
U syst

G etter

e7

Regietered by Australia Poet Publication No. NBG6524

| II

The Australian UNIX* systems User Group Newsletter

Volume 7 Number 4-5

February 1987

CONTENTS

AUUG General Information 3

Editorial 4

The Claytons UNIX Programmer 6

Network Addressing 13

Small Computers and UNIX 22

Benchmarking Visual Editors 28

Towards a standard programming interface between Graphics Programs and Graphics
Devices 30

A cursory view of the state of UNIX on the MV/20001 a Data General Computer32

Maintaining Geographically Scattered UNIX systems34

Preface to C++ Overview Paper 39

An Overview of C++ 41

Document Production in the UNIX environment 56

Documentor’s Workbench on a PostScript Device 71

From the EUUG Newsletter Volume 6 Number 2 89

The Unix Hierarchy 90

RFS Architectual Overview 92

News from Finland - UNIX and the polar bears 103

DKUUG in Paris 105

Abstracts from the Florence Technical Program107

The Florence Contest 118

From the ;login: Newsletter - Volume 11 Number 5 121

Cognito, An Expert System to Give Installation Advice for UNIX 4.3 BSD122

Access to UNIX Standards 127

Book Review - The UNIX C Shell Field Guide 129

From the ;login: Newsletter - Volume 11 Number 6 131

Personalizing the Impersonal 132

Hindsight is 20/20 140

AUUGN 1 Vol 7 No 4-5

From the ;login Newsletter - Volume 12 Number 1 141

Call for Papers - Summer 1987 USENIX Conference142

How To Write a Setuid Program 143

An Overview of the Sprite Project 150

Book Review - The C Programmer’s Handbook155

Standards 156

Letters to the Editor 158

AUUG Membership Catorgories 177

AUUG Forms 179
AUUG Annual Elections 1987 185

Nomination Form 186

Copyright © 1987. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a trademark of AT&T Bell Laboratories

Vol 7 No 4-5 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Parkville, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

Ken McDonell, President

kenj@moncsbruce.oz
Monash University, Victoria

Robert Elz, Secretary

kre@munnari.oz
University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
Softway Pty. Ltd., N.S.W.

Chris Campbell, Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

John Lions, Committee Member

johnl@elecvax.oz
University of New South Wales, N.S.W.

Tim Roper, Committee Member

timr@labtarn.oz
Labtam Limited, Victoria

Lionel Singer, Committee Member

lionel@pta.oz
Lionel Singer Group, N.S.W. ,

Next AUUG Meeting

(Temporary address is kjmcdonell@er.waterloo.cdn)
(University of Waterloo, Canada)

(This is new)
(This is new)

(This does not work)

The next meeting will be held at NSWIT on the 27th and 28th of August.
Futher details will be provided in the next issue.

AUUGN 3 Vol 7 No 4-5

AUUG General Information

Editorial
Well, judging from the thickness and the content of this issue, the AUUGN has stopped dieting and is
starting to look very healthy. Thank you to all those people who responded to my desperate pleas in the
newsgroup aus.auug, and were concerned by the thinness of the last issue took the time to produce an
article. I hope that this enthusiasm is not lost, and people will put the effort into producing a
contribution for the next issue.

Some of the papers that appear in this issue were presented at the AUUG Meeting which was held in
Adelaide recently. I considered the meeting a great success and that conference organisers should be
congratulated. They did a great job despite given very short notice. I enjoyed the proceedings
immensely and learnt a great deal.

I suggest if you have not been to AUUG Meeting before, you should plan to attend the next one being
held in Sydney. Not only are informative papers presented. It gives you the chance to put faces to
names who appear in the local newsgroups, and communicate with you using electronic mail over
ACSnet. You can also meet and talk to people who use UNIX from all over AUSTRALIA who you
would never get to see in the normal course of events. I am sure you will get as much out of this next
meeting as I did with the last meeting.

There are two important issues you should think about over the next few months. They are:-

-- AUUG Incorporation.

A postal vote will be held in the next few months.

Nominating someone for one on the postions of the AUUG Executive.

There is a form in the back of the issue.

Thank you for reading the AUUGN and if you are not a subscriber or a member, I suggest that you fill
one of the forms at the back of this issue so as not to miss out on the next issue.

A WARNING to those who are financial members that reminder notices are no longer sent out when
your membership expires. You should check the mailing label that came with this newsletter for the
expiry date. If it is highlighed you should renew your membership using a form found at the back of
the issue.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754 (This is new)

Vol 7 No 4-5 4 AUUGN

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is the 17th of April 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff -ram and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -ram, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 7 No 4-5

The Claytons Unix Programmer.

Greg Rose

Softway Pry Ltd

ABSTRACT

Since its quiet beginnings around 1970, UnixTM~" has pervaded a very
wide range of computer hardware, from small micros to very large
mainframes. During this time, there have often been conflicting statements
about the future of Unix. This paper attempts to examine the historical
forces which have moulded Unix into what it is today, and to extrapolate
from that to where Unix may be headed in the relatively near future.

The title of this paper derives from a number of things. Increasingly
(and to the good of all in the long run) Unix systems are self maintaining,
and on the other hand, programmers do not need to be labelled with their
operating system as much as before.

1. Introduction

This paper will attempt to highlight an ongoing phenomenon associated with Unix
and its derivatives, lookalikes, workalikes and emulations.

The first few years of the lifetime of Unix were spent in an environment which is
significantly different to any common commercial (or even educational or scientific)
computing environment. After the first explosive wave of Unix systems installed in
Universities, the emphasis changed, and then changed again in an attempt to meet true
commercial needs when AT&T decided that there was money to be made.

Despite this, it is only now that Unix is really on the way to achieving this goal, and
AT&T have not done all of the work.

2. Past perceptions of Unix

2.1 1970-1974: the early years.

The initial design goals of Unix were very easy to state, and bore no relationship to

UNIX is a registered trademark of AT&T.
In this paper, the word Unix is used to denote an operating system which is intended to be quite
compatible to UNIX, and the term includes, for example, XENIX (a trademark of Microsoft Corp), and
lookalikes such as Idris and HP/UX. It is the philosophy that counts.

Vol 7 No 4-5 6 AUUGN

most of the current uses of Unix based computer systems. These were the twin goals of:

a. supporting efficient program development in an interactive environment, and

b. Running games programs such as Space War.

These goals appeared in reverse order, as Ken Thompson found (while developing a
Space War game on a disused PDP-7) that the development environment utilising a batch
mode cross assembler, was not good enough. Unix was conceived to be a usable
development environment, capable of supporting itself.

The timesharing environment available then was mostly slow, hard copy terminals.
Many of these were Teletype ASR33s, much like the old telex machines, with plunger-
like keys. Any amount of typing over and above the minimum necessary was
unacceptable in this environment, as was any redundant output information. These
aspects account for the terseness of the program names and the almost total lack of
headings and formatting on the output of standard programs. (Note that the programming
approach much applauded in the book "Software Tools" by Kernighan and Plauger,
Prentice Hall, grew out of the fact that most programs produced exactly what was
required as output, without frills, and that this was largely what was needed as input to
other programs.)

This stage of the development of Unix is the part which has engendered the greatest
criticism of Unix, that of its "user unfriendliness". This was unjustified even at the time,
as the developers recognised that the environment they utilised was not necessarily one
which all people would like. In the paper which announced the existence of Unix1 this
issue was clearly addressed:

"It [Unix] offers a number of features seldom found in even larger
operating systems, including [a] system command language selectable on
a per-user basis."

2.2 1975-1980: The explosion years.

After the release of the paper mentioned above, a huge number of tertiary institutions
around the world accepted Unix as a teaching vehicle, and students began to know it.
This was the time when different versions of Unix became available, many enhancements
were added, user groups were formed, and the whole Unix scene became somewhat
"religious". In this time, there were many arguments about the user interface of Unix, and
the world seemed to divide into three classes:

a. Those who liked the standard shell and command names, and said so.

1. Dennis M Ritchie and Ken Thompson, "The UNIX Time Sharing System", Communications of the
ACM, Volume 17, Number 7 (July 1974) pp. 365-375.

AUUGN 7 Vol 7 No 4-5

bo Those who thought the standard interface to be too terse and cryptic, and said so.

Those who recognised that (for many purposes) the standard interface was too terse
and cryptic, and who knew that they could change it, but who didn’t want to
change it, and didn’t bother talking about it.

The problem caused by these groupings was that neither of the vocal groups
remembered that the interface could easily be changed, while the silent group typically
consisted of people who had no incentive to change it, as commercial uses of Unix were
still relatively rare.

2.3 1980-1986: the commercial reality years.

This period saw a number of very important developments of Unix for the
commercial world:2

a. Interactive Systems announced supported binary licences for Unix.

b. Onyx released a Z8000 based multiuser computer running Unix.

c. AT&T recognised Unix as a product, and announced System III,
System V - at commercial prices.

and then

d. The Motorola 68000 family made real big machine performance available.

e. A number of large machines were built by startup companies, running only UNIX.

f. Many machines started being shipped with menu systems for system
administration and user applications.

The situation with Unix developed into one where the name became of major
importance to the computer manufacturers, for two reasons. Firstly, for small
manufacturers, the only operating system available to them (unless they employed huge
numbers of people to create YAPOS3) was Unix. Secondly, Unix formed the only
platform for comparison of many machines, so large sales and tenders often specified its
availability, forcing even those manufacturers with proprietary operating systems to
make Unix available.

3. The current perception of Unix

There is a dichotomy in the perceptions of Unix in the commercial press. About half
of the articles (pertaining to Unix of course) state that Unix "will never make it". The
other half seem to implicitly assume that Unix "has already made it". What is the reason
for this apparent confusion?

2. I have listed these in an order that is vaguely chronological, based on my quite fallible memory; please
forgive anything out of order. Also, many other events may be just as significant, these are just some of
the ones I feel are important.

3. Yet Another Proprietary Operating System. YAPOS is a trademark of Softway Pry Ltd.

Vol 7 No 4-5 8 AUUGN

The real answer is that both are true. Unix is in control of an overwhelming number
of computers being used in office automation and accounting environments. It has
"made it" in the sense that a very large and generally happy set of end users are using it.

The contradiction arises from the fact that almost all such users have never heard of
Unix! They do not communicate to an "unfriendly" shell in terse and cryptic commands,
rather with some applications packages utilising "friendly" menus or whatever.4 So in the
sense that MS/DOS5 has "made it", and huge numbers of people with PCs know the
command syntax, Unix has not, and (hopefully) never will.

4. Needs of the computer-using community

There are a number of needs in the computer using community that are of relevance
to this discussion. These are:

a. Application software which is versatile, widely available, and good value.

b. Good interfaces for the inexperienced and non-technical user.

c. A reliable upgrade path.

d. Support in the availability of training and technical expertise.

5. How Unix will meet these needs

Unix addresses these needs very well, which accounts for the success that it does
enjoy in the commercial marketplace.

Because of the excellent program development environment, and the fact that
applications once developed enjoy a high degree of portability, there is a great range of
software available. The Unix programming environment ensures that much of this
software is of high quality and versatility. Note that these issues are mostly important to
the developers, and not the commercial users, but it is that much larger segment who
profit.

There is no longer any excuse for the commercial user to be exposed to a bad or
merely inappropriate interface. Thompson’s statement of 1974 (above) is even more
valid today. If a single integrated package is in use, it’s interface should be adequate; if
not, there are almost certainly other packages which are, and that one deserves to lose. If
the user must communicate with multiple (unintegrated) packages, a simple menu system
can be written as a front end, using shell scripts.6

4. I personally don’t believe that menus are particularly friendly, but I don’t want to get into that argument
here.

5. also a trademark of Microsoft Corp
6. As a giveaway, Appendix A presents a shell script which interprets menus stored in text files. There is

no excuse any more!

AUUGN 9 Vol 7 No 4-5

The fact that Unix is portable itself, and allows enormous amounts of software to be
made available on new hardware at quite low cost, is one of the major attractions of Unix
for computer manufacturers. This just happens to ensure the existence of an upgrade path
for the commercial user, either within the same manufacturers’ line, or outside it.

There are now many courses to teach about Unix, and many graduates from
Universities who know enough about it, to provide support at any desired level.

6. Conclusion: The Claytons Unix Programmer

Unfortunately, computer operating systems are fairly tenuous objects, especially in
the eyes of a lay person, and Unix is especially so. A more concrete example than
computer operating systems can help the description.

Imagine a customer entering a car sales showroom to buy a car. Somewhere in the
conversation, he will ask about the engine. If the salesman replies "This model has a
diesel powered steam turbine", an immediate loss of interest would probably result. On
the other hand, a response of "mumble mumble N cylinder mumble petrol mumble"
allows the conversation to continue. Why is this so?

The huge majority of car buyers are not looking for special attributes which may
cause trouble. They know that a car with an internal combustion petrol engine can be
serviced by any mechanic, and that fuel is available at a nice "user friendly" petrol pump.
Many evening colleges (at least in Sydney) give courses about how to service a car, and
how an internal combustion engine works. There is no lack of training or service, and the
interface is good.

On the other hand, most car buyers, after checking that the car has an appropriate
engine, don’t allow that thought to reach their consciousness again.

The parallel is between cars and computers, and car engines and Unix. If a potential
computer purchaser asks what operating system the computer runs at all, the answer
"Unix" will be satisfactory and soon forgotten. An answer like "YAPOS" will cause some
loss of interest. Having established that the computer runs Unix, it is then automatic that
a large range of application software is available, that good user interfaces can be
provided, that support is available, that training courses can be found.

(It also goes without saying that if the above things are not available for that
particular computer, you are dealing with a shark in the car industry sense.)

There are people who are prepared to buy cars with strange engines for their own
reasons; they might choose to buy an operating system other than Unix for their own
reasons, but they must be prepared to sacrifice the convenience. More importantly, when
the application is not a straightforward one, there may be reason to buy a "special
purpose" operating system (or engine); by definition, the special purpose applications are
a small portion of the market place, and should not be allowed to dictate trends to the rest
of the commercial users.

An average petrol station does not have a sign saying "we provide reciprocating
internal combustion engine service (all you steam turbines go away)". It probably says

Vol 7 No 4-5 10 AUUGN

"Mechanic on duty". In the near future there will be no Unix programmers, just
"Programmers on duty". These unspecialised programmers will be familiar with Unix,
MS/Dos and perhaps other systems.

They will be the Unix programmers you have when you are not having a Unix
programmer.

Appendix A - a simple menu system for Unix

The following Bourne Shell script is intended to run on just about any Unix system.

#!/bin/sh
shellmenu - interpret simple menus.

if [$# != 1]
then

echo "usage: $0 menufile" >&2
exit 1

fi

m=’basename $I 1 sed ’s/ / /g’’ --
n=’wc -i $i I sed -e ’s/^ *//’ -e ’s/ .*//’’

while true
do

tput clear; echo " Sm:\n"
sed ’s/(~ .*//’ <$i I pr -n -t
echo ’\n Enter selection: \c’
pause=false

read sel I I exit 0
case "$sel" in
01quitlQUITIexitlEXIT)

com=exit
;;

helpl HELP I \?)
echo "enter a number, or the first letter or word of the choice."
echo "To exit, type ’0’ or ’exit’."
pause=true com=loop
;;

,, ,,)

echo "Please make a selection."
pause=true com=loop
;;

[0-9] I [0-9] [0-9])
if [1 -le $sel -a $sel -le $n]
then

com=’sed-n-e ’s/.*@//’ -e "${sel}p"<$1’
else

echo "Your selection ’$sel’ is out of range."
pause=true com=loop

fi
;;

,)
com=’grep -i "$sel@" $I I sed -e ’s/.*@//’ -e lq’
if ["x$com" = x]
then

AUUGN 11 Vol 7 No 4-5

fi

esac

echo "your selection ’$sel’ could not be matched."
pause=true com=loop

case "$com" in
loop) : ;;
exit) exit 0 ;;
*) eval "$com" ;;
esac

if $pause
then

echo " [type return when ready] "
read x

fi
done

Figure 1. the shellmenu shell script.

There is one line which is System V dependent, that is the one which uses tput to clear
the screen. This can be replaced with an echo of either a hard coded sequence if the site
uses all the same terminals, or a lot of blank lines works quite well.

The other vague system dependency is in the use of the echo command itself. On
System III and beyond, the special construct "\ c" at the end of the string indicates no
trailing newline, and "\n" adds an extra newline at that point. On older systems, Xenix
and the Berkeley variants, there is a flag "-n" which must be given to suppress the
newline, and multiple echoes for extra lines. Last but not least, the flag "-±" on the
grep command causes case insensitivity on the System III descended versions, but "-y"
(y? why? I think this rivals even grep itself for crypticism) is used on Berkeley and
Xenix. Sorry about that.

The files which this command interprets are very simple to construct. They consist of
a number of lines, each of which becomes one item of the menu. Each line has two fields,
the first of which is the displayed part of the menu and the other is any single line
command for the Bourne shell. These are separated by one or more tab characters (and
the program above displays these as "0" for visibility); multiple tabs can be used to line
up the commands visually for ease of editing.

Because the command string is ’eval’ed within the script, it can pass around variables
and do things like changing directory successfully (but the name of the file should then
be an absolute pathname). In particular, the environment gives one variable a special
meaning; the shell variable pause can be set to true to make the menu wait for the
user to type a newline before clearing the screen and redisplaying the menu.

Special cases yielding help and leaving the menu are provided.

Vol 7 No 4-5 12 AUUGN

Netwark Addressing

KoRoEIz & RoJoKummerfeld
kre@munnari.oz, bob@basser.oz

Recently, we have been the recipients of several questions about naming hosts on
networks. Rather than continually repeat the answers to individuals, we decided that
some kind of broadcast explanation, in more detail than an individual answer would
ever obtain might be a good idea. So...

This is a brief(?) discussion of what’s involved in choosing a network name (a host
name). The approach is general from an ideal point of view, to choose a name on a
particular network various network particular criteria might need to be met, such as
maximum lengths, etc. Also, on many networks names ai’e assigned, rather than
chosen. On such a network, this may guide the assignor.

In this discussion of what an name is we will not be considering any of the following,
even though at some level of abstraction they may be considered to be names.

a, Routing information. A name specifies what an object is, not where it is. An
address (where an object is) needs to be obtainable from a name, and then
routing information (how to get there) needs to be able to be obtained from this
but that is very much an implementation problem, how it is achieved will
depend a lot on the particular network.

bo Directory services. A name is a precise object. The problem of how to obtain
this object given a more vague specification is the role of the directory service.
Typically a directory service will return a name.

Having eliminated those two it remains to be stated what a name is. Simply, its the
unique specification of some object in the network. That is, given a name, one precise
object can be located.

The problem of name allocation is to assign names to all objects in the network in
such a way that this condition is met.

Given only this objective, name allocation would not be difficult, serially numbering
objects would do. However, additional goals are: that the name allocated have some
human relationship with the object described (most people should have some idea what
object it represents, perhaps after an initial familiarity period), that names be relatively
easy to remember, that they not be too long, and that the named objects have some say
in how they are named. Names should also be stable, which is to say that once
assigned, they should rarely, if ever, change.

An additional goal often encountered is that the administrative load in assigning names
be reasonable.

We are going to initially discuss the familiar rfc819 style of domain mail name. That
is the general type of name that is used on ACSnet, and on coloured book networks
(as well as by the EAN X.400 network user agents). Later a brief discussion of pure

AUUGN 13 Vol 7 No 4-5

X.400 naming will be given. Other naming schemes can be invented (uucp has one)
but it does not seem fruitful to discuss those here.

An rfc822 mailbox name has two basic components, a local part, and a host part. The
local part is something that is interpreted at the address specified by the host part.
The local part of the name is often the login or account name of a user; it is not
relevant here.

The host part will also usually be used for other, non-mail naming, which makes it
even more relevant to consider this part.

The set of all available names is broken into subsets, each of those subsets is known
as a domain, and is given a name, known as a domain name and the naming scheme
is known as domain naming. Each domain is further split into sub-domains, and
these are also given names. This continues as long as the domain remains big enough
(in some undefined sense) to require it. The basic idea is to spread the administrative
load of assigning names, without forfeiting any of the other objectives. The final host
name is the concatenation of all the assigned (sub-)domain names, from the smallest to
the largest. This can be done with the result written in either order, and of course,
because it can be done, it has been done!

The UK Coloured book names, and the names used by the rest of the world differ in
the order of significance of this series of sub-domain names. For present purposes this
is not important.

The format of the host part is specified in rfc819. Basically, it comprises a series of
names, separated by dots. This implements this domain scheme - the dot (period)
serves simply as a separator between the domain names, it has no other significance.

Any naming scheme needs some authority to govern it. That is, something must
prevent two objects having the same name. With domain names, this authority is
distributed. A central authority exists only to allocate names at the highest domain
level. This authority assigns names to other, lesser authorities, which can then assign
names within their assigned domains.

It is not required that any authority be a human, anything that has the capability to
assign names without causing any ambiguity can be used. Nor is it required that the
authority designate the name to be used, in fact, in almost all cases it is far better if
the entity requesting a name suggest the one wanted. The authority need only check
that this name is not allocated, and then allow or reject it on that basis. However,
especially at the higher levels, the authority should also assure itself that the entity
requesting the address can truly claim to represent the object being specified.

Now for an example. Assume that a top level domain for Australia has been
allocated. This means that Australia has been handed a set of addresses it can
allocate. There is no requirement that the objects addressed be Australian, that they be
located in Australia, or in fact, that they have any connection with Australia at all. Its
the name space that belongs to Australia.

Vol 7 No 4-5 14 AUUGN

Now in practice, it would be unusual if a non-Australian object wanted to request a
name in the Australian namespace, but it is possible - with one caveat. That is that
there is no requirement that Australia register anyone in its namespace (many apply,
few are chosen...). Given that some objects will be registered, any criteria at all can
be applied to decide which, and what names they should be given.

In the international community, only the ISO and CCITT have any claim to having
any international control over networking, and both of those are concentrating on
X.400 (aka MOTIS), so neither has any great interest in regulating rfcS19 domain
names. However, these names exist, and will do so for some time, so someone needs
to control their allocation (or really, control allocation of the highest level of domains).
The biggest user of rfc819 and in fact, its creator in some sense, is the US Arpanet, so
the responsibility of allocating rfcS19 top level domains has been delegated by the
agreement of everyone concerned to the Arpanet Network Information Center (NIC).

They have allocated one domain to each country, fixing the ISO standard 2 letter
country abbreviation as the domain name for each country. The name for Australia is
AU. Any addresses ending ".AU" (or starting "AU." in the coloured book scheme)
are ones that have been allocated by the Australian name authority (or if not so
allocated, are invalid). This naming scheme happens to be the same one being
contemplated in the X.400 world, so "AU" will be Australia there too.

How the various countries will allocate their internal namespace, and who in each
country will be responsible for this policy cannot be decided by the Arpanet NIC - that
is left to the groups in each country who run the networks to work out for themselves.

In Australia there neither is, nor has there ever been, any network administrative
structure to claim the AU domain, yet the ability and desire to make good use of it
have existed for some time. With that in mind, it was decided to go ahead and apply
for the AU domain to be allocated, so the networks in Australia with the ability to use
the global mail system would not be held up waiting for someone to set up the right
bureaucratic infrastructure.

So, the authority for AU was delegated to Robert Elz, of the University of Melbourne.
The policy for allocating names in AU is that the authority requesting the name must
represent a substantial community in Australia. Initially, only one such community
existed, ACSnet, but as it was unlikely that would always be the case, ACSnet was not
simply handed "AU" domain, rather it was given a subdomain of it. This leaves
open the possibility that other organisations or people with some influence in the
networking area could obtain other subdomains of AU to administer.

At the current time, only one name has been approved in Australia. That one is
"OZ". This name has been given to the ACSnet administration. That is, any names
ending ".OZ.AU" (starting AU.OZ.) are names that have been allocated by ACSnet.

Here there have been many names allocated. The authority that controls this
allocation is the SunIII network code developed at the University of Sydney. The
policy in allocating names in OZ is that the object to be named must be connected to
ACSnet (using the SunIII code, or some other mechanism).

AUUGN 15 Vol 7 No 4-5

Names allocated inside OZ may be further subdivided according to the policy of the
authority the name was allocated to, and within the guidelines imposed by the SunlII
network code when it grants this authority. There are some restrictions here concerned
with the implementation of SunIII.

Now to the objective of this entire article. How does someone obtain a network
name? Well, all that’s required is to find some authority that will register you in their
domain. Any authority will do, but it must be one that is willing to register you - that
is, you must comply with the rules of that authority.

If you are going to run the SunIII network code, then things are fairly easy, you
qualify for a name within OZ, you select the one you want, tell the network code the
name you have selected, and then see if it agrees to let you use it or not (it will unless
the name exists elsewhere).

But a little more thought is required.here for the name choice to be made rationally.
First, it makes sense for an institution to obtain a name, and then subdivide that
amongst the components of the institution, rather than each component obtaining its
own name. This is just a good social policy - the less names taken from a domain,
the more are left available for future requestors. Taking more than you need is just
greed. You must also comply with the slightly baroque requirements of SunlII, which
in some instances run directly counter to the previous point.

Now let us suppose that you are not going to be running SunIII. Here we must
examine who you are a little. If you are a small site, a single host, or small
(comparatively) network, then it probably makes sense for you to register your name
inside OZ, or perhaps some other registered subdomain of AU (when there are more).

If you are a large, multi-organisational, network, then it would probably make sense to
obtain a new subdomain of AU - this provides a whole new clean namespace for you
to allocate, and you won’t be subject to any control from SunlII (remember that
subdomains of OZ must comply with all SunIII’s rules when allocating names).

Let us assume (hypothetically for a minute) that another subdomain of AU exists, lets
call it AC in order to have something concrete.

Now, if you are a site that wants to obtain a name, what do you do? Things are a
little more complex now, as instead of just taking a subdomain of OZ because that’s
all that was available, you can now pick and choose - assuming that both authorities
will accept you.

Here it simply doesn’t matter which you choose - whichever best suits your needs.
What is important is that you choose one of them, and NOT obtain names from both.
The latter is legal (if the authorities permit it) but can be very confusing.

It should not be important here which authority you choose, though in many cases one
of them will be the obvious one. Since a name specifies what you are, and not where
you are, having a name allocated by one of these authorities does not constrain which
networks you .are connected to.

Vol 7 No 4-5 16 AUUGN

That is, assuming that you obtain a name FOOBAR.AC.AU (or perhaps
AU.AC.FOOBAR) there is nothing to stop you connecting that object to ACSnet.
SunlII has a few rules that you must follow, one in particular is that you must be
internally connected to all other AC.AU (AU.AC) hosts, but that’s all.

Similarly, assuming that you have a name FOOBAR.OZ.AU (or AU.OZ.FOOBAR)
nothing is going to prevent you connecting to the network which owns the AC domain
(assuming that in fact, there is such a network).

It is the job of the various network code to route messages to the objects identified by
the various names. We believe that both systems (SUNIII, Coloured book) in use in
Australia can adequately cope with this since they use this naming form.

As an absolutely concrete example, The University of Melbourne has been allocated
MU.OZ.AU (and has also grabbed for itself a whole swag of other names in OZ.AU -
a few of which it was required to take by the SunIII rules, but many more which are
the result of simple greed).

This should be its name on all networks. There is NO need for any other names to be
allocated to that University, one is quite enough (or should be quite enough).

Now, for something a little different, lets consider the future. It is beyond doubt now
that future mail networks will be based on the CCITT X400 standard (or the
equivalent OSI MOTIS standards, that is, once they actually become equivalent).

Here things are done a little differently, though many of the principals are the same.

In the X400 system addresses are highly structured. The term Originator/Recipient
Name or ORName is used to refer to a name.

An ORName can take a number of different forms, some of which aren’t relevant in
the current environment since they contain either a Unique User Agent Identifier (a
unique code for every user on the net) or an X121 address (a terminal address for X25
or Teletex networks). The form that we will almost certainly use in the future has the
following parts:

Country Name
Administration Domain Name
Personal Name[*]
Organisation Name[*]
Organisational Unit(s)[*]
Private Domain
Name[*]
Domain Defined Attributes[*]

Country Name This is an ISO code that can either be a number or a two character
string. The code for Australia is AU.

Administration Domain Name (ADMD)
This refers to a service provider such as Telecom. It can also be a
number or printable string. We don’t know Telecom’s code yet (if

AUUGN 17 Vol 7 No 4-5

it has one).

Personal Name This is made up of the following component printable strings:
surname, given name, initials, generation qualifier.Only the
surname is required, the rest are optional.

Organisation Name, Organisational Unit(s)
These are printable strings.

Private Domain Name (PRMD)
This can be a number or a printable string. For Acsnet it would
make sense to choose oz.

Domain Defined Attributes
These are pairs of printable strings- a type string and a value
string. This part of the address can be used to convey information
that is meaningful to the destination private domain.

The first two components (Country and Admin domain) must be present in all
ORNames of this form. At least one of the components marked with [*] must be
present in an ORName.

A printable string is a string that contains only characters from a subset of ASCII
(actually International Alphabet No. 5...). The subset is:

A-Z a-z 0-9 ’0+,-./:=? and space

Notice that it doesn’t contain at-sign (@). Its also worth noting though that this
limited character set is currently subject to review, as it doesn’t contain all of the
alphabetic characters used in some European countries, and doesn’t suit the non Latin
alphabet countries at all. It is quite likely to be extended.

It is possible to design a mapping between our current form of names and X400
ORNames. This would allow a user on a "pure" X400 system to send a message into
the current WorldNet (Acsnet, Arpanet, Bitnet, Csnet etc). Steve Kille of University
College London has proposed a mapping that would be adequate. The basic idea is to
use the Domain Defined Attribute to carry an encoded form of our current names. An
example name is:

Country name
Admin Domain name
Private Domain name
Organisation
Domain Defined Attr

,taut,
"Telecom" (for example)

"SU"

bob / basser

In our current notation, this might be written

bob@ basser.su.oz.telecom.au

Or the "telecom" might be elided if it can be inferred from the rest of the name,
giving a more familiar

Vol 7 No 4-5 18 AUUGN

bob@basser.su.oz.au

There is also a reverse mapping that allows an ORName to be encoded as an Acsnet
(or other) style name. Here is an example:

/C=au/ADMD=Telecom/O=BHP/OU=Steel/PN=J.Smith/@munnari.oz

This message would be sent to munnari and then (via X400 somehow) to J Smith in
the Steel department of BHP.

These examples don’t really do justice to Steve Kille’s proposed mapping. The issues
are very complicated and his document (70 pages of it!) tries to cover all the
problems.

While this technique will be useful in the medium term it is not a very satisfactory
long term solution. In the long term we should move to X400 addresses of the form
described earlier.

Whichever mapping is used (which is to say, however names are written down), the
name allocation problem is very much as before.

At the top level are countries - the names for those are predetermined in the standard.
The designated body in each country (in Australia it will almost certainly be the
Australian Standards Association) will then allocate Administrative domains to eligible
bodies. In Australia Telecom, and perhaps OTC (maybe even AUSSAT) are likely to
be the only Administrative domains allocated. These administrative domains then
allocate Private Management Domains according to whatever policy they set, or they
can simply allocate Organisation names.

In a PRMD, that PRMD will allocate Organisation names, and the Organisation will
allocate Organisation Units, which will allocate Personal names. Domain defined
attributes will be of a form specified by the ADMD or PRMD, and will be allocated
however is appropriate to that definition.

Thus, the allocation problem is much the same, the details differ, and the notation
differs considerably, but that is not of immense consequence here. A mapping can be
defined between the two notations, and that will allow addresses allocated in either
scheme to be used in the other, so we would expect that addresses allocated now could
continue to be used well into the X400 era.

To sum up - name selection is important. It’s important that related entities have
related names, andthat these names remain stable. Changing a network name because
a department changes its name or brand of computer, or other things like that should
be discouraged at all costs. Its generally much better to have a name that was chosen
on what are now obsolete principles, than to go through the headaches involved in
altering an existing name. This should make it very clear that choosing a name should
be done correctly the first time!

Lastly, some more practical help in deciding what name you should actually choose.
In this area, its wise to bear in mind the requirements of X.400, so when the transition
occurs, names need not change if at all possible - only the technology that delivers the

AUUGN 19 Vol 7 No 4-5

mail, and the precise form of the bytes that are delivered.

You are almost certainly going to want to be registered in the Australian domain, that
will be common to rfc819 domain names, and to X.400 names. For now, we will
forget ADMD’s.

We will assume-that X.400 will allocate a PRMD of "OZ" to ACSnet, so if you are
adding a host to ACSnet, your PRMD will be "OZ", or your address will end in
".OZ.AU" (of which ACSnet uses only the .OZ).

Within the PRMD you should have a domain allocated to your organisation. The
name for this should be something fairly short, yet distinctive, and easily associated
with the organisation. For example, the University of Melbourne has "MU".
"Melbourne" would be too general, and "University-of-Melbourne" or "Melbourne-
University" too long. "Melb-Uni" would be a possibility, but "MU" seems to
suffice.

Similarly The University of Sydney has "SU", Telecom Research Labs has "TRL"
and CSIRO’s Division of Maths and Stats has "DMS".

Sometimes its hard to decide whether some fraction of an organisation should be
regarded as an organisation itself, or a subdomain of a larger organisation. Here its
probably best to look at the overall general control of the network in the organisation -
if its distributed among the units and they are reasonably large, then its appropriate
that they are each treated as an organisation for network naming purposes, so its
probably better for DMS to be a domain of its own, than a sub-domain of "CSIRO".

Within this, there will often be subdivisions of the organisation. Where they exist,
each subdivision should have its own domain to administer. The Computer Science
department at the University of Melbourne is "CS.MU.OZ.AU".

Typically this is enough levels, there is no need to add extra nodes in the tree to
match with internal organisational breakups (so, there are no domains for the School
of Mathematical Sciences, of which the Department of Computer Science is a part, nor
is there one for the Faculty of Science, of which the School of Mathematical Sciences
is a part). Making a fairly bushy domain tree makes names that are short enough for
people to remember and use.

On ACSnet, this should usually be the hierarchy for your node.

Ideally, this would be all that would be needed, individuals should simply be named
within their department. However, in practice it happens that the mail systems that
exist often require that mail be addressed to a particular host computer within the
department, and not just the department itself.

Similarly, the SunIII code requires that each host have. a private name, and most other
networks do likewise.

Also, users (and administrators) typically like to have names for their computers, it is
easier to say ."foobar is broken, stupid machine!" than "the third machine from the
left in the second row is broken...", or "the machine with serial number 12345 is

Vol 7 No 4-5 20 AUUGN

broken".

Choosing this name is largely up to individual sites, almost anything is possible. One
thing to avoid usually is naming computers after their manufacturers. Quite apart from
the fact that the manufacturer’s name is usually a trade mark, which you probably
won’t get permission to apply to your particular computer, it also means that if the
machine is upgraded to a different model, or an entirely different brand, then its name
would no longer be appropriate, even though the usage, user population, etc, is still the
same. Simply serially numbering (or lettering) hosts is one technique that works,
though it doesn’t show much imagination. Picking names that are part of some
common series (flowers, animals, actors, ...) can be a good idea.

On SunIII this name will usually be the hostname, though in some circumstances, one
of the names of the hierarchy might be a better choice if the particular computer is to
act as a gateway to the domain. The Sunlll primary domain is another thing
altogether, it must be one in your hierarchy, and that one must be chosen according to
SunIII’s routing rules. It is really a routing parameter, and shouldn’t be related to
naming at all. Unfortunately, currently it is.

If you consider your primary affiliation to be with Spearnet, then you will have to
follow their rules for name allocation, but we would expect that they will be
something rather similar to the ones for SunlII.

If you have a private internal network operating already (perhaps a DECnet, or some
other manufacturers proprietary network) then you will might want to consider that
network as a domain within your organisation. At Melbourne University, the local
DECnet is "DN.MU.OZ" -- even though there is no "DN" University Department,
and even though the network encompasses organisations that are not part of Melbourne
University. This is a good example of names being allocated by an authority other
that what might seem to be the obvious one - these organisations have names allocated
by the administrators of the DECnet, so they are in the MU domain. Its the authority
that allocates your name that supplies the upper levels of the domain string you get.

Within your private network you will, as usual, need to follow whatever rules are
applied by that network.

One final word of advice - try to avoid mixing characters that cause confusion when
seen together. A name "hell" (that is ’H’ ’.E’ ’L’ ’one’) is almost certain to cause
lots of confusion, being interpreted as almost anything but the name you chose.
However compelling the reasons for picking a name anything like this, and however
obvious it might seem to you, this type of thing is a very good one to avoid from the
start.

AUUGN 21 Vol 7 No 4-5

Small computers and UNIX.’

Ross J Hand

ABSTRACT

A description of the design of a computer system based upon the IBM AT model
as a replacement for a DEC mini computer in a university environment.

The following may be copyrighted, trademarked or otherwise tied in a legal web. I acknowledge
them all here. ACSnet, APC, ATF, AUSAM, CPM, Cyber, DEC, IBM, Intel, MSDOS, NEC, PDP,
SCO, SPSS, Venix, Xenix, Zilog and microvax.

Four areas involved in the design of the computer system will be discussed in this article.

The areas of concern are:

1 Hardware
2 Operating system software

3 Application programmes
4 User interaction and education

Introduction
The availability of low cost IBM AT compatibles has allowed a re-evaluation of the hardware

requirements for small computer systems. While most users of these small computers will use MSDOS
as the operating system software and therefore limit themselves to one user per machine there will be
users, who for economic reasons will attempt to put these machines to greater use. The move of a sec-
tion of a School of the UNSW from one off campus location, to another off campus location provided
the opportunity to advise on some aspects of a small computer system. The overall requirement was for
the replacement of existing facilities, low initial cost, no hardware maintenance contracts and self sup-
port of both hardware and software.

The users requirements where:

A Text processing facilities for the preparation of papers, questionnaires, letters and data.

B A terminal per user so that there was no queuing or hardware patching
C Access to the computer facilities on the central campus.

D Individual small machines so that persons writing thesis could have independence or a per-
sonal machine for use at home.

The major requirement of the section was self sufficiency. There would be no full time sup-
port for the system from programmers or technicians. The current staff would need to develop
sufficient skills and confidence to maintain the system themselves. One solution would be to add
to the existing number of MSDOS computers. Access to the cenl~al campus was actually access
to a machine capable of running SPSS. SPSS is a large statistical package and had recently
become available as a programme for MSDOS machines. The section could contain up to sixteen

UNIX is a trademark of Bell Laboratories.

Vol 7 No 4-5 22 AUUGN

staff so to meet the requirement of a one terminal per user an additional 10 machines would have
to purchased. These machines would have to be limited to floppy disk based machines without
printers to keep the cost within budget. The advantage would be a large software base, (including
SPSS) reliable low maintenance hardware and a little need for local software and administrative
expertise. The system could be purchased piecemeal as requirements dictated. It would be a con-
servative solution, but safe from criticism.

Another solution would be the purchase of a single multiuser computer and a number of ter-
minals. This solution would be more difficult to implement. It would involve the integration of
existing single user hardware and software, increased level of skills by some of the users, the need
for an administrator to cope with the increased complexity of the operating system and connec-
tions to the central campus. The long term benefits of a multiuser system where considered to
outweighed the short term problems.

Hardware.

The large number of machines available at very low cost based upon the Intel sixteen bit
microprocessors (types 8088, 8086, 80186, 80286 and 80386) makes them attractive as the basis
for a computer system. Even though transportable operating system and application software is
making the choice of central processor unit (CPU) less important, certain CPU types are favoured
by manufacturers of mass produce computer hardware. There is little use of Zilog Z8000 CPU or
National Semiconductor NS32016/NS32032 in mass produced machines and so machines of this
type where not considered. The popular CPU types are the Intel and Motorola. The Intel CPUs
are found in vast numbers in single user MSDOS machines. The Motorola 68000 and it’s deriva-
tives, are found in specialise graphics oriented single user machines and in multiuser machines
most commonly using the Unix operating system software. The choice of a single user or mul-
tiuser system dictates the hardware for that computer system. This polarisation of the massed pro-
duced market has led to some misconceptions. One of the most widely held misconceptions was
the ability of the Intel CPUs. IBM adopted a low performance implementation of the first Intel
sixteen bit CPUs as their standard for single user operation. This may have been to protect their
large multiuser machine base. The result, for what ever reason was to impress upon the buying
public the single user, single process nature of Intels CPUs. Certainly the use of the eight bit bus
version of the sixteen bit CPU, and at a lower clock speed than was possible created a hardware
precedence that other manufacturers found difficult to ignore. A very small number of manufac-
turers had the marketing power to produce machine based upon the Intel CPUs which where not
single user, single process. The majority simple produced imitations or clones of the original low
performance IBM design relying upon low cost to attract buyers.

The introduction of a the IBM AT computer, with large memory capacity, high CPU perfor-
mance and hard disk secondary storage as standard did not change the computer buyers attitude.
Although there are many implementations of the Unix operating system available for both the
IBM AT and the early PC computers they have not been as popular as predicted. The vast major-
ity of these machines still use MSDOS, a single user, single process operating system. Machines
of the IBM AT type are usually considered inadequate when a multiuser hardware is required.
The popular choice would have been equipment produced by Digital Equipment Corporation
(DEC) from their LSI or microvax range or from the numerous manufacturers using the Motorola
CPUs. The use of DEC computers has been popular within universities but the cost of hardware
maintenance and the high cost of peripheral equipment makes them less attractive. Small depart-
ments with limited recurrent funds cannot afford hardware maintenance contracts and their is a
lack of technical expertise for local repair. Skills in programming are more generally sought than
hardware repair skills.

The most suitable hardware is low in initial cost and sufficiently massed produced to be
treated as expendable. The IBM AT design meets these conditions. The many clones provide
competition among manufacturers which has driven down the initial purchase price. Hardware
maintenance contracts are not needed because of this low price and also because of the numerous
suppliers of peripherals for this design. Repair policy has become one of replacement of defective

AUUGN 23 Vol 7 No 4-5

sub assembly.

