible for the expression trees not bein~
in ~.he proper form to generate indexin~ modes.

With relatively few chan~es but a much better understanding of the code.
generated, the code ran significantly faster.]n all, one VAX dependency and a
few errors accounted for much of the inefficiency of the code produced by ~fT?.

i0 AUUGN Vol IV No IV

Closer, But S~ill More to I~
At this point, the t~rnings for some of the benchmarks were within 10Z of

flue reported tkmings of VMS Fortran generated code. ~he major exceptions
~’ere fit which was a full 100Z slower, and he,cA2 which was 85Z slower. Because
the code produced for fit by our compi!er was similar to that produced by the
VMS compiler, we began to have serious doubts about the reported times given
for j~t. Our first task was to reproduce the th-ning results. After a few tries and
a midnight session, the reported times were reproduced to within 10Z.

Before our timing experiments, we did not know if the timing results pro-
duced by VMS even measured times in the same units as UNIX. Also, the
methods used to obtain fining data were very dhqerent. A function was
developed to return a timing value with the measurement characteristics
described in the VMS manuals. This function showed that little of the time
reported by timing commands on UNIX was due to startup or cleanup of a pro-
grarm With this tool [n hand, the task was to prove that I unit of time on V-MS
was equivalent to I urfit of tkne on UNIX.

A Clo~e Analysis of FFT
Because the execution time discrepancies were greatest for ~t, it was used

to verify the VMS timings. Solving the riddles of this program would shed a light
on the remainhug problems.

The j~i program has three major sections: irdtialization, a fast Fourier
transform, and an inverse fast Fourier transform. In measuring each section, we
found that the initialization took 2.6 times longer than the measured t~mes
under VMS. Since the initialization code was small and relatively simple, running
the assembly code generated by the VMS Fortran compiler under UNIX would
provide a simple comparison of the timings units of VMS and UNIX.

Our approach was to start with the assembly language produced by ~f77 and
transform it into the assembly language produced by the Vlv[S compkler. The
first glaring problem with the code generated by .f77 ~as the poor handling of
complex values. By recoding the complex assignment to a generatable code
sequence, the initialization took 2.5 times longer.

The effects of using double precision functions for single precision calcula-
tions had to be assessecL The exponential function in the initialization code ~vas
replaced with a handwritten assembly language routine for computing a single
precision exponential function With the argument and result passed as double
precision values. This change made some d~erence but did not prove
s~4~niflcant. The exponential function and the calls to it were changed to single
precision. The initialization t~en took only 1.2 times longer than the code gen-
crafted by the V]V[S Fortran compiler. Once again, unnecessary type conversions
had proven to be the major bottleneck. Additional work is needed in this area to
pr~ovide both single and double precision library routines and the interface to
these routines.

¯

The remaining differences [n the initialization code were that the C backend
code generator used the ~5~ instruction in a case where the ~o~eq instruction
could have been used, a few register variables were allocated differently, and a
few extra move instructions between registers and variables were being gen- "
crated. When the ~5~ instructions were changed, the initialization code took I. 1
%imes longer. This result was a surprise since the change was so n-~u_nor. Later
timings showed that an ~c~ hnstruction takes twice as long to execute as an eo~-

AUUGN Vol IV No IV ii

With the removal of exVcra assignments of register variables to their memory
locations and adding a few more register variables, the initialization code ran as
fast as the VMS Fortran generated code. We proved that the timing umJ.ts were
indeed the same and learned a fair amount about the VAX.

In summary, the major problem in the initialization code was the use of
double precision functions where single precision routines could have been used.

At this point, fit took 1.9 times longer on UNIX than its V~S counterpart.
There were four main classes of differences between codes produced by the
compiler and those produced by 3"77.

We found that VMS was able to make better use of registers. Variables in
inner loops which our optimizer kept in memory were moved to registers. With
this change, 37t took 1.65 times longer than its VMS counterpart.

In our investigation, we found two interesting results. Special casing of
powers of E in the code produced for the power of operation had tittle effect. We
also found that the compiler generated elementary code for ~,hat could have
been an a~bt instruction with an increment, of 2. After replacing the elementary
code with an u.cbl instruction, we found performance suffered. This result was
con!lrmed by comparisons of the ~cbl instruction with other equivalent codes.

