
S

Registered by Australia Post Publica~on No. NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 8 Number 3-4

August 1987

CONTENTS

AUUG General Information 3

Editorial 4

Softway Advertisement 5

Adelaide UNIX Users Group Information 6

Measuring Database Performance using the TP1 Benchmark7

Finland: Birch and Boat 21

From the ;login: Newsletter - Volume 12 Number 4 28

Call for Papers: POSIX Portability Workshop 29

Call for Papers: Winter 1988 USENIX Conference30

Call for Papers: Summer 1988 USENIX Conference31

Computer Graphics Workshop 32

Multiple Programs in One UNIX Process 33

tar vs. cpio 39

How to Write a UNIX Daemon 43

Book Review: The Design of the UNIX Operating System50

Book Review: A C Reference Manual 52

UUNET Progress Report 53

EUUGN Spring 1988 Conference Announcement 55

From the EUUGN Newsletter - Volume 7 Number 157

Unix Conference Reports 58 ¯

Atlanta Usenix, June 1986 58

, The Manchester Competition 74

Uniforum, January 1987 80

Notes on the Birth of the UNIX Ctdt 83

The X/OPEN show in Luxembourg 91

The CV Macros 92

GKS in C++ 93

An NRS Processor in C and the Future 105

AUUGN 1 Vol 8 No 3-4

From the EUUGN Newsletter - Volume 7 Number 2108

Packets vs. Circuits, in Two Centuries 109

Music: a Troff Preprocessor for printing music scores112

An Overview of the Native Language System 129

Grouse: Messages and Promps in Programs 138

Another Proposal for a News Scheme 148

EkV~G 150

Progress of ANSI/ISO C Standardisation 152

X/OPEN - What, Who, Why, When 157

EUnet 159

UNIX Clinc 162

Review of POSIX 164

Letters to the Editor 167

AUUG Membership Catorgories 171

AUUG Forms 173

Copyright © 1987. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 8 No 3-4 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.
¯

All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Parkville, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

Ken McDonell, President

kenj@moncsbruce.oz
Department of Computer Science, Monash University, Victoria ’

Robert Elz~ Secretary

kre@munnari.oz
Department of Computer Science, University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
S oftway Pty. Ltd., N. S .W.

Chris Campbell~ Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

Piers Lauder, Committee Member (Newly Elected)

piers@basser.cs.su.oz
Basser Department of Computer Science, Sydney University, N.S.W.

John Lions~ Committee Member

johnl@elecvax.oz
School of Electrical Engineering and Computer Science, University of New South Wales, N.S.W.

Tim Roper~ Committee Member

timr@labtam.oz
Labtam Limited, Victoria

Next AUUG Meeting
The next meeting will be held in Melbourne during February 1988.
Futher details will be provided in the next issue.

AUUGN 3 Vol 8 No 3-4

AUUG Newsletter

Editorial

I am disappointed that the majority of this issue is reprints from the USENIX and EUUG Newsletters. I
would prefer that it had more Australian content. I will continue to encourage people to write articles
for the Newsletter and hope this produces a better result in future issues. Please remember that articles
do not have to about UNIX itself but applications that run under UNIX.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 16th of October 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mall and formatted using troff-ram and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

Vol 8 No 3-4 4 AUUGN

a Techway company

for

~ UNIX System V

[~ Documentor’s Workbench 2.0
- and various back-end drivers
- PostScript support of plain text
- support for graphs and images

~ Ports & Device Drivers

~ Intelligent Benchmarking

I~ SUN-Ill (ACSnet) + installation

~ Biway - Bi-directional modem software for System V
and 4bsd

I~’ Courses:

- Beginner’s Workshop

- Fast start to UNIX

- System Administrators’ workshop

~" Technical Backup

- and all sorts of interesting software development.

Softway Pty Ltd. (Incorporated in NSW)
20 Chalmers St, Strawberry Hills, NSW.

PO Box 305, Strawberry Hills, NSW 2012.
(02) 698 2322 Fax (02) 957 6914

AUUGN 5 Vol 8 No 3-4

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135} !mulga!aegir.dmt.oz!dhj
ARPA: dhj %aegir.dmt.oz! dhj@ seismo.arpa
CSNET: dhj@aegir.dmt.oz

Vol 8 No 3-4 6 AUUGN

MEASURING DATABASE PERFORMANCE
USING THE TP1 BENCHMARK

Ken J. McDonell
Department of Computer Science

Monash University
Clayton, Victoria 3168, AUSTRALIA

Acsnet: kenj@moncsbruce.oz

ABSTRACT

This note reports on some performance experiments conducted with a commercially available
relational database management system (let’s call it DBMS-R) in conjunction with the TP1
benchmark[I]. These tests are of particular interest given the popularity of TP1 as a de facto
standard for measuring on-line transaction processing throughput. This paper assumes the
reader is familiar with the TP1 benchmark; full details may be found in[1].

In all cases, the tests were run on an unloaded Unix1 machine in multi-user mode (with the
usual assortment of daemons, especially the Ethernet ones). Several Unix machines were
used, all from the one vendor’s model range; they shall be referred to as Model-l, Model-2
and Model-4 (model numbers crudely approximate to relative raw performance).

Except where stated to the contrary (for some Model-4 tests), the filesystems all had a default
configuration with a block size of 16K bytes.

The same brand of disk drives was used in all tests.

System and Database Configurations
Model-4

The Model-4 processor had 128 Mbytes of real memory, and 7208 buffers in the file system
cache.

After several experiments, the following database configuration was used with logging, the
DBMS-R system catalogs and the relations spread across 4 physical disk drives. Within the
parameter set explored, this configuration gives the best performance amongst those deemed
realistic and "honest".

1. Unix is a trademark of AT&T Bell Laboratories.

AUUGN 7 Vol 8 No 3-4

Relation Size Access Method Disk Filesystem
DBMS-R catalogs diskl default
transaction log disk3 default
account 100000 hash unique disld 2K block size
teller 1000 hash unique diskl 2K block size
branch 100 hash unique diskl 2K block size
history 0-21500 unstructured disk4 default

Note that the filesystems for the randomly accessed relations have been reconfigured to have
block sizes of 2K bytes; refer to Point 8 in Section 4 for a full discussion as to why.

1.2 Model-2

The Model-2 processor had 64 Mbytes of real memory, and 2293 buffers in the file system
cache.

Based upon the Model-4 experiences and a small number of further experiments, the
following database configuration was used with logging, the DBMS-R system catalogs and
the relations spread across 3 physical disk drives.

Relation Size Access Method Location
DBMS-R catalogs disk0
transaction log diskl
account 100000 hash unique disk2
teller 1000 hash unique disk2
branch 100 hash unique disk0
history 0-15400 unstructured diskl

1.3 Model-1

The Model-1 processor had 32 Mbytes of real memory, and 1146 buffers in the file system
cache.

The following database configuration was used with logging, the DBMS-R system catalogs
and the relations spread across 2 physical disk drives.

Relation Size Access Method Locatio
DBMS-R catalogs disk0
transaction log diskl
account 100000 hash unique disk0
teller 1000 hash unique disk0
branch 100 hash unique disk0
history 0-8200 unstructured disk0

2. TP1 Performance

The measured mean TP1 performance (in transactions per seconds, TPS) with varying degrees
of concurrency is shown in the following graph.

Vol 8 No 3-4 8 AUUGN

TPS

12-

10-

u

w

~/ Model-1

I1 ~-’~

Model-4

I I I
5 10 15

Concurrent Transaction Streams

Peak TP1 throughput2 is as follows.

CPU Concurrency Peak TP1 (TPS) Relative to Model-1
Model-4 3 12.2 1.87
Model-2 4 9.5 1.46
Model- 1 2 6.5 1.00

3. Performance Analysis and Other Tests
Across the hardware range different resources are evidently limiting TP1 throughput. The
following numbers represent average figures gathered using rnpstat and dkstat on a repeated
run for the optimal degree of concurrency. Note that the column headed "Disk Xfers" is for
the most heavily used drive only.

CPU Concurrent Processor(s) System Calls Context Switches ¯ Disk Xfers
Streams % Idle Time (per sec) (per sec) (per sec)

Model-4 3 43 1391 308 24, disk2
Model-2 4 48 1079 267 18, disk2
Model- 1 4 13 774 134 16, disk0

Scrutiny of the mpstat statistics for the Model-1 reveal that it is running close to maximal
CPU utilization, with bursts of high CPU idle time and near-peak disk rates coinciding with
sync activity. Short of either spreading the disk buffer cache flushing more uniformly with
time, or re-engineering some major DBMS-R component (e.g. the IPC mechanism or the lock
manager), little improvement can be expected. However, better throughput should be

2. There may be some marginal improvement at degrees of concurrency between the measured points, but near
the optimal throughput, e.g. 3 concurrent transaction streams for a Model-1 or 5 concurrent streams for a
Model-2.

AUUGN 9 Vol 8 No 3-4

achievable because the very high system time (48%, compared to 40% user time) suggests
inefficient system call patterns or poorly implemented system code.

At the other extreme, the Model-4 has plenty of unused CPU capacity and disk bandwidth,
but the throughput is being constrained by a "convey" phenomenon caused by lock conflicts
for the last page of either or both the transaction log and the "history" relation.

Further insight into TP1 performance may by gained from consideration of the following
hypothetical transactions,

TI" Amend a tuple in relation R where the key = K

T2" Append a tuple to relation R

A TP1 transaction is composed from a set of smaller updates each being similar to either T1
or T2. Since T1 and T2 are both simpler than TP1, studies of T1 and T2 are more easily
conducted, but the results may be used to predict maximal TP1 performance.

Initially we are interested in minimizing disk activity to concentrate on other performance
factors - consequently all T1 and T2 tests run with transaction logging disabled. For T1 we
can further minimize disk UO by using a hashed access method. For T2 the unstructured
access method is chosen to model transaction logging activity, and possibly the updating of
the TP1 "history" relation.

If one stream of identical T1 transactions is run, statistically reliable measures may be made
without any contention. Running several concurrent T1 streams allows investigation of
throughput limits in the following interesting cases,

1. No conflict between transactions (all streams use a different value of the key K chosen to
ensure that the corresponding tuples map to different physical database pages).

2. Pathological conflict (all streams use the same key K).

For T2 transactions, multiple streams updating the same relation are always in conflict over
the lock for the last physical page of the relation.

The following graphs illustrate the maximum achievable throughputs for T1 (with and without
conflict) and T2.

Model-4 Maximal Throughput

80-

70-

Genetic Updates
per Second 60-

50-

40-

T1 - No Conflict

T2

T1 - Conflict

I I I
5 10 15

Concurrent Transaction Streams

Vol 8 No 3-4 10 AUUGN

Generic Updates
per Second

65-

60-

55-

50-

45-

Model-2 Maximal Throughput

T1 - Conflict ~~.

I I I
5 10 15

Concurrent Transaction Streams

Genetic Updates
Per Second

55-

50-

45-

40-

35-

30-

Model-1 Maximal Throughput

I I I
5 10 15

Concurrent Transaction Streams

Since each TP1 transaction consists of 2 T2 sub-transactions and 3 T1 sub-transactions (with
conflict varying from none to slight), the following upper bounds on TP1 performance can be
computed. These bounds are important because they are based upon no logging and minimal
disk !/O - we are measuring principally the DBMS passage time per transaction, and in
particular the peak rate at which the lock manager can handle transactions and resolve
conflicting lock requests. Even if ideal situations prevail during a TP1 run and the additional
logging and disk I/O activities can be overlapped with processing of concurrent transactions,
the TP1 throughput cannot exceed these upper bounds.

AUUGN 11 Vol 8 No 3-4

CPU TP1 Minimum Time TPS TPS observed
Upper Bound Absolute % Bound

Model-4 2/60 + 3/75 = 0.073 13.6 12.2 89
Model-2 2/57 + 3/55 = 0.089 .11.2 9.5 85
Model- 1 2/45 + 3/37 = 0.13 7.9 6.5 82

4. Benchmarking Methodology

Several "pitfalls" and problems associated with TP1 measurements were uncovered. This list
should be used as a checklist during TP1 measurements for other database management
systems, and to verify the extent to which competing performance figures may be honestly
compared.

o For TP1 all tuples should contain 100 data bytes (except for the "history" relation
which has 50 data bytes per tuple). Test databases with tuples of non-standard size can
produce significantly different performance.

2. The size of each relation is also defined for a 100 TPS system to be as follows.

Relation Tuples Size
branch 1,000 100 Kbyte
teller i0,000 1 Mbyte
account 10,000,000 1 Gbyte
history 200,000,000 10 Gbyte

.

For a 10 TPS system (e.g. any machine in the range under investigation), these numbers
should be divided by 10. However this leads to several problems.

a,

b.

The "account" relation is 100 Mbytes of data. To achieve acceptable random
access a relatively low space utilization is required (perhaps as low as 40% for some
implementations), so this can easily require 200 Mbytes - a little too big for
comfort, as the test database loading may take several days! Pragmatic
considerations then typically reduce this relation to 100,000 tuples (1/100 scaling),
justified by assertions that performance for the larger relation size would be
comparable; this is reasonable if access time for "accounts" tuples is not the
limiting performance factor or the access method provides access times independent
of relation size (e.g. a good hashing addressing scheme) and provided there is no
"cheating" (e.g. the whole database could, in theory, be loaded into the available
real memory on even the smallest system in the range under consideration).

There is no published evidence to suggest anyone accumulates 1 Gbyte of "history"
data (for a 10 TPS system) before they start the TP1 benchmark. Common
approaches include starting from zero, or some arbitrary token number (e.g. 10000)
of tuples.

The organization of the "history" relation is subject to considerable variation.
possibilities were investigated.

Two

a. A sequential file. Realistic, but causes increased lock contention for the last
physical page because every TP1 transaction must append a tuple to this table.

b. A hashed file. Reduces physical page lock conflict, but this is not a rational way to
build a chronological record of updates. Pragmatic issues that must be addressed

Vol 8 No 3-4 12 AUUGN

include periodic reorganization (the growth is unbounded and eventually the pages
become so full that the increased update times dominate total transaction time,
thereby negating all gains from reduced l~xzk contention), concurrent sorting and
archival of tuples to some non-volatile storage (no attempt has been made to include
this overhead in the DBMS-R measurements).

The following graph illustrates the effects of this choice. All configuration parameters
are as specified in Section 1.1, except the default, rather than tuned filesystem was used
and in the hashed case the "history" table was initially loaded with 10,000 dummy
tuples at a fillfactor of 17% (after the last run there were 28,000 tuples and the fillfactor
was 50%).

Effect of Access Method on the "history" Relation

TPS

12-

10-

m

~

Unstructured

I I I
5 10 15

Concurrent Transaction Streams

Despite the apparent better performance of the hashed scheme, all other tests reported in
this document use the unstructured scheme because this organization could be sustained
over an extended period without expensive reorganization.

Elsewhere, some TP1 results have been gathered using several "history" relations (e.g.
partioned by branch number) to spread the activity and hence reduce the contention
conflict. This scheme is technically feasible and perfectly acceptable, but was not
employed in these tests because no performance improvement could be expected all the
while transaction logging was imposing a second convoy regime upon transaction
execution.

4. Make sure transaction logging is enabled. This is not an optional part of TP1.

The following graph illustrates how impressive, but bogus, performance can be achieved
by disabling transaction logging. Apart from logging, all configuration parameters in
both runs are as specified in Section 1.1 except the default rather than tuned filesystem
was used.

AUUGN 13 Vol 8 No 3-4

TPS

12-

10-

m

~

Effect of Transaction Logging

No Loggi gn -~

Logging

I I I
5 10 15

Concurrent Transaction Streams

0

.

.

In the absence of any special precautions, concurrent TP1 transactions can deadlock
when share locks are promoted to exclusive locks for each amended tuple in "account",
"teller" and "branch". TP1 testbeds must ensure deadlock is either prevented or
aborted transactions are resubmitted.

In a more general vein, the transaction implementation should include an error handling
mechanism that at least detects when an update is not completed as expected.

Measuring TPS rates over very short times produces a "burst" TPS rating that cannot be
sustained. In such a short interval, all writes may have been cached and sync may not
have run - this makes disk writes appear much cheaper than they really are! For
example if each stream consisted of 100 TP1 transactions and the degree of concurrency
varied between 1 and 16 streams, then the elapsed times (across a Model-4 and Model-l)
would be in the range 10 seconds to 5.4 minutes. Figures collected in this manner
cannot legitimately be compared. For all results presented in this report, the aggregate
number of transactions across all concurrent streams remains constant (1536) and
elapsed running times are in the range 2.5 to 5.0 minutes.

Similarly, there is some freedom in the interpretation of the TPS rate, as follows

1. The number of transactions completed, divided by the sum of the running times for
each transaction stream.

2. The number of transactions completed, divided by the total running time for all
transaction streams (from the start of the first one to the end of the last one).

The former measure produces marginally higher values, but is also more representative
of steady-state transaction processing. This is the measure used throughout this report.

The TP1 throughput varies dramatically with the degree of transaction concurrency.
Throughout these experiments, this parameter has been considered an independent
variable whose value may be chosen to maximize TP1 throughput for a particular choice
of all other configuration parameters. Not all TP1 measurements performed by others
are quoted in this way, so comparisons may be misleading.

Vol 8 No 3-4 14 AUUGN

,

Justification for choosing the degree of concurrency to maximize TP1 throughput is
relatively straight forward, based upon an application architecture in which a
communications front end process (or processes) manages the terminals, gathers
transaction details and submits transactions to one of N queues. Each transaction queue
is serviced by a dedicated server which runs one transaction to completion before starting
the next transaction. Such a scheme supports fluctuating transaction arrival rates with
constrained DBMS concurrency to achieve maximal throughput.

Tuning the UNIX filesystem can make a significant difference. Transaction logging and
the "history" relation are both fundamentally write-only sequential files with small
logical record sizes - big filesystem blocks help here. The other relations are all subject
to random read and re-write, again with small logical record sizes - small filesystem
blocks are optimal. The following graph illustrates the effects of this tuning for a
Model-4 configuration (see Section 1.1 for parameters) as the filesystems containing the
randomly accessed relations are varied from the default 16K block size configuration
through to the optimal (for TP1) 2K configuration.

Effect of Filesystem Tuning

12-

10-
TPS

~

~

16K Blocks
" ’*"~’~"~ ~ 4K Blocks

8K Bl~ks

5 10
Concurrent Transaction Streams

,

AUUGN

Care must be taken to see what DBMS tuning options have been invoked. For TP1,
query optimization is irrelevant, but selection of other parameters can have a major
impact, e.g. choice of lock granularity, lock promotion scheme, random access storage
method, database buffer cacheing, etc.

Relevant options for DBMS-R throughout these tests are,

® Enable transaction logging.

® Automatically promote read locks to exclusive locks at the time of granting.

o Explicity call the DBMS to delimit each TP1 transaction.

® Precompile queries to minimize parsing and optimization overheads.

Other tuning options may have obscure effects. For example, the number of data pages
cached in each DBMS-R process may be controlled. The local cache may reduce data
page reads, but incurs a synchronization overhead as additional locks for cached pages
must be acquired and released. The following graphs illustrate the effects of setting the

15 Vol 8 No 3-4

number of cached pages to zero on a Model-2 for the TP1 and T2 runs.

Reducing the local cache size to zero improves T2 performance when there is more than
one stream of transactions, since consecutive appends within a single stream will be
directed to different data pages and page cacheing incurs the lock overhead for no gain.
When there is no concurrency, the poorer performance results from repeated reads of the
same (last) page of the relation that is avoided when cacheing is employed.

The situation for TP1 is less clear. No obvious explanation exists for the poorer
performance in the un-cached case at near optimal levels of concurrency.

TPS

m

m

m

~

TP1 Throughput

default cache

I I
5 10

Concurrent Transaction Streams

Generic Updates
per Second

65-

60-

55-

50-

T2 Throughput

.n.o cache

default cache

I I I
5 10 15

Concurrent Transaction Streams

10. The original TP1 benchmark specification includes a number of aspects that are often
ignored due to difficultly in implementation or inability to support the relevant facility.
None of these factors have been included in the measurements presented in this report.

Vol 8 No 3-4 16 AUUGN

Terminal I/O. Assumed to be in block mode, 100 bytes (10 fields) of input (the
transaction details) and 100 bytes of output (response).

® X.25 communications between teller temainals and the host.

15% of transactions are for accounts held at branches different to the branch (teller)
at which the transaction is generated.

Duplexed transaction logging.

At least one second response time for 95% of the transactions.

Making it All Go Faster
Faced with ample CPU power and disk bandwidth, but comparatively low TPS rating, it
becomes necessary to identify where and how transactions are in conflict in such a manner
that serious interference results. To add to the gloom, system CPU usage is always
significantly higher than user CPU usage. Possible candidates include

.
Excessive system calls in either the DBMS-R process or the run-time library attached to
the application process.

2. Poor IPC protocols and/or implementation between the application and the DBMS-R
processes.

.

5ol IPC

The DBMS-R lock manager.

By surgically implanting a monitor routine below the DBMS-R run-time library in an
application process, it was possible to gather information on the pipe-based IPC protocols
between the DBMS-R process and the T2 sub-transaction. This revealed the following facts.

All messages are 256 bytes long.

After the initial hand-shaking (3 messages), there are 2 messages (one send, one
response) for each embedded query statement. Statement precompilation carries a further
overhead of 2 messages the first time the statement is executed.

This would suggest approximately 14 messages per TP1 transaction.

Using the MUSBUS[2] context1 test as a basis, two processes running on a Model-2 are able
to exchange 20,000 messages in 34.4 seconds (1.2user + 21.5sys). Message exchange alone
would therefore limit TP! performance for one transaction stream to a peak rate of 40 TPS.

The overhead in message processing is clearly not the limiting resource, although in
conjunction with some other computationally intensive activity (e.g. the DBMS-R process or
the lock manager) it may well represent a major contributor to the high relative system CPU
time and lower than expected transaction throughput.

5.2 System Call Behaviour
Using a profiled kernel on an Model-2, 4 streams of T2 transactions were run. The following
system call frequencies were observed and expected (only calls with frequencies over 500
shown).

AUUGN 17 Vol 8 No 3-4

Frequency
System Call Explanation

Observed Expected
ioctl 17267 7000 Based upon 3 lock requests and 1 lock release

per T2 transaction.
lseek 6422
write 5197 4700 3100 for pipe-based IPC messages, 1600 disk

writes.
read 3423 3100 Pipe-based IPC messages.
sigblock 3333
close 576

Worthy of note here is the unexpectedly higher number of ioctl Calls, and large numbers of
totally unexpected calls to lseek, sigblock and close.

5.3 Kernel Profiling
In an attempt to identify the reasons for such high system CPU time, three tests were
performed with a profiled kernel.

Case A T2 with 1 and 4 concurrent streams on a Model-2. The results with one concurrent
stream are not very interesting (each CPU is 50% idle), so the table below includes
only the 4 stream case.

Case B TP1 with 3 concurrent streams on a Model-2.

Case C TP1 with 4 concurrent streams on a Model-4.

The following table summarizes the main contributors, with resource consumption shown in
absolute terms and as a percentage of the system CPU time accumulated below the system
call entry (i.e. excluding idle and interrupt handling time).

The times were extracted using gprof and classified as follows.

DBMS-R Lock Driver
Everything in ioctl and below; there are effectively no calls to ioctl for devices other
than the DBMS-R lock manager.

File and Pipe I/O
Calls to rwuio via read and write are aggregated, and then usage attributed to file or
pipe I/O according to the frequency of calls to vno_rw and pipe_rw respectively.

Case DBMS-R Lock
Driver Pipe I/O File I/O

A 23.58 (40%) 12.94 (22%) 8.50 (14%)
B 61.55 (23%) 87.52 (33%) 52.18 (20%)
C 82.75 (23%) 134.47 (38%) 64.62 (18%)

The execution time per request in the DBMS-R lock manager depends upon the
degree of lock conflict and varies from 0.5 msec/call in Case A (no concurrency),
through 1.1 msec/call (Case A with 4 streams and Case B), to 1.5 msec/call in Case
C. This suggests that for TP1 the minimum time that a non-shared lock may be
held (e.g. exclusive access to the transaction log) is of the order of 3 msec, or some
350 lock request-release cycles per second. This cannot produce the convoy effect,

Vol 8 No 3-4 18 AUUGN

because the observed peak rate in the order of 12 TPS means the lock on the
resource that is causing the convoy must be held for about 90 msec by each
transaction. Possible explanations include,

1. The DBMS-R process does an enormous amount of work between acquiring the
lock and releasing it.

.
There is some major logical flaw in the lock manager that is causing the
process making a lock request to be blocked for no apparent good reason,
thereby adding considerable real-time delay to each lock request and/or release
that appears as CPU idle time, rather than accumulated CPU time in the lock
manager.

The first explanation seems more plausible, but it has not been possible to prove or
disprove either hypothesis.

6. Concluding Recommendations

The following issues must be addressed before DBMS-R TP1 performance on the studied
machines can be expected to demonstrate dramatic improvement.

.
The cause of the "convey" mechanism must be clearly identified. Until the passage
time for use of this critical resource is reduced, or removed the Model-2 and Model-4
will continue to demonstrate throughput that degrades above a concurrency level of about
4 and at the same time leaves considerable CPU idle time (note that disk bandwidth will
not become an issue of any relevance unless there is a significant increase in overall
transaction throughput).

Some possible techniques to help in this area include,

Multiplex the transaction log, e.g. one log per DBMS-R process with centralized
co-ordination (system-wide log) only occurring when the DBMS-R process starts-up
and shuts-down, rather than at each transaction commit.

For sequential files (e.g. a unstructured relation, or the transaction log) consider
using atomic append-writes (as supported in the kernel, i.e. open the file with mode
O_APPEND) in preference to DBMS-level lock protocols and lseek before each
write.

.

Avoid deadlock detection overhead for blocked requests to lock the transaction log -
transactions blocked here should be waiting for a short time with no chance of
deadlock, unless DBMS-R is in the midst of a pathological crisis from which it is
unlikely to recover!

Improved pipe performance or a more efficient IPC mechanism between the DBMS-R
and the application proceses. By itself, this cannot be expected to improve performance
(except on the Model-i), because this IPC activity is almost certainly outside the scope
of the interaction responsible for the convey phenomenon. However, if the serial
execution imposed by the convey were relaxed, then system CPU time spent supporting
pipe I/O would become a major component limiting throughput as CPU utilization nears
saturation.

At a more general level, this study has highlighted a number of potential weakness with
current TP1 specifications and implementation that should act as a warning to vendors and
purchasers alike - be very careful if you are using TP1 results to influence decisions in
respect of critical resources like people and money.

AUUGN 19 Vol 8 No 3-4

References
1. Anon et al., A Measure of Transaction Processing Power, Datamation, Apr. 1, 1985, 112-

118.

2. Ken J. McDonell, Taking Performance Evaluation Out of the "Stone Age", Proc.
USENIX Summer Technical Meeting, Phoenix, Arizona, June, 1987, 407-417.

Vol 8 No 3-4 20 AUUGN

Finland: Birch and Boat

Rob Pike

ABSTRACT

Trip report from the European Unix User’s meeting in Helsinki, Finland, and
related events.

Minix
First stop was Amsterdam, to visit Andy Tanenbaum and chat about his new V7-compatible sys-

tem, Minix. Minix’s purpose is pedagogy: Tanenbaum has written an undergraduate textbook using
Minix as a complete system for study, much like Lions’s V6 books from the late 70’s. Minix is suc-
cessful in the classroom -- the benefits of study by example are well known. Students are given lab
assignments like "add symbolic links" or "write a device driver for the Epson printer." Also, Tanen-
baum feels (and I agree) that operating systems texts have tended too much towards the theory and not
enough towards the practice. As he puts it, they’ll devote pages of queuing theory to round-robin
scheduling when a few lines of code and some common sense could do as well.

Minix is also successful as a book, and as a system. Prentice-Hall sells the complete source code
for about $100, and a group of avid Minix hackers has come to life almost overnight. Tanenbaum is
delighted.

This might be a good time to dispel some of the misconceptions floating around about Minix.
First, it is decidedly not V7. The kernel has been completely rewritten and redesigned, and at least
some of the user-level commands have also been rewritten. A number of commands are missing, the
most striking being ed. Also, because of some simplifications in the kernel, a number of system calls
are missing as well, although none of them too dramatic. The most troublesome absence is probably
pt:azace, but it is hard to fault Tanenbaum for leaving it out, given his pedagogical intentions.

Another misconception is that Minix, at least in its present form, is a threat to the Unix~- system.
The system is a teaching toy, not a production system. For one thing, it doesn’t swap: when a program
wants to grow in size, it can only do so if there is physical memory available. On a small machine --
Minix is written for the IBM PC -- this is quite a limitation. There are other shortcomings too, such as
the lack of any programmable editor; ed, seal and awk are all missing. And the list goes on. None of
this is intended to belittle Tanenbaum’s achievement, which is currently all the rage in the PC/Unix
world, and was the main technical topic of discussion at the EUUG meeting (read on).

Someone does think Minix is a threat, though: Richard Stallman. His at~mpt to create the public
domain system to compete with AT&T’s Unix system has been undermined by Minix. Stallman even
phoned Tanenbaum and chewed his ear off for his audacity in stepping on territory Stallman had
claimed for himself. I wish the conversation had been recorded for us all to share.*

]" Unix is a registered trademark of AT&T.
* Note added in proof, by Andy Tanenbaum: "Stallman never called me. He never even sent me e-mail. We
communicate via one of his disciples (like the Dalai Lama) because, in the words of the disciple: ’Every minute Richard
spends communicating means an additional 1 minute delay in the release of GNU.’"

AUUGN 21 Vol 8 No 3-4

EUUG on the Boat

Onward to Helsinld, to board the M/S Mariella, a huge floating resort hotel that housed the EUUG
(European Unix User’s Group) meeting. The Mariella leaves one of I-Ielsinki or Stockholm at 18:00,
arriving at the other city at 09:00 the following morning. Why a boat? Alcohol in Scandinavia is very
expensive, and duty-free alcohol is essential to survival for some groups. These boats (there are several,
owned by competing companies) make their money fairly equally from three things: transit fares,
alcohol sold at the bars on board, and the duty-free stores on board. Once the boats leave port, the bars
open and booze is cheap. Relatively cheap. Even by hotel standards, it was not cheap in my books.

Apparently these boats are a way of life in Finland. One Finn told me that, even though the
retum fare, including a single cabin, is only about $80, the boats are a gold mine. They are busy all
year round, and have a reputation for two things: cheap alcohol and ’casual physical relationships.’

There was considerable nervousness about the arrangements, and some active objections, both by
the conference attendees and even by some of the organizers. Tanenbaum showed up in Stockholm to
give his talk in port, refusing to go to sea in a ’floating liquor store.’ The local Sun distributor in Hel-
sinki wouldn’t let any of its staff travel on the boat, for fear of tarnishing the company’s reputation.
(Do they know of Bill Joy’s Ferrari?)

I think most people were surprised by how well it worked. It was a genuine novelty, although
before long it just felt like a hotel, except you couldn’t go out for take-out food. The boatiness of the
beast was somewhat of a disappointment; I and others wanted tubes, tiny doors with wheels for handles
and lots of roll. Instead, it was just a hotel. The only fun part was when it left Helsinki, during
Dominic Dunlop’s amusing, animated talk full of clever visual jokes. When the engines started, the
slide projector began shaking, the floor began shaking, and the 6 inches or so of vibration in the image
on the screen went well with the presentation.

The Joy of Superconduction
Bill Joy gave the keynote speech, and what a speech! The title was "Workstation architecture

from 1982-1992," so I was prepared for lots of Bill’s legendary log plots. I wasn’t prepared for what he
said, though.

First he spoke about a related topic: how to make money by selling workstations in 1982-1992.
His trick is to make everyone happy by adhering to all possible protocol standards, and letting the
power-of-two-every-five-years phenomenon give you enough horsepower to do so and enough log plots
to keep your marketing speech current. Then the fun started.

Armed with the latest issues of Business Week and the Wall Street Journal, which he got in
Frankfurt airport, he lectured us about superconductors. Ignoring completely the materials science aspect
of things, he assumed that the superconductor industry would behave like the electronics industry in its
exponential ways, and claimed that given high-temperature superconductors, Josephson junctions would
finally achieve their long-promised ascendancy because their stumbling-block had been removed. He
was obviously very excited, and to be fair, it made a hell of a good keynote speech, because his
enthusiasm infected everyone.

The Mood

There’s not much to say about the technical part of the EUUG meeting, except that it didn’t quite
work. There was a lot of after-hours talk in the on-board disco and casino about what was wrong. The
consensus became roughly that most of the talks were about whether or not the Unix system was dead
as a technical subject. If that’s all you have to talk about, it’s probably time to let the three-piecers in.

One certainty is that Tanenbaum’s talk about Minix was the technical high point. It was also a
very good talk. Everyone noticed that Minix is not commercial, and that in many ways Minix looks like
the early Unix systems, not least in the availability of its source code. At universities and in the home
hacker market, Minix may be the one to watch, although commercially it will be insignificant. One
important difference, though, is that Minix will probably become more widely available -- every student
may have a private copy, instead of mere access to a university machine. That could make it develop in
interesting ways. It is sure to be the basis for a number of innovations.