The decision was made to use an AT design as the basis for the system. The hardware used
was an IBM AT equivalent design by NEC. To the basic machine was added a Maths co-
processor (80287), a memory board containing 2 Megabytes of memory (expandable to 3 Mega-
bytes if required) and a microprocessor controlled serial port card. The Maths co-processor and
memory card where available from NEC as standard optional items. The extra serial ports where
not and when questioned about this the reply was that the two serial ports provided in the basic
unit would be satisfactory for most users applications. NEC sold their IBM AT equivalent with
MSDOS, no multiuser operating system was available from them. This may change as more of
these machines are used in a multiuser role. Companies like NEC may provide Unix software sup-
port as a matter of policy.

The choice of the serial port card was the main problem of the hardware design. NEC had
no such card and the majority of peripheral suppliers for the AT design could not supply from
stock. The most popular expansion card for serial ports consisted of an extension of the standard
serial port design to four, eight or sixteen ports. These cards required operating system software
for character transmission and reception, thus placing the central CPU under considerable load if
many terminals where in active use. They where also very expensive given there complexity,
averaging about 20% of the basic computer hardware cost. Alternatives consisted of locally
designed and manufactured cards which contain microprocessors to relieve the central CPU of
some of the software task involved in serial communication. These are sometimes referred to as
intelligent serial cards. Three local manufacturers provided intelligent serial cards for evaluation.
The problem with intelligent serial cards was one of integration. The Unix operating system
software has to be modified to accept these new devices. All three manufacturers who provided
intelligent serial cards provided this integration. This support from the manufacturers, plus the
facilities provided by the Unix software made this task less difficult than expected. All three
serial cards where considered adequate. All three cards caused the system to crash, and all where
consequently improved. Reliability finally decided the card which was used. The high cost of
this one component and the lack of choice should change as more manufacturers produce serial
expansion cards. This will continue to be the weakest component in the system until then.

This then was the hardware basis for the system. A NEC APC IV with one 40 Megabyte
hard disk, a 1.2 Megabyte floppy disk, 1 parallel printer interface and 10 serial ports. The future
expansion would include another 8 serial ports. Existing MSDOS machines would used as termi-
nals or as stand alone machines. To provide for external communications two 2400/1200/300 auto
answer, auto dial modems were added. This last item proved to be the most unreliable component
of the system, requiring more attention than was anticipated. The modems function was critical to
the success of the system but the supplier, having oriented his product to the single user market,
had little ability to solve the problems that arose, when his product was used in a network role.

Operating system software
The decision to use the hardware in a multiuser role dictated the choice of operating system

software. In reality the choice of hardware and operating system software was made concurrently.
It was not an objective decision to use Unix although sound reasons for its use do exist. An
important reason is the very nature of computing hardware itself. We have available more power-
ful hardware every year. The limitation of one task and one user per machine is harder to justify
as the hardware improves. If users are exposed to the advanced concepts and procedures available
through complicated operating system software like Unix the transition is a gradual process. Net-
working of machines is also important in this education of users. The operating system software
must be capable of supporting a sophisticated network, at both the Local Area Network (LAN)
and further. Some solutions to networking problems exist in MSDOS but they lack enough gen-
erality to allow communication from the same building, to the same city and to international
access. Fortunately Unix has such a network in ACSnet and as an added bonus was free for
university sites.

Vol 7 No 4-5 24 AUUGN

There is also the little understood problem, among Unix users, of the problems of sharing
peripherals. Spooling programmes for printing are an accepted feature of multiuser operating sys-
tem software. With a large number of single user machines the printing problem is solved by hav-
ing one printer per machine or by having a central printing machine and using a LAN or floppy
disks for file transfer to that machine. Both solutions are expensive or cumbersome.

There are at least three Unix software products that are available for the AT design. These
are Venix V, Xenix V and Microport SV/AT. All three are validated System V implementations
of Unix from ATT. All three are binary incompatible with each other and all three have strong
and weak areas. The most popular has been Xenix V from SCO/Microsoft. It’s advantages are
reasonable support in this country, a version for the IBM PC as well as the AT, a large range of
user programmes from both SCO/Microsoft and third party suppliers and it is a fairly stable pro-
duct. It’s disadvantages are a high cost, it’s mixture of Unix System III and Unix System V and
it’s closed nature. It is marketed by Microsoft (of MSDOS fame) as the multiuser version of
MSDOS and will remain, given the source code pricing scale, a closed box in this country forever.
The other major contender, Microport SV/AT has more potential, especially in a university
environment. It was produced with very little change from the original port of System V for the
Intel 80286, by some of the software engineers who did the port. It’s disadvantages are that it is a
less refined product, has virtually no support in this country and at the present has only a few user
programmes available. It’s advantages are low cost, standardisation with other Unix System V
implementations and the potential to be available at very low cost at the binary level to universi-
ties. There may also be complete source code available to universities currently holding source
licences to Intel’s Unix System V. This would have advantages for both university and commer-
cial users in this country. To those who would cry ’train spotter’ I would emphasis the generally
poor support that binary programmes of any type have in this country. Past experience has shown
that simple software faults can be fixed if the source is available and defy repair if source is not.
The holding of source for all key programmes is, I argue a necessity not a luxury. The Unix
university community have grown accustom to the attitude of fix it now and report it later. The
trend towards binary only support in this country of key software like Unix weakens our ability to
do even minor software maintenance. I do not advocate the holding of source at every site.
Those days are gone. Uniformity of systems demands less access to source. Reliable and effi-
cient maintenance requires either a central, local holding of source code or an extremely efficient
and responsive contact with the holders of the source where ever they may be. My experience
would indicate the latter currently does not exist, except under expensive software maintenance
contracts. The possibility of better long term support made Microport SV/AT the best choice.

Application software.

The largest single use for the system was text processing. Microport SV/AT has nroff, troff
and the new device independent troff (ditroff) as standard software packages. The line editor ’ed’
and the screen editor ’vi’ were also available. The users had expressed interest in continuing the
use of an enhanced version of ’ed’ called ’e’ and ’roff’ which is a simpler version of nroff. Both
of these programmes had been available on CPM, MSDOS and finally Unix machines in the users
previous work area. Since roff was assembler based an alternative was sought. A public domain
programme called proff (portable roff) was found. It exceeded the command set of roff and had
many of the features of nroff. It also proved extremely portable, and was compiled under both
Unix and MSDOS. The local enhanced editor ’e’ was also compiled under Microport SV/AT after
minor changes to iocfl system calls. Local plotting software recompiled without changes. This
left only ACSnet software and some personal software to transport. After defining the system V
flag and undefining the AUSAM flags the standard UNSW source of ACSnet compiled within a
few hours. A call programme for the modem was installed and with very few software problems,
most of them operator induced, the system became a working ACSnet node. A previous attempt
to do this using Xenix had required a special version of ACSnet that had been extensively modi-
fied.

The standard mail programmes supplied under Microport SV/AT (mail and mailx) where
supplemented by a local mailer which recognised network addresses and the network aspect ot the

AUUGN 25 Vol 7 No 4-5

system was. operational. To provide for access to the central campus Cyber mainframe and it’s
SPSS software the UNSW ’submit’ programme, after minor changes to functions accessing pass-
word structures was compiled and tested. Other local programmes written in C and awk where
compiled and tested. No serious problem was found with any of this software. Serious hardware
problems with the modems spoiled the success of the installation, but where eventually solved by
replacement. The Kermit programmes were installed on the Unix and MSDOS machines. This
allowed the MSDOS machines to be used as terminal emulators and allowed for files under
MSDOS to be sent to Unix for printing, backup or as input data to SPSS at the central campus
computer. The key decision here was that the most used programmes (editing and text processing)
would be the same on both Unix and MSDOS.

During this initial period several improvements and shortcomings were noticed in the Micro-
port SV/AT software. Some of the differences from Level 7 Unix were:

1 a device driver for the serial ports that allow one modem to be used for networking to
other machines and also allowed logins. Internal locking in the device driver
prevented interference with each other.

2 The line printer programmes, although appearing at first to be unnecessarily compli-
cated, allowed for installation of new printers with varying requirements without the
need for programme source. The user has only two programmes to learn as in most
Unix systems. Even though there are more programmes and options for system
administrators, few problems have arisen. The print spooler programme has no way of
rejecting large print jobs and will require modification to allow recording of paper
usage. These features are available under AUSAM systems and are missed. Spooling
binary files leads to wasted paper and the annoyance of other users.

3 The need for source of the getty programme has been eliminated by the gettydefs file.
This text file allows for reconfiguration of terminal parameters. Unfortunately there is
no method of determining terminal type in this file and there was no equivalent of the
programme ’tset’ which is available under Xenix.

4 The ’inittab’ file, which controls the action of ’init’, ’startup’ and ’shutdown’ pro-
grammes is certainly a departure from the simple approach of the level 7 ’init’. It’s
benefit or otherwise has yet to be determined. One serious problem was the default
inittab setting the machine into multiuser state on startup. This can be seen as a secu-
rity measure, since most small computers will not have a secure room of their own. It
can caused problems if, for any one of a number of reasons the system supervisor
could not logon as root. The inittab file can be easily changed to allow a single user
mode albeit with reduce security.

5 There was no online manual available. The manual command ’man’ existed but the
manual directories are empty. This was tree of all Unix systems encountered for these
machines. Possible the size (approximately 2 Megabytes) is considered too large for
the small disks of these machines. With secondary disk storage decreasing in cost the
inclusion of an online manual becomes more viable. The one copy of the printed
manual becomes a valuable item, much sought after by the beginner users.

6 No disk usage accounting programmes are provided even though they are documented
in the printed manual.

7 Some minor programmes would not run and usually dumped core. They are not sig-
nificant enough to hinder the system’s use but are an indication of a lack of refine-
ment of the current command set. They should either be fixed or removed from the
next release.

User interaction and education.

This is a key area of the system. It creates problems that extend beyond the purely techni-
cal because it involves interaction between users at different levels of computing skills. Some
users will have computer skills from their use of MSDOS and CPM. Others will have skills from

Vol 7 No 4-5 26 AUUGN

mainframe computer use. Neither area will map directly to this small but multiuser environment.
A multiuser system usually requires specialist support staff. The small size of this system cannot
justify dedicated support staff, so the support will come from the users themselves. A number of
users sharing the critical functions associated with the super user account will remove the ’key-
man’ problem, allowing the system to be maintain as staff come and go. At first there will be
more tasks for the super user to perform especially if there is only one such person. Therefore
users keen to provide time and effort for administration should be encouraged and trained. The
extent that users participate in the traditional role of the super user is yet to be determined. The
support will have to come from within and the traditional model for multiuser systems will require
change. If the hardware, operating system software and application software remain stable and
reliable then the success may depend upon the users attitude and support.

Conclusions.
The domination of Unix on personal computers, as predicted at an AUUGN meeting in

1984, has not occurred. There may have been valid reasons for this when the standard offering
was an underpowered, small capacity machine and the few Unix implementations available for
these machines cost nearly as much as the machine itself. This situation has now changed. The
advent of the AT design, it’s low cost and the low cost and reasonable range of Unix products
available for this design give the designer of a personal or small multiuser Unix system many
choices. It is now up to the users to accept that change is possible and make it.

AUUGN 27 Vol 7 No 4-5

Benchmarking Visual Editors

Albert Nymeyer
University of Newcastle

In a typical academic multiuser environment computer users spend most of their
logged-in time using a screen editor. During prime time therefore, the performance of
the screen editor is a major factor in the overall performance of the system. The standard
screen editor at most UNIX sites is vi. At our site however, all first year computer
science and mathematics students use a more restrictive screen editor called sced (SCreen
EDitor), originally written by Richard Miller at the University of Wollongong. Like vi,
sced uses the termcap database, although not as extensively. Ed was also included in this
benchmark for comparison purposes. Both vi and sced were trivially modified to read
from command files. This of course means that in this benchmark the CPU time needed
to handle interrupts from terminal input will not be a factor. A "typical" sequence of edit
instructions were placed in a command file for each of the three editors. Each editor was
then run, reading from its own command file, for alternately 1, 2, 4, 6, 8 and so on
concurrent users, one per terminal (with no other users logged on). Note that "real" users
were used to start the edit scripts on each of the terminals (my thanks to those who gave
of their time).

The test was carried out on our main computer, a Gould 9005 (8mb memory), and
on a Perkin-Elmer 3220 (lmb memory). The Gould runs 4.2BSD, the Perkin-Elmer runs
Level 7. We simulated up to 22 users on the Gould, and up to 12 users on the Perkin-
Elmer. The benchmark was run a number of times on the Perkin-Elmer. We tried
different baud rates, and different terminals. Two kinds of terminals were used on the
Perkin-Elmer, Kimtron KT7 terminals and Ampex Dialogue 30 terminals. Only Kimtron
terminals were used on the Gould. The Kimtron terminals are "clever" in the sense that
they have insert and delete capabilities, reverse scroll and many other features to speed
up screen IO. The Ampex terminals have virtually no features, apart from being curser
addressible.

In designing an edit script for each of the three editors, it is very easy to favour one.
Ed, for example, being a line editor tends to do very little terminal IO. Scripts of similar
content were written for each of the editors. Each was designed to run for 40 seconds
real time on the Gould, and each included a liberal number of screen redraws (even ed),
something that first year students are prone to do. The same edit scripts were used on
both machines.

Vol 7 No 4-5 28 AUUGN

The first graph compares the Perkin-Elmer using Ampex terminals with the Gould
using Kimtron terminals all running at 4800 baud. Quite clearly, vi is too heavy a load
for the Perkin-Elmer (the average job time scales with the number of users), and sced is
faster than ed after about three users. On the Gould vi is heavier on the system than
sced, but not prohibitively so.

In the second graph we show results for the Perkin-Elmer using Kimtron and Ampex
terminals running at 4800 and 9600 baud. Increasing the baud rate from 4800 to 9600
improves the performance on a lightly loaded system, but has virtually no effect under
heavy loads. The difference between clever and dumb terminals on the Perkin-Elmer is
almost constant. On both systems sced obviously performs extremely well. The limiting
factor in the system is the time it takes the CPU to handle interrupts for screen output.
Since every job in a given run has the same output, the resulting curves will be almost
linear. It is interesting to note that the addition of two small CPU-intensive jobs running
in the background at lowest priority made virtually no difference to the results.

500 -

400 -

300 -
Time

(in seconds)

200 -

100 -

GRAPH 1

...... Perkin-Elmer
~ Gould

¯
tt~:°" ~ $ceo

I I I I
5 10 15 20

Number of simulated users

500 -

400 -

300 -
Time

(in seconds)
200 -

100 -

GRAPH 2

.......4800
9600

I I
5 10

Number of simulated users

AUUGN 29 Vol 7 No 4-5

Towards a standard programming interface between Graphics Programs and
Graphics Devices.

Steven Bodnar

La Trobe University

I am not proposing a standard that can be compared to GKS or CORE, but sticking to a standard
interface when trying to write converters for various graphic devices for various typesetting programs,
reduces the total amount of work needed. The standard and the appropriate programs has only been
tested on a Pyramid, so portability is questionable.

Here is the proposed data structures and procedure calls:

typedef unsigned int word;

struct image {
int xsize;
int realxsize;
int ysize;
word *data;

};

Void
InitDev(xresolution, yresolution, xsize, ysize)
int *xresolution, *yresolution, *xsize, *ysize;

void
FinishDev(flag)
int flag;

void
Print Image (display)
struct image *display;

The ’word’ type is a 32 bit quantity. ’data’ is a pointer to a set of words that holds a bit image. The bit
image size is ’realxsize’ by ’ysize’ words which holds ’xsize’ by ’ysize’ bits. Each row should be
padded out to a 32 bit boundary. For example, the follwing bit image has a ysize of seven an xsize of
five and a realxsize of one.

¯ XXX.
X...X
X...X
¯ XXXX

X...X
¯ XXX.

Up to date a dvi-format driver, a troff-format driver and a general bit image driver has been written to
use this interface. These routines have been written for Philip’s gp300 printer, Apple 15inch Imagewriter
and the Vextrix Graphics terminal with a more like facility. Future printers will include PostScript
printers.

As people write decoders for other typesetters or graphics packages, using this interface will simplify
obtaining a translater to a particuliar printer/terminal. Instead of the famous N * M programs to be
written given N formats and M printers, we have N + M.

Vol 7 No 4-5 30 AUUGN

CALL FOR EVALUATERS

I am quite happy to let these programs be freely available for no cost. They can’t be sold however.
There is a set of programs to resize vfont files to an arbatrary size so do not worry too much if you do
not have a 200 dpi printer. At the moment only rexluction of vfonts is available.

I would be interested in a full test on a VAX system, as it requires only even byte boundary restrictions
intead of pyramid’s 4 byte boundary restriction. More importantly there might very well be dependancy
for the order of the bytes. As the Vax and the Pyramid differ in this respect, it would be a good test. To
minimize frustration distribution should be minimal at first to test portability.

AUUGN 31 Vol 7 No 4-5

A cursory view of the state of Unix on the MV/2000, a Data General Computer

Steve Bodnar
Philip Lee

La Trobe University

The MV/2000 is a 24 user system, with a LAN board, winchester drive and cartridge tape. The one
feature that strikes you when you first look at it is the non-DB25 RS232 connectors. These are more
expensive than conventional DB25 and of course a special crimping tool is needed.

Basically there are two asynchronous serial boards, of 12 ports each. Only two of which have full
modem control. The others have only Transmit, Receive and Ground.

On the system board there are four other serial ports, including the Console, which have modem control.
It also have one parallel printer port and an SCSI interface port.

The hardware architecture only allows 32 bit addressing, it could be 16 bit but assume 32 for the sake of
argument. Rumour has it that early C compilers made characters 32 bits long to circumvent this
problem. Now microcode handles 8 bit addressing properly. Unfortunately this means the format for
byte addressing is different to the format for word addressing.

int *iptr;
char *cptr;

iptr = cptr;

This will not work, as it will give a completely wrong address.

int * ipt r;
char *cptr;

iptr = (int *) cptr;

The above fragment uses inline code to translate the formats and does work, hence ’lint’ is more
important than ever. Of course there is an option to make them all the same format, the microcoded
format, rising in poorer performance.

The C compiler is basically taken from there AOS/VS operating system and hammered into place for
unix. Consequently there are some options are not available, and many more extra option are available.

Another consequence of taking the machine from an AOS/VS environment to a Unix environment is the
Intelligent I/O Hardware. Rumour has it that it is disabled to allow Unix to work properly.

The unix system said to be 100% System 5.2 and X% Berkley 4.2. The irritating part is that you cannot
work with 4.2 tools and programs without bumping into something that is missing, but that applies to all
partial ports of Berkley Unix.

Unfortunately they mix System V and 4.2 BSD terminal drivers depending whether you are in ’sh’ or in
’csh’. Consequently never try change the characteristics of a terminal that only has a getty on it, it has
neither driver.

As far as the claim for 100% System V.2, it seems that everything is there. Unfortunately they still
have an unreasonable proportion of bugs, but here I must state the we have the pre-release version.
TCP/IP is available but does not work with the pre-release version. It cannot be stated with any certainty
when the official release will occur.

For use for students we are concentrating on Pascal using Dbx as the debugger. Dbx does not interface
with Pascal in the pre-release version, and that problem is reported as being looked into.

Problems with DG terminals can be summed up by saying the ^Y is their backspace and ^Z is generated
by there down arrow. Consequently they have special entries in their terminal drivers to allow for such
problems.

Vol 7 No 4-5 32 AUUGN

Unfortunately we cannot show any type of benchmarking because with the pre-release version, we have
not yet got the benchmarks to work. In all fairness we spend a lot more time trying to get sunlII to
compile and run and hence do very little in the benchmarking department.

CONCLUSION

Our conclusions are that with a more UNIX orientated C compiler and more work on their releases
should see the MV/2000 as a Unix computer instead of close but not quite Unix Computer. Again in all
fairness we have not been using it much, coupled with the fact that we have the pre-release version of
unix means that this is only a current view and possibly an inaccurate view.

AUUGN 33 Vol 7 No 4-5

Maintaining Geographically Scattered UNIX systems

Ron Baxter & Mark Andrews
CSIRO Division of Mathematics and Statistics, Sydney, NSW

February 21, 1987

Summary

The Division of Mathematics and Statistics (DMS) has a total staff around Australia of
nearly 90, and maintains UNIX systems in Canberra, Sydney, Melbourne, Adelaide, Perth,
and Brisbane. These systems are used for data analysis, graphics, number crunching,
mathematical word-processing and networking. There are about 11 people involved in
system-management and user-assistance (about 6 full-time equivalents), but the experience
and expertise of these people is varied so that the manpower and expertise at each site
varies widely. Consequently, there is a clear need for distributed management.

ACSnet is used to interconnect the systems (using CSIRONET as the carrier), and all
systems may be accessed from remote locations via CSIRONET and/or dial-up lines.
Extensions to ACSnet (originally from UNSW) have been added to allow remote file
copy and remote execution of commands. Examples will be presented to show how these
facilities are being used to monitor system performance, and to maintain software at all
locations.

1 Setting the Scene

The Division of Mathematics and Statistics of CSIRO not only undertakes mathematical
research, but also provides a consulting service to research workers in other fields (largely
within CSIRO). Since consultants need to be close to their major clients, the Division has
staff scattered around Australia. Table 1 shows the locations and computing facilities.

Vol 7 No 4-5 34 AUUGN

Location Staff
Total System

Canberra 19 (½-}- ½)

Sydney 20 (1÷½)

Melbourne 15 (1)

Adelaide 14 (½+½)

Brisbane 6 (½)

Perth 6 (½)

Hobart 3

Townsville 1

Table 1

System Details

Vax 750 (1982) with 4.2 BSD

Vax 750 (1983) with 4.2 BSD
Microvax II (1985) with ULTRIX
1.1

Microvax II (1986) with UTRIX 1.1

Integrated Solutions 68010 Qbus
system (1984) with a port of 4.2
BSD

Integrated Solutions 68010 Qbus
system (1984) with a port of 4.2
BSD
Access to a local VMS system

Access to a local VMS system

2 The Problems

Expertise for managing the systems is spread unevenly. Since 6% of the total staff of the
Division is involved it would be unrealistic to try and solve this problem by requesting
more staff.

While it is obvious that the problems would be reduced if the System details at each site
were identical, this is not possible because the staff numbers vary, the specific local needs
vary, and the systems are purchased at different times. Nevertheless, we do give high
priority to trying to keep as much uniformity as possible.

These problems must be overcome by exploiting network links to allow at lest some man-
agement tasks to be done remotely.

3 The Tools Available

CSIRONET-UNIX gateways. These gateway connections use one RS232 line from
UNIX and one from a CSIRONET micronode, and provide 8 data channels on this
single physical line. At the UNIX end we use the xt (or rex) driver. This allows four
UNIX users to access any CSIRONET service, and four CSIRONET users to access
the UNIX system. We use these facilities to provide ACSnet links, and we can get
throughputs of 30-60 characters per second. With earlier versions of the zt driver we
could only get 7-bit data paths, but now we have no difficulty with 8-bit transfers.

2400 baud modems. While we can use the CSIRONET gateways to obtain interactive
access to remote machines, there are limitations. Using vi is near to impossible for
example. So we have dialin access on all systems, and use them extensively for

AUUGN 35 Vol 7 No 4-5

interactive access. They can also be used for ACSnet links in emergencies, but we
currently restrict this use to manually initiated connections, because we have had
difficulties in the past with phone connections that do not terminate correctly.

ACSnet. The six locations are interconnected using ACSnet. We currently maintain 11
links among these systems (the maximum number is 15 and the minimum number
is 5).

Remote Execution and Remote File Copy. These commands nsh and ncp are pro-
vided as extensions to ACSnet and are based on code from UNSW and have syntax
as follows:

Usage: nsh [-svpS]

Usage:ncp [-svpS]
ncp [-svpS]

[-f file] [-i file] :host ...

[:host:]file [:host:][file]
[:host:]file ... [:host:][dir]

[commands ...]

The host specification can be a comma separated list, and the -f and -i options allow
the commands and/or the input to be in files.

4 Installing a new version of the News Software

This has been done from natmlab where the source code is installed, compiled, and then
binaries sent to dmscanb. Copies of the source are sent to drnsmelb and dmsbris where
further compilations occur, and then binaries from dmsrnelb are sent to dmsadel, and
binaries from dmsbris are sent to drnsperth.

Apart of the master Makefile is:

src : UNITY. src UVAXII. src

make: UNITY.make UVAXII.make

binary: UNITY.binary UVAXll.binary VAX750.binary

UNITY.src: ${SRCl}
ncp -S $? :dmsbris:${REMOTE}
date > $0

UNITY.localize: localize.unity
ncp -S $? :dmsbris:${REMOTE}/localize.sh
-nsh -vS :dmsbris cd ${REMOTE} ";" sh localize.sh

date > $©

UNITY.make: UNITY.src UNITY.localize

-nsh -Sv :dmsbris cd ${REMOTE) ";" make
date > $©

Vol 7 No 4-5 36 AUUGN

UNITY.binary: UNITY.localize UNITY.remote
ncp -S UNITY.remote :dmsbris:${REMOTE}/.remote

-nsh -Sv :dmsbris cd ${REMOTE} ";" make -f .remote $©
date > $©

Make~ile.binary: Make~ile

sed ’s/’all:.*/all:/’ $? > $©

VAX750.binary: ${BINARIES} ${HELP} ${INSTALL} Make~ile.binary
ncp -S $? :dmscanb:${REMOTE}
-nsh -Sv :dmscanb cd ${REMOTE} ";" cp Make,lie.binary Make~ile
date > $©

UVAXll.src: ${SRCI}
ncp -S $7 :dmsmelb:${REMOTE}
date > $©

<lines deleted>

dmsbris.install:

-nsh -S :dmsbris -~ INSTALL

dmsmelb.install:
-nsh -S :dmsmelb -~ INSTALL

5 Monitoring Network Performance

The linkstats command of ACSnet was designed to give summary of the health of local
network connections. Its default output usually fits onto a single screenful. However, in
our context it is not so useful because

our network consists of intermittent links and linkstats only gives information on
active links or on the last session of an intermittent link. This may be useless
because the most recent session may have done nothing - but this may be correct.

we need to know more than just the direct links to our current machine. For example,
the dmscanb-dmsbris link failed recently -- but from where we are in Sydney we did
not notice until someone yelled.

In an attempt to generate a more useful summary (still in one screenful), each of the six
sites runs a daily cronjob to extract some information relating to direct links from the
statefile and ncp’s it back to natmlab. Awk scripts then try and summarize in a way that
will make anomalies easy to observe.

AUUGN 37 Vol 7 No 4-5

6 Limitations of Remote Gurus

Clearly a remote guru can do nothing more than talk on the phone when the system has
crashed, or a file-system is trashed, or there appears to be a hardware failure.

Recently we were told that following a thunderstorm in Brisbane, the respose time of
dmsbris was extremely slow. This was easy to confirm by trying to login. Eventually we
discovered the cause was a runaway getty caused by characters arriving on one of the serial
lines. The way to identify and fix this problem w~s to login as root and renice to -20 --
this took ages, but once the renice had happened, the problem was close to solved.

Vol 7 No 4-5 38 AUUGN

Preface to C++ Overview Paper

Permission to re-publish the following paper was kindly given by Bjame Stroustrup of AT&T Bell
Laboratories, Murray Hill, New Jersey 07974. It appeared originally in SigPlan Notices, Oct 1986. I
have altered one footnote and added a couple of others. These may be distinguished by the "MM" that
appears in them.

The paper is notable for the way it explains the motivation for C++ starting from the reasons why so
many people use C. Indeed, I believe that anyone even vaguely familiar with C would thoroughly enjoy
programming in C++, from the point of view of satisfaction (expressiveness and efficiency), as well as
from productivity and maintainability (and hence economic) perspectives.

The separate treatment of C++’s support for data abstraction and for object-oriented programming is also
instructive. (Far too often, these two terms are used interchangeably by people who should know better.)
C++ does not provide methods which are common to most other "object-oriented" languages, but instead
uses a virtual function mechanism which is almost as efficient as a conventional function call.
Personally, I regard the method approach as slow and potentially dangerous, being un-checkable at
compile-time. C++ does not suffer this, and manages to provide a truly object-oriented capability for
dealing with instances of objects in an inheritance hierarchy where the exact types of the instances are
unknown at compile-time.

The current user-base is quite large (over 1500 installations outside AT&T at least) given that C++ has
only been commercially available for little more than a year or so. C++ is available from AT&T Unix

’ Pacific (address given in a footnote in the paper). My most recent pricing information for source code
(unsupported) is $US 2000 per CPU for commercial licenses, and $US 250 for educational institutions
(any number of CPU’s). They also offer modestly-priced binary licenses for AT&T machines. Olivetti
don’t sell it, which I find inexplicable.

$US 2000 is probably not an unreasonable price for the source code. Consider one programmer costing
his/her employer only $30K pa, say. C++ has only to give that person a 10% productivity gain over a
year to have paid for itself, everything else being equal. Since C++ is link-compatible with C, there is
no need to rewrite existing code. My own experience1 indicates that C++ would give much more than a
mere 10% gain, even including the learning curve. I have also found that the nature of C++ lessens the
amount of reliance on symbolic debuggers. (Such utilities can still be used for C++, of course, although
this is not for the novice. Better compile-time checking, plus the better program structure that C++
engenders, more than compensate for the extra difficulty in using existing C debuggers.) Also, there
would, of course, normally be more than just one programmer benefiting (probably on higher salaries),
and over much longer than one year. Refraining from using C++ because of cost is definitely false
economy.2

1. Look for an article on the use of C++ applied to implementing layered protocols coupled with non-trivial network management
structures in a future issue of AUUGN.

2. There was a list of humorous language descriptions on the net some time ago, along the lines of: Fortran - the original model-T
Ford, still chugging along; Basic - the beat-up VW your dad bought you, you’ll buy something better when you can afford it;
Forth - a go-cart, easy to use; C - a black Firebird, the all-macho car, comes with optional seat belts (lint); etc. Given these
predecessors, one might describe C++: a black and silver Firebird, the all-macho car with class. Comes with inertia-reel seat
belts, and you can add more cylinders, or enlarge the boot, or increase the intemal cabin size Tardis-fashion, with little more
than a screw-driver.

AUUGN 39 Vol 7 No 4-5

I take this opportunity to remind conservative programmers of a quotation used by Bjame in his book on
C++ (referenced at the end of the paper):

Language shapes the way we think, and
determines what we can think about.

- BJ_,.Whorf

Until one has explored the efficient, expressive, object-oriented features of C++, one is virtually
stumbling around in a dungeon, believing it to be the best environment in this imperfect world, and
claiming that stalking a match occasionally is sufficient to see all that can be seen. Such a person
simply cannot conceive of wide-open spaces or large structures at all, and therefore cannot imagine
cities, etc. (Not that C++ claims to be perfection, but it is a considerable advance, which anyone
engaged in serious software engineering should examine very closely.)

Mike Mowbray
Senior Engineer
Systems Development
Overseas Telecommunications Commission (Australia)
Box 7000 GPO Sydney.

¯ Tel: 02-230-4104

ACSnet: mikem@otc.oz

(For people who receive the news on ACSnet, there is a newsgroup comp.lang.c++)

Disclaimer: The opinions expressed in this preface are not necessarily those of my employer OTC.

Vol 7 No 4-5 40 AUUGN

An Overview of C++

Bjarne Stroustrup

AT&T Bell Laboratories

1. Introduction

C++ is a general purpose programming language[1] designed to make programming more enjoyable for
the serious programmer. Except for minor details, C++ is a superset of the C languageE2]. C++ was
designed to

1. be a better C.

2. support data abstraction.

3. support object-oriented programming.

This paper describes the features added to C to achieve this. In addition to C, the main influences on the
design of C++ were Simula67[3] and Algol68.[4]

C++ has been in use for about four years and has been applied to most branches of system programming
including compiler construction, data base management, graphics, image processing, music synthesis,
networking, numerical software, programming environments, robotics, simulation, and switching. It has a
highly portable implementation and there are now at least 1500 installations including AT&T 3B, DEC
VAX, Pyramid, Sun, Intel 80286, Motorola 68000, and Amdahl machines running UNIX1 and other
operating systems.2

2. What is Good about C?

C is clearly not the cleanest language ever designed, nor the easiest to use, so why do so many people
use it?

,

C is flexible: It is possible to apply C to most every application area, and to use most every
programming technique with C. The language has no inherent limitations that preclude
particular kinds of programs from being written.

C is efficient: The semantics of C are "low level"; that is, the fundamental concepts of C
mirror the fundamental concepts of a traditional computer. Consequently, it is relatively easy
for a compiler and/or programmer to efficiently utilize hardware resources for a C program.

C is available: Given a computer, whether the tiniest micro or the largest super-computer, the
chance is that an acceptable quality C compiler is available and that that C compiler supports
an acceptably complete and standard C language and library. There are also libraries and

1. UNIX is a Trademark of AT&T Bell Laboratories.
2. For Australia, C++ is available from AT&T Unix Pacific, 2-21-2 Nishi-Shinbashi, Minato-Ku, Tokyo 105 Japan.

Tel: 03-431-3305; Fax: 03-431-3680; Tlx: J34936 ATTUP;
ACSnet: upshowa ! schwark@munnari
The C++ Translator generates ordinary C which can then be compiled using a normal C compiler supporting flexnames and
structure assignment]passing. (This process is managed by a script, and is of no inconvenience to the user, who sees just an
extended form of the normal cc features. Note that this two-stage compilation process does not compromise efficiency in itself.)
If you have such a c-compiler you should be able to get the C++ source code compiled and running within a few days at the
most. I understand that Oasys have done ports to VMS, MS-DOS, Macintosh, etc, but I haven’t yet used these, nor spoken with
anyone who has.) At the time of writing this footnote, (31st Jan 1987) the current release is 1.1, but I suspect that by the time
this appears in print, 1.2 may be available. - MM

AUUGN 41 Vol 7 No 4-5

support tools available, so that the programmer rarely needs to design a new system from
scratch.

.
C is portable: A C program is not automatically portable from one machine (and operating
system) to another, nor is such a port necessarily easy to do. It is, however, usually possible,
and the level of difficulty is such that porting even major pieces of software with inherent
machine dependencies is typically technically and economically feasible.

Compared with these "first-order" advantages, any "second-order" drawbacks like the curious C
declarator syntax and the lack of safety of some language constructs become less important. Designing
"a better C" implies compensating for the major problems involved in writing, debugging, and
maintaining C programs without compromising the advantages of C. C++ preserves all these advantages
and compatibility with C at the cost of abandoning claims to perfection and of some compiler and
language complexity. However, designing a language "from scratch" does not ensure perfection and the
C++ compilers compare favorably in run-time, have better error detection and reporting, and equal the C
compilers in code quality.

3. A Better C

The first aim of C++ is to be "a better C" by providing better support for the styles of programming for
which C is most commonly used. This primarily involves providing features that make the most
common errors unlikely. (Since C++ is a superset of C such errors cannot simply be made impossible.)

Argument Type Checking and Coercion

The most common error in C programs is a mismatch between the type of a function argument and
the type of the argument expected by the called function. For example:

double sqrt (a)
{

/* */

double a;

double sq2 = sqrt(2);

Since C does not check the type of the argument 2 the call scirt (2) will typically cause a run-
time error or give a wrong result when the square root function tries to use the integer 2 as a
double precision floating point number. In C++, this program will cause no problem since 2 will be
converted to a floating point number at the point of the call. That is, sqrt (2) is equivalent to
sqrt ((double) 2) .

Where an argument type does not match the argument type specified in the function declaration and
no type conversion is defined the compiler issues an error message. For example, in C++,
sqrt ("Hello") causes a compile-time error.

Naturally, the C++ syntax also allows the type of arguments to be specified in function
declarations:

double sqrt (double) ;

and a matching function definition syntax is also introduced:

double sqrt (double d)
{

}
Inline Functions

Most C programmers rely on macros to avoid function call overhead for small frequently-used
operations. Unfortunately the semantics of macros are very different from the semantics of

Vol 7 No 4-5 42 AUUGN

functions so the use of macros has many pitfalls. For example:

#define mul(a,b) a*b
int z = mul(x*3+2, y/4) ;

Here z will be wrong since the macro will expand to x*3+2*y/4. Furthermore, C macro
definitions do not follow the syntactic rules of C declarations, nor do macro names follow the usual
scope rules. C++ circumvents such problems by allowing the programmer to declare inline
functions:

inline int mul(int a, int b) { return a’b; }

An inline function has the same semantics as a "normal" function but the compiler can typically
inline-expand it so that the code-space and run-time efficiency of macros are achieved.

Scoped and Typed Constants

Since C does not have a concept of a symbolic constant, macros are used. For example:

#define TBLMAX (TBLSIZE-I)

Such "constant macros" are neither scoped nor typed and can (if not properly parenthesized) cause
problems similar to those of other macros. Furthermore, they must be evaluated each time they are
used and their names are "lost" in the macro expansion phase of the compilation and consequently
are not known to symbolic debuggers and other tools. In C++ constants of any type can be
declared:

const int TBLMAX = TBLSIZE-I;

Varying Numbers of Arguments

Functions taking varying numbers of arguments and functions accepting arguments of different
types are common in C. They are a notable source of both convenience and errors.

C functions where the type of arguments or the number of arguments (but not both) can vary, can
be handled in a simple and type-secure manner in C++. For example, a function taking one, two, or
three arguments of known type can be handled by supplying default argument values which the
compiler uses when the programmer leaves arguments out. For example:

void print(char*, char* , char*);

print ("one", "two", "three") ;
print ("one", "two") ;
print ("one") ;

// Ioe: print("one","two","-");
// I.e: print("one , ","-");

Some C functions take arguments of varying types to provide a common name for functions
performing similar operations on objects of different types. This can be handled in C++ by
overloading a function name. That is, the same name can be used for two functions provided the
argument types are sufficiently different to enable to compiler to "pick the right one" for each call.
For example:

overload print;
void print(int);
void print(char*);

print(l); // integer print function
print("two"); // string print function

The most general examples of C functions with varying arguments cannot be handled in a type-
secure manner. Consider the standard output function printf, which takes a format string
followed by an arbitrary collection of arguments supposedly matching the format slring3 :

AUUGN 43 Vol 7 No 4-5

printf("a string") ;
printf("x = %d\n", x) ;
printf("name: %s\n size: %d\n", obj.name, obj.size);

However, in C++ one can specify the type of initial arguments and leave the number and type of
the remaining arguments unspecified. For example, printf and its variants can be declared like this:

int printf(const char* ...) ;
int fprintf(FILE*, const char*
int sprintf(char*, const char*

These declarations allow the compiler to catch errors such as

printf(stderr,"x = %d\n", x) ;
fprintf("x = %d\n", x) ;

Declarations as Statements

// error: printf does not take a FILE*
// error: fprintf needs a FILE*

Uninitialized variables are another common source of errors. One cause of this class of errors is the
requirement of the C syntax that declarations can only occur at the beginning of a block (before the
first statement). In C++, a declaration is considered a kind of statement and can consequently be
placed anywhere. It is often convenient to place the declaration where it is first needed so that it
can be initialized immediately. For example:

void some_function(char* p)
{

if (p==0)
error("p==0 in some function") ;

int length = strlen(p) ;

4. Support for Data Abstraction

C++ provides support for data abstraction: the programmer can define types that can be used as
conveniently as built-in types and in a similar manner. Arithmetic types such as rational and complex
numbers are common examples:

class complex {
double re, im;

public:
complex(double r, double i)
complex(double r)

{ re=r; im=i; }
{ re=r; im=0; } // float->complex conversion.

friend complex operator+(complex, complex);
friend complex operator-(complex, complex); // binary minus
friend complex operator-(complex); // unary minus
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);

};

3. A C++ I/O system that avoids the type insecurity of the printf approach is described in reference

Vol 7 No 4-5 44 AUUGN

The declaration of class (that is, user-defined type) complex specifies the representation of a complex
number together with the set of operations on a complex number. The representation is private; that is,
re and im are accessible only to the functions defined in the declaration of class complex. Such
functions can be defined like this:

complex operator+(complex al, complex a2)
{

return complex(al.re+a2.re, al.im+a2.im) ;

and used like this:

main ()
{

complex a = 2.3;
complex b = l/a;
complex c = a+b+complex(l,2.3) ;

}
Functions declared in a class declaration using the keyword friend are called friend functions. They
do not differ from ordinary functions except that they may use private members of classes that name
them friends. A function can be declared as a friend of more than one class. Other functions declared in
a class declaration are called member functions. A member function is in the scope of the class and
must be invoked for a specific object of that class.

Initialization and Cleanup

When the representation of a type is hidden, some mechanism must be provided for a user to
initialize variables of that type. A simple solution is to require a user to call some function to
initialize a variable before using it. This is error-prone and inelegant. A better solution is to allow
the designer of a type to provide a distinguished function to do the initialization. Given such a
function, allocation and initialization of a variable become a single operation (often called
instantiation) instead of two separate operations. Such an initialization function is called a
constructor. Also, in cases where construction of objects of a type is non-trivial one often needs a
complementary operation to clean up objects after their final use. In C++ such a cleanup function is
called a destructor. Consider a vector type:

class Vector {
int sz;
int *v;

public:
Vector(int);
-Vector();
!!

};

// number of elements
// pointer to integers

// constructor
// destructor

The Vector constructor can be defined to allocate a suitable amount of space like this:

Vector : :Vector (int s)

if (s<=O)
error ("bad Vector size") ;

sz = s;
v = new int[s] ; // allocate an array of "s" integers

}
The cleanup done by the Vector destructor consists of freeing the storage used to store the vector
elements, for re-use by the free-store manager:

AUUGN 45 Vol 7 No 4-5

Vector : : ~Vector ()
{

delete v;
}

Clearly, C++ does not support garbage collection. This is, however, compensated for by enabling a
type to maintain its own storage management without requiring intervention from a user.4

Free Store Operators

The operators new and delete were introduced to provide a standard notation for free store
allocation and deallocation. A user can provide alternatives to their default implementations by
defining functions called operator new and operator delete. For built-in types the
new and delete operators provide only a notational convenience (compared with the standard C
functions malloc0 and free0). For user-defined types such as Vector, the free store operators ensure
that constructors and destructors are called properly:

Vector* fctl (int n)
{

Vector v(n) ; // Allocate a vector on the stack.
// The constructor is called.

Vector* p = new Vector(n); // Allocate a vector on the free store.
// The constructor is called.

return p; // The destructor is implicitly called for "v" here.