The next problem area was the use of double precision math function. We
had hoped that changing the math function calls from double to single precision
would account for most. of the slowness of the fit calculation since this problem
was quite significant in the ~nitialization code. But it turned out that using single
precision math functions only improved the performance ratio to 1.7 tixnes
longer. We obtained slightly better performance by reducing the number of
coefficients used in the cos and sin functions to be adequate for single precision

We were able to gain a small improvement by putting a few more variables into
registers. The execution time for ./~ft dropped to 1.6 times slower when single
precision values were no longer spilled unnecessarily.

By elinfinating six move integer from register to memory instructions, we
improved performance to 1.5 times slower.

We found that the DO loop code was quite different. We adopted the VMS DO
loop code and found little difference in performance. Our study of DO loop codes
showed that the code .I’77 produces for floating point DO loops does not conform
to the Fortran standard. The standard defines the number of iterations of a DO
loop to be given by an expre’ssion which is evaluated at the start of the loop. We
found that the number of iterations of loops generated by .1’77 need not be close
to the number indicated by the value of that expression. Tests of other Fortran
77 compilers have shown that they too fail in this area. -Presumably, floating
point DO loops are used so infrequently, that this failing has not been noticed.
The code produced by the VMS Fortran compiler is technically correct but has a
number of surprising properties. In particular, the final value of the loop con-
trol variable can be far greater than the limit value.

]n summary, global register allocation was a major problem area in the fit
calculations. The cost of double precision math function was significant but not
great.

12 AUUGN Vol IV No IV

The Remaining
At this point, .the assembly code running under UNIX looked abnost identi-

cal to the code produced by the VMS compiler. The only remaining difference of
~/ay significance was that)~F7 produced absolute addresses for static variables0
while VMS used base.register/displacement addresses. Because our investiga-
tions used assembly language progranas, we were slow to recognize the impor-
tance of the different choices of addressing modes. Absolute mode addresses on
the VAX require i~ve bytes per address. Displacement addresses typically
require only two or three bytes. Therefore, object programs produced by the
VMS compiler could be as much as
Because of the VAX instruction buffer, the size of the object code can have a
large effect on its execution time. "

F77 has now been modified to produced the same addressing modes as the
VMS compiler. With this change alone, the execution time of fit is reduced from
24 sees. to 17 sees. When our basic optimizer is used together ~dth the new
addressing scheme, its execution time drops to 12 sees. The VMS compiler is
still somewhat faster, but the difference is no longer as pronounced. Over our
set of benchmark programs, the average difference Ln executions th-nes is now
between I0 and

Conclusions
In conclusion, the lack of a global optimizer was a key problem but not the

only problem. F77 uses double precision Hbrary functions for both single and
double precision computations because the C libraries do not include double
precision routines. But as shown above, the conversions added to the object
code to support such a scheme are very painful on the YAX. Also, some of the
instances in which bad code was produced could be traced to a few simple errors
in the compiler which had major ramifications. But in the final analysis, the
extra bytes needed for absolute addresses were the most significant factor in
the performance.

Significantly, the speed of Fortran object programs under UNTX was found
to be related to the ’maturity’ of the compiler. In no way was the UNIX system
itself found to adversely affect program execution speed.

Fu~u~e Work
We are now in the process of producing a more elaborate global optimizer.

New optimizations specifically keyed to the VAX are to be added. Also, the old
b.ufferhug scheme is being replaced with a more flexible scheme which will per-
mit more global data flow computations to be performed. We hope that the work
underway will resolve the problems c~ted above and produce a compiler which
generates code equal in execution speed to the code generated by the VMS For-
tran compiler.

In addition, we are now making a major effort to improve the reliability of
the compiler. We also hope to improve the facilities provided by the compiler to
aid in debugging.

Acknowledgements
We would like to express our appreciation for gift funds from TRW which

made this work possible. We would like to acknowledge the contibutions of the
other members of the Fortran group: Channing Brown and Alastair Fyfe. We
would like to thank Tom Ferrin at the University of California at San Francisco
and Mike O’Dell at Lawrence. Berkeley Laboratories for access to VMS systems.

AUUGN Vol IV No IV 13

We would hke to acknowledge the work done by Professor Kahan for the new
math library functions and Dave Wasley for the]/0 library.

l~efere~ces
For previous discussion on Fortran performance, see UNIX =n~ VA~S-Ss~’u~

Per1,orn~nce Comparisons by David Kashtan, Cornr~ents on the performance
UNIX o~n the VAX by William Joy, and Performance]ssues o1" V~UNIX Rezisited
by Thomas E. Ferrin.