Vol 8 No 3-4 22 AUUGN

The Equipment Show
The vendor exhibition was necessarily small, because the conference section of the boat was much

smaller than the liquor section. I was interested to see an Olivetti display (with give-away corkscrews)
but no Unix Europe or AT&T display. Several book vendors were there, and Bjarne Stroustrup was
horrified to discover his C++ book selling for $80.

HP dominated the vendor show because they were making a big announcement, and wanted it to
be backed up by a big display. As far as I can tell, they never said what their big announcement was to
anyone but the press.

The Engines

I asked at the Information Desk on the Mariella if a small group of us could tour the engine room.
No trouble, so at 23:00 down we went. Fortunately, one of our group spoke Swedish m despite what is
claimed, English is not ubiquitous in Finland (more on that later).

It’s hard to describe the noise, the sheer massiveness, of engines large enough to propel a luxury
resort hotel through the Gulf of Bothnia. Here are some numbers that might help.

no. of engines: 4 V-ITs, 9000 horsepower each, 36000 hp total
bore: 400 mm
stroke: 460 mm
power: 550 kW/cyl., 747 hp/cyl.
RPM: 455 in water, 520 in ice
mass: 66 tonnes
fuel: 137 gal/hph

mass:
cylinder covers: 476 kg each
cylinder linings: 1000 kg each
pistons: 190 kg each
entire boat: 36000 tonnes

This strange mix of units is as the specifications were listed. The engines, and the entire boat, were
manufactured by the Wlfi’tsyl/~ company in Helsinki (who were working on a Russian icebreaker when
we toured Helsinki).

There are two screws 14.5 meters in diameter (or so we were told; this number contradicts the
claimed draw of the ship). Direction of thrust is controlled by changing the pitch of the screws.

The figure about ice deserves comment. Finland leads the world in icebreaker technology. The
Finnish government even defines standards for icebreakers. The Mariella is an icebreaker of the highest
degree, and runs all year round.

Everything on the ship is monitored in the control room next to the engine room, using a couple
of color displays with keyboards loaded with special function keys. All the controls are in English.

The ’user’ interface was unimpressive at best.

Two men run the engines. When the boat is docked, 09:00-18:00 every day, local time, four more
men are on board doing routine engine maintenance.

The nine-story boat draws only about six and a half meters.

We also went to the bridge. There is little to report m everything’s pretty much as you’d expect,
with computers monitoring the radar and so on (the ship was completed in 1985).

Something new to me: the stabilizers -- little wings, one on each side of the ship -- are driven
relative to a gyro. On-board navigation uses radar and off-boat navigation aids, though.

AUUGN 23 Vol 8 No 3-4

Russian Computers in Finland

The Russians manufacture a number of computer clones that they sell in Finland, including a
PC/AT, a VAX and a PDP-11. The PDP bus is different, though, for reasons I don’t understand. But
it’s easy to deal with the different UNIBUS: you just need an adapter that inverts all the bus signals.

Two operating systems are available on the PDPs. One is the "Real Time" system that feels
surprisingly like RSX-11/M, and the other is the "General Purpose" system with a striking similarity to
the Seventh Edition Unix system (Tanenbaum beware).

One of Johan Helsingius’s’~ friends spent a little while at a university in Moscow. One day he
was stopped in the halls. "Pssst. Wanna buy a 4.2 source tape?"

The fact that the Russians have the Unix system helps Finnish companies that do business with
Russia m and many do. Finland would not normally be permitted to sell Unix software to the Russians,
but since they already have it anyway, it’s not much of an issue in turnkey systems. Finnish computer
salesmen must learn how to interpret the phrase, "does your product run on a PDP-11 under V7?"

The Russians also have a number of micros of various kinds. The Russian-manufactured 8086
still displays the Intel copyright notice if you pry open the case. Their 8085 didn’t work properly, how-
ever, until an Intel employee visiting Finland was told about the problem. He recognized that the bug
was one of the last bugs to be found during the development of the chip, and was still present in the last
preproduction mask set. He deduced that the Russians stole the wrong masks. A few months later,
Russian 8085’s worked fine.

Language
Finnish is not an Indo-European language, it’s a Finno-Ugric language. Nothing in common with

English: ’Finnish’ is ’suomi;’ ’university’ is ’yliopisto;’ ’telephone’ is ’puhelin.’ The grammar is dif-
ferent: no future tense, no prepositions, no verb ’to have.’ On the other hand, Finnish is perfectly
phonetic (spelling is easy), has perfectly regular accents (always the first syllable), has no hard-to-say
sounds and in fact relatively few sounds at all -- 14 consonants, 8 vowels. So although it’s supposed to
be hard to learn, I decided to try a little. I was told before I left that everyone in Finland speaks English
anyway; you don’t need any Finnish. I believed English might get me by in Helsinki, but I figured the
more Finnish I knew, the better I’d fare in Lappland. I was right. If nothing else, it’s important to
know the sentences, ’En puhu suomen’ (I don’t speak Finnish) and, ’Puhutekko englantia?’ (Do you
speak English?).

I did all right. In the hotels, people spoke enough English that I could get by. I only met one
hotel employee who was genuinely fluent, and that was on my last night in a hotel. Elsewhere, espe-
cially outside Helsinld, English didn’t accomplish much. I learned enough Finnish before I left, from a
book A1 Aho lent me, that I could understand menus and make myself understood from my vocabulary
of a couple of hundred Finnish words, some rudimentary grammar, and a childhood fluency in grunts
and gestures. I3y the end of the trip, I was getting by fairly well, particularly in restaurants. I nego-
tiated most of my meals with no English, which is not to say I spoke perfect Finnish.

Finnish is such a non-European language that no foreigner learns it. The Finns aren’t accustomed
to hearing Finnish spoken badly, with a foreign accent. But they appreciate people trying, and beam
from ear to ear when people do try. Rather than responding in English (if they could), they respond in
slow simple Finnish. One restaurant owner was so impressed he refused to let Peter Langston, Ed
Gould and myself pay for our Ranskaleiset (French fries). It was fun, and because I saw Finnish
exclusively and heard Finnish almost exclusively (there was some English and Swedish and Russian on
TV), it was starting to click into place after a couple of weeks, the way German did when I lived in
Switzerland. I had to try harder to learn Finnish, though, no question about it.

I should mention that Finland is officially bilingual, the other language being Swedish, which is
spoken as the first language by about 6% of the country, maybe 10% around Helsinki. This situation

~" Johan was the conference organizer, and is a great guy to have around. Unfortunately, he’s spending the next year in
the Finnish army.

Vol 8 No 3-4 24 AUUGN

arose because the Swedes benevolently occupied Finland for a few hundred years, somewhat like the
Normans in England. The Swedish-speaking population feels genuinely Finnish, though, not Swedish.

Television
In the north, the choice of channels goes down. Interestingly, the BBC, which is available in most

of north-western Europe, is replaced by a Moscow channel in Lappland. The Sky channel, an English-
language all-Europe channel, was everywhere. One night I had a choice between some Finnish docu-
mentary, a horrifically tasteless army brass band performing waltzes in a Moscow concert hall, and Hulk
Hogan defending his wrestling title in Dayton on the Sky channel.

I began to see why people didn’t pick up English from the TV.

Food
Russian food is the ethnic style to try in Helsinki. Other than that, things are pretty dull. The last

night of the conference (only the technical sessions were on the boat; the tutorials were held on the
Monday and Friday straddling the boat trip) I asked a hotel employee to recommend a restaurant. She
recommended Suomelainen Ravintola, literally, Finnish Restaurant. It’s the only one in Helsinki, prob-
ably the only one in Finland. Johan was hol~fied, but admitted he’d never been there so we forced him
to come along.

He was glad he did.
The phrase ’Finnish cuisine’ is interpreted to mean northern Finnish, with the characteristic ele-

ments such as reindeer and arctic cloudberry taken from Lappland. I won’t attempt a food review here,
but will mention a couple of surprises. The first was smoked elk meat, eaten raw, that dissolved super-
bly in the mouth (I had similar things at hotels in Lappland m they mostly offer ’Lappi a la carte’ m
but it was never as good as at Suomelainen Ravintola). The second were these arctic cloudberries,
bright orange and tart, used mostly as a meat garnish, but in some desserts. Their flavor was unusual,
but they were ubiquitous, and would probably get dull after a while.

Of course, if there’s only one Finnish restaurant, you have to find other places to eat on the road.
Hotel food varied from mediocre to O.K., but was always expensive. The answer is to eat at a roadside
’grilli.’ They’re basically burger stands, but the cheeseburgers (hampurilainen juutosta) were very good,
uniformly better than you could expect here. The french fries (ranskaleiset, or ranskasomething perunat)
were good, too, if you spoke enough Finnish to prevent them being drowned in relish (kuukosomething
salaati) and ketchup. My Finnish was just good enough, and my gestures helped.

The Finns drink a lot of coffee. More on that in a moment.

Architecture
One of the reasons I wanted to visit Finland was the architecture there. It’s a long story, but per-

mit me to tell a compressed version. Finland has produced a number of great architects -- IBM York-
town and Holmdel were designed by one of them, Saarinen (Junior) m but one architect that worked
almost exclusively in Finland, and central Finland at that, and who is regarded reverently by the Finns.
His face appears on the new fifty-mark notes. His name is Alvar Aalto. My interest in architecture can
be traced entirely to a retrospective of his at the New York Museum of Modern Art a few years ago,
and he designed an astonishingly large fraction of Finland.

Some towns, such as Otaniemi (where the tutorials were held) and Jyv/tskyl~t, have almost all the
major buildings done by Aalto. There is much to say about Aalto’s style, and I am hardly the person to
do him justice, but I took some of the EUUG attendees on an architectural tour of Otaniemi and they
agreed with me that his work was special. Although his buildings are not particularly exciting from the
outside, his interior spaces are amazing, open, full of light and inviting. He also designed beautiful,
simple, functional and very comfortable furniture.

Even the buildings Aalto didn’t design are interesting. The northern part of the country was
almost literally burnt to the ground by the retreating Germans at the end of the Second World War, and
a massive reconstruction program began to house the displaced inhabitants. With materials scarce, it

AUUGN 25 Vol 8 No 3-4

was not feasible to build many single dwellings, so the towns are full of apartments and town houses,
which sounds awful. But they are very successful, blending with the landscape and not at all obtrusive
to the eye. Aalto’s influence (he came to prominence in the 1920’s and worked until he died, in 1976)
is evident everywhere; his use of light and space and wood dominates the style of buildings. The hotel
rooms, for instance, are spare but airy, bright and cozy. Without implying any stylistic similarity, the
Finnish buildings reminded me of the Japanese control of space.

The Last 24 Hours
My last day in Finland was remarkable enough to be recorded chronologically. I had driven from

Inari the day before, through Pelkosenniemi where the army was trying to clear the ice floes from the
streets where they had floated when the army dynamited the ice dam in the river, and spent the night at
a hotel/hotel school in Rovaniemi. I spent the day in Rovaniemi, mostly at the Aalto-designed library,
and in the evening drove to the train station.

The Finns have a great idea in trains: an overnight sleeper train runs between Helsinki and
Rovaniemi, and for about $100 you get a bunk, breakfast and a place on the train for your car. So you
go to sleep at one end of the country and wake up at the other end with your automobile, for not much
more than the cost of a hotel room for a night.

My companion in the sleeper compartment was a Lapp, whose native language is Saami, but who
spoke Finnish and, of course, Swedish. Nonetheless, we had a great time for a couple of hours passing
my Berlitz back and forth. You really can have a conversation that way.

The next morning, in Helsinki, I tried to find the Artek store. Artek is the furniture company
founded by Alvar Aalto, and their store is right the in the heart of the Helsinki shopping district. I
found a building labeled Artek, but the store there looked like a Marimekko. So I tried another entrance
and found a pair of elevators and a building directory: Artek, 8th floor. Up I went.

There was a receptionist, so I asked her, "Puhutekko englantia?" She panicked, and took me to
the back to look for someone else. Sure enough, we found some English speakers: two architects in a
studio with beautiful skylights. I explained that I was looking for the Artek store, and that I was an
architectural pilgrim and a fan of Aalto. They were delighted. They gave me a catalog and the name of
an American distributor of Artek furniture, and gave me the grand tour. Martti (I have, ashamedly, for-
gotten his last name) was in the process of designing furniture while I was there, but took time out to
show me around and explain some things. Of course, the building itself was designed by Aalto (hence
the skylights). Martti was young and enthusiastic, and took me to the ground floor and showed me the
Artek store. It was, indeed, hidden somewhat. First, though, he showed me Galleria Artek, which was
displaying some work by ’Carpenter Karl Virtanen.’ These were new pieces of furniture, hand made
and insanely expensive, but simply beautiful, and beautifully simple. They were made of birch, nothing
else, with all hidden-joint construction and imaginative laminations. For example, the front doors of one
cabinet were laminated with the strips running vertically, about 3mm wide, with colored glue, so the
doors looked like they were vertically ruled.

The Artek showroom, at last, had all the Aalto furniture there for me to try out. Even better,
though, Martti explained the innovations in the various pieces, and gave me a personal lecture on
modern Scandinavian furniture design. I was not surprised, but I was dismayed, to learn that Finnish
furniture is remarkably inexpensive in Finland. It’s not here.

Next, to the airport, where I spent half an hour finding where to leave my well-driven 1.1 litre
Ford Fiesta. On the flight to Amsterdam I sat beside a Dutch gentleman.

"Are you a Dutchman?" he asked me, in English.

"No," I said, "I’m Canadian."
"Then we can talk in English." And we did. He was in the lumber business, and spent a lot of

time in Finland. His language of commerce was Swedish. About this time the stewardess came by with
drinks.

"Would you like some coffee?" she asked him, in English.

Vol 8 No 3-4 26 AUUGN

"No, thanks. Coffee, coffee, coffee, I’m sick of coffee. I spend all day driving from sawmill to
sawmill and every time I stop it’s coffee, coffee, coffee. I am full of coffee."

The stewardess was taken aback.

AUUGN 27 Vol 8 No 3-4

The USENIX Association Newsletter

Volume 12, Number 4 July/August 1987

CONTENTS

Call for Papers: POSIX Portability Workshop ...3
Call for Papers: Winter 1988 USENIX Conference ...4
Call for Papers: Summer 1988 USENIX Conference ...5
Computer Graphics Workshop ...6
Multiple Programs in One UNIX Process ...7

Don Libes
tar vs. cpio ...13
How To Write a UNIX Daemon ...i17

Dave Lennert
Call for Papers: EUUG Spring 1988 Conference ...24
Book Reviews ..25

The Design of the UNIX Operating System ..25
Marc D. Donner

A C Reference Manual (SecondEdition) ..27
Josiah C. Hoskins

UUNET Progress Report ..28
The 1988 Election of the USENIX Board of Directors ...30
Call for Participation: USENIX C+ + Workshop ...30
Summary of the Board of Directors’ Minutes New Orleans, 26-27 March 198731
Summary of the Board of Directors’ Meeting Phoenix, June 7, 8, 10, 198732
Future Meetings ..34
Publications Available ..35
4.3BSD UNIX Manuals ..., ..36
4.3BSD Manual Reproduction Authorization and Order Form ..37
Local User Groups ..38

The closing date for submissions for the next issue of ;login." is August 28, 1987

FHE PROFESSIONAL AND TECHNICAL
UNIX® ASSOCIATION

Vol 8 No 3-4 28 AUUGN

;login:

Call for Papers
POSIX Portability Workshop

Berkeley Marina Marriott
October 22-23, 1987

This USENIX workshop will bring together system and application implementors faced
with the problems, "challenges," and other considerations that arise from attempting to
make their products compliant with IEEE Standard 1003.

The first day of the workshop will consist of presentations of brief position papers
describing experiences, dilemmas, and solutions. On the second day it is planned to form
smaller focus groups to brainstorm additional solutions, dig deeper into specific areas, and
attempt to forge common approaches to some of the dilemmas.

Suggestions for topic areas and position papers include:

C Language Issues
Networked/Distributed Implementations
Timer resolution, ranges
Conformance verification
Job control, process groups
Implications for user interfaces

Internationalization
Pipes and FIFOs
Signals
Security concerns
Limits: documentation and inquiry
Implications for commands

Position papers must be submitted by August 15, 1987 to:

Jim McGinniss
Digital Equipment Corporation

Continental Boulevard MK02- I/HIO
Merrimack, NH 03054

(603) 884-5703
decvax!jmcg

jmcg@decvax.DEC.COM

For registration or hotel information, contact:

Judith F. DesHarnais
USENIX Conference Coordinator
PO Box 385
Sunset Beach, CA 90742

(213) 592-3243
usenix!judy

AUUGN 29 Vol 8 No 3-4

;login:

Call for Papers
Winter 1988 USENIX Conference

Dallas, Texas
February 9-12, 1988

Please consider submitting an abstract for your paper to be presented at the Winter
1988 USENIX conference. Abstracts should be around 250-750 words long and should
emphasize what is new and interesting about the work. The final typeset paper should be 8-
12 pages long.

The Winter conference will be four days long: two days of tutorials only and two days
of papers only.

Suggested topic areas for this conference include (but are not limited to):
Electronic Publishing
Novel Kernels
New Software Tools
New Applications
System Administration

(including distributed systems and integrated environments)
Security in UNIX
Future Trends in UNIX

This conference may include a "miscellaneous" session which will include those papers
which normally do not fit into normal tracks. Vendor presentations should contain techni-
cal information and be of interest to the general community.

Abstracts are due by October 23, 1987; papers absolutely must be submitted by January
4, 1988. Notifications of acceptance of abstracts will be sent out by November 6. Papers
that do not meet the .promise of their abstract will be rejected. Talks will be given on all
papers published in the Proceedings; failure to submit a paper for an abstract will result in
forfeiture of the talk.

Please contact the program chairman for additional information:
Rob Kolstad
CONVEX Computer Corporation
701 Plano Road
Richardson, TX 75081
214-952-0351 (W)
214-690-1297 (H)
214-952-0560 (FAX)
(usenix,ihnp4,uiucdcs,allegra,sun) ! convex ! kolstad

Please include your network address (if available) with all correspondence. It should be an
ARPANET (EDUNET, COMNET), BITNET, or CSNET address or a UUCP address relative to a
well-known host (e.g., mcvax, ucbvax, decvax, or, ihnp4).

Vol 8 No 3-4 30 AUUGN

;login:

Call for Papers
Summer 1988 USENIX Conference

San Francisco

June 20-24, 1988

Papers in all areas of UNiX-related research and development are solicited for formal
review for the technical program of the 1988 Summer USENIX Conference. Accepted
papers will be presented during the three days of technical sessions at the conference and
published in the conference proceedings. The technical program is considered the leading
forum for the presentation of new developments in work related to or based on the UNIX
operating system.

Appropriate topics for technical presentations
¯ Kernel enhancements ¯
¯ UNIX on new hardware *
¯ User interfaces ¯
¯ UNIX system management ~
¯ The internationalization of UNIX ¯

include, but are not limited to:
Performance analysis and tuning
Standardization efforts
UNIX in new application environments
Security
Software management

All submissions should contain new and interesting work. Unlike previous technical
programs for USENIX conferences, the San Francisco conference is requiring the submission
of full papers rather than extended abstracts. Further, a tight review and production cycle
will not allow time for rewrite and re-review. (Time is, however, scheduled for authors of
accepted papers to perform minor revisions.) Acceptance or rejection of a paper will be
based solely on the work as submitted.

To be considered for the. conference, a paper should include an abstract of 100 to 300
words, a discussion of how the reported results relate to other work, illustrative figures, and
citations to relevant literature. The paper should present sufficient detail of the work plus
appropriate background or references to enable the reviewers to perform a fair comparison
with other work submitted for the conference. Full papers should be 8-12 single spaced
typeset pages, which corresponds to roughly 20 double spaced, unformatted, typed pages.
Format requirements will be described separately from this call. All final papers must be
submitted in a format suitable for camera-ready copy. For authors who do not have access
to a suitable output device, facilities will be provided.

Four copies of each submitted paper should be received by February 19, 1988; this is an
absolute deadline. Papers not received by this date will not be reviewed. Papers which
clearly do not meet USENIX’s standards for applicability, originality, completeness, or page
length may be rejected without review. Acceptance notification will be by April 4, 1988, and
final camera-ready papers will be due by April 25, 1988.

Send technical program submissions to:
Sam Leffler
SF-USENIX Technical Program
PIXAR
P.O. Box 13719
San Rafael, CA 94913-3719
415-499-3600
ucbvax!sfusenix

AUUGN 31 Vol 8 No 3-4

;login:

Computer Graphics Workshop

Boston Marriott Cambridge
Cambridge, MA

October 8-9, 1987

The Fourth USENIX Computer Graphics Workshop will be held at the Boston Marriott
Cambridge in Cambridge, MA, October 8 and 9, 1987, with a no-host reception on the even-
ing of October 7.

Registration will be $200 per attendee and must be paid in advance. There will be no
on-site registration.

There is a special hotel rate for workshop attendees of $115 per night, single or double.
Call the Marriott direct for reservations: 617-494-6600. Be sure to mention that you are a
USENIX Workshop attendee. The Marriott has a strict cut-off of September 16 for its spe-
cial rate. Reservations made after that date will be on a space and rate available basis.

Partial Program
The BRL CAD Package- Michael John Muuss & Phillip Dykstra (BRL)
REMRT - A Network Distributed and Parallel Ray-Tracer- Michael John Muuss (BRL)
The Definition and Ray-tracing of B-Spline Objects in a Combinatorial Solid Geometry

Modeling System - Paul R. Stay (BRL)
More Music Software for UNIX - Michael Hawley (MIT)
Dynamics for Everyone- Jane Wilhelms (UCSC)
Distributed Computation for Computer Animation - John W. Peterson (Utah)
It’s all done with Smoke and Mirrors - The Face Saver Project-

David Yost & Lou Katz (Consultants)
Paint Systems and Images of Arbitrary Size and Shape -

Ken Knowlton & Lou Katz (Consultants)
Hairy Brushes - Steve Strassman (MIT)

For further program information, contact:
Tom Duff at research!td or Lou Katz at ucbvax!lou.

For registration information, contact:
Judith F. DesHarnais
USENIX Conference Office
P.O. Box 385
Sunset Beach, CA 90742
(213) 592-3243
usenix!judy

NOTE: Make your hotel reservations on or before September 16!

Vol 8 No 3-4 32 AUUGN

;login:

Multiple Programs in One UNIX Process

Don Libes
National Bureau of Standards

Bldg 220, Rm A-127
Gaithersburg, MD 20899

(301) 975-3535
(seismo,umcp-cs)!nbs-amrfllibes

ABSTRACT

A small operating system (XINU) was ported to UNIX 4.2BSD. The entire operating
system runs as a single UNIX process. The code is approximately 1000 lines of C (including
comments) and 6 lines of assembler.

All of the code is user-level, and thus presents a system easy to examine, understand,
and experiment with further.

The code has been used as a base for an application of several cooperating processes
communicating through global variables. Alternatively, the system provides semaphores and
messages for interprocess communication.

Background- Why Did We Need This?
This project fell out of a recent porting effort at NBS. The original desire was to move an appli-

cation from a non-UNIX computer to a UNIX computer. The non-UNIX computer ran a simple
home-brewed operating system the details of which are unimportant except that it provided
interprocess communication through global variables. While 4.2 promised shared memory, it failed
to deliver on this. (This has since been remedied by [Libes 85].) To quote from the manual page for
mmap(2) [Joy 83]:

DESCRIPTION
N.B.: This call is not completely implemented in 4.2.

Taking the cryptic advice, we decided that it might be possible to port the entire operating
system and application as a single UNIX process.

This proved to be possible with the help of several recent enhancements of 4.2 UNIX including
sub-second interval timers and non-blocking I/O. Our first implementation did not require separate
process stacks, and we realized that by adding them, we would have a tool of much more generality.
Before proceeding much further, we quickly realized the similarity to XINU as presented by [Comer
84]. (Other approaches are discussed by [Kepecs 85] and [Tevanian 87].)

XINU

In Operating System Design, The XINU Approach Douglas Comer presents a layered and
modular operating system. In contrast to other operating system texts which compare and contrast a
variety of algorithms for typically only the most interesting tasks in an operating system, Comer
chooses one technique for each problem, usually the most straightforward one or that leading to the
simplest presentation. (Alternatives are often proposed in the exercises at the end of each chapter.)

The book is further unique in discussing every last aspect of a single implementation. This
implementation is XINU. The entire source of XINU is in the text, including the machine dependent
code for running XINU on a Digital Equipment Corporation LSI 11/2 (a microcomputer version of
the PDP 11).

AUUGN 33 Vol 8 No 3-4

;login:

Based on Comer’s unusually well-written text, we felt that it might be possible to bring up XINU
on top of UNIX. Such a system would be able to provide the concurrency and shared variables that
our original application needed, and at the same time be immediately useful to others, since it was
already well-documented.

In fact, it was not hard. Our task was much easier than Comer’s in that we had a complete set
of device drivers already. This included a file system and terminal interface. We also did not have to
worry (much) about operating system startup and C start up.

It took approximately 3 hours to type in the necessary parts of XINU. This included process
management and utilities for fifo and priority queues. Our initial version of XINU did not use a
real-time clock. Processes had to explicitly give up control (through calls to wait, sleep, etc). Dur-
ing that time, it was possible to use setjmp/tongjmp to switch between processes.
set jmp/longjump saves/restores the registers including the pc (program counter) and sp (stack
pointer), and also the signal mask (used as an interrupt mask).

Process Rescheduling- reschedO

XINU processes call resched (via wait, sleep, etc) to give up control temporarily of the
processor to a ready process. Here is the code fragment where an old process gives control to a new
process.

/* _resched.c - reschedule and context switch processes
_resched() {

)* old process is running */
if (0 == setjmp(optr->pregs))
/* new process resumes here */

longjmp(nptr->pregs,1);

Each process has a structure describing its state whenever the process is not currently executing
(analogous to the _u structure in the UNIX kernel). In the above code fragment, nptr points to the
new process to begin executing, optr points to the old process that is going to be suspended. The
field pregs is the register save area. All that is necessary to switch processes is to save the current
register values in optr, and restore the old register values in nptr.

setjmp saves most of the registers including the pc and sp. However, it does not save the
condition codes. This is because set jmp and t ongjmp are never immediately followed by a test of
the condition codes.

Using the 4.2BSD interval timer, we added a real-time clock. The real-time clock could
interrupt computations anywhere, including the case where the conditions code had been set but not
tested. At this point, it became necessary to do context switches ourselves. That required a small
number of assembler statements.

The ~llowing amended version of resched (Nr an MC68000) can be called ~om interrupt
handlers as well as user processes.

/* _resched.c - reschedule and context switch processes */
/* Since we can’t pass parameters to rte from resched, we use these */
/* variables that are global to both routines. */
static int *new_sp; /* new stack pointer register to be loaded */
static int (*new_pc)(); /* new program counter register to be loaded
static int new_signal_mask; /* new signal mask to be loaded */
void _resched()
{

register struct pentry *optr; /* pointer to old process entry */
register struct pentry *nptr; /* pointer to new process entry */

Vol 8 No 3-4 34 AUUGN

;login:

/* no switch needed if current process priority higher than next */
if (((optr = &_proctab[_currpid])->pstate == PRCURR) &&

(lastkey(_rdytail)<optr->pprio))
return;

/* if the old process was still runnable, mark READY */
if (optr->pstate == PRCURR) {

optr->pstate = PRREADY;
_insert(_currpid,_rdyhead,optr->pprio);

}
/* remove highest priority process at end of ready list */
nptr = &_proctab[(_currpid = _getlast(_rdytail))];
nptr->pstate = PRCURR; /* mark it currently running */

#ifdef RTCLOCK
/* schedule an interrupt for the end of a quantum or the next event */
/* in the sleep queue, whichever is sooner */
_start_itimer((_slnempty && (*_sltop < QUANTUM))?*_sltop:QUANTUM);

#endif
/* ctxsw(optr->pregs,nptr->pregs);*/
/* at this point, optr->pregs == a5@, nptr->pregs = a4@ */

/* save all registers in optr->pregs */
asm("moveml #Oxffff,a5@"); /* save all the registers */
asm("movl #OLDPROC,a5@(64)");/* change pc and save it */
optr->signal_mask = sigblock(O);/* save old interrupt reg */

/* we have completed putting the old process to bed */
/* now restart the new process */

/* prepare pc, sp and interrupt mask for rte() to use */
new_sp = nptr->sp; /* movl a4@(60),_new_sp */
new_pc = nptr->pc; /* movl a4@(64),_new_pc */
new_signal_mask = nptr->signal_mask;
/* load rest of registers directly except for a7 (sp) */
asm("moveml a4@,#Oxfff"); /* restore dO-d7,aO-a3 */
asm("moveml a4@(52),#Ox6000"); /* restore a5-a6 */
asm("movl a4@(48),a4"); /* restore a4 */

kill(getpid(),RTE);
fprintf(stderr,"resched: kill(,RTE) returned?O);

/* old process returns here */
asm("OLDPROC:");
}

Notice thatthe scheduler here is very simplistic. Highest priority processes are selected round-
robin. (More complex schedulers might use per-process quantums as well as reassigning priorities.)

/* if the old process was still runnable, mark READY */
if (optr->pstate == PRCURR) {

optr->pstate = PRREADY;
_insert(_currpid,_rdyhead,optr->pprio);

}

/* remove highest priority process at end of ready list */
nptr = &_proctab[(_currpid = _getlast(_rdytail))];

An interval timer is then scheduledto occur at the end of the next quantum or ~r the first
scheduled sleeping process, whicheverissooner.

/* schedule an interrupt for the end of a quantum or the next event */
/* in the sleep queue, whichever is sooner */
_start_itimer((_slncmpty && (*_sltop < QUANTUM))?*_sltop:QUANTUM);

The real-time clock is simulated using the 4.2 interval timer. Rather than generating constant
interval clock ticks, the interval timer is only set for known events (i.e. quanta and sleeping
processes). This reduces the number of clock interrupts significantly.

AUUGN 35 Vol 8 No 3-4

;login:

Context Switching - rteO

Comer describes (p. 59) the LSI instruction rtt (return from trap) which reloads the pc and ps
(processor status register) at the same time. We have a similar problem, although rather than reload-
ing the ps, we want to reload the signal mask, sc_mask. The solution is to artificially provoke a sig-
nal (via k i t l) which at termination executes a rte (return from exception). This is the 68000’s ana-
log to the 11/2’s r t t.

/* rte() - indirectly execute 68K rte (return from exception) instruction */
/* Always called from resched(). This routine is necessary to load the */
/* signal mask at the same time as we load the new pc and sp. */
/* setjmp/longjmp is unusable as it doesn’t save/restore all the registers. */

/* ARGSUSED */
static void rte(sig,code,scp)
int sig;
int code;
struct sigcontext *scp;

scp->sc_sp = (int)new_sp;
scp->sc_pc = (int)new_pc;
scp->sc_mask = new_signal_mask;

/* No need to reload ps, as no one looks at it anyway, upon return. */

A Simple Example

We wanttwo XINU processes to execute simultaneously, one continuously printing "l", and the
other continuously printing"2". To do it, we create two subroutines as ~llows:

prog1()
{ ¯

for (;;) printf("1");
}
prog2()

for (;;) printf("2");

The following subroutineis allthatis necessary to run them.
user_main()
{

xresume(xcreate(progl,2OOO,20,"prog1",O));
xresume(xcreate(prog2,2OOO,20,"prog2",O));

}

Compiling this together with the XINU support routines and running the executable produces the
following output:

1111122222111112222211111222221111122222

xcreate takes a subroutine and creates a runnable (XINU) process, returning a process id. Pass-
ing the process id to xresume allows the process to run. The remaining parameters to xcreate are
the stack size, a process priority, a tag for debugging, and a number and list of arguments passed to
the process when started. Further information can be found in Comer’s book.

Miscellaneous But Important Implementation Notes

The entire project took approximately two person-weeks. This included typing in the source,
learning the necessary amount of both LSI 11/2 assembler (Comer’s original) and a mongrel
68K/UNIX assembler provided by the vendor of our 4.2 system. Lastly, we had to figure out the
undocumented C calling conventions for the 4.2 C compiler (very similar to what Comer discusses) as
well as experiment with the undocumented asm statement in our C compiler.

Vol 8 No 3-4 36 AUUGN

;login:

Although we have no references on it, asm is a keyword in (apparently) many C compilers
which allows the user to drop assembler statements into the C compiler’s assembler output. For
example,

foo();
asm("jsr bar"); /* bar(); */

calls bar after calling foo. The next logical step doesn’t work,
spr intf (asm_buffer," j sr %s","bar") ;
asm(asm_buffer) ;

evokes the error syntax error at or near "asm_buffer" from the 4.2 C compiler. You should try this on
your particular C compiler.

4.2 XINU System Calls

The supported system calls are:

xsend0
xreceive0
xrecvclr0
xresume0
xsuspend0
xkill0
xcreate0
xgetpid0
xgetprio0
xchprio0
xwait0
xsignal0
xscreate0
xsdelete0
xsleep0
xmsleep0

send a message to another process
wait for a message and return it
clear messages, returning waiting message (if any)
unsuspend a process, making it ready
suspend a process, placing it in hibernation
kill a process and remove it from the system
create a process to start running a new procedure
get the process id of currently executing process
return the scheduling priority of a given process
change the scheduling priority of a process
make current process wait on a semaphore
signal a semaphore, releasing one waiting process
create and initialize a semaphore, returning its id
delete a semaphore by releasing its table entry
put a process to sleep for this many seconds
put a process to sleep for this many milliseconds

For complete documentation on the system calls, see Comer’s text. Most of the supported
system calls function exactly as described in the book. The only changes were to provide a
millisecond timer rather than a tenth of a second timer, and all XINU system calls are prefaced with
’x’ (for XINU) to avoid clashes with UNIX calls.