Vector* fct2()
{

Vector* pv = fct(10);
!!
delete pv; // call the destructor and free the store.

}
References

C provides (only) "call by value" semantics for function argument passing; "call by reference" can
be simulated by use of pointers. This is sufficient, and often preferable to using "pass by value" for
the built-in types of C. However, it can be inconvenient for larger objects5 and can get seriously in
the way of defining conventional notation for user-defined types in C++. Consequently, the
concept of a "reference" is introduced. A reference acts as a name for an object; T& means
reference to T. A reference must be initialized and becomes an alternative name for the object it is
initialized with. For example:

int a = i; // "a" is an integer initialized to 1
int& r = a; // "r" is a reference initialized to "a"

The reference r and the integer a can now be used in the same way and with the same meaning. For
example:

The details of this are beyond the scope of an overview paper, however. - MM
as indicated by an inconsistency in the C semantics: arrays are always passed by reference.

Vol 7 No 4-5 46 AUUGN

int b= r; // "b" is initialized to the value of "r", i.e: 1
r= 2; // The value of "r", i.e: the value of "a" becomes 2

References enable variables of types with "large representations" to be manipulated efficiently
without explicit use of pointers. Constant references are particularly useful:

Matrix operator+(const Matrix& ml, const Matrix& m2)
{

// code here cannot modify the value of "ml" or "m2"

Matrix a = b+c;

In such cases the "call by value" semantics are preserved while achieving the efficiency of "call by
reference".

Assignment and Initialization

Controlling construction and destruction of objects is sufficient for many, but not all, types. It can
also be necessary to control all copy operations. Consider:

Vector vl[100] ;
Vector v2 = vl;
vl = v2 ;

// make vl a vector of i00 elements
// make v2 a copy of vl;
// assign vl to v2 (i.e: copy the elements)

Declaring a function with the name operator= in the declaration of class Vector specifies
that vector assignment is to be implemented by that function:

class Vector {
int sz;
int *v;

public:

void operator=(Vector&); // assignment
};

Assignment mightbe defined l~ethis:

void Vector::operator=(Vector& a) // check size and copy elements

{
if (SZ != a.sz)

error("Bad Vector size for =");
for (int i=0; i<sz; i++)

v[i] = a.v[i] ;
}

Since the assignment operation relies on the "old value" of the vec~r assigned ~, it cannot be used
to im~ement initialization of one vector with anoth~. What is needed is a constructor that takes a
v~mr argument:

AUUGN 47 Vol 7 No 4-5

class Vector {

Vector (int) ;
Vector (Vector&) ;

};

// create vector
// create vector and copy contents

Vector::Vector(Vector& a)
{

// initialize a vector from another vector

sz = a.sz;
v = new int [sz] ;
for (int i=O; i<sz;

v[i] = a.v[i] ;
i++)

// same size.
// allocate element array.

// same values.

A constructor like this (of the form x (x&)) is used to handle all initialization. This includes
arguments passed "by value" and function return values:

Vector v2 = vl; // uses Vector(Vector&) constructor to initialize

void f (Vector) ;
f(v2) ; // uses Vector(Vector&)

// a copy of v2
constructor to pass

Vector g (int sz)
{

Vector v (sz) ;
return v; // uses Vector(Vector&)

// a copy of v.
constructor to return

Operator Overloading

As demonstrated above, standard operations like +, -, *, / can be defined for user-defined
types, as can assignment and initialization in its various guises. In general, all the standard
operators with the exception of

-> , ?:

can be overloaded. The subscripting operator [] and the function application operator () have
proven particularly useful. The C "operator assignment" operators, such as += and *=, have also
found many uses.

It is not possible to redefine an operator when applied to built-in dam types, nor to define new
operators, nor to re-define the precedence of operators.

Coercions
User-defined coercions, like the one from floating point numbers to complex numbers implied by
the constructor complex (double), have proven unexpectedly useful in C++. Such coercions
can be applied explicitly or the programmer can rely on the compiler adding them implicitly where
necessary and unambiguous:

complex a = complex(1) ;
complex b = i;
a = b+complex(2) ;
a = b+2 ;
a = 2÷b;

// implicit: 1 -> complex(1)

// implicit : 2 -> complex (2)
// implicit : 2 -> complex (2)

Vol 7 No 4-5 48 AUUGN

Coercions were introduced into C++ because mixed-mode arithmetic is the norm in languages used
for numerical work and because user-defined types used for "calculation" (for example: matrices,
character strings, and machine addresses) have natural mappings to and/or from other types.

Great care is taken (by the compiler) to apply user-defined conversions only where a unique
conversion exists. Ambiguities caused by conversions are compile-time errors.

It is also possible to define a conversion to a type without modifying the declaration of that type.
For example:

class Point {
float dist;
float angle;

public:

operator complex()
{

// convert point to complex number

return polar (dist, angle) ;

operator double() // convert point to real number
{

if (angle)
error("Can’t convert Point to real: angle!=O");

return dist;
}

};

These conversions would be used like this:

void some function(Point a)
{

complex z = a; // z = a.operator complex()
double d = a; // d = a.operator double()
complex z3 = a+3; // z3 = a.operator complex()
!!

+ complex (3) ;

This is particularly useful for defining conversion to built-in types since there is no declaration for
a built-in type for the programmer to modify. It is also essential for defining conversions to
"standard" types where a change may have (unintentionally) wide ranging ramifications and where
the average programmer has no access to modify the declaration.

5. Support for Object-Oriented Programming

C++ provides support for object-oriented programming: the programmer can define class hierarchies and
a call of a member function can depend on the actual type of an object (even where the actual type is
unknown at compile time). That is, the mechanism that handles member function calls handles the case
where it is known at compile-time that an object belongs to some class in a hierarchy, but exactly which
class can only be determined at run-time. See examples below.

Derived Classes

C++ provides a mechanism for expressing commonality among different types by explicitly
defining a class to be part of another. This allows re-use of classes without modification of existing
classes and without replication of code. For example, given a class vector :

AUUGN 49 Vol 7 No 4-5

class Vector {

public:
!!
Vector(int);
int& operator[] (int); // overloading the subscript operator:

};

one might define a different vector type for which the user can define the index bounds:

class Vec : public Vector {
int low, high;

public :
Vec (int, int) ;
int& operator[] (int) ;

};
Defining Vec as

: public Vector

means that first of all a vec is a vector. That is, type vec has ("inherits") all the properties
of type vector in addition to the ones declared specifically for it. Class vector is said to be
the base class for vec and conversely, vec is said to derived from vector.

Class vec modifies class Vector by providing a different constructor, requiring the user to
specify the two index bounds rather than the size, and by providing its own access function
operator [] () . Vec’ s operator [] () is easily expressed in terms of Vector’ s
operator [] () :

int& Vec: :operator[] (int i)
{

return Vector: :operator[] (i-low) ;
}

The scope resolution operator : : is used to avoid getting caught in a infinite recursion by calling
vec : : operator [] () from itself. Note that vec : : operator [] () had to use a function like
vector : :operator [] () to access elements. It could not just use vector’ s members v
and sz directly since they were declared private and therefore accessible only to vector’s
member functions.

The constructor for Vec Can be written like this:

Vec: :Vec(int ib, int hb)
{

if (hb-lb < O)
hb = ib;

low = ib;
high = hb;

: (hb-lb+l)

The construct : (hb-lb+l) is used to specify the argument list needed for the base class
constructor for vector ().

Class Vec Can be used like this:

[]

Vol 7 No 4-5 50 AUUGN

void some function(int i, int h)--

Vec vl (l,h) ;
const int sz = h-l+l;
Vector v2 (sz) ;

for (int i=O; i<sz; i++)
v2[i] = vl[l+i]; // copy elements explicitly

v2 = vl; // copy elements by using Vector::operator=()

Virtual Functions

Class derivation (often called subclassing) is a powerful tool in its own right but a facility for run-
time type resolution is needed to support object-oriented programming.

Consider defining a type Shape for use in a graphics system. The system has to support circles,
triangles, squares, and many other shapes. First specify a class that defines the general properties of
all shapes:

class Shape {
Point centre;
Colour col;
!!

public:
virtual void draw();
virtual void rotate(int);

Point where()
void move(Point to)
!!

{ return centre; }
{ center=to; draw(); }

};

The functions for which the calling interface can be defined, but where the implementation cannot
be defined except for a specific shape, have been marked virtual (the Simula67 and C++ term for
"to be defined later in a class derived from this one"). Given the definition one can write general
functions manipulating shapes:

void rotate all(Shape* v, int size, int angle)--

// rotate all members of vector "v" of size "size",
{

for (int i=O; i<size; i++)
v[i].rotate(angle);

}

"angle" degrees

For each Shape v [i], the proper rotate function for the actual type of the object will be
called. The "actual type" is not known at compile time.

To define a particular shape we must say that it is a Shape (that is, derive it from class Shape and
specify its particular properties (including the virtual functions):

AUUGN 51 Vol 7 No 4-5

class Circle : public Shape {
int radius;

public:
void draw() { /* */ }
void rotate(int) { } // yes,

};
the null function

In many contexts it is important that the C++ virtual function mechanism be very nearly as efficient
as a "normal" function call. The additional run-time overhead is about 4 memory references
(dependent on the machine architecture and the compiler) and the memory overhead is one word
per object instance, plus one word per virtual function per class.

Visibility Control

The basic scheme for separating the (public) user interface from the (private) implementation details
has worked out very well for data abstraction uses of C++. It matches the idea that a type is a black
box. It has proven to be less than ideal for object-oriented uses.

The problem is that a class defined as part of a class hierarchy is not simply a black box. It is often
primarily a building-block for the design of other classes. In this case the simple binary choice
public/private can be constraining. A third alternative is needed: a member should be private as far
as functions outside the class hierarchy are concerned, but accessible to member functions of a
derived class in the same way that is is accessible to members of its own class. Such a member is
said to be protected.

For example, consider a class Node for some kind of tree:

class Node

};

{
// private stuff

protected:
Node* left;
Node* right;
// more protected stuff

public:
virtual void print();
// more public stuff

The pointers left and right are inaccessible to the general user but any member function of a
class derived from class Node can manipulate the tree without overhead or inconvenience.

The protection/hiding mechanism applies to names independently of whether a name refers to a
function or a data member. This implies that one can have private and protected function
members. Usually it is a good policy to keep data private and present the public and
protected interfaces as sets of functions. This policy minimizes the effect of changes to a class
on its users and consequently maximises its implementor’s freedom to make changes.

Another refinement of the basic inheritance scheme is that it is possible to inherit public members
of a base class in such a way that they do not become public members of the derived class. This
can be used to provide restricted interfaces to standard classes. For example:

class DeQueue {

void insert (Elem*) ;
void append (Elem*) ;
Elem* remove () ;

};
Given a DeQueue a Stack: Can be defined as a derived class where only the insert () and
remove () operations are defined:

Vol 7 No 4-5 52 AUUGN

class Stack : DeQueue { // note: just ":" not ": public"
// members of DeQueue are private members of Stack

public:
DeQueue::insert; // make "insert" a public member of Stack
DeQueue::remove; // make "remove" a public member of Stack

};
Alternatively, inline functions can be defined to give these operations the conventional names:

class Stack : DeQueue {
public:

void push(Elem* ee)
Elem* pop()

{ DeQueue::insert(ee); }
{ return DeQueue::remove() ; }

};

6. What is Missing?

C++ was designed under the severe constrains of compatibility, internal consistency, and efficiency: no
feature was included that

1. would cause a serious incompatibility with C at the source or linker levels.

2. would cause run-time or space overheads for a program that did not use it.

3. would increase run-time or space requirements for a C program.

4. would significantly increase the compile time compared to C.

.
could only be implemented by making requirements of the programming environment (linker,
loader, etc) that could not be simply and efficiently implemented in a traditional C programming
environment.

Features that might have been provided but weren’t because of these criteria include garbage collection,
parametrized classes, exceptions, multiple inheritance, support for concurrency, and integration of the
language with a programming environment. Not all of these possible extensions would actually be
appropriate for C++ and unless great constraint is exercised when selecting and designing features for a
language a large, unwieldy and inefficient mess will result. The severe constraints on the design of C++
have probably been beneficial and will continue to guide the evolution of C++.6

7. Conclusion

C++ has succeeded in providing greatly improved support for traditional C-style programming without
added overhead, in addition, C++ provides sufficient language support for data abstraction and object-
oriented programming in demanding (both in terms of machine utilization and application complexity)
real-life applications. C++ continues to evolve to meet demands of new application areas. There still
appears to be ample scope for improvement even given the (self-imposed) Draconian criteria for
compatibility, consistency and efficiency. However, currently the most active areas of development are
not the language itself but libraries and support tools in the programming environment.

6. This should not necessarily be taken to mean that none of the features mentioned will ever be added to C++. Some of them
(e.g: multiple inheritance) seem highly desirable, but quite difficult to design and implement in such a way that the named
criteria are adhered to. The list of features here might also be read as a "wish-list" of future enhancements. - MM

AUUGN 53 Vol 7 No 4-5

8. Acknowledgements

C++ could never have matured without the constant help and constructive criticism of my colleagues
and users; notably Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fraser, Steve Johnson, Brian
Kernighan, Bart Locanthi, Doug Mcllroy, Dennis Ritchie, Ravi Sethi, and Jon Shopiro. Brian Kernighan
and Andy Koenig made many helpful comments on drafts of this paper.

Vol 7 No 4-5 54 " AUUGN

,

,

REFERENCES

Stroustrup, Bjarne
The C++ Programming Language
Addison-Wesley, 1986

Kemighan, B.W. and Ritchie, D.M.
The C Programming Language
Prentice-Hall, 1978

Birtwistle, Graham et.al.
SIMULA BEGIN
Studentlitteratur, Lund, Sweden. 1973.

Woodward, P.M. and Bond, S.G.
Algol 68-R Users Guide
Her Majesty’s Stationery Office, London. 1974.

AUUGN 55 Vol 7 No 4-5

Document production in the Unix environment

Stephen Frede
Softway Pty Ltd

P.O. Box 305, Strawberry Hills, NSW 2012

1. Introduction

This paper covers a range of areas, all related to document production of one sort or
another. Hopefully, at least some parts will be interesting or even useful.

I believe the information contained herein to be accurate, and up to date as of
January, 1987. However, of necessity the information is from a wide variety of sources,
some of which I have no means of checking, and I take no responsibility for any errors
that may exist.

2. Formatters

The most commonly used document formatters under Unix are troff and TeZ
(pronounced "tech"). Also available is Scribe, which is available from Unilogic for large
sums of money. Scribe is similar in flavour to TeZ, and has been simulated with a TeZ
macro package. While some people would use nothing else, most find that the
functionality does not justify the cost. Both troff and TeZ have their devotees.

2.1 Troff

The history of troff is a long one. It started out with "roff’, written in PDP-11
assembler by Joe Ossanna in Bell Labs. This was used originally for preparing patent
applications, and indeed the first PDP11/45 to run Unix, was bought jointly by the
computing research and patent applications departments; but that’s another story.

When a CAT mechanical phototypesetter was purchased, the first troff was developed
to produce output for it. The new program had a somewhat extended and more flexible
command set than the old. At the same time, nroff was written to allow previewing of
documents, before sending them to the typesetter. Because there were a number of
different types of printers available, nroff read in a device table at run-time to determine
character codes and widths, and certain other device-specific information. Both these
programs were also written in PDP-11 assembler. A macro package was developed to
allow backward compatability with roff. All three programs, roff, troff and nroff, were
distributed in Version 6 of Unix.

Then came the VAX, and a great effort was made to translate the assembler code of
troff and nroff into C, so that it could be released with Version 7 Unix and Unix 32V.
Additionally, the tbl and eqn preprocessors were developed (by Mike Lesk and Lorinda
Cherry respectively). It was around this time that Ossanna died in a car accident, and
much of the knowledge of the internals of troff was lost.

Vol 7 No 4-5 56 AUUGN

For several years the situation stayed pretty much the same, with no-one game
enough to make any changes to the quite formidable code. However not everyone had a
CAT typesetter, and so several postprocessors were developed to convert the troff output
into a form suitable for other phototypesetters (eg vgrind for versatecs). However, this
was not entirely satisfactory.

The next major development occurred in 1979 with the modification of troff (mainly
by Brian Kernighan) to be device independant. This was achieved by reading device
specific tables, and generating a genetic output language, which is then interpreted by a
device specific driver program. At the same time, many limits were relaxed and some
new commands added, including some simple graphics primitives. Also, at times new
preprocessors and macro packages were added to the troff menagerie, by various people
and organisations. The list of troff preprocessors now includes: tbl, eqn, refer, pic, ideal,
grap, bib, chem, lbl and cw. The new troff (often known as "ditroff", while the old CAT
troff is called "otroft~’) together with the pic, eqn and tbl preprocessors and some macro
packages were bundled by AT&T into the Documenter’s Workbench (or DWB) and sold
separately. It is interesting to note that on Xenix, the dictionary and the "spell" and "cut"
commands are also bundled in with troff and friends to form the text processing system.
I bet you thought "cut" was a standard Unix tool!

More recently, DWB 2.0 has been released, which additionally includes the "grap"
preprocessor, some performance improvements to troff (speed-up factor of about 2), and
some new device drivers.

2.2 TeZ

The history of TeZ is very different. Donald Knuth was unhappy with the typesetting
of his famous books, and so started investigating the subject of typesetting and document
preparation in great detail, to the level of font design. The primary result of these labours
is TeZ, a product of considered and careful design, rather than the somewhat quirky
development of troff. Friends of TeZ include the macro package LaTeZ, the font
description language MetaFont (in which a rune font was recently posted over Usenet),
and the programs Web, Weave and Tangle, which I believe are to do with integrating
documentation and programs.

Both troff and TeZ have their staunch adherents. Nobody is really happy with troff,
but it seems that many people are not willing to invest the time and effort in learning all
the intricacies of TeZ, especially when they may just be swapping one set of arcane
magic for another.

2.3 Comparison

Here is a brief comparison of some features of DWB and TeZ. Much of this comes
from the recent debate on Usenet over the issue.

2.3.1 Ease of Use
Neither troff nor Te)~ are simple enough that you can produce non-trivial documents

without careful reading of the manuals. In fact most people seem to think that for very
simple documents, it is easier to use troff. When it comes to more involved document
formatting, they are probably about even in terms of complexity of use, although TeZ
macros are easier to read (if not to understand).

AUUGN 57 Vol 7 No 4-5

2.3.2 Documentation
The documentation for troff is actually fairly good, although this was certainly not

always the case. Many introductory books on Unix include a chapter on troff, and some
books have been written exclusively on Troff.

Several books have been written on TeZ, and there is a TeZ Users Group (TUG)
which prints a regular journal, known as "Tugboat". For a novice user, probably the
usual method of solving a problem in either case is the traditional "seek out a guru"
approach.

2.3.3 Availability
As far as I know, DWB is only widely available on Unix systems, though there is

nothing particularly Unix specific about it, and indeed I seem to remember hearing about
a port to MS/DOS. In Australia, DWB 2.0, with a variety of drivers is available from
Softway Pty Ltd.

There are a variety of TeZ systems available for various environments, including
Unix, MS/DOS, Macintosh, etc. The fact that it was originally written in pascal was an
initial hindrance to its acceptance, but C versions are now available, and it is becoming
ever more widespread.

2.3.4 Drivers
To run either TeZ or troff with a given printer, you must have available a driver and

font tables for that device. The availability of drivers for both formatters is now fairly
widespread. A driver is now available for TeZ which allows previewing of output on
ascii devices, similar to what nroff provides. The capabilities of available drivers differ
markedly, even for the same device, so it will pay to check them out before buying one.
Troff drivers are discussed in more detail later in this paper.

2.3.5 Quality
The visual quality of a final document depends to a large extent on the author of the

document, whichever formatter was used. However, in general, TeZ appears to do a
better job than troff. For example, the TeZ line-breaking algorithm operates on an entire
paragraph, whereas the troff algorithm only operates on a single line.

2.3.6 Variation
For a long while, there was only the one base version of troff, to which different sites

added bug fixes and the inevitable enhancements. However, it would be a rare event if a
single document printed differently at two different sites (except of course for font
variations between printers). A larger source of variation was changes to macro
packages, with documents variously relying on bugs, or the absence of them, with the
same situation not necessarily guaranteed at a different site. Thankfully, most of the
bugs have finally been weeded out of the macros, and if you use a standard macro
package you should get the same result at any given site.

However, more recently completely new versions of troff have become available,
which allow long names and a variety of other features, which is all well and good, but
documents written for these versions will not print the same under the original version.

The situation with TeZ is that there are a plethora of versions, but each is required to
pass "the trip test", which ensures conformity. If you choose to use the Computer

Vol 7 No 4-5 58 AUUGN

Modem fonts, you should get identical output, even on different printers.

2.3.7 Tables and Pictures
DWB provides quite good table formatting capabilities, and adequate picture

formatting, with the tbl and pic preprocessors. Using the Table and Picture environment
of LaTeZ gives you about the same capabilities. Both formatters allow device dependant
information to be passed through to the device although not all troff drivers allow this.

2.3.8 Security
This is not an issue many would normally associate with document formatting

systems. However, certain troff commands can request the execution of external
programs. While this is a very useful feature, it means that if you run a strange document
through troff, you run the risk of anything happening. I am not sure whether TeZ has this
capability or not, but in any case you should be careful.

3. Output Devices

The large interest in Desktop Publishing which has suddenly arisen is undoubtedly
due to the arrival of relatively high quality low cost output devices - laser printers.
Described here is a summary of some of the devices available in Australia.

3.1 Marking engines

3.1.1 Introduction
All the printers here are laser printers, utilising basically the same technology, except

for the Linotronics and Agfa-Gaevert, which are described later. Most laser printers are
built around a "marking engine" of some sort, which is already available. Often there are
photocopiers built around the same engines. It is these engines that determine the
physical characteristics of the printer.

3.1.2 Physical Characteristics

3.1.2.1 Operation Basically, a laser scans a photosensitive drum, altering the charge on
the drum. The drum then passes across toner, and picks it up, or doesn’t, depending on
the charge at that point on the drum. The toner is then deposited on paper, which goes
under a fusing roller, so that the toner is melted onto the paper. The details of what
charges go where are supremely unimportant, (in the canon engine, the drum and powder
are both positively charged, with the laser discharging the areas where it strikes),
however one aspect of the mechanism is relevant. Some engines are "write-black",
which means that the toner is picked up wherever the laser has scanned the drum, whilst
others are "write-white" which means that toner is picked up everywhere except where
the laser has scanned the drum. There are two main results of this:

1, Because of charge.leakage problems, a write-black engine does not produce very
good large areas of black - they tend to be washed out. Write-white engines
produce much better large black areas. The effect is not noticeable for normal text.

For engines of the same basic resolution, a write-white engine produces finer lines
than a write-black engine. At 300 dpi resolution, a line only 1 dot wide should
ideally be 1/300 inch wide, but on a write-white machine it will be about 0.8 of this
width, while on a write-black machine it will be about 1.2 times this width.

AUUGN 59 Vol 7 No 4-5

There can be a noticeable difference between some fonts on the two different
types of printer. For example, some metafont definitions need to know whether
their output will be on a write-white or write-black printer.

3.1.2.2 Resolution All of the laser-printer marking engines described here provide a
300 dpi (dots per inch) resolution. To get an idea of device resolutions, note that Group
III Fax (commonest) has a resolution of 200dpi vertical x 100-400dpi horizontal and
Group IV Fax has a resolution of 400 dpi.

I have heard (rumour only) that an upgrade for canon engines is under development,
whereby the photodiode that produces the laser is replaced, to increase the possible
resolution to 400 or even 600 dpi. However, apparently the main problem is that the fine
grade of toner that is required for such resolution leaks out of existing seals.

3.1.2.3 Speed The major difference between engines is the speed, measured in pages per
minute, that the engine is able to print. This number is usually built into the model
number of laser printers, perhaps with a couple of zeros tacked on the end. It is
important to note that the maximum physical speed of the engine usually bears little
relationship to the actual working speed of the printer. The limiting factor is the time
taken by the controller to process the image for a page. Only very simple pages, or
subsequent copies of a page, will be produced at the rated engine speed.

3.1.2.4 Toner Some engines use a replaceable toner cartridge, which also includes the
print drum. This means that replacing the cartridge is easy, and you are ensured of
consistently high print quality throughout the lifespan of the engine. But the cartridges
are typically quite expensive, which means a higher running cost than a comparable
printer with a fixed drum. Also, the fixed drum will be of a much higher quality to start
with than the one in a cartridge, but in my experience this just means longer lasting,
rather than producing better print quality.

In the US, various organisations will refill your toner cartridge for a fee. Apparently
this can be done up to two times before quality becomes totally unacceptable. Discussion
with various animals leads me to believe that it can be done yourself if you know how,
and are VERY careful. Also, it is essential to get the right type of plastic toner, or you
may clag your engine altogether (remember the imagen saga).

I have heard (rumour only) that toner cartridges for laser printers are exactly the same
as cartridges for photocopiers utilising the same type of engine, except that something
was deliberately done by the manufacturers (a plastic lug added or removed or
something) so that you can’t use the cheaper photocopier cartridges in your laser printer.

3.1.2.5 Duty Cycle and Engine Life An important point to consider when choosing an
engine is the lifetime of various components, and the rated duty cycle of the printer.
Running the printer at a larger number of pages per month than it is rated for may cause
problems. All printers will need to have their engines replaced after a certain lifetime.
Printers which have fixed print drums will need to have them replaced after a certain
period.

3.1.2.6 Page Size The circumference of the print drum is in all cases less than the
typical page length. Page width is limited by the engine, but page length is typically
limited only by the controller (esp. memory capacity). All engines except those used in

Vol 7 No 4-5 60 AUUGN

phototypesetters feed cut-sheet paper, and most are limited to A4 (or US letter) size,
though some can print A3.

3.1.2.7 Output page stacking The size of the output tray varies between engines. A
small tray can be a problem if large jobs are being printed - excess paper may either fall
on the floor, or cause a paper jam in the printer.

If pages stack face-up, then they will be ordered incorrectly and need to be reversed
by hand, unless the software pre-reverses the pages beforehand. Page flippers are
available for all printers on which they do not come as standard. Indeed on some
engines, simply removing the output tray will allow the pages to curl over face-down,
and also allow a much larger number of pages to be safely stacked. Experiment a bit
before oredring one.

3.1.2.8 Input trays The number and capacity of input trays also vary between engines,
though all engines that I know of have a manual feed slot, as well as at least one input
tray. Optional additional input trays may be purchased for most engine types. Typically
these feed sheets through the manual feed slot of the printer.

3.1.2.9 Colour All the printers descibed here are monochrome. However toner other
than black is available, so it should be possible to produce colour pictures of a sort by
using some clever software and passing a single sheet through the printer several times,
using a different coloured toner each time.

I heard somewhere (probably netnews) that Seiko are coming out with the CH-5301
colour laser printer, with a resolution of 152 dpi. Seiko Australia don’t seem to have
heard of it.

3.1.3 Canon 8ppm engine (Canon LBP-CX laser-xerographic engine)
Probably the engine in the most widespread use.

¯ Write-black

¯ Resolution: 300 dpi

¯ Max page width: -215 mm (A4)

. Duty cycle has been quoted between 1K and 5K pages/month, depending on who you
ask. Apple recommend about 4K pages/month.

¯ Engine life estimated at between 100K and 300K pages (depends on who you ask).

° Uses a replaceable toner and drum cartridge. Cost is over A$100 (often much over).

¯ used in: LaserWriter, LaserWriter plus, QMS-PS800 and many non-PostScript
printers, such as the Impact, Canon, etc.

¯ input tray capacity: 100 sheets

¯ output tray capacity: 20 sheets
A large array of accessories are available.

UNSW Electrical and Civil Engineering have been running their Apples fairly hard
for quite a while; both are well over 100K pages. They are both still quite adequate,
though signs of their impending doom have been evidenced (occasional streaks not

AUUGN 61 .Vol 7 No 4-5

related to the toner cartridge or separation belt).

3.1.4 Toshiba 26ppm engine

¯ Write-white.

¯ Replace drum every 100K pages.

¯ Used in: Dataproducts LZR 2665

¯ Resolution: 300 dpi

° Max page width: ~300mm (A3)

¯ Input tray capacity: upper - 500 sheets; lower - 250 sheets

Accessories available include face down output trays, 10-bin sorter/collaters and
1500-sheet feeders.

3.1.5 Ricoh 8ppm engine

¯ Resolution: 300 dpi

- Duty Cycle: 10K pages/month

¯ Rated engine life: 600K pages

¯ Stacks face down (so your job comes out correctly ordered)

¯ Input tray capacity: 250 sheets

¯ Max page width: ~215mm (A4)

¯ Uses toner cartridges similar (identical?) to the canon engines.

- Used in TI Omnilaser 2108

3.1.6 Ricoh 15ppm engine
As for the 8ppm, except:

¯ Rumoured to be a "second generation" engine.

¯ Duty Cycle: 25K pages/month

. Rated engine life: 1.5M pages

¯ Input tray capacity: two, each holding 250 sheets

¯ Used in TI Omnilaser 2115

3.1.7 Xerox 12, 24ppm engines

¯ Resolution: 300 dpi

¯ Used in QMS-PS 1200/2400.

3.2 Printer Control Languages

Most early laser printers adopted the same sort of printer control language as existing
line-printers. This is mainly text, with some sort of escape sequence used to
communicate control information to the printer.

Vol 7 No 4-5 62 AUUGN

More recently, genuine languages are being used to control printers. A "program" is
written in this language and sent to the printer, which interprets the program, causing a
page to be printed. These languages are known generically as "Page Description
Languages" (PDLs). The very early precursors to these were the graphics languages that
some devices accepted, and languages such as Impress, used by Imagen laser printers.
The first of the higher level PDLs was "Interpress" from Xerox.

3.2.1 PostScript
More recently, and by far the most widely used high level PDL (at present), is

PostScript from Adobe Systems. As well as being a very high level page description
language, PostScript includes many features from general purpose programming
languages, including iteration, recursion, and typed data structures. PostScript is a
stack-oriented postfix language, incorporating a graphics model which allows for
arbitrary shapes, painting (including shading and colour), fully integrated text and
graphics, raster images, and general coordinate system transformations. The complete
PostScript language (except for colour) has been implemented on a large number of high
quality output devices. The first of these was the original Apple LaserWriter, which was
remarkably bug-free considering.the complexity .of the task. What impresses me, is that
what bugs existed were documented, with fixes or work-arounds readily available.
Recent releases of PostScript have very few bugs, and most of these are in fairly esoteric
areas.

When PostScript was released, Xerox put Interpress in the public domain, to increase
acceptance of the language. While this has helped, and some major companies are
supporting Interpress, this is often as well as other languages, such as PostScript.

3.2.2 C-Script
An american company called "Control-C Software" (Portland, Oregon) is developing

a language called "C-Script" (it is written in C) which claims to be upward compatible
with PostScript, but faster and better. They are talking with producers of laser printers,
display cards, dot matrix printers and controller boards for laser printers. Apparently
licensing will be much cheaper than PostScript is from Adobe. [This was summarised
from the September 1986 issue of "Desktop Publishing"].

3.2.3 DDL
What most people see as a real competitor to PostScript is DDL (Data Decsription

Language), from Imagen. Like PostScript, it is a genuine high level page description
language, which is interpreted. It also is a stack-oriented postfix language. Some of the
advantages claimed for DDL over PostScript are that DDL supports: both binary and
ascii representations (gaining a size and transmission time advantage over the ascii-only
PostScript); intelligent scaling of bit-map characters (presumably they do some sort of
edge detection and conversion into an outline format); linear and non-linear scaling of
fonts (PostScript allows only linear scaling); composite data objects (I don’t know what
is meant here, because a PostScript dictionary is certainly a composite data object); full
object caching (PostScript only supports caching of fonts); document layout (this can be
done in PostScript, but in DDL it is a specific part of the language).

The major backers of DDL are Imagen and HPo DDL has a long way to catch up in
terms of acceptability compared to PostScript, but if it’s good enough and (more to the
point) pushed by enough major manufacturers, it just might do it. HP sell a DDL card

AUUGN 63 Vol 7 No 4-5

that slots into an IBM PC and connects to an ordinary HP LaserJet+ printer. Seems to
me like the wrong way to go, but after all there are an awful lot of both IBM PCs and HP
LaserJet+ printers.

3.2.4 Drivers
Although programs written in high level PDLs can be generated by hand, this is

usually only done for special applications, or to get a specific effect. Normally the
program will be generated by a driver associated with whatever word processing or
document formatting package is already in use. Drivers for PostScript are available for
the major Unix document formatters. A driver for Scribe is available from Unilogic.
Drivers for troff and TeZ are available from a number of sources. For TeZ, there is
dvi2ps (which comes packaged with most versions of TeZ), and other similar drivers
claimed to be better, from other sources. The most common package in use with troff is
TranScript, from Adobe Systems, for US$1750. Competing products are available in the
US. The only alternative (as far as I know) in Australia, is a driver available from
Softway. This includes such features as the ability to download external fonts, whether
in raster or PostScript format, full font memory management (so you can use an
unlimited number of downloaded fonts on a page) without requiring to talk directly to the
printer, the ability to include externally produced PostScript (for example a diagram
drawn on a Mac), and the ability to use virtual page sizes (for example 4 virtual pages on
a single real page, with some optionally rotated to produce a booklet format). Also, the
Softway driver costs AS1000, or US$800.

3.3 Printers

A printer basically consists of a marking engine and a controller board, which
interprets the printer control language and does all the necessary image processing. In
the case of PostScript printers, the controller boards are almost without exception
developed by Adobe Systems. I have heard that the QMS PS-1200 and 2400 were
developed by QMS themselves, and that they were having some problems.

Adobe have made substantial improvements to both their controllers and their
firmware since the early ones. The most significant change to the firmware is evidenced
between the Apple Revision 1 (PostScript version 23.0) and Revision 2 (PostScript
version 38.0). The later version of PostScript includes additional features, allows
handshake interpretation of DSR/DTR signals, as an alternative to XON/XOFF, allows
transmission rates higher than 9600 baud, allows overlapping of page imaging with
execution of the next page and is substantially faster overall. A document describing the
changes was distributed over the net from Adobe and is available from Softway. The
format is that of an update to the "PostScript Language Reference Manual".

Most PostScript printers come "standard" with the following Adobe fonts: Times,
Helvetica and Courier (constant width) each in Roman, Italic (or at least oblique), Bold
and Bold-Italic, as well as a symbol font.

All the PostScript printers described here unless otherwise mentioned have both an
RS-232 serial interface and an Appletalk (RS-422) interface, and provide a Diablo 630
emulation capability. Other interfaces and emulations are noted below where they occur.

Vol 7 No 4-5 64 AUUGN

3.3.1 Apple LaserWriter
Certainly the most widespread of postscript devices. Uses the Canon 8ppm engine.

Originally, used PostScript version 23.0, which had some (mostly documented) bugs and
limitations. If you use this, make sure you have a copy of the software patch that fixes
many of the bugs, and also a copy of the a4 page definition routine. Both of these were
distributed over the net, and both are available from Softway. The LaserWriter includes
the standard set of Adobe fonts. There are many satisfied LaserWriter customers, with
very few complaints. However, if at all possible, you should try to get a Revision 2
LaserWriter, which is just a PROM upgrade to PostScript version 38.0. Printing from
troff happens at about 5 ppm on a revision 1 printer, but very dose to the full 8 ppm on a
revision 2 printer. An Apple LaserWriter costs about A$8000 (inc. tax). Shopping
around is advised.

3.3.2 Apple LaserWriter Plus
This is solely a PROM upgrade to an ordinary LaserWriter. It gives you a Revision 2

LaserWriter (ie PostScript version 38.0) and a lot of extra resident fonts: Palatino, New
Century Schoolbook, Avant Garde, Bookman, Helvetica Narrow and New Century
Schoolbook, all in Roman (or Book, or Light), Bold (or Demi), Italic (or Oblique) and
Bold-Italic (or whatever), as well as Zapf Chancery Medium Italic, and Zapf Dingbats.
The upgrade to an ordinary Apple LaserWriter costs about AS1000 (inc. tax). If you
have a Revision 1, it may be good value to go for the upgrade, because you will then
have a Revision 2 printer. If you already have a Revision 2 printer, decide if you want to
pay that much just for the extra fonts.

Also note that it is very advisable to have this upgrade installed by a technician. The
proms are VERY sensitive to static, and it is important to allow a burn-in period before
using the printer. If a technician installs the upgrade, you don’t have as many hassles if
things go wrong.

3.3.3 Sun LaserWriter
This is just an Apple LaserWriter, but it costs somewhat more because it comes

bundled with Adobe’s Transcript package.

3.3.4 QMS PS-800
Very similar to the Apple LaserWriter Revision 2. Uses PostScript version 38.0 on a

Canon engine with 1.4Mb RAM. These printers are marketed in Australia by Bell and
Howell, and retail for A$11 034 + A$17 66 tax.

3.3.5 QMS PS-1200, 2400
Use the xerox 12ppm and 24ppm engines respectively. They are not available in

Australia as yet, and I don’t think a PostScript version of the 2400 is available anywhere.

3.3.6 Dataproducts LZR2660/65
Uses the Toshiba 26ppm engine (a write-white engine) and PostScript version 39.0.

The 2660 handles normal sized pages (up to A4 or legal), while the 2665 handles A3.
Cost of the 2665 is A$30K.

When we tested this printer, we found a PostScript bug which shows up under certain
conditions. Adobe have been notified and are working on it.

AUUGN 65 Vol 7 No 4-5

The controller it uses is similar to the Apple LaserWriter, revision 2, so despite the
fast engine speed, the actual printing speed will be about 8 ppm (from troff) unless you
are doing very simple pages, or multiple copies. The real win is in the A3 paper
capability of the 2665. It is the only PostScript laser printer I have heard of that will
handle paper this size. We printed some very nice larger-than-life digitised images on
this printer.

3.3.7 Apollo Computer Domain/Laser-26
This is just the Dataproducts printer described above.

3.3.8 TI Omnilaser 2108
Uses the Ricoh 8ppm engine; has a page jogger (job separator); includes two font

cartridge slots. It is a PostScript printer, also including additional emulations: HP
LaserJet/+, TI 855 DP/WP, HPGL (Hewlett Packard Graphics Language, used by most
HP plotters). Includes additional centronics-type parallel interface. The cost is A$9 990.

Given the higher duty cycle and longer life, this printer sounds like it could very well
give the Apple and other canon-engine based printers a run for their money. The face-
down stacking and larger paper bins that come as standard are also useful, although these
can be had as accessories on other printers (though they are usually expensive).

Also, given the plethora of emulations and the centronics interface, just about anyone
should be able to use this printer with existing software for either text or graphics
(although not using the PostScript capabilities would be a waste).

3.3.9 TI Omnilaser 2115
This is the same as the 2108, but uses the Ricoh 15ppm engine, and has 3Mb RAM.

The cost is A$14 500.

Again, this sounds like good value for money for a faster printer.

3.3.10 DEC Printserver 40
Right at the top end of the laser printer market is this offering from DEC. It is a

PostScript printer, driven by a agvax II, and can print up to 40 ppm on sheets up to A3 in
size. It has a duty cycle of 50K pages/month, 3 input bins, holding 2500 sheets each. It
comes with 29 fonts (presumably the same ones as the LaserWriter Plus), and
additionally emulates Ansi sixels, REGIS graphics (DEC’s graphics language), and
Tektronix 4010/4014. The interface is only via Ethernet, and the cost is A$91 010, ex
tax.

3.3.11 Laser Connection PS Jet hood
This is not a printer, but rather a PostScript controller board that can be fitted onto

any existing laser printer that uses a Canon engine and has a top mounted controller card
(such as the HP Laserjet, QMS Kiss, and presumably Impact). The board just replaces
any existing controller board, to give you a PostScript printer with 2Mb RAM. The cost
is A$6250 ex tax, so you wouldn’t go out and buy a cheapo printer with the upgrade in
mind, but you might upgrade a non-PostScript printer if you already had one, and didn’t
want to buy a new PostScript printer. Laser Connection is a subsidiary of QMS. The
product is available in Australia from Megavision.

Vol 7 No 4-5 66 AUUGN

3.3.12 Agfa-Gaevert P400-PS
This PostScript printer uses LED array electro-photographic imaging, rather than the

more conventional laser scan, and has a resolution of 406 dpi. The controller is Adobe’s
new 68020 based ’Atlas’ controller, which includes 6Mb RAM- a 1Mb font cache (by
far the slowest part of printing on PostScript printers is caching characters), two 2Mb
page buffers, 1Mb user VM- and a 20 Mb hard disk. The engine speed is 16-18ppm and
apparently the controller usually manages to ch’ive it that fast. Comes with two paper
bins, one of which holds 2000 sheets, and a face-down output stacker. Interfaces
additionally include a centronics-type parallel connection.

Sounds like a really nice machine, but unfortunately Agfa-Gaevert in Australia say
they don’t even have pre-release information on it, and that it will probably arrive in
Australia the middle of 1987. The cost is ~180K Francs (US$28K).

Note that the P400-PS, although using the same marking technology as the earlier
P400, has a completely different controller. Apparently the previous command language
was horrible and full of bugs. They won’t even upgrade a P400 to a P400-PS because
there are too many differences. Also, the P400-PS is cheaper then the P400.

Delairco Linotype Linotronic series

These are publication quality PostScript devices. The Linotronic machines are not so
much laser printers as phototypesetters. Linotype advertise them as "laser-setters", which
is an apt name, because a scanning laser beam images directly onto photographic film, or
light-sensitive paper. They feed from continuous rolls rather than cut sheets. Available
as options are hard disks for font storage (the entire Mergenthaler font library is available
on an 86 Mb winchester), and high-speed options. I forget exactly which version of
PostScript they use, but it is a recent one, around 39.0.

Bureau services are available which will print stuff on these machines from
PostScript.

3.4.1 Linotype Linotronic 100
Resolution of up to 1270 dpi; additional centronics interface; standard PostScript

fonts; 17Mb (formatted) hard disk. Print speed is up to 240 lines/minute. Cost is
A$69 250.