14 AUUGN Vol IV No IV

Sign Extension and Portability in C

Hans Spiller

XENIX Group
Microsoft, Inc.

Bellevue, WA

ABSTRACT

The definition of the C language has left
confusion regarding type casts, sign extension,
and the char type. This paper discusses the Bell
standard and describes non-compatible and even
incorrect code in existing compilers. Due to the
prevalence of such compilers, macros are presented
which will convert consistently, even given an
incorrect compiler. A change to the type conver-
sion rules in The C Programming Language is pro-
posed.

The Issue

C has 3 integral sizes: char, short, and long. These
integers can, in principle, be signed or unsigned. However,
early implementations did not implement unsigned, and not
all current implementations implement unsigned for all
sizes. Some early implementations also did not support
long.

C supports both automatic and explicit conversions
between any of these types. (And a few others, for that
matter...) In general, converting from a longer size to a
shorter is easy: just forget about the high order bits and
you’re done. However, in converting from a shorter to a
longer type you need some way of deciding what the high
order bits will be. Normally, zero extension or sign exten-
sion are used. Precisely which extension is chosen is often
relevant.

char c;
int i;

i’) if (c==0200)

i I= c;

AUUGN Vol IV No IV 15

In the first example - the comparison m the constant 0200 is
an int, and has leading zeros Ono To do the comparison, the
char is sign extended to int; and should it have started out
with the value 0200, it ends up with the value 0177600, and
the test fails° Thus the test always fails. A good optim-
izing compiler could ~remove the test and whatever code might
be executed should the test be successful.

In the second example, if the sign bit (bit 7) of the
char is on, all the high order bits of the result are set
regardless of their previous value° This could be a
surprise to an unsuspecting user° However, if zero exten-
sion is doner the high order bits are left alone.

Modern C compilers provide a special type to do this,
unsigned char, which has the property that zero extension
rather than sign extension is done on instances of it. They
also provide a mechanism (inline type casts) whereby you can
specify unsignedness within an expression should you have
the wrong type to start out with. There are unfortunately
several problems.

The Problem

l) Not all C compilers support declarations or casts of
all unsigned types°

2) Not all C compilers, even when they provide these
types, use the same algorithm for choosing the conver-
sionso

3)

4)

The defining document The C Proqramminq Lan__~, by
Kernighan and Ritchie, known as the white book,
explains the the standard in a confusing and almost
ambiguous way. Worse, it says that whether the type
char is signed or unsigned is machine dependent°

Given that an implementation takes advantage of the
looseness of the white book and implements char as
unsigned, there is no way to do sign extension of a
char within the language.

If we are interested in portability~ saying that somem

thing is to be machine dependent is useless° Worse yet,
that the type of extension done is machine dependent is not
even true. I have examples from three compilers for the
PDP-~II below, and they are all different. And even though
the compilers are allowed to differ where it is hard for the
hardware to sign extend, most of the compilers for other
m~chines, including Microsoft~s Z8000~ 8086, and 68000 com-
pilers, all try to simulate the PDP-II by sign extending,
even when it is painful°

16 AUUGN Vol IV No IV

The reasons behind all of this are primarily histori-
cal, but the big motivating ~ factor is trying to provide
something useful° Unfortunately, before the full generality
of some things had been thought out, their usefulness had
gotten to the point that they were implemented°

Whats Out There

It turns out that Bell has put forward, in the form of
implementations, a standard, even though many of its own
compilers do not conform to it° That this Bell’s intent has
been confirmed by Dennis Ritchie, in a letter he wrote me
last October 23° Loosely, the standard is as described in
the white book, ~with the principle difference being that
char is always signed° What the white book says about when
to sign extend is in fact consistant, but the way it accom-
plishes this is different based upon how you read the rules°
The rules are not actually ambiguous, but they are tricky.
And they are by no means easy to follow~ What Ritchie, the
current Bell compilers, and the white book all say is that
you sign extend when the operand is signed, and you zero
extend only when the source is unsigned°