All internal procedures and variables that are global have been prefaced with an underscore to
avoid conflicting with application names. For example, _resched.

The system is configurable and can be recompiled without any combination of the following
optional services:

realtime clock
semaphores
messages

These and other typical configuration changes are isolated in _conf. h.

The smallest 4.2 XINU system comes with only 5 system calls:

xcreate0
xresume0
xsuspend0
xkill0
xgetpid0

and is actually quite useful.

AUUGN 37 Vol 8 No 3-4

;login:

Other Minor Differences Between Corner’s XINU and 4.2 XINU

Comer’s XINU is based on the LSI 11/2. 4.2 XINU is based on 4.2BgD UNIX. The source is
almost entirely in C, and makes few assumptions about the underlying machine. Much of the code
ports without changes. Besides the differences mentioned elsewhere in this paper, the other primary
differences are the size of the registers and interrupt handling.

The LSI is 16-bit while 4.2 is char" *Occasional assumptions are necessarily made,
unfortunately.

Interrupts in the UNIX appear as software signals. Thus, disabling interrupts is done with the
4.2 signal support routines.

If you intend to write your own system calls, you must allocate an int to store the old interrupt
mask rather than a char. For example, d isabte(ps) is used°to disable interrupts while storing the
old processor status in ps. Corner’s definition of disable is:

/* disable interrupts - LSI 11/2 */
#define disable(ps) asm("mfps ~ps"); asm("mtps $0340")

while for 4.2 XINU, it is
/* disable interrupts - 4.2BSD software interval timer */
#define disable(oldmask) oldmask = s’igblock(1<<(SIGALRM-1))

Here, onlY the quantum timer interrupt is blocked. You may find that other signals should be
blocked, however not all should (e.g. $IGTSTP should probably not be trapped).

Using UNIX System Calls From XINU

All UNIX system calls and many library calls should be made with some thought as to their
consequences, e×ec, for example, will completely overlay the entire XINU application and system.
Where functionality is duplicated by UNIX, it is generally better to use XINU’s calls. For example, if
a process wants to go to sleep, calling the UNIX steep will stall the entire XINU system until the
next interval timer occurs. If the process calls xsteqp (the XINU equivalent) the current process is
put on a queue waiting for thee clock, and another XINU process is given control of the cpu.

We have not reimplemented I/O, since we were able to use UNIX I/O without change, however
the default behavior of UNIX I/O is to block, leading to a similar problem as sleep (i.e. block until
operation complete or until quantum expires).

Note that 4.2 system calls restart automatically upon interrupts. This allows programs to run
without having to explicitly handle the quantum interrupt.

If this "blocking until quantum" behavior is undesirable, it is possible to use non-blocking I/O,
either directly, or through a generalized interface leading to a second set of I/O system calls. Future
work in this direction would be very useful.

Using UNIX Library Calls From XINU

Many UNIX library calls are nonreentrant, and do not protect themselves against this. This
means that they use static variables which are common from one call to the next. If two processes
make the same nonreentrant library call at the same time, it is likely that the routines will misbehave.

Using reentrant versions of libraries is the best solution. Alternatively, one can embed (or
surround, if you don’t have the source) semaphores in the library calls (provided by XINU), one per
common data structure (such as _i oh which is shared with all the routines that are part of the
standard I/O library).

XINU system calls are protected against reentrancy problems by disabling timer interrupts.
Since mat loc and free are used for XINU memory management, you should disable timer interrupts
or set up a semaphore for access to the ma l l oc data structures when doing memory management.

Vol 8 No 3-4 38 AUUGN

;login:

Conclusion

We have ported an operating system to the UNIX environment by emulating the environment of
a microprocessor in a single UNIX process. We now have a tool that is capable of simulating any set
of cooperating realotime processes.

The applications have the ability to access all the power of UNIX, simply because the emulator
runs as normal user code on a 4.2BSD system. Because all the XINU processes run in one UNIX
process, it is especially easy to debug multiple programs with one debugger.

Perhaps the nicest benefit of this work, has been the ability to write processes that etficiently
share data structures, at the expense of using distinct global names. This has long been a missing
feature of UNIX.

References

Comer, Douglas. Operating System Design, The XINU Approach. Prentice-Hall, Inc. Englewood
Cliffs, New Jersey, 1984.

Joy, W., Cooper, E., Fabry, R., Lefller, S., McKusick, K., Mosher, D., "4.2BSD System Interface
Overview," Computer Systems Research Group, U.C. Berkeley, July, 1983.
Libes, Don. "User-Level Shared Variables." Tenth USENIX Conference Proceedings, Summer 1985.

Kepecs, Jonathan. "Lightweight Processes for UNIX Implementation and Applications." Tenth
USENIX Conference Proceedings, Summer 1985.
Tevanian, Jr., A., Rashid, R., Golub, D., Black, D., Cooper, E., Young, M., "Mach Threads and the
UNIX Kernel: The Battle for Control." Summer 1987 USENIX Conference Proceedings.

tar vs. cpio

The following memorandum was delivered at the June meeting of the P1003 committee in Seat-
tle by John S. Quarterman, USENIX Institutional Representative to the Committee. I feel its content
is of great importance to the membership and have reproduced it here with John’s consent. The final
note is a consequence of the June meeting. - PHS

Secretary, IEEE Standards Board
Attention: P1003 Working Group
345 East 47th St.
New York, NY 10017

In both the Trial Use Standard and the
current Draft 10, POSIX §10.1 describes a data
interchange format based on the tar program.
That section has appeared in every draft of
IEEE 1003.1 in some form and has always
been based on tar format. The P1003.1 Work-
ing Group has recently received two related
proposals regarding that section: one to add
cpio format (including old-style, non-ASCII

(non c option) format); [N.048 Lorraine C.
Kevra] [VI INI4] [VI IN25 Eric S. Raymond]
the other to replace the existing tar-based
format with cpio format. [N.043 X/OPEN]
[V11N13] Some clarifications were received to
the former. [N.064 Dominic Dunlop]
[VI I NI 5] It was also proposed verbally in the
latest Working Group meeting to drop §10.1
altogether and let P1003.2 handle the issue.
[VIIN08] [VllNII] [VI1N09 Guy Harris]
[V 11N 12 Doug Gwyn]

The present note is a response to those
proposals. Much of the detail in it is derived
from articles posted in the USENET newsgroup

AUUGN
39 Vol 8 No 3-4

;login:

comp.std.unix. Those articles are referenced
with this format: [VI IN09 Guy Harris] which
gives the volume (always 11) and number of
the article, and the name of the submittor. If
no submittor name is given, the posting was
by the moderator, John S. Quarterman.
Thanks to those who submitted articles. How-
ever, the content of this note is solely the
responsibility of the author.

This note is addressed to P I003.1, and is
concerned with data interchange formats.
Although user interface issues may be of
interest to P1003.2, they are not addressed
here.

There are a number of problems with both
cpio formats. First, those related to the non-
ASCII format:

1. Numerous parameters, including inode
numbers, mode bits, and user and group IDs,
are kept in two-byte binary integers. This has
historically produced serious byte-order
problems when data is moved among systems
with different byte orders. [VllN09 Guy
Harris]

2. The byt.e-swapping and word-swapping
options to the cpio program are inadequate
patches; with an ASCII format the problem
would not be present. The options are not
consistent across versions of the program: in
System III, data blocks and file names are byte
swapped; in System V, only data blocks are
byte swapped. [V 11N09 Guy Harris]
[V 11 N47 Andrew Tannenbaum]
"3. The two-byte integer format limits the

range of inode numbers to 0..65535. Many
current file systems are bigger than that.
[VIIN37 Paul Eggert] [VI1N39 Henry
Spencer]

Non-ASCII cpio format is clearly not port-
able and should not even be considered for
standardization. [V11N 12 Doug Gwyn]

There are several problems that occur even
with the ASCII cpio format:

1. Many implementations of cpio only look
at the lower 16 (or even 15) bits of the inode
number, even in ASCII format. [VI. IN39
Henry Spencer] This is because the variable
that is used to contain the value is declared to
be unsigned short, just as in binary format.
Thus, even though ASCII cpio format only

constrains this number to the range 0..262143,
the format is still less than portable. [VI IN37
Paul Eggert]

2. The proposed cpio ASCII format as
specified, [N.048 Lorraine C. Kevra] [V 11N 14]
is not portable because the proposal assumes
that sizeof(int) == sizeof(tong). [N.064
Dominic Dunlop] [V 11N 15]

3. The file type is written in a numerical
format, making it UNIX specific rather than
POSIX specific, since POSIX (and tar) specifies
symbolic, rather than numerical, values for file
types. [V11N09 Guy Harris]

4. Hard links are not handled well, since
cpio format does not directly record that two
files are linked. If two files that are linked are
written in cpio format, two copies will be
written. The cpio program detects duplicate
files by matching pairs of (h_dev, h_ino) and
producing links, but that is done after the fact.
[VIlN09 Guy Harris] [VllN45 Guy Harris]
[VI IN54 Ian Donaldson] (There is a program,
afio, that handles cpio format more efficiently
in this and other cases than the licensed ver-
sions of the program.) [VIIN21 Chuck
Forsberg]

5. Symbolic links are not handled at all, and
no type value is reserved for them. This
makes cpio useless on a large class of historical
implementations (those based on 4.2BSD or its
file system) for one of the main purposes of
POSIX §10.1: archiving files for later retrieval
and use on the same system. Although it is
possible to extend cpio to handle symbolic
links, and at least one vendor has done this,
[V11N45 Guy Harris] the format proposed to
P1003.1 is the format in the SVID, and does
not handle symbolic links.

6. The cpio format is less common than tar
format: there are few historical implementa-
tions from Version 7 on that do not have tar;
there are many that do not have cpio.
[VllN09 Guy Harris] [VIINI0 Charles
Hedrick] [V11N24 Jim Cottrell] It is true that
cpio (non-ASCII format) was invented before
tar, [VI IN22 Joseph S. D. Yao] apparently in
PWB System 1.0. [VIIN26 Joseph S. D.
Yao] The cpio program was first available out-
side AT&T with PWB/UNIX 1.0, [VI 1N45
Guy Harris] [V1 IN63 Joseph S. D. Yao] and
later with System III. However, in the
interim, Version 7, which did not include cpio
[V1 IN53 Bill Jones] [VI IN62 Guy Harris] but

Vol 8 No 3-4 40 AUUGN

;login:

did include tar, became the most influential
system. There was a V7 addendum tape, but
it also did not include cpio (according to its
README file); [VllN65 Rick Adams] the
addendum tape was in tar format. Also, it
appears that the cpio format of PWB was not
the same as that of System III. [VI1N39
Henry Spencer] And System III and all
releases of System V include tar. [VI1N26
Joseph S. D. Yao] [VI IN63 Joseph S. D. Yao]
[VIIN45 Guy Harris] [VI1N47 Andrew
Tannenbaum]

7. It is very late in the process to propose
that P I003.1 adopt cpio format now, espe-
cially considering that it was originally
proposed to and rejected by the /usr/group
committee before P1003.1 was even formed.
[VI IN39 Henry Spencer]

Advantages of cpio format include:

1. Both X/OPEN [N.043 X/OPEN] [VI1N13]
and the SVID [N.048 Lorraine C. Kevra]
[Vl INl4] use it, although evidently defined
somewhat differently. [N.064 Dominic
Dunlop] [V 11N 15]

2. Archives made in cpio format are often
smaller than ones in tar format. [VllN44
Mark Horton] But this is only because of the
headers, and thus the effect diminishes with
larger files.

3. On a local (non-networked) system, cpio is
more efficient at copying directory trees than
tar. [V l IN46 Steve Blasingame] HOwever,
this is really an implementation issue.

There are several advantages to the current
tar-based format as specified in §10.1:

1. There are no byte- or word-swapping
issues caused by the format, since all the
header values are ASCII byte streams.
[V 11N 17 John Gilmore]

2. There are no inode numbers recorded, and
file types are kept in Symbolic form, so the
format is less implementation-specific than
cpio format. [VI IN 17 John Gilmore]

3. Historical tar format is the most widely
used, as discussed in 6. above, despite
apparent assertions to the contrary. [N.043
X/OPEN] [V11NI3]

4. The format specified in §10.1 is upward-
compatible with tar format. Old tar archives

can be extracted by a program that imple-
ments §10.1. Archives using some of the
extensions of §I0.1 can be extracted with old
(Version 7) tar programs, although symbolic
links will not be extracted and contiguous files
will not be handled properly (cpio does not
handle these capabilities at all). Files with
very long names will not be handled properly
(cpio does no better at this). All tar imple-
mentations are compatible to this extent.
[V 11N 17 John Gilmore]
5. The /usr/group working group and

P1003.1 have already done the work [P.061]
[M.019 5.1.121 Pg.13] [RFC.003 #121] [P.038]
[P.006] required to add optional extensions
(such as symbolic links, long file names,
IV11N49 Jerry Schwarz] [VI IN50 Michael
MacDonald] and contiguous files) j that are
needed on many historical implementations
and that cpio format lacks.

6. The format is extensible for future
facilities. [VI 1N39 Henry Spencer]

7. There is a public domain implementation
of the format of §10.1. That implementation
provided feedback which led to improvements
in the current specification, and has been in
use for years in transferring data with licensed
tar implementations. [V 1 INI 7 John Gilmore]

8. Many people prefer the user interface of
the cpio program to that of the tar program,
because the former can accept a list of
pathnames to archive on standard input while
the latter takes them as arguments, limiting the
length of the list. [VllN34 Andrew
Tannenbaum] However, the above-mentioned
public domain implementation of tar accepts
pathnames on standard input, [V11NI7 John
Gilmore] [¥11N 19 Jim Cottrell] and at least
one vendor sells a version of tar that can do
this. [V 1 IN48 Michael Gersten] Diffs to
standard tar to add an option to accept
pathnames on standard input when creating an
archive have also been posted to USENET.
[V11N36 John Gilmore] The user interface is,
in any case, irrelevant to P1003.1. [V1 IN39
Henry Spencer] [V11N40 Rahul Dhesi]

Disadvantages of tar format:
1. If an attempt is made to extract only the

second of a pair of hard linked files the tar
program will attempt to link the second file to
the nonexistent first file, and nothing will be

AUUGN 41 Vol 8 No 3-4

;login:

extracted. Although a sufficiently clever imple-
mentation could avoid this, the problem can
be considered to be in the archive format.
[V1 IN66 Kenneth Almquist]

There are some problems that neither tar
nor cpio handles well.

1. File names still longer than the length of
PATH_MAX (at least 255) [VIIN50 Michael
MacDonald] that the POSIX format allows
(and than the 128 that cpio permits or than
the 100 that historical tar allows) would be
preferable, although the POSIX limit is useful
for most cases. [V11N54 Ian Donaldson]

2. An option to prevent crossing mount
points would be useful for backups. [V11NI9
Jim Cottrell] [V 1 IN22 Joseph S. D. Yao]
However, this appears to be more of an imple-
mentation issue than a format issue, [V1 IN28
Dave Brower] [VllN32 Joseph S. D. Yao]
especially considering that there are options to
find in 4.2BSD, [V11N24 Jim Cottrell] SunOS
3.2, [VllN36 John Gilmore] and System V
Release 3.0 [VllN35 Mike Akre] that take
care of this.

3. The default block size in many tar imple-
mentations is too large for some tape controll-
ers to read [V11N27 Rob Lake] (the 3B20 has
this problem). This is not a problem with the
interchange format, however.

There is nothing that the proposed cpio
can handle that the tar-based format already in
POSIX §10.1 cannot handle; in fact, the former
is less capable. If cpio format were augmented
to handle missing capabilities, it would be
subject to the same objections now aimed at
the format given in §10.1: that it was not
identical with an existing format.

There is no advantage in replacing the
current tar-based format of §10.1 with cpio
format. There is also no advantage in adding
cpio format, because two standards are not as
good as a single standard.

Some have recommended removing §10.1
from POSIX altogether, [VI 1N 12 Doug Gwyn]
perhaps with a recommendation for P1003.2
to pick up the idea. [VIlN09 Guy Harris]
While I believe that that would be preferable
to adding cpio format, whether or not tar
format remains, I recommend leaving §10.1 as
it is, because:

¯ The inclusion of an archive/interchange
file format is in agreement with the purpose of
POSIX to promote portability of application
programs across interface implementations.
Some format will be used. It is .to the
advantage of the users of the standard for
there to be a standard format.

® The de facto standard is tar format. The
current §10.1 standardizes that, and provides
upward-compatible extensions in areas that
were previously lacking.

Tl~e Archive/InterchangeFile Format
should be left as it is.

Thank you,

John S. Quarterman
Institutional Representative from USENIX
usenix!jsq

At its June meeting in Seattle, the P1003
committee decided to put off a decision on
formatting until its September meeting. In the
interim,

the present cpio format is included in
the next draft of the standard, preceded
by a note saying that the Working
Group must decide which (none, either,
or both) will be in the standard, and
that a revised proposal is forthcoming.

The options appear to be the obvious:

1. Leave the issue to P1003.2 and remove
section 10 from POSIX.

2. Include only ustar format in POSIX.

3. Include only extended cpio format in
POSIX.

4. Include both ustar and extended cpio
formats as options in POSIX.

5. Require both ustar and extended cpio
formats in POSIX.

The next issue of ;login: will continue this
discussion. There will be a POSIX implemen-
tors workshop in October, see page 3 for the
Call for Papers. - PHS

Vol 8 No 3-4 42 AUUGN

;login:

How To Write a UNIX Daemon

Dave Lennert
Hewlett-Packard Company

hplabs! hpda! davel "

ABSTRACT

On UNIX systems users can easily write daemon programs that perform repetitive tasks
in an unnoticed way. However, because daemon programs typically run outside a login ses-
sion context and because most programmers are unfamiliar with designing a program to r!2n
outside this context, there are many subtle pitfalls that can prevent a daemon from being
coded correctly. Further, the incompatibilities between various major UNIX variants
compound these pitfalls. This paper discusses these pitfalls and how to avoid them.

Daemon: runs around in the shadows (background) doing devilish deeds.

found in some daemon source code

Introduction

A daemon is a program which performs periodic tasks in such a manner that it is normally
unnoticed by users.

Some daemons run constantly, waiting for a significant event. Examples include in it which
respawns login sessions (gettys) as they end, cr’on which launches programs at specified times, and
sendmai [which listens on a socket for incoming mail messages.

Other daemons are launched periodically and terminate after completing one execution of their
task. Such daemons include the uucp file transfer utility, uucico, which can be launched as a login
shell when a remote machine logs in, catendar which is launched nightly by cron to examine users’
calendars and mail them notification of upcoming events, and various mait handling utilities which
allow the user’s shell to continue while the collected mail message is delivered asynchronously.

Daemon programs are very easy to write in the UNIX environment. They can be written by
casual users and launched periodically via the at command or, on System V, by a user’s personal
crontab file, or perhaps at each login via csh’s .login command file. System administrators write
daemons whenever they recognize a particular administrative task is becoming routine enough to be
handled automatically.

However, daemon programs appear easier to write correctly than they really are. This is
because there are many quirks and side effects of UNIX which are automatically taken care of in a
login session context but not in a detached, daemon program. The init, getty, login, and shell
programs oversee such functions as setting up user ID’s, establishing process groups, allocating
controlling terminals, and managing job control.

If a daemon process is launched outside a login session (e.g., via /etc/rc or a similar function
during system startup) then it needs to manage these functions itself explicitly. If a daemon process
is launched from within a login session (e.g., as a background command from a login shell) then it
needs to undo much of what the login process sequence has done. In order to code a daemon
robustly, both concerns must be addressed.

This paper discusses these concerns and the methods for addressing them. Note that all the
example coding fragments lack necessary error condition checking or handling; such handling should,
of course, be added to any real daemon.

AUUGN 43 Vol 8 No 3-4

;login:

Programming Rules

The following is a set of programming rules which avoid several subtle pitfalls. A discussion of
each pitfall is also given along with the rule.

Make immune to background job control write checksl

On systems which support 4.2BSD style job control, daemons which attempt I/O to their
controlling terminal will stop if they were launched from c sh in the background (with &). The real
way around this is to disassociate yourself from your controlling terminal (see below). In some cases
though, the daemon will want to perform some setup checks and output error messages before it loses
its controlling terminal.

There is no way to allow a background process to read from its controlling try. However, output
can be reliably performed if the calling process ignores the SIGTTOU signal, as in:

#ifdef SIGTTOU
signal(SIGTTOU, SIG_IGN);
#endif

Forsa~ty,
#ifdef
signal
#endif
#ifdef
signal
#endif

itis probably a good idea to ignore the otherstop signals as well, asin:
SIGTTIN

(SIGTTIN, SIG_IGN);

SIGTSTP
(SIGTSTP~ SIG_IGN);

Ignoring SIGTTIN also has the side effect of causing all background attempts to read from the
controlling terminal to fail immediately and return the EIO error.

Close all open file descriptors, especially s t d i n, s t d o u t, s t d e r r .

Do not leave stray file descriptors open. More importantly, if any of the file descriptors are
terminal devices then they must be closed to allow proper reset of the terminal state during logout
(see below). The typical code sequence is:

for (fd = O~ fd < _NFILE; fd++)
close(fd); /* close all file descriptors */

Disassogiate from your process group and controlling terminal.

Daemons launched during a login session inherit both the controlling terminal and the process
group of that session (or, in the case of job control, of that job within the session).

As long as the daemon is still in the process group associated with a controlling terminal it is
subject to terminal-generated signals (such as SIGINT or SIGHUP). As long as the daemon still has a
controlling terminal it is subject to job control terminal I/O restrictions on systems which support job
control.

Further, while the daemon remains in the original process group in which it started, it is subject
to any signals sent to that process group by another program via k i t t (2).

One way to prevent the daemon from receiving these "unintended" signals is simply to ignore
all signals. However, this means that the signals cannot be used by the daemon for other purposes
(such as rudimentary interprocess communication). Also, this approach is insufficient because there
are some signals which a process cannot.ignore (for example, SIGKILL or SIGSTOP).

A better approach is for the daemon to disassociate itself from both the controlling terminal and
from the process group which it inherited. On 4.2BSD systems, the former can be performed via the
TIOCNOTTY ioctt(2) and the latter via setpgrp(2). Under AT&T UNIX, setpgrp(2) performs
both functions.

Vol 8 No 3-4 44 AUUGN

;login:

However, (under AT&T UNIX) in order for setpgrp(2) to have its desired effect, this must be
the first time the process has called setpgrp(2); that is, the process must not already be a process
group leader. (A process group leader is a process whose process group ID is equal to its process ID.)
Since a program has no control over the process which exec(2)’d it, it must fork(2) to ensure that it
is not already a process group leader before calling setpgrp(2). (This is especially important if the
daemon is launched from a csh which supports job control since csh automatically makes its
children process group leaders. But this also happens, for example, when an imprudent user launches
a daemon from a login shell via the exec command.)

In order to prevent locking up a user’s terminal when a daemon is started (i.e., without ’&’), the
daemon usually fork(2)’s anyway and runs in the child while the parent immediately e×it(2)’s
without waiting for the child. This causes the shell to believe that the daemon has terminated.

A typicalcode sequence would be:
if (fork() != 0)

exit(O); /* parent */
/* child */
#ifdef BSD

setpgrp(O, getpid()); /* change process group */
if ((fd = open("/dev/tty", O_RDWR)) >= O) {

ioctl(fd, TIOCNOTTY, 0); /* lose controlling terminal */
close(fd);

#else /* AT&T */
setpgrp(); /* lose controlling terminal & change process group */

#endif

Do not reacquire a controlling terminal.

Once the daemon is a process group leader without a controlling terminal (having called
setpgrp(2) as described above) it is now potentially capable of reacquiring a controlling terminal. If
it does, other processes (for example, logins) will not be able to acquire the terminal correctly as their
controlling terminal.

(Interestingly, this problem does not exist under 4.2BSD. Unlike AT&T UNIX, where a terminal
can only be acquired as a controlling terminal if it is not already a controlling terminal, 4.2BSD
allows a process to join an already allocated controlling terminal and its process group. Basically, the
process merges with the already established process group.)

The symptoms of this problem are somewhat subtle. Since getty and login are not able to
acquire a controlling terminal, the special file, /dev/tty, cannot be successfully opened. Because of
this, the getpass(3) routine, used by login to obtain the user’s password, fails without ever printing
the Password: prompt. All login attempts for accounts with passwords silently fail without ever
prompting for a password.. Login attempts for accounts without passwords succeed (because
getpass(3) is never called), however the login shell does not have a controlling terminal. Terminal
input and output still succeeds (via stdin, stdout, and stderr), but any keyboard signals are not sent to
the processes spawned during this login session. Instead the signals are sent to the process which
acquired this terminal as its controlling terminal (the daemon) and its descendants.

For this reason the daemon program must ensure that it does not re-acquire a controlling
terminal.

On 4.2BSD systems, a new controlling terminal can only be acquired by a process with a process
group ID of zero. After calling setpgrp(2) to set its process group ID equal to its process ID, the
daemon cannot re-acquire a controlling terminal.

AUUGN 45 Vol 8 No 3-4

;login:

Under AT&T UNIX, a new controlling terminal is acquired whenever a process group leader
without a controlling terminal opens a terminal which is not already the controlling terminal for
another process group. On such systems the daemon can reacquire a controlling terminal when open-
ing, say,/dev/console, to perform logging or error reporting. Even if the daemon subsequently closes
the terminal it still possesses it as a controlling terminal. There is no way to relinquish it since
subsequent setpgrp(2) calls are ineffective. (setpgrp(2) has no effect if the caller is already a
process group leader.) Therefore the acquisition must be prevented.

One simple way to prevent the acquisition of a new controlling terminal is to fork(2) yet
another time after calling setpgrp(2). The daemon actually runs in this second child and the parent
(the first child) immediately exit(2)’s. However, on AT&T UNIX when the parent (first child)
terminates, the SIGHUP signal is sent to the child since the parent is a process group leader. Thus,
the parent must ignore SIGHUP before fork(2)’ing the second child otherwise the child will be killed.
(The ignored setting is inherited by the child.) The final side effect of the terminating (process group
leader) parent is to set the process group of the child to zero. The daemon (second child) now has no
controlling terminal, it is in a new (zero) process group which is immune to signals from the tty
driver, and it cannot acquire a new controlling terminal since it is not a process group leader.

Thusthetypicalcode sequence becomes:

if (fork() != O)
exit(0); /~ first parent */

/~ first child e/
setpgrp(); /~ lose controlling terminal & change process group

signal(SIGHUP, SIG_IGN); /~ immune from pgrp leader death ~/
if (fork() != O) /~ become non-pgrp-leader ~/

exit(O); /e first child e/
second child

Do not "hold" open try files.

Even after ensuring that the daemon will not re-acquire a controlling terminal when a terminal
device is opened, there is a further concern:

Terminal state settings, such as BAUD rate and signal character definitions, are only reset to the
default state when the last process having the terminal open finally closes it. Thus, if the daemon has
a terminal open continuously, then the last close never happens and the terminal settings are not reset
at logout.

Typical examples of terminal files held open by a daemon are sldin, stdout, stderr, and
/dev/console.

It’s probably best to log errors and status messages to a disk file rather than a terminal. How-
ever, when terminal logging is desired, the "correct" method is to hold the terminal open only long
enough to perform a single logging transaction. Note that this logging transaction still represents a
window of time during which a logout would not reset the terminal state.

4.2BSD systems have a further problem which makes this suggestion mandatory. Whenever a
new login session is initiated via getty or similar routine, the vhangup(2) system call is invoked to
prevent any existing process from continuing to access the login terminal. This results in read and
write permissions being removed from any currently open file descriptor which references the login
terminal; this affects all processes regardless of user ID. Therefore, daemons which access a terminal
that is also used for regular login sessions, must reopen it whenever access is desired. If a file descrip-
tor for such a terminal is continuously held open, it is very likely that vhangup(2) will quickly
destroy its usefulness.

To determine if an unknown file descriptor is a terminal device use i satty(3).

Vol 8 No 3-4 46 AUUGN

;login:

Change current directory to ’/’.

Each process has a current working directory. The kernel holds this directory file open during
the life of the process. If a process has a current directory on a mounted file system, the file system is
"in use" and cannot be dismounted by the administrator without finding and killing this process.
(The hard part is finding the process!) Unless a process explicitly alters this via chdir(2), it inherits
the current directory of its parent. When launched from an interactive shell, the current directory
will be whatever the user has most recently selected via the cd command.

Because of this, daemons should adopt a current directory which is not located on a mounted
file system (assuming that the daemon’s purpose allows this). The root file system, ’1’, is the most
reliable choice. The simple call is:

chdir ("/") ;

Reset the file mode creation mask.

A file mode creation mask, or umask, is associated with each process. It specifies how file
permissions are to be restricted for each file created by the process. Like the current directory, it is
inherited from the parent process and remains in effect until altered via umask(2). When launched
from an interactive shell, the umask will be whatever the user has most recently selected via the
umask(1) command.

A daemon should reset its umask to an appropriate value. The typical call would be:
umask(O) ;

Other attributes to worry about.

The environment attributes discussed, above are the primary ones to worry about, but the list is
not exhaustive. Any attribute inherited across an exec(2) system call is of concern. Some other calls
to be cautious of are the nice priority value (see nice(2)), the time left until an alarm clock signal
(see at arm(2)), and, on 4.2BSD systems, the signal mask and set of pending signals (see sigvec(2)).
However, these are less likely to be accidentally set "wrong."

Interactions With i n i t

The system initialization process, in it, is responsible for directly or indirectly starting all
processes on the system (with the exception of kernel processes such as the swapper or pageout
process). On many versions of UNIX, in it keeps track of all processes which it directly spawned
and it can optionally respawn them if they die or it can kill them when changing to a new system run
state (or level). Under AT&T UNIX, the/etc/inittab file specifies the programs in it should spawn in
which run levels and whether or not they should be automatically respawned when they die. (Note
that this file differs in both format and capabilities between System III and System V.)

Historically, system daemon programs are launched by the /etc/rc shell script which in it
launches when moving the system from the single user run state to multi-user mode.

Some system administrators now prefer to launch daemons directly from init by placing the
appropriate commands in /etc/inittab. They rely on in it respawning the daemon should it
inadvertently die and on i ni t killing the daemon during system state changes.

Note that the respawning and terminating capabilities of i ni t depend on the spawned program
not terminating prematurely. The above programming rules, however, suggest that daemons should
immediately fork(2) and have the original process exit(2). If launched from /etc/inittab, this
procedure would cause in it to believe that the daemon was no longer running and hence it would
not terminate the daemon during state changes and would instead immediately relaunch the daemon
(if automatic respawn were requested). This procedure thus defeats both the respawning and
terminating capabilities provided by/etc/inittab.

AUUGN 47 Vol 8 No 3-4

;login:

What can be done to correct this? The only solution is to prevent the daemon from following
the above procedure if it is launched from/etc/inittab.

One tempting approach is for the daemon to retrieve the process ID of its parent immediately
using getppid(2) and, if it is init’s process ID (1), skip the problematic code. However this is not
perfectly reliable since any process whose original parent has terminated assumes in it as its new
parent. If a daemon is launched interactively from a user’s shell, the shell might subsequently
terminate before the daemon has executed the getppid(2) call. In short, there is a race condition.
However, for practical purposes, this is a quick and easy way to solve the problem.

Another approach is to pass a command line flag to the daemon indicating whether the daemon
is being launched from /etc/inittab or not. But this requires the user to set the flag correctly during
both automatic and interactive invocations. A common error would be for a user to examine the
launching command in/etc/inittab and then use it verbatim interactively.

Regardless of what approach is used, all the above mentioned pitfalls must still be recognized
and avoided.

In the final analysis it seems that launching daemons from/etc/inittab, as opposed to/etc/rc, is
unnecessary for the following reasons: (1) Relying on in it to respawn a daemon is really masking a
bug in the daemon; the daemon should never terminate by itself/f (2) Changing run states is an
unusual occurrence on most systems; usually a system will move to multi-user mode and stay there.

Conclusions

Without following the above rules, strange symptoms which are hard to track down often result.
Many times the errant daemon program is the last thing suspected (e.g., when terminal settings are
not reset after logout). Other times it is the daemon that silently and mysteriously dies (e.g., when it
attempts background I/O on a job control system). Frequently these symptoms only begin occurring
well after the "debug period" for the daemon.

Example

The example below collects the above coding fragments into a single routine which a daemon
calls to detach itself from the context of a login session.

/* D

*(
*/
#include <signal.h>
flinclude <stdiooh>
flifdef BSD
flinclude <sys/file.h>
#include <sys/ioctl.h>
flendif
sessdetach()
{

int fd;

etach a daemon process from login session context.

This is a skeleton; add error condition checking and handling.)

/* file descriptor */

/* If launched by init (process I), there’s no need to detach.