3.4.2 Linotype Linotronic 300
Resolution up to 2400 dpi; paper width up to 305 mm wide (A3); print speed up to

585 ram/minute. Cost is -A$96K.

3.4.3 Linotype Linotronic 500
Resolution up to-1500 dpi; paper width up to 457 mm wide (newspaper size); print

speed up to 1040 ram/minute. Cost is > AS 100K.

3.4.4 Impact
This is the cheapest laser printer available on the Australian market. It uses the

Canon egine and is not a PostScript printer. When they were first released, they had so
many bugs in the firmware that you’d be lucky to print plain text without problems. The
manual was next to useless and there were lots of problems with the organisation -
support was abysmal, and quite a few customers just gave up in the early days.

AUUGN 67 Vol 7 No 4-5

Since my first experience with them, I have talked to a salesman who told me that
they had a major internal reorganisation, and support was much better, the manual has
been reprinted and most of the bugs had been fixed. I believe this to be pretty much true,
but there are still problems. Some of the design decisions leave a lot to be desired, there
are still some bugs, and the manual still contains errors. If all that you want is a good
quality printer, and you don’t intend to try and do anything at all fancy with it, then it is
probably your best bet.

However, make sure that whatever is generating output for the device has specifically
been configured for an Impact. It claims to emulate an HP Laserjet and an Epson, but it
doesn’t have enough memory to do the job properly. Also, make sure whatever your
software is, that you can change the default lead-in character from ’1’ to something else
(like Control-A, but not ESCAPE), or you’ll never be able to print a table.

For a first try, the Impact is a nice machine - it even has an LCD readout, with a
kangaroo that hops across the front. It will print plain text in portrait and landscape
mode. But if you want to reliably do anything more than that, go to a PostScript printer.

4. Images

The availability of high quality output devices to the downtrodden masses of course
opens up wider possibilities than just printing text. Laser printers can be used as fast
plotters, so you can draw all sorts of fancy plots. Drivers are available for most graphics
packages to drive PostScript or other devices. But an area that didn’t really exist for
most people before laser printers was that of printing bitmapped images.

Most laser printers have the capability of doing some sort of image raster
downloading, but many only have enough memory to do a few square centimeters. All
PostScript printers have enough memory to download a full page raster image.

A monochrome raster image is almost always represented on a computer as a 2-
dimensional array of pixels. Each pixel has a value which represents the image intensity
or "grey level" at that point.

The resolution of an image refers to the amount of visual information contained in the
image. This is affected both by the range of values any given pixel may take on (most
often measured as the number of bits used to store that value), and the number of pixels
in the image.

Since a laser printer is only physically capable of displaying 1 bit pixels (ie a dot is
either black or white - nothing in between) we can only truly print 1 bit of information
per pixel of our image. However, because of the averaging capability of the human eye,
we can get around this restriction quite easily by simulating grey levels with differing
mixes of black and white for each pixel. The easiest way of doing this is to draw each
pixel as a blob, the size of which varies according to the grey level it represents. This
technique is the same as that used to print photographs in newspapers and is known as
halftone screening. Of course, this means that the number of image pixels we can
represent in a given area on the page is reduced, according to the number of possible grey
levels each blob may have to represent.

Vol 7 No 4-5 68 AUUGN

The halftone screening process may be done by host software, or if you have a
PostScript device it can be done on the device. PostScript allows not only the halftone
screen frequency (ie the number of blobs/inch) to be adjusted, but also the spot function
itself which controls the way the blobs are drawn. It also iaandles averaging of pixels
where there are more pixels in the image than can be represented on the device.

To get a better idea of all these concepts, refer to Appendix 4 - the page with the 9
images of a face on it. Image 2 in the middle of the top row is the "normal" image, using
the default parameters on the LaserWriter. Decreasing the halftone screen frequency
results in image 1: a much larger range of grey levels are available, but the number of
distinct pixels represented has been decreased. Conversely, increasing the screen
frequency results in image 3: more distinct pixels can be represented, but fewer grey
levels are available. Images 3, 4 and 5 show the variation with the number of grey levels
available per pixel. The grey level used in these images is determined by a simple
proportional cut-off, but this is by no means the only way. For example, the cut-off point
for the 1-bit image (image 4) can be varied up or down to obtain different contrast levels,
so that the final image could be darker or lighter than the one shown. Note that there is
little difference between image 6 and image 2. The limiting factor is the 300 dpi
resolution of the output device. Finally, the last row of images illustrates the differences
in changing the number of pixels in the image.

5. Appendices

5.1 Documenter’s Workbench

A sample of some of the capabilities of DWB on a PostScript device.

5.2 Fonts

A sample of some of the fonts available on PostScript devices using troff. Note the
troff 2-letter naming scheme used: XX normal; Xx bold; xX italic (or oblique); xx bold
italic. Some names that would seem to be more obvious than those given are reserved for
the hershey fonts, which are not shown here. Printing this many downloaded fonts takes
a long time. It is also a good test of a driver’s font management capability - there is only
enough memory to hold a few downloaded fonts at a time.

5.3 Star Chart

This is a sample output page from the starchart program that was recently posted over
Usenet (generating pic commands).

5.4 Images

Samples of bitmapped image rasters.

Different representations of the same image.

Candidate for an AT&T T-Shirt.

¯ A satellite photo from Macquarie University, and a picture of the space shuttle.

screen dump from a Sun.

AUUGN 69 Vol 7 No 4-5

¯ Some politician. This file was posted over Usenet and produced using a fisheye
optical transformation.

5.5 PostScript

Some samples of what can be done with PostScript:

¯ The UNSW machine room.

¯ Some excerpts from the PostScript tutorial book.

¯ The M.C. Esther square limits picture.

Vol 7 No 4-5 70 AUUGN

Documenter’s Workbench on a PostScriptTM device.

D ocumenter’s Workbench (DWB) is a suite of programs which run on the
UNIXt operating system. These include: TROFF, a document formatting
program; TBL, a preprocessor for formatting tables; EQN, a preprocessor for
typesetting equations; PIC, a preprocessor for producing diagrams; and GRAP,
a preprocessor for producing graphs.

The preprocessors make it easy to produce quite complex tables, equations, diagrams, or
graphs. The device independent output from TROFF is interpreted by a postprocessor, or
driver, for any specific output device. Softway has developed such a driver that works
with all PostScript devices. These include laser printers and phototypesetters
manufactured by Apple, QMS, DataProducts, Texas Instruments, DEC, AGFA-Gaevert
and Linotron, amongst others. These pages were produced on an Apple LaserWriter
Plus.

Resident fonts on the Apple LaserWriteffM are: Times Roman, Times Italic, Times Bold,
Times Bold Italic, Helvetica, Helvetica Oblique, Helvetica Bo~d, Helvetica Bold
Oblique, Courier (Constant Width), Courier Oblique, Courier
Bold and Courier Bold Oblique.

Additionally available on the LaserWriter Plus are: Palatine Roman, Palatine Bold,
Palatine Italic, Patatino Bold Italic, Avant Garde Book, Avant Garde Book
Oblique, Avant Garde Demi, Avon# Gorde Demi Oblique, Beckman Light,
Bookman Light Italic, Beckman Derrti, Bookmar~ Demi Italic, Helvetica
Narrow, Helvetica Narrow Bold, Helvetica Narrow Oblique, Helvetica Narrow Bold Oblique,
New Century Schoolbook Roman, New Century Schoolbook Bold, New
Century Schoolbook Italic, New Century Schoolbook Bold Italic and Zapf
Chancery Medium ItalicTM.

As well as the complete ascii character set, each font contains many other characters,
including fractions (½V3 ¼ ¼ N N ...), and special symbols (i/,¥o°$~’~1£§[-1 ...), as well as
many accents, dipthongs and foreign language symbols. A symbol font contains the
greek characters (a~3y ...) and many mathematical symbols (_>~-.,,o3~.[...) and other
symbols (©~®T#<)Q),_I ...). The LaserWriter Plus has a Dingbats font

Any font may be printed in any size (eg.cDg), aspect ratio (eg ABC), or slant (eg

HA~b). Some resident fonts may be printed in outline (eg I~~, h’g~gg¢,

PostScript is a trademark of Adobe Systems, Inc. © 1984 Adobe Systems, Inc.
UNIX is a trademark of AT&T Bell Labs.
LaserWriter is a trademark of Apple Computer, Inc.
The typefaces: Helvetica, Times, Palatino and New Century Schoolbook are trademarks of Allied Corporation; ITC Avant Garde,
ITC Bookman, ITC Dingbats and ITC Zapf Chancery are trademarks of Intemational Typeface Corporation.

AUUGN 71 Vol 7 No 4-5

N~@~ @@~’~©, and others). Also available are a large number of down-loadable fonts,
such as ®I~ gngli~I~, chess (x--.~l_~ ...) and even faces (~. ~ ~). Any font in
Berkeley vfont format, Documenter’s WorkBench glyph format, the format in which the
Hershey fonts were distributed in over UseNet, or any PostScript font definition may be
used. Because Softway’s driver handles font management, any number of fonts
(downloaded or resident) may be printed on a single page, without exceeding memory
limits on the printer - without needing to interrogate the printer.

Of course, troff allows all the normal document processing features, such as justification,
hyphenation, underlining, [boxing[etc. all under user control. Powerful macro packages
enable you to specify the overall style of a document (letter, memo, report etc.) and to
use features such as automatic list generation, page numbering, table of contents
generation, footnotes, etc.

All this can be done using TROFF alone.

TBL

The TBL preprocessor may be used to easily construct tables. The following is a simple
example.

Devices that support PostScript
Name Speed Resolution Approx cost Comments

Apple LaserWriter 8 ppm 300 dpi A$ 8K Canon LBP-CX engine
QMS PS-800 8 ppm 300 dpi A$11K Similar to Apple
QMS PS-1200, 2400 12,24 ppm 300 dpi Xerox engine
TI Omnilaser 2108 8 ppm 300 dpi AS 9 990 Ricoh engine; 250

sheet paper bin.
TI Omnilaser 2115 15 ppm 3oo A$14 500 Ricoh engine; 2 paper

trays; 3Mb RAM.
DataProducts LZR 2665 26 ppm 300 dpi A$ 30K Toshiba (write-white)

engine; A3 page feed
DEC Printserver 40 40 ppm 300 A$ 91K
Agfa-Gaevert 16 ppm 406 dpi US$ 28K Adobe 68020 based

20Mb hard disk, 1Mb
font cache, 2 x 2Mb
memory, LED array
electro-photographic
imaging.

Linotype Linotronic 100 20-200 lpm 1270 dpi A$ 69 250 genuine phototypesetter
Linotype Linotronic 300 0.3-2 ppm 2400 dpi -AS 96K up to 305 mm wide
Linotype Linotronic 500 0.5-3.5 ppm ~1500dpi >AS 100K 457mm wide

Vol 7 No 4-5 72 AUUGN

EQN

The following is a quote from the EQN User’s Guide.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line
expressions like lim (tan x)SinZx=l or display equations like

x-~zt/2

Skzk
G(z)=elnG(z) =exP k~_>_lT

S~zk/k
= lie

k>l

S~z2
l+SlZ+~+ ¯ ¯ ¯

2!

Z
kl, kz,...,k,~>O

kl+2kz+ " " " +mkm =m

Sm
...

1/qkl! 2/~ k2! m~km!
Zm

can be learned in an hour or so.

AUUGN 73 Vol 7 No 4-5

PIC

The following diagram, showing the UNIX file-system organisation is an example of the use
of PIC.

Inode

(128)

Data

block

(10)
(128)

(128)
(128)

(128)
(128)

(128)
(128)

Vol 7 No 4-5 74 AUUGN

GRAP

Release 2.0 of DWB includes the GRAP preprocessor for easily drawing graphs of many
different kinds. This is an example from the manual.

10000

i000-

Thousands 100 -

10-

U.S. Army Personnel

Enlisted Men

Male Officers

I
I
I
I
I

Female Officers

40 50 60 70 80
Year

PostScript compatibility

PostScript produced from other sources can easily be included within TROFF documents. The
following diagram was produced by MacDrawTM on a MacintoshTM.

Blood behind
spreader

Finished smear

Macintosh is a trademark of McIntosh Laboratories, Inc.
MacDraw is a trademark of Apple Computer, Inc.

AUUGN 75 Vol 7 No 4-5

ft Font Name Sample Type
Apple LaserWriter

R Times-Roman
I Times-Italic
B Times-Bold
BI Times-BoldItalic
CO Courier
Co Courier-Bold
cO Courier-Oblique
co Courier-BoldOblique
HE Helvetica
He Helvetica-Bold
hE Helvetica-Oblique
he Helvetica-B oldOblique

Apple LaserWriter Plus
Palatino-Roman
Palatino-Bold
Palatino-Italic
Palatino-BoldItalic
AvantGarde-Book
AvantGarde-Demi
AvantGarde-B ookOblique
AvantGarde-DemiOblique
Bookman-Light
Bookman-Demi
Bookman-LightItalic
Bookman-DemiItalic
Helvetica Narrow
Helvetica-Narrow-B old
Helvetica-Narrow -Oblique
Helvetica-Narrow-B oldOblique
NewCenturySchlbk-Roman
NewCenturySchlbk-Bold
NewCenturySchlbk-Italic
NewCenturySchlbk-Boldltalic
ZapfChancery-Mediumltalic
User Defined
Sydney University Crest, etc.
People’s faces (48x48xl)
Outlines
Roman outline
Italic outline
Helvetica outline
Helvetica Oblique outline
Palatino outline
Palatino Italic outline
Bookman outline
Bookman Italic outline
Avant Garde outline
Avant Garde Oblique outline
New Century Schoolbook outline
NCS Italic outline

PA
Pa
pA
pa
AG
Ag
aG
ag
BK
Bk
bK
bk
HN
Hn
hN
hn
NS
Ns
nS
ns
zC

SU
FA

Ro
Io
Ho
ho
Po
po
Bo
bo
Ao
ao
So
SO

abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegimstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3 791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz A BEGJMSTWZ 3791

abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJ MSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abe~imstwz ABEGJMSTWZ 3791
abeg~mstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3 791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjrnstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abeg~mstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjrnstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3 791

Vol 7 No 4-5 76 AUUGN

ft
No
no

BA
Ba
bA
BD
Bd
bD
CM
Cm
cM
DE
De

GA
Ga
gA

Me
mE

Nn
nN
TI
Ti
CL
PI
PL
SR
SH
SI
ST
UG
CD

H1
BL
Ch
Oe

MO
GK

CY
GR

OE
B1
B2
B3

Font Name
Helvetica Narrow outline
H-N Oblique outline
Vfont Rasters
Basker
Basker Bold
Basker Italic
Bodoni
Bodoni Bold
Bodoni Italic
CM
CM Bold
CM Italic
Delegate
Delegate Bold
Delegate Italic
Gacham
Gacham Bold
Gacham Italic
Meteor
Meteor Bold
Meteor Italic
Nonie
Nonie Bold
Nonie Italic
Times
Times Bold
Clarendon
pip
Playbill
Script
Shadow
Sign
Stare
Ugramma
Countdown
Fix
H19
Bocklin
Chess 2
Old English 2
Mona
Greek
Hebrew
Cyrillic
Graphics
APL
DWB Rasters
Old English 1
Bodoni ? 1
Bodoni ? 2
Bodoni ? 3

Sample Type

abegjmstwz ABEGJMSTWZ $791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjm.~twz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz t~BEGJMSTWZ 3791
abegjmstwz ABEGJMST Z 3791
abegjmstwz ABEGSMSTWZ 3791
abegjmstwz ABEG JMSTWZ 8791
abegjmstwz ABEGJMSTWZ 3791

ahegjms ~,ntz ABEGJIqSTIdZ 8791
abeg j ms t~z ABE6J~STNZ 379~
abegj astuz ABEGJHSTMZ 379~
abe gjms~wz ABEGJNSTWZ 3791
abe~twz ~EGJMSTWZ 3791
abegjms~wz ~EGJ~STWZ 3 791
abe~’mstwz ABEGJMSTWZ 379 1
abegjmstwz ABEGJMSTWZ 3791
abegjmslwz ABEGJMSTWZ 37~
abegjmstwz ABEGJMSTWZ 3Z91
abegjmstwz ABECJMSTWZ 3791
abegjmstwz ABECJMSTWZ 3791
abegjms~wz ABEG3MSTWZ 379~

~~ABE~MS T~ 3~1

ABEGJMST~Z 378~
abe~j~twz ABEGJMSTWZ 3791
abegjmsfwz ABEBJMST~

abeg j mst~z ABEGJHSTNX 3791

a~gjmst~ ~E~TW~ 5791

abegJm~t~z A~~~ 3791

aO~O~acw~ ABE~M~T~Z

a6er MCr s ~<3
abegjmst~z A~EGJMST~Z 3791

~BEGJMST~Z ~l~v*l[~ ~ 3791

abegj mstwz ABEGJ MSTWZ 3791
abegj ms twz ABEGJ M S TWZ 379I
ab egj mstwz ABEGJMSTWZ 3791

AUUGN 77 Vol 7 No 4-5

ft
B4
CH
HI
HK
M1
M2
M3
MB
MI
MK
MM
SV

Font Name
Bodoni ? 4
Chess 1
HI
Helvetica Very Bold
Math 1
Math 2
Math 3

SV

Sample Type
abegj ms twz A BEGJ M $ TWZ 3791

,:!) ’$[§ Y24W
abegjmstwz ABEGJMSTWZ 3791
alS~/~pxrr¢~ ABEF~MZT6Z ___o,,_

o{1/~- o{ /a[t]1/)
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEG] M STWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791
abegjmstwz ABEGJMSTWZ 3791

Vol 7 No 4-5 78 AUUGN

Database: Yale Star Catalog StarChart Software: A WPaeth@watCGL

+Betelgeuse
¯

¯

¯

¯

* Bellatrix

÷l

¯

¯

+11d

+10d

+09d

+08d

+07d

+06d

+05d

+04d

+03d

+02d

+01d

00d

-01d

-02d

-03d

-04d

-05d

-06d

-07d

-08d

-09d

-10d

-lld

-12d

-13d

Orion and belt
Right Ascension: 05h39m
Declination: -01d06m
Chart Scale: 24.700

-~ <1.0 ¯ <4.0
¯ <2.0 ÷ <5.0
÷ <3.0 ¯ >5.0

+ .~- Bete~g~]~al~ix
+10d¯

+05d

- 00d

-05d

- -10d

-15d

AUUGN 79 Vol 7 No 4-5

Device pixels/inch (screen frequency) for 85 x 128 pixel, 8 bit image
100

Image bits/pixel for 85 x 128 pixel image at 60 pixels/inch screen frequency
2 4

Image size (pixels) for 8 bit image at dO pixels/inch screen frequency
43 x 64 22 x 32 11x 16

Vol 7 No 4-5 80 AUUGN

Vol 7 No 4-5 82 AUUGN

AUUGN 83 Vol 7 No 4-5

Scratch area..

Jeff
3efferson
Jeffersonian
Jeffrey
Jehovah
jejune
jejunum
jell~
jellyfish
Jenkins
~enn~e

Jennifer
Jennings
jenny
Jensen
jeopard
jeopardy
Jeremiah
Jeremy
Jeres
Jericlm
jerk
jerky
Jeroboam
Jerome
jerry
jersey
Jerusalem
jess
3esse
Jessica
Jessie
jest
Jesuit
Jesus
jet
jetllner
jetting
jettison

jeuel
3eue11

Jeuett

"r - header 2) hlk 78832

¯ r = header 2) blk 64488

Vol 7 No 4-5 84 AUUGN

AUUGN 85 Vol 7 No 4-5

l

7 8 9

/

\

2!

17

._,

14

-- 13

l!

8

7

Vol 7 No 4-5 86 AUUGN

New Cen tu rySch lbk-Italic
Bookman-Lightltalic
Helvetica
Courier-Bold
Helvetica.Narrow.Bold
Co uri er-Bol dObl i que
Times-Italic
Times-Bold
NewCenturySchlbk-Roman
Helvetica-Narrow-Oblique
Bookman-DemiltaHc

Bookman-Demi
Helvetica-BoldOblique
Bookman-Light
Helvetica-Oblique
AvanfGarde-Book
A vantGarde-DemiOblique
A van tGarde-Bo okOblique
AvanlGarde-Demi
Helvetica-Narrow
Zapf Chancery- Medium Italic
Courier-Oblique
NewCenturySchlbk-BoldItalic
Helvetica-Bold
Times-Roman
Times-Boldltalic
Helvetica-Narrow-BoldOblique
NewCenturySchlbk-Bold
Falafino-Bold
Courier
Palatino-Itatic
Palatino-Roman
Pa la tin o-B o t dlta tic

AUUGN 87 Vol 7 No 4-5

Vol 7 No 4-5 88 AUUGN

EUUG
European UNIX~f Systems User Group

Newsletter Vol 6

Spring 1986

No 2

How to NOT Win Friends and Influence People
Editorial or ’A letter from Canterbury’
Why Manchester?
Manchester Call for Papers
Unix Security
Awk Tawk
The Unix Hierarchy
RFS Architecture Overview
News From Finland- Unix and the Polar Bears
DKUUG since Paris 1985
Abstracts from the Florence Technical Programme
The Florence Contest
EUUG Tape Distributions

1
2
3
5
7
8

11
13
24
26
28
39
42

"t" UNIX is a Trademark of Bell Laboratories.
Copyright (c) 1985. This document may contain information covered by one or more licences, copyrights and
non-disclosure agreements. Copying without fee is permitted provided that copies are not made or distributed for
commercial advantage and credit to the source is given; abstracting with credit is permitted. All other circulation
or reproduction is prohibited without the prior permission of the EUUG.

AUUGN 89 Vol 7 No 4-5

The UNIX Hierarchy

Compiled by Olle Johansson

Name

beginner

novice

user

knowledgeable
user

expert

hacker

Description and Features

insecure with the concept of a terminal
has yet to learn the basics of vi
has not figured out how to get a directory
still has trouble with typing <RETURN> after each line of input

knows that ’Is’ will produce a directory
uses the editor but calls it ’vye’
has heard of C, but never used it
has had his first bad experience with rm
is wondering how to read his mail
is wondering why the person next to him seems to like UNIX so much

uses vi and nroff, but inexpertly
has heard of regular expressions but never seen one
has figured out that ’-’ precedes options
has attempted to write a C program and has decided to stick with pascal
is wondering how to move a directory
thinks that dbx is a brand of stereo component
knows how to read his mail and is wondering on how to read the news

uses nroff with no trouble, and is beginning to learn tbl and eqn
uses grep to search for fixed strings
has figured out that mv(1) will move directories
has learned that ’learn’ doesn’t help
somebody has shown him how to write C programs
once used sed to do some text substitutions
has seen dbx used but does not use it himself
thinks thta make is only for wimps

uses sed when necessary
uses macro’s in vi, uses ex when necessary
posts news at every possible opportunity
write csh scripts occasionally
write C programs using vi and compile with cc
has figured out what ’&&’ and ’11’ are for
thinks that human history started with ’!h’

uses sed and awk with comfort
uses undocumented features of vi
writes C code with ’cat >’ and compiles with ’!cc’
uses adb because he doesn’t trust source debuggers
can answer questions about the user environment
writes his own nroff macros to supplement standard ones
writes scripts for Bourne shell (/bin/sh)
knows how to install bug fixes

Vol 7 No 4-5 90 AUUGN

~uru

wizard

uses m4 and lex with comfort
writes assembly code with ’cat>’
uses adb on the kernel while the system is loaded
customizes utilities by patching the source
reads device driver source with his breakfast
can answer any unix question after a little thought
uses make for anything that requires two or more distinct commands to achieve
has learned how to breach security but no longer needs to try

writes device drivers with ’cat >’
fixes bugs by patching the binaries
can answer questions before you ask them
writes his own troff macro packages
is on a firstmname basis with Ken, Dennis and Bill

[Reprinted from Svenska Unix Systems Anv:andares F:orening (EUUG-S) Medlemsblad 1/1986]

AUUGN 91 Vol 7 No 4-5

[This paper is published with the permission of AT&T. We regret that
the figures were not received in time for publishing. The Editor]

RFS Architectural Overview

Andrew P. Rifkin
Michael P. Forbes

Richard L. Hamilton
Michael Sabrio

Suryakanta Shah
Kang Yueh

AT&T
190 River Road

Summit, NJ 07901

ABSTRA CT

Remote File Sharing (RFS) is one of the networking based features offered in
AT&T’s UNIX System V Release 3.0 (SVR3). RFS adds a new dimension to the
user computing environment by providing transparent access to remote files. RFS
allows access of all file types, including special devices and named pipes, in
addition to allowing file and record locking on remote files. Careful attention to
preserving the UNIX file system semantics ensures that existing binary applications
can make use of network resources without failure.

By extending the notion of the UNIX mount, RFS allows a subtree of a server
machine, to be logically added to the local file tree of a client machine. A message
protocol based on the UNIX system call interface is used to communicate resource
requests between the machines. The client and server machines employ a a reliable
virtual circuit style transport to transfer these messages. By adhering to a standard
transport service interface accessed via the STREAMS Ill mechanism, RFS can
operate over a wide variety of commercially available protocols without
modification.

1. Introduction

The remote file sharing (RFS) feature of UNIX System V Release 3.0 (SVR3) is AT&T’s offering to
the distributed file system market. RFS provides the user with transparent access to remote files.
Unlike other distributed file systems RFS preserves the full UNIX file system semantics and allows
access to all types of files including special devices and named pipes. In addition RFS provides file
and record locking for remote files.

This paper describes the set of goals on which RFS was based. An overview of the architecture used
to achieve these goals is discussed, plus details of the RFS implementation in SVR3 is included.

2. RFS Goals

The main goal of RFS was to provide users and applications a means of accessing remote files. In
the course of attaining this goal several subgoals were defined.

Transparent Access
The standard UNIX interface must be preserved. Access of a remote file must be the same as a local
file. Accessing remote files must be independent of the files physical location.

Semantics
The UNIX System semantics must preserved. All file types including special devices and named
pipes must be accessible through RFS. File and record locking on remote files must be supported.

Vol 7 No 4-5 92 AUUGN

Binary Compatibility
Existing applications must not require modification or recompilation to make use of network
resources.

Network Independence
In light of the rapid pace at which network products are evolving, it was decided that RFS should be
cleanly separated from the underlying network. This allows for operating RFS, without
modification, over a variety of networks that range from LAN’s to large concatenated networks.

Portability
RFS code is largely machine independent to ease porting to different hardware environments. To
simplify the integration of RFS into various UNIX Systems the changes to the kernel were localized
and kept to a minimum.

Performance
Considering that a large cost of any remote operation is the network overhead, the performance goal
was to minimize network access.

3. RFS Architecture

The RFS architecture is based on a client/server model using a central name server and a remote
mounting scheme for connection establishment. Once connected the machines communicate using a
message protocol based on the UNIX system call interface.

The STREAMS mechanism in conjunction with the transport service interface defined in System V is
used to separate RFS from the underlying network, making RFS network independent.

By defining an RFS file system type, RFS is cleanly integrated into the UNIX kernel using the File
System Switch (FSS) mechanism in SVR3.

To ensure security the normal UNIX file protection is extended to remote files and a mechanism is
provided to map user id’s.

3.1 Client/Server

A file sharing relationship consists of two machines, a client machine and a server machine. The file
physically resides on the server machine, while the client machine remotely accesses the file. The
client accesses the file by sending a request message to the server machine. The server provides the
resource in the form of a response message to the client.

Any machine may be a client, server or both.

3.2 Connection Establishment

The RFS connection establishment involves locating and identifying a remote resource followed by
remotely mounting it. The location and identification of resources is done using the RFS name
server. The remote mount adds the remote file system to the local file tree. The remote mount
model will be described followed by a discussion of the RFS name server.

Remote Mount
The remote mount model provides the same "tree building" approach used in UNIX. A client
machine can add (mount) a remote file system from a server machine onto its local file tree. To
support this a two step process is required. First, the server must (advertise) make a subtree of its
local file tree available. Second, the client must add (mount) this subtree onto its local file tree
(Figure 1).

Figure 1. Remote MountModel

When a subtree is advertised a symbolic name is assigned to it by the server. In figure 1, the /usr
subtree is assigned the" name USER. A client machine now uses this symbolic name to mount this
file system onto its local file tree.

AuuGN 93 Vol 7 No 4-5

Name Server
The RFS network should be viewed as a network of file systems rather than a network of machines
sharing file systems. Therefore, it is necessary to logically separate a resource from its location. The
RFS name server does just that.

The RFS name server maps resource names, which represent file trees that are available to share,
into information about that resource. It allows machines to register the name of a resource, and it
allows other machines to make queries about what resources are available. To accomplish this the
name server maintains a centralized data base with a reliable recovery mechanism to avoid a single
point of failure. This data base contains all currently advertised resources, mapping the symbolic
name to the network location. The name server enforces uniqueness of symbolic names within a
domain (see below) ensuring a consistent network view.

When a resource is advertised, the name server checks the symbolic name for uniqueness and if
unique registers the resource in the data base. When the resource is mounted the name server
converts the user specified symbolic name to the network location.

Domains
As the network grows, resource management becomes increasingly difficult. To alleviate this
problem a domain based naming scheme is used. This concept allows machines to be logically
grouped into a smaller, separate name space called a domain. For instance, all machines belonging
to a single department in a large corporate structure may be partitioned into a single domain,
carving the large corporate network into. smaller more manageable pieces. Each of these domains
have a central name server, guaranteeing unique resource naming within a domain.

To reference a resource within the local domain specifying the symbolic name is sufficient. To
reference a resource from another domain it is necessary to prefix the symbolic name with the name
of the domain in which the resource resides (Figure 2).

Figure 2. Domain Naming Scheme

3.3 RFS Message Protocol

The RFS message protocol is based on the UNIX system calls which are well defined121 and accepted.
This protocol is used to communicate remote resource requests between client and server machines.

For each system call there exists a request and response message. The request message formats all
pertinent information necessary to execute the system call, while the response message formats all
possible results. The following brief description demonstrates the use of this protocol.

A client process, in the course of executing a system call encounters a remote resource. Execution
of the system call is suspended, the clients environment data is copied into a request message, and
the message is sent to the server machine. On the server machine, a server process services the
request by recreating the clients environment based on the contents of the request message and
executes the specified system call. The results of the system call are copied into a response message
and sent to the client machine. Therefore, a remote system call requires only two messages a request
message and a response message, thus minimizing network access.

3. 4 RFS File System Type

The File System Switch (FSS) mechanism of UNIX SVR3 allows the same UNIX operating system to
simultaneously support different file system implementations. Based on Peter Weinberger’s (AT&T
Bell Laboratories UNIX Research Laboratory) inode level switch, the FSS mechanism preserves
system call compatibility while isolating different file system implementations from one another.

FSS separates the generic file system information from the file system specific information, and
defines common interface between the kernel and the underlying file systems. This is done by
dividing the inode into two parts, the file system independent portion (generic information) and the
file system dependent portion. FSS now intervenes between the kernel and the file system by
directing inode operations from the kernel to the file system specified by the "type" of the
dependent inode.

Vol 7 No 4-5 94 AUUGN

RFS makes use of this feature by defining an RFS file system type. This file system type defines RFS
type dependent inodes, which contain a communication pointer across the network to the "real"
inode on the server machine (Figure 3).

independen~inode[

".,/,~ independen{inode [],

client server

Figure 3. RFS File System Type

Now, inode operations resulting from a file descriptor based system calls are directed to the RFS
module via the FSS. The RFS module in turn, uses the communication pointer in the RFS
dependent inode to direct the request message.

3.5 Network Independence

By separating RFS from the underlying transport service, RFS is able to run over a variety of
protocols and networks without modification. To accomplish this two problems had to be solved.
First, is was necessary to choose what style of transport service RFS required. Second, a standard
interface between RFS and the transport provider was needed.

Since RFS must work over a large concatenated network, and since the overhead of retransmission
and error detection is high for datagram service over large networks, reliable virtual circuit service
was chosen. To compensate for virtual circuit setup costs, a single virtual circuit is maintained
between a client and server machine. This circuit is established during the first remote mount, and
all subsequent mounts are multiplexed over this circuit. The circuit is held open for the duration of
the mounts.

The second problem was solved using the transport interface (based on ISO Transport Service
Definition) defined within the System V networking framework131 and the STREAMS mechanism. By
adhering to the forementioned transport interface, a connection between RFS and a transport
provider (also adhering to the transport interface) is then provided via the STREAMS mechanism.
In addition, by allowing RFS to communicate over multiple STREAMS, RFS is able to make use of a
variety of transpor! providers simultaneously (Figure 4).

RFS

~ STREAMSl

TCP [CLASS 41

Figure 4. STREAMS Based Communication

3.6 Security

One of the problems in allowing one machine to transparently access files on another is the need to
authorize the access. Two levels of security must be considered, the machine level and the user
level. At the machine level a means of restricting clients from mounting a particular resource is
provided. When a server machine advertises a resource the server can specify only those clients that
are allowed to mount the resource, restricting all other clients. In addition, a server machine can be

AUUGN 95 Vol 7 No 4-5

configured to require a password check at the time a virtual circuit is established to the client
machine.

At the user level the local UNIX security scheme has been extended to the network environment. In
the local case access permission is based on a user’s user identification (uid) and group identification
(gid) compared to the file access rights. To make this scheme work for the remote case two
problems must be solved. First, over a large network, a common password file (/etc/passwd)
among a group of machines can not be guaranteed. Second, a means of restricting remote user
access must be possible.

Both these problems are solved using a uid/gid mapping scheme. This scheme allows a uid/gid
from a client machine to be mapped to a different uid/gid on the server machine. In the case of
different password files, the uid/gid of a user on a client machine can be mapped to the uid/gid of
that same user on the server machine (Figure 5).

USERA: 100:300

request(l~:300) --->

client

100

300

uid
USERA:200:500

---> request(200:500)

server

Figure 5. uid/gid mapping

Users can similarly be restricted on the sewer machine by mapping their uid/gid to an impotent
value. Figure 6 shows how super user on a client machine is restricted from having super user
privileges on the server machine.

SUPERUSER:0"3 IMPOTENT: 999:999

request (0:3)

uid

----> request (999:999)

client server

Figure 6. Super User Restriction

4. RFS Implementation

To minimize kernel change and to ease future porting, RFS was implemented as a separate module
with a well defined interface into the kernel. The RFS module consists of approximately twenty
source files and six header files.

The implementation was done in functional pieces. The name server was implemented separately,
entirely at the user level. The remote mount code which establishes the data structures required to
connect the client and server machines was separated from the remote access code. The remote
access code was separated into client and server routines. This code makes up the bulk of the system.
Finally, since RFS retains client state information on the server machine a recovery mechanism was
implemented to resynchronize state information, in the event of a machine crash.The
implementation details of these components will be discussed below.

Name Server
The RFS name server is a user level daemon that is initiated on each machine when RFS is started.
Processes that want to communicate with the RFS name server open a stream pipe device that is

Vol 7 No 4-5 96 AUUGN

associated with the name server and use that stream pipe to send their requests. Communication
between name servers on different machines uses the standard TLI to provide protocol
independence.

The RFS name server is modeled as a transaction handler; it receives requests, performs an
operation, generates a reply, and sends the reply to the originator of the request. It also acts as an
agent of the requesting process if a request needs to go to a remote name server. A request first
goes to the local name server daemon, which services the request if it can and otherwise forwards it
to the appropriate name server. A non-recursive method is used for finding a name server that has
the required information to avoid looping.

Remote Mount
The remote mount scheme extends the standard mount mechanism to include remote resources. As
described earlier this is a two phase process where a server must advertise a resource before a client
can mount it. The implementation required the addition of two new system calls, advfsO and
rmountO and a new adv command plus modifications to the existing mount command.

The adv command in conjunction with the advfs() system call allows a server to advertise a subtree
of its local file tree. The adv command interfaces with the name server to register the resource in
the name server data base. The command then calls advfsO. The advfsO system call stores the
symbolic name, and a pathname for the subtree (which is resolved to an inode), in a kernel advertise
table.

The mount command has been extended to mount remote resources.
specifies that a remote resource is to be mounted. For example:

mount -d USER/foo

The new -d option now

requests that the remote resource associated with the name USER be mounted on the local mount
point/foo. The name server is used to convert the specified symbolic name to the network location.
If a virtual circuit does not currently exist between the client and server, the mount command sets
one up. This will be discussed in detail below. The mount command then uses the rmountO system
call to establish the kernel data structures required for the remote mount.

The rmountO system call takes the symbolic name, local mount point (pathname), and virtual circuit
pointer as arguments. A remote rmount request which includes the symbolic name is sent to the
server via the virtual circuit indicated by the virtual circuit pointer. The server uses the advertise
table and symbolic name to locate the inode of the desired resource. If this client is authorized for
this resource, the server records the client access in a kernel server mount table. Each time a client
mounts a particular resource a entry is placed in this table indicating the clients system
identification and the mount table index that the client used to record this mount. This information
is used to resolve pathnames which traverse back out of a remote resource by using a ".." in the
pathname. A response is then sent to the client containing a communication pointer to the inode of
the advertised resource. Using this communication pointer the client creates an RFS inode. The
RFS inode and the inode of the local mount point are then stored in the clients kernel mount table
(Figure 7).

As mentioned before the mount command is used to set up a virtual circ~ait between the client and
server machines. The mount command initiates a connection to a daemon (listener) process on the
server machine using the standard Transport Level Interface (TLI) mechanism. Once connected
negotiation of run time environment parameters is done. Included in this environment is release
version numbers, security parameters, and hardware architecture types, to mention a few. If the
machines have heterogeneous machine architectures, then external data representation (XDR)t41 is
used to allow these machines to communicate. Due to performance degradation XDR is only used
when necessary. Once the negotiation is complete the virtual circuit is passed into kernel address
space using a new rfsys(FWFD) system call. This virtual circuit establishment procedure moves the
network connection complexity out of the kernel into user level routines.

Client
A client process is a pr.ocess that accesses a remote resource. Remoteness detection is dependent on
the type of system call being executed. For pathname based system calls, remoteness is detected

AUUGN 97 Vol 7 No 4-5

mount table
m_mount ! m inodp

[inode] ~~

advertise table

IUSER I inode

client server

Figure 7. Remote Mount Data Structures

upon the traversal of a mount point of a remote resource (e.g.,/foo in Figure 1). For file descriptor
based system calls remoteness is detected when a RFS inode is encountered. The client
implementation for these two cases is considered separately.

In the pathname case the system call uses the nameiO and igetO functions to resolve the pathname
to an inode. Specifically, igetO is used when traversing down into a mounted file system. The igetO
function has been modified to pass control to the RFS module when traversing into a remote file
system. Upon entering the RFS module the system call under execution is suspended. A request
message representing the system call and the remainder of the pathname is sent to the server
machine using the communication pointer from the RFS inode in the mount table. The client
process then blocks until a response is received from the server.

For those system calls that require no further access of the inode (e.g., chmod, chown) control is
returned directly (via longjmp) to the user, instead of through the system call routine which initiated
the remote access. This allows RFS to do remote system calls without having to change each system
call in the kernel, thus minimizing altered kernel code.

For those system calls which establish an inode which will .subsequently be referenced (e.g., exec,
open) control is returned to the initiating system call routine. Before control is returned an RFS
inode is created using the communication pointer contained in the response message from the
server. This RFS inode is then passed to the initiating system call routine.

The file descriptor case uses FSS for remoteness detection. A file descriptor for a remote file is the
result of a pathname based system call (e.g., open, create) (Figure 8).

user
area

file
table

inde

I.RFS I I ANY]
~ l inode]

client server

Figure 8. Open Remote File

The file descriptor is associated with an RFS inode through the local file table. In the course of
executing the system call the FSS encounters the RFS inode. At this time control in then passed to
the RFS module. The RFS module uses the same request/response mechanism described above to

Vol 7 No 4-5 98 AUUGN

complete the system call. Upon completion, control is returned to the initiating system call routine.

The read() and writeO system calls require additional data transport. For the read() system call a
read request message is sent to the server. The server in turn satisfies the request by sending all the
requested data in the form of data messages to the client. For each data message received the client
copies the data into the user supplied buffer. A light weight protocol between the server and the
client is used to handle flow control. In an effort to minimize network access the last data message
is combined with the response message for the initial read request.

The write system call behaves similarly but data messages flow from client to server. For each block
of data required to satisfy the write request, the server sends a data request message to the client.
The client responds by sending the next block of data to be written. The first block of data is
combined with the initial write request message, saving a data request message and a data message,
minimizing network access.

Server
The server is a kernel process, scheduled like any other process. It has a user area, although there is
no user instruction space, no bss, and no text space. The code it executes is solely in the kernel so
there are no context switches between user and kernel mode.

The role of the server process is to receive request messages from client machines and execute them
locally as if they were system calls that were initiated on the server machine. When the system call
completes, the server returns the requested resource to the client along with any error indication.

The server is a transaction based process, each request is executed to completion before another is
begun. Its sole purpose in life is to service requests from remote machines. Multiple server
processes can and do exist on any machines that wishes to provide file service. Servers are not
associated with any particular client machine or client process.

After receiving a request the task of the server is to masquerade as the requesting process. The
request message contains enough information (e.g. uid, gid, ulimit) for the server to appear to the
remote machine as the client process. Being a kernel process, the server can extract data from the
request message and store it directly into its own user area.

Before fulfilling the request the server must recreate the environment that the client has own its own
machine. This varies depending on whether this request was due to a pathname or file descriptor
based system call. For a pathname based system call the pathname is set up from the request
message. The pathname in this case is the pathname remaining beyond the remote mount point.
The pathname evaluation will proceed from the inode of the advertised resource. For file descriptor
based system calls the inode specified by the RFS inode on the client side is used to complete the
requested system call. After the environment is setup the server executes the specified system call.
When the system call completes a response message containing the requested resource and error
status is sent to the client.

In the cases where the client will subsequently access the server inode (e.g., open(), chdirecO), a
communication pointer to that inode is included in the response message to the client. In these
cases, to preserve the UNIX semantics, state information reflecting the clients reference is recorded
on the server machine. That is, the inode reference count on the server inode is incremented to its
prevent premature removal. Consider the case where a client process opens a remote file. !f
another process attempts to remove this file the inode will remain intact because the reference count
remains high. If the reference count were not incremented when the client opened the file the inode
would be prematurely removed causing the clients file operations to malfunction, violating the UNIX
file system semantics. In addition to inode reference counts, file/record locks, reader/writer counts
for named pipes, are also recorded on the server inode.