Not all the recent compilers from Bell implement this ruleo
Conveniently, there are two different families of compilers
for C available on the PDP-II, one written by Dennis Ritchie
of Bell Labs, which I call the Ritchie compiler, and one
written by Steve Johnson, also of Bell Labs, which I call
the Portable ~ Compiler, or PCCo I have considered two dif-
ferent implementations of the Ritchie compiler, one from
version 7, and one from the new release 3°0. The test pro-
gram is basically the same ~for all three, except where the
Version 7 Ritchie compiler objects° For this example, the
3°0 PCC does exactly the same thing as the Version 7 PCC:

int i;
char c;
unsigned int ui;
unsigned char uc;
main()
{

i = c;
ui = c;
i = uc;
ui = uc;

i = (unsigned)c;
ui = (unsigned)c;
i = (unsigned)uc;
ui = ~(unsigned)uc;

i = (unsigned char)c;
ui = (unsigned char)c;

i = (unsigned char)uc;
ui = (unsigned char)uc;

}

V7 PCC V7 Ritchie 3.0 Ritchie

First, uncasted assignments from 8 to 16 bits.

/i=c;
movb c,r0
mov r0, i

/ui=c;
movb c,r0
mov r0,_ui

/i=uc;
movb uc, i
bic $!377,_i

/ui=uc;
movb uc, ui
bic $!377,_ui

/i=c;
movb c,r0
mov r0, i ’

/ui=c;
movb c,r0
mov r0,_ui

/not,implemented

/i=c;
movb c,r0
mov r0, i

/ui=c;
movb c,r0
mov r0,_ui

/i=uc;
clr r0
bisb uc,r0
mov r0, i

/ui=uc;
clr r0
bisb uc,r0
mov r0,_ui

Up to this point, all three compilers agree, as far as they
go. The specific code generated is different, but it does
the same thing. But notice that the V7 Ritchie compiler
does not implement unsigned char.

Now cast to unsigned:

V7 PCC

/i= (unsigned) c;
movb c,r0
mov r 0, _i

/ui= (unsigned) c;
movb c, r 0
mov r0, ui

/i= (unsigned) uc;
movb uc, i
bic $! 377,_i

/ui=(unsigned)uc;
movb uc, ui
bic $!377,_ui

/i= (unsigned) c;
movb c, r0
bic $-400,r0
mov r0, i

/ui= (unsigned) c ;
movb c, r 0
bic $-400,r0

mov r 0, _u i

/not implemented

/i= (unsigned) c;
movb c, r0
mov r0 ,_i

/ui= (unsigned) c;
movb , c, r 0
mov r0, ui

/i= (unsigned) uc ;
clr r0
bisb uc,r0
mov r0, i

/ui= (unsigned) uc;
clr r0
bisb uc,r0
mov r 0, _u i

Up to this point, the 3.0 Ritchie compiler and the PCC are
in agreement. The type of extension is based on the type of
the operand to the cast operator, but the cast itself has no
apparent effect on the generated code, apparently because it

18 AUUGN Vol IV No IV

is the same size as the destination of the assignment. The
version 7 Ritchie compiler does something quite different,
however. Rather than considering the type of the operand~in
determining the extension, the cast is used. This has the
advantage that users have the opportunity of determining the
extension they want, even though the full generality of the
white book and 3.0 compiler is not implemented. .

Now cast to ~unsigned char:

V7 PCC V7 Ritchie 3.0 Ritchie

/i=(unsigned char)c; /not implemented
movb c,r0
mov r0, i

/ui=(unsigned char)c;
movb c,r0
mov r0,_ui

/i= (unsigned char)uc;
movb uc, i
bic $! 377,_i

/ui=(unsigned char)uc;
movb _uc,_ui
bic $!377,_ui

/i= (unsigned char)c;
movb c, r 0
bic $-400,r0
mov r0, i

/ui=(unsigned char)c;
movb c,r0
bic $-400,r0
mov r0, ui

/i=(unsig~ed char)uc;
clr r0
bisb uc,r0
bic ~-400,r0
mov r0, i

/ui= (unsigned char) uc;
clr r0
bisb uc,r0
bic $-400,r0
mov r0,_ui

Here, the V7 Ritchiecompiler does not even try, because
with casts, whatever conversion is wanted can be generated,
but the PCC does something which is useless. I’m fairly
sure its a bug, but it completely ignores the cast.
Remember that casts are supposed to be treated as though
there were an assignment to a variable of the type of the
cast? Where’d it go? In general, it would appear that the
V7 PCC bases sign extension strictly on the type of the
source operand, and ignores casts and the destination type,
while the Ritchie compiler bases sign extension on the
source type, unless cast~ are present, in which case it
bases it upon the type of the cast. This means that with
the PCC on the Ii, it isn’t possible to do unsigned .exten-
sion without explicitly putting the~ interceeding assignment
in, or by masking, should the source be in a signed type.
It turns out that this problem persists when converting an
int to a long in the PCC.