* Note: this test is unreliable due to an unavoidable Pace

~ One interesting counterexample is that some systems (e.g., ACSnet) allow system administrators to reset things by killing the
appropriate daemons. It’s nice to have the daemon start correctly (i.e., right arguments) by itself through the auspices of
/etc/inittab. However, it’s arguably better to have the daemon catch the termination signal and perform the reset without actu-
ally terminating; this may even be essential in the case of orderly shutdown of operations such as line printer spooling.

Vol 8 No 3-4 48 AUUGN

;login:

* condition if the process is orphaned.
*/

if (getppid() == I)
goto out;

/* Ignore terminal stop signals */

#ifdef SIGTTOU
signal(SIGTTOU, SIG_IGN);

#endif

#ifdef SIGTTIN
signal(SIGTTIN, SIG_IGN);

#endif

#ifdef SIGTSTP
signal(SIGTSTP, SIG_IGN);

#endif

/* Allow parent shell to cQntinue.
* Ensure the process is not a process group leader.
*/

if (fork() != O)
exit(O);

/* child */

I* parent *I

/* Disassociate from controlling terminal and process group.

* Ensure the process can’t reacquire a new controlling terminal.
* This is done differently on BSD vs. AT&T:
,
* BSD won’t assign a new controlling terminal
* because.process group is non-zero.

AT&T won’t assign a new controlling terminal
because process is not a process group leader.
(Must not do a subsequent setpgrp()!)

#ifdef BSD

setpgrp(O, getpid()); /* change process group */
if ((fd = open("/dev/tty", O_RDWR)) >= O) {

ioctl(fd, TIOCNOTTY, 0); /* lose controlling terminal */
close(fd);

}
#else /* AT&T */

setpgrp(); /* lose controlling terminal & change process group */

signal(SIGHUP, SIG_IGN); /* immune from pgrp leader death */
if (fork() != O) /* become non-pgrp-leader */

exit(O); /* first child */

/* second child */

#endif

out:
for (fd = O; fd < _NFILE; fd++)

close(fd); /* close all file descriptors */
chdir("/"); /* move current directory off mounted filesystem */

umask(O); /* clear any inherited file mode creation mask */

return;

AUUGN
49 Vol 8 No 3-4

;login:

Book Reviews

The Design of the UNIX Operating System
by Maurice J. Bach

(Englewood Cliffs, NJ: Prentice-Hall, 1987) 471 pages, $31.95

Reviewed by Marc D. Donner
IBM Thomas J. Watson Research Center

ucbvax!ibm.com!donner

There are four potential audiences for this
book. The first potential audience is a class of
students in an operating systems course. The
second potential audience is UNIX system hack-
ers interesting in deepening their understanding
of the internals of UNIX. The third potential
audience is application programmers in the
UNIX world who think a better understanding of
how the system works will help them do a better
job (it will). The fourth potential audience is
everyone with a prurient interest in finding out
what goes on under the covers, with no other
goal than improving his understanding.

The version of UNIX that Bach focuses on
in this book is System V Release 2, but he also
discusses some of the major Berkeley improve-
ments, though not the file system.

As an operating systems text, I give this
book a B. It earns a solid A for the second and
third audiences and it earns a stellar A+ for the
fourth audience. It suffers from a scattering of
minor errors, both technical and typographical,
but with one exception they are insignificant..
The rest of this review consists of an evaluation
of the book’s merits for each of the potential
audiences, a summary of the contents, and a
brief precis of the significant errors.

As an Operating Systems Textbook

In many ways this book is attractive as a
text for an operating systems course. It is
remarkably well written, the implementation of
UNIX internals is clearly explained, and the exer-
cises are generally well designed. Its weakness as
a text is that it is very UNIX-centric. In many
places the exposition focuses on how it is done
in UNiX-as-it-is rather than on what the
alternatives are in the general operating system
design context. The book is not terribly strong

on historical perspective, nor on citation to the
relevant non-UNiX literature. This is a particu-
larly dangerous blind spot for a text, since it can
give impressionable students a "there is one way
and Ken and Dennis are the prophets" view of
operating system technology. This book might
be an excellent adjunct to an advanced operating
system course, with general principles taken from
some other text or, better yet, from a collection
of the important papers in the field.

As a Text for UNIX System Programmers

This book is the shortest path to a solid
understanding of the important issues in the
UNIX kernel that I can imagine. Its complete-
ness is amazing, something that is difficult to
appreciate without spending several hours read-
ing and referring to the book. The explanations
of the various kernel functions, which Bach
reduces to pseudo-code and calls "algorithms,"
are clear and complete. There is good attention
to detail, including careful analysis of race condi-
tions that motivate various details of the imple-
mentation.

The book is an excellent item to have by
your side when digging into some ugly piece of
kernel code. It has helped in the deciphering of
more than one piece of typically impenetrable
and inscrutable source.

As a Text for UNIX Application
Programmers ’

,

The understanding of the underlying design
and implementation of the UNIX kernel will help
any application programmer make better design
decisions. This book doesn’t give any instruc-
tion in the writing of application programs, but
it does demonstrate the working of many kernel
calls, with excellent exposition of their

Vol 8 No 3-4 50 AUUGN

;login:

properties. Eccentric behavior is exposed and
explained, something that the manual pages are
notorious for not doing.

Without descending unbearably into horrible
detail, the book manages to illustrate the func-
tioning of most of the interesting facilities. The
discussion of signals in section 7.2 is excellent.
It cleared up’a number of problems in my own
understanding of what was going on with signals.

As an Expose of the Internals for UNIX
Lovers

This is where the book shines best. It is so
comprehensive and generally so clear that it is a
delight to read. The reader really should
examine all the algorithms carefully, and it helps
to work the examples to get the most from the
book. There is a wealth of sample programs that
highlight various odd or interesting behaviors.
Most are worth typing in and executing, though
some of the most interesting require superuser
privileges.

The section that explains how demand pag-
ing works gives a good explanation of how to do
it on a machine without a reference bit, tactfully
refraining from any comment on machines with
such a lack.

Chapter Summary

Chapter 1 is an introduction, with some his-
tory and philosophy. Chapter 2 gives an
overview of the structure of the kernel, explain-
ing the major sections and the division of
responsibilities among the file system, the
process control system, the I/O system, and the
other components. Chapter 3 examines the
buffer cache in detail. This chapter contains the
only serious technical error in the book. The
algorithm 9etbtk has an error in it as presented
in figure 3.4. The problem is that the original C
code has a slimy interlocked loop, but the trans-
lation presented in the book has lost the function
by simplifying it incorrectly. The text on page
48 describes what should happen correctly and a
minor change to the algorithm will make it work,
but it took two of us quite a while, plus a visit to
our source code, to verify the error.

Chapter 4 contains more than you ever
thought possible about the representation of files.
The only topic that I can think of that it neglects
is recent improvements that result in better clus-
tering of blocks in the file system. Chapter 5

explores the file system calls, explaining the func-
tioning of each one and relating it to the under-
lying data structures described in the previous
chapter.

Chapter 6 begins the second half of the book
with a detailed description of the structure and
composition of processes. Process execution
state, context, and memory are covered in detail.
This is probably the trickiest chapter of the
book. Chapter 7 covers process control, with
fork, exec, pipe, dup, and other system calls
being covered in detail. Signals are beautifully
covered in this chapter as well. The ~xercises for
this chapter are particularly numerous and
challenging. Chapter 8 talks about process
scheduling, with the time-related system calls
thrown in for good measure.

Chapter 9 discusses memory management,
both swapping and paging, in reasonable detail.
There is a misleading statement in the introduc-
tion of the chapter that might cause a naive
reader to think that 4.0 BSD was the first imple-
mentation ever of a demand paging policy, when
it was really just the first UNIX system with
demand paging. Chapter 10 talks about the I/O
subsystem, with an explanation of the
architecture of device drivers and some discus-
sion of various device types. Chapter 11 is enti-
tled "Interprocess Communication" and
discusses both System V IPC and BSD Sockets.
Chapter 12 discusses some of the issues involved
in building a multiprocessor UNIX, while
Chapter 13 talks about distributed versions.

There is an appendix containing a summary
of all the system calls, with brief descriptions of
what each does. The bibliography is fairly exten-
sive, though it is focussed primarily on UNIX.
The index is good but not great.

Important Errors in Brief

Exercise 2 on page 37 has the names of bp
and bp’l swapped from the names used in figure
2.7. Figure 3.4 on page 44 has a serious error,
already discussed above in the section on
Chapter 3. Figure 5.20 and the text describing it
do not agree. The hyphen breaking the word
"Superusers" on page 121 extends into the mar-
gin of the page. The description on page 205 of
figure 7.9 refers to an address as hexadecimal
ee, but it should say fg. In figure 7.34 the first
two occurrences of the variable srcfi te should
be replaced by argv[l] and argv[21
respectively. The swapper algorithm described

AUUGN 51 Vol 8 No 3-4

;login:

on page 281 is not quite right for the revised
algorithm.

There are several stylistic and presentation
problems as well. The table of contents is
presented double spaced and in ALL CAPITALS,
thus making it difficult to browse. In addition, it
seems to me that there is really a structure over
the chapter structure that should be exhibited by
breaking the book into parts, with chapters 1 and
2 in the first part, chapters 3 through 5 in the
second part, chapters 6 through 8 in the third
part, chapters 9 and 10 in the fourth part, and
chapters 11 through 13 in the last part. The
exhibition of this structure in the table of
contents would help illustrate the system
structure that it mirrors. Another minor
complaint: the publisher yielded to the modern

temptation to slip junk in at the end of the book,
thus inserting four blank pages and a page of
advertizing in between the index and the end
paper. This is a recent disease among publishers
that should be strongly discouraged, since it
reduces the utility of the index of a book. There
should be absolutely nothing between the index
and the end paper. Nothing.

Summary

This is a truly outstanding book and it
belongs in the library of every serious UNIX
programmer. System hackers will find it invalu-
able, while application programmers will find it
at least very interesting and informative. I think
that it does not make an outstanding operating
system textbook, but it would be an excellent
adjunct to an operating system course.

A C Reference Manual (Second Edition)

by Samuel Po Harbison and Guy Lo Steele, Jr.
(Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987) $31o00 hardcover, $24.95 paper

Reviewed by Josiah C. Hoskins

joho@mcc.com
I think most everyone would agree that

the definitive C reference book for the past
decade has been The C Programming
Language by Kernighan and Ritchie (1978).
However, in 1984 the first edition of A C
Reference Manual by Harbison and Steele
appeared which provides an even more
detailed and current description of the C
language. I am not proposing that Harbison
and Steele’s reference manual is a replacement
for K&R’s The C Programming Language. I
am stating that Harbison and Steele’s book
provides an excellent companion to K&R
which reflects the fact that C is a dynamic and
changing language and reference manuals must
change as the C language matures. I attribute
the popularity of this reference manual to four
assets: 1) it has provided a current reference
for ,the C programming language (filling the
gap since 1978), 2) it reflects common
interpretations of C in different machine
environments, 3) it reflects the current ANSI

standardization effort, 4) it provides one of the
most complete, accessible, and well written
references to the C programming language.

The second edition has varied little from
its original intent to provide a detailed
description of the current C language. Several
changes have taken place that may encourage a
C programmer to fork over the approximately
$31.00 (hardcover, $24.95 paper) for the 2nd
edition. However, the first change one notices
is the smaller point size of the type face. This
is not so nice as I program late and the smaller
the print the less I see. Cheers, in section 1.3
Syntax Notation we find that that ^&%$
Backus-Naur Form (BNF) notation has b~en
dropped! The first obvious substantive change
is that there are many more references to
suggestions of the Draft Proposed ANSI C
Standard. The References now contain
pointers to Draft Proposed ANSI C - included
in chapter eleven.

Vol 8 No 3-4 52 AUUGN

;login:

Unlike some second editions it’s obvious
that the whole book was read for content and
modified as needed. Of course, the homey
character graphics figures remain and there
still exists a wealth of example code. A wel-
come improvement is the expanded treatment
of the character type (important in portablilty).
As in the first edition chapter five on data
types is worth the price of the book. Chapter
six contains a new section entitled Representa-
tional Issues. It covers addressing structure
and byte ordering, I mean where can you find
that kind of information. The same
precedence chart (note p.141 in both editions)
is there again; give me p.49 in K&R. Some
chapters like eight and nine hardly changed at
all. Small changes were found in the stack
example of chapter ten to better demonstrate
program structure.

The rest of the second edition is quite
different in both organization and somewhat
different in content. Chapter eleven is a

totally new chapter which summarizes Draft
Proposed ANSI C by specifying how it differs
from the C language as presented in H&S.
The run-time library chapter has been
completely reorganized and contains addi-
tional coverage of. topics such as signals, time
of day functions, and operations on arbitrary
blocks of memory. Appendix B contains a
revised syntax of the C language which
includes both the traditional and Draft
Proposed ANSI C. It is a nice presentation
with both the Lexical rules and the Draft
Proposed ANSI C clearly marked in the text.

As you should have guessed, I like the
H&S C Reference Manual and have made
good use of the first edition. If you already
have the first edition, the second edition will
not change the way you program significantly,
however, it will provide you an uptodate status
of C. If you don’t have a copy of A C Refer-
ence Manual I recommend getting one and you
will find yourself writing more clear, correct,
and more importantly portable C programs.

UUNET Progress Report

At the Winter ’87 USENIX Conference in
Washington, DC, the USENIX Association
announced the funding of the UUNET project
on an experimental basis. UUNET became
operational in mid-May. As of July 1 UUNET
has over 50 subscribers. This article
introduces UUNET to the USENIX membership
and provides a progress report.

UUNET is a non-profit communications
service that provides access to USENET news,
UUCP mail, and ARPANET mail. UUNET is
the new experimental project of the USENIX
Association with the unprecedented coopera-
tion of DARPA.

For this experiment, DARPA has
authorized the use of the Center for Seismic
Studies personnel, resources, and communica-
tions facilities. This allows UUNET to house
its host computer at a well-staffed and
maintained computer center and to provide
the high quality services necessary for this
project. In addition, DARPA has authorized

use of the ARPANET gateway at the Center on
an experimental basis to test the feasibility of
mail forwarding between ARPANET and non-
ARPANET sites.

This is the first time a joint project like
this has been initiated and the experiment will
be carefully conducted to assure that all
ARPANET and Center policies are followed.
The technical results of the experiment will be
presented to DARPA for their consideration of
the long-term possibilities of continued
interaction and to USENIX for their funding
consideration.

The USENIX Association will provide
financial and administrative support during
the course of the experiment. In addition to
news and mail, UUNET will provide access to
various source archives, many standards,
(including the Internet RFC’s and
comp.std.unix archives), and NIC service for
the USENIX community.

AUUGN 53 Vol 8 No 3-4

;login:

There are no restrictions on what you may
send nor on redistributing what you obtain
from or through UUNET. UUNET is effectively
a common carrier. Charges are calculated to
recover costs.

UUNET exists as a communications relay.
It is not used for any other project and is
maintained 24 hours per day. The number of
intermediate hops to members for news and
mail is greatly reduced, thereby increasing the
reliability. In the first month that UUNET was
operational, there was no unscheduled down-
time.

Subscribers can be directly connected to a
backbone site and not have to depend on oth-
ers to redistribute newsgroups. Subscribers
may have a full newsfeed, a partial newsfeed,
or none at all. (A full newsfeed costs about
$175 per month in connect time.) UUNET
always carries all newsgroups. This includes
any new news categories that may appear other
than those in the standard set.

UUNET makes available for UUCP access
an extensive archive of publicly available
UNIX software. This includes the latest GNU
software, the latest Kermit distributions (for
many CPU types, not just UNIX), all the
Internet RFCs, the latest UUCP map informa-
tion (updated daily from the master copy),
access to the Simtel-20 archives, and the
netlibd archives at Argonne (EISPACK,
LINPACK, etc.).

Operationally, UUNET consists of a 10
processor Sequent Balance 21000 located at
the Center for Seismic Studies at Arlington,
VA. The system is connected to Tymnet via a
high-speed leased line. It can handle 25
simultaneous uucico transfers and will be
upgraded to match demand. It is administered
by the same people who are currently adminis-
tering seismo. Operations personnel are on
site 24 hours/day Monday-Friday and someone
is always on call on weekends. Currently, the
UUNET machine is tightly coupled to seismo.
This means that having a connection to
UUNET is effectively having a connection to
seismo, i.e., a well-connected news and mail
relay.

To access the UUNET system from within
the United States, subscribers dial a local
phone number (from thousands of US cities)
and connect to Tymnet. Subcribers are then
connected to UUNET via the Tymnet X.25
public data network. International sites may
access UUNET via direct host-to-host X.25
connection. No special hardware or software
is required (other than the standard UUCP
protocols). The connection to Tymnet is made
with an ordinary modem (V.22bis / Bell 212 /
Bell 103).

The cost of using UUNET is $3 per hour
of connect time during off-peak times ($5 per
hour from Hawaii). Off-peak times are 6:00
p.m. to 7:00 a.m. Monday-Friday and all day
Saturday and Sunday. (The subscriber’s time
zone is used to determine peak or off-peak
time, not necessarily the time zone in which
the UUNET system is located.) UUNET
accepts calls 24 hours a day. Access is avail-
able during peak rate time at substantially
higher rates ($20-$32 per hour depending on
location). There is a membership charge of
$30 per month to cover administrative costs.

As previously mentioned, USENIX has
funded UUNET for an experimental period.
UUNET expects to offer these services at these
.prices by generating a large volume of traffic.
If a large enough volume of traffic is seen by
the end of the experiment, USENIX will spin
off the UUNET experiment .into an
independent, non-profit organization that will
continue the service with the same basis. If a
large enough interest is not shown to allow
UUNET to recover its operating costs, USENIX
will regrettably have to discontinue funding.

For further information on UUNET, please
contact:

Peter Salus
UUNET / USENIX
P.O. Box 2299
Berkeley, CA 94710

+1 415 528-8649

(seismo, uunet, ucbvax, cbosgd, ames,
amdahl) ! usenix ! peter

Vol 8 No 3-4 54 AUUGN

UK UNIX® systems User Group
Sunil K Das
Chair

The City University,
Computer Science Dept.,
Northampton Square,
London EClV 0HB.
Tel: 01-253 4399 ext: 3725

Network Address:
sunil@cs.ucl.ac.uk
ukuug@ukc.ac.uk

PRELIMINARY ANNOUNCEMENT
and

CALL FOR PAPERS

EUUG SPRING ’88 CONFERENCE

UNIX AROUND THE WORLD

London, 11-15 April, 1988

Preliminary Announcement

The UKUUG will host the Spring ’88 European UNIX systems User Group Technical Conference in London.
Technical tutorials will be held on Monday 1 l th and Tuesday 12th April followed by the three day conference,
ending on Friday 15th April.

A pre-conference registration pack containing detailed information will be issued in early December 1987.

Theme
The conference will draw technical papers from every continent where UNIX licensees exist. The highest quality
papers from as many different countries as possible will be refereed for the EUUG Conference Proceedings.
Teleconferencing by Satellite will stress the truely global quality of this gathering. The UKUUG’s intention, on
behalf of EUUG, is to provide an international forum for presentation and exchange of current work on a wide
variety of topics related to the UNIX system and C language.

Call for Papers
The EUUG invite abstracts from those wishing to present their work. All submitted papers will be refereed. They
will be judged with respect to their quality, originality and relevance.

Suggested topics include, but are not limited to:

Programing Environments and Tools.
® Communications.

Recent work in Standards and Portability.
Real-time UNIX.

® Unix is a registered trademark of AT&T in the USA and other countries

AUUGN 55 Vol 8 No 3-4

Business Manager: Mrs Helen Gibbons, Owles Hall, Buntingford, Herts SG9 9PL.

® UNIX is a Trademark of AT&T in the USA and other countries

Submissions from Students are particularly encouraged under the EUUG Student Encouragement Scheme, details of
which are available from the EUUG Secretariat.

Important Dates

Abstract Deadline
Acceptance Notification Posted
Final Paper received

30th October 1987
20th November 1987
15th Jarluary 1988

Method of submission
Abstracts must be submitted by post to the EUUG Secretariat at the address below. All submissions will be
acknowledged by return of post.

Tutorial Solicitation
Tutorials are an important part of the EUUG’s biannual events providing detailed coverage of a number of topics.
Past tutorials have been taught by leading experts.

Those interested in offering a tutorial should contact the EUUG Secretariat as soon as possible.

Secretariat

The EUUG Secretariat may be contacted at:

EUUG
Owles Hall
BUNTINGFORD
Herts SG9 9PL
UK

Phone: (+44) 763 73039
Fax: (+44) 763 73255 (G2)

Additional Information

The Programme Chair, Sunil Das, is willing to provide advice to potential speakers. He may be contacted at the
address shown on the front page.

Venue
The conference will be held in the prestigious Queen Elizabeth II Conference Centre in London. This venue
embraces over 13 centuries of history represented by Westminster Abbey, the Houses of Parliament and the Palace
of Westminster all within the sound of Big Ben. Conveniently located close to London’s theatres, St James’ park
and the world famous cultural complex on the South Bank.

Sunil Das
44-1-253-4399
City University- London
Computer Science Dept.
Northampton Square
London, UnitedKingdom EC1V 0HB

Vol 8 No 3-4 56 AUUGN

UNIX
EUROPEAN

SYSTEMS USER
NEWSLETTER

GROUP

Volume 7
Number 1

The EUUG Newsletter: A Wind of Change ...1

UNIX Conference Reports

Atlanta Usenlx, June 1986 ..3

The Manchester Competition ...19

Uniforum, January 1987 ..25

Notes on the Birth of the UNIX Cult ..29

The X/OPEN Show in Luxembourg ...37

The CV Macros ..39

News from the National Groups ..41

AFUU Diary ...43

News from the Danish Group ...45

News from the Netherlands ..47

Letter from Germany ...49

Forthcoming UKUUG Events ...51

GKS in C++ ..53

An NRS Processor in C and the Future ...65

AUUGN 57 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

Trip Report: Atlanta USENIX,
June 1986

Nick Stoughton
n.stoughton@ inset.co.uk

The Instruction Set

An amusing but content free diary of events during the
1986 Atlanta USENIX meeting. It is suggested that the
reader refers to the conference proceedings for details of
the papers actually givenl

1. Friday 6th June, 12.00

Summoned to Nigel Martin’s office; "Boyd is ill, he will be off sick for at least two
weeks. Therefore he will be unable to go to Atlanta on Monday. Would you like to
go?"

What a stupid question! Enter panic mode to get things tidied up, flights changed,
hotel reservations changed, etc etc. Ticket delivered.

2. Monday 9th June, 11.00

Notice that itinerary has the return flight taking -5 hours, after adjusting for local
time difference!! Not even Concorde goes that fast! They got the time of landing
out by 12 hours. Oh well. Taxi arrived for the airport. Last minute rush to get
tapes made for customers. Wave goodbye. Flight is from Gatwick at 13.40. Call in
at home (Redhill, just 4 miles from Gatwick) to pick up suitcase. Leave a message
for the wife so she doesn’t sit at the airport for twelve hours on Saturday.

The plane is crowded. Sitting right at the front of the economy class area, with the
bulkhead right in front of me. Too close to the screen to watch the movie. They
charge for it anyway, and it will probably be grotty.

World Airways food seems even worse than the average airline rubbish.

3. Baltimore Washington International

Coming in to land, and the condensation forms on the overhead lockers, and pours
on the people sitting in the front rows. That’s me. Raining inside the aircraft.
Brilliant.

300 people pour off the aircraft and wait at the immigration desk. Two IO’s, giving
all non-nationals a really hard time, especially if they are non-caucasian. Three
quarters of an hour later, my turn. Through in about ten seconds. What happened??
Now I have to run for the connection to Atlanta. Collect baggage, more questions
from customs. Check baggage in. Get on plane. Relax again. Flight delayed anyway.
Local time is g.00 pm, body trying to tell me that it is 1.00 am.

4. Atlanta, June 9th

As you step off the plane onto the jetway, it feels like they have a warm air
heater switched on. Cool again inside the terminal. Collect baggage, step outside.

Vol 8 No 3-4 58 AUUGN

ATLANTA USENIX STOUGHTON

Brain refuses to accept that it is both dark and over 90 degrees. Over 90% humidity
too. Hot and sticky. Horrid. Catch airport shuttle bus at 9.30 (2.30 am). Get to
hotel at 10.00 pro.

"’I have a room reserved, the name is Stoughton, Nicholas Stoughton.’"

"’Mr Anthony Stoughton?", pronounced "anthhhh owny".

"’No, Nicholas. From London. I work for a company called the Instruction Set.My
reservation was originally made in the name of Boyd Roberts."

"’Let me check that. How do you spell Boyd?’"

"’B-O-Y-D, surname Roberts."

"’Just a moment..."

Ten minutes go by. I am falling asleep on the counter.

"I have no record of a Mr Robert Boyd. Just a Mr Anthhhowny Stoughton, from a
company called the Instruction Set in London England."

"That’s me...you got the name wrong, but there aren’t too many Stoughtons working
for the Instruction Set right now." Notice I am getting into the americanisms..."right
now". Yuck.

"’It says here on the reservation form that you will be arriving late."

They’re clever these Americans, they can read. I guess you could say 10.00pm is
fairly late to check in.

"’We have a small problem Anthhhhhowny."

"’The name’s’ Nick, but what’s your problem?" Not my problem, note.

"Well, when you hadn’t arrived by 6.00pm, we let the room to someone else. There
is this Southern Baptist Convention on right now, and the city is very busy. We do
have another room that you could have though."

My body assures me that it is 3.30 in the morning. Travelling always makes me
tired anyway. I really fancy just going to sleep. So I ask

"What’s the catch?"

"’It really is a very nice room, Sir, very spacious.. One of our parlour (parlor??)
rooms. But it doesn’Z have a bed."

Oh no

"’Of course it doesn’t cost as much."

Since I am not paying the bill at the end of it, this is a small consolation. And
with the town full of the Suuuuuthern Baaaaaptists, I’m not going to find it easy to
get a room elsewhere at this time of night.

"’I am intending to be here until Friday. I take it that you will be able to get me a
proper room tomorrow?"

"’Oh yes, Sir, of course."

"’I’ll take it, but only under extreme protest, and because if I don’t find somewhere
to sleep pretty soon, I would sleep in the corridor if necessary. Where is this room
without a bed?"

"’Well, it does have a folding bed thing, and it is on the 67th floor."

AUUGN 59 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

I discover that this is the tallest hotel in the world. And I’m practically at the top.

The room actually is huge, and the folding bed is not too uncomfortable.Sleep at
last.

5. Tuesday, 9.00

This hotel is full of Southern Baptists. They try to convert you in the elevator
(getting used to the jargon...those things that whisk you up to the 67th floor are
not called lifts here).

There are about 50 SB’s queuing for breakfast. Give this up and go to the Hilton.

Better do the registration bit before eating, just in case there’s problems.

Go to counter marked "’Pre Registration", because I was pre-registered.Or at least I
thought I was.

"I’m sorry, we have no record of a Mr Stoughton."

Oh boy, here we go again.

"Could you try Boyd Roberts, The Instruction Set."

"I’m sorry, nothing for him either. You’ll have to go to the On Site registration
desk."

Well, not much I can do besides go to the on site registration.Another hundred
bucks on the expense claim.

"What tutorials do you want to go on."

"’System V internals, please."

"Can I see your source licence?"

I’d left so fast on Monday that I’d clean forgotten to bring a copy. But one should
have been sent with the pre-registration, so I wasn’t bothered till now.

"’I am sorry, I have forgotten to bring it. Anyway, you were sent one a copy with
my pre-registrati0n that seems to have got lost. Couldn’t you look it up?"

"Our lists are very out of date, I’m afraid. But I’ll take a look." He looks under
"’I" for "Instruction Set". No record.

"But I have got a source license. Would you like me to quote some lines of source
from memory or what7"

"I’ll take one more look. The Instruction Set, I suppose it could be under
"T"...ahh...yes...The Instruction Set, Technical Contact Andy Rutter."

"That’s the one. Now can I go to the tutorial?"

"I guess so."

Great. We are finally getting somewhere. Now I can go and eat some breakfast.

6. Tuesday, Tutorial Session

Well, avoided the eggs because I couldn’t face the wide variety of choices of cooking
method, each with strange names. Now for some real work at last.

Tutorial #T3. UNIX System V Internals, with Maury Bach and Steve Buroff. An
interesting mixture of some really simple stuff (how system calls work), and some
extremely useful explanation of some of the SVr3 features, the File System Switch,

Vol 8 No 3-4 60 AUUGN

ATLANTA USENIX STOUGHTON

Remote File Sharing, Streams and the Transport Level Interface. About 75%
extremely interesting 10% interesting and 15% boring.

Steve Buroff defined a "’property" of a system to be a combination of "’a feature
and a restriction". A good definition! One property of shared libraries is that they
are statically linked. This means that every shared library must have a fixed
address range. AT&T will manage the allocation of address ranges for the 3B
machines. What will happen for the other machines? Will AT&T be capable of
managing this sensibly? (Shame on you Nick for doubting AT&T’s management
capabilities.)

RFS sounds good till you look underneath. Despite the File System Switch’s ability
to allow non-standard file system types to exist, RFS seems to have ignored this in
slavish adherance to the SVID file standards. This is fine, but virtually prohibits
sharing of files with non-UNIX file systems.

They did funny things to copyout too.

7. Tuesday Evening

It is raining. Not just drizzle, or light rain. This is a monsoon. Do they have
monsoons here? You bet they do. About 6 inches of rain an hour. Sit in the Hilton
waiting for a break. Race back to Westin Peachtree so that I can book Nigel in
before the 6.00pm deadline. Find out that he has already made it. Start the hunt
for him. Not in bar, but had a quick one whilst looking. Back to the Hilton. No
sign. Quick check in the bar over a cocktail. Definitely not there. Go for a meal
instead. These Americans definitely like to eat lots of .food, and extremely tasty
too; pity about the beer.

Back to the hotel, move to new room, two floors down. It still takes 3 minutes
for the elevator to cover the 65 floors, and the Southern Baptists can get an awful
lot of praise into 3 minutes.

8. Wednesday Morning

Finally find Nigel by means of calling his room. Try for breakfast in the hotel.
Taxi to the Hilton. Well, maybe it is only two blocks, but it is awful hot out here.

First day of the conference proper. Nigel has had this idea, developed over his
previous evening’s entertainment with the other EUUG people. "’Run the errno
contest that went down so well in Florence here." The contest is announced during
the opening session. Murmurs of approval from the masses.

The keynote address from Jon Bentley is entitled "Pictures of Programs". Not
surprisingly, quite a lot of it is about graphics.

Coffee time; find a box for the errno contest. Tilbrook tries his hand at sign
writing. Not too bad. Now sit back and wait for the entries. Will anyone beat
ENOTABACCO, read on an empty pipe?

Mike Hawley presents his MIDI paper, this time round it is a history of Western
Music since the Middle Ages, complete with numerous taped examples of everything
from Gregorian Chant to some contemporary stuff (can’t remember who by though!)
Fascinating, but impossible to describe on paper.

Peter Langston follows hot on Mike’s heels. Aside from writing games, Peter’s main
raison d’dtre is music. Music, I believe, of any sort whatsoever. Computer generated
music most of all. Working at Bellcore he has of course access to all sorts of nice
bits of hardware, and telephone equipment. So via a complex arrangement of Dec-

AUUGN 61 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

Talk speech synthesisers and music making synthesisers, anyone with US standard
MF dial phone can dial in on (201) 644-2332, and listen to Eddie and Eedie taking
you through some generated-on-the-spot music in their comical voices. These
machines are truly tremendous. After the initial period, you really don’t realise that
this is computer generated. The voices have all the right intonation and inflexion, the
music is spot on. Simple algorithms imitating a facile, unimaginative and slightly
lazy guitarist playing random riffs to fill in bits ensure that the music remains
interesting. So interesting that no-one would have minded if he had talked, and
played us recordings of Eddie and Eedie, all day.

9. Wednesday Afternoon

Quick lunch from the rather good serve-yourself restaurant in the Hilton foyer,
talking to Melvin from BT. These Brits get everywhere.

Back upstairs, the first of the errno entries have been submitted.

ENOGOOD Invalid system error
ECHERNOBYL Connection melted
EREALSOOnNOW Feature not yet supported
ECREAT Missing vowel

About 20 so far.

Networks 1 in the Grand Ballroom, Secure Networking in the Sun Environment; A
Framework for Networking in System V; and OSI and TCP/IP Protocols on a UNIX
System V. Sounds good.

Secure Networking turns out to be all about public key cryptography and the DES
encryption standard. Not as interesting as I’d hoped. Maybe I’ll read the paper
before going to the presentation next time.

The Framework for Networking in a System V presentation basically described the
SVR3 TLI implementation. Good stuff, but there isn’t SVR3 to hand yet.

The French described what they had done to some weird piece of equipment they
call the SM-90 to put OSI and Internet protocols into their System V. A large part
of this exercise was to put the 4.2BSD Socket stuff and most of the networking bits
into their kernel. Read the paper.

Tea break. Another 30 entries in the errno box. Boy, this is beginning to take off.
We already have about the same number of entries as we got for the whole of the
Florence contest.

ENIH There’s a better way to do that
EXPORT Feature restricted outside the US
ENOWARP Out of Dilithium Crystals
EACDC
ETHIOPLi
EGODS
EMAIL
EAT
E
EFLAT

Wrong type of socket
Out of resources
Too many Baptists
Junk mail detected
You’ve been hacking too long. time to ...
2.71828...
String out of range

Vol 8 No 3-4 62 AUUGN

ATLANTA USENIX STOUGHTON

EBADDOG Pointer on carpet

The next session looks a bit heavy, Operating Systems 1 or Tools. Tools contains a
talk on Pathalias. Definitely to be missed!