Since client state information is "recorded" on the server, a recovery mechanism for "erasing" this
state in the event of a client crash was designed. The details of the recovery mechanism are
described below.

AUUGN 99 Vol 7 No 4-5

The main purpose of the recovery mechanism is to restore state on the server machine in the event
of a client machine crash, and to cleanup a client machine in the event of a server crash. Recovery
is based on the existence of a virtual circuit between the two machine. The underlying transport
provider signals the recovery mechanism when a virtual circuit breaks, indicating that the other
machine crashed. RFS does not distinguish between a network failure and a crashed machine. The
recovery procedure for clients and servers is different.

On the client side the recovery process wakes up any client process that is waiting for a response
from the crashed server and marks RFS inodes indicating that the link went down, so that
subsequent operations on these inodes will fail. It is important to note that a client process
awakened by recovery return an ENOLINK error to the user indicating the server machine crash.
The client recovery mechanism also sends a message to a user level daemon which initiates a user
level recovery procedure.

On the server side the recovery process "undoes" any state that the crashed client has recorded on
the server. This is done by maintaining a per client record for each accessed inode (Figure 9). This
record contains the number of references the client has to the inode. If the client machine crashes
the server then knows how much to decrement the inode reference counts. These records not only
contain inode reference count information, they also contain reader/writer counts for named pipes,
so reader and writer synchronization can be restored in the event of a client machine crash. The
server recovery mechanism also removes.any file/record locks that a crashed client machine has
placed on any of its files, to prevent other process from blocking indefinitely. This is accomplished
by recording the system identification of the client machine in the file/record lock structure when
the lock is set. In the event that a client machine crashes all file/record lock structures with the
system identification of the crashed machine are removed.

Figure 9. Server Recovery

5. Interesting Issues

In the course of the development several interesting issues were encountered. Some of these issues
concerned special devices, time, and statO. These issues are described below.

Special Devices
There were special considerations made for supporting special devices. Since UNIX treats special
devices and named pipes as part of the file system most of the job was done. However, three
problems had to be solved. First, slow devices and named pipes could consume all available server
processes, making the server machine unusable. Second, when a client process sleeps waiting for
I/O, a remote signal mechanism must be available to allow the client process to "break out" of the
sleep. Third, the remote data movement between the server and the client must be transparent to
the device driver.

The first problem was solved by using a dynamic pool of kernel server processes. If all free servers
are busy and a client request is received, RFS creates a new server process to handle the request.
The size of this server pool is limited by minimum and maximum tunable parameters. In the event

Vol 7 No 4-5 100 AUUGN

that the pool reaches maximum size the last kernel server is prevented from sleeping, to avoid a
deadlock situation.

To solve the second problem the signal mechanism was extended to allow remote signaling. The
first step was being able to uniquely identify a process within a distributed environment. This is
accomplished by using a system identification (sysid) in association with a process identification
(pid). The sysid uniquely identifies a particular machine, while the pid uniquely identifies the
process within the machine. The remote signal mechanism is described below.

A client process that has sent a interruptable system call (e.g., read(),) request may sleep waiting for
a server to complete the I/O operation. If the process receives a signal, a signal request message
containing the clients pid and sysid is sent to the server machine. On the server machine, a server
process services the signal request by using the sysid and pid to locate the server process sleeping on
the !/O operation, and posting the specified signal to that server process (Figure 10).

independent
inode

I i n RoFdSe

independen{
inode /

’ I
lnooe .

client server

Figure 10. Remote Signal

To isolate the problems of remote data transfer from the device drivers, remoteness detection had to
be done at a level below the device driver. The copyin/copyout routines are a standard interface
used by device drivers to transfer data between kernel address space and user address space. By
doing remoteness detection at this level, remote data movement would be transparent to the device
driver.

The copyin and copyout routines have been modified to check if a server process is attempting the
data movement. This is done by checking a flag in the processes process table entry, a special flag
has been reserved in the process table to differentiate between server processes and regular
processes. If it is a server process, controi is passed to the RFS module-which transfers the
requested data to or from the client machine. Upon completion of the data transfer control is
returned to the initiating routine.

In addition to data movement the ioctlO system call is greatly simplified by the copyin/copyout
mechanism. A remote ioctl system call is passed to a device driver through a server process
servicing a ioctl request. In response to the ioctl, the device driver may read or write data to a
supplied address using the same copyin/copyout interface. As before the remote data transfer will be
transparent to the device driver, making the remote ioctl implementation quite easy.

Time Skew
Time is a problem when the current time is different between client and server machines, causing an
inconsistent view of file age. This may cause time sensitive commands such as make, news, mail to
break.

This time skew problem was solved using a time delta approach. Upon establishing a connection
between a client and a server, the time delta between the two machines is calculated and recorded.
Time based information sent in response to a client request (e.g. stat) would be modified using this
delta to compensate for the inconsistency between the two machines. The time delta is recalculated
when either machine changes its current notion of time.

AUUGN 101 Vol 7 No 4-5

stutO
In a distributed environment, where unique devices numbers are not guaranteed, applications using
statO to obtain the device and inumber of files to check equality may break. To solve this problem
the contents of the device field are modified for remote files. More precisely the upper bit of the
device field is used to indicate whether the file is local or remote. The next seven bits are used to
record the server machine on which file exists. The last eight bits are used to record the mount
table index of the file system in which the file resides. With this scheme the device field will be
unique over a network environment, making device/inumber comparisons work.

6. Conclusion

The design of RFS clearly exhibits AT&T’s commitment to providing truly transparent file access
without compromising the UNIX file system semantics. By maintaining client state information on
the server machine to assure data integrity and consistency RFS can be used by existing applications
with no fear of malfunction. Allowing access to remote special devices allows users to share
expensive peripheral devices easily and economically. In all RFS provides a fully distributed file
sharing environment.

7. Acknowledgements

There are many people who contributed to the ideas and spirit of the RFS project. The project was
supervised by Art Sabsevitz. The prototype system from which much of RFS was based, was done
by Dave Arnovitz and Jeff Langer. We would like to thank Tom Houghton, Steve Buroff, Gil
McGrath, Laurence Brown, Maury Bach, Her-daw Che, Mike Padovano, Anil Shivalingliah, AI
MacPherson, and Ron Gomes for their help in designing and debugging the system. Also, we would
like to thank Peter Weinberger of the UNIX Research Laboratory of AT&T Bell Laboratories for
his help during the early stages of the project.

REFERENCES

1. D. M. Ritchie, "A Stream Input-Output System," A T&T Bell Laboratories Technical Journal
63(8) (October 1984).

2. D. E. Kevorkian, "System V Interface Definition" Spring 1985 Issue 1

3. D. J. Olander, et. al., "A Framework for Networking in System V" USENIX Conference
Proceedings, Atlanta, Georgia (June 1986).

4. SUN Microsystems, "External Data Representation Protocol Specification" (April 15, 1985).

Vol 7 No 4-5 102 AUUGN

News from Finland
UNIX - and the polar bears

Johan Helsingius
O’ulf @penet)

Disclaimer:

This is not an official statement from FUUG. This report is based on my completely and purely
personal opinions, and in any case, ! don’t know what I’m talking about!

Oh, well, I have to try to avoid overdoing all those iceberg jokes, polar bear jokes, sauna jokes etc.

As you can see, I am trying to write this thing in some kind of pseudo-English, instead of writing in
Finnish. I do this partly to make the story a bit more readable for the rest of you, but mostly out of
pity for the poor devils who have to typeset this text. But, well, I just can’t resist putting in a couple
of really beautiful phrases in Finnish:

"Tulitko konekirjoittajattarettasi?" - "Did you arrive without your (female) typist?"

Which leads to: "Haayoaie" o "Wedding night intentions", the a’s and the o’s should have dots on
top.

And one really beautiful one for the hyphenation algorithm: "kaivosaukko".
"kaivo-saukko" - "Otter living in a well",
"kaivos-aukko" - "Mine entrance".

So much for .comparative linguistics, and back to the ongoing story of UNIX in Finland ("So close
to Russia, so far from Japan.."). Here you have some boring facts about FUUG, the Finnish UNIX
Users Group, or "Suomen UNIX-kayttajien Yhdistys", if you prefer, with dots floating overhead:

The number of members is 113, consisting of 35 institutional members, 75 individual members, and
3 student members. Of the 35 institutional members, 5 are academic and 30 have commercial
tendencies.

There are 32 sites on the Finnish UUCP network. The backbone machine is called "penet", and has
finally been interconnected to the rest of the European backbones by X.25.

The board of FUUG is composed of the following esteemed members:

Chairman Johan Helsingius Oy Penetron Ab julf@penet
Vice-chairman Timo Hirvonen Oy Olivetti Ab thi@olisf0
Secretary Ari Kyhala Oy Mercantile Ab ajk@me-ncr
Treasurer Lauri Lounasheimo Nokia Data

Members:
Par Andler
Mika Arkiomaa
Hannu-Matti Jarvinen
Jail Mantsinen

Hewlett-Packard Oy
Systecon Oy
Tampere Univ. of Techn.
ETLA

pivi@hpuhela

hmj@tut
jma@etlahp

Now that the boring facts have been dealt with, we come to the truly interesting question, "In what
way is the Finnish UNIX marketplace different from all the other European countries?". Good
question! Next question, please!

Ok, ok, I’ll try.

"t UNIX on AT&T Bellin Laboratorioiden Yhdysvalloissa ja muissa maissa rekisteroima tavaramerkki.

AUUGN 103 Vol 7 No 4-5

-- We don’t belong to the EEC. No ESPRIT, haha..

We Finns are naturally suspicious about new ideas from ’outside’. You see, if ’they’ are right,
then we are wrong, and as we can’t be wrong, ’they’ must be!

The Finnish industry is strongly biased towards ’heavy metal’, e.g. shipbuilding, paper mills etc.
This makes real-time process control a big hit. UNIX isn’t.

Another factor is that a significant part of our export trade goes eastwards. As Sheriff Reagan
and his crew have decided that UNIX is a highly secret weapon, we must use proprietary
operating systems or Yugoslavian V7 clones instead. Yacc!

Finally, Sweden has gone into UNIX in a big way. Now, we can’t follow every whim the
Swedes do come up with, can we? Of course not, so no UNIX here, please! (By the way, do
you know how to sink a Swedish submarine? Just knock on the door! Ha, ha, ha!) [Editorial
Note: Did you hear that the Finnish Navy lost its submarine fleet last spring, when they
installed the screen windows for summer?]

-- It’s cold and dark here! Anybody in need of UNIX gurus with experience handling reindeers?

Get the picture?

Most of the universities have at least some UNIX machines, and are happily hacking away on their
4.2 kernels. The rest of the Finnish UNIX world is busy porting their accounting packages written
in BASIC or COBOL onto all kinds of existing 68000 System Ill/System V boxes.

We do have a couple of domestic computer manufacturers, but they aren’t currently making any
UNIX machines. According to rumours, we seem to have one (1) commercial UNIX source licensee.

Well, the picture I’ve given you might be a bit pessimistic, but I’ve just gotten back from the
Florence conference to find my house glowing in the dark because of radioactive fallout, and the
EUUGN deadline is coming up, so I feel worthy of my latest nickname, "The Flaming Finn".

If you don’t believe this report, why don’t you come up and see for yourself. The best opportunity
will be the EUUG Spring Conference 1987, to be held on a ferryboat between Finland and Sweden.
No kidding!

Cheers,

{ seismo,d ecvax,philabs,garfield,okstate } ! mcvax!penet !j ul f

Johan Helsingius ("julf")
Penetron
PL 21
SF-02171 Espoo
FINLAND ("..so near to Russia, so far from Japan..")

"What did you say? No polar bears?"

Vol 7 No 4-5 104 AUUGN

DKUUG since Paris 11985

KeM Jorn Simonsen
keld@diku, uucp

DKUUG
Centre for Applied Datalogy

University of Copenhagen

Changes for DKUUG since April 1985

I will here outline the news and changes which has happened to DKUUG since we last reported at
an EUUG conference -- the Spring 1985 conference in Paris. The main activities concerns organisa-
tional items, meetings, publications and the network.

DKUUG organization

DKUUG -- "Dansk UNIX-system Bruger Gruppe" as it is called in Danish -- has been around
since 18 Nov 1983. Today (April 1986) it has a membership of 115 organisations paying DKK 900 a
year and 10 individuals paying DKK 300 a year. This totals to 125 members today, which compared
to the April 1985 membership of 92 gives a growth rate of about 30 %. The 125 members are distri-
buted among 75 companies (both hardware and software), 20 universities and other academic insti-
tutions, and 30 ordinary users. This indicates that the commercial and university markets for
memberships are quite satiated, but with an estimated 1000 UNIX machines sold in Denmark (per
annum?) it leaves plenty of room for new user memberships.

We had our statutes changed on our general assembly meeting 85-11-28, so that the installation and
associated membership classes merged to one class, called organisational members.

Meetings

We have had four member meetings since Paris, with 25 to 90 people attending each one. Most dis-
cussions are held in the Danish language. There have been no exhibitions during this time. The
items discussed have included: big UNIX system users, public domain software, 4.2 BSD systems
administration, a market survey from IDC, databases, help systems, administrative systems, the net-
work, and UNIX courses. In addition, there were four machine presentations; the NCR Tower,
ICL Comet-32, RC39 and the Supermax were all shown to the membership.

DKUUG also hosted the EUUG Copenhagen Autunm 1985 Conference, which was a huge event
for us, with 350 participants and 4 days of meetings and exhibitions. This conference has already
been covered in detail in the EUUG newsletter.

As a new feature, we have introduced a suppliers board within DKUUG, in which we discuss
demonstrations, make catalogues of hardware, review software & services available in Denmark, and
discuss how to attract more members to the DKUUG.

The DKUUG board has 6 members: chair, treasurer, editor, network manager, suppliers coordina-
tor and EUUG governing board member. We hold about 10 board meetings a year.

Publications

Our newsletter is called "DKUUG-nyt" and we have made 5 issues since April, 1985. There have
been various articles on meetings, the network, news, rumours and an important survey of courses.

A large amount of work has gone towards developing the book "UNIX-bogen", which is a Danish
translation and update of "UNIX - The Book", by M. Banahan & A. Rutter. "UNIX-bogen" is
updated to correspond to UNIX System V and 4.2 BSD, and also covers the special concerns of
handling Danish language within this American developed operating system.

AUUGN 105 Vol 7 No 4-5

Also in the area of language, we have made our own description of UUCP in Danish, and we are
distributing other Danish articles on UNIX, C, and other topics. Finally, we are revising the 2 year
old DKUUG - UNIX folder -- a lot has happened these two years.
We have also made several good agreements for our members for outside publications, including a
40% discount on subscriptions to ’PC world’ magazine, 25% off for ’UNIGRAM/X’ and also 25%
off for the book ’UNIX-bogen’.

The UNIX network in Denmark April 86

We have recently registered EUnet and DKnet as trade marks, to prevent others from using the
names. Also we have recently installed the rerouter and begun a campaign to get more ’netters’.
Our future plans are to get mail accounting working, to use X.25 for outgoing international connec-
tions, and to offer a 2400 bps V.22 bis service.

~The current number of members using the net services and the costs thereof are:

Service Apr 86 Apr 85 change cost/year
Mail 24 21 + 3 DKK 500
News 4 4 +0 DKK 8000

While we have not experienced much growth here, we are expecting a boom after our net campaign.

Vol 7 No 4-5 106 AUUGN

Abstracts from the Florence Technical Programme

Malcolm A gnew
DB + + Database Management System
Mail: robert@hslrswi
Phone: +69 597 029798

Concept ASA GmbH
Wolfsgangstrasse 6
D-6000 Frankfurt am Mainl
WEST GERMANY

The DB+ + family of programs together comprise an efficient, flexible and reliable relational
database management system for use with UNIX.

This paper discusses how the DB+ + programs have been fully integrated into the UNIX
framework. It then goes on to explain the choice of query language in addition to some of the
unusual implementation details.

Charles Bigelow
Florentine Inventors Of Modern Alphabets
Mail: ukc!cab@su-ai.arpa
Phone: +1 415 788 8973

Bigelow and Holmes
15 Vandewater Street
San Francisco
CA 94133
USA

Bitmap screen displays and laser printers have enriched the appearance of computer literacy.
Procrustean limitations of mono-case and mono-space that formerly degraded computer-produced
text have been abolished. We now can enjoy the luxury of reading and printing text in lower-case
as well as in capitals, in italic and bold styles as well as in roman, in proportionally-spaced fonts of
different sizes as well as in monospaced fonts of a single size, in justified as well as in ragged-right
columns.

AUUGN 107 Vol 7 No 4-5

Massimo Bologna
The Portable Common T~| Environment Project
Phone: + 39 50 50021 i
Mail: 3bicoa!flor@iconet.uucp

The Portable Common Tool Environment (PCTE) project is carried out as part of the ESPRIT
programme of the Commission of European Community.

The project aims at the definition and the implementation of a common framework, within which
various software tools can be developed and integrated in order to provide a complete environment
for software engineering.

The two main goals of the project are the portability across a wide range of machines and the
compatibility for assuring a smooth transition from existing software development practices.

The technical approach to portability is discussed in this paper: UNIX is the means by which PCTE
will be widely available; the PCTE basic mechanisms are built on top of UNIX: in fact PCTE can
be seen as an extension to UNIX in the area of distribution, friendly user interfaces and database
for software engineering.

This last aspect is described in this paper: functional as well as implementation aspects ’will be dealt
with.

Finally, tools developed for the PCTE database are described and discussed.

C. Brisbois
SIGMINI Information Management System

Union Miniere SA
Division Information
Avenue Louise 54, BTE 10
B- 1050 Brussels
BELGIUM

Sigmini is designed to process heterogeneous information, including quantities, which have complex
interrelationships. It is related to both database systems and classical documentation retrieval
systems. In either case, Sigmini is designed to avoid the necessity to declare in advance the data or

relationships.

Antonio Buongiorno
Office Data Base Services in a UNIX Architecture
Phone: +39 125 52 15 92

Olivetti DSRI/DPS
IVREA
Italy

Antonio Buongiorno
Franco Calvo
Bruno Pepino

Classification, filing and retrieval are important but time-expensive activities in an office
environment. Attempts to reduce times, and thus costs, involved in these processes and to increase
the effectiveness of an retrieval system are rapidly gaining importance for a better information
mamagement in an office. The paper outlines a solution for filing and retrieving "objects" in an
architecture based on UNIX servers and networks of personal computers. The focus is mainly on
the data model that supports the Office Data Base and allows a very fast retrieval of structured and
non structured information.

In the first section is described a general architecture, in the second the functionalities and the data
model and in the third the prototype package AMEDEUS.

Vol 7 No 4-5 108 AUUGN

Brian Collins
The Design Of A Syntax-directed Text Editor

Mail: ukc!bco@ist
Phone: +44 1 581 8155

Imperial Software Technology
60 Albert Court
Prince Consort Road
London
SW7 2BH

The editing and user-interface system described in this paper presents many different guises to the
user. Among these are:
I) A general-purpose, multi-file, multi-windowing screen editor for ASCII text files and simple

terminals.
2) A forms system for constrained data entry and presentation.
3) An interactive windowing front-end to application programs.
4) A syntax-directed editor.
This paper concentrates on the latter.

In the design of such an editor, the choice of facilities offered to the user is often more difficult than
the actual implementation. In this editor, the decision taken was to make the interface appear to
the user as close as possible to a standard text editor, hence the more descriptive title of ’syntax-
directed text editor’.

Normal text editing operations can be seen to fall into two classes: those which only affect one line
of text, and those which affect a number of lines. The user is allowed to edit freely any text within
a line, using text-editing operations. On leaving the line, the edited text is re-parsed and errors
corrected or reported. Editing operations which insert, delete, move or copy lines must explicitly
maintain syntactic correctness across line boundaries. For example, a line containing ’END’ could
be automatically added when a ’BEGIN’ is detected.

The overall effect is to provide a text editor in which it is impossible to enter a syntactically
incorrect program.

The editor is language-independent (indeed, it may handle many different languages
simultaneously). A language may be supported if it conforms to a few obvious restrictions (similar
to those of lex & yacc). The syntax of the language is described in an extended, annotated BNF,
which also specifies the layout rules for line breaks, spaces and indentation.

The paper provides a description of the editor, both from the user’s view and from the language
implementor’s. It describes how the syntactic structure is maintained in what is essentially a text
editor, and the techniques used for the fast re-parsing of edited text. Finally, the paper assesses the
applicability of syntax-directed editing to various languages, its use in a programming environment,
and a specific analysis of the problems in the syntax of the language C.

AUUGN 109 Vol 7 No 4-5

Pete Delaney
A Guided Tour of OS| based NFS

Mail: ukc!ec.rcvax!pete@unido.uucp
Phone: +49 89 92699 138

Rockey Mountain UNIX Cons
ECRC
Arabellastrasse 17
I)-8000
Munchen 81
WEST GERMANY

A guided tour of the ESPRIT OSI implementation on 4.2BSD will be presented. An example of
mounting a filesystem via Sun’s NFS using OSI protocols over X25 will be demonstrated with:

¯ A Kernel trace showing major events

o A diagram of cronological events, with references to the kernel trace.

¯ Topological organization of network structures.

Due to the lengthy nature of the trace, copies will be distributed to the audience. Implementation
details and divergencies from the US NBS and General Motors MAP project will be discussed.

The merits and pitfalls of the OSI protocols will be presented along with recomendations for further
work.

Winfried Dulz
System Management for a Distributed UNIX Environment

Mail: ukc!fauern!faui70!dulz@unido.uucp
Phone: + 49 9131 857929

IMMD 7
Martensstrasse 3
8520 Erlangen
WEST GERMANY

In analogy to system management for central server configurations, distributed systems must also
provide utilities for user-handling, system- accounting and resource-accessing. We show for the
UNIX network operating system Newcastle Connection how transaction-oriented protocols based
on communicating client/server processes can solve this class of problems. To that end .all local
user-files /etc/passwd are concatenated to a system-wide database that also contains information
about login hosts and UNIX systems that can be reached by means of the Newcastle Connection.
The only process that may update this database is a reliable and redundant system process that
guarantees the necessary data consistency.

William Fraser-Campbell
Implementing the NFS on System V.2
Mail: ukc!inset!bill
Phone: +44 1 482 2525

The Instruction Set Ltd
152- i 56 Kentish Town Road
London
NWI 9QB

System V has been enhanced to support multiple file system types using a common
the kernel.

interface within

Using the Sun Network .File System architecture, our implementation supports System V files on
local disks, and acts as both client and server for network file systems using published NFS
protocols.

This paper will present details of the implementation.

Vol 7 No 4-5 110 AUUGN

M Guarducci
Fiore Project: Wide Band Metropolitan Area Network

Electronics Department
Florence University
Florence
ITALY

The design and implementation study discussed in this paper outlines first problems and solutions
of the design work, followed by implementation strategies of services supplied to final users: file
transfer, messages, electronic mail.

The realisation foresees use of host computers running the UNIX operating system connected on the
wide band based MAN of the Fiore project in Florence based on th Localnet 20 protocol by Sytek,
on which Ethernet LAN’s and stand-alone computers may be connected.

Mike Hawley
Developments at Lucasfilm
Mail: ukc!mike@dagobah
Phone: + 1 415 485 5000

PO Box CS 8180
San Rafael
CA 94912
USA

Mike will discuss UNIX & computers at Lucasfilm. The excitement comes from combining
information technology with the richest possible kinds of communication media. Examples range
from the high-end graphics and audio work done there (with the PIXAR and ASP systems) to
earthier projects involving large databases of sound effects, books,, poetry, etc, and of course, music.

Most of the work exemplifies UNIX applications and systems development with an artistic bent.

AUUGN 111 Vol 7 No 4-5

Robert Heath
Adding Commercial Data Communications to UNIX

Phone: + 1 513 445 6583

NCR Corp.
Columbia, South Carolina

Tlx: 851295467CZ8123Z 295467

As the UNIX operating system becomes more widespread in small business systems, the need to
add commercial data communications becomes important. This paper discusses how NCR in its
UNIX-based supermicrocomputer, the Tower, has supplemented the basic data communications
tools provided by AT&T with both industry-standard and internationally standard protocols. The
resulting product provides interconnectability in three general areas: asynchronous, synchronous,
and local area networking. The paper illustrates which protocols are important for a general-
purpose small business system.

The well-known Call UNIX (CU) and UUCP are standard Tower utilities for asynchronous
networking. A high-performance, asynchronous adapter, which moves the tty driver off the main
processor for both networking and workstation control is described.

UNIX System V is deficient in synchronous protocols. Described is an intelligent, synchronous
adapter which supports multiple, block-oriented protocols such as SDLC, HDLC, and Bisync. Data
link control drivers were added to the kernel to complement standard networking packages such as
SNA, X.25, and 2780/3780 Bisync, and 3270 Bisync. The paper describes how 3270 screen
emulations reuse UNIX concepts such as termcap and remote job entry emulations reuse the printer
spooler.

Tower local area networking (Towernet) is provided through a programmable Ethernet adapter
which offloads time-critical operations. Towernet services described include electronic mail, file
transfer, virtual terminal, PC interconnection, and wide-area networking. Another lan-based option
is the distributed resource system which not only implements a distributed file system but also
provides transparent access of remote devices.

This paper illustrates how modern, layered protocols are distributed within UNIX. It details
particular problems in intertask communications and multiplexing separate data streams. Solutions
to these problems are presented in application software, kernel software, firmware, and hardware.
Strategies for network management, diagnostics, and maintenance are offered.

Bill Joy
UNIX Workstations: The Next Four Years
Mail: ukc!inset!sunuk!sun!wnj
Phone: + 1 415 960 1300

Sun Microsystems Inc.
2550 Garcia Avenue
Mountain View
CA 94043
USA

At the EUUG conference in Paris 1982 Bill predicted the future of UNIX workstations and the
technology associated with them for the three years which were to follow. That time has elapsed
and therefore he will update that talk with further insights into the developments in the next few
years.

The talk will not only cover UNIX workstations, but developments in the technology applicable,
regardless of operating system.

Vol 7 No 4-5 112 AUUGN

Tom Killian
Computer Music under UNIX Eighth Edition

Mail: ukc!tom@ikeya
Phone: +1 201 582 3000

AT&T Bell Laboratories
Murray Hill
New Jersey
USA

We describe an evolving computer music system which draws upon many of the novel facilities of
the 8th edition as well as the standard repertoire of Unix tools. The Teletype 5620 bitmap display
serves both as the user’s terminal and real-time controller. The mux window system is used to
download a MIDI interface driver which services other windows (by direct code sharing) and host
processes (which write on the driver’s control stream). We presently have two MIDI-compatible
instruments, a Yamaha DX7 and TX816.

Window programs include a piano-roll style score facility and a virtual keyboard. Host programs
include a music compiler, "m," which converts an ASCII score notation into MIDI events; it is
based on lex and yacc, making it very easy to develop in response to user needs. There is also a
variety of filters which perform simple transformations (e.g., time and pitch translation) on MIDI
files. The latter are ASCII, so that, for example, output from the DX7 keyboard can be translated
into "m" notation with an awk script, and other Unix text filters (especially sed and sort) and "c"
programs are useful as well.

We will show (and play) examples of pieces written in "m," "c," and the Bourne shell, and discuss
future plans which center around 12-tone serial composition.

Tom Killian began his career as an experimental high- energy physicist at CERN and Brookhaven
National Laboratory. Frustrated in his attempts to persuade his colleagues of the evils of JCL, he
eventually found his way to Bell Labs, where he has been a member of the Computing Science
Research Center since 1982.

S Mecenate
The IBM 6150 Executive AIX
Phone: +44 1 995 1441

IBM UK Ltd
Chiswick
London W4

In January 1986 IBM has announced the IBM 6150 micro computer with the Advanced Interactive
Executive (AIX) operating system.

As the base for AIX IBM chose AT&T’s UNIX System V because it provides considerable
functional power to the individual user, multi-user capabilities, is open-ended, and has a large user
and application base.

However in choosing UNIX IBM recognised the need to make significant extensions and
enhancements to meet the needs of our expected customers and their applications.

The presentation will discuss some of these major modifications and additions.

AUUGN 113 Vol 7 No 4-5

Marco Mercinelli
SNAP: Restarting a 4.2 BSD process from a snapshot

Mail: ukc!cselt! marco@i2unix.uucp

Sezione Metodologie Software
Divisione Informatica
Centro Studi e Laboratori Telecomunicazioni
10148 Torino
ITALY

SNAP is an extension to UNIX4.2BSD for taking a snapshot of a running process and restarting its
execution at a later time.

A snapshot is composed of a process core image and information about its execution environment
(opened files, devices, tty settings, etc.). It is not necessary to kill the process for taking the
snapshot.

A process can be restarted at any time, even after a system crash. Its execution continue at the
point the snapshot was taken in a "quasi" transparent fashion. All the process resources should be
available and are set to a suitable state.

The snapshot facility can be used as a building block for several higher level mechanisms such as
crash recovery, debugging, backtracking and process migration.

The current implementation of SNAP can only restart a single process ~ with no IPC connections.
Further work is needed in order to extend SNAP for managing groups Of related processes and
connections in a distributed environment.

Roberto Novarese
An Office Automation Solution with UNIX/MS-DOS
Phone: +39 125 52 15 92

Olivetti DSRI/DPS
Ivrea
ITALY

In this paper a set of Office Automation requirements of the Economic European Community are
presented. A solution that has been designed and prototyped by Olivetti is then discussed. The
proposal is based on the integration of UNIX mini and MS-DOS personal computers on a local
area network. A set of integrated Office Productivity Tools on the workstations provide the support
to professional and secretarial activities.

Personal Computers Support Services provide the sharing of resources (file server, print server and
communication server functionalities). An X.400 Electronic Mail and an Archiving System are the
Office Cooperation Services designed for the integration of this soluction in a Multivendor
Architecture.

Vol 7 No 4-5 114 AUUGN

Philip Peake
Implementing UNIIX standards

Mail: ukc!philip@axis
Phone: +33 ! 4603 3775

Axis Digital
135 Rue D’Aguesseau
92100 Boulogne
FRANCE

As UNIX becomes more firmly established in the commercial computing world there is much
pressure, and resulting action for standardisation. For example, the SVID and X/OPEN
publications.

This presentation looks at some of the problems encountered during the development, and
subsequent porting of applications which either run on, or communicate with UNIX systems. Some
attention is also paid to the existing standards; as found in practice, and as proposed in the above
documents.

Dave Presotto
Matchmaker: The Eighth Edition Connection Server
Mail: ukc!presotto@research
Phone: + ! 201 582 5213

AT&T Bell Laboratories
Murray Hill
New Jersey 07974
USA

Matchmaker is a connection service for Eighth Edition UNIX. Using Matchmaker, processes can
connect to processes on the same system or across a variety of networks. Unlike other solutions to
this problem, such as 4.2 BSD’s sockets, ours separates network protocols and communication
properties to such an extent that application programs using it need not be cognizant of the network
or network protocol on which the connection is built.

Matchmaker is based on Dennis Ritchie’s Streams, a mechanism for providing two way byte streams
between processes and devices or between processes and other processes. The unique properties of
Streams make Matchmaker possible. Using Streams we can perform functions such as circuit setup,
circuit shutdown, and data stream processing in the kernel, in processes, or even in separate
processors as the situation dictates.

John Richards
Software for a Graphics Terminal in C

Mail: ucl-cs!richards@uk.ac.bristol.qvc
Phone: +44 272 303030

University of Bristol Computer Centre
University Walk
Bristol
BS8 ITW

This paper describes the development of software for incorporation in a new intelligent raster
graphics terminal. The terminal provides support for windows and graphics segments. The
software was written in C and developed and tested on a UNIXrM system before being placed in
ROM in the terminal. The paper shows how considerable use was made of structures and the
storage allocation functions to provide a generalised segment storage scheme. Examples are given of
the way language constructs were used to obtain fast, but portable, code. The finished software was
ported to the terminal with hardly any modifications.

115 Vol 7 No 4-5AUUGN

in System V.3

Mail: ukc!ue!!attunix!sfjec!apr
Phone: + 1 201 522 6283

AT&T Information Systems
190 River Road
Summit
NJ 07901
USA

Andy is a principal developer of AT&T’s distributed UNIX file system known as RFS. He joined
AT&T after receiving his masters degree in computer science from Corneli University.

The AT&T distributed file system known as RFS, provides users with transparent access to remote
filesystems. The goal behind RFS is to offer the complete functionality of the UNIX filesystem (i.e.,
special devices, record locking, named pipes) without compromising the UNIX filesystem semantics.
That is, programs which run in a single machine environment will run in an RFS environment with
no change.

The implementation of RFS is done at the kernel level, using the standard UNIX mount command
to access remote resources. RFS was designed to be both protocol and media independent using the
Streams architecture available in UNIX System V Release 3.

This talk will describe the RFS architecture from both a communication and kernel perspective. In
addition a comparison between RFS and other available distributed file systems will be made in
order to highlight their differences.

Russel Sandberg
Design and Implementation of NFS

Mail: ukc!inset!sunuk!sun!phoenix!rusty
Phone: + 1 415 960 1300

Sun Microsystems Inc
2550 Garcia Avenue
Mountain View
CA 94043
USA

The Sun NFS provides transparent, remote access to filesystems. Unlike other remote filesystems
available for UNIX, NFS is designed to be easily portable to other operating systems and
architictures.

This paper describes the design and implementation of NFS along with some experience of porting
it to other systems.

David Tilbrook
Managing a Large Software Distribution

Mail’ ukc!dt@ist
Phone: +44 1 581 8155

Imperial Software Technology
60 Albert Court
Prince Consort Road
London
SW7 2BH

One of the major problems at IST is the management of more than eight mega-byte of software and
related data for IST’s own machines and those of our clients. For obvious reasons it is desirable to
centralize the management of the source in a single location and to extract the distributions as
required. This presents a variety of problems, principally with respect to the variations in the target
systems. This paper discusses the solutions developed to overcome the differences between
operating systems, interdependcies within the source, the variations in the available software tools.

Vol 7 No 4-5 116 AUUGN

Peter Weinberger
The Eighth Edition Remote Fi|esystem
Mail: ukc!pjw@seki
Phone: + i 201 582 3000 ex: 7214

AT&T Bell Laboratories
Murray Hill
NJ
USA

Peter is famous for at least two pieces of work. Firstly, he is the W in AWK (Aho, Weinberger and
Kernighan), that useful pattern matching and scanning language the we all use daily. His second
well known work is in the area of distributed filesystems, in particular he was responsible for the
initial design and implementation of the Edition VIII remote filesystem.

In Florence, Peter will explain the motivation behind this work on the remote filesystem and study
the model of the world it assumes.

Lauren Weinstein
Project Stargate

Mail: ukc!lauren@vortex
Phone: + 1 213 645 7200

Computer/Telecommunications Consultant
PO BOX 2284
Culver City
CA 90231
USA

This paper and talk will review the current status of the ongoing "Stargate" project, which is
experimenting with the transmission of "netnews"-type materials over the satellite vertical
broadcasting interval of television "Superstation" WTBS, a very widely available basic cable
television service in the United States. The techniques used allow the Stargate data to exist in
parallel with the standard video and audio of the television operation. Satellite-delivered WTBS is
currently available to over 33 million cable subscribers (households and businesses) throughout the
United States, .and is also received directly by privately owned satellite earthstations. This paper
discusses both the technical and non-technical (i.e. organizational, content, policy, etc.) aspects of
the project.

AUUGN 117 Vol 7 No 4-5

The Florence Competition

Peter Collinson

Secretary- EUUG

We have had many silly competitions at many conferences but the one in Florence attracted the
most entries to date. It was probably the promise of a bottle of Champagne which focussed
people’s minds -- but it was a good basic idea and was also some fun.

The problem was to invent a new error message and a mnemonic name for the message. If you are
unfamiliar with the introduction to Section 11 of most UNIX manuals, then you should know that
error messages which are returned by the operating system kernel have a name starting with the
letter ’E’, and a value which is usually irrelevant. A routine perror translates these numbers back
into visible strings which many programs then print out as an error message to you, the humble
(and often mystified) user.

So here are (nearly all) the entries, we have some names but not all, so all names are suppressed to
prevent unjust accusations of timewasting from the people paying for the trip.

E3PO Robot dumped

ENOINSTRUCTIONSET Microcode failure -- hard to get this back to the program

EBGB Too early (before Great British Time)
EOK Doesn’t conform to standards

EFREEZE Too cold to start

EVAPOWARE Feature not implemented, please recode
ENOSTD Standard not defined for this feature

ECANTDOIT Your operation cannot be carried out

EBUGFOUND (char *) NULL
EBYGUM Attempt to walk and use System V semaphores, simultaneously, con-

currently, asynchronously or at the same time
ESVID Attempt to use a standard system call
EIEIO Farmyard mail

EEXPORT Feature cannot be exported from the US

ELODPOD LOgic error Delayed until PrOgrammer Dead
EEYORE Fundamental error

ENOP Operating system not present

EZPZ No trouble at all (helps if you read in this in American)
ERIP Process died

EEC Error Executing C

EAHUM I am thinking about that one!
EHOTI’UB Feature only works in California
EBYGUM ’trouble at mill’ general purpose diagnostic proposed by Lancashire User

Group as part of the UNIX dialectisation effort
EEZY Task not sufficiently challenging
EGONRONAY Lunch break forced

E + + Error producing conference papers

ELLANFAI RPWLLGWYNGYLLGOGERYCHWYRNDROBWLLLLANTYSYLIOGOGOGOCH
String too long "["

"[" A place in North Wales, meaning "St. Mary’s (Church) by the White Aspen over the Whirlpool and St. Tysilio’s
(Church) by the red cave".

Vol 7 No 4-5 118 AUUGN

ELLAN FAIRPG

EDTNC
ENOTON UNIX

ET
EI2U

ENOVAX

ENOFOOT
EEC

EMSTD

ENOCOFFEE
ESEE

E42

ELT36

ENOLICENCE

ENOLICENSE

e = mc2

ENOTUNIX

ESQUAWK
E134
ENOMONEYNOFUN

EOSDMCC

EMACS

EMACS
EPOF

ENIH

ENAMETOOLONG

F

EOF

EbHUH
EPHUH

ERROTIC

E)
E2SMART

ei~r

ENOTFOUND

EIQ0

EIEIO

ENOALCHOHOL

EXPENSIVE

ENOJOY

EBCDIC

EGLIDER

ECHO

ETC

:!: Llanfair P.G is the local’s name

System V version of the above$

No dt, No Comment

Not a UNIX system
Phone home
Error in Italian User Group

Sorry, no VAX
Footnote missing

Warning 8-bit character in use

Too many standards
Queue too long

Inspect code carefully

Answer found

too few bits

Bootleg kernel

American Bootleg kernel
Sub-atomic integrity violation (distributed garbage collection in progress)

Attempt to do anything sensible on a non-UNIX sy, stem
Something queer in awk

EEC meaningless standard error
Insert more coins

Operating system drunk methanol and can’t C

Machine crunching process
Over consumption of resources

You have forgotten the power switch

Wrong remote file access method

Recursive operation

Too many possible errors

Oh f*** it anyway
Wrong baud rate

Wrong bit size

Processor not found
CPU turned on

Line error

Device or controller has a brain the size of the universe; can’t be both-
ered with your stupid little read, anyway

Root port onto negative login hardware

Wrong include file
User error

Error in ethernet interface I/O

Failure on stdin

Social dinner cancelled

Speaker not found
Extra big character detected in crash

Pilot dumped

Chronic hangover error
Tilbrook comment error

for the place. "

AUUGN 119 Vol 7 No 4-5

EHAL

ETM FST

EALP

ENOBAR

EYEORE

EDCBA

EEEEEK

SNA response to NRS/RFS

Too many file system types
(uucp) only l l0bps South of the Alps

You have a Danish terminal
Donkey not found

rev command not found

/dev/mouse escaped

The Jury had to consume many a gin before making some
Rushing into third place was

EUUG

A close second was

E

Unknown user group

Too verbose

but the undoubted winner was

incoherent decisions about the entries.

ENOTOBACCO Read on an empty pipe

Vol 7 No 4-5 120 AUUGN

[]

The USENIX Association Newsletter

Volume 11, Number 5

CONTENTS

September/October 1986

Third Computer Graphics Workshop ...3
Contributions to ;Iogin: ...3

Cogito, An Expert System to Give Installation Advice for UNIX 4.2BSD ...4
A. Terry Bahill and Pat Harris

BSD UNIX Manuals - The Next Chapter ..9

4.3BSD Manual Reproduction Authorization and Order Form13

Access to UNIX Standards ...14

Call for Papers: Human-Computer Interaction ..15

Call for Papers: Washington, DC, USENIX Conference ... 16
Tutorials to be Offered in Washington ...18

Future Meetings ...18

Summary of Board of Directors’ Meeting in Denver, January 14-17 ...19
Summary of Board of Directors’ Meeting in Napa, March 19-21 ..20
Long Range Planning Committee ..22

Financial Statements - 1985 ...23
Book Review: The UNIX C Shell Field Guide ..27

Marc D. Donner
Atlanta Videotapes Available ..28
Publications Available ...29

NZUUG Offers Kiwis ...29
Local User Groups ...30
Ten Years Ago in ;Iogin: (a.k.a. UNIX News) ...31

The closing date for submissions for the next issue of ;login: is October 31, 1986

AUUGN

THE PROFESSIONAL AND TECHNICAL UNIX® ASSOCIATION

121 Vol 7 No 4-5

A. Terry Bahill
and

Pag Harris~

Systems and Industrial Engineering
University of Adzona
Tucson, AZ 85721

When you try to use a computer, your first effort inevitably fails. You then recall the sage
advice, "If all else fails, read the instructions." So you decide to do this. But where do you
start? For the tasks described in this paper the instructions were hundreds of pages long
spread over a several manuals. So we wrote an expert system to help the human use this data.