Despite the factthat the Ritchie compiler does not
p@ovide any way to do anything with unsigned chars, it does
provide what is necessary: if you have an 8 bit quantity,
you can decide with the cast operator whether you want~it to
be sign extended or not in a fairly convenient way. This is

AUOGN Vol IV No IV]9

useful, and seems to me to be quite natural. Unfortunately,
the PCC did not implement casting this way. It continues to
use only the type of the source to determine the type of the
cast, so there is no way to write code that will do the same
thing under both version 7 compilers without explicitly
masking.

The Microsoft compilers for the Z8000 and 68000 imple-
ment the same rules as the 3.0 Ritchie for these examples.
The current Microsoft 8086 compiler implements the same
rules as the V7 Ritchie compiler. (Little guys have these
problems too...)

I have another example that I think is interesting:

char c ;
long 1 ;
main()
{

1 = (unsigned)c;
}

V7 PCC V7 Ritchie 3.0 Ritchie

movb c,rl movb c,r0 movb c,r0
mov 71,_1+2. bic ~-400,r0 mov 70,2+_1
sxt 1 mov r0,2+_i clr _i

clr 1

The V7 and 3.0 PCC sign extend this, the V7 Ritchie zero
extends, and the 3.0 Ritchie sign extends to short, and then
zero extends to long. If you use the current Bell standard

using the type of the operand of each operator to deter-
mine extension and applying it first to the signed char
source, sign extending it to unsigned, and then zero extend-
ing the unsigned to signed long -~then only the 3.0 Ritchie
compiler produces correct code.

Dennis Ritchie, in personal correspondence, agrees
that this mixed sign/zero extension is odd, but points out
that what is being done is odd in itself, in that a signed
quantity is being forced to fit into an unsigned hole.
Extending this argument, it seems to me that as soon as you
know that there is something odd going on with signedness,
all the compile[~ can possibly know about what is happening
is that there is-° bit pushing going on that happens to have
once been based on signed numbers.

But that doesn’t resolve the problem, except in the
"best of all possible worlds, where everybody has compilers
that work consistently for a variety of machines. Bell
seems to be going in that direction with release 3.0, but
they are not there yet with the PCC as of 3.0, and there are

AUUGN Vol IV No IV

all sorts of strange variant compilers in the world, includ-
ing some that Bell itself has produced.

Because the early compilers only provided sign exten-
sion, and the unsigned data type was only gradually hacked
in, there has been a~ great deal of inconsistency in the
implementation of the unsigned data type and the cast° In
order to make C a more portable language something must be
done.

What Can Be Done

The principle problem that must be dealt with is that
many compilers don’t support, or have limited support for,
unsigned data types° In general it is easy to get the com-
piler to sign extend because that is the historical
antecedant: all the compilers I have looked at, sign extend
by default when converting a char to an into I do know of a
number of exceptions. But because of the inconsistency in
the various compilers, if you want to zero extend, you had
best do it yourself. This can be done by bitwise ANDing the
char with 0377 to convert it to ashort, or ANDing an int
with 017777 to convert it to a long.

The big ~advantage to doing this rather than trying to
rely on consistent compilers in the future is that you can
be confident that it will always work, even if you are using
one of the very old compilers that doesn’t have unsigned at
all. In fact, much of the UNIX* system and its utilities
are written this way. It may not generate quite as good
code in some compilers, but at least you are portable.

The problem remains with the perverse compilers that do
not do sign extension. I have only painful things to say to
the user of such a compiler who needs sign extension.

I) I think the compiler you are using should not be called
a C compile~o Thus Honeywell-IBM users are in trouble°

2) You really should fix the compiler, or try to get it
fixed.

3) You are going to have to write code~ to do the sign
extension explicitly:

#define CTOS(x) ((x&0200)?(x10177400) : (x&0377))
#define STOL(x) ((x&0100000) ?(x1037777600000L) : (x&0177777L))

*UNIX is a Trademark of Bell Laboratories.

AUUGN Vol IV No IV 21

Just for completeness here is the code to zero extend,
as I described it above:

#define ZCTOS(x~) (x&0377)
#define ZSTOL (x) (x&0177777L)

What I would like to see done

The solution is twofold:

l) Fix all the compilers for all the machines so they are
completely consistent.