Give up after the first presentation. After all, I can read the proceedings later. Let’s
go and talk to all those interesting people about. Awful lot of Europeans about
making the most of the tea.

Already another 20 errno entries.

Nigel has decided to move hotel to the Hilton. It is cheaper and easier. I think I
will follow. Check out of the Westin Peachtree. Taxi to the Hilton. Cabbie doesn’t
like having to take me just 2 blocks. Stiches me up with the fare, so I don’t tip
him. Looks violent. Run for cover inside the hotel.

Only on the 24th floor here. Peanuts. Good view out over the hotel pool though,
which is outside on the roof of the 10th floor, and directly below my window.

10. Thursday AM
.

Another 50 entries in the errno contest. This is going to be fun.

EFIXED
ECONSTIPATED
EAT
EMARCOS
EVITA
EBUNNY
ELUSIVE
EUNUCH
ENOTHEAVY
EIMPOTENT
EMORTAL
ELABORATE
ELk
ECRUFT
E < unprintable >
ENOUGH
EEEEEEEE
EUUG

No children
Operation would block
The computer is going down
No longer supported
Don’t cry for me Argentina
Multi-hop access attempt
Invalid pointer
Unable to fork
E’s my brother
Unable to fork
Can’t kill process
Too tense
Standardization violation
Bit rot in program
Obscene kludge in program
Time limit expired
infinite loop in program
Intercontinental junket

Lots of network and distributed files systems stuff today. Greg Chesson, chairing
one of the Distrib FS sessions coins the term Doofers. This is an immediate winner.
We immediately have people talking about rufus, goofers, newfus, and so on. Andy
Rifkin does his Rufus talk. He’s been to charm school recently, and almost makes it
sound plausible.

11. Thursday PM

Good lunch with the guys from Lachmann. Feel I ought to be present at the paper
given jointly by them and us. Mike Wilde does a great job.

Ronald Hughes" doofer is called truefus!

Tea, and another 50-60 entries in the errno box. They are coming in thick and fast
now. After tea, check out the mail session. Craig Partridge, of MMDF fame,
elaborates plans for domain based mailing everywhere.

AUUGN 63 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

An interesting scheme for a /mail file system under the V8 FSS.Interesting. but
impractical. Nice user interface though.

12. The Conference Dinner

Got talking to a guy working for AT&T who used to work in the UK. Offers me a
lift to the conference dinner. We get lost, and drive around Atlanta for a while,
eventually finding the Georgia Railroad Depot, a small, shack like building in the
middle of a huge parking lot (I’m really getting to grips with this language).

Inside, things are really going strong. There is plenty of booze, even Heineken Lager
which is somewhat better than the American gnats’ water. And food] Wow, whole
pigs, corn on the cob, mountains of food. The whole place is set up like a fair
ground, with side shows, the lot. Won vast numbers of plastic toys. Getting
decidedly merry.

The party finishes around 9.30, and it’s back to find the hostility, sorry hospitality,
suites that are still going. DEC play host, and the European committee (Nigel, Jean,
Mike O’Dell, Jaap, DT and me) get down to judging the errno contest. There have
been some 800 entries. 600 are weeded out immediately. They are too sick, to
obvious or too unfunny. Sorry guys. That still leaves 200. After three more passes,
each getting harder to throw things out of, we are down to a top 14

EDINGDONG
ELECTROLUX
ELECTROCUTION
ENOTONHORSE
ENOPHONEBOOK
EEMILYPOST
ENOCONTEST

The daemon is dead
Your code could stand to be cleaned up
Attempt by finger to reach socket
Mount failed
Directory does not exist
Wrong fork
The judges decision is final

EFLAT
EGODOT
ECRAY
EIEIO
ENOSTRADAMUS
EMILED

ENOARMSCONTROL Silo overflow
File system needs tuning
Endless wait
Program exited before run
Bug bug here. bug bug there
Predicted result
A host is a host from Coast to coast,
and nobody talks to a host thats close
unless the host that isnt close
is busy hung or dead

EMRED actually wins it, and must be sung. Special efforts in training singers must
now be undertaken. It should be pointed out though, just what MR ED is all about.
Mike O’Dell quotes:

Well, the show is about a horse, Mr. Ed, owned by one Wilbur Post, an
architect and developer. It is set in some generic California (southern, seems
like) location. The central gimmick is that Mr. Ed can talk, but only to Wilbur,
who of course can’t tell anyone else lest he be placed in the booby hatch. An
episode I saw today (reruns) had Wilbur ghosting for Mr. Ed writing his
memoirs "Confessions of a Palamino Playboy". Wilbur was ostensibly the author
writing under "Mr. Ed" as a pseudonym. The conflict revolved around the book
containing some non-ficticious facts that clearly happened as portrayed in the
book, but that Wilbur could not have known about, but Mr. Ed did.

Vol 8 No 3-4 64 AUUGN

ATLANTA USENIX STOUGHTON

Finally, my best recollection of the original lyric for the themesong.

A horse is a horse, of course, of course,
and no-one can talk to a horse, of course,
that is of course unless the horse
is the famous Mr. Ed.

(reprise)
People yakkity-yak and speak
and waste your time of day,
but Mr. Ed will never speak
unless he has something to say.

Go right to the source and ask the horse,
he’ll give you the answer that you endorse,
he’s always on a steady course,
talk to Mr. Ed.

(spoken in character)
"’I am Mr. Ed.’"

For you film bufs, you might will remember a series of B movies with Donald
O’Connor and Francis the Talking Mule (whom Mr. Ed claims as a relative)
which came out in the late 40’s and 50’s (a couple even starring an actor now
playing as the President of the USAI). The show is clearly a knockoff.

It was a weekly series and ran for several years.

13. Friday

The discussion now is about the announcement of the errno contest winners. Should
we do a stage presentation of the European entry ENOGLIDER, Pilot fell out? In
the end we decide that this is just going to be too complex. Everyone is coached in
singing EIEIO and EMRED.

The prizes are obtained during one of the morning sessions: several varieties of
Champagne.

The morning session, and mors on shared libraries. Some neat stuff on Real-Timing
UNIX systems by adding pre-emption to the kernel at critical points. It looks
impressive.

Final lunch, then off to the third Operating Systems session. Some interesting stuff
on as a virtual machine environment, in other words, using to develop portable
operating systems. Nothing too earth shattering though.

14. Tirae to go home

Finally it is time to leave. What have I learnt? Was it all worth it? Will I get
rained on inside the aircraft on the way home? Will I ever remember that my name
is not An-thhhh-oww-ny, but Nick?

Well, I can safely say that there was lots to learn, and I managed to pick my way
between getting bored stiff attending every session, and having a great time talking
to legendary people. Lots of good ideas picked up.

Definitely worth it] (Especially keen on the roast pig!)

I came back on British Airways, and their cabins don’t leak.

AUUGN 65 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

(inset) login: anthony
Password:
login incorrect
login:

15. Some of the ERRNO Entries

There were around 800 entries to the errrm competition. It would take me weeks
to type them all in. but here are some of the top 300 or so.

E 2.718...

E2BRUTUS

E2MANY

E < unprintable >

E423

E < unprintable >

E=MC2+I

E?

EACDC

EAGLE

EAR

EASTER

EASY

EAT

EAT

EAT

EATME

EATME

EATT

EATT

EATTABOY

EBAD

EBADDOG

EBADMUSIC

EBADTASTE

EBANKRUPT

EBAPTIST

EBB

EBCDIC

Init killed by an adopted child

Too many error codes

Obscene kludge in program

Addictive overflow

Obscene kludge in program ,

Illegal units conversion

DMR system error

Wrong type of socket

Disk full

Please repeat question

Autoreboot in 3 days

Cray doing an infinite loop

Data file munched

The Computer is going down

You have been hacking too long, time to ...

Cannot mount face

request bytes

Legal fees exhausted

Running Sys 5

Nice try - try again

Bad error (not good). Naughty Naughty.

Pointer on carpet

Warning - muzak playing

Compiling an operating system written in PASCAL

Out of cache

Busy hands are happy hands

Data flow reversal

Dialect unknown

Vol 8 No 3-4 66 AUUGN

ATLANTA USENIX

EBCDIC

EBCDIC

EBEFOREI

EBSD

EBSD

EBUNNY

EC00Y

ECHAOTIC

ECHERNOBYL

ECHERNOBYL

ECHIROPRACT
ECHO
ECL&

ECLAMUP

ECONF
ECONSTIPATED

ECRAY
ECREAT

ECROSSDRESSING

ECRUFT

ECRUSADE

ECT
EDDIE

EDFS

EDINGDONG

EDMR

EDOOFS

EDOOFS

EDOVv’HAT

EDRANO

EDROUGHT
EE

EE6NONE

EEC

STOUGHTON

Non ascii stream

Non portable character comparison

Invalid syntax

Running BSD

Your tape will be shipped real soon now, we promise

Multi-hop access attempt

JCL error

Chaotic or random error

Broken pipe

Connection melted

Disk problem

Duplicate argument found

You’re not allowed to know

Shell Quit

Too many sessions

Operation would block

Program exited before run

Missing vowel

Violation of strong typing

Bit rot in program

Religious error (SVRn)

Addressing, I/O, Wrong Command etc

Thank you for making a simple error-code generator
very happy ...

Not a tty

The daemon is dead

A host is a host from coast to coast, and no-one can
talk...

Beating dead horse

Overload

Operation unknown in Texas

Sync failure

Stream failed

Stoned EE grad student code found

Kernel non-existant

Common Market - no parity

AUUGN 67 Vol 8 No 3-4

STOUGHTON

EECHOO

EECK

EECS

EECUMMINGS

EEE

EEEEEEEE

EEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEE

EEK

EEMILYPOST

EENYMEENYMINYMOE

EFAULT

EFGHIJ

EFIXED

EFLAT

EFLAT

EFLOOD

EFORK

EFORK

EFREETRADE

EGAD

EGAD

EGADS

EGADS

EGGONYOURFACE

EGOAWAY

EGODOT

EGODS

EGOEDEL

EGOOD

EGREP

EH

EH

EHEADACHE

EHEADACHE

ATLANTA USENIX

Bless you

Mice in machine room

Invalid department

Case Translator Finished

Center of terrorist activity

Infinite loop in program

Speaker too close to microphone

Infinite loop detected

Dead mouse

Wrong fork

Scheduler can’t decide which process to run...

Earthquake

Long time no C

No children

File system needs tuning

String out of range

Overflow in stream

Routing table full

Too many forks

Setquota failure

Got another dump

Surely you jest

Sudden realisation were running VMS

The system is astounded

Memory fault: core dumped

System is busy now

Endless wait

Too many Baptists

Maths Argument Undecided

Good error (everyone should make(l) one)

String not found

Canadian user error

Say what?

Connection request denied

Dual processors not tightly coupled

Vol 8 No 3-4 68 AUUGN

ATLANTA USENIX

EHTRAP

EIBM

EIEIO

EIEIO

EIFORGET

EILLEGAL

EILLITERATE

EIMPOLITE

EIMPOTENT

EINF

EKEN

EKNOCK

ELABORATE

ELAPSED

ELASTICK

ELAWFUL

ELECTROCUTION

ELECTROLUX

ELF

ELICIT

ELIM

ELUSIVE

EMACS

EMAIL

EMARCOS

EMEACULPA

EMIRROR

EMISC

EMISS

EMO

EMORDOR

EMORTAL

Hack ...

Standardization violation

User error. Fix the problem and recompile

Bug bug here, bug bug there

Farms in Berkeley

Out of memory

Illegal error (failable)

Can’t read or write

Bad fork

Unable to fork

Infinite loop

Religious error (BSD4.x)

You are not expected to understand this

Who’s there

Too tense

Sins undeclared

Clock needs rewinding

Lawful error

Attempt by finger to reach socket

Your code could stand to be cleaned up

Tolkein ring passing error

Need more input

Outside bounds of window

Invalid pointer

Program too large

Junk mail detected

User is too big a flamer

No longer supported

System error

Hardware error - see ESMOKE

None of the above

Record skipped

Main processor overworked

Name server bound

Can’t kill process

STOUGHTON

AUUGN 69 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

EMPOTENT

EMRED

ENAP

ENEEDWINDEX

ENIH

ENIXON

ENOAIR

ENOARMSCONTROL

ENOBOZOS

ENOCH

ENOCHICKEN

ENOCONTEST

ENOCORN

ENOCURRENT

ENODICE

ENOENO

ENOENO

ENOERROR

ENOFLUID

ENOGOOD

ENOGREYHOUND

ENOH20

ENOHOPE

ENOKISS

ENOKNOW

ENOMAAM

ENOMULTIHOP

ENON

ENONCOGNISCENT

ENONO

ENOONE

ENOPAPER

ENOPHONEBOOK

ENORMOUS

ENOSALT

Pipe too soft

A host is a host from coast to coast, and nobody
talks...

On wrong side of window

Unable to do I/O to window

There’s a better way to do that

Tape problem

Read on a full pipe

Silo overflow

Stupid request

Race condition

Serious colonel problem

The judges’ decision is final

Serious kernel problem

Bad socket

Error in rand

Musician not found

Too intense

Just kidding

(Cray 2 only) CPU fluid level low

Invalid system error

Bus error

Read on an empty pipe

System V

Buss error

Definitely hardware or software error

Missing token

You should use NFS not RFS

No errors. Just kidding

Something is wrong and I won’t tell you what

You can’t do that

Both endian

Read on an empty file

Directory does not exist

Program too large

Nuke error: core dump

Vol 8 No 3-4 70 AUUGN

ATLANTA USENIX STOUGHTON

ENOSAUSAGE

ENOSELECTRIC

ENOSTRADAMUS

ENOTATE

ENOTCOMPLETE

ENOTHEAVY

ENOTME

ENOTMYFAULT

ENOTONHORSE

ENOUGH

ENOUGH

ENOUGH

ENOUGH

ENOUNIX

ENOV1CE

ENOWARP

ENOWA.Y

ENSA.

ENUF

EOOEA.A.

EOOPS

EORGY

EOUTOFGAS

EOW

EP&p6

EPDP8

EPLUNGER

EPRIVATE

EPUBLIC

EPUN

EPUNT

ERABBIT

ERASE

ERATRAP

EREA_LSOONNOW

Serious link problem

Not a typewriter

Predicted result

Not in art gallery

Dial again or ask your operator for assistance

E’s my brother

Not my fault

Some other process generated the error

Mount failed

Infinite loop skipped

No ugly hostnames allowed

Time limit expired

Too many errors

"’But that’s not UNIX’" (you have invoked a system
call...)

Not in Miami

Out of dilithium crystals

No way to list all these error codes

No such error

No more errors please

Invalid hex format

Program lost

Mount table full

Bus error

Stack fell over

String not null terminated

Obsolete CPU

Unable to flush

Can’t tell you error

Everyone knows better

That’s not funny

Now what?

Too many hops

Race condition

Female programmer induced bugcheck

Feature not yet supported

AUUGN 71 Vol 8 No 3-4

STOUGHTON ATLANTA USENIX

ERELIGION

ERG

ERROR

ERROR

ERROR

ESALTII

ESARTE

ESCAPE

ESCHWA

ESMOKE

ESMOP

ESP

ESPLASH

ESPOON

ET

ET

ETATJOE~

ETC

ETCOMEH

ETEENAGER

ETERNAL

ETHER

ETHEWRONGCHOICE

ETI-IIOPIA

ETICKET

ETOOMANY

ETOW

ETPHONEHOME

ETRAP

ETTY

EUNICH

EUNICH

EUNUCH

EUSSR

A 4.2/SV system call has been issued on a SV/4.2
system

Requires too much effort

? (the user will know what this means)

Error in perror

Error

Deadlock detected

No exit

Trap failed

Extended character set unsupported

Software error - see EMIRROR

Code not written; lazy programmer

Error coming soon

Cannot push stream module

Too many forks

Cannot phone home

Phone home

Commercial implementation error

Misc. error

Tbuf fault. Flushing and returning...

Runaway child process

Attempt to sleep on wchan for which wakeup will
never...

Try STARLAN instead

BSD system call

Out of resources

Failure to stop at signal

Too many remote file systems

Denver boot (wheel clamp)

Hang up

Rogue fell into its own trap

Is a typewriter

/etc/dev not found

Mount request not possible

Unable to fork

Usr core destroyed

Vol 8 No 3-4 72 AUUGN

ATLANTA USENIX

EUUG

EUUG

EVITA

EWATERGATE

EWHAT

EWOODY

EX

EXORCIST

EXPORT

EYAWN

EYOYO

EYUCK

EZRIDER

EZZZ

EZZZZ

Ep&P6

STOUGHTON

Intercontinental junket

Too many groups

Don’t cry for me Argentina

Extreme tape gap

Unknown error

This LAN is your LAN, this LAN is my LAN...

Old version detected

Cannot remove zombies

Feature restricted outside of the US

Algorithm boring

System about to crash

Are you sure that you wanted to mount that VMS
file system...

Pipe backed up

It would be faster to do operation on paper

Menu in use

Program erased all source and died

Funny error (Inexplicablewithout laughing or
giggling)

Irregular machine cycles

Interrupted sleep

Process asleep

(null)

AUUGN 73 Vol 8 No 3-4

COLLINSON THE MANCHESTER COMPETITION

The Manchester Competition

Peter Collinson

Secretary, El_lUG

1. INTRODUCTION

The traditional competition was run as usual during the Manchester conference. The
idea this time was to think up a meaningful phrase to go with a UNIX acronym.
There were very many entries written up onto large sheets of paper. I then had
the dubious pleasure of transcribing these into my notebook. In the process I expect
that I missed a few, here are the ones I got.

adb

adb

adb

arp

at

art

bc

bsd

c++

cat

cb

cd

cd

cdb

chmod

chown

chown

ci

cip

co

cpio

cpio

cron

cron

A dreadful bug

Another damn bug

Antedilluvian bug eater

Any respondants please?

Accumulate trivia

Another terrible trademark

Brilliant crasher

Bypass core

Bad syntax deterent

Cannot add

Compose a tune (at Bellcore)

Crash and burn

Change channels

Core dump generator

Can’t define

Concoct data

Cannot detect bugs

Can hinder many other developers

Can’t have ownership work nohow

Chase owner

Correction impossible

Clip important parts

Correction ordered

Corrupt process in operation

Pipe construction process in operation

Can run only nightly

Continually repeat obnoxious no-good doers

Vol 8 No 3-4 74 AUUGN

THE MANCHESTER COMPETITION COLLINSON

csh

csh

csh

csh

csh

~u

cu

date

dbx

dc

dc

dd

dd

dd

DEC

ded

delta

delta

ditroff

doc

dsw

du

dump

dump

dumps

ed

ed

EIO

em

emacs

emacs

emacs

fsck

fsck (-p)

Can severely hinder

Can’t and shan’t help

Complete sh

Crash system and halt

Crash system hardware

Cockup

Completely useless

Convert to unary

Display a time estimate

Damn bad ’xperience

Divide and conquer

Dumb crashes

Danish design

Data destruction

Destroy disc

Disgustingly expensive computersa

Delete everything directly

Delete target file

Destroy every last trace archived

Do it read only for fun

Describe our computer

Disc scribbling wanted

Device unavailable

Destroy user’s modified programs

Don’t use my program

Drinking unmoderately makes people SNORE

Eject disc

Extremely devious

Execute invalid opcode (microcoded machines only)

Evacuate memory

Eats memory and cpu superbly

Editor managed auxiliary command system

Eventually makes all computers sick

Failed system call, Ken

foolish suggestions can kill (less painfully)

AUUGN 75 Vol 8 No 3-4

COLLINSON

fsdb

gfs

grap

graph

grep

grep

grep

grep

hhcp

iso/osi

In

Ip

Ipr

Ipr -m

Is

Is

is

Is

Is -1
m4

mac

mail

mail

mail

mail

make

man

man

man

mh

mknod

mmdf

mmdf

modem

mv

THE MANCHESTER COMPETITION

For sex, dial Berkeley

Green fresh sausages

Graphical replicated array processor

Generalised rough analysis presentation heuristic

Get ready to eat the processor

Greatest request ever produced

Guess random element and print

Gurus recovery expert program

Hardly hopefully connection process

Inside out/outside in

Lindsay’s Nfs (implementation)

Lose printout

Lost printout repeatedly

Mail me that you’ve lost printout repeatedly

Last supper

Less sex

Let’s see

Long story

Lots of silly lines

Slow route to nowhere

Mouse and computer

Make and infinite loop

Mangle and incarcerate protocols

Many annoying interruptions from layabouts

Move applicable info long-distance

Make aspiration knotted exhumation

Male aid needed

Many ambitious notes

Minimum assistance to novices

Monster hack

Yet another distributed file system talk (zzz).

Multi machine destruct facility

My message didn’t find you

Moderate outlay data exchange medium

Make vanish

Vol 8 No 3-4 76 AUUGN

THE MANCHESTER COMPETITION

mv

ned

netnews

news

nfs

nfs

nl

notes

nroff

od

od

osi

osi

osi

passwd

ps

ps

ps

rCS

rcs

readnews

reset

rfs

rfs

rm

rm

rm -i

rm -r

rmdir

rn

rpc

rsh

rsh

SCCS

Make volatile

Never easily done

Notify every techno nerd every week, slowly

No-one ever writes sensibly

No fear, Sun

Not fresh sausages

Not listed

Networks only total erasure system

Nearly random output file formatter

Obscures data

Oh dear

Ossified system interface

Outsiders slip in

Over simplified for idiots

Pick a seven symbol word, dummy

Print and smear

Print suspects

Profanely slow

Random code segment

Random code shuflter

Really esoteric articles deleted; nauseating essays were saved

Repair Emacs settings

Real fresh sausages

Realistically, far from safe

Read manual

Realise mistake

Reinitialize meter

Realise mistake (after impatient response)

Read manual -- religiously

Randomly modify directories in root

Remote network

Random protocol choice

Replicate superior hackers (BSD)

Restrain pseudo hackers (Sys V)

Scramble code, crash system

COLLINSON

AUUGN 77 Vol 8 No 3-4

COLLINSON THE MANCHESTER COMPETITION

script

sdb

sed

sed

seal

sendmail

sendmail

sendmail

sendmail

sendmail

sendmail

sh

sh

shutdown

sleep

slip

sort

su

suntools

sync

sync

sync

tar

tbl

.teco

tee

telnet

termcap

tip

tr

tr

tr

troff

uniq

Some complete rubbish, I probably typed

Should do it better

Sex evolves desire

Strips extraneous data

Suffer endless delays

Simulate eventual (notional) delivered mail and immediately lose it

Smart enigmatic non delivered mail archiver

Someone else not doing my interpretation logically

Start endless new daemons making all infinitely late

Stomp every naive, defenceless mailer article into lumps

Sundry elusive notes delivered misaddressed and instantly lost

Shan’t help

System halt

System hung up today due to our work on NFS

Snoring loudly, eventually nags people

Should link in properly

Shift, organise, rotate -- truncate

Suspend user

Someone upset Newcastle to outhype Lindsay’s system

Sorry your network crashed

Success yet no chance

Swedish yacht near Chernobyl

Totally amazing results

Totally arbitrary results

Trademark, Bell Labs

Type Esc to complete operation

Tried everything else

This ether Lan needs extra transceivers

Terminal emulator requires mangled cursor addressing protocol

Transfer incomplete programs

Text rape

Too risky

Tortuous request

Try running our fast formatter

Uniq neglects iterative quantities

Vol 8 No 3-4 78 AUUGN

THE MANCHESTER COMPETITION

unix Umpteen new implementations expected

unix Utterly nauseating in ’xtension
UNoltmaiXense Think about itl

uucico

uucp

uucp

vi

vi

vi

vi

vi

vi

vi

vnode

wait

whatis

yacc

yacc

yacc

yacc

You see I see Oh!

UNIX under constant pressure

Useless under protocols

Vacillating irradicator

Very insensitive

Violate intuition

Virtually impossible

Virtually incomprehensible

Virtually intelligible

Visually inept

Virtually no design

Wow! Another idiot time consumer

Want help: ARGH this is sick

Yell at compiler constructor

Yet another core dump created

You are completely confused

Yum, another CPU cycle

COLLINSON

The judging committee had a hard time with so many entries.Entries which were
thought to be worthy of special mention were:
cc Can’t cope

df Disc full

emacs Eight megabytes and continual swapping

time Totally inaccurate measure of execution

unix Unlimited new interfaces ’xpected

The winning three were:
sh Sans histoire

sendmail Seems every new domain means adding information locally

patch Please apply this clever hack

AUUGN 79 Vol 8 No 3-4

PEAKE

Uniforum, January 1987
Philip Peake

UNIFORUM 1987

Washington DC

Axis Digital

This year, UNIFORUM chose to hold the exhibition and conference in Washington DCo
which is somewhat closer to Europe than is Anahiem, which was the site chosen last
year. Washington is somewhat more impressive than Los Angeles, but even so, still
seems to lack something when compared to European cities.

I arrived there on Sunday evening. There was little to do, since I was tired after
the flight, and didn’t have much money left out of the 50 dollars I had taken with
me (the taxi fare from Dulles airport to Washington is 30 dollars). Next morning,
I planned to visit a bank and get some more money using my V!SA card.

However, next morning was "’Martin Luther King day", which basically means that
everything (and in particular, banks) is closed. It was also pouring with rain. I
walked to the White House, and was suitably disappointed by its unimpressive size.

I looked into the METRO, which seemed impressive, but since the tickets are sold by
machines, and I didn’t have the correct coins or notes, I couldn’t try using it (and I
couldn’t change the notes I had, because everything was closed ...).

Washington Conference Center
The conference and exhibition was held in the Washington Conference Center, and a
bus was available to take collect people from the hotels and take them directly
there. Before going to the center, I found a bank and managed to get some money.
They wanted two means of identity before they would give me the money, so I
gave them my french driving licence and french ID card (carte de sejour), which
seemed to confuse them a little, but eventually they gave me the money.

Having missed the first bus, I now took the METRO, which is impressive. However,
you can’t help the getting the feeling that it is maybe designed more as a public
bomb shelter than purely a METRO system.

The first day of UNIFORUM was reserved for tutorial sessions, since these were at
extra cost, and not on subjects which seemed particularly interesting, I used the day
to register for the conference, and to collect the relevant paperwork (lists of
exhibitors, entrance badges, conference proceedings etc.).I then made contact with
various other people attending the exhibition.

The Exhibition
The next day the exhibition opened. As usual with UNIFORUM, it was a large
exhibition. It took almost all of the three days of the exhibition to visit each of
the stands and to see what they had to offer. The overall impression was that
there was little new on offer. Although there were one or two vendors who seemed
to have heard of Europe, and had started to °’Europeanise" their products.

Europeanisation seems to mean that the product will handle 8 bit characters, and
that there are various versions of the product with menus and (sometimes)
diagnostic message in French or German. If you asked awkward questions about
spelling checkers, or hyphenation tables for these things, they were always "Planned
to be available in the next release".

Vol 8 No 3-4 80 AUUGN

UNIFORUM 1987 PEAKE

Europe was represented by a stand organised by the X/OPEN group. I had the
distinct impression that most of the visitors to this stand were, in fact, Europeans.
But the name of X/OPEN has apparently been heard in the USA, since during the
conference AT&T announced that they were joining the group. The other "’rival"
standard POSIX, or IEEE 1003.1, also announced during a presentation of their aims,
objectives and future directions, that they were to work with X/OPEN in an effort
to make the two standards converge, and eventually become a single standard. This
is very good news, since it had seemed until recently, that there were going to be
at least 3 different standards, SVID, X/OPEN and POSIX. Now it seems possible that
there will be only one. which can only be good news for end users of UNIX
systems.

Some of the largest stands were: SCO, AT&T, SUN and IBM. The SCO and SUN
stands both seemed to be doing good business, but the other two seemed to be
staffed by bored looking people who stood around in little groups talking to each
other, waiting for people to venture onto their stands.

The Conference
This section should perhaps be called "The Conferences", since there was a complex
system of parallel session. Some of the sessions being available only if you had
paid the appropriate fee.

My personal opinion is that this could have been much simplified, by refusing to
accept some of the presentations, which were little more than sales talks. I found
it difficult to know in advance if I was going to hear something interesting, or just
a description of someones latest product.

However there were some interesting presentations, amongst which were:

UNIX utilities in ROM for the HP Integral PC

-- MINIX - By Andrew Tannenbaum

--UNIX for real time (HP)

I would recommend finding a copy of the proceedings and reading these. There are
others there which are probably interesting according to personal taste.

The MINIX system was perhaps the most talked about item on the timetable. It
certainly helped to keep the Prentice Hall stand very busy. They had an IBM PC
running MINIX on show, and at the user level it really does seem very much like a
V7 UNIX system, and its performance on a floppy based machine is quite acceptable.

The Snow
No account of the 1987 UNIFORUM would be complete without mentioning the
snow. It started one morning, with just a light cover. Then it started to snow
harder, and it continued all day. By the end of the day 18 inches (40 cm) of
snow had fallen. Needless to say, the shuttle bus drivers who were supposed to
take us all back to our hotels had gone home a long time before the end of the
day’s proceedings at the conference center. There were long queues waiting for
taxis. The taxi drivers filled their cabs to capacity. Apparently, local law permits
them to double their fares when it snows. When I eventually got into a taxi, I
(and all the other occupants) found that not only was the fare double, but that
rather than it being shared between all the occupants, our driver wanted us all to
pay double fare. Since it was still snowing hard, there was little choice ...

When it snows, not only do the taxi drivers become mercenary, but all the
restaurant staff go home early. That night, Washington was full of pitiful small
groups of UNIFORUM attendees wandering the streets looking for somewhere to eat.

AUUGN 81 Vol 8 No 3-4

PEAKE UNIFORUM 1987

lt~ Retrospect
Looking back at the event, the most important items seem to be as follows:

Europeanisation.
Most American companies now seem to recognise that Europe exists. Even if
they don’t currently have anything directly relevent to Europe most say that
they plan to include us, and our peculiarities such as strange character sets, in
their calculations for future products.

Standards.
The convergence towards a single standard can only be a good thing. The SVID
was a good idea. It had the problem of being tied directly to AT&T. X/OPEN
was a better bet, being a consortium of manufacturers. POSIX is supposedly
completely independent of manufacturers. With AT&T becoming part of the
X/OPEN initiative, and the announced convergence of X/OPEN and POSIX there is
now a real chance of a universally recognised UNIX standard.

MINIX.
Andy Tannenbaum has done what so many people have said they were going to
do, but never did. He wrote a UNIX look-alike from scratch. Not only that, he
has made the source available with fairly minimal restrictions on its use.

It must be recognised that this system is not a replacement for a modern UNIX
system, but could form the base of a future general purpose 0S with most of
the functionality of UNIX.

Vol 8 No 3-4 82 AUUGN

COLLINSON

Notes on the Birth of
The UNIX Cult

UNIX: THE CULT

Peter Collinson (local name)
AS/103/108/121/110 (Galactic designation)

Galactic Cult Investigation Team,
Canterbury, Kent

(Small Island of Continent 3, Sol 3)

Editor’s Note
This paper was first presented at USENIX in January 1987.

Notes from some recent archeological findings on the birth
of the UNIX cult on Sol 3 are presented. Recently
discovered electronic records have shed considerable light
on the beginnings of the cult. A sketchy history of the
cult is attempted.

Background
The UNIX cult is widespread across the Galaxy now and .the surprise discovery of
some ancient files in the archives of Intergalactic Brain Machines on Sol 3 triggered
the dispatch of an inter-disciplinary investigation team. The files are extremely
extensive, occupying all of a small island off the coast of Continent 3. It transpires
that the island was taken over by Intergal in the aftermath of the Corporate Wars
which plagued Sol 3 some centuries after the birth of the cult.

The team were asked to find out the original meaning of some of the incantations
used in UNIX religious practice and also to shed some light on what it all meant at
the start.

We should take this opportunity to use the ancient prayer:

UNIX is a trademark of AT&T in the USA and other countries.

Earlier versions of this prayer do seem to exist, it is unclear why the form of
words altered. "’AT&T" was the Corporation where the Creators of the cult
worshipped. The Corporation totally disappeared in the wars and many of its
original records were either destroyed or altered by the victor in an attempt to
"’re-write" history.The placement of the country USA on the four continents has
been lost.

The Gurus
There seems to be still no trace of the original Creators of the UNIX cult. so we
start our examination of the records with a group calling themselves the Gurus.
The etymology of this word is not quite clear but it does have associations with
religious teaching and the High Priests of UNIX are given that title today.

Extract from electronic phone tap of someone nicknamed "’dsw". believed to be
Daniel Stuart Wilson:

"Of course, we were all isolated in the Version 6 days. When we changed
things in the kernel we were on our own. There was no-one to phone to
scream for help, in many cases there was no-one on the same site who you

AUUGN 83 Vol 8 No 3-4

UNIX: THE CULT COLLINSON

could discuss the problems with. We just had to get down and read that C.
Sorting things out yourself was painful but you benefited in the long run. You
became a better software engineer. After a bit you became a Guru and could
lead others. This is largely bluffing m given a new situation and a knowledge
of UNIX you could extrapolate the problems easily and seem to be very clever.
It didn’t actually matter what you had or had not done, it mattered that you
appeared to have done a lot and could talk confidently about RK05’s,
PDP--11/45’s, typing chdir rather than cd and a myriad other things which
showed that you were a Guru."