In this paper we will discuss Cogito, an expert system that gives installation advice for
bringing up the UNIX 4.2BSD operating system on a VAX computer [1]. A detailed reference
manual is currently used for installation instructions. Task complexity limits this method. Cogito
filters the information and presents only relevant advice al:~ut the user’s computer system.
Cogito remembers data the user has previously entered and uses this to customize its response.
Cogito, written in M.1 and running on a personal computer, uses if-then production rules to
encode the knowledge. Cogito’s knowledge base has two components: classification
knowledge and process.knowledge. Classification knowledge transforms one kind of knowledge
into another. Production rules are appropriate for Cogito’s classification knowledge. Process
knowledge directs the flow of information and the explanation for that knowledge. Cogito’s
process knowledge is difficult to encode with production rules because in describing the
installation process the expert does not think in terms of rules.

Problem Statement

Installing a computer system is an evolutionary process consisting of a series of operations that transform
a computer into a complex system capable of supporting many users and functions. There are two basic types
of system installation: system building an~ device integration° System building is required when the computer
hardware is delivered and involves installation of the operating system. Device integration is required when a
new device is obtained and must be integrated with the rest of the system. This paper will only discuss system
building.

The knowledge needed to do system installation is fact=intensive because hardware and software
designers have already made many decisions regarding the system structure. Consequently, system installation
dictates a long, interconnected series of steps to get the hardware and software to interact correctly. This
process is especially complex with the UNIX operating system since it is designed to be as portable as possible,
supporting many different types of computers and devices. For example, 4.2BSD UNIX supports three VAX
models, three communication buses, 21 disk drive types, 11 tape drive types and 22 device types. Simple
combinatorics yields the number of 45,000 minimal systems (one VAX cpu, one communication bus, one disk
drive, one tape drive and one console terminal). Almost no one has a minimal system. However, our Systems
and Industrial Engineering Department’s VAXoUN~X system is close to minimal: it has one VAX cpu, two
communication buses, one disk drive, one tape drive and two other devices. For this system there are
approximately a half a million combinations.

"Present address Bell Communications Research, New Jersey°

Vol 7 No 4-5 122 AUUGN

;Iogin:

Established Method

Information regarding system installation of UNIX 4.2BSD is contained in the UNIX Systems Manager’s
Manual [2], and the UNIX Programmer’s Manual Reference Guide [3]. The UNIX 4.2BSD Systems Manager’s
Manual is an extensive reference document that explains in detail the making and installing of UNIX 4.2BSD.
The Programmer’s Manual Reference Guide provides detailed information about specific devices that may be
attached to the computer. Unfortunately, these reference manuals are also forced to serve as the only tutorials
available for making and installing the UNIX system. They are not well suited for this task for several reasons.

First, the manuals’ structures do not provide a model of the problem for system installers to base their
learning on. Additionally, the information is often written at a higher level than inexperienced system installers
can understand and explanations are sometimes pages distant from the first example. Finally, the wide variety
of possible VAX computers, disks, tape drives, controllers, printers, terminals and other hardware makes it
impossible for a linear explanation, such as in a book, to distinguish all the relevant information for a particular
user. Consequently, to install the operating system with this method, a system installer must painstakingly seek
to understand and extract the information needed for his or her system from the vast amount of details for all
possible combinations provided by the manuals.

Example Rules

We transformed this vast amount of information into if-then production rules for .our expert system. The
following shows examples of these rules.

This rule sets up the correspondence between the DEC disk name and the DEC-bus that it is attached to.
dt-hp-a: if disk = ’RM03’

or disk = ’RM05’
or disk = ’RM80’
or disk = ’RP06’
or disk = ’RP07’
then disk-bus = ’MASSBUS’.

This rule establishes the first level correspondence between DEC disk names and their UNIX counterparts.

dt-hp-b: if disk = ’RM03’
or disk = ’RM05’
or disk = ’RM80’
or disk = ’RP06’
or disk = ’RP07’
then standalone-disk-name = hp.

These rules establish the UNIX-to-UNIX relationship between the standalone disk names and their controller
designations. This demonstrates the nonobvious relationships that occur in UNiX-land that are very similar to the
English language tradition of irregular verb forms; some forms fit the pattern, while most do not.

dtc-1: if standalone-disk-name = hk
then controller = hk.

dtco2: if standalone-disk-name = ra
then controller = uda.

dtc-3: if standaloneodisk-name = rx
then controller = fx.

dtc-4: if standalone-disk-name = up
then controller = sc.

These two rules show that non-DEC disks can be attached to either the UNIBUS or the MASSBUS, but the UNIX
disk types are decidely different.

AUUGN 123 Vol 7 No 4-5

;login:

dt-26: if disk = ’AMPEX 330M’
and disk-bus = ’UNIBUS’
then disk-type =capricom.

dt-34: if disk = ’AMPEX 300M’
and disk-bus = ’MASSBUS’
then disk-type = 9300.

User Satisfaction

Cogito is a better method for system installation than using the UNIX Systems Manager’s Mamtal, in
terms of overall user satisfaction, because the amount and relevancy of the information presented is significantly
increased. For example, in the disk definition state the file/ere/f stab must be created. Assume that the boot
disk is a ’AMPEX 300M’ connected to uba0 at drive 1. This implies that the disk address is 1. Also assume the
user’s name is ’Pat’ and that he is ready to install fstab. The instructions given in the manual are generic and
therefore the human must relate the general instructions to the specific application. Figure 1 is a copy of a the
relevant section of the manual.

4.4.1. Initializing/etc/fstab
Change into the directory/etc and copy the appropriate file from:

fstab.rrnO3
fstab.rm05
fstab.rm80
fstab.ra60
fstab.raSO
fstab.ra81
fstab.rp06
fstab.rp07
fstab.rk07
fstab.up160m (160Mb up drives)
fstab.up3OOm (300Mb up drives)
fstab.hp4OOm (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)

to the file/etc/fstab, i.e.:
cd/etc
cp fstab~xxx fstab

This will set up the initial information about the usage of disk partitions, which we see how to update more below.

Figure 1: Installation of fstab from [2].

Cogito’s instructions to complete the same task are:

cd/etc
cp fstab.up300m junk
vi junk
(Edit the file, Pat.)

a. Add the line ’/dev/up0b::sw::’.
b. Give the global substitute command ’:g/up0/s//upl/’.
c. Save the new contents and quit the editor.)

cat junk >> fstab

Cogito has remembered that half an hour ago the user said his name was Pat and his disk was an AMPEX
300M and has used this information to make its instructions specific. Cogito’s instructions are personalized,
relevant to the user’s task, clear and complete!

Vol 7 No 4-5 124 AUUGN

;Iogin:

This example illustrates that the manual’s instructions are incomplete, and rely on previous knowledge and
implicit knowledge: they are incomplete because the swap partition /dev/upOb, must be added to the file; they
rely on previous knowledge because the user must recall that the UNIX standalone disk name for a ’AMPEX
300M’ is ’up’; and they rely on implicit knowledge because the user must somehow know that the disk address
of the partitions needs to be changed from ’0’ to ’1’

To address the issue of whether Cogito is the best system for advising on UNIX system installation,
qualifications must be made. As originally designed, Cogito has two user classes: a system builder and a
system integrator. It’s interesting to note that although the knowledge base is the same for both kinds of users,
Cogito is inadequate for the system integrator user. All the appropriate information is given to the user but the
instrument on which it is displayed is wrong. Transmission of the advice via a personal computer seems
inconvenient when the VAX computer is running. Ideally, Cogito should have the capability to run on the VAX
computer once it is up and running. This includes the ability to transfer information "learned" by Cogito in the
system building stage into a database where it can be retrieved when configuring a new device. Unfortunately,
this cannot be done because M.1 only runs on a personal computer.

Information Flow

Information flow is concerned with the data transfer from the user into Cogito and the corresponding
transfer of advice from Cogito to the user. The information flow depends on the knowledge base structure.
Since Cogito is based on the backward chaining inference engine M.1, both direction flows (into and out of
Cogito) depend on a goal-oriented knowledge base structure. Ideally the knowledge base is a true reflection of
how the expert thinks about the problem. In Cogito, the knowledge base was originally constructed without
reference to a particular inference engine. For instance, an original rule near the end of the configuration state
was:

if config done then
config NAME
cd ../NAME
make depend
make vmunix

As implemented in Cogito the control method of the inference engine imposed a backward chaining thought
process to occur. Hence, using M.1, the implemented version of the same rule is:

if display(’ # config NAME ’)
and display(’ # cd ../NAME’)
and display(’ # make depend ’)
and display(’ # make vmunix ’)
then config is done.

Looking at Cogito from the end user’s viewpoint, the questions asked and the advice presented appear to be
given in a logical, relevant and concise manner. However, the implemented knowledge base structure of Cogito
suffers from an unnatural viewpoint, forced by the control method used in the inference engine.

Choice of Expert System Shell

We had two conveniently available expert systems shells to choose from: M.1, primarily a back chainer,
and OPS5, primarily a forward chainer. Although the problem domain seems to be data driven, which would
suggest a forward chainer, we found that either shell worked. The knowledge base was just a little longer using
the back chainer. The decision to use M.1 was primarily based on the differences in rule implementations.
Cogito’s rules are English-like phrases, whereas, with OPS5, the rules are reminiscent of LISP code, the
implementation language. Experts not familiar with LISP have trouble reading and understanding the content of
the rules. It is important that the knowledge engineer be able to verify with the expert that the intent of the ru!e
is the same as the coded rule. This is especially crucial if the expert system is giving incorrect advice.

AUUGN 125 Vol 7 No 4-5

Testing this expert system was difilc~a~to ~t was imr~ossib~e to present it with even/possiNe combination of
inputs and evNuate its outputs. -~[-he best test We devised was to ~et the intended users use it in many
hypothetical circumstances° ~f the know~edg~ base was incomplete, then, in some situations the advice given to
the users should be inco~recto Cogito was tested by the Systems Administrator of the Department of Systems
and IndustriN Engineering, a Professor of Systems and IndL~striN Engineering, and the Systems Administrator for
the Department of Computer Science° They al~ found C¢~]ito’s advice to be complete and correct.

One of our co~ieagues suggested that the system be tested by 12 random graduate students and that the
results be subjected to statisticN analysis. We fe~t this wou~d ~8 unfair, ~cause the system was designed to be
used by people with a good know~edge of comp~te~° hardware and ~J~q~X software and we only knew of four
such people on the University of Arizona campus (the builder of the system and the three testers).

In an effort to ~ster our testing we asked severn nonoeX~rt ~mputer users to try the system. Their
evaluations tended to emphasize the difficulties they had using it or making sense of its quedes or output, and
the extent to which they could "foo~" the system with plausiMe (but nonsensicN) inputs. They did not fool this
system. So, we did our best to test O~ito, but we were not aNe to prove that it would always give the correct
advice. Testing seems to ~ a problem with most expert systems°

The best way to test this system would have been to use it to bring up a a brand new system.
Unfortunately no such system was availaMeo The next L~st test wou~d have been to shut down an existing
system, and rebuild it using Cogitoo Unfortunately no one wants to ~et you shut down their operationN system.
Recently, however, due to inadequate g~ue on the heads of our RAg1 disk, we had to rebuild our system from
the distribution tapes. Cogito belied us. We found a few omissions in O~ito’s advice, but no mistakes. It was
a big help. We completed the task in about 12

This experience has reinforc~ our belief that all exp~stt: systems are inad~uate~y tested. There are no
quantitative procedures for testing expe~t systems° Most tests merely involve running a few case studies; they
do not exhaust all ~ssibi~itieSo For e)(ample, we are confident that Oogito works welt for a small VAX 750
system but we cannot ~ sure that it wi~ wo~k as wel~ for a 730 or a 780°

How can one identify a task that is appropriate for an expe~t system? First, there must be a human expert
who performs that task batter than most other p<sopte. Second, the task must ~ one to which the human
expert can explain the ~ution in word~,, not one that requi~es the es~p{srt to draw a picture to explain what to
do. Third, can the problem be solve<l ~outinely in a 20 mi~~ute, or even a one hour, telephone conversation with
the expert? ~f so, the problem is a good candidate for a personN c~>mputer based exert system. If a human
would take two days to so~ve the problem, it is fa~ too complicated fo~ a~-~ ex~t system; if the human gives the
answer in two seconds, it is t~ simp~eo

Given these criteria, giving advice for bringing up UNiX on a VAX computer was inappropriate for a personal
computer based exert system° Bringing up UI!~X cannot be do~e in a one hour conversation with an expert.
We think it would take an expert one to two days to do the task° (~t tool< us three months to do it the first
time!) The 700 ru~es of this expert system fi~ed up two floppy dis!<so We succc<aded in making an expert
system that worked, but it was ha~d work° We think a mo~’e powerfu~ too~ (such as KEE, Soi, ART, or Knowledge
Craft) would have been more appropdateo

For further information about C<~ito, phone ~Professor Bahi~ a~ (602) 621o.6561o

We thank Phi~ Kas~o and Bi~ Gano÷ for testing our expert syste~o

[1] P. N. Harris, COG~TO: H~ e~cpert system that gives advice jbr making and i~sta/ling UNiX 4.2BSD on VAX-
1~ series computers° ~nive;sity of Arizona: master’s thesi.% 198~o

[2] UNIX Systems Manage~-’s .Mammal E~ Ce~dto: ~JSEttI× As~’iatio~, t985o

[3] UNIX Programmer’s/1//msual £eferenee Guide. El eerdto: USEt1~X Association, 1985.

Vol 7 No 4°5 I26 AUUGN

;Iogin:

Access to UNiX Standards

John S. Quarterman
USENIX Representative to the IEEE P1003.1 Committee

usenix!jsq

The IEEE P1003.1 Portable Operating System for
Computer Environments Committee is sometimes
known colloquially as the UNIX Standards Committee.
They have recently published the 1003.1 "POSlX "
Trial Use Standard. According to its Foreword:

"The purpose of this document is to define a
standard operating system interface and environment
based on the UNIX Operating System documentation
to support application portability at the source level.
This is intended for systems implementors and
applications software developers."

Copies are available at $19.95, with bulk discounts
available. To order, call

IEEE Computer Society
(714) 821-8380

Request IEEE]003.! Trial Use Standard - Book
#967.

The Trial Use Standard will be available for
comments for a period of about a year. The current
target for a Full Use Standard is Fall 1987. IEEE has
initiated the process to have the 1003.1 effort brought
into the International Organization for Standardization
(ISO) arena.

There is a paper mailing list through which
interested parties may get copies of drafts of the
standard. To get on it, or to submit comments
directly to the committee, mail to:

James Isaak
Chairperson, IEEE/CS P1003
Charles River Data Systems
983 Concord St.
Framingham, MA 01701
decvax!frog!jim

Sufficiently interested parties may join the working
group. The next scheduled meetings of the working
group of the committee are

September 17-19, 1986 Pale Alto, CA
hosts: Amdahl, HP and Sun

December 9-11, 1986 Atlantic City, NJ
same time as X3J11

March 2-6, 1987 Toronto, Ont.

POSIX is a trademark of the IEEE.

June 8-12, 1987 Phoenix, AZ
(the week of the USENIX
Conference)

September 1987 New Orleans, LA

There is also a balloting group (which intersects with
the working group). Contact the committee chair for
details.

Related working groups are:

group , subject co-chairs
1003.2 shell and tools Hal Jespersen (Amdahl)

Don Cragun (Sun)
1003.3 verification Roger Martin (NBS)

Carol Raye (AT&T)

1003.1 and 1003.2 will meet concurrently in Pale Alto
on September 17.

There is frequent discussion of issues related to the
various P1003 committees in the Usenet newsgroup
mod.std.unix (soon to be known as comp.std.unix).

The Abstract of the 1003.1 Trial Use Standard
adds:

"This interface is a complement to the C
Programming Language in the C Information Bulletin
prepared by Technical Committee X3J11 of the
Accredited Standards Committee X3, Information
Processing Systems, further specifying an
environment for portable application software."

The liaison from X3J11 (sometimes known as the C
Standards Committee) to P1003 is

Don Kretsch
AT&T
190 River Road
Summit, NJ 07901

A contact for information regarding publications and
working groups is

Thomas Plum
Vice Chair, X3J11 Committee
Plum Hall Inc.
1 Spruce Avenue
Cardiff, NJ 08232

There is frequent discussion of X3J11 in the Usenet
newsgroup mod.std.c (that newsgroup will eventually
be known as comp.std.c).

AUUGN 127 Vol 7 No 4-5

;Iogin:

The/usr/group Standard is the principle ancestor ¯
of P1003.1:

/usr/group Standards Committee
4655 Old Ironsides Drive, Suite 200
Santa Clara, CA 95054

The price is still $15.00.

Heinz Lycklama of Interactive Systems Corp. is the
/usr/group institutional representative to P1003.1.

The System V Interface Definition (The Purple
Book): this is the AT&T standard and is one of the
most frequently-used references of the IEEE 1003
committee.

System V Interface Definition, Issue 2
Select Codes 320-011 (Volume 1) and 320-012
(Volume 2) or Select Code 307-127 (both volumes).

AT&T Customer Information Center
2833 North Franklin Road
Indianapolis, IN 46219
1-800-432-6600, operator 77.

The price is $37 for each volume or $57 for the pair.
Major credit cards are accepted for telephone orders:
mail orders should include a check or money order.
Previous SVlD owners should have received a
discount coupon to upgrade to Release 2 for only
$37.
Volume 1 is essentially equivalent to the whole
previous SVlD; Volume 2 is mostly commands and a
few add-ons (e.g. curses). A third volume is expected

in the last quarter of 1986 to cover new items in
System V Release 3, such as streams and
networking. There may be an upgrade discount
similar to the previous one. A draft copy is reputed to
be available now to source licensees.

The X/OPEN Portability Guide (The Green Book)
is another reference frequently used by IEEE 1003.
X/OPEN is "A Group of European Computer
Manufacturers" who have produced a document
intended to promote the writing of portable facilities.
(They now have member computer manufacturers
from outside Europe.) Their flyer remarks (in five
languages), "Now we all speak the same language in
Europe."

The book is published by

Elsevier Science Publishers
Book Order Department
P.O. Box 211
1000 AE Amsterdam
The Netherlands

or, for those in the U.S.A. or Canada:

Elsevier Science Publishers Co Inc.
P.O. Box 1663
Grand Central Station
New York, NY 10163

The price is Dfl 275,00 or US $75.00. According to
the order form, "This price includes the cost of one
update which will be mailed automatically upon
publication."

Vol 7 No 4-5 128 AUUGN

;Iogin:

The UNiX C Shell Fie d Guide by Gail Anderson and Paul Anderson
(Englewood Cliffs, NJ: Prentice-Hall, inc., 1986) $23.95

Reviewed by Marc D. Donner

ucbvax!ibm.com !donner

Back when I was first learning UNIX the conventional wisdom held that you used the C shell as your Iogin
shell because it had aliases and history but that you wrote all of your shell scripts in the old Bourne shell
because it had a simpler interface. More conventional wisdom held that you only .wrote shell scripts if they were
short because the performance was so terrible, the only exceptions being things that were executed rarely or
that had to be portable as files without recompiling, for example the re script.

The UNIX C Shell FieM Guide is a lengthy tutorial introduction to the C Shell. The recent fame of our
favorite operating system has resulted in an explosion of publications offering to teach us things about UNIX.
Despite the fact that I rarely learn anything from any of them, ~ regularly purchase all the latest offerings in the
hope that I will find some great insight offered up. Let’s look at this new book and see what it has to offer.

This is a tutorial, so experienced hackers can go back to sleep. The English is reasonably good, a definite
plus in a tutorial. The prose is warm and friendly, something that will make many a novice user feel good, but it
is a bit too cutesy for my taste, i found my hackles rising several times in response to phrasing that I found
patronizing. This is a clear sign that I am not part of the intended, market for this book.

Now that we have identified the intended audience, novices, let’s take a look at it from their perspective.
As a novice’s tool it is fairly daunting. The book is almost an inch thick, holding 374 pages. The table of
contents is ten pages long, making it difficult to grasp the overall structure and content of the book looking at it.
The index is quite good, and it is the last section of the book, to the authors’ credit. All too often the publisher
appends many pages of trash at the .end of a trade book like this, making the job of finding the index so difficult
as to destroy the utility of the book. i won’t dignify their pun of replacing the heading for the X section of the
index with IX with any comment.

The authors took the three Jesuit principles of teaching to heart: repetition, repetition, repetition. Each
important topic is covered several times, though their presentation would be much better if the cross referencing
were better. The overview section on aliases should refer the user to the chapter and page of the in-depth
section on aliases, for example.

A tutodal should provide the reader with some simple examples to try, and this one does that quite well.
Some of the examples are a bit contrived, detracting from their instructional and mnemonic value. The
explanation associated with the examples is faidy spotty. Sometimes it is clear and informative, and sometimes
it contains flat statements of fact unilluminated by any attempt at motivation. For example, when exhibiting a
call to find with the argument ’{}’ to indicate where to substitute the path name, the book simply states the
meaning of the argument, with no motivation or apology. Perhaps it isn’t fair to pick on f~nd, widely known to be
the most obnoxious command in UNIX, but maybe the authors shouldn’t have used it in an example.

There is one fairly serious technical flaw in this b(x)k. The most important thing they could teach about the
C Shell or any shell is the environment state problem, it is important to emphasize that a shell script, executing
in a child process, cannot modify the state of the parent shell. The only way that a shell script can modify the
parent environment is to be invoked by the source command. This restricts the script to the shell language
interpreted by the parent or Iogin shell. This problem is so important and so confusing to novices that it almost
merits a chapter of its own.

The most important thing that I look for in a tutorial is some help in organizing the material so that I can
structure it and remember it. This is best done by identifying and highlighting important general principles and
returning to them from time to time in the exposition and in the examples. This book’s greatest weakness is its
shortage of general organizing principles, though this drawback might better be ascribed to the subject matter.
The book is full of interesting details, but short on compelling generalizations or mnemonics.

AUUGN 129 Vol 7 No 4-5

;login:

Most chapters have a summary of key points and a collection of hints and cautions, a wonderful idea.
Unfortunately, the things that are warned about in the hints and cautions sections are not always the important
things. The problem with environment modification mentioned above doesn’t make it to the hints and cautions
section, for example. Overall, this book doesn’t do a very good job of warning the user about the dangers of
using the C Shell. The. C Shell is very powekrful, but also very dangerous. When I taught a bunch of novices
how to use it a while ago most of my presentation was concerned with hazardous things to watch out for ... the
power and function are sufficiently exhibited in the man pages.

Does the world need another book about the C Shell? Does the world need this one? That’s difficult to
answer. This book has its charm, but I woBder about its utility. If I were asked to design a book about the C
Shell, it would be quite a bit different from this one. It would be no more than 100 pages long and it would be
primarily reference material, organized for easy reference. The recent AT&T C .handbook is an outstanding
example of how to do this well. If it had a tutorial section, it would be much shorter than this one and would
emphasize general principles through examples, rather than details.

Vol 7 No 4-5 130 AUUGN

lOg"
The USENIX Association Newsletter

Volume 11, Number 6

CONTENTS

November/December 1986

The Future of ;Iogin: ..3

Software Distribution Tape 86.2 ..4

4.3BSD Manual Shipping Delay; ...4
5Personalizing the Impersonal

Dave Taylor
Future Meetings ...12

Hindsight is 20/20 ..13

Washington D.G. Meeting Program ...14

WeirdNIX... or Destructive QA of a Standard ..27

SALE! SALE!! SALE!!! ..28

Why Source Licenses? ...29

Ten Years Ago in ;Iogin: (a.k.a. UNIX News) ...29

4.3BSD UNIX Manuals ...30

4.3BSD Manual Reproduction Authorization and Order Form ..31

Summary Of Board of Directors’ Meeting in Atlanta, June 9-10 ..32

The ’Stargate’ Project ..33

Atlanta Videotapes Available ..33

Future Workshops ...33

Local User Groups ...34

The closing date for submissions for the next issue of ,’login: is January 5, 1987

THE PROFESSIONAL AND TECHNICAL UNIX® ASSOCIATION

AULTGN 131 Vol 7 No 4-5

;Iogin:

Personalizing the Impersonal

and Other Tales of Communication in the
Computer Age

Dave Taylor

Hewlett-Packard Laboratories
hplabs!taylor

Introduction

One of the greatest drawbacks of computer-based communication is the lack of presence of the medium.
When we talk to someone in person, we can see them, receiving cues from their clothing, posture, facial
expressions, and their very physical presence. On the telephone we also receive considerably more information
that just the words, including volume, pitch and intonation.

On computers, however, there is nothing but the words themselves. This leads to a surprising number of
problems in communicating, mostly, due to our language having evolved to be spoken, rather than written.

To combat this, a number of interesting techniques are becoming commonplace, most of which are
attempts to personalize the medium. Herein we’ll present a brief overview of the most common attempts,
including overt hostility, flaming, and various stylistic topics, and discuss motivational factors.

Simulating Visual Cues

When talking to someone in person, one of the most useful sources of information is body language.
Many books have been written on interpretation of visual cues. Such cues are not available with computer-
based communications, however, and a number of alternative ways of simulating them have arisen. Perhaps the
most noticeable is the ubiquitous smiley-face ":-)" which, when viewed by tilting your head to the left, actually
looks like a face. This is used to represent a specific cue, as are a number of variations.

:-) This is used at the end of a passage of text to indicate that the previous was either sarcastic or should
be taken as a joke. For example, it’s common to have phrases like "If this was a QUALITY system...
:-)" where the understood meaning is that the phrase is said in jest, not seriously.

;-) (A "winking" smile) This is similar ir~ meaning to the previous, but is used as a stronger expression of
levity. It’s also quite commonly used to indicate lewd, but lighthearted, comments. For example, "So,
want to sleep at my place when you’re in town? ;-)" Again, the understood meaning is that it’s all in
fun.

:-((Unhappy face) This symbol represents unhappiness, and usually is used to emphasize a bad event
occurring, as in: "and our SYSOP told me we don’t DO backups anymore!! Two months worth of work
LOST! :-("

That these symbols have "evolved" purely because of the need to transmit such cues is an interesting example
of the communicative value of non-verbal aspects of language.

Simulating Verbal Cues

Some members of the electronic community feel that the caricatures are "juvenile," however, and they add
cues in a manner more akin to a playwright (the previous can be typified as a cartoonist approach). Their
communications are punctuated by phrases expressing the appropriate verbal and visual cues:

"Trust me. This’It work! *evil laugh*"

Obviously, this approach tends to convey more information than the icons, with the penalty of increased
verbosity.

Vol 7 No 4-5 132 AUUGN

;Iogin:

The stressing of individual words or phrases (verbal cues) also shows the varied approaches taken; by far
the most common cue being all uppercase letters. There are a large number of different techniques currently
being used:

"....and then SUE walked in to the room. [just *couldn’t* believe it.
Of all the people to show up, >Sue< was the last one [was expecting!
It was \flreally\fP mind-boggling!"

The last example, the word being surrounded by "\fl" and "\fP" is worth special note - it is the sequence in a
popular text formatting system by which one generates italics. It’s as if the author assumes that the reader can
emulate the formatting system. (Another example of this is more common - underlined phrases are delimited by
leading and trailing underscores, as in _this phrase_. A different text formatting system uses this notation to
delimit a passage to be underlined. As with the other form, it’s assumed that the person can interpret the text
accordingly).

Presentation Styles

As anyone who took a high school typing class will know, oftentimes the form is as important as the
content of a message. Computer-based communications systems are no different and a number of different
presentation styles have evolved to allow the authors to express their individuality.

The most common is to have nonindented paragraphs and ragged right margins. Other popular formats
are to add indentations (and they, of course, vary from two characters up to ten), to indent the entire text, to
have "inverse paragraphs" (that is, where the first line is flush left and the rest of the lines of a paragraph are
indented, traditionally used for expository lists) and to have both left and right margins aligned.

The last, left- and right-justified text, can only be accomplished through the use of intermediate programs.
This is intriguing because these authors are willing to place an artificial barrier between themselves and the
medium in which they are writing, in the interest of a unique presentation style. It is akin to writing a letter to
someone in pencil and then overwriting each character in ink.

Another common presentation style, due to the high rate of quoting present, is exemplified by:

Message from Person B:
> Person A writes:
> So I told my manager that their expectations were artificially high

Really? You actually had the courage to tell him that?

> and that if they really want to have the project
> complete on time that they should stop giving me new people to break in

snicker

> and just let me.GET ON WITH THE JOB!

Right on!

What’s interesting about this is that Person B has decomposed the original message into "conceptual units" and
commented on them individually. Here’s a further example:

Message from Person C:

> Person A writes:
> So I told my manager that their expectations were artificially high

I’ve found it common to have managers that don’t
understand the reality of us folk on the front lines.

Good stuff. C.

AUUGN 133 Vol 7 No 4-5

;Iogin:

Notice that the original meaning has been lost. In fact, readers who haven’t seen the original might easily
misconstrue the quote to be a general criticism of management by A, when it was not meant to be at all.

This is, paradoxically, due to the lack of a proper context for the quote. It seems to be a general problem
with the sequential soliloquy dialogues of computer conferencing systems - authors are expected to minimize
the quoting of others (to avoid "information overload") but at the same time must ensure that they don’t quote
others out of context.

Writing Styles

Along with presentation styles, and methods of quoting, different authors are finding that specific
recognizable styles are also aids towards personalizing their communications.

A number of examples exist, from the lack of capitalization of ’i’ when used as a pronoun to the complete
lack of capitalization of names, to the use of ellipses to end sentences.

There are many interesting examples of these, one of which exhibits a number of these styles:

Message from Person X:
Nice idea, but it should be more than just a *mail* transport
system -- it should include other forms of (only elect’tonic?)
communications as well.

Provide one [powerful, consistent] interface to the world, and
it will be SIMPLE. AND that means it’ll be useful.

That’s how i’d do it, at least.

There are a number of interesting occurrences here, including the use of parenthetical remarks to suggest
alternative interpretations of phrases, and the very unusual (in English prose) use of square brackets ("..one
[powerful, consistent] interface..") to delimit further meaning to the phrase.

Also notice that other rules of English prose are ignored with regularity, such as beginning a sentence with
a conjunctive ("AND that means...") or, as already noted, not capitalizing proper names.

It is this deliberate alteration of the language normally used for communication that is the tie-in with the
personalization of the medium.

Signatures

Perhaps one of the most interesting areas of personalization of communication is the message closings,
the individual signatures. Not surprisingly, it’s common to see messages where the closing section is actually
considerably longer than the body.

In this inherently impersonal medium, the signature is the one place, more than any other, where authors
freely exhibit their individualism.

Electronic signatures may be broken into the following sections: closing salutations, the "signature" name,
and disclaimers.

Closing salutations in more traditional mail are typically "Sincerely," or "Affectionately yours," etc. In
electronic communications, by contrast, closing salutations are much more varied:

Take care, art. Share and enjoy,
May the light of love, cheers!
fill your life

From the Crow’s Nest,

Note that some are indicative of the author personally caring about the unknown reader (presumably with the
assumption that if the author exhibits concern about the reader, then the reader will, in return, care about the

Vol 7 No 4-5 134 AUUGN

;Iogin:

author), another is a "generic" salutation (with overtones of a particular lifestyle, however, e.g. the social
drinking of alcohol) and the next is a self-label based on their place of employment (identifying with a group).

It’s also interesting to note that certain conferences tend to have groups of mutually supportive members.
The examples above are all from such a tight knit group.

If we examine a group with a more technical orientation, therefore, the closing salutations are, as expected,
more technically oriented:

From the tty of, Guru-in-Waiting,

Thanks in Advance, In Real Life,
Any Ideas?

These are requests for information and less personal altogether. There is Still the tendency to personalization,
though, but it is much less apparent than in the more social groups.

Interestingly, technical groups have a fair number of unsigned articles, where there is a message body only.
This almost never occurs in the more social groups.

Lacking the flair and individuality of handwriting, the closing name tends to be "permuted" to personalize
them instead:

_J -- John Doe

-- jd -- John "Kilter" Doe

John "I don’t use it" Doe

As a lot of messages originate while the author is at work, disclaimers are also common as postscripts:
"Disclaimer: The above ideas are mine--I don’t y’et know who agrees with me."
"(The opinions above are my own, colored by’ my’ experiences, education and
experimentation, and should not be confused with any’one else, unless they’
wish to share them, and in so, enrich us both)"

Notice that even in a standard section like a disclaimer, there is a large degree of personalization, to the point
that the original intent of the disclaimer (to ensure that readers don’t misconstrue the message as representative
of the organization the author is a member of) has been lost entirely.

(I expect to have people contact me saying "That’s my signature!" or something equivalent. This
occurrence will show the degree to whichthe personalization of the medium has succeeded - there are
thousands of people who send electronic messages every day, and yet we still recognize our own prose!)

Using Fictitious Names

I will only touch on this topic since it has been covered in detail elsewhere, but it’s interesting to note that
there is a fair amount of self-enforced anonymity on conferencing systems - people will use names like "pooh"
or "phoenix" (often to avoid name recognition when met in person, but that’s another topic entirely). In more
socially-oriented discussion forums, there is more likelihood that someone will be "masquerading" as another,
perhaps fictional person.

Also common is for people to "represent" fictitious organizations on the system, occasionally so as not to
discredit where they work. Examples are a person from NASA having "The Home for Retired Hackers" as their
organization, or someone from Sun Microsystems having their organization listed as "Fictional Reality, Ltd."

AUUGN 135 Vol 7 No 4-5

;Iogin:

Hostility

A number of interesting articles have been written on the high level of emotion on conferencing and
electronic communications systems, but it’s worth another look from the perspective of personalizing an
impersonal medium.

A typical electronic message is considerably more flamboyant and "charged with emotionalism" than the
equivalent message in a more traditional medium (e.g. in person). The main reason for this is the desire to
personalize the medium. Authors of messages are often judged purely on the content of the message rather
than on the numerous other possible information cues, so the message has to be significant.

Consider a typical sequence of electronic mail messages (we’re joining the conversation in mid-stream.
Ignore the actual details of what is being discussed and read the tone and extreme emotion of the messages):

Message From Person 1
Subject: Re: termdb and so on...
>-- PARICULARLY when Company X then doesn’t include the sources to the
>termdb descriptions...
Give me a break...What the heft more do you want?

Real difficult. Termdb just beats the pants off the old system;
the sooner it disappears the better.

Notice the occurrences of inflammatory phrasing when a less dramatic tone would have sufficed. Particularly
notice the overt hostility of the phrase "What the hell more do you want?" The number of spelling/grammatical
mistakes is also surprisingly high - including the misspelling of particularly. Finally, notice the number of
occurrences of colloquialisms, including "step forward," "giving a break," "beats the pants off," and so on.

Replyfrom Person 2:
>Give me a break...What the heLL more do you want?

"what the heLL more do you want?" Sounds Like a nasty attitude
<person 1>...So what’s your problem <person 1>? Why are you jumping
down the throat of some frustrated user? This is not a good sign of
your understanding of the Customers’ needs. You do understand that
(no customers = no jobs) don~t you? You know, we reaLLy can walk across
the street now, and we just may if attitudes Like yours don~t improve real quick.

Again, notice the hostility, and especially the aggressive physical threat against the previous author "...we really
can walk across the street now, and we just may..."

Compare the last to another person’s response to the same original message.:

Replyfrom person 3:
> Give me a break.o.What the hell more do you want?
.

> Real ~fficuLt. Termdb just beats the pants off the old system;
> the sooner it disappears the better.

FLAME ONt:

t Flames are particularly hostile remarks. See the section entitled ’Flaming’ for a further discussion of this phenomenon.

Vol 7 No 4-5 136 AUUGN

;Iogin:

Unfortunately, not all of us happen to have SVR3, nor do we have
dbcmp(1) or anything similar. But that’s not my biggest beef...

...I do *not* like having to clean up after it throws up on my
filesystem, and I definitty do not consider that a "huge step
forward in design".

Flame off.
By the way, if anyone can send me an untic program, I would be
much obliged...

This time notice the fascinating transition from overt hostility to a request for helpful information ("By the way,
..."). It’s almost as if the phrases "Flame On" and "Flame Off" completely release the author from having to be
civil, since the reader "understands" that the section is an aberration.

Finally, we’ll end this listing of messages with another from the author of the original:

A reply from Person 1:
>"what the hell more do you want?" Sounds like a nasty attitude <person 1>

I apologise for the snipey remarks.

>So what’s your problem <person 1>? Why are you jumping down
>the throat of some frustrated user?

Because the frustrated user was ranting and raving. If I flame
about you, you have every right not to be civil to me.

>This is not a good sign of your understanding of the Customers’ needs.

! understood exactly what the needs were. I just didn’t like
how they wer.e conveyed, and the misinformation along with it.
The user gets to yell and scream, but I don’t? Feh.
If you talk reasonable, so will I.

Based on the last message, we could argue that to some extent the conferencing system is a self-moderated
group, with people being publicly embarrassed by others and then apologizing to the entire group, but I don’t
think that this is the case at all. A close reading of the last message seems rather to indicate that the author is
saying "1’11 pretend to be sorry, but I’ll phrase it in such a way as to vindicate myself and shift blame to the
original author." Consider the meaning of the very last sentence relative to the rest of the message... "If you
talk. reasonable, so will I."

This rather long example is a particularly interesting one, as it not only demonstrates a number of the areas
I’ve been discussing, including extensive quoting, adding verbal cues and so on, but also is an excellent sample
of the flamboyant emotionalism of the medium.

Hecklers

While the previous problem seems widespread in computer-based communications, another, more glaring,
example of this occurs occasionally due to the inability to suppress inflammatory interjections by hecklers. In an
interpersonal situation it is easy to have someone forcibly removed if they get overly abusive, but in a distributed
environment, there is no way other than peer pressure, which is oftentimes too difficult to coordinate (especially
if the consensus is to ignore the offender).

Before we consider why this sort of behavior might tempt someone, let’s see an example:

Message f~om <person X>
Subject: flames were catted for

AUUGN 137 Vol 7 No 4-5

;Iogin:

I have read a few notes on the boardsor should I say flames of sorts
about my posting about <x> etc. For those of you who didn’t read my last
note, the one that appears right before this one, then please do, and I
welcome any E-mail flames or non-flames you might have. I think in
reality its a subject that people are to afraid to talk about openly...

I posted my feelings about the subject can you?

Not only is this a very inflammatory message to include in an international.conference, but it’s also a fine
example of the what causes this type of antisocial behavior. It’s the same motivational factor that causes
authors to personalize the medium, just exaggerated: the need to "fit in" and be accepted and appreciated by
peers.

Specifically, on a system where one receives electronic mail from people one has never met, a simple
measure of popularity is the amount of mail one receives and the number of times one is referred to in other
messages. With hecklers, it seems that the context in which they are referred to is irrelevant.

To support this, consider the phrases "1 welcome any E-mail flames or non-flames that you might have"
and "1 posted my feelings about the subject can you?" surrounding statements that deliberately provoke the
reader (e.g. "1 think that ... its [sic] a subject that people are to [sic] afraid to talk about...").

From this perspective it becomes obvious why heckling can be a successful strategy: to receive lots of
electronic mail. This is why a number of conferencing systems are plagued with this type of antisocial behavior.

Flaming

Another area worthy of note is the concept of flaming. In the common vernacular it’s used as a way of
apologizing in advance for eould be construed as overly hostile and abusive writing. The message presented
previously, with the "Flame On/Flame Off" bracketing is quite typical, and is an attempt to add the ability to get
angry without public embarrassment.

In normal life we all have moments of hostility, often towards others. A typical reaction is to go to a third
party and complain (either an involved person (e.g. a boss) or an interested party (e.g. a spouse or friend)) or to
confront the cause. If the original incident is somehow aired publicly, however, the injured party will feel that the
response should be broadcast in a similar fashion. This is most noticeable in the mud-slinging of politicians
during elections.

On the other hand, if the medium is a persistent one that others could possibly turn against the injured
party, an attempt is made to somehow excuse the reply, to somehow let it be known that the following reaction
is temporary and should not be construed as indicative of typical behavior of the author.

This is the role that the flaming appears to have taken. It is a method by which authors can write
extremely hostile and inflammatory remarks, oftentimes littered with obscenities, without having their names
"besmirched."

Positive Aspects

While these attempts to personalize the medium might seem to make it harder to read and understand the
information being transmitted, there is an important benefit that hasn’t been mentioned.

Electronic communications systems are the first form of communication where people are more akin to
"expressers of ideas" rather than individuals with the idiosyncratic quirks we exhibit in person. That isn’t to say
that the medium is totally impersonal - we’ve already seen this isn’t the case - but when one reads a message
from another, the only information available is the message itself. There are no external cues to pick up on,
such as age, race, sex, appearance, and such.

This has some significant ramifications in the treatment of tl~e handicapped in our society. Currently, most
handicapped people, either "visibly" handicapped or otherwise, are treated differently from those that don’t
exhibit any disabilities. Subsequently, when handicapped persons desire to communicate their ideas to the rest

Vol 7 No 4-5 138 AUUGN

;Iogin:

of a group, their ideas and thoughts are treated differently too (and too often discounted, as if a physical
disability automatically means the person is mentally impaired as well).

On the computer-based communications systems, though, we’ve seen that all the common cues are
simulated through various techniques. This directly translates to people being equal regardless of their physical
or mental state until the message is read. The act of communication is completely on the message itself, and
nothing else.

As a direct consequence of this, some members of conferencing systems have what would ordinarily be
considered serious impairments yet they can participate without anyone else knowing they are handicapped.
(This is not to say that all handicapped people wish they weren’t, but certainly they desire to be treated as
equals, as do all minorities.)

Finally

This is only a brief overview of the different ways by which people have begun to personalize this medium,
and as the computer systems become more powerful (being able to transmit graphics, and font information, like
italicize or embolden) we are sure to see yet more interesting and innovative ways to personalize electronic
communications.

Note

The predominant source for the information presented in this article has been the Usenet, ,~n international
distributed conferencing system running on the UNIX® operating system, the conferencing system on the "Well"
(The Whole Earth ’Lectronic Link) and private electronic mail.

Specific conferences that I’d like to acknowledge as being used for the examples are net.singles, a social
group that discusses topics relevant to being single in our society, net.unix, a highly technical conference
oriented towards questions and discussions about the UNIX operating system and related software, and
sexuality, a forum discussing sexuality in our society on the Well.