2) Fix the white book so it clearly defines exactly at
what points sign extension and zero extension are done,
and change the definition so that there is no machine
dependency.

I am making all the Microsoft C compilers obey the Bell
standard. They mostly do already, much more so than either
of the V7 compilers. I have come up with a proposed new
definition that I think is clearer and more easily applied
than what is currently in the white book. It would involve
altering Appendix A, The C Reference Manual.

Appendix A, Section 6.1 should be rewritten to say that
chars are signed, unsigned chars are unsigned.

The relevant sections of Appendix A, 6.5 and 6.6 should
be replaced by the following:

0) Definitions
An .operation may be either arithmetic or logical (bit-
wise)
An intege]~ may be either signed or unsigned.

l) The types char, in__t, short, and long are signed.
The types unsigned char, unsigned int, pnsi@ned short,
unsigned io~!~, and unsigned are unsigned. A pointer to
anything is unsigned.

2) No integer operation is done in a type shorter than the
length of int. No integer operation is done in a type.
shorter than the longest operand.

AUUGN Vol IV No IV

3) When combining an unsigned and a signed integer in an
operation, the result is unsigned.

4) When converting a shorter type to a longer type, if the
source type is unsigned, the source is zero padded to
the length of the longer type. If the source type is
signed, it is sign extened.

5) When converting a longer type to a shorter type, high
order bits are ignored, and the low order bits are con-
sidered to be of the shorter type.

6) It is not necessary that all the conversions actually
take place. It is only necessary that results be as if
all conversions had taken place.

Note that I don’t address floating point, here. Even
though the white book says that floating point tends to be

’and believe me, it is) for somefairly machine dependent, ,
reason it hasn’t been much of a problem. I suspect this is
because the problems are mostly with loss of precision,
rather than blatantly wrong results. I also suspect most
people that really care about floating point use FORTRAN.

The other issue I don’t address is machines which
encourage character sets that take up 8 bits, and have use-
ful characters with the high order bit set. CDC and IBM
have such machines. It seems to me the only option open is
to preserve the ~ules above, and to drop the rest~iction
that chars have to be in the positive range of the charac-
ter. Then we would have to insist that users playing the
usual char-’0’ tricks declare their characters unsigned if
they want to be portable. These tricks dont wcrk in EBCDIC
anyways. I know very little about the the use of C on such
machines. Perhaps it is unimportant.

AUUGN Vol IV No IV 23

DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY

My mailbag th~s month is full of letters on the "Californian programmer" con-
troversy. Here are samples from both sides of the debate:

From andrewt Thu Nov 18 15:19:29 1982
To: abby
Subject: Berkley Software

The members of the Basset Department of Computer Science seem to have a
very negative attitude towards Unix software produced by the Unversity of
California at Berk]ey. Whereas the software dis- tributed from Bell La-
boratories seems to be regarded as the best thing since sliced bread. Why
do the].ecturers and professional staff of Basset propagate such
ideas? It is producing a very unhealthy bias in the students at Basset.

From karlos Fri Nov 19 16:54:13 1982
To: abby
Subject: 4.3bsd

May I expressed in the harshest terms imaginable my displeasure at the
callous individuals at Basset who have been criticising those fine lads at
UCB.

They seem to forget, that the only machines that we will use in the future
are VAZ-lls, or machines whose C compilers we can coerce into vax
looka]ikes.

They forget that. ints are 32 bits, as are pointers, and that asm’s are an
important part of modern computing. After all what does the compiler pro-
duce, Algol 68?

Who really cares if the 4.2 ~i]e system is quadratic when greater than 80%
full. We all have enough money to have disk drives to burn.

Fair go, fe].].as!

Karlos Movcee III.

I think there is a natural tendency for Sydneysiders to side with the
ginal and best." at. Bell, as a sort of East coast allegiance across continents.
Also, more people there speak an intelligible dialect of English.

Indeed, those people who are shocked and offended by the expressions and sta-
tements produced in Californiar, speech are often those shocked by the expres-
sions, statements and declarations produced in Californian code. Having
watched the decline and fall o£ the English language from ouff cinema seats,
why should we expect California~,s to be able to cope with the exacting tyran-
nies of BNF syntax and unerring automata? As Djikstra points out, programming
is the art. of writing essays in crystal clear, prose and making them executa-
ble.