This extract shows clearly that the cult grew in small pockets across the globe. In
each centre, a few individuals were given the task of installing the paraphernalia of
the UNIX cult and of converting others to its use. In the beginning, it seems that
these individuals had little or no contact with each other; curiously, this appears to
have strengthened their ability rather than weakening it. Other extracts from the
archive indicate that the early practices of the cult were small and simple making it
easier for one person to grasp their full .meaning. As the cult grew, the practices
became more complicated and the understanding harder.

The term software engineer refers to a person whose task it was to feed instructions
or programs into the primitive versions of the Overlords which were extant at the
time. Judging from the emphasis made in the records about the need to generate
"’correct" programs, this was obviously an artistic task requiring considerable
expertise. The reference to "C" implies that there was some official form of speech
or perhaps a special religious language which was used to convey instructions.

It is not clear whether the "’RK05" and the "PDP-11/45" were the names of the
Overlords or some ancillary equipment associated with them. However, the word
cd1 meaning "’to move from place to place" is still used in some arborial societies
on the planet US/115/110/105/120.

The User Group
In current UNIX religious practice, the term User Group is used to refer to the
congregations at the Hologram Services. It seems that after a while the early
practitioners of the cult began to have meetings (where people actually appeared
together in the same room). Why these were called "’User Group" meetings is
unclear, since the early meetings were attended by Gurus and not by Users. At the
time, a User seems to have been a derogatory term for the un-initiates. However,
the head Guru at a site was given the title "Super-User"; perhaps this was to hide
the evangelical nature of the Guru’s task. The reason for the early meetings was
mostly to allow Gurus to inform each other how best to perform religious
conversion and how to get the most converts the fastest by improving the Service to
Users.2 As the word spread, the meetings grew in size, expense and quality of
surroundings. They proved to be an exceptionally good way of upgrading low level
Novices into higher level Gurus. This is a reflection on the early religious books
which were aimed at Gurus and were often way above the head of the Novices.
Novices were encouraged to attend the meetings to gain by word of mouth what
they could not gain from the literature. At these later meetings, the nuts and bolts
of UNIX practice were still discussed because many of the Novices were either acting
in a support role to Gurus or planning to become evangelists themselves. After a

1. Pronounced see-dee
2, This Is a contemporary term.

Vol 8 No 3-4 84 AUUGN

COLLINSON UNIX: THE CULT

while, the Gurus got bored with discussing inodes3 and other topics began to creep
in. The meetings gradually altered in character, with the Gurus attending because
they wished to see the other Gurus; and more and more Novices attending in the
vain hope that they would learn something. The cult had spread so far by now
that it was profitable for Corporations to become involved in the selling of UNIX
paraphernalia and religious goods. Initially, these Products were advertised widely at
the meetings. However, the Corporations often sent attendees with prepared scripts
who were sometimes not even Users and who had little or no knowledge of
intricacies of UNIX practice. The Gurus and Novices were dismayed. On their side,
Corporations began to see that the word which they were spreading was failing on
somewhat stony ground. This gave rise to the Great Split with a rival organisation
being set up primarily aimed at selling and the original User Group concerning itself
more with the cerebral activities of the cult. In the end, thi~ was a good thing
because the Gurus were able to start deriving benefit from the meetings again since
there were now spare slots for educational talks. In fact, the rival organisation was
wiped out in the Corporate wars because it had allied itself strongly with AT&T.

The User Group, then, provided some important functions. It supplied a forum for
discussion of the practices of the cult. It provided a meeting place for the
widespread Gurus who initially met to discuss their work but as time passed they
went just to meet each other. It spread the word to Novices; and as the cult grew,
it provided a place where new ideas on the direction which things should take could
be discussed.

Another more hygienic method of worldwide communication grew out of the cult
with the formation of the Network. This is discussed in the next section.

The Communicators
When the cult had grown to worldwide proportions, we begin to see the emergence
of a global communication system m the "’Network" or "’Net". The activities on
the Network can be deduced from the electronic archives but the material is so vast
that scanning it for relevant information is proving difficult.

The majority of traffic on the network seems to have been communication between
Overlords describing various error conditions. Here is a sample:

<Various repeated unintelligible lirres>

From: MAILER-DAEMON (Mail Delivery Subsystem)
To: < uucp@a41os.uucp >
Subject~ Returned mail: Service unavailable

-- Transcript of session follows ~
> > > DATA
< < < 554 sendall: too many hops (30 max)
554 <megd> ~. Service unavailable: Bad file number

~ Unsent message follows ~
< More of the same >

There are very many other examples of the same type of message. However. these
messages do place things in context m we now know that the communication system

The meaning of this Is totally lost.

AUUGN 85 Vol 8 No 3-4

UNIX: THE CULT COLLINSON

was called Mail and from this we infer that the mechanism was intended to permit
communication between people. In amongst all the Overlord messages we do find
some files which appear to emanate from one person and be addressed to another.
A high proportion of the sampled files were intended to probe the capabilities of the
Network, often provoking an Overlord error message. We know this because the
destination address is the same as the source; in some cases the subject is "Just
testing" or something akin to that. This technique was perhaps used to investigate
the ability of the Network to transfer files. We are left with a much smaller
number of what might be termed "’useful" messages. In many cases, these consist
of personal trivia showing that the Network was supplying the useful social
function of allowing people to make and maintain contact.

Other messages consist of hieroglyphics containing many braces "l" and brackets "’(".
This type of message shows some form of regularity in structure but syntax
analysis is hampered by the presence of so many exceptions. It is possible that
these messages contain portions of religious ceremonial or it has been suggested that
this is the ritual language "’C’" and the exceptions are what were called "’bugs".
This last suggestion (by a post graduate student on the team) has been greeted with
a certain amount of derision.

Mail messages have a recognisable format and can be distinguished from another
type of message which occurs in much greater volume. It appears that these
messages are part of a system called "’The News" broadcast to many sites. The
News permitted individuals to send a single message to many people across the
world. A sample of the contents imply that the News took over as the main
method of spreading the UNIX word when the User Gr.oup meetings ceased to be
totally useful in this role.

Judging from the beginning of many News files, the News was split into many
separate subject headings. Over large periods of time, we see the subjects come and
go with abrupt changes in title occurring from time to time. The subjects do not
seem to be confined to discussion of topics with direct relevance to the cult. There
are many headings which just carry "’talk" on various subjects. An analysis of the
topics is being prepared as a background document since they fall outside the remit
of the investigation.

It might be thought that the News would provide an excellent vehicle for the Super
Gurus who must have existed by this time m but far from it m very few messages
contain what might be termed confident information. Most seem to carry opinion
which is contradicted in later messages. The evidence here is that most authors
were Novices. The Gurus had either lost interest in spreading the word, or were
simply too busy to wade through what must have been daily oceans of verbiage. It
is also possible that Gurus just used the Mail to communicate, perhaps not wishing
to impose their definitive opinions on the discussion with the thought that discussion
is a healthy academic tool.

The Network spread slowly over most of Sol 3 with some areas being exempt
because either they resisted conversion to the UNIX cult or were deliberately omitted
for ideological reasons. A single News message from "’kremvax", an otherwise silent
site, seems to have been met with a storm of protest. This shows that the
Network crossed political boundaries and proves the contention that Sol 3 was split
into separate economic entities predating the rise of the Corporations.

The Vendors
The Corporations who were involved in the propagation of UNIX paraphernalia and
religious goods were known as Vendors. The Vendors had a different view of the
world from the Gurus, and this difference lead to many schisms in the cult. The

Vol 8 No 3-4 86 AUUGN

COLLINSON UNIX: THE CULT

Vendors and Gurus tried to maintain a separate identity at all times. For example,
when the Vendors attended the User Group meetings they provocatively wore
different religious vestment from the Gurus. They did this to make it easy for
other Vendors to identify them and to allow their easy differentiation from the
Gurus and Novices.

At the centre of the clash of opinion was a fundamental difference in the perception
of "’the User". The Vendors were always complaining that UNIX religious practices
were not "’User friendly". By this, they meant that the act of worship was hard
to learn, and the rituals were cryptic. They wished their Users to only deal in
simple concepts and never to learn more than the basics of the rituals. The Gurus
objected to this view because they believed that the learning of cryptic rituals
allowed the worship to proceed faster and that limited exposure to only the simple
concepts restricted the Users in a way which was not desirable. The Vendors
believed that the Users were fundamentally stupid and without any hope of
redemption; and the Gurus believed that the Users were fundamentally stupid but
might be saved given the correct tuition.

The early Vendors were peopled by Gurus who had often to undergo the necessary
clothing transformation4 to demonstrate that they had switched camps. These
Vendors were responsible for the spreading of the cult to a much wider and naive
User population. Some of the Vendors tried to set up their own breakaway cults to
avoid the central control imposed by AT&T, the Corporation where the Creators
worshipped. These attempts failed. Other Vendors created Sects which specialised in
worshipping the many minor Overlords which had appeared about this time. These
Sects were partially successful and converted Users to their way of thinking. The
Sects created by this method had special names related syntactically to the word
UNIX. Only XENIX has survived as an example of this.

Then seeing all this activity, AT&T decided to become a Vendor.

The Gurus were horrified when the Marketing Staff, regarded today as the front line
fighting force of all Corporations, were put in charge of the development and
promulgation of the cult. The Creators were no longer allowed to directly influence
the development, instead they were to pass their ideas to the Marketeers who would
decide what was acceptable or not. The Marketeers spent a lot of time producing a
new religious tome to help to guide the developers. The book was known as the
Svid and laid out the central tenets of the practice. The Marketeers were
determined that the Svid should be elevated to the level of all the other religious
books. To this end they tried to make the Svid as cryptic as all the others, and
succeeded.

After some initial shock, the Vendors accepted the central control which AT&T
imposed because they saw that it made their Products accessible to more Users.
"’Consider it Standard" became the watchword in a Crusade designed to eliminate the
undesirable Sects which wished to differ from the Svid.

The Users of the Vendors’ Products were certainly pleased with AT&T’s decision to
become a Vendor. It meant that they were no longer tied to the Products of one
particular Vendor but could pick and choose without altering their worship. The
Gurus were less pleased until they realised that AT&T were unable to change the
cult to eliminate them. Every Overlord where the UNIX cult was practiced still

Often referred to as my tie neck. This is Inexplicable at present.

AUUGN 87 Vol 8 No 3-4

UNIX: THE CULT COLLINSON

required a Guru to perform essential tasks.

The Sects
The UNIX cult was always noted for its propensity to split into separate Sects. In
the early days, the Creators had a release policy which made sure that all cult
members possessed all the relevant facts in order to fully comprehend the
implications of the worship. It was said that Users aspiring to be Gurus needed all
the facts because the religious books were written for Gurus, and Users could make
no sense of them. Unfortunately, access to the information was much abused
because the Gurus immediately used the knowledge to alter things and many minor
and major Sects of the Cult sprang into life. The ability of each site to generate
its own Sect was somewhat curtailed by the cunning ploy of re-issuing the rituals
and practices in a slightly altered form from time to time. The Gurus were soon
tired of altering the same things every time a new set of rituals came though the
door and they began to leave things alone. Also, by this time, the Vendors had
made an appearance and because they believed in the Svid Crusade, they stuck with
the orthodox mainstream AT&T view of the cult.

Even so, at the end of the period being researched there seems to have been two
Sects with differing practices and rituals. The main rival to the orthodox view was
a Guru-lead Sect called the "Berkeley System Devotees". This had sprung into
existence in the early days of the cult, taking advantage of the knowledge imparted
to them by the Creators. However, the early Berkeley Gurus cleverly distributed
their rituals and practices in the much the same way as the Creators and this
ensured a wider following. The prominence was noted by a higher power and they
were chosen to master the revisions of the Cult which were needed to permit
worship on some new Overlords.

These new Overlords had managed to conquer the restrictive memory sizes which
plagued many of their forbears. It was said by many that the new Overlords had
not got this right but at least they did it. As a result the new Overlords had the
potential to allow bigger and more expansive practices. The Berkeley Gurus grasped
this opportunity with the objective of creating "’The Perfect Ritual"’5. The Perfect
Ritual was defined as one where all the letters of the alphabet were used as a
"’parameter" specifying a distinct action or phase in the worship. The Berkeley
Gurus never managed to create the Perfect Ritual, but they came close.

The Berkeley Gurus distributed their rituals and these became popular because the
Marketeers inside AT&T were so busy creating the Svid that they failed to notice
that Berkeley practices were slowly being adopted on all the new bigger Overlords.
The Berkeley rituals were also liked by Gurus because they were nearer the "Old
Religion" laid down by the Creators. In a fit of pique, the AT&T Marketeers
decided that they would no longer support the new Overlords and branded the
Berkeley Gurus as heretics.

As heretics, the Berkeley Gurus decided to go one step further in altering their Sect.
They proposed and executed a fundamental change of direction which was to become
a "De-facto Standard". The new Sect was revolutionary because it allowed
Overlords to talk to each other, but to do this a whole new litany had to be
created. New words entered the vocabulary and new concepts were introduced. For
many, worship in the new Sect was slow and unwieldy in comparison to what had

5. The rival Sect. referred to this a~ "creeping featurism’; the precise meaning of this obscure
phrase is under investigation.

Vol 8 No 3-4 88 AUUGN

COLLINSON UNIX: THE CULT

gone before. But the new practices meant the easy ability to interconnect Overlords
and this was demanded by the Overlords themselves.

Unfortunately for the participants in the Svid Crusade, many Users actually insisted
on being able to use some of the Berkeley rituals. The pressure from the Users
was such that we begin to see Vendors announcing their Products as being "’with
Berkeley enhancements". Finally, the AT&T Marketeers were forced to incorporate
some features of the rituals which did not conflict with the teachings in the Svid.
At this time, we also begin to see specially created Overlords which could be used
to worship in the practices of either Sect simultaneously, this was known as the
"Universe Concept".

The Berkeley Gurus were so broken by the gestation of the new Sect that many
left, some to worship the sun and some to seek salvation in the noble task of Pixel
Creation. It was thought that the new Sect would be the last to sally forth from
hallowed halls of Berkeley because the staff were demoralised and without joy. The
Svid Crusaders were pleased, "All we have to do is wait and do nothing", they
said. Since they weren’t noted for doing much anyway, this wasn’t difficult.

However, much to the dismay of the Crusaders, many Novices amongst Berkeley
group were promoted to Gurus, and these new Gurus worked to consolidate and
strengthen the new rituals. The label of "’slow and unwieldy" was not to be
applied again. Time and motion studies were performed on the rituals for the first
time in the recorded history of the UNIX cult and a little more than lip service was
paid to the notion of efficiency of worship.

The Standardisers
One way of defeating the degeneration of the pure UNIX cult into Sects was by the
creation of a "’Standard". As we have seen, the Svid is one example of this.
However, the Svid differed from other Standards because only the AT&T marketeers
were in a position to generate a Standard without reference to anyone else. They
seemed especially keen that no taint of the Berkeley heresy should appear in their
work and so did not consult the .Users.

In order that the Svid could qualify as a Standard, the AT&T Marketeers had to
promise that it would not alter. They agreed to this because they were determined
to ensure that the Svid gained religious significance. This was a good thing for
other Vendors who were treating the Svid as a Standard but it is possible that the
slavish adherence was detrimental to the fortunes of AT&T in the long run because
they were unable to update the rituals and practices to keep up with the demand
for change created by the Users.

All the other standards were either created by groups of Vendors working together
and ignoring the Users: or by groups of Users working together and ignoring the
Vendors. Gurus were rarely involved; they were either too busy and important to
sit on committees or just plainly could not see the need for conformity.

The Standards rarely reflected the UNIX practices and rituals which were in use at
the time of their creation. All of them seemed to have a speculative element, as .if
the Standardisers themselves tried to develop or perhaps rationalise the rituals in
some way. As a result, the Standards were never standard.

However, the various Standards did give the Users an idea of what was expected of
them if they desired to move from one Sect to another. Users who did this often,
the so-called Portables, learned to use the minimum of ritual and to localise the Sect
dependent areas of their worship.

AUUGN 89 Vol 8 No 3-4

UNIX: THE CULT COLLINSON

The Portables might have been helped by a Standard for the religious language, C.
They were surprised to learn that Standard C was, in fact, a different language
from the original and almost no-one had an Overlord which could understand it.
The changes were no doubt desirable but came from treating C as a "high-level
language’" rather than using it in the way which the Creators intended, a method of
communicating intimately with the Overlords.

Conclusion
The archives are still being searched for other interesting material but enough has
been found to demonstrate the fervent activity which followed the creation of the
UNIX cult. We have found no trace of the Creators and barely a hint of the
disciples who followed them inside AT&T. We hope that more research may provide
some answers and respectfully ask for more funding.

@ Peter Collinson is really the Head of the UNIX Support Group at the University of Kent,
Canterbury, UK. He has been involved with UNIX systems since 1976, when in the immortal
words of Nlgel Martin "UNIX changed me from a Lecturer in Computer Science into a Junior
Computer Operator". At Kent, he has been responsible for the writing of Cambridge Ring
networking software on the VAX, starting with 32V and continuing in the the Berkeley tradition
ever since. He has passed through the stage of thinking that UNIX is everything and is now able
to recognise the nice things about other operating systems and the nasty things about UNIX. He
still thinks that the word UNIX should be allowed to be a noun.

He has not published much in the computer Journals but has had many pages printed in the
various UNIX newsletters across the world. Most of these words were reporting the activities of
the EUUO of which he was a past Chairman and is now a Committee member. Some of the words
were a paper "On the Design of the UNIX Operating System" (;~ogln, July 1984) which he refers to
as "The Typing Paper" and did seem to manage to raise a few laughs across the UNIX world.

He still cannot work out whether he should use *-~*~rgv or **++argv or ++**argv.. gctoptO Is for
Users.

Vol 8 No 3-4 90 AUUGN

RIDDER X/OPEN IN LUXEMBOURG

The X/OPEN show in Luxembourg

Theo de Ridder
ridder@ honhio.uucp

On 27th February the X/OPEN group presented a demonstration of portability in one
of the buildings of the Commission of the European Communities (CEC) in
Luxembourg.

I went there as a delegate of the NLUUG, but also to witness the beginning of a
new epoque. It was a one-day trip with mini-airplanes to see a mini-demo with
maximal side-effects. Surely, the commitment of eleven major companies (BULL,
ERICSSON, ICL, NIXDORF, OLIVETti’I, PHILIPS, SIEMENS, AT&T, HEWLETT-PACKARD,
UNISYS) towards a single standard is a fundamental breakthrough and establishes a
critical mass for a succesfull UNIX explosion in the coming years.

The presentation of the program was in professional hands. So there was a real
presentator, supported by a complete light, sound and video installation. The demo
itself, compiling and running the 20/20 spreadsheet package, was done by the
software house ACE from Amsterdam.

Having too much experience, I was kind enough not to insp.ect any machine or any
source. Just by looking at the public video-screen I tried to make my conclusions.
And it was rather embarrassing to see portibility advertised by transferring source-
code on 51/4M floppies, to see steps of a makefile without any usage of archive or
SCCS facilities, and to see a rather suspicious -DXOPEN flag in any C compilation.
Furthermore the idea that portibility is just the transfer and compilation of source-
code was wrong. The amount of work to get the result running is much more
relevant, and there was no word about that issue.

The problem of any standard is that it is based on the past and not on the future.
Still missing are important issues like networking, windowing and graphics.
However, there is a second edition now of the X/OPEN Portability Guide in a much
more practical shape than the previous one. It consists of five volumes covering
commands and utilities, system calls and libraries, supplementary definitions,
programming languages, and data management. Rather unusual for a UNIX
environment is the inclusion of COBOL, ISAM and SQL.

The X/OPEN group gave up its pure European identity, so maybe we are moving
towards a single world standard unifying SVID + POSIX + X/OPEN. Whatever
happens, there remains a lot of hard work to be done.

AUUGN 91 Vol 8 No 3-4

TODD CV MACROS

The CV Macros

Nell Todd

Imperial Software Technology

Introducing a new portable macro package for troff-like processors

Tired of messing around with your CV, trying to get it just right7

Naked troff getting you down7

Need to change it at short notice to fit the Job Ad7

Yes77

Well, in that case you need THE CV MACROS!I

A simple=to-use troff macro package that takes care of all those messy formatting
problems and gives you some added features:

Optional invisible typeface (use J) that utilises the little known feature of most
laser printers that allows the selection of a white toner cartridge. This specially
formulated toner is completely invisible on white paper, so should your manager
see it being printed he’ll think you’ve just screwed up again. But get it home,
pop it in the oven at regulo 6 for 15 mins and hey presto! the toner turns
black. You never have to be furtive in the print room again.

A hype typeface (.HY) that selects a special toner tfiat absorbs 24 in every 25
photons that strike it - resulting in a typeface that flashes twice a second under
normal 50Hz lighting. A slightly increased flash rate is automatically selected
when applying for North American jobs (to match the increased tempo of life
there).

CV Health Warning: Due to the energy absorbing nature of this typeface,
prolonged exposure to bright lights may seriously damage your job prospects.

A little white lie macro (.WL) sets the following text in a radioactive typeface
that has a half-life (in days) selectable via an argument. As the toner decays
the text becomes rapidly unreadable.

A photocopy glitch macro (.PG) is available that causes the typeface to be altered
by a random dither algorithm applied to the laser beam drive logic. Useful for
those embarrasing A level or degree results.

, The salary macro (.SL) is available to generate suitable current salary and
required aalary lines. This is a complicated macro, but illustrates a number of
the lesser known troff features, including .ra (the random number generator).
This macro also takes an optional numerical argument, a weekly auto-increment
for the required salary. This saves the interview weary job-hunter from editing
the CV merely to ask for more money.

The features of this package are open to one and all. So long as you can use troff
or similar you’ve got it made. To avoid excessive use of these novel features (these
typefaces are expensive you knowl) troff will only function with the -racy macros
if the input file name is SHOME/cv.

Oh, and one last thing, remember to de-crypt it first!

Vol 8 No 3-4 92 AUUGN

RICHARDS GKS IN C++

GKS in C++

John E. Richards
Richards@ uk.ac.bristol.qgb

Praxis Systems Plc

Aspects of a binding of GKS, the ISO standard for 2D
graphics, to the C++ programming language are presented.
The binding makes use of classes and derived classes to
define GKS concepts such as segments arrd workstations.
Operator overloading is used for some GKS functions.

Introduction
GKS [1] is defined in a language-independent manner. Bindings of GKS. to
programming languages have to be defined in order that different implementations of
GKS in one language present the same interface to the programmer. Work on
bindings has been done on several languages [2], in particular, Fortran [3], Pascal
[4,5,6], C [7], Algol 68 [8] and Ada [9,10]. Some work has also been done on
bindings for non-procedural languages such as Prolog [11,12] and Smalltalk-80 [13].

This paper presents some ideas for a binding in a new programming language, C++
[14]. Although C++ is a descendent of the C programming language [15], it has
some novel features which result in a binding considerably .different to the proposed
C binding [16].

Bindings can be categorised into two types: the radical and the reactionary. The
radical binding attempts to take full advantage of the language, using the argument
that people choose to program in a language because they find its facilities useful.
The reactionary view is that bindings should be as similar to each other as possible,
which means in practice that they should all resemble the lowest common
denominator, the Fortran binding. The latter approach has the advantage that
programmers can move from one language to another without learning a completely
new binding. The aspects of the binding presented in this paper tend towards the
radical view. As such, it is intended that they should provoke discussion.

There can be no standard language binding unless there is a standard for the
language. C is caught in this predicament; until the current standards work is
complete the C binding can only have the status of a technical report. A C++
binding would be in a worse situation. C++ is an evolving language; there is no
standard, or work in progress on a standard, and the creator of the language has
stated [14] that it will change to reflect any changes to C. The main reason for
investigating a C++ binding is to examine what novel aspects are introduced by the
use of the language. This paper shows that C++ provides some interesting facilities
which can be used in a natural way in a graphics programming environment.

The C++ programming language is a superset of the C programming language, with a
few minor exceptions. The major enhancement it contains is the concept of classes,
which provide the programmer with a method of defining new data types. It is
possible for the programmer to:-

specify how a new type can be accessed,

AUUGN 93 Vol 8 No 3-4

GKS IN C++ RICHARDS

--specify the operations that can be performed on it,

--define operations to be performed when an object of the new type is created (by
a constructor function),

--define operations to be performed when an object of the new type is destroyed
(by a destructor function),

--provide user-defined conversions from one type to another,

--define a new type in terms of a previous user-defined type,

--manipulate lists of objects of similar types, with dynamic selection of the
appropriate functions.

An example will serve to illustrate a number of these points.The following is a
definition of a new type, or class, called point.

class point {
float x, y;

public :
point (float, float) ; // constructor
void add (point);

)
A point consists of two float variables, x and y. As x and y are defined above the
keyword public~ they are considered to be private members of the class and they
cannot be accessed except by means of any functions (the member functions), that
belong to the class. In this case, there are just two member functions, the
constructor function, which takes two float values as arguments, and the function
called add which takes a point as an argument. When a new point object is
defined, the constructor function will be called.

The constructor function can be defined as follows:

point: :point (float xx, float yy) {
X = XX;
Y = YY;

);
A new point object is created by a definition:

point centre(0.1, 0.7);

The x and y members of the centre point will be set to 0.1 and 0.7 respectively.
A compilation error would occur if no initial value was specified.

The add function is used to add one point to another, and is written as follows:

void point: :add (point p) {
x += p.x;
y += p.y;

}
This adds the components of the point specified as the argument to the components
of the point which is used. to invoke the function.The following code shows how
it could be used:

point centre(0.1, 0.7);
point offset(0.2,
centre.add(offset);

After executing this code, centre.x would equal 0.3 and centre.y would equal 0.8.

Vol 8 No 3-4 94 AUUGN

RICHARDS GKS IN C++

C++ also permits overloading of function names. Two different classes can have
member functions of the same name, or two functions can be defined with the same
name, but take different types or number of arguments. The compiler is responsible
for resolving any conflicts. For example, two functions called print could be defined:
one to take an int and one to take a char* argument. The following sort of code is
then possible:

print(2);
print("The quick brown fox");

Also, operators can be overloaded. This permits the definition of suitable operations
for new user-defined types. For example, the addition and subtraction operators
could be defined for the class point, making it possible to write code like:

point p1(0,0), p2(-4,8), p3(2,9);
pl = p2 + p3;

Mapping of GKS Data Types
The data types integer, real and string are mapped to the appropriate C++ types,
int, float and char[]. These types are given the names 6int, 6float and 6char[],
to correspond to the names used in the proposed C binding.

The GKS enumeration types are mapped to C++ enum types.

The GKS point type is mapped to a C++ class called Gpoint:

class Gpoint
Gfloat x;
Gfloat y;

public:
Opoint() {}

The GKS name types are mapped to the names of objects. This is explained in the
following sections.

Objects
A major advantage of C++ is the ability to work in an object-oriented way. There
are several suitable candidates for objects in GKS. This binding uses concepts such
as workstation, segment, polyline, polymarker index, window, and GKS itself, as
classes. The GKS functions are then mapped to C++ functions that operate on objects
of these classes.

There are several advantages to this approach:

-- there is a well-defined set of operations on each object,

--it is possible to perform a set of operations on a list of heterogeneous objects by
using derived classes.

-- there is a reduction in the number of distinct subroutine names,

-- the programmer is given the opportunity of defining new classes derived from the
ones defined in the binding.

The GKS Class and Object
The binding contains the definition of a class called GKS. This class contains the
items of the GKS state list, together with a set of appropriate GKS functions.

For example, the CLOSE GKS function is a member of the GKS class and has the
name close. The OPEN GKS function is mapped to the constructor function for the

AUUGN 95 Vol 8 No 3-4

GKS IN C++ RICHARDS

class. Opening GKS is achieved by defining an object of the GKS class. The following
code opens GKS by creating an object called g and then immediately, closes it.

GKS g(cerr, bufsize);
g.close();

The parameters of the OPEN GKS function are passed to the constructor function,
which can be designed to detect an attempt to open GKS when it is already open.
It is impossible to close GKS before it has been opened, because the close function
cannot be called unless there is a GKS object in existence.

Workstations
The Workstation base class is defined as a workstation state list plus the set of
workstation control functions. Other classes are derived from the base class for each
different type of workstation. It is possible to describe the relationship between
similar workstations. For example, a class Tak410x could be defined as a derived
class of Workstation to represent the Tektronix 410x series of graphics terminals.
Then, classes Tek4105, Tek4107 and Tek4109 could be defined as derived classes of
Tek410x. This provides a natural way to construct workstation drivers, where
there is often a large amount of code shared between similar devices. Only
functions that differ in a family of workstations need to be specified; the remainder
are inherited from the parent class.

The OPEN WORKSTATION function is performed by the constructor function in a
similar way to OPEN GKS. The following code opens, activates, deactivates and
closes a workstation:

Tek4107 display(conid, "Tektronix 4107");
dlsplay.actlvate();
display.deactivate();
display.close();

The first line creates an object called display of the class Tek4107. This is the
OPEN WORKSTATION call. Subsequently, all workstation functions are invoked by
calling member functions of display. No integer workstation identifier is passed as
an argument to these functions because it is not needed; the workstation is identified
by the object name.The choice of name for the object is entirely the responsibility
of the programmer.

Output Primitives
A class is defined for each type of output primitive. There is a base class for the
output primitives called OutputPrimitive. This has four derived classes, Text,
CellArray, GDP and GpointArray. The latter is used as a base class for Polyline,
Polymarker and FillArea.GpointArray is defined as follows:

class GpointArray {
Gpoint* point;
Gint number;

public:

An object of an output primitive class is created by a constructor function when the
object is defined. The constructor function takes arguments which are used to
allocate sufficient space for the object and to initialise it. For example, an object of
the FillA.rea class, called triangle, would be allocated with sufficient space to hold 3
points, by:

Vol 8 No 3-4 96 AUUGN

RICHARDS GKS IN C++

FillArea triangle(3) ~

Having allocated space, values have to be assigned to the triangle. The most natural
way of doing this is to make the triangle appear to be an array. This can be done
in C++ by redefining the array subscripting operator, [], for the GpointArray class.
Values are assigned as follows:

triangle[0] = Gpoint(0.1,0.1);
triangle[l] = Gpoint(0o9,0.3);
triangle[2] = Gpoint(3.0,2.~);

The most important member function for the output primitive classes is the one that
actually draws the object. The obvious approach is to define a function called draw
for each output primitive. To draw the triangle it would be necessary to say:

triangle.draw() ~

As this is the commonest function performed on output primitives, it was decided
instead to redefine the function call operator, (), to perform the draw function.
Thus, to draw the triangle:

triangle() ;

This notation leads to a concise form of programming. There is no need to specify
the number of points or an array of points in the function call as that information
is already contained in the object. The following code shows how to use Text and
Polsrline objects.

Polyline line(100); // allocate a Polyline
// and initialise it

for (int i = 0~ i < ~00; i++)
line[i] = Gpoint(i~0o2,Sin(i))~
// Now allocate and initialise a Text object

Text title(Gpoint(9,-~),"Sine Curve")~
// Draw the line and title

line () ;
title () ;

Attributes Each GKS attribute is defined as a class. An attribute class will typically
consist of one or more variables, together with a SET and INQUIRY function for that
attribute. For example, the MARKER TYPE attribute class is defined as follows:

class Gmkty : public GintAttr {
Gint v ~

public :
Gerror set(Gint) ;
Gerror inq(Gint&) ~

Where attributes share common types and member functions, base classes are defined.
In the above example, Gmkty is defined to be a derived class of GintAttr, which is
a base class for integer attributes. Similarly there is a GfloatAttr base class for real
attributes. As is shown below, this enables the programmer to manipulate lists of
attributes in a straightforward way.

Attributes that belong to the GKS state list are specified as members of the GKS
object. If a GKS object called g has been created, MARKER TYPE and POLYLINE
INDEX are referred to as g.markertype and g.lineind respectively, as in the following
extract of source code:

AUUGN 97 Vol 8 No 3-4

GKS IN C++ RICHARDS

g.markertype.set(2);
g.markertype.lnq(i);
g.lineind.set(i);

Attributes stored in the workstation state list are referred to by using the name of
the appropriate Workstation object. Some attributes are stored as arrays. For
example, POLYLINE BUNDLE number 3 on the display workstation is referred to as
display.linerep[3/. This means that a call such as SET POLYLINE REPRESENTATION,
which would be the following in the C binding:

gsetlinerep (dlsplay, 3, bundle)~

is considerably different in form in the C++ binding:

display.linerep[3].set (bundle);

Segments
Segments are difficult to handle in the C++ binding as there is a requirement for a
segment to have both an internal and an external name. The natural way to define
a segment is as an object of a class, Segment. The CREATE SEGMENT function can
be bound to the Segment class constructor function. The following code will create
a new segment, called s, by calling the constructor function.

Segment s; // create a new segment

Unfortunately, an external name is needed to permit the storage and retrieval of
segments in metafiles, so the approach taken in Rosenthal and Ten Hagen’s C binding
[7] has been adopted and a segment is allowed to have both an internal and an
external name. The external name is only used when creating the segment.