The book The Network Nation, by Starr Roxanne Hiltz and. Murray Turoff (Addison Wesley, 1978) explores
a number of these.topics in greater detail, and was helpful in confirming a number of observed behaviors and the
probable motivations causing them.

AUUGN 139 Vol 7 No 4-5

;Iogin:

Hindsight is 20/20
absoh~tel), anonymoust

The sad plight of computer professionals rears its
ugly head each time a new salary survey emerges.
More and more nowadays we find that lawyers,
doctors, and even accountants are heading up the
salary scale. Computer people? "Well," many say,
"My brother works at a bank. He makes pretty good
money."

How did the world’s most honored and
technically challenging profession end up out of first
place? We didn’t use our heads in 1957; that’s how.
Let’s do a comparison with the medical field.

The medical field deals with a rather complex
machine, the human body. Doctors make life and
death decisions. They administer drugs, perform
surgery, diagnose diseases, and in general try to
maintain the machine in good working order.

Oh, doctors have a few good perks: good
salary, prestige, a place in the community. Doctors
make BIG MONEY. They work hard, though, they tell
us. They have to get up early in order to perform
surgery (or to deliver babies!). They have to spend
many years in school. They have to put up with a
general public which is often abusive and
unappreciative.

How different is our field? We deal with a
complex machine. If we accidentally kill it, it’s our job
to fix it. If we can’t fix it, we don’t get paid! Doctors
get paid no matter what. We don’t administer drugs
but we perform surgery, diagnose problems, and in
general maintain machines in 100% working order;
99% is not enough. Have you ever heard a field
engineer say, "George, I’m afraid we’re going to have
to amputate your floating point accelerator; it has
cancer." Of course not. How about, "Harry, I’m
afraid your payroll program has but six months to live.
You better get its affairs in order."

Do we make BIG MONEY? I don’t. I don’t know
many who do. Do we work hard? Of course we do.
Do we get up early (or stay up late)? You bet. Years
of school? Lots of computer jockeys with Ph.D.’s
spent more than a decade in school. Put up with an
abusive public? Ha!

I,I’ttERE DID H.’E GO H.’RONG? I’m glad you
asked that. Firstly, we did not point out how complex
and extraordinary our machines are. You know, not
just anyone can plug in a new Multibus disk controller.
Chips? We should have guarded them like the King’s
Orb. We actually ENCOURAGED people to learn how
to design, program, and repair our lovely machines.
What a screw-up. We should have raised machines
at least to the level of sanctity of the human body,
maybe as high as the gods themselves.

Doctor schools have controlled admissions.
There’s never enough doctors. In a supply/demand
economy, we flooded the world with supply. Dumb,
dumb, DUMB. Did we license programmers? Oh no.
Anyone can program; just read any LOGO book. Go
to your local high school; are the kids practicing with
new drugs (therapeutic drugs, you knew what !
meant) or practicing performing surgery on their
siblings? Of course not. They’re too busy shooting
aliens on their Apple lie.

So, like it or not, we’re doomed to be also-rans in
the world of professionals. There’s nothing we can
do now short of hoping for a tremendous EMI pulse
from some solar flare that will knock out every
computer from here to the mountain in Boulder. We
can’t just shoot every BASIC or COBOL programmer

-on the earth. We’ve lost it.

Maybe we should try again in Gallium-Arsenide.
Think anyone would believe that it’s actually magic
and requires an applied wizardry degree?

tThe following anonymous piece of humor arrived in my e-mail. -PHS

Vol 7 No 4-5 140 AUUGN

The USENIX Association Newsletter

Volume 12, Number 1

CONTENTS

January/February 1987

Call for Papers - Summer 1987 USENIX Conference ..3
;login: has New Technical Editor: ...4
Ten Years Ago in ;login: (a.k.a. UNIX News) ..4
How To Write a Setuid Program ..5

Matt Bishop
Call for Papers - 4th USENIX Computer Graphics Workshop ..12
An Overview of the Sprite Project ...13

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch
Book Review: The C Programmer’s Handbook ..18

Marc D. Donner
Standards ...19
Call for Papers - System Administration Workshop ...20
Future Meetings ..~ ...21
Atlanta Videotapes Available ...21
4.3BSD UNIX Manuals ..22
4.3BSD Manual Reproduction Authorization and Order Form ..23
Proceedings of 3rd Graphics Workshop Available~24
Publications Available ..25
Human - Computer Interaction Conference ...25
Local User Groups ...26

The closing date for submissions for the next issue of ;login: is February 27, 1987

AUUGN

THE PROFESSIONAL AND TECHNICAL

UNIX® ASSOCIATION

141 Vol 7 No 4-5

;login:

Call For Papers

Summer 1987 USENIX Conference
June 8-12, Phoenix~ Arizona

Civic Plaza- Convention Center

Abstracts are being accepted from individuals wishing to present papers at the 1987 Summer USENIX
Conference. Abstracts should be 250-750 words long, emphasizing what is new and interesting about
the work. The final paper should be 8-12 pages when typeset.

Suggested topic areas include, but are not limited to:
¯ Kernel enhancements, measurements, etc.
¯ Programming languages and environments.
¯ UNIX in the office environment.
¯ Standards and portability.
¯ New mail systems (e.g., X.400-based systems or user interfaces incorporating new interface

paradigms).
¯ Applications, especially unusual ones such as computer aided music, factory automation, etc.
¯ Security.
¯ UNIX vs. the naive user.
¯ Workstations: comparisons, experiences, trends.
¯ Beyond UNIX - what next?

Vendor presentations should contain substantial technical information and be of interest to the
general community.

All abstracts will be due by February 20, 1987. Electronic submissions to ucbvax!phoenix or
phoenix@Berkeley.EDU are preferred. All authors whose abstracts are accepted must submit a paper
by the publication deadline or they will forfeit their talk. We currently plan to encourage electronic
submissions of final papers in troff format using the -ms or -me macros and the tbl, eqn, and pic
preprocessors.

Relevant dates:
20 February Abstracts due
16 March Notifications to authors
13 April Final papers due
10-12 June Conference program

The program committee consists of:

Eric Allman, Britton Lee (chair)
Greg Chesson, Silicon Graphics
Sam Leftler, Pixar
Jay Lepreau, University of Utah
John Mashey, MIPS
For additional information regarding the program, contact:

Eric Allman
Britton Lee
1919 Addison Suite 105
Berkeley, CA 94704
(415) 548-3211 (work) (415) 843-9535 (home)
ucbvax!eric eric@Berkeley.EDU

John Quarterman
Dennis Ritchie, AT&T Bell Laboratories
David Taylor, Hewlett-Packard
Chris Torek, University of Maryland

Please include your network address, if available, with all correspondence. This should be an Arpanet
address or a UUCP address relative to a well known host; if in doubt, start from mcvax, ucbvax,
decvax, or seismo.

Vol 7 No 4-5 142 AUUGN

;login:

How To Write z Setu d Program

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

UNIX systems allow certain programs to grant privileges to users temporarily;
these are called setuid programs. Because they explicitly violate the protection
scheme designed into UNIX, they are among the most difficult programs to write.
This paper discusses how to write these programs to make using them to compromise
a UNIX system as difficult as possible.

Introduction

A typical problem in systems program-
ming is often posed as a problem of keeping
records [1]. Suppose someone has written a
program and wishes to keep a record of its use.
This file, which we shall call the history file,
must be writable by the program (so it can be
kept up to date), but not by anyone else (so
that the entries in it are accurate). UNIX
solves this problem by providing two sets of
identifications for processes. The first set,
called the real user identification and group
identification (or UID and GID, respectively),
indicate the real user of the process. The
second set, called the effective UID and GID,
indicate what rights the process has, which
may be, and often are, different from the real
UID and GID. The protection mask of the file
which, when executed, produces the process,
contains a bit which is called the setuid bit.
(There is another such bit for the effective
GID.) If that bit is not set, the effective UID
of the process will be that of the person
executing the file; but if the setuid bit is set (so
the program runs in setuid mode), the effective
UID will be that of the owner of the file, not
that of the person executing the file. In either
case, the real UID and GID are those of the
person executing the file. So if only the owner
of the history file (who is the user with the
same UID as the file) can write on it, the
setuid bit of the file containing the program is
turned on, and the UIDs of this file and the
history file are the same, then when someone
runs the program, that process can write into
the history file.

These programs are called setuid
programs, and exist to allow ordinary users to
perform functions which they could not per-
form otherwise. Without them, many UNIX
systems would be quite unusable. An example
of a setuid program performing an essential
function is a program which lists the active
processes on a system with protected memory.
Since memory is protected, normally only the
privileged user root could scan memory to list
these processes. However, this would prevent
other users from keeping track of their jobs.
As with the history file, the solution is to use a
setuid program, with root privileges, to read
memory and list the active processes.

This paper discusses the security problems
introduced by setuid programs, and offers
suggestions on methods of programming to
reduce, or eliminate, these threats. The reader
should bear in mind that on some systems, the
mere existence of a setuid program introduces
security holes; however, it is possible to
eliminate the obvious ones.

Attacks

Before we discuss the ways to deal with
the security problems, let us look at the two
main types of attacks setuid programs can
cause. The first involves executing a sequence
of commands defined by the attacker (either
interactively or via a script), and the second,
substituting data of the attacker’s choosing for
data created by a program.

In the first, an attacker takes advantage of
the setuid program’s running with special
privileges to force it to execute whatever
commands he wants. As an example, suppose

AUUGN 143 Vol 7 No 4-5

;login:

an attacker found a copy of the Bourne shell
sh(1)t that was setuid to root. The attacker
could then execute the shell, and - since the
shell would be interactive - type whatever
commands he desired. As the shell is setuid to
root, these commands would be executed as
though root had typed them. Thus, the
attacker could do anything he wanted, since
root is the most highly privileged user on the
system. Even if the shell were changed to read
from a command file (called a script.) rather
than accept commands interactively, the
attacker could simply create his own script and
run the shell using it. This is an example of
something that should be avoided, and sounds
like it is easy to avoid - but it occurs surpris-
ingly often.

One way such an attack was performed
provides a classic example of why one needs to
be careful when designing system programs. A
UNIX utility called at(l) gives one the capabil-
ity to have a command file executed at a
specified time; the at program spools the
command file and a daemon executes it at the
appropriate time. The daemon determined
when to execute the command file by the name
under which it was spooled. However, the
daemon assumed the owner of the command
file was the person who requested that script to
be executed; hence, if one could find a world-
writable file owned by another in the
appropriate directory, one could run many
commands with the other’s privileges. Cases
like this are the reason much of the emphasis
on writing good setuid programs involves
being very sure those programs do not create
world-writable files by accident.

There are other, more subtle, problems
with world-writable files. Occasionally
programs will use temporary flies for various
purposes, the function of the program depend-
ing on what is in the file. (These programs
need not be setuid to anyone.) If the program
closes the temporary file at any point and then
reopens it later, an attacker can replace the

l" The usual notation for referencing UNIX commands is to
put the name of the command in italics, and the first time
the name appears in a document, to follow it by the sec-
tion number of the UNIX Programmers’ Manual in which
it appears; this number is enclosed in parentheses. There
are two versions of the manual referred to in this paper,
one for 4.2BSD UNIX [2], and one for System V UNIX [3].
Most commands are in the same section in both manuals;
when this is not true, the section for each manual will be
given.

temporary file with a file with other data that
will cause the program to act as the attacker
desires. If the replacement file has the same
owner and group as the temporary file, it can
be very difficult for the program to determine
if it is being spoofed.

Setuid programs create the conditions
under which the tools needed for these two
attacks can be made. That does not mean
those tools will be made; with attention to
detail, programmers and system administrators
can prevent an attacker from using setuid
programs to compromise the system in these
ways. In order to provide some context for
discussion, we should look at the ways in
which setuid programs interact with their
environment.

Threats from the Environment

The term environment refers to the milieu
in which a process executes. Attributes of the
environment relevant to this discussion are the
UID and GID of the process, the files that the
process opens, and the list of environment
variables provided by the command
interpreter under which the process executes.
When a process creates a subprocess, all these
attributes are inherited unless specifically reset.
This can lead to problems. ’

Be as Restrictive as Possible in Choosing the
UID and G1D

The basic rule of computer security is to
minimize damage resulting from a break-in.
For this reason, when creating a setuid
program, it should be giv6n the least
dangerous UID and GID possible. If, for
example, game programs were setuid to root,
and there were a way to get a. shell with root
privileges from within a game, the game player
could compromise the entire computer system.
It would be far safer to have a user called
games and run the game programs setuid to
that user. Then, if there were a way to get a
shell from within a game, at worst it would be
setuid to games and only game programs
could be compromised.

¯ Related to this is the next rule.
Reset Effective UIDs Before Calling exec:l:

~. Exec is a generic term for a number of system and
library calls; these are described by the manual pages
exec(2) in the System V manual and execve(2) and
execl(3) in the 4.2BSD manual.

Vol 7 No 4-5 144 AUUGN

;login:

Resetting the effective UID and GID
before calling exec seems obvious, but it is
often overlooked. When it is, the user may
find himself running a program with unex-
pected privileges. This happened once at a
site which had its game programs setuid to
root; unfortunately, some of the games allowed
the user to run subshells from within the
games. Needless to say, this problem was fixed
the day it was discovered!

One difficulty for many programmers is
that exec is often called within a library sub-
routine such as popen (3) or system (3) and that
the programmer is either not aware of this, or
forgets that these functions do not reset the
effective UIDs and GIDs before calling exec.
Whenever calling a routine that is designed to
execute a command as though that command
were typed at the keyboard, the effective UID
and GID should be reset unless there is a
specific reason not to.

Close All But Necessary File Descriptors Before
Calling exec

This is another requirement that most
setuid programs overlook. The problem of
failing to do this becomes especially acute
when the program being exec’ed may be a user
program rather than a system one. If, for
example, the setuid program were reading a
sensitive file, and that file had descriptor
number 9, then any exec’ed program could
also read the sensitive file (because, as the
manual page warns, "[d]escriptors open in the
calling process remain open in the new process

The easiest way to prevent this is to set a
flag indicating that a sensitive file is to be
closed whenever an exec occurs. The flag
should be set immediately after opening the
file. Let the sensitive file’s descriptor be sfd.
In both System V and 4.2BSD, the system call

fcntl(sfd, F_SETFD, 1)
will cause the file to close across exec’s; in
both Version 7 and 4.2BSD, the call

ioctl(sfd, FIOCLEX, NULL)
will have the same effect. (See fcntl(2) and
ioctl(2) for more information.)
Be Sure a Restricted Root Really Restricts

The chroot(2) system call, which may be
used only by root, will force the process to

treat the argument directory as the root of the
fi!e system. For example, the call

chroot("/usr/riacs")
makes the root directory /usr/riacs so far as
the process which executed the system call is
concerned. Further, the entry ’..’ in the new
root directory, is interpreted as naming the
root directory. Where symbolic links are
available, they too are handled correctly.

However, it is possible for root to link
directories just as an ordinary user links files.
This is not done often, because it creates loops
in the UNIX file system (and that creates
problems for many programs), but it does
occasionally occur. These directory links can
be followed regardless of whether they remain
in the subtree with the restricted root. To con-
tinue the example above, if /usr/demo were
linked to /usr/riacs/demo, the sequence of
commands

cd/demo
cd..

would make the current working directory be
/usr. Using relative path names at this point
(since an initial ’/’ is interpreted as/usr/riacs),
the user could access any file on the system.
Therefore, when using this call, one must be
certain that no directories are linked to any of
the descendants of the new root.
Check the Environment In Which the Process
Will Run

The environment tO a large degree
depends upon certain variables which are
inherited from the parent process. Among
these are the variables PATH (which controls
the order and names of directories searched by
the shell for programs to be executed), IFS (a
list. of characters which are treated as word
separators), and the parent’s umask, which
controls the protection mode of files that the
subprocess creates.

One of the more insidious threats comes
from routines which rely on the shell to
execute a program. (The routines to be wary
of here are popen, system, execlp(3), and
execvp(3)/f) The danger is that the shell will
not execute the program intended. As an
example, suppose a program that is setuid to
root uses popen to execute the program

~f execip and execvp are in section 2 of the System V
manual.

AUUGN 145 Vol 7 No 4-5

;login:

printfile. As popen uses the shell to execute
the command, all a user needs to do is to alter
his PATH environment variable so that a
private directory is checked before the system
directories. Then, he writes his own program
called printfile and puts it in that private
directory. This private copy can do anything
he likes. When the popen routine is executed,
his private copy of printfile will be run, with
root privileges.

On first blush, limiting the path to a
known, safe path would seem to fix the
problem. Alas, it does not. When the Bourne
shell sh is used, there is an environment vari-
able IFS which contains a list of characters
that are to be treated as word separators. For
example, if IFS is set to ’o’, then the shell
command show (which prints mail messages
on the screen) will be treated as the command
sh with one argument w (since the ’o’ is
treated as a blank). Hence, one could force
the setuid process to execute a program other
than the one intended.

Within a setuid program, all subprograms
should be invoked by their full path name, or
some path known to be safe should be prefixed
to the command; and the IFS variable should
be explicitly set to the empty string (which
makes white space the only command separa-
tors).

The danger from a badly-set umask is that
a world-writable file owned by the effective
UID of a setuid process may be produced.
When a setuid process must write to a file
owned by the person who is running the setuid
program, and that file must not be writable by
anyone else, a subtle but nonetheless
dangerous situation arises. The usual imple-
mentation is for the process to create the file,
chown(2) it to the real UID and real GID of
the process, and then write to it. However, if
the urnask is set to 0, and the process is
interrupted after the file is created but before
it is chown’ed the process will leave a world-
writable file owned by the user who has the
effective UID of the setuid process.

There are two ways to prevent this; the
first is fairly simple, but requires the effective
UID to be that of root. (The other method
does not suffer from this restriction; it is
described in a later section.) The umask(2)
system call can be used to reset the umask
within the setuid process so that the file is at

no time world-writable; this setting overrides
any other, previous settings. Hence, simply
reset umask to the desired value (such as 022,
which prevents the file from being opened for
writing by anyone other than the owner) and
then open the file. (The umask can be reset
afterwards without affecting the mode of the
opened file.) Upon return, the process can
safely chown the file to the real UID and GID
of the process. (Incidentally, only root can
chown a file, which is why this method will
not work for programs the effective UID of
which is not root.) Note that if the process is
interrupted between the open(2) and the
chown the resulting file will have the same
UID and GIDas the process’ effective UID and
GID, but the person who ran the process will
not be able to write to that file (unless, of
course, his UID and GID are the same as the
process’ effective UID and GID).

As a related problem, umask is often set
to a dangerous value by the parent process; for
example, if a daemon is started at boot time
(from the file /ere/re or /etc/rc.local), its
default umask will be 0. Hence, any files it
creates will be created world-writable unless
the protection mask used in the system call
creating the file is set otherwise.

Programming Style

Although threats from the environment
create a number of security holes,
inappropriate programming style creates many
more. While many of the problems in
programming style are fairly typical (see [4] for
a discussion of programming style in general),
some are unique to UNIX and some to setuid
programs.
Do Not Write Interpreted Scripts That Are
Setuid

Some versions of UNIX allow command
scripts, such as shell scripts, to be made setuid.
This is done by applying the setuid bit to the
command interpreter used, and then interpret-
ing the commands in the script.
Unfortunately, given the power and complex-
ity of many command interpreters, it is often
possible to force them to perform actions
which were not intended, and which allow the
user to violate system security. This leaves the
owner of the setuid script open to a devastat-
ing attack. In general, such scripts should be
avoided.

Vol 7 No 4-5 146 AUUGN

;login:

As an example, suppose a site has a setuid
script of sh commands. An attacker simply
executes the script in such a way that the shell
which interprets the commands appears to
have been invoked by a person logging in.
UNIX applies the setuid bit on the script to the
shell, and since it appears to be a login shell, it
becomes interactive. At that point, the
attacker can type his own commands, regard-
less of what is in the script.

One way to avoid having a setuid script is
to turn off the setuid bit on the script, and
rather than calling the script directly, use a
setuid program to invoke it. This program
shouldtake care to call the command
interpreter by its full path name, and reset
environment information such as file descrip-
tors and environment variables to a known
state. However, this method should be used
only as a last resort and as a temporary meas-
ure, since with many command interpreters it
is possible even under these conditions to
force them to take some undesirable action.
Do Not Use creat for Locking

According to its manual page, "The mode
given [creat(2)] is arbitrary; it need not allow
writing. This feature has been used ... by
programs to construct a simple exclusive lock-
ing mechanism." In other words, one way to
make a lock file is to creat a file with an
unwritable mode (mode 000 is the most
popular for this). Then, if another user tried
to creat the same file, creat would fail, return-
ing - 1.

The only problem is that such a scheme
does not work when at least one of the
processes has root’s UID, because protection
modes are ignored when the effective UID is
that of root. Hence, root can overwrite the
existing file regardless of its protection mode.
To do locking in a setuid program, it is best to
use link(2). If a link to an already-existing file
is attempted, link fails, even if the process
doing the linking is a root proc(ss and the file
is not owned by root.

With 4.2 Berkeley UNIX, an alternative is
to use the flock(3) system call, but this has
disadvantages (specifically, it creates advisory
locks only, and it is not portable to other ver-
sions of UNIX).

The issue of covert channels [5] also arises
here; that is, information can be sent illicitly

by controlling resources. However, this
problem is much broader than the scope of
this paper, so we shall pass over it.

Catch All Signals
When a process created by running a

setuid file dumps core, the core file has the
same UID as the real UID of the process.~" By
setting umask’s properly, it is possible to
obtain a world-writable file owned by someone
else. To prevent this, setuid programs should
catch all signals possible.

Some signals, such as SIGKILL (in System
V and 4.2BSD) and SIGSTOP (in 4.2BSD), can-
not be caught. Moreover, on some versions of
UNIX, such as Version 7, there is an inherent
race condition in signal handlers, When a sig-
nal is caught, the signal trap is reset to its
default value and then the handler is called.
As a result, receiving the same signal
immediately after a previous one will cause the
signal to take effect regardless of whether it is
being trapped. On such a version of UNIX,
signals cannot be safely caught. However, if a
signal is being ignored, sending the process a
signal will not cause the default action to be
reinstated; so, signals can be safely ignored.

The signals ~SIGCHLD, SIGCONT,
SIGTSTP, SIGTTIN, and SIGTTOU:~ (all of
which relate to the stopping and starting of
jobs and the termination of child processes)
should be caught unless there is a specific rea-
son not to do this, because if data is kept in a
world-writable file, or data or lock files in a
world-writable directory such as/trap, one can
easily change information the process (presum-
ably) relies upon. Note, however, that if a
system call which creates a child (such as
system, popen, or fork(2)) is used, the
SIGCHLD signal will be sent to the process
when the command given system is finished;
in this case, it would be wise to ignore
SIGCHLD.

~ On some versions of UNIX, such as 4.2BSD, no core file
is produced if the real and effective UIDs of the process
differ.
:~ The latter four are used by various versions of Berkeley
UNIX and their derivatives to suspend and continue jobs.
They do not exist on many UNIXes, including System V.

AUUGN 147 Vol 7 No 4-5

;login:

This brings us to our next point.
Be Sure Verification Really Verifies

When writing a setuid program, it is often
tempting to assume data upon which decisions
are based isreliable. For example, consider a
spooler. One setuid process spools jobs, and
another (called the daemon) runs them.
Assuming that the spooled files were placed
there by the spooler, and hence are "safe," is
again a recipe for disaster; the at spooler
discussed earlier is an example of this.
Rather, the daemon should attempt to verify
that the spooler placed the file there; for exam-
ple, the spooler should log that a file was
spooled, who spooled it, when it was spooled,
and any other useful information, in a
protected file, and the daemon should check
the information in the log against the spooled
file’s attributes. With the problem involving
at, since the log file is protected, the daemon
would never execute a file not placed in the
spool area by the spooler.
Make Only Safe Assumptions About Recovery
Of Errors

If the setuid program encounters an unex-
pected situation that the program cannot han-
dle (such as running out of file descriptors), the
program should not attempt to correct for the
situation. It should stop. This is the opposite
of the standard programming maxim about
robustness of programs, but there is a very
good reason for this rule. When a program
tries to handle an unknown or unexpected
situation, very often the programmer has made
certain assumptions which do not hold up; for
example, early versions of the command su(l)
made the assumption that if the password file
could not be opened, something was
disastrously wrong with the system and the
person should be given root privileges so that
he could fix the problem. Such assumptions
can pose extreme danger to the system and its
users.

When writing a setuid program, keep track
of things that can go wrong - a command too
long, an input line too long, data in the wrong
format, a failed system call, and so forth - and
at each step ask, "if this occurred, what should
be done?" If none of the assumptions can be
verified, or the assumptions do not cover all
cases, at that point the setuid program should
stop. Do not attempt to recover unless

recovery is guaranteed; it is too easy to
produce undesirable side-effects in the process.

Once again, when writing a setuid
program, if you are not sure how to handle a
condition, exit. That way, the user cannot do
any damage as a result of encountering (or
creating) the condition.

For an excellent discussion of error detec-
tion and recovery under UNIX, see [6].
Be Careful With I/0 Operations

When a setuid process must create and
write to a file owned by the person who is run-
ning the setuid program, either of two
problems may arise. If the setuid process does
not have permission to create a file in the
current working directory, the file cannot be
created. Worse, it is possible that the file may
be created and left writable by anyone. The
usual implementation is for the process to
create the file, chown it to the real UID and
real GID of the process, and then write to it.
However, if the umask is set to 0, and the
process is interrupted after the file is created
but before it is chown’ed, the process will
leave a world-writable file owned by the user
who has the effective UID of the setuid
process.

The section on checking the environment
described a method of dealing with this situa-
tion when the program is setuid to "root. That
method does not work when the program is
setuid to some other user. In that case,, the
way to prevent a setuid program from creating
a world-writable file owned by the effective
l_liD of the process is far more complex, but
eliminates the need for any chown system
calls. In this method, the process fork(2)’s,
and the child resets its effective UID and G1D
to the real LIID and GID. The parent then
writes the data to the child via pipe(2) rather
than to the file; meanwhile, the child creates
the file and copies the data from the pipe to
the file. That way, the file is never owned by
the user whose UID is the effective UID of the
setuid process.

Some UNIX systems, notably 4.2BSD,
allow a third method. The basic problem here
is that the system call setuid(3)t can only set
the effective UID to the real UID (unless the
process runs with root privileges, in which

This system call is in section 2 of the System V manual.

Vol 7 No 4-5 148 AUUGN

;login:

case both the effective and real UIDs are reset
to the argument). Once the effective UID is
reset with this call, the old effective UID can
never be restored (again, unless the process
runs with root privileges). So it is necessary to
avoid resetting any UIDs when creating the
file; this leads to the creation of another
process or the use of chown. However, 4.2BSD
provides the capability to reset the effective
UID independently of the real UID using the
system call setreuid(2). A similar call,
setregid(2), exists for the real and effective
GIDs. So, all the program need do is use these
calls to exchange the effective and real UIDs,
and the effective and real GIDs. That way, the
old effective UID can be easily restored, and
there will not be a problem creating a file
owned by the person executing the setuid
program.

Conclusion

To summarize, the rules to remember
when writing a setuid program are:

® Be as restrictive as possible in choosing
the UID and GID.

o Reset effective UIDs and GIDs before cal-
ling exec.

¯ Close all but necessary file descriptors
before calling exec.

® Be sure a restricted root really restricts.

, Check the environment in which the
process will run.

, Do not write interpreted scripts that are
setuid.

. Do not use creat for locking.

. Catch all signals.

® Be sure verification really verifies.

¯ Make only safe assumptionsabout
recovery of errors.

® Be careful with I/O operations.

Setuid programs are a device to allow
users to acquire new privileges for a limited
amount of time. As such, they provide a
means for overriding the protection scheme
designed into UNIX. Unfortunately, given the
way protection is handled in UNIX, it is the
best solution possible; anything else would
require users to share passwords widely, or the
UNIX kernel to be rewritten to allow access

lists for files and processes. For these reasons,
setuid programs need to be written to keep the
protection system as potent as possible even
when they evade certain aspects of it. Thus,
the designers and implementors of setuid
programs should take great care when writing
them.

Acknowledgements

Thanks to Bob Brown, Peter Denning,
George Gobel, Chris Kent, Rich Kulawiec,
Dawn Maneval, and Kirk Smith, who
reviewed an earlier draft of this paper, and
made many constructive suggestions.

References

[1] Aleph-Null, "Computer Recreations,"
Software - Practise and Experience 1(2) pp.
201-204 (April-June 1971).

[2] UNIX System V Release 2.0 Programmer
Reference Manual, DEC Processor Version,
AT&T Technologies (April 1984).

[3] UNIX Programmer’s Manual, 4.2 Berkeley
Software Distribution, Virtual VAX-II Ver-
sion, Computer Science Division, Depart-
ment of Electrical Engineering and Com-
puter Science, University of California,
Berkeley, CA (August 1983).

[4] Kernighan, Brian and Plauger, P., The Ele-
ments of Programming Style, Second Edi-
tion, McGraw-Hill Book Company, New
York, NY (1978).

[5] Lampson, Butler, "A Note on the
Confinement Problem," CACM 16(10) pp.
613-615 (October 1973).

[6] Darwin, Ian and Collyer, Geoff, "Can’t
Happen or /* NOTREACHED */ or Real
Programs Dump Core," 1985 Winter
USENIX Proceedings (January 1985).

AUUGN 149 Vol 7 No 4-5

;login:

An Overview of the $1 rite Project
John Ousterhout

Andrew Cherenson
Fred Douglis

Michael Nelson
Brent Welch

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

spriters@arpa.berkeley.edu

Introduction

Sprite is a new operating system that we
have been designing and implementing at U.C.
Berkeley over the last two years. The design
was strongly influenced by three pieces of
technology: local-area networks, large physical
memories, and multiprocessor workstations.
This article is a brief summary of how the
Sprite design reflects those technologies.

The single most important issue for us is
the network. We hope to provide simple and
efficient mechanisms for a collection of work-
stations (nodes) to work together over a local-
area network or small internet. Ideally, all of
the resources of the collection of nodes (files,
devices, CPU cycles, etc.) should be
transparently and efficiently accessible by each
of the nodes. We would like to achieve an
effect something like timesharing in its ~ase of
sharing, but with the high performance and
guaranteed interactive response that personal
workstations can provide. We’d like Sprite to
support communities of a few dozen to a few
hundred people; growth beyond this size is less
important to us than the "quality of life" we
provide for smaller communities. Sprite
provides two network-oriented features: a net-
work file system and a process migration
facility.

The second piece of technology that
influenced Sprite’s design is the ever-increasing
amout of physical memory available on work-
stations. Sprite takes advantage of large
memories with large file caches, both on clients
and servers. The nodes use a simple con-
sistency protocol to coordinate shared access
to files. The file caches adjust their sizes
dynamically, trading memory back and forth
with the virtual memory system.

The third technological influence on Sprite
is multiprocessors, which appear likely to
become available in workstation configurations
within a few years. To support multiproceso
sors, Sprite implements shared address spaces
and has a rriulti-threaded kernel.

Basics
There are several other experimental or

commercial operating systems that share some
of Sprite’s goals, particularly those related to
networks. These include LOCUS [6], V [2],
Accent [3], and systems marketed by Sun and
Apollo. Of these systems, Sprite is most like
LOCUS and Sun’s version of UNIX, in that the
kernel-call interface provided to user programs
is almost identical to that of 4.3 BSD UNIX.
However, while the kernels used by LOCUS
and Sun are based on early versions of the
BSD kernel, Sprite’s kernel has been rebuilt
from scratch. The Sprite kernel differs from
the BSD-derived kernels in two major ways: it
is based on a general-purpose kernel-to-kernel
remote procedure call package; and it is
multi-threaded.

The most important feature of the Sprite
kernel implementation is its remote°
procedure-call (RPC) facility, which the kernels
of different nodes use to request services of
each other [7]. The lightweight
connection/acknowledgement protocol in
Sprite’s RPC mechanism is similar to the
scheme of Birrell and Nelson [1]. Each kernel
contains a small set of server processes that
respond to incoming requests (the exact
number of processes varies dynamically in
response to the machine’s RPC load). We have
not yet implemented any particular security
mechanisms: each of the kernels trusts each of
the other kernels. Since we did not have

Vol 7 No 4-5 150 AUUGN

;login:

access to a stub generator, the server and client
stubs for each call were written by hand (there
are a few dozen of these).

The basic round-trip time for a simple
RPC with no parameters is about 5 ms on
Sun-2 workstations. Unlike Birrell and
Nelson’s scheme, Sprite’s RPC provides for
fragmentation of large packets. This allows
large blocks of data to be transferred between
kernels at more than 300 kbytes/sec, on Sun-2
workstations, which is 2 to 3 times faster than
we initially achieved without fragmentation.
See [7] for a detailed description and per-
formance analysis of Sprite’s RPC mechanism.

Our second major kernel change was to
support multiprocessors. The BSD kernels are
single-threaded: a proc.ess executing in the
kernel cannot be preempted and the system
code depends on the fact that a process execut-
ing in the kernel has exclusive access to all of
the kernel data structures. In a multiprocessor
configuration, it is not safe for more than one
process to be executing kernel code at a time.
In Sprite, we used a monitor-like approach,
with explicit locks on modules and data
structures. This allows more than one process
to execute kernel code at the same time, which
will be important when multiprocessor work-
stations become available.

The Network File System

The network file system is the heart of
Sprite. As in most timeshared UNIX systems,
the Sprite file system provides a shared
mechanism for naming, for long-term storage,
and for interprocess communication. To a
network of Sprite workstations, there appears
to be a single hierarchical UNIX-like file
system with a single shared root. The same
name yields the same file on every node of the
system. The basic operations on Sprite files
(open, close, read, write, seek, ioctl, lock,
unlock, etc.) behave the same as if they were
executed on a single BSD timesharing system,
instead of a network of workstations. This
differs from Sun’sNFS, which does not
support operationsrequiring state to be
maintained on theserver (e.g. lock and
unlock).

The three most unusual aspects of the
Sprite file system are its use of prefix tables for
server location, its implementation of client-
level caching, and its named pipes.

In any network file system with multiple
servers, there must be a mechanism to
determine which server is responsible for
which files. Typically, each server handles one
or more subtrees of the file hierarchy. In the
LOCUS and NFS file systems, each client main-
tains a static mount table that associates
servers with subtrees. There are no automatic
mechanisms to update mount tables when
server configurations change; as a consequence,
large network systems are difficult to adminis-
ter. In contrast, Sprite uses a more dynamic.
form of table called a prefix table. Each client
maintains a small table that associates servers
with subtrees using prefixes. When opening a
file, the first few characters of the file’s name
are matched against each of the prefixes in the
table; the open request is then sent to the
server associated with the longest matching
prefix. The prefix tables are created and
modified dynamically using a simple broadcast
protocol. There are no static global tables
identifying the system configuration; all that is
needed is for each server to know which
prefixes it serves and to respond to broadcasts
for information about those prefixes. Prefix
tables are also flexible enough to handle
private local subtrees and even a simple form
of replication; see [8] for details.

In Sprite, both clients and servers keep
main-memory caches of recently-used disk
blocks. As memories get larger and larger, we
expect these caches to get larger and larger too.
Within a few years, cache hit ratios of nearly
100% should be common (see [5] for trace-
driven predictions of cache effectiveness).
File-system block caches have two advantages
in a network operating system. First, they
reduce disk traffic; our preliminary measure-
ments suggest that this alone can result in fac-
tors of 2 to 5 in file-system throughput.
Second, they eliminate network traffic between
clients and servers, which provides an addi-
tional performance improvement.

The main problem with client file caches
is cache consistency. If multiple clients are
reading and writing a file at the same time,
each read request must return the most recent
information written to the file, regardless of
which nodes are making read and write
requests. Sprite guarantees cache consistency
by disabling client caching for any file that is
open foi" writing on one node while also open
for reading or writing on some other node.

AUUGN 151 Vol 7 No 4-5

;login:

Consistency is implemented by the servers,
with consistency actions being taken when files
are opened or closed. Each server keeps track
of which of its files are open on which nodes;
when a server receives an open request that
will result in conflicting access to a file, client
caching (for that one file) is disabled on all
nodes and the file’s dirty blocks (if any) are
flushed back from client caches to the server.
This scheme permits caching under multiple-
reader access, and also allows unshared files
with short lifetimes to be created, used, and
deleted entirely within a client cache, without
ever being written to the server.

Although Sprite’s approach suffers a per-
formance degradation when consistency
conflicts cause client caching to be disabled for
a file, our measurements of current UNIX
systems indicate that files tend to be open only
for very short intervals (reducing the likeli-
hood of a conflict), and that write-sharing of
files is extremely infrequent [5]. An alternate
approach is that of LOCUS, which is based on
token-passing. One node (the current owner of
the file’s token) is permitted to cache blocks of
a file, even when the file is open by multiple
readers and writers. The other nodes must
wait until they receive the token before access-
ing the file. In comparison to Sprite’s
mechanism, the token-passing approach
requires extra implementation complexity and
seems unlikely to reduce server traffic, since
client caches must be flushed whenever the
token changes hands.

In addition to the standard UNIX file
facilities, Sprite provides named pipes, which
combine the features of traditional UNIX files
and pipes. We expect named pipes to be used
instead of TCP/IP for inter-process communi-
cation within a Sprite system. A named pipe
has a name in the file system, occupies space
on disk, and persists even when not open by
any processes. However, it has the operations
of a normal pipe. Reads return the oldest data
in the pipe and remove that data from the
pipe atomically. Writes atomically append
data to the end of the pipe. Processes attempt-
ing to read from an empty named pipe are
suspended until data is written to the pipe.
Sprite named pipes are similar to LOCUS
named pipes, except that a Sprite named pipe
retains its information even when not open (in
LOCUS, un-opened named pipes are always
empty). Client and server caches are used to

avoid writing pipe information to disk unless
it is long-lived; we expect this to result in per-
formance at least as good as TCP/IP.

Virtual Memory

In comparison to the BSD implementation
of virtual memory, there are two major
changes in Sprite: shared address spaces and
backing files.

In anticipation of multiprocessor worksta-
tions, and to support closely-cooperating teams
of processes, Sprite provides a simple form of
address-space sharing. As in traditional UNIX,
each process’s address space consists of three
segments: read-only code, writable heap, and
writable stack. In UNIX, however, only the
code segment may be shared between
processes. In Sprite, both code and heap may
be shared. Stacks are still private. An argu-
ment to the fork system call determines
whether or not the new process will share the
heap of the old process. This mechanism
provides all-or-nothing sharing. It is suitable
for a collection of processes all working on the
same application, but does not allow a process
to share one area of memory with one set of
processes and a different area with a different
set of processes. The Sprite scheme is simpler
than the region-based memory mechanisms
being discussed for 4.4 BSD, but less powerful.

UNIX has traditionally used a special area
of disk for paging storage, with special-purpose
algorithms for managing the paging storage.
In contrast, Sprite uses ordinary files for pag-
ing storage. Each of a process’s three segments
has a corresponding backing file. For the code,
it is the binary file from which the program
was loaded (unless the code is to be writable);
for the stack and heap, temporary files are
allocated in a special directory of the file
system. Ordinary file operations are used to
read and write the backing files; storage for the
backing files is not allocated until pages are
actually written out [4].

Sprite’s use of backing files has several
advantages over the traditional UNIX
approach. First, it is simpler, since no special
algorithms need to be implemented for manag-
ing backing store. Second, by using the net-
work file system for backing files, the paging
information can easily be accessed by all the
nodes on the network; this is important for
process migration (see below). Third, it allows

Vol 7 No 4-5 152 AUUGN

;login:

the server’s disk cache to serve as an extended
memory for the clients it serves. Fourth, it
saves disk space since backing storage is only
allocated when needed. In contrast, the BSD-
based implementations of virtual memory
allocate statically a separate area of disk for
each workstation to use for backing storage.
The result is that backing storage occupies a
huge amount of disk space on the file servers,
with very little of it in actual use at any given
time. With the large block sizes and clever
disk allocation mechanisms used by modern
file systems, we don’t see any performance
advantage to using a special-purpose paging
store.

Virtual Memory vs. File-System Cache

Both the virtual-memory system and the
file cache require physical memory, and each
would like to use as much memory as possible.
In traditional UNIX, the file cache is fixed in
size at system boot time, and the virtual°
memory system uses what’s left. For Sprite,
we decided to permit the boundary between
virtual memory and file system to change
dynamically. When not much memory is
needed for virtual memory, the file cache can
grow to fill the unused memory; when more
memory is needed for VM, the file cache
shrinks. This allows applications with small
virtual memory needs (such as the compiler
and editor) to use almost all of memory as a
large file cache, while permitting larger appli-
cations to use all of memory for the pages of
their address spaces.

To implement the flexible boundary
between the file cache and VM, each
component manages its pages using an LRU-
like algorithm (perfect LRU for the file cache,
clock for VM). When VM needs a new page, it
compares the age of its oldest page with the
age of the file cache’s oldest page. If the file
cache’s page is older, then the file cache frees
up a page and gives it to VM. A similar
approach is used by the file cache with it needs
a new page.

Process Migration

Sprite allows processes to be migrated
between nodes with compatible instruction
sets. Process migration is simplified by the
availability of a shared network file system
(which allows the process to continue to access
the same files from its new node), and the use

of files for backing store. To migrate a process
from node A to node B, node A writes out all
of the process’s dirty pages to the file server
and transfers the execution state to node B.
Node B then reloads the process’s pages from
the file server on a demand basis as the
process executes. The file-system cache-
consistency protocols guarantee that any file
modifications made by the process on node A
will also be visible to the process on node B.

The cost of process migration is
determined primarily by the number of dirty
pages in its address space. On Sun-2 worksta-
tions, an empty process can be migrated in
about 0.5 second, with dirty pages flushed at
about 100 kbytes/sec.

Although many system calls (e.g. those
related to the file system) are already location-
independent, there are others that may have
different effects if executed on different
machines (e.g. "get time of day"). To handle
the non-transparent system calls, Sprite assigns
to each process a home node; location-sensitive
kernel calls are sent to the home node using
the kernel-to-kernel RPC mechanism, and are
processed on the home node. This guarantees
that a process produces exactly the same
results whether or not it has been migrated.
Although sending system calls home is expen-
sive, our preliminary measurements indicate
that this happens infrequently, and that
migrated processes suffer no more than a 5-
10% performance degradation.