24 AUUGN Vol IV No IV

Many theories have been put forward to explain the bizzare creatures which in-
habit the State of California. One school observes that the people who moved
away from the original colonies on the East Coast were the no-hopers, the
criminals, the lunatic fringe and the religious nuts. Some of them stopped be-
fore the Rocky Mountains, but the real weirdos were pushed further west until
they met the constraint of the Pacific Ocean. Thus the genetic debris of the
human race found its stockpile in California. Or so-the story goes.

Another factor was the 19th Century gold rushes, which attracted desperate and
unsucess£ul men from all over the world, weeded out the weaker ones, and gave
many of them money and power on a worse than random basis.

Perhaps we are seeing this phenomenon repeated.with the high-tech gold rush in
Silicon Valley. The difference is that instead of rewarding the healthy and
hardy, those who succeed in the mind-bending business of software creation are
often monomanic psychopaths.

Some people believe that the root of all the madness is the same poison which
undermined Ancient~ Rome -- lead. Or perhaps it’s the brain fluids spinning
around their heads from too many turns on the clover leaf highways. Witness
the premier product of Pacific Pallisades -- Ronald Reagan.

Some medical reports indicate that Californians have. a high sperm count in
their cerebro-spinal fluid, a condition named "the FITH syndrome" (for F~ed
In The Head).

The situation can be expected to worsen as the better people leave California
for cleaner, safer hi-tech areas such as North Carolina, Boston, Oregon,
Colorado, and even Texas. Many Portland cars publicise a worry of their owners
with the bumper sticker "Don’t Californicate Oregon".

It seems that. little can be done about the problem except to hope that the
government maintains its extremely liberal gun laws. As to the cause of this
strange state of affairs .and its de facto capital of San Franciso, the
psycho-linguists and anthropologists can only speculate. Maybe they’ve just
been out in the sun too long.

Abby

I THI~T 71!~-,q,

AUUGN Vol IV No IV 25

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL

Dafile" 3 Dec 1982 1657 (Friday]
F~om’ dave:csu40 ’ ¯

To" timl’basservax auugn’basservax kev’elecT0a].]ndsay’agsm
Subject." C compiler

Just been looking at the ned VMS C compiler (!], It has an interesting
feature in if.. which I think should receive consideration"

You can include files with .£module <name> whereby a default, library
is searc:hed {.or %..he modu]~, named. This has the advantage of saving
~JJ. sk space, whereby m~ny .~ma].l (<] block] files are coalesced j. nto a].ibrary

propose something for UNIX along these lines"

looks for fred,h in /usr/include/lib.a

looks £or name in /usriincludeianotherlib.a

look in /usr/ihclude/sys/lib,a

de[aulfi library, explicit path

£module <fred. h>

£r, odule <another] ib(name

£mod~tle <sys/lib(name)>

£modt~]. e <d ir~ctory/(r~am~

Not~. that the directory pre{.ix can still be given with -I

there’s enough interest, I’il write it. up more fully for AUUGN,

Dave Horsfall

Date" 2 Dec 1982 1.508 (Thursday)
From" root’c.su40
To" netgurus’basservax
.,~ubi. ~ect." name change

Because silly DECNETiVMS allows only 6 characters in a node name,
I have had to change "csuvaxl" to "c.suvxl". It’s pathetic, I agree.

I am working on a simple DECNETiSUN gateway, comunicating via MAIl,,

Dave Horsfall

Date: 6 Dec 1982 1319 (Mond&y)
From: chris
To: auugn
Subject: C compiler

Why does it. have to.be called ’£module’ ?
Surely it. suffices to expand the syntax of ’£include’ to allow
ar libraries o£ include files ala your suggestion (or make). EG

£.include <lib(entry.h)>

Pe"~,r,_.cnnally, I don’t think, it is particularly useful, and is bound to
cause annoyance when programs using it get. distributed.

26 AUUGN Vol IV No IV

hUUGN is produced by volunteers E~-’om the Australian Unix Users Group. Ma-
t.eriai on Unix is solicited From readers. Please send your contributions to
the editors at the add~-ess given below.

The subscription {ee for AUUGN is $24 {or six issues over one year. Over-
seas subcription is $30 Australian dollars. Please do not send purchase or-
ders, only money~ ~h~ volunteers r-unning AUUGN don t like paper war,are! Your
subscription lee and contributions should be mailed to:

c/’~_-~ Bob Nummerfeld
Basset Department of Computer Science
University- of ~.yd,~_y
AUST~’ALIA 2006