Segment s(3); // internal name: s, external name: 3
s oclose() ; // close it
s.del(); // and delete it

Segment attributes are handled similarly to other attributes. For example, SET
SEGMENT VISIBILITY is coded as:

s.vis.set (GVISIBLE) ;

Each segment attribute also has aninquiry function called inx/.
DETECTABILITY is written as follows: INQUIRE

s.detoinq (detect);

Overloading of Function Names
Wherever possible, the minimum number of distinct function names is used. For
example, GKS, workstations and segments are all closed by a close member function.
Attributes are always changed by a set function and their values interrogated by an
inq function. The result is a big reduction in the number of function names at the
expense of an increase in the number of different data types.

Overloading of Operators
Some functions have been bound by redefining operators. Examples have already been
seen above in the treatment of output primitives. Three other examples are COPY
SEGMENT TO WORKSTATION, ASSOCIATE SEGMENT WITH WORKSTATION, and
DELETE SEGMENT FROM WORKSTATION.

Copying a segment to a workstation is bound to the < < operator. This operator,
which is the shift left operator by default, is used by C++ as an output operator
and so seems appropriate for this function. If display is an object of class
Workstation, and segl and seg2 are objects of class Segment, then the following

Vol 8 No 3-4 98 AUUGN

RICHARDS GKS IN C++

will copy segl and seg2 to display.

display << segl;
display << seg2;

However, it is possible to concatenate these operations by defining the operator in a
suitable way. The following code is equivalent to the code above:

display << segl << sag2;

This is considerably terser than the equivalent C binding code:

gcopysegws (display, seg~) ;
gcopysegws (display, seg2) ;

The notational convenience increases with the number of segments that are copied to
the workstation in the one statement.

The += operator is redefined for the ASSOCIATE SEGMENT WITH WORKSTATION
function, and the --- operator for the DELETE SEGMENT FROM WORKSTATION
function.

display += seg~ += seg2 += seg3;
display -= seg2;

The += and -= operators need to be defined very carefully. C++ does not provide a
way of altering the order of evaluation when an operator is redefined. So,

display += seg~ += seg2 += sag3;

is evaluated as:

display += (segl += (sag2 += sag3)) ;

Parentheses can be used to enforce the desired result, but this is tedious:

((display += segl) += seg2) += seg3;

The solution adopted was to redefine the +-- operator, when both the Ivalue and
rvalue are segments, to create a "last-in, first-out" stack and place the segments on
it. The operator returns a pointer to the stack. If the += operator is passed a
segment as an lvalue and a pointer to a stack as a rvalue, it adds the segment to
the stack and returns a new pointer. When the last += or -= in the expression is
executed, the segments are popped off the stack and the appropriate GKS functions
invoked. This ensures that the functions are invoked in the correct order and
removes the need for parentheses.

The --- operator is handled in an similar way.

Operator overloading is also used for the metafile functions.

Metafiles
Metafiles are defined as derived classes of type Workstation. One class is required
for input metafiles, MetaIn, and one for output metafiles, MetaOut, This is because
input and output metafiles have different sets of member functions. Metafile items
are defined as objects of type MetaItem.

Opening a metafile is achieved by defining an object of the appropriate class, as for
other OPEN WORKSTATION calls, e.g.

MetaOut gksm_out (tout, "GKSM output") ;

The MetaItem class contains fields for the item type, item length, and a data
record. Once the programmer has placed the appropriate information in the item,

AUUGN 99 Vol 8 No 3-4

GKS IN C~ RICHARDS

the WRITE ITEM TO GKSM function can be used. The function is mapped to the < <
operator, using the same paradigm as is used for streams output in C++, e.g.

Metaltem item;
// place values in the item

item.type B HEADER;
item. length = 80;
item.data = "This is a title";

// write it to the metafile
gksm_out << item;

The GET ITEM FROM GKSM function is mapped to a get member function of the
MetaIxt class. READ ITEM FROM GKSM is mapped to the > > operator, by analogy
with WRITE ITEM TO GKSM. As the MetaItem class contains the maximum item
data record length as one of its members, one of the arguments to READ ITEM
FROM GKSM can be eliminated.

The INTERPRET ITEM function is mapped to the overloaded function call operator, O,
for objects of class MetaItem. For an example of using metafiles, see Section 14.1.

Heterogeneous Lists
A major advantage of the C++ binding is the ability to use heterogeneous lists. A
list can be defined to hold pointers to objects of a base class. The same list can
then be used to hold pointers to objects of any derived class. Operations can be
applied to objects on the list in a uniform way without the need to know the type
of the object that is being manipulated. The meaning of the operation that is being
applied depends on the actual type of the object and this is only known at run-
time.

For example, it is simple to define a list that can hold integer attributes:

struct ailist {
ailist~ nextl
GintAttr~ at;

Any object of the GintAttr class, or any of its derived classes, can be placed on
such a list. Then an operation can be performed on each object on the list, e.g. to
set each integer attribute to the value 3:

// p is a pointer to an ailist
while (p I= 0) {

p->at->set(3);
p = p->next;

A more interesting and useful example is a list of output primitives.A similar
structure to the integer attribute list can be defined by:

struct pliat {
pllst* next;
OutputPrlmitive, at ;

);
Objects of any of the derived classes of OutputPrhnitive (e.g. Polyline, FillArea,
Tex%) can be stored on the list and then drawn by stepping through the list.

Vol 8 No 3-4 100 AUUGN

RICHARDS GKS IN C++

// p is a pointer to a plist
while (p ~= 0) {

(.p->op)(); // draw it
p = p-~next;

}
In effect, the above piece of code implements a simple graphics display list. or
segment store.

Examples
Example 1

Overloading operators can make some programs much shorter. The following C++
code reads and interprets items from a metafile:

// declarations omitted
Metals gksm_in(cin, "GKSM input");
while (gksm_in.get(item) ~= EOF) {

gksm_in ~ item;
item();

)
This is considerably shorter than the equivalent code using the C binding:

gopenws(gksm_in, ein, "GKSM input");
ggetgksm(gksm_in, result);
while (result-~type ~= EOF) {

greadgksm(gksm_in, length, record);
ginterpret(result, record);
ggetgksm(gksm_in, result);

}

Example 2

The ability to derive classes from other classes makes it possible for the programmer
to define new output objects. In this simplified example a new type, called Block, is
defined to represent filled upright rectangles. The only operations permitted on a
Block are to define a new one, to move it, and to draw it.The class is defined as

follows:

class Block : public FillArea {
public :

Block(Gfloat, Gfloat); // constructor
void move(Gpoint) ; // move it
void operator() () ; // draw it

The Block class is a derived class of FillArea, No data items are declared as they
are all inherited from the FillArea class. The constructor function takes two
arguments, the width and height of the block, and initialises the data.

AUUGN " 101 Vol 8 No 3-4

GKS IN C++
RICHARDS

Block::Block(Gfloat w, Gfloat h) : (4)

(*this)J0] z Gpoint(0,0);
(*this)It] = Gpoint(w,0);
(~this)[2] = Gpoint(w,h);
(~this)[3] = Gpoint(0,h);

The (4) term on the first line of the constructor function is automatically passed to
the FillAxea constructor function and allocates space for an object with four
vertices. The this pointer is always available in a member ’ function and points to the
object for which the function was invoked.

The move function changes all the coordinates by a displacement.

void Block::move (Gpoint p)

for (int i=0~ i<4; i++)
(~this)[i] += p;

The draw function, which, in common with other output primitives, is performed by
the overloaded function call operator, first sets the interior style to solid and then
invokes the function to draw a FillArea object.

void Block::operator() ()

g.fillintstyle.set(GSOLID);
FillArea::operator()

)
Once the code has been written to define the new class, it can be used in the
following way.

Block box(2.5,3.5);
box.move(Gpoint(1.0,1.5))~
box(); // draw the box

Objects of the Block cla~ can be treated identically to objects of the FillArea class.
// box can be put on a plist
p->op z &box;
// box will be drawn when
// stepping through list.
while (p ~= 0) {

(*p->op)();
p - p->next;

);
Cotrclusions and Future Work
The production of a binding of GKS in (2++ has shown the suitability of the
language for writing graphics applications programs. GKS concepts can be translated
into classes in (2++ in such a manner that the programmer is encouraged to think in
an object-oriented way. The use of function and operator overloading results in
shorter and easier to write programs. The ability to use heterogeneous lists of
objects and the possibility of deriving new types from the basic GKS ones are
notable benefits.

Vol 8 No 3-4 102 AUUGN

RICHARDS GKS IN C++

The number of distinct GKS function names is reduced to only 31 in the C++
binding, compared to over 210 in the C binding. This is achieved by using
overloaded function names, and is largely due to the use of set and irrq member
functions for each attribute. However, the number of data types is increased from
about 120 in the C binding to over 160.

Slater [5] says that there are several ways of producing a Fortran binding but all
reasonable bindings would be structurally similar; whereas for Pascal a number of
structurally dissimilar bindings can be devised. In C++, the number of possible
bindings is probably greater still. In many ways the design of a binding is a
matter of personal taste, and the one presented here may well change drastically to
accommodate other people’s ideas.

The next step is to test the binding on top of a GKS library [17,18] which is
written in Fortran 77 and uses a Fortran binding. This should give indications of
the usability of the binding and some ideas for improvements.

Acknowledgements
Dr. Mark Rafter of Warwick University for suggesting the method of handling the
ASSOCIATE SEGMENT WITH WORKSTATION and DELETE SEGMENT FROM
WORKSTATION operators.

References

[1] ISO
Graphical Kernel System (GKS) - Functional Description
ISO IS 7942 July 1985

[2] M. Sparks
Graphics Language Bindings - the What and Why
Computer Graphics Forum Volume 4 Number 4 Pages 387-392 December 1985

[3] ISO
Graphical Kernel System (GKS) Language Bindings - Part 1: FORTRAN
ISO DP 8651/1 December 1984

[4] S. Antoy and G. Dettori
Towards GKS Binding to Pascal
Proc. Eurographics 83 Zagreb. Yugoslavia September 1983 Pages 211-214

[5] M. Slater
GKS in Pascal
Computer Graphics Forum Volume 3 Number 4 Pages 259-267 December 1984

[6] ISO
Graphical Kernel System (GKS) Language Bindings -Part 2: Pascal ISO DP
8651/2 1985

[7] D. S. H. Rosenthal and P. ten Hagen
GKS in C
Proc. Eurographics 82 North-Holland Manchester 1982 Pages 359-369

[8] R. R. Martin and C. Anderson
A Proposal for an ALGOL 68 Binding of GKS
Computer Graphics Forum Volume 4 Number 1 Pages 43-57 January 1985

[9] M. Mac an Airchinnigh
The Specification and Implementation of GKS Application Software in ADA
Computer Graphics Forum Volume 3 Number 2 Pages 153-167 June 1984

AUUGN 103 Vol 8 No 3-4

GKS IN C++ RICHARDS

[10] ISO
Graphical Kernel System (GKS) Language Bindings -Part 3: Ada ISO DP
8651/3 1985

[11] P. Sykes and R. Krishnamurti
GKS Inquiry Functions within Prolog
Proc. Eurographics 85 Nice. France September 1985 Pages 185-191

[12] W. Hubner and Z.I. Markov
GKS Based Graphics Programming in PROLOG
Computer Graphics Forum Volume 5 Number 1 Pages 41-50 March 1986

[13] P. Wisskirchen
Towards Object-Oriented Graphics Standards
Proc. Eurographics 85 Nice. France September 1985 Pages 391-400

[14] B. Stroustrup
The C++ Programming Language Addison-Wesley 1986

[15] B. W. Kernighan and D. M. Ritchie
The C Programming Language Prentice-Hall [D 1978

[16] ANSI
C Language Binding of GKS (ISO version) ANSI X3H34/83-12R5 (Work Item)
January 31 1986

[17] C.D. Osland
Case Study of GKS Development
SERC Rutherford Appleton Laboratory August 1983’

[18] GKS-UK User Guide Program Library Unit. University of Edinburgh 1986

Vol 8 No 3-4 104 AUUGN

BROOKS

An NRS processor in C and the future
Piete Brooks

University of Cambridge Computer Laboratory

NRS IN C

The NRS derived file format is the standard for
interchange of information about JANET and PSS names
and addresses. A set of interface routines are provided in
the portable language, Fortran.

An alternative (written in C) has been provided which does
not provide a direct interface for the users, but produces
tables for other utilities (such as MMDF, sendrnail,
Yorkbox, VMS ...). This is largely described in its own
documentation (A Quick Jog Through Configuring The Nrs
Processor); this document describes future plans, namely a
brief description of the proposed FORMAT3, a local NRS
server and a proposal to adopt a standard NIFTP suite for
UNIX o

1. The C NRS processor

The current programme will accept format 1 or 2 files (monolithic or as filettes)
and produce from these tailorised tables for MMDF, UK-1.4 sendmail (and Reading’s
smail), Yorkbox (R2.2 and R2.1), VMS coloured book, x25hosts, text, UCL dbextract
format DBM files, etc.. It consists of a parser for the tailoring info (e.g. what
format, which domains to strip, etc.), the main munger which converts to an
internal format and the format specific output routines.

A site will typically process the data twice; once to generate site name lists for the
mailer (i.e. picking out the known MAIL hosts and the application relays) and again
for the X25 level code to map between names and addresses.

This has been written in such a way that (so far) addition of a new input format
or output format have been very minor matters, and porting to non-UNIX systems
(VMS and PRIMOS) were also fairly painless.As such, this software is of little
interest -- it does what is expected of it.

2. FORMAT3

After Salford’s minor changes to FORMAT1, they realised that the existing format
was not suitable for the extension to ISO and that the communication load on their
server is too high, so they are designing a very different FORMAT3 (this has still to
go before the steering committee). The two compression methods considered are
removing duplicated strings and some form of incremental update. (They appear not
to be interested in reducing the load by a factor of four by passing the file through
compress) The incremental update involves having each section split into sorted and
unsorted parts with the hope that the sorted will be much larger, so that the
sequential search through the unsorted part should not slow it down significantly.

The ISO extension consists of additional contexts ftam, jtm, jtrn-reg, vt and motis,
the new network OSI-CONS, and the registration of NSAPs. The duplicated string
removal is helped by splitting names and addresses into sections so that common
substrings can be shared (i.e. names are prefix [uk.ac], institution [cam] and entity
[cl.jenny] and addresses are DTE, YBTS or CUDF, Application Relay and ISO

AUUGN 105 Vol 8 No 3-4

NRS IN C BROOKS

information). Gateway information and institution descriptions have also been
added.

Together these effectively force an implementor to explode the information to obtain
complete strings which can be hashed internally rather than sorted externally.

There are several cases where it would be nice to have some keyed information
available which although, not essential is highly desirable in the real world, such as
this machine should not have multiple transfers in a single call. Is there any
simple way to extend the database to include this extra data ? I can image that
there may be a lot more black magic when the ISO code appears (such as the
information that GECs only accept one transfer per TS connection).

Should the single centralised nameserver, now discarded elsewhere, be replaced by
distributed servers ? The obvious unit is the institution, with the current INAa’VIES
information available on all servers.

3. Local NRS server

As LANs have become the norm rather than the exception and sites are installing
transport service relays between the networks they use, the number of hosts that
can use WANs is rapidly increasing. If a host wants to make use of other networks
it needs to have a complete and up to date copy of all the tables. The current
lookup techniques tend to go for speed of lookup rather than keeping the data
compact, so this is likely to burn up a lot of disc space if a distributed filing
system is not available.

A solution would be to implement the CHAIR protocol (~s defined by Salford) as it
is the UK "’standard". There are very few implementations available at the
moment, so it may be better to implement a very simple ad-hoc connectionlbss
protocol which would effectively map the user lookups into a very simple RPC.
Somewhat more reasonable in the Berkeley world, would be to use bind to do the
mapping. Some systems (e.g. MMDF) can already make use of bind information.If
this could be extended to work on SysV, this would be the obvious candidate.

4. Standard NIFTP

With the omission of a serious standard implementation of NIFTP for UNIX by the
JNT, it appears that the user community will have to provide its own. With the
final demise of the York contract, the JNT are continuing to throw vast sums of
money at Spider in the short term, but they are planning a new scheme to have a
manager so that companies wishing to offer UNIX coloured book software can take a
standard package and need only write the interface to their own hardware or kernel.

UKNET has repeatedly been able to do this where all others have failed, so if we
can get our act together and show the JNT that we can provide such a service, we
may be able to get some support. The distribution network is already in place,
including a dedicated machine. For the user the joy of this is that a new site can
simply tar in a file, run the Configure programme, type make install and have a
running system. That is all very well, but not my current prime concern.

I am more concerned about the future existance of a working, up to date suite for
UNIX that can be used to make a clean transition to the new ISO implementations
which are almost upon us :-). The sites which currently provide UNIX
implementations are all having serious staff shortages, particularly in the
communications area. Either they will have to freeze their software and live with
the bugs, or divert effort from elsewhere. Now would seem the time to consolidate
the old NIFTP code into a single source (several implementations already support

Vol 8 No 3-4 106 AUUGN

BROOKS NRS IN (3

many underlying networks and interfaces) and have a UKUUCP style of update
moderation. When the active contributers have been found we should be ready to
plan the transition to OSI and be able to make considered representation to the JNT
rather than having the current unfortunate situation where they have drifted away
from their community.

The current candidate (the UCL code) supports sockets (ether, UBC X25, UCL ICPS),
the Yorkbox, Camtec’s dexpand and the ukc io module (which itself supports
DECNET, ...). This is currently running with MMDF and UK-1.4 Sendmail. If this
(or an equivalent package) could be supported then a large amour of the wasteful
duplication of effort could be avoided.

AUUGN 107 Vol 8 No 3-4

UNIX
EUROPEAN

SYSTEMS USER
NEWSLETTER

GROUP

Volume 7
Number 2

Editorial ...1

Packets Vs. Circuits, in Two Centuries3

Music: a Troff Preprocessor for prtattng music scores7

An Overview of the

Grouse: Messages and

Another Proposal for a

UKUUG 1987 Summer

Glasgow

Native Language System25

Prompts in Programs35

News Scheme45

Technical Meeting47

Local UNIX Group ..49

EUUG ...51

Progress of ANSI/ISO C

X/Ot?EN -- What, Who,

Standardlsatlon53

Why, When,59

EUUG Tape Distributions ..61

EUnet ..67

UNIX Clinic ...71

Review of POSIX ..73

Vol 8 No 3-4 108 AUUGN

LESK PACKETS VS. CIRCUITS

Packet Circuits in Two Centurie

Michael Leslc
lesk @ cs.ucl.ac.ulc

UNKNOWN AFFILIATION

Should complex transmission systems make routing decisions at
each hop of each item, or should routing decisions be made in
advance for an entire transmission? Recently this argument has
been best known as a dispute between packet switched and virtual
circuit computer data networks. In the last century, the railroads
had a similar problem: should trains proceed sig~man by
sig~rnan, or according to complete schedules? If the a~ogy
really holds, heavy tra~c networks should prefer virtual circuits.

In the last century, the Midland Railway in England found itself with a problem.
Coal wasn’t getting through to London. At this time (1890’s) they, and all other
British railways, scheduled their passenger trains but not their slow freights. A coal
train meandered from signal cabin to signal cabin, each signalman .deciding whether
to send it forward or hold it on a siding. He did that by telegraphing the next
signalman forward, and asking whether the line was clear.If the next signalman
accepted the train, it moved forward one block section,and then the process
repeated.

Readers should understand some of the constraints here.Typical British goods
wagons did not then have any kind of brake that could beapplied while the train
was moving. Until about ten years ago, on British freight trains brakes were often
found only on the locomotive, tender and guard’s van. Even though these trains
were short by some standards (British railways were built with short sidings and
locomotives were at that time much less powerful than today), they were still
underbraked, and safety was preserved by running at slow speeds. So a coal train
out on the line represented a substantial delay to any passenger train caught behind
it.

Time-keeping on passenger trains, of course, was important. Signalmen were
instructed that delaying any passenger train was a serious error, while it did not
matter much how fast coal moved down the line. So they tended to be conservative,
and when in doubt to put the freight trains into the sidings. But now consider the
consequence: suppose you are a signalman, and all your siding space is full of
trains, and an adjacent signalman proposes to send you another train; you must
refuse it, because if you can not get one of your sidings empty before it arrives a
main line will be blocked.

You can now imagine the consequences: as the traffic builds up, the sidings fill, and
once all the sidings at important junctions are full nothing can move. The line may
be empty; but the trains will sit there until the sidings clear from the destination
back. The Midland Railway eventually had to pay enginemen for a day’s Work in
which their train never moved, and it had to refuse traffic because it had no place
to put the trains. Computer scientists will recognize this behavior as "’thrashing" if
too much working memory is needed by the resident processes the CPU spends its
time swapping to disk and only rarely does a process get to run.

AUUGN 109 Vol 8 No 3-4

PACKETS VS. CIRCUITS LESK

The normal English solution to the situation was to put down additional tracks.
Two-track railways became four-track or six-track. The Midland didn’t have the
money for that. Instead, a new general manager named Cecil Paget invented the idea
of "’train paths". Roughly speaking, the idea was that you could accomodate the
irregular freight traffic by having a schedule that displayed not only the trains that
ran each day, but also showed the slots for additional trains that only ran
occasionally. The schedule showed not just the trains that were, but all the trains
that might be.

In a train path schedule, the compiler first works out the maximum capacity of the
line. This involves picking minimum intervals between trains, and also deciding on
the maximum speed trains can be expected to maintain. Since different classes of
trains will run at different speeds, the schedule must present a balance between slow
freights, passenger expresses, and everything in between. In addition, both long
distance and local servicesmust be provided for. And when trains must meet or
pass, the schedule must arrange that this happens at a place with a siding.

Once the full list of possible paths was made, the job of the train dispatcher
became easier. Given a new request for a slow coal train to London, he simply
looked down the list for the next appropriate path, and telegraphed all the
signalmen that a train would run on that path today. They could now send it on
confidently because they knew that it would not interfere with more important
traffic. At each point where there was a conflict, the schedule would so indicate and
there would be a siding. As the train left the mine, its arrival time in London
would be known.

Doesn’t this all sound familiar? The choice is between pre-routing and dynamic
routing. Today we have packets or datagrams instead of trains, we have network
nodes instead of signalmen, and we have store-and-forward buffers instead of
sidings. But we have the same basic problem: in heavy traffic, dynamic routing can
overfill buffers and prevent a guarantee of service. Virtual circuits may instead deny
a circuit, but once the circuit is allocated the routing is known and the service
dependable. Some papers in the literature recommend virtual circuits for heavy
traffic (Butrimenko, 1979); others recommend datagrams for heavy traffic (Matsushita,
Yamazaki, and Yoshida, 1977).

What is the lesson? If we accept the analogy, we should conclude that

a. virtual circuits should be preferred to datagrams in heavy traffic situations;

b. pre-routing is more efficient than dynamic routing.

Of course, there are differences between railroad scheduling and data switching. The
variety of routings in data networks far exceeds that in railroading, and the ratio of
data transmitted to storage in the network nodes is greater. But don’t be too smug
about present day systems: after all, no Victorian railwayman could throw away a
train of coal and ask the mineowner to please retransmit.

References
O. S. Nook Steam Railways in Retrospect A. & C. Black London, 1966.

Cecil J. Allen Railways of Today F. W. Warne London, 1929.

F. J. Salzborn Timetables for a Suburban Rail Transit System Transportation Science
Volume 3, Number 4, Pages 297-316, 1969.

Yutaka Matsushitn, Haruaki Yarnazaki, Isamu ¥oshida An Evaluation of Virtual
Circuits and Lettergram Services Computer Networks, Volume 3, Pages 287-294,
1979.

Vol 8 No 3-4 110 AUUGN

LESK PACKETS VS. CIRCUITS

Alexandr Butrimenko, Ulrike Sichra Virtual Circuits vs. Datagram - Usage of
Communication Resources Performance of Computer Systems, Pages 525-537, North-
Holland, 1979.

Vtnton G. Cerf, Peter T. Kirsteiax Issues in Packet-Network Interconnection Proc.
IEEE, Volume 66, Number 11, Pages 1386-1408, 1978.

G. Pujolle, O. Spa~iol Modelling and Evaluation of Several Internal Network Services
Performance Evaluation, Volume 1, Pages 212-224, 1981.

X Clones

AUUGN 111 Vol 8 No 3-4

FOXLEY

Music~
A Troff Preprocessor for printing music scores

MUSIC

Eric Foxley
el@ cs.nott.ac.ulc

Departments of Mathematics
and Computer Science
University of Nottingham
U.K.

ABSTRACT

The music preprocessor provides a language for describing music scores, which
can then be processed to produce output suitable for the troff typesetting system and its
other preprocessors, which run under the UNIX~" operating system. This document
describes the basic facilities available in the music preprocessor, and gives examples of
its use.

1. Introduction
The output

Cock of the North (Kevin)

A A D A B7 E7

A A
was created from an input file containing

D A G A

.MS
title = "k fBCock of the North\ fP \ fl(Kevin)\ fP";
tlmesig = 6 8;
autobeam;
key = a.

e< ’A’ d<l
c "A" dcc bal
a "A" c e f’l’> "D" e I
\11
b "B7" c b b "E7" e d I
\1,21
c> "A" c b "G" g= b I
a>. "A" a> :1
.ME

Vol 8 No 3-4 112 AUUGN

MUSIC FOXLEY

The music system is another troff~, 8 preprocessor. It passes most of its input through untouched, but
translates those lines between lines ".MS" and ".ME" into commands suitable for the pic5,6 preprocessor,
which can then draw the necessary pictures. Text outside and inside the music system can use the full
features of the other troffpreprocessors such as eqn3 and tbl7 if required. A typical UNIX command would
then be

music source.file I pic I troff-ms

or

music source.file I pic l eqn I troff-ms

if the facilities of eqn are required.
The particular rules for layout of the musical symbols are based on examples given in Stone1° and in

the Oxford Concise Dictionary of Music9 subject to interpretation and variation. Suggestions for alterna-
tive rules would be appreciated, and could perhaps be built into the system as options. For a more general
discussion in this area, the reader is referred to1 for discussion of languages for representing music scores,
and to2 for information on the current state of comupter applications in music printing and in general
musicology.

2. The input language
The basic input for the musical score is contained between lines ".MS" and ".ME", and consists of

header information describing the output format required, and input defaults, followed by the score details.
All text not within a ".MS" to ".ME" section is passed straight through unchanged.

2.1. Header information

The header sets up variables such as the piece title, output width, time signature and key, each of
which is specified by an entry of the form

<identifier> = <value>

The header items are separated by semi-colons, and terminated by a full-stop. A typical header for a
straightforward example might be

title = "Twinkle twinkle little star";
timesig = 4 4;
key = d.

In all straightforward cases a short header is acceptable, since most items default to sensible values. How-
ever, the header items have to allow for many variations in output format, and examples of the major possi-
bilities are shown in the following example:

title = "...."; # printed at top left of output; the default is to have no title
ctitle = "....";# this title is printed at the top centre of the output, if given
rtitle = "....";# this title is printed at the top right of the output, if given

timesig = 3 4;
#
#

sets the default note length to semi-breve divided by 4,
and the default bar length to this times 3
the musical length of bars is checked against the bar length

key = g; # the key of the piece is "G" for both input and output
all "F" notes on input now default to F-sharp

keyin = f; # the input key can be specified distinctly from
keyout = a; # the output key to produce transposed output

the "key =" entry sets both these values
transpose = 1 -1;# instead of using "keyin" and "keyout", this option

AUUGN 113 Vol 8 No 3-4

YOXLEY MUSIC

specifies the number of additional sharps and octave displacement in the
output key compared with the currently set output key

octave # sets the default octave to that within the stave of the treble clef
"octave = c;" causes the default octave to start at middle "C"
"octave = k;" causes the default octave to start at the current key note
"octave = p;" causes the default octave to make each note as close as
possible to the previous; the first note follows the "octave = s" rule

bars = 8;

bps = 8;

the number of bars in the piece
used for checking, incorrect value produces a warning
bars per stave; bars are spaced on the stave proportionally to their
musical length; notes within a bar are spaced
proportionally to their musical length
bps = 0 (default) fits as many bars as possible on the stave

width = 6.5i;
#
#
#
#

height = .25i;
#

isg=.20i; #
#

the stave width in inches
the maximum depends on the output device;
the current troffdefault width is 6 inches
our current laser printer maximum is 7.5 inches portrait
and 11 inches in landscape mode
the height of a 5-bar stave
the default is 0.28 inches
increase the spacing to be left between staves,
the "inter-stave-gap" by 20 units

sig = ckt. # the "c" is "print a clef at the left of each stave"
the "k" is "print the key on each stave"
the "t" is "print the time-signature on the first stave"
the default is to have all

The header items are in any order, separated by semi-colons; the last is terminated by a full stop. All
unspecified items default from any previous header. An empty header is indicated by a full stop. Further
header items will be described later.

Note that all text from any "#" symbol to end-of-line is ignored, and that if the last character of a line
is the escape character "V’, then the next line is treated as a continuation of the current line.

2.2. Score details

The header is terminated by a full stop, and is followed by the score. The score consists of notes
interspersed with bar-lines. There is a warning if the sum of the note lengths in any bar does not add up to
the required bar length as deduced from the time signature, or if the total number of bars does not agree
with that specified in the header. Both of these checks have been found to be useful.

The pitches of the notes are typed as lower-case letters relative to the current key, as in

ddaalbbalggffleed

Sharps and flats of the current key are omitted. Other required accidentals are typed at the first occurr(nce
in the bar using "+" for sharp, "-" for flat, and "=" for natural. For example, "g+" represents g-sharp, "e-"
represents e-flat, and "f=" represents f-natural in a key such as "d". A "+" symbol against an already shar-
pened note is ignored; a "+" symbol against a note which is sharp in this key, but which occurred with a
natural earlier in the bar, cancels the natural accidental. On output, the computer will print only the neces-
sary accidentals, omitting, for example, accidental signs on all but the first occurrence of a given accidental
within a bar. A cancelling accidental will be printed if the note is used in the following bar.

Vol 8 No 3-4 114 AUUGN

MUSIC FOXLEY

The length of a note defaults to the value indicated by the denominator of the time signature, and is
thus a quaver if the denominator is 8, a crochet if it is 4, and so on. To specify other lengths, symbols ">"
after the note double its length, symbols "<" halve it, "." increases it by 50%, and ".." increases it by 75%.
Thus in 4/4 time, "c>." represents a dotted minim, and in 6/8 time "c<<" represents a demi-semi-quaver.
As an example, the source

.MS
timesig = 4 4;
key = d;
bars = 4.
d d a a I bb a> I g< g< g< g< f. f< I e e d> I
.ME

produces the output

Thc lcngth of thc dcfault notc for input may bc changed by using thcsc note duration symbols in
association with thc note given as thc kcy in thc header. Thus if thc kcy is spccified as "d>", thc kcy is "d",
and thc dcfault notc Icngth is doublc that which would othcrwisc bc cxpectcd. If thc abovc cxamplc is
repeated changing two hcadcr cntrics to halvc both the bar-length and thc dcfault notc-lcngth, thc file
becomes

.MS
timesig = 2 4;
kcy = d<; # half-lcngth dcfault notc
bars = 4.
d d a a I b b a> I g< g< g< g< f. f< I e e d> I
.ME

and the resulting output is

For this effect, the key must bc set after the time signature in the header, since the "timesig" entry itself
resets the default note-length. The full-stop cannot be used to increase the default note-length by 50%, the
default can be changed only by factors of 2.

For each note in the source, the letter (and possible accidental) specifying the pitch can be followed
by an indication of octave displacement. Symbols "1"" after the pitch indicate an octave upward, symbols
",l," indicate an octave down. The default octave can be set in different ways. It can be set to that from
middle C to the B above using the header entry

octave = C

In this case "cq’q’" is two octaves above middlc C, and "b,l," is one notc below middle C. Thus in the key of
G, the score

g< d< b.l,< d< g< b< c1"< dq’<l c’l" c1" dq’> I c1" c1" b b I a a g> I

produces the output

AUUGN 115 Vol 8 No 3-4

FOXLEY MUSIC

The octave symbols(s) must at present precede the note duration symbol(s). The default octave can be
moved up or down an octave by appending "q’" or ",1," symbols to the note in the key definition in the
header. The previous example, if the default key is specified as

key = g’[’; # g up an octave

we obtain the output

The header entry

octave = s;

sets the default octave to that contained within the treble clef stave, from F above middle C to the E above
that. The header entry

octave = k;

sets the default octave to be that starting at the current key note. The entry

octave = p

causes the octave of each note to be chosen to make its pitch as close as possible to that of the previous
note. Thus in this mode the notes

abcdlefgalagfeldcbal

would give a run up and down an octave scale. In this mode, the very first note is set according to the
"octave = s" rule. Note that although this option minimises the typing of input, it has the unfortunate side
effect that octave errors now propogate throughout the rest of the piece.

Bar-lines
Bars are delimited by bar-lines. A limited variety of bar-lines is available, some indicated by an

obvious construction, others by a letter following the bar symbol. A selection of these is indicated by

g> g> II a> a> IT b> b> IU b> b> IV c’l’> c’[’> h d’[’> dq’> :h e’[’> e’l’> :1 g> g> IH

which produces

Note that the system is sufficiently intelligent to replace for example the ":1:" symbol if it occurs at the end
of a stave by a ":1" symbol at the end of that stave, and a "h" symbol at the beginning of the next stave.