Although the basic process migration
mechanism is now running, we haven’t yet
implemented the policy mechanisms to
accompany it. We plan to provide facilities
akin to the °&’, ’bg’, and ’fg~ facilities of csh,
which will oftload a process to an idle worksta-
tion instead of putting it in background.
Sprite will keep track of which workstations
are idle (e.g. those whose users have not been
active for at least 10 minutes) and choose one
of them for the offloading. If a user returns to
a workstation on which processes have been
oflloaded, the foreign processes will be ejected,
either back to their home node or to another
idle node. We are also implementing a new
version of the make utility called pmake,
which uses the process migration facilities to
rebuild large systems in parallel.

AUUGN 153 Vol 7 No 4-5

;login:

. Project Status
The Sprite team was formed in the fall of

1984, and we began coding in the spring of
1985. As of today, all of the major pieces of
the system are operational except for the site-
selection mechanisms of process migration and
some recovery code. We are currently in the
phase of the project where bugs are appearing
at least as fast as we can fix them, but we hope
that the system will stabilize enough for .us to
start using it for everyday work sometime in
the next several months. We expect to have
detailed performance measurements available
within a few months. At this point all we can
say is that our initial measurements on the
untuned system are very encouraging (aren’t
they always?). It’s still too early to make any
conclusions about the success of our design
decisions.

Other Operating-System Work at
Berkeley

Sprite is not the only operating system
project underway at Berkeley. Two others that
you may also be interested in are the DASH
project and the 4.n BSD work. DASH is a
project being led by Profs. David Anderson
and Domenico Ferrari. The letters of the
name stand for "Distributed, Autonomous,"
"Secure," and "Heterogenous"; the DASH pro-
ject is exploring these issues in the context of
very large internetworks (whei’eas Sprite is
concerned primarily with tightly-cooperating,
mutually-trusting, homogeneous groups of
machines that are not widely-distributed). The
4.n BSD work, in which Mike Karels and Kirk
McKusick are the principals, should need no
further introduction to this community; it is
continuing the evolution of Berkeley UNIX
with new features such as region-based
memory management and a more flexible file
system structure to permit multiple network
file systems to co-exist.

[1] Birrell, A. D. and Nelson, B. J. "Imple-
menting Remote Procedure Calls." ACM
Transactions on Computer Systems, Vol. 2,
No. 1, February 1984, pp. 39-59.

[2] Cheriton, D. R. "The V Kernel: A
Software Base for Distributed Systems."
IEEE Software, Vol. 1, No. 2, April 1984,
pp. 19-42.

[3] Fitzgerald, R. and Rashid, R. F. "The
Integration of Virtual Memory Manage-
ment and Interprocess Communication in
Accent." ACM Transactions on Computer
Systems, Vol. 4, No. 2, May 1986, pp.
147-177.

[4] Nelson, M. Virtual Memory for the Sprite
Operating System, Technical Report
UCB/CSD 86/301, Computer Science
Division, University of California, Berke-
ley, June 1986.

[5] Ousterhout, J. K. et al. "A Trace-Driven
Analysis of the 4.2 BSD UNIX File
System." Proceedings of the 10th
Symposium on Operating Systems Princi-
ples, Operating Systems Review, Vol. 19,
No. 5, December 1985, pp. 15-24.

[6] Walker, B. et al. "The LOCUS Distributed
Operating System." Proceedings of the 9th
Symposium on Operating Systems Princi-
ples, Operating Systems Review, Vol. 17,
No. 5, November 1983, pp. 49-70.

[7] Welch, B. The Sprite Remote Procedure
Call System, Technical Report UCB/CSD
86/302, Computer Science Division,
University of California, Berkeley, June
1986.

[8] Welch, B. and Ousterhout, J. "Prefix
Tables: A Simple Mechanism for Locating
Files in a Distributed System." Proceed-
ings of the 6th International Conference on
Distributed Computing Systems, May 1986,
pp. 184-189.

Vol 7 No 4-5 154 AUUGN

;login:

The C Programmer’s Handbook by M. I. Bolsky (AT&T Systems Center)
(New York: Prentice-Hall, Inc., 1985) $16.95

Reviewed by Marc D. Donner

IBM Thomas J. Watson Research Center
ucbvax!ibm.com!donner

Quick! What is the order of arguments of
ungetc? Is it ungetc(char, stream) or is it
ungetc(stream, char)? Well, you grab your
copy of K&R, go to the index. Hmm, let’s see,
that’s pretty far down. Ah, here it is in the
index on page 228. Now you thumb through
the book looking for page 156 ... and here it is
near the bottom ... ungetc(c, fp).t

On the other hand, I grab my copy of The
C Programmer’s Handbook and turn it over
and look at the index to library functions
printed on the back cover. It tells me that
ungetc is documented on page 49. I flip the
book open to page 49, quite easy because the
numbers are printed in a large font at the
outside upper corner of each page, the pages
are thick, and there aren’t too many in the
handbook. And there it is, at the bottom,
ungetc(c, stream). And it tells me that c is an
int and that stream is a FILE*~

There are many unusual things about this
handbook, and all of them contribute to
making it one of the most usable books I
possess. On the front cover is printed the
table of contents. The back cover has the
index to library functions plus a list of all of
the operators in precedence order, with
notations about whether they associate right-
to-left or left-to-right. The book is spiral
bound so that it lies flat, a big plus when you
want to refer to something while hacking.
How much would you pay for a spiral bound
copy of K&R? The pages are uncrowded,
making the information more easily locatable.
The format is simple and consistent
throughout, again contributing to ease of use.
The paper is unusual ... it is fairly thick and of
high quality, making the resulting pages easy
to handle. Normally, thick paper is low
quality, but this book seems to be an
exception. ¯

t By the way, I asked this question of a prominent UNIX
guru of my acquaintance while writing this review and he
proposcd two answers, both wrong; so this is not a trivial
qucstion.

Each entry in the book is introduced by a
red headline. Structurally each entry is an
unordered list, generally containing some
syntax, some explanation, an example when
appropriate, and a reference to the section in
the on-line manual pages where more detail
resides. The designers weren’t intimidated by
white space, and they use it to considerable
advantage, making the entries easy to read and
find.

One minor drawback is the choice of
sanserif fonts for the printing. It is well
known that serifed fonts are more readable,
though sanserif fonts are widely believed to be
more "modern." Another, more serious
problem, is the fact that this handbook is
specific to System V. I have been using it
while programming my 4.2 system for several
months now and the only mismatch that has
really bothered me is that the 4.2 index
function is called strchr in the System V
library. I find the name index to be more
informative, though I can certainly understand
the choice of strchr. In an ideal world, the
book would be available in a 4.2 version, also.

I suppose that reviewing a book like this is
like reviewing the telephone book ... a bit thin
on plot, but interesting typesetting. There is
almost no writing in this book, it is the closest
thing to a real handbook that I have ever seen
going under that name. This book is
deceptively simple, but a great deal of thought
must have gone into each decision. Even such
choices as the paper it is printed on seem to
have received careful attention.

Please don’t be overwhelmed by my
enthusiasm, this book is not the be-all and
end-all, but it is very nice to see something
simple like this done well once in a while.
Something that doesn’t pretend to be much,
but is a most excellent example of what it is.

AUUGN 155 Vol 7 No 4-5

;login:

Standards
Ima Tired

You know what I think? I think that
people are not taking this standards thing very
seriously.

Standards are important things, you know.
Ignoring Gregorian chants, Ben Franklin was
among the first to use standards. He
recommended the use of interchangeable parts
in rifles. This reduced their downtime,
increased their performance, and considerably
increased their repairability.

Imagine living in the olden times and
breaking a part on your rifle:

He: Hey Rachel, the flintl0ck’s broken.

She: Bad news, Harry. Our gunsmith,
Withers, passed away last year. You’re
going to have to get a whole new gun.

He: You mean no one has a new flintlock?

She: Nope, they’re one-of-a-kind. Only
Withers knew how ours worked.

Ben had many good ideas. Henry Ford carried
them to perfection.

So where are we now? There are
standards everywhere, you know. Every time
you look at a screw, a nail, a brick, a board ...
all are manufactured to standard sizes. (NB:
Some standards are "soft," e.g., the 2.54 cm
nail standard.)

Computer manufacturers kind of have
standards. Consider characters. I learned on
a Bendix G-15. It had the extended, character
set option and could actually print letters
instead of just numbers. This was a startling
innovation (all the more startling due to its
blazing speed - three characters/second!). The
G-15 had 29-bit words and bizarre encoding
for the characters. The coding scheme died a
merciful death.

By the 60’s, the ASCII code emerged. You
know: the American Standard Code for
Information Interchange. All American
manufacturers were to adhere to it voluntarily.
Every one of them. Except CDC, which was
busy with 6-bit character codes, 10 per word.
Except PLATO, CDC machines which had
variable length characters (6 to 24 bits).
Except UNIVAC; they used "field data," more
6-bit characters. Not too many special

characters there, nosirree! Case distinctions?
Who needs it! They also had the "quarter-
word" format which stored four 9-bit
characters. That was enough for upper/lower
case and some exciting nonstandard graphics.
Except DEC. Their DECsystem-10 had a
scheme which encoded characters using a
MOD-50 scheme. Innovative.

And: except IBM. They decided to use
EBCDIC instead. Terrific. Instead of the ISO
or any other standard, they had a new kind:
the de facto standard. The phrase "de facto"
means "everyone does it this way so it doesn’t
matter what you think." IBM is real big on de
facto standards.

Time passed; the world turned around
once every day. Soon people found that the
fewer ways there were to do a given thing (e.g.,
character codes) the more productive they
could be. The world of computers has seen
many standards emerge in recent years. Early
on, tape formats standardized, thus enhancing
interchange of data among various systems.
Local area networks fueled the need for
standards as each manufacturer found they
needed to meet some level of compatibility or
die. The personal com0uter world has almost
achieved the world of plug-and-play for some
kinds of peripherals and computers. What an
amazing universe we now live in.

So what’s the complaint? I’ll tell you the
complaint: the very word "standard" is now
bantied about as if it means "latest way we
invented to do something." When’s the last
time YOU said, "Oh, I think I’ll invent a new
page-description language; we can make it a
standard!" Or maybe: "Gosh, I don’t think
there’s enough network file systems in the
world; let’s have a NEW STANDARD." AT&T
tried that one. Oops.

Standards are hard. Either you have to let
one guy (maybe two if they’re friends) do it or
you have to have a "committee." Committees
can do it: it’s been proven. Unfortunately,
they take longer. The last FORTRAN standard
took 10 years. The next one, currently dubbed
FORTRAN 8x may not make it! It may turn
out to be FORTRAN 9x. How disappointing.

... continued

Vol 7 No 4-5 156 AUUGN

;login:

At any rate, while companies like IBM can
create de facto standards just because they sell
some substantial fraction of every computer in
the world, that doesn’t mean just anyone can.

Let’s all see how we can cooperate in the
coming year and have just a few standards - a
few good ones.

AUUGN 157 Vol 7 No 4-5

Letters to the Editor

Date: Wed, 14 Jan 87 20:17:53 AEST
From: robf@runx (Rob Fowler)
To: auugn@monul
Subject: Possible suggestion for newsletter content.

I noticed that the newsletter got a little short this time
round. Too bad.

I would like to write something for it but I am afraid that
my knowledge is insignificant compared to some of the
heavies that read it.

Maybe you could have some more technical details of the
newer stuff like V8, or are most of the other readers in a
position where that is not of interest to them? I would
particularly like to see some details and discussion on V8
streams. Would the newsletter be the wrong place for such an
article (eg copywrite considerations?) I know that most of
the technical stuff that can be discussed is already
discussed on the net.

I am not an academic so I do not have access to a lot of the
leading edge ’super toys’ eg the BLIT, but I do enjoy
reading about them. (Only have PCAT’s with XENIX V to
play/work with).

I REALLY liked Volume 7 Number i, I read every word with
interest.

Rob Fowler.

I hope someone will help out here by sending an article on one of the subjects that
Rob would like to appear in AUUGN.

AUUGN Editor.

Vol 7 No 4-5 158 AUUGN

O’REILLY & ASSOCIATES, INC.

November 25, 1986

John Carey
AUUG Editor
Cornputer Center
Monash University
Clayton, Victoria 3168
Australia

Dear Mr. Carey:

Thank you for your letter requesting review copies of the Nutshell Handbooks. We would be very
happy to have you review them. I am enclosing the handbooks on UNIX, vi, termcap, and curses.
Please let us know how you like them.

Incidentally, many universities have found our Nutshell Handbooks to be ideal training tools. They
are inexpensive and to the point, an~ work well for both staff and classroom instruction.

Mr... Carey, have an enjoyable holiday season.

Sincerely yours,

Susan ~ a~e¢ ~’~
Marketing

Please would someone volunteer to review these for the AUUGN.

Also any other publisher is welcome to send books for review.

AUUGN Editor

AUUGN 159 Vol 7 No 4-5

Softway Pty Limited
(Inc in NSW) PO Box 305
First Floor, 120 Chalmers Street
Strawberry Hills 2012 NSW Australia
~ (02) 698 2322 Fax (02) 957 6914 a Techway company

Mr John Carey
Editor- AUUGN
Computer Centre
Monash University
Clayton VIC 3168

Tuesday 27th January, 1987

Dear Sir,

I would like to protest about the recent advertisement for AT&T Unix Pacific on
pages 38 and 40 inclusive in AUUGN Volume 7 Number 2-3.

Here is an enormous multi-national organisation who is allowed free press in our
struggling but Australian owned informative newsletter. Afterall, AT&T as a whole,
outnumber us at the rate of 1000:1. They are going to make some Australian dollars out
of the sale of this newsletter, in fact, about twice as many dollars as AUUG.

Since we have agreed at the beginning of our newsletter, that advertisements were to
be charged at the rate $200.00 per page, I think that we certainly would have been
justified in asking for a donation at least. I am well aware there is also a mention about
"items of general interest" being given space in the newsletter.

Please find enclosed an advertisement for our company with a cheque for $200.00.

Yours sincerely

Greg Rose,
Managing Director.

Vol 7 No 4-5 160 AUUGN

a Techway company

for

UNIX System V

Documentor’s Workbench 2.0
- and various back-end drivers
- PostScript support of plain text
- support for graphs and images

Ports & Device Drivers

Intelligent Benchmarking

SUN-ill (ACSnet) + installation

Biway - Bi-directional modem software for System V
and 4bsd

Courses"

- Beginner’s Workshop

- Fast start to UNIX

- System Administrators’ workshop

~ Technical Backup

- and all sorts of interesting software development.

Softway Pry Ltd. (Incorporated in NSW)
20 Chalmers St, Strawberry Hills, NSW.

PO Box 305, Strawberry Hills, NSW 2012.
(02) 698 2322 Fax (02) 957 6914

AUUGN 161 Vol 7 No 4-5

Computer Centre
Monash University
Clayton, Victoria 3168

Wednesday 18th February, 1987

Greg Rose
Managing Director
Softway Pty. Ltd.
First Floor
120 Chalmers Street
Strawberry Hills
N.S.W. 2012

Dear Greg,

Thank you for your letter dated the 27th of January 1987. I note your concern that such a small
organisation as the AUUG is providing AT&T with free advertising in its Newsletter.

I do feel that the information that is sent to me by AT&T is of general interest to the AUUGN
readership. This is because AT&T announcements could affect in some way the environment in which
we all work and should be published as a service to the AUUG members.

You may disagree

To your probable chagrin, I have included in the current issue of the AUUGN the AT&T press releases
which were presented at UNIFORUM in January this year.

Perhaps AT&T could help with the production of the AUUGN in return for the goodwill it would
generate between the two organisations. This would not be unusual as USENIX receives support from
several vendors in the production of their newsletter ;login:.

I have sent a copy of your letter and this reply, with a request for assistance to:-

Ryserson E. Schwark
Account Executive - Software Licensing
AT&T Unix Pacific

I wait eagerly for his reply.

Yours Sincerely,

John Carey,
AUUGN Editor.

P.S.

P.P.S.

A donation to the AUUGN of Steven Frede’s excellent ditroff driver for the Apple LaserWriter
sold by Softway would not hurt either ; -)

Sorry, I don’t have a happy face glyph.

Vol 7 No 4-5 162 AUUGN

AT&T Unix Pacific Co.,Ltd.
No. 1 Nan-oh Bldg., 5th FI.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105 Japan
Tel : 03-431-3305
Telefax : 03-431-3680
Telex : J34936 ATTUP

February 2, 1987

Mr. John Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
Australia

Dear Mr. Carey,

I am enclosing press releases released by AT&T at UNIFORUM January
20-23. I hope that you will find the enclosed information useful. As
you know, AT&T Unix Pacific is responsible for source code licensing
of Unix~ System V and related source code products in this region as
well as doing development work. Should you have any questions about
the enclosed material or other matters, please feel free to contact
US.

Sinc~

Tokyo-Japan-RS-hy

Ryerson . Schwark
Account Executive
Software Licensing

Registered Trademark of AT&T in the USA and other countries

Vol 7 No 4-5
AUUGN 163

----- AT&T
AT&T PRESS RELEASE AT UNIFORUM IN WASHINGTON D. C.

JANUARY 20-23, 1987

SYSTEM V VERIFICATION SUITE, RELEASE 3

SYSTEM V INTERFACE DEFINITION, ISSUE 2, VOLUME 3

AT&T JOINS X/OPEN

AT&T SUPPORTS IEEE POSIX EFFORTS

SYSTEM V RELEASE 3.0 LICENSING SUCCESS

SYSTEM V RELEASE 3.0 MICROPROCESSOR PORTS

UNIX* SYSTEM V RELEASE 3 PRODUCT SUMMARY

* Registered trademark of AT&T in the USA and other countries.

Vol 7 No 4-5 164 AUUGN

AT&T Unix Pacific Co., Ltd.
No.1 Nan-oh Bldg., 5th F1.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105
Japan

For further information:

Ryerson Schwark
Software Licensing Account Executive
Tel: 3-431-3305 (Japanese)

3-431-3670 (English)
Fax: 3-431-3680
Telex: J34936 ATTUP
uucp :seismo!akgua!attunix!upshowa!schwark

AT&T Press Release -- UNI]~ORUM 1987

The role of UNIX* System V in AT&T’s data networking strategy and the evolution of national

and international standards for the operating system were reflected in several announcements

made at the UNIFORUM conference and trade show January 20 - 23, 1987.

The announcements included updated editions of AT&T’s SWS (System V Verification Suite

Release 3) and SVID (System V Interface Definition Issue 2, Volume III). AT&T, a member of

the SIGMA Project in Japan, announced that it has become a full member of X/OPEN, an

international industry consortium of hardware vendors in Europe.

Since UNIX System V Release 3 was announced in June 1986, AT&T’s goals have been to

accelerate the worldwide licensing of the system and to support the demands for worldwide

standards for UNIX System V, according to Mike DeFazio, AT&T Director of Software Systems.

"The benefits of System V Release 3 to business are apparent in the worldwide demand for

system licenses from computer system and chip vendors, OEM’s, and software developers," said

* Registered trademark of AT&T in the USA and other countries.

Vol 7 No 4-5
AUUGN 165

DeFazio.

"Current UNIX System V Release 3 licensees shipped more than 75 percent of all UNIX system

based products in 1985, so UNIX system industry leaders are obviously embracing the latest

technology."

All major US chip manufacturers, including AT&T, Fairchild Semiconductor Corporation, Intel

Corporation, Motorola Inc., Nat;onal Semiconductor Corporation, and Zilog, have licensed

UNIX System V Release 3.

DeFazio also stressed ATgzT’s support of the lEvEE’s 1003.1 standard for Portable Operating

System for Computer Environments (POSIX). "The objectives of UNIX System V are fully

compatible with the objectives of POSIX," he said. "We expect System V to conform to the

future POSIX standard and we are confident that this will result in substantial savings for

computer users and manufacturers."

DeFazio said that the installed base of UNIX computers today is about 60 times larger than it

was when System V was first announced. He noted that the UNIX system installed base grew by

about 75 percent in the past year alone.

AT&T demonstrated its Information Systems Network (ISN), STARLAN local area network,

and ACCUNET®, an X.25 packet switching service which is available from AT&T in the US and

internationally.

AT&T Unix Pacific demonstrated the second release of the Japanese Application Environment.

This software was shown demonstrating the use of multiple languages on one AT&T 3B2

computer. Korean, Japanese, German and English were the multiple languages demonstrated.

Also exhibited were AT&T’s PC 6300 and PC 6300 Plus, UNIX PC, and 3B2 minicomputer.

Two recently announced data terminals, the 615 MT (Multitasking Terminal) and the 620 MTG

(Multitasking Terminal with Graphics) were also demonstrated.

Vol 7 No 4-5 166 AUUGN

System V Verification Suite (Release 3.0)

For Various Hardware Systems

AT&T

Product Overview:

The System V Verification Suite (SVVS) is a set of test programs that verify that a port of the
AT&T UN]:X* System V Operating System conforms to the System V Interface Definition
(SVID). SWS may be used by computer system vendors, software vendors, or their customers
to verify conformance to the SVID.

SVVS tests the operating system for conformance to the SVID Base Definition, which specifies
an operating system environment where application software can be written independent of a
particular hardware architecture. The presence of the SVID Base is required in all products
derived from System V Release 3.0. The SVID Base Definition defines a basic set of System V
co~nponents required by application programs, including each component’s source code interface
and runtime behavior. In addition, the system defines the Kernel Extension, which consists of
the operating system services and utilities. The Network Services Extension consists of a new
set of tests that verify the Transport Layer Interface, the Streams Interface, and Remote File
Sharing. The Terminal Interface Extension tests the Terminal Interface facilities as described in
Volume III of the SVID, Issue 2.

The SVVS Directory Structure contains all required directories and fits into one directory tree.
The user interface provides a menu-driven capability with a choice of various testing options.
Report and Verify commands inform the user of the SVVS conformity status. The Test Driver
creates journals, .cleans up temporary files created by the tests and controls dependencies and
the order in which the tests are invoked.

SVVS tests are invoked through an easy-to-use, menu driven User Interface. A report generator
formats the test results and creates a report which describes validation errors.

SVVS requires 30 Megabytes of disk storage to hold the largest section of directories and
compiled binaries. SVVS can be installed on a section-by-section basis. SVVS is available only
in source form.

Features:

¯ Tests all operating system services and general library routines listed in the SV]D BASE and
BASE Addendum.

° Tests the BASE, Kernel Extension (KEXT), Terminal Interface, and Network Services
environments and special device files as defined in the SVID BASE and BASE Addendum.

° Tests the operating system service routines of the KEXT as listed in Volume I of the SVID,
Issue 2.

o Tests the operating system library routines of the Terminal Interface Extension (TIE,), as
listed in Volume III of the SVID, Issue 2.

° Tests the operating system services and library routines of the Network Services Extension
(NSE), as listed in Volume III of the SVID, Issue 2.

* Registered trademark of ATgzT in the USA and other countries.

AUUGN 167 Vol 7 No 4-5

¯Easy-to-use installation procedures permit software implementation in less than one day.

¯Directory Structure contains all required directories and fits into one directory tree.

¯ Menu-driven user interface.

¯Report and Verify commands inform the user of SVID conformance status.

¯Test Driver creates journals, cleans up temporary files and controls dependencies and
various sections that are tested.

° Automatic validation process requires minimum user interface.

¯ Automatic journalization of output identifies problems and initiates problem resolution.

¯Validation at the System V Release 2.0 or Release 3.0 levels.

° Reduced time and processing costs by testing for a specific function or group of functions.

For additional information:

ATgzT Unix Pacific Co., Ltd.
No.1 Nan-oh Bldg., 5th F1.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105
Japan

Tel: 3-431-3305 (Japanese)
3-431-3670 (English)

Fax: 3-431-3680
Telex: J34936 ATTUP
uucp: upshowa!attup

Vol 7 No 4-5 168 AUUGN

AT&T Offers Enhanced System V Interface Definition

Consistent With System V Release 3.0

AT&T

AT&T is now offering a new, third volume of the System V Interface Definition (SVID), Issue 2,
the current issue of the document that specifies common system interfaces for implementations
of System V. These volumes describe the operating system facilities customers can expect on
any computer that provides the System V Interface, the interface to those facilities for both
application programs and end-users, and the run-time behavior.

The purpose of the SVID is to define a consistent set of program interfaces to encourage the
development of portable applications software. End-users will benefit by having a wide range of
computers with compatible operating systems and applications. Applications written to the
SVID will be portable to any machine that conforms to the SVID. End-users will be able to
choose the computer that best meets their needs and still have available the same applications,
thereby preserving their investment in both software and training.

Issue 1 of the SVID was published in January 1985. It consisted of one volume that described
the components in the System V Base and the Kernel Extension. Issue 2 was published in
February 1986. It consisted of two volumes: Volume 1, updated for greater clarity and
precision, and Volume 2 defining five additional extensions: the Base Utilities Extension, the
Advanced Utilities Extension, the Administered Systems Extension, the Software Development
Extension, and the Terminal Interface Extension. Issue 2 now consists of three volumes. A new
volume, Volume 3, includes an enhanced Terminal Interface Extension and defines an additional
extension: the Network Services Extension.

The Base System Definition and Kernel Extension define a run-time environment for application
programs. The Base Utilities Extension defines the user-level interface to and the expected
run-time behavior of basic tools for directory and file manipulation, text editing and shell
programming. The Advanced Utilities Extension defines more advanced tools, multi-user and
multi-system communication utilities, and printer job queuing facilities. The Administered
Systems Extension defines tools for system administrators. The Software Development
Extension defines tools for the software developer to write and maintain programs written in the
C language. The Network Services Extension allows multi-system communication support of
networking applications. The Network Services Extension defines (1) facilities that allow the
sharing of resources (e.g., files and printers) transparently across a network; (2) facilities that
provide a modular and uniform mechanism for implementing network services and
communications independent of any particular protocols by providing standard interfaces to
protocol modules and devices and by providing flexible ways of interconnecting modules; and (3)
facilities that provide user programs the transport level services defined in the Open Systems
Interconnection (OSI) Reference Model independent of any specific transport protocol. The
Terminal Interface Extension defines facilities that allow application programs to perform
terminal-handling functions in a way that is independent of the type of terminal that is actually
in use.

The SVID is a valuable tool to customers interested in having a consistent UNIX* system
computing environment available on a wide range of machines from many vendors. This

AUUGN 169 Vol 7 No 4-5

includes end-users and application developers (ISVs) producing C language applications whose
source code must be portable from one System V environment to another.

The SVID defines the common computing environment for System V Release 2.0 and System V
Release 3.0, and describes future directions for the operating system. Another announced
product, the System V Verification Suite, can be used by OEMs and VARs to test their systems
to see that they meet the System V Interface Definition.

As new functionality and new operating system features are developed, they will be described in
new Extensions to the SVID. Future issues of the SVID will describe advanced standard
interfaces to support networking applications, advanced user-interface tools for applications,
and tools for internationalizing the system.

All three volumes of the SVID are currently available. Individual volumes are US$65.00 each.
The three-volume set is US$165.00. The prices include air mail postage. Orders should be
sent to:

AT&T Unix Pacific Co., Ltd.
Documentation Dept.
No.1 Nan-oh Bldg., 5th F1.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105
Japan

Tel: 3-431-3305 (Japanese)
3-431-3670 (English)

Fax: 3-431-3680
Telex: J34936 ATTUP
uucp: upshowa!attup

* Registered trademark of AT2zT in the USA and other countries.

Vol 7 No 4-5 170 AUUGN

AT&T Expands Relationship with X/OPEN

AT&T

AT&T today announced that it has become a member of the X/OPEN group, a consortium of
European and American computer manufacturers.

The purpose of the group is to increase the volume of applications available for member
machines, and to maximize the return on investments in software development, by ensuring
portability of application programs.

AT&T has worked with X/OPEN since 1985 -- at that time the group consisted of only
European companies -- with the goal of establishing a common applications environment based
on the AT&T System V Interface Definition.

X/OPEN is also focusing attention on the evolution of public standards for systems software,
including interfaces for databases, graphics, and languages.

"X/OPEN has expanded its membership to include companies outside Europe," said William T.
O’Shea, AT&T executive director of information technologies. "We want to work with
X/OPEN because our goals align on the broad software issues they are now addressing and we
feel we can increase our participation in the group by becoming a full member."

European members of X/OPEN include CM Bull, France; International Computers Limited
(ICL), England; Ericcson, Sweden; Nixdorf Computer AG and Siemens Aktiengesellschaft,
Federal Republic of Germany; Olivetti, Italy; Philips International NV, The Netherlands.

The United States members are Digital Equipment Corporation, Unisys, Hewlett-Packard, Inc.,
and AT&T.

AUUGN 171 Vol 7 No 4-5

AT&T Supports POSEK

The computer industry is engaged in developing standards for the portable operating system
environment. Conformance to the standards will make it possible for applications written in
the C language to achieve a high degree of portability when utilized within a heterogeneous
hardware environment. The rapid acceptance of UNIX* System V among both computer users
and manufacturers is a testament to the magnitude of the reduction in costs achievable through
utilization of these standards.

The standardization activities now underway within the [EEE 1003 committees to achieve the
objectives furthered by a portable operating system environment are fully supported by AT&T.
It is AT&T’s intention to support the full-use version of the IEEE 1003.1 Standard, Portable
Operating System for Computer Environments (POSIX), when it is approved. Since UNEK
System V has been so widely accepted, and System V objectives align with those of POSIX, we
expect System V to conform to the approved POSIX standard.

* Registered trademark of AT2zT in the USA and other countries.

Vol 7 No 4-5 172 AUUGN

Success of UN]SX* System Licensing

AT T

System V Release 3.0 has proven to be an extremely successful product in its first six months of
availability. For example, System V Release 3.0 was licensed at a faster rate than System V
Release 2.0 during their respective startup months. Furthermore, all major US chip vendors,
including AT&T, Motorola, Intel, National Semiconductor, Fairchild, and Zilog, currently have
sublicensing rights for System V Release 3.0. Considering that the current System V Release 3.0
licensees were responsible for)75% of all UNIX system shipments in 1985, it is clear that the
UNIX market leaders are embracing System V Release 3.0. Half of System V Release 3.0 source
licensees with sublicensing provisions have also already licensed SVVS.

The UNIX system industry is experiencing tremendous growth at a time when much of the
computer systems industry is experiencing minimal growth. For example, the installed base of
UNIX computers grew by about 75% during the past year.1 Another indicator of the success of
the UNIX systems industry is the fact that the installed base of UNIX computers has grown by
a factor of about 60 since AT&T introduced System V in 1983.

* Registered trademark of ATgzT in the USA and other countries.

1. One year period ending September 30, 1986.

AUUGN 173 Vol 7 No 4-5

UNIX* SYSTEM V Release 3.0 Ported To Microprocessors

UNIX System V Release 3.0, introduced earlier this year, has gained growing recognition as a
solution to many business problems centering on the need to network computers.

One result of that recognition is the expanding list of equipment and software vendors
developing products based on System V Release 3. AT&T has announced its own 32-bit chip,
the WE 32100, with UNIX System V Release 3.0.

Several prominent companies, including four major silicon chip manufacturers -- Fairchild
Semiconductor Corp., Intel Corporation, Motorola, Inc., and National Semiconductor
Corporation -- have announced that they are developing products derived from this release.

The ports of these and other vendors will conform to AT&T’s System V Interface Definition
(SVID). SVID conformance assures that a customer can use any applications software regardless
of the hardware on which it was developed. This source level portability of applications gives
customers great freedom in selecting hardware.

One of the ports of UNIX System V Release 3.0 is to the Intel 80386 chip. The port includes
support for the chip’s virtual 8086 mode and for the 80386 family of floating-point coprocessors.
It also supports the ISO transport model for the Remote File Sharing (RFS) implementation.

Motorola said that its SYSTEM V/68 Release 3 is the standard operating system for its 68020
family of computer products. The kernel of the Motorola system is combined with the RFS
feature of System V Release 3.0 to allow different computers to share data, files, applications
and peripherals without specialized utilities.

National Semiconductor’s Series 32000 microprocessors include RFS as well as Streams which
provides for the development of communications services within System V Release 3.0.

Originally Released in November 1986

* Registered trademark of AT&T in the USA and other countries.

Vol 7 No 4-5 174 AUUGN

Product Summary

AT$~T’s UNLX:* System V, Release 3.0

AT&T

This Product Summary describes UNIX System V, Release 3.0, which has been available since
June 30, 1986. This product introduces several technical innovations which, taken together,
provide a powerful environment rot developing, executing and supporting network applications.

UNIX System V, Release 3.0 includes the following major features:

Remote File Sharing (RF8):

The RFS feature provides the ability to share resources transparently across a network. Both
files and devices(printers, tape drives, etc.) can be shared.

Through the use of extensive administrative support tools, each computer controls what
resources it makes available for sharing and what remote resources it makes available to local
users. Furthermore, security features are provided to enable a local system to accept or deny
access to local resources on a per remote system and per remote user basis.

The sharing of a resource (a directory and its contents) is accomplished through the use of a
location-independent mount mechanism. Once the sharing of a directory has been established,
users can access its contents in the same way they would access locally resident resources. Full
UNIX file system semantics, including the semantics of File and Record Locking operations, are
preserved when accessing remote resources.

The RFS software has been written to be independent of the network medium and protocol and
will run over any transport provider (a transport provider is any network implemented to
conform to the STREAMS Transport Provider Interface, described below).

Benefits: RFS provides users with the ability to connect multiple computers via a network and
share both files and peripherals. It allows users to access information in file systems of other
machines on the network as if it was in a local file system, providing a simple way of sharing
information across machines. Users do not have to learn commands to send files across the
network and do not have the problem of trying to maintain consistency between multiple copies
of the same data. Costly peripherals such as laser printers, plotters, and tape drives can be
shared.

Since RFS preserves UNIX file system semantics and maintains compatibility of the system call
interface relative to previous releases, binary compatibility of application programs can be
preserved across operating system releases. This means that existing application programs can
be installed and executed in an RFS environment. In addition, these programs can access
remote files. Note also that applications that use the File and Record Locking mechanism will
protect files from concurrent access by two or more (remote) systems, thus preserving data
integrity.

STREAMS:

The STREAMS feature is a mechanism which provides a uniform method of implementing
network protocols and supporting different network media. It enables the development of
application software that is independent of the underlying network. A change in medium or
protocol can be accommodated through the substitution of STREAMS modules without need for
modification of the application software. It also enables the development of protocol software in

* Registered trademark of AT&T in the USA and other countries.

AUUGN 175 Vol 7 No 4-5

simplified by the ability to combine STREAMS modules to perform more sophisticated network
services and to use the same modules over different media and in different network
architectures. The STREAMS feature is provided in addition to the existing device driver
mechanism.

Benefits: The main benefit of the STREAMS mechanism is that it provides network protocol
and media independence when combined with the Transport Level Interface. AT&T and third
party vendors are developing compatible STREAMS-based networks and network applications.

Transport Level Interface (TLI):

The TLI specifies user-level functions that provide access to standard protocol services defined
in the ISO Transport Service Interface (i.e., reliable peer-to-peer communication across an
arbitrary concatenated network). The Transport Provider Interface (TPI) specifies capabilities
that must be provided by a STREAMS-based transport provider and the interface to those
capabilities required in order to maintain consistency with the TLI library. Taken together,
they provide the means by which net~vork-independent applications can be written. An
application written using the TLI library will work without modification over any network
implemented according to the TPI specification (any transport provider). The Remote File
Sharing feature is implemented using TLI.

Benefits: The specification of these two interfaces and adherence to them by developers of
network services provides end users with the ability to run applications independent of the
underlying network. For example, an end user running Remote File Sharing over a particular
network today will be able to substitute another network, as their needs change, without losing
their investment in application software.

UUCP Family:

As a part of UNIX System V, Release 3.0, the uucp family of commands (uucp - file transfer,
uux - remote execution, cu - terminal emulation) have been reimplemented to use the TLI
library. These changes make the uucp family independent of the underlying network and
usable across all transport providers. It is no longer necessary to provide different file transfer
commands for different networks.

Benefits: This command is another example, in addition to RFS, of an application written to
take advantage of the network independence provided by the Transport Interface. Users can
use the uucp command over any transport provider.

Shared Libraries:

Shared Libraries allow a binary application to be dynamically linked to an executable library
function at runtime. Significant disk and memory savings can result from the use of shared
libraries. Functions in a shared library are stored only once on a disk and once in memory, and
are shared by all executable files (on disk) and all processes (in memory) that use them. In
addition to space savings, the use of shared libraries reduces the effort required to incorporate
corrections or enhancements made in shared library functions. When a shared library is
updated, the updates are automatically applied to any binary files that access the library.
UNIX System V, Release 3.0 includes a subset of libc and the full TLI library as shared libraries.
In addition, users can purchase separately the tools to allow them to create their own shared
libraries.

Benefits: Use of shared libraries results in a direct savings of disk space and memory.

Additional Enhancements:

Additional enhancements are also provided with UNIX System V, Release 3.0. They include
increased standards conformance, improved terminal support and changes to the UNIX System
signal mechanism.

Vol 7 No 4-5 176 AUUGN

AUUG

Membership Categories

Now that the Australian UNIX systems User’s Group has existed a while, its time that
all members reviewed their membership types, and even more, checked that they are in
fact still members!

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just over 2
years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the
AUUGN 177 Vol 7 No 4-5

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right comer you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

If your membership has already expired, or is about to expire (many expire in January)
then now is the time to renew.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

Robert Elz

AUUG Secretary.

Vol 7 No 4-5 178 AUUGN

A G
Application for Ordinary, or Student, Membership

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders -- perhaps your purchasing department will consider this form an invoice.
Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mail.

I, ...do hereby apply for

I--] Renewal (indicate which membership type).

I--I Membership of the AUUG

l---] Student Membership of the AUUG

I~] International Surface Mail

[~ International Air Mail

Total remitted

$ 50.00

$ 3o.0o
$10.00
$ 5o.0o

(note certification on other side)

AUD$
(cheque, money order)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I understand that membership includes a subscription to the AUUG newsletter, and that I will be entitled to
attend AUUG sponsored functions at member rates for the duration of my membership.

Date: / / Signed:
I--] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: .. Phone: ...(bh)

Address: ...(ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

AUUGN 179 Vol 7 No 4-5

Student Member Certification (to be completed by a member of the academic staff)

I, .. certify that
... (name)

is a full time student at ...(institution)

and is expected to graduate approximately ~. _/. .

Title: ..Signature:

Office use only:

Chq: bank

Date: / /

Who:

bsb

$

- a/c #

Memb#

Vol 7 No 4-5 180 AUUGN

A G
Application for institutional Membership
Australian UNiX systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mail.

.. does hereby apply for

I--I Renewal of existing Institutional Membership

I~] New Institutional Membership of the AUUG

[~ International Surface Mail

I---] International Air Mail

Total remitted

$250.00

$250.o0
$ 20.00
$1oo.oo

AUD$
(cheque, money order)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I understand that I will receive two copies of the AUUG newsletter, and may send 2 representatives to
AUUG sponsored events at member rates, though I will have only one vote in AUUG elections, and other
ballots as required.

Date: / / Signed:

Title:
I---I Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: .. Phone: ...(bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please complete the other side.

AUUGN 181 Vol 7 No 4-5

Please send newsletters to the following addresses:

Name: ..
Address: ..

Name: ..
Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if
these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD
binary licence, and V7 binary licences were very rare, and expensive.

[--] System V.3 source

[---] System V.2 source

[--] System V source

[--] System III source

1--] 4.2 or 4.3 BSD source

[--] 4.1 BSD source

l--] V7 source

[] System V.3 binary

~-] System V.2 binary

[~ System V binary

I--] System III binary

Other (Indicate which) ...

Office use only:
Chq: bank bsb
Date: / / $
Who:

- a/c #

Memb#

Vol 7 No 4-5 182 AUUGN

A
Application for Newsletter Subscription
Australian UNiX systems User Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders m perhaps your purchasing department will consider this form an invoice.
Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mall.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: .. (bh)
Address: (ah)

Net Address"

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

[~ Subscription to AUUGN

I--] International Surface Mail

~ International Air Mail

Copies requested

Total remitted

$ 50.00

$ lO.OO

$ 5o.0o

AUD$
(cheque, money order)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Office use only:

Chq: bank

Date: / /

Who."

bsb

$

a/c #

Subscr#

AUUGN 183 Vol 7 No 4-5

A G
Notification of Change of Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (a~)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (a~)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 7 No 4-5 184 AUUGN

AUUG

Annual Elections
1987

The AUUG Committee Elections for 1987 are due soon, but before we can have an
election we need some candidates!

Now is the time to nominate, or get yourself nominated, for one or more of the
committee positions.

You will find a suitable form (though actually anything carrying the required
information will do) in this issue of AUUGN.

Nominations require 3 financial members of AUUG to sign, plus the signature of the
member being nominated.

One form can nominate a member for several committee positions, the elections are
held in the order listed on the form, a candidate elected to a position is then ineligible
to be elected to positions not yet decided.

Completed nomination forms should be returned to

The Secretary,
AUUG,
P.O. Box 366,
Kensington,
N.S.W. 2033
Australia.

to reach there no later than April 30, 1987.

Robert Elz

Honorary Secretary,
AUUG.

AUUGN 185 Vol 7 No. 4-5

Australian UNIX* systems Users’ Group
Annual Elections - Nomination Form

being current financial members of AUUG do hereby nominate

for the following position(s)**

President
Secretary
Treasurer
General Committee Member (4 to be elected)
Returning Officer
Assistant Returning Officer
Auditor

Signed ... Date ..

do hereby consent to my nomination to the above position(s).

Signed ...Date ..

* UNIX is a registeredtrademark of AT&T in the USA and other countries.

** Strike out position(s) for which nomination is not desired. Each person may be elected to at
most one position, and the ballot for positions shall be determined in the order in which the
positions are listed on this nomination form.

Nominees should use the space below (and over the page if necessary) to provide a short
statement of policies, aims and/or objectives to be circulated to members of AUUG at the time of
the election.

Vol 7 No 4-5 186 AUUGN