Vol 8 No 3-4 116 AUUGN

MUSIC POXLEY

Rests
Rests are indicated by the underscore symbol "_", with lengths specified as for notes using the sym-

bols > , and ".". The default length is the same as the value set for notes. Not all rest symbols are
currently implemented on the printer. The input

a> _> I a _ c.. _<< I a< _< c< _< a _ I

gives the output

Beams
To cause notes shorter than crochets to be joined under a common beam, the notes to be joined are

put within square brackets, as in

[a b c] [d ef]

A beam will correctly fail if it includes any notes longer than or equal to a crochet; at the moment, it also
fails if it includes any rests. The latter restriction should be removed soon. A beam cannot cross a bar-line.
As an example of bemns, the source

timesig = 4 4; key = d.
d,l, [d,l,<< e$<< f<< g<<] a a I [b< a< g< b<] a> I
g [g<. g<<] f [f< g<] I [a<< g+<< a<< b<<] [a<< g<< f,~< e,l,<<] d,[,> IT

appears as

To simplify the typing of input in straightforward cases, a system for automatically inserting beams
is available, and can be invoked by inserting the additional line

autobeam;

in the music heading. The automatic beaming uses rules from the Oxford Concise Dictionary of Music9

which may not always be exactly what is required. However, automatidally generated beams will never
over-ride beams inserted manually. Having been invoked, auto-beaming can be switched off by the header

autobeam = 0;

As a further facility, the auto-beamer can be instructed never to let a beam cross for example a "2 times
default note-length" interval using

autobeam = 2;

Different formulae for the slope of the beam are built into the program; formula number 2 can be
accessed by the header entry

beamslope = 2;

Details are the formulae are available from the author. Other formulae could easily be added; suggestions
are welcome.

AUUGN 117 Vol 8 No 3-4

FOXLEY MUSIC

Text
The title of the piece as (and if) given with the keyword title in the header information appears at the

top left corner of the output. Other titles can be given to appear at the the centre and at the top right-hand
corner of the output using the keywords ctitle and rtitle in the header.

Additional items of text can be given to be positioned relative to any note or bar. For text associated
with notes, the text required is contained within quotes to indicate its positioning. Single quotes
(’Moderato’) indicate text to be positioned above the stave, left justified and starting at the horizontal co-
ordinate of the note; text in double quotes ("Twinkle") indicates text to be positioned below the stave; and
text between "@" signs (@3@) indicates text to be positioned close to the note. Text of the last form will
be positioned just above the note if it has a downward stick, and vice versa. Thus the input

g ’Legato’ "Twin-" g "-kle" d "twin-" d "-kle" I
e "lit-" [e< "-tie" fl"< @3@ e<] d> ’Fin’ "star" I

generates the output

¯ ~ ~ ._ Legato 3 Fin

..... r r I r
~ Twin- -kle twin- -kle l i t- -tic star

Thc particular string @3@ is interpreted to imply a triple, thrcc notes in thc time of two. The spacing of
the notes on the score and the checking of bar-lengths takes this into account.

Text can also be associated with a bar. It is given after the bar-line, and is printed lined up with the
start of the bar; it will be above the stave if contained in single quotes, and below if in double quotes.

Text strings starting with the escape character ’~" arc treated specially. Any text string starting ’’, b"
appears in a box, any starting ’",, c" appears in a circle, and text starting ’~ 1" or ’", 2" above the stave is
used for alternative bars on repeats. The second type, starting ’~x c", will be expected to be single character
strings. For example, the file

g ’\cA’ ’~,bBelow" g ’\bB’ d dle * lst.’ e d> :1 e ’\2nd.’ f g’l’> IT

produces the output

12nd.

Text starting ’~ >" is assumed to be a diminuendo; its width will stretch over two notes if written % >
2n", over two bars if written ’~, > 2b", and over 2 inches if written ’’, > 2i".

Text between @ symbols starting ’A .", ’"x -", ’A <", ’~, >" is interpreted as accent symbols and posi-
tioned accordingly.

It is hoped that most rccogniscd musical symbols (such as pause and segno) will eventually be
included in the standard font; such additional characters arc then accessed by the usual methods appropriate
to troff, such as the ’",, (sh" for the sharp-character, and ’~, (ft" for the flat-character.

If text is given as two strings, such as

"I.G2. Em"

the two text strings "1. G" and "2. Em" appear one above the other, vertically aligned at the left, as in

Vol 8 No 3-4 118 AUUGN

MUSIC FOXLEY

I r r r
2. Em 2. Am

II

Ties
Ties are indicated by putting parentheses (round brackets) around the notes to be joined under the tie.

Their production is through the use of splines in pic; an angular version is available if splines are not pro-
vided.

Duplicate copies of earlier bars
The notation

\41

cause a duplicate of bar number 4* to bc inserted at this point. The similar notation

\1,31

causes bars 1 to 3 to be duplicated at this point. Numbering starts at bar 0 for the lead-in notes, and bar 1
for the first full bar. The notation

\-11

causes a duplicate of the previous bar to be inscrtcd (current position minus one), and

\-4,-1 I

inserts copies of the preceding four bars. The notation

\ ’Legato’+2, ’Legato’+4

duplicates source from the bar two beyond the most recent which contains the text ’Legato’ to the bar four
beyond it. Such a bar must occur earlier in the current ".MS" to ".ME" section. Only complete bars can be
copied.

It is unwise to use absolute bar numbers in cases where an extra bar could perhaps be added or
deleted at a later stage. Relative bar references (using the -4 or ’Legato’ notations) are safer in such cir-
cumstances. References to bars not yet encountered are unacceptable.

Changes of signature

Thc notation

\ timcsig = 3 4.

occurring at the start of a bar resets the time signature, default note length and bar length on the fly to a
new value, causing the new value of the time signature to be printed on the stave. The input and/or output
keys can be reset similarly using, for example

\ key = g<.

resets both input and output key, or

\ keyout = d.

resets only the output key. If such a change alters the pitch of the output key, the new key signature will be
printed on the stave at that point; if it is used to change only the default note length or octave on input, no

* This bar number must already have been entered, i.e. we must be currently positioned at bar number 5 or beyond,

AUUGN 119 Vol 8 No 3-4

FOXLEY MUSIC

key signature is printed.

The notation

\ barno = 25.

moves the source to the start of bar 25; if the specified bar number is ahead of the current bar, any interven-
ing bars are filled with rests. If the bar number given is less than the current bar, it is assumed that a further
part is being added; see multi-part music below for details.

The notation

\ sticks = u.

causes the sticks of all following notes to be forced upwards until cancelled by either

\ sticks = d.

to send sticks downwards, or

\ sticks = x.

to leave sticks free to move in either direction.
The notation

\ bps = 4.

resets the current "bars-per-stave" value to the given integer. This can be used to lay out varying specified
numbers of bars on each stave. This can however be achieved by a further facility; if the ’1’ separator
representing a bar-line is replaced by a "!" symbol, the stave is ended at.that point.

Any of the above items can be combined as in a normal header, separated by semi-colons and ter-
minated by a full-stop, as in

\bps = 4; keyout = d.

With the exception of ’"x sticks =", the above notations starting with the escape.character ’~" are not
guaranteed except when used at the start of a bar.

Changes of width

If, say, music is being printed at 8 bars per stave, but there are 4 bars left over at the end, those bars
would normally be spread to fit the full width of the page. To reduce their width, use the inserted header

\ width = 400.

which will decrease the width of the page to 4 inches. To reset back to the original width, use

\ width = 0.

Source from a separate file
The ".MS" line can be replaced by

.MS < filename

causing music input to be taken from the named file. The file should start and end with ".MS" and ".ME"
lines respectively. This enables music source to be easily tested before insertion into the main text. The
line can be extended by header items, for example

.MS < filename keyout = b.

Any information given on the ".MS < file" line and following the filename is read after the first heading of
the the file which is being read. Thus if the named file contains a piece of music which is required to be
printed in several keys, or in several different layouts, this can usually be done using extra header items in

Vol 8 No 3-4 120 AUUGN

MUSIC FOXLEY

this way. The use of the escape character at the end of a line enables several header items to be given, as in

.MS < tile keyout = g’l’; rtitle = "arranged Foxley"; \
bps = 4.

which specifies a new output key, right-hand title and bars-per-stave setting.

Output key
The facility to specify the output key independently of the input key takes account of the fact that a

natural in one key may become a sharp in another. A piece may be printed in a key other than that in
which it is entered by using the "keyout = ..." facility in the heading of the piece. To print a particular
piece in two distinct keys, first in the key in which it was input, and then in a second key, store the input

.MS
rtitle = ’"x flAs input in key of A\ tP";
key = a; chords; autobeam; bars = 8.

e< d< I
c^ "A" a a b< c< I d "E7" b b e< d< I
c "A" a a 19< c< I d< "G" c=< b< a< g= e< d< I
c "A" a a b< c< I d "D" b b "E7" e< d< I
c "A" a< c< b "G" g=< b<la> "A" I
.ME

in a file, then use

.MS < file

to produce the first copy, and

.MS < file rtitle = ’"X flOutput in key of FX fP"; keyout = f.

for a second copy. This then appears as

Glengarry’s Marcia Input given in key of A major

I
E7

D E7

AUUGN 121 Vol 8 No 3-4

FOXLEY MUSIC

Glengarry’s March Output in key ofF

g
~ F C7

I~ F El,

El,

C7

An alternative technique for transposition is to use a simple

key = d;

header, and to follow it with a header entry such as

transpose = 2;

This will cause all output to be printed two sharps up from the output key currently set, following all output
key changes during the piece. Negative values, of course, imply less shzh’ps or more flats.

In transpositions, single sharps, naturals and flats are printed correctly relative to the new key. How-
ever, double sharps and flats (arising from, for example, an accidental sharp when transposed to a key in
which that note is already sharpened) are re-coded to a new note. It should be noted that the input notation
does not currently allow double sharps or flats to be specified in the input key. Both these and quarter-
tones will be added to the program.

The additional entry

chords;

in the header of the above example causes the system to assume that any text below the stave represents the
names of chords, and transposes them correctly; other text is left unchanged. In chord names, it is assumed
that the full note is given, for example "F+m" for a chord based on F-sharp, even in a key in which the note
of F is by default already sharpened. This appears to be the general convention.

The "chords;" entryalso allows the use of "+" to represent sharps and "-". to represent flats in the text
of chord names; the "+" and "-" characters will be correctly replaced by "#" and "~" symbols when printed.
To print a "+" symbol, escape it with the ’"X" character.

If the "chords" entry is not given, text is printed exactly as specified, so that a "+" sign in the text
appears on the output as a "+" sign; a sharp sign would be printed by the string "X (sh".

3. Multi-staff multi-part music

For multi-staff multi-part music, the music source must specify to which part each note belongs, and
the parts must then be linked to particular staves.

3.1. Specification of stave layout

Two additional lines must be included in the header, typically

staves = t b;
parts = 1 u 1 d 2x;

Vol 8 No 3-4 122 : AUUGN

MUSIC FOXLEY

These indicate

a) that there arc to bc two staves, the first in the treble clef, the second in the bass clef; and
b) that there will be three parts, the first to be printed on stave 1, sticks up, the second on stave 1, sticks

down, and the third on stave 2, sticks either way.* The default is

staves = t;
parts = 1 x;

To allow for more complicated situations, more information can appear optionally between the clef
names on the "staves =" line. If a "=" sign appears between two clef characters, as in

staves = t = t b = b;

the bar-lines of those two staves will be connected on the final output; in this example the first and second
staves will be connected, as will be the third and fourth. If the clef letter is followed by a positive or nega-
tive integer, the output on that stave will be in a key offset from the basic output key; a positive integer
represents a number of additional sharps or less flats, a negative integer represents a number of less sharps
or more flats. This facility is essential for scores involving transposing instruments. In addition this posi-
tive or negative key offset may be followed by a number of "’1"" or ",1," symbols to indicate octave displace-
ments for that stave relative to the current key. Finally, any string in double quotes following the clef letter
will appear at the left of that staff in the output; this is used typically to indicate instrumental parts. The
example

key = g;
staves = t "flute" t "violin" t "clarinet" +2 t "trombone" -2;

will give output on four staves, the first two in the key of G (but perhaps changing during thc piece), the
third always transposed two sharps up (initially in A), and the fourth always transposed two flats down (ini-
tially in F). Permitted clef letters arc "t" for the treble clef, "b" for the bass clef, "a" for the alto clef, and
"n" for the tenor clef.

3.2. Specifying the separate parts
The music source needs additional notation to identify which of the source belongs to each part.

Parts may bc given bar-by-bar, as in the two-part music

\ partno = 1. g g d d \ partno = 2. d,l, d,l, b b I
\ partno = 1. e c d> \ partno = 2. c c b> I
\ partno = 1. c c b b \ partno = 2. a a g g I
\ partno = 1. a a g> \ partno = 2. f f d,l,> I

When a new part is specified, as in ’N partno = 2.", the following source is assumed to restart at the begin-
ning of the current bar. Alternatively, the complete source may be specified part by part, as in

\partno = 1. ggdd lecd>lccbblaag> I
\ barno = 1; partno = 2. d$ d,l, b b I c c b> I a a g g I f f d,!,> I

where the ’~, barno = 1" indicates a return to (the beginning of) bar number one.

In multi-part scores, when earlier bars arc to be copied, the notation

\1,81

inserts the current part number from bars one to eight at the current point. The notation

\1,8p21

inserts bars one to eight of part 2 into the current pmt at the current point. To ignore a particular part which
you wish to leave in the file for other reasons, specify it as printing on stave number 0, as in

* The notation ’\ sticks = u" in the source over-rides the default stave settings.

AUUGN 123 Vol 8 No 3-4

FOXLEY MUSIC

staves = t b;
parts= 1 u 1 d0x2x;

to print the first two parts on stave 1, the fourth part on stave 2, and to ignore the third part.

Facilities to refer to parts by names rather than numbers will be added shortly, together with a tran-
sposing option to insert transposed or inverted duplicates of earlier bars.

3.3. Example
Typical source to print a multi-part piece, and then to print the first part on i~ own, and then to print

the last part on its own, would be done by storing the basic score in a file as follows:

.MS
title = "Complete score";
key = g;

bars = 16;

staves = t b; # treble and bass clefs
parts = 1 u 1 d 2 u 2 d. # two parts on each staff

source for all parts follows
\ partno = 1 # soprano part inserted here

\ partno = 2; barno = 1# alto part inserted here

\partno = 3; barno = 1# tenor part inserted here

\ partno = 4; barno = 1; key = gv# bass part defaults an octave down

.ME

To print the complete piece as specified in its header (two staves), use

.MS < file

To print the soprano part only, use

.MS < file title = "soprano part"; # all settings remain as specified \
staves = t; # one staff, treble clef\
parts = 1 x 0 x 0 x 0 x. # one part, sticks either up or down \

To print the bass part, use

.MS < file title = "bass part"; \
staves = b; # one staff, bass clef\
parts = 0 x 0 x 0 x 1 x. # one part, sticks either up or down

Alternatively the full score could be printed on its own, and then the soprano part could be printed
alone in a separate run by altering the "stave" and "parts" entries in the first heading to read

staves = t;
parts= 1 x0x0x0x;

i.e. to ignore parts 2, 3 and 4.

To print on four separate staves, but with the second stave always transposed to two more sharps
than the current output key, and the third to one less, the relevant header entries would be

Vol 8 No 3-4 124 AUUGN

MUSIC

staves = t t+2 b-1 b;
parts = 1 x2x 3 x4 x;

FOXLEY

4. Error reporting
A number of suspicious constructs in the source file produce warning or error messages. After an

error message, the program will terminate. After a warning message, processing proceeds as normal.
Error messages include the line number of the suspect line, and a pointer to the position at which the error
became detected. Possible errors include invalid characters at any point and beams which are opened but
not closed. A warning message is produced if the notes in a bar do not add up to the correct length for that
bar, but is suppressed if the bar starts or ends with a non-standard bar-line. Un-necessarily repeated
accidentals also produce a wax r, ing.

5. Miscellaneous additional features

Text omission
The header line

text = o;

causes text under the stave (in double quotes) to be suppressed, text over the stave printed. The line

text = u;

causes the text over the stave (in single quotes) to be suppressed, while

text = ou;

causes both to be printed, and

text;

causes both to be suppressed.

Cancelled Accidentals
The header entry

natural;

causes an appropriate accidental to be placed against a note which was set with an accidental in the preced-
ing bar. The entry

natural = 0;

cancels the effect.

Inter-stave gap
To increase thc vcrtical spacing between stavcs, usc the hcadcr cntry

isg = 25;

for an inter-stave gap of 0.25 inches. To increase in addition the gap between the combined staves in
multi-staff music, use

isg = 25 10;

where the first number is the spacing between groups of stave, and the second between staves in a group.

AUUGN 125 Vol 8 No 3-4

MUSIC

Setting defaults

The program first reads a file called "mus_default" if such a file exists. It must be a file containing
only a header, of the form

.MS
sig = kt;
octave = S’;
rtitle = "Copyright Fred’s Music Ltd";
height = 0o35i;
width = 700.
.ME

and sets all defaults for the program.

PIC commands
The output of the music preprocessor is fed into the pic preprocessor. Any text string starting _ p

is assumed to be a PIC command. The program moves to the appropriate position (above the stave if the
string is within single quotes, for example) and plants the given PIC commands. In addition, the program
reads a file named "pic_default" on start-up, to enable PIC-macros to be used.

6. Further enhancements under consideration
Possible further enhancements include the following~

Font characters
The font characters need to be enhanced, new characters added, and a variety of fonts for music sym-
bols made available. Different available digitised music fonts are being studied. The exact align-
ment of all symbols awaits the choice of a font. (A variety of fonts for text is already available.)

Varying the height of the stave

Refinement of the ability to vary the height of the stave; at the moment some slight misalignment
occurs, but the output is as follows:

Knick-Knack 2 height 0.24 inches, 8 barslstave

Knick-Knack 2 height 0.45 inches, 4 bars/stave

Vol 8 No 3-4 126 AUUGN

MUSIC I~OXLEY

Knick-Knack 2 default height 0.32 inches, 4 bars/stayeA

Text can, of course, bc set to any size using troff conventions; the above examples show how the
default text size is set in proportion to the stave height.

7. Acknowledgments
Thanks arc due to many people for their comments at various stages of the development. The author

is indebted in particular to Graeme Lunt who looks after the laser printer, and to Dave Brailsford who
obtained it for the department. Other colleagues in my department helped at many points, among them
Andy Walker, Jim Duckworth and William Shu. Members of the music department are always helpful,
and compensate for my lack of musical expertise; they include Ian Bent, John Morehen and Peter Neslon.
The testing of the system has been assisted by Toby Bennett of the Genetics Department, who also devised
a system for proof-reading my scores by by writing a program to play them directly on a BBC micro-
computer.

Eric Foxley
April 24, 1987

References

1. John S Gourlay, "A Language for Music Printing," CACM, vol. 29, no. 5, p. 37, May 1986.
2. Walter B Hewlett and Eleanor Selfridge-Field, Directory of Computer Assisted Research in Musicol-

ogy, June 1986. Center for Computer Assisted Research in the Humanities, Menlo Park
3. Brian W Kernighan and Lorinda L Cherry, "A System for Typesetting Mathematics," Comm A C

M, vol. 18, no. 3, pp. 151-157, 1975.

AUUGN 127 Vol 8 No 3-4

FOXLEY MUSIC

.
Brian W Kernighan, A TROFF Tutorial, 1978. Bell Laboratories

Brian W Kernighan, "PIC -- A Language for Typesetting Graphics," Software m Practice and
Experience, vol. 12, no. 1, pp. 1-21, 1982.
Brian W Kernighan, PIC ~ A Graphics Language for Typesetting ¯ User Manual, March 1982.
Bell Laboratories
M E Lesk, "Tbl ~ A Program to Format Tables," UNIX Programmer’s Manual, vol. 2, January
1979. Section 10
Joseph F Osanna, "NROFF/TROFF User’s Manual," UNIX Programmer’s Manual 2, January 1979.
Bell Laboratories

9. Percy A Scholes, The Concise Oxford Dictionary of Music (2rid Ed), 1964. Oxford University Press
10. Kurt Stone, Music Notation in the Twentieth Century, 1980. W W Norton & Co

Vol 8 No 3-4 128 AUUGN

TERRY

An Overview of the Native Language System

Michael Y. C. Terry
mjict@ inset.co.uk

...fmcvaxlukc! insetlmjct

NLS

The Instruction Set Ltd
City House, City Road

London ECIV 9QH

Michael Terry is a technical consultant at The
Instruction Set, involved mainly with relational
databases.

He originally studied French and Swedish (with a dash
of Norwegian and Finnish) at university, before crossing
the great divide and plunging headlong into computing
("because there was nothing left to do").

Having an intimkte knowledge of European collating
sequences, hospitality, and drinking habits, he is
uniquely qualified to be working with NLS. Earlier this
year he spent 6 weeks at Hewl~tt-Packard’s Cupertino
office working with them on their NLS project and
learning how to operate the jacuzzi.

"If English was good enough for Jesus, it’s good enough for me."

1. A New UNIX Internationalisation Standard

In January this year, the X/OPEN groupt published the second edition of its X/OPEN
Portability Guide (XPG)[11. Section 3 of the guide included a software
internationalisation interface standard specification -- the Native Language System
(NLS). Although many proprietary solutions to the internationalisation problem have
been attempted over the years, this is the first time that a commercial standard has
been specified for internationalisation on UNIX® systems.

The X/OPEN NLS standard specification has arrived as a response to a pressure that
has been growing slowly but relentlessly from non-English-speaking UNIX users as
use of the system has filtered down from the ivory towers of academe to the air-
conditioned offices of modern commerce. It is not surprising that this
internationalisation specification has emerged from the X/OPEN group rather than
from AT&T m after all, despite the recent addition of American compardes to the
X/OPEN roll call, X/OPEN started out as a purely European grouping, and is still

AT&T, Bull, DEC, Ericsson, Hewl¢ll-Packard, ICL, Nixdorf, Olive’tti, Phillips, Siemens, Unisys

AUUGN 129 Vol 8 No 3-4

NLS TERRY

predominantly European. What is perhaps surprising is that the NLS specification is
based on an internationalisation architecture developed in the USA by Hewlett-
Packard.

Being Europeans, the members of the EUUG will be well aware of the problems that
result from the American nature of UNIX m the ASCII codeset does not support
many of the characters in the various European alphabets; the system uses US
cultural practices (the US assumptions, for example, that the radix character is a dot
and that thousands are separated by commas, are reversed in many European
countries); moreover, the terse UNIX error messages are all in (sometimes bizarre)
English.

The aim of NLS, then, is to provide the specification of an internationalisation
framework u a set of utilites and library functions -- that enables applications
software to be adapted appropriately for use in any country or local environment.

2. Major Design GoMs of NLS
NLS is designed to provide the following features:

® Support of multiple extended (g-bit) character sets on the same machine,
simultaneously.

® Preservation of 8-bit data integrity.

® Multilingual program messages.

® Proper representation of local conventions.

® No need for multiple versions of software for different languages.

® Ability to add new languages without the need to recompile existing software.

In addition, UNIX systems with NLS must still retain the original 7-bit ASCII
functionality.

3. Implementing NLS

Hewlett-Packard have a working version of NLS on their HP-UX operating system.
The source code has been made available to the other members of X/OPEN in order
to expedite its implementation on currently available versions of UNIX. Whether
they are using the H-P code or not, the other members of X/OPEN are in the process

’of implementing NLS on their versions of UNIX.

Thus AT&T, having recently joined the X/OPEN group, are committed to the eventual
release of NLS on a future version of UNIX. However, it is unknown if AT&T will
ever release NLS on any version of System V.2.

\ .
Currently, implementing NLS on aUNIX system entails the creation of new utilities
and C library functions, as wellas modifications to pre-existing UNIX code.No
kernel level changes are required.

The next six sections outline the work involved in implementing NLS on UNIX.

3.1 Extended Character Set Support

Because ASCII is a 7-bit codeset, it is capable of representing a maximum of 128
characters. 8-bit codesets can represent up to 256 characters.

The eventual intention is that NLS will support multiple 8-bit character sets. The
XPG states:

Vol 8 No 3-4 130 AUUGN

TERRY NLS

This first issue of the X/OPEN NLS specification defines the major transmission
codeset for Western European use as the standard IS8859/1, and also
recommends its use as the corresponding internal codeset. Other codesets will be
identified in later issues.

The IS8859/1 codeset ¯ is capable of supporting .most major Western European
languages. In addition, it is compatible with ASCII functionality,since it
incorporates the ASCII codeset as the first 128 characters of the codeset.

3.2 Cleaning Up 8tt~ Bit Usage

Everything sounds hunky dory until we take into account the problem that the
UNIX utilities have a bad 8th bit habit -- many of them use the 8th bit for their
own arcane internal purposes. For example, the shell sets the 8th bit of characters
read in from the command line if they were quoted. Consequently, 8-bit data is
corrupted if passed through any such offending commands.

Another problem is that sign-extension can occur with 8-bit characters when they
are manipulated as integers.

The upshot of this is that the UNIX utilities must be gone through with a fine
tooth-comb in order to detect and correct any possible areas of corruption.This is
a tedious, long-winded and, in the case of some commands, non-trivial task.

3.3 Character and String Handling

Many languages share the same codeset, but there are differences in the way each
language handles the component characters of its alphabet.

Lookup tables must be supplied indicating character class membership, up/downshift
relationships, and collation (sorting) orders for each language. These tables must
understand 1-2 character mappings such as Spanish ch and II.

The affected library routines include the ctype(3C), conv(3C) and atr±ng(3C)
routines, which must be amended to make use of these tables.

3.4 Message Catalogues

NLS uses a message catalogue mechanism to provide program messages and prompts
in multiple languages. A utility, gencat(1), is used to generate message catalogues
from a source file containing program message strings. The library functions
catopen(3C) and catcloae(3C) are provided to open and close appropriate message
catalogues. The routines catgeva(3C) and catgetma~(3C) are provided for access to
messages from the currently open catalogue.

A message number is associated with each message. This number is used to index
into the catalogue to retrieve the message.

An environment variable, NLSPATH, can be used to specify a catalogue search path.
The advantage of this is that new languages can be added to a system without the
need to recompile software. For example:

NLSPATH=/usr/lib/nls/ML/MN.cat:/usr/me/cats/ML/%N.cat

The special notation gL maps to the name of whichever language is currently being
used, while ~N maps to the name of the program being run. Thus if the current

AUUGN 131 Vol 8 No 3-4

NLS

language is french, and the command is rm, the above maps to:

TERRY

NLSPATH=/usr/lib/nls/french/rmocat:/usr/me/cats/french/rm.cat

If the catalogue cannot be accessed, a default string (specified in the original source
code) is printed out. However, if the catalogue is opened succesfully, but the
numbered message cannot be found, then a null string, rather than the default, is
returned. When such errors occur, this results in strangely silent programs.I think
X/OPEN got that one wrong.

3.5 Local Customs Database

A local customs database must be supplied for each language. This contains the
names of months and days, currency formats, yes/no strings etc..A routine,
nl_langinfo(3C), is supplied for accessing elements from this database.

3.6 Language Announcement Mechanism

Means must be provided to enable users and programs to determine the language to
be used. An environment variable, LANG, enables the user to set and reset the
language in which prompts and messages from internationalised programs will appear.
For example, the following shell commands will force any program that uses the
catopen(3C) call to access the Italian message cata.logues from the directory
/usr/llb/nl s/ita I ian :

NLSPATH=/usr/IIb/nls/ML/MN°cat
LANG11talian
export NLSPATH LANG

The nl_init(3C) routine is provided to set up the working environment for the
current language. This routine reads in the appropriate character tables and local
customs data:

nl_init("italian"

Nl_initO can be called more than once by a single program, thus for example
permitting the same process to work in multiple languages. An example of a very
simple program that prompts for a language name and then runs the date(l)
command in that language is given in Figure 1.

Note that the ~L notation can be used to force the catopen(3C) routine to use the
value of the environment variable LANG to determine the catalogue to be accessed.
The nl_in±t(3C)-routine, on the other hand, uses the value of its single argument
to decide which character tables and local customs database will be used. Thus it is
possible, by setting LANG to one language and calling nl_init(3C) with a different
language as its argument, to have a program putting out prompts in one language
(say French) while processing data using the tables for another language (say
Norwegian).

Vol 8 No 3-4 132 AUUGN

TERRY NLS

#include ~nl_types.h~
#define NL_SETN I
char ~getenv(), ~catgets()i

main()
{

nl_catd nlmsg_fdl
char newlang[15], envstr[20];

nlmsg_fd m catopen("menu",

for(~ ~)

printf(catgets(nlmsg_fd,NL_SETN,1, "Make selection: ")
catclose(nlmsg_fd);
scanf("~s", newlang)~
nl_init(newlang);
sprintf(envstr, "LANG=Ms", newlang)~
putenv(envstr)~
nlmsg_fd = catopen("menu", 0
system("date"

Example output:

Select Language: french
fun 04 mai 1987 I0h32 42
Choisissez la langue: swedish
M~n 04 MaJ 1987 10.32.43
V~lja spr~ket: english
Mon. 04 May, 1987 10:32:44 AM

Figur~ 1. Program to Run the date(l) Command in Multiple Languages

4. Handling Mixed Codesets m Software Implications

The nature of the UNIX operating system poses one insurmountable problem when it
comes to handling data from a mixture of character sets. UNIX files are merely
streams of bytes, and it is impossible to tell what character set the data in a file is
composed of.

Although kludges such as file-naming conventions, or storing information on file
contents externally to files in some kind of catalogue, etc., have limited usefulness.
there is absolutely no way of determining the contents of pipes. The other problem
is that a file might contain data from a mixture of character sets.

Consider also a multilingual system where users of different nationalities and
different character sets have accounts. The contents of the /etc/passwd file are
going to be semi-incomprehensible to everybody. This kind of problem extends to
many other areas. In the end, it will probably be necessary to retain ASCII
functionality for system administration, or else each system will have to have a
basic "’nationality" that determines the character set used in system administration.

For the moment, these problems are immaterial, since only a single codeset has been
specified thus far.

AUUGN 133 Vol 8 No 3-4

NLS TERRY

5. Handling Mixed Codesets ~ Hardware Implications

The X/OPEN NLS specification deliberately makes no attempt to address the device-
handling problems that may result from the introduction of new, non-ASCII codesets.

No one wants to have to buy a completely new set of terminal and printer
equipment in order to be able to use internationalised software. However, this is
exactly what the introduction of NLS’ implies at those sites where the hardware does
not support 8-bit character sets, or where 8-bit codesets are supported but not
IS8859/1.

One can expect that it will be a long time (if ever) before the majority of
terminals offer IS8859/1 codeset support. In the interim, ’users will want to make
do with what equipment they have. As long as terminals and printers support
alternate character sets some means can be found to force (maybe virtual) 8-bit
character support.

If 7- or 8-bit devices are to be used, IS8859/1 can be used for internal purposes,
and terminal and printer device drivers amended to use lookup tables that enable
them to transmit translated character codes to output devices, along with appropriate
escape sequences for swapping between codesets, and to decode and translate
incoming escape sequences and characters from input devices.This problem has been
addressed in the past[21 and the area is well understood.

Limitations o/ the NLS Specification
The specification for NLS was outlined for the first time in Issue 2 of the XPG in
January 1987. Since the standard is very new, it is necessarily somewhat limited in
scope. However, future editions of . the XPG can be expected to extend the
~ification into new areas.

Only 22 UNIX commands are specified as having to guarantee processing 8-bit data
correctly. It can be expected that this list will be extended in future to cover all
the standard UNIX Section 1 commands.

Only one extended 8-bit character set is specified. This set does not provide support
for languages that have mainly non-Roman alphabets -- Greek, for example, or
Hebrew. Further codesets will however be named at a later date.

The introduction of dictionary collation for sorting, etc., rather then machine
collation means that the old regular expression syntax for character classes is no
longer sufficient. A special syntax will need to be introduced, that uses generic
ctype (3C) class identifiers. For example:

[A-Za-z0-9]

will need to be replaced by something like:

The exact form of the syntax for character classes is in the process of being decided
by a working committee.

The language announcement mechanism defined in X/OPEN NLS is not very flexible.
It is possible to set a new language/culture/codeset combination with
but not possible to set only a single element of the combination. This means that
"mix-and-match" environments are not possible. If a program wants to switch a
single element of the local environment, the entire new environment must be loaded
into memory. The ANSI XJ311 draft standard for the C programming language

Vol 8 No 3-4 134 AUUGN

TERRY NLS

proposes a more sensible solution to this issue (see the next section for more details
on the differences between NLS and XJ311).

Problems of coping with mixed character sets and with hardware that does not
support IS8859/1 are covered in Sections 4 and 5.

7. NLS and the XJ311 Draft Standard
The ANSI XJ311 Draft Standard for the C Programming Language specifies a number
of "international" library routines.

The NLS and the XJ311 internationalisation specifications share the same general
architecture. However, they do differ in some minor ways:

-- NLS’s n:l._in±~:(3C) function is replaced in XJ311 by the more flexible
8e~zloea:le(3C), which allows programs to set and reset individual elements of
the local customs data.

--XJ311 separates string collation away from string comparison -- strcmp(3C) and
at~:nemp(3C) remain unchanged, while an extra function, 8treo11(3C), must be
used to collate the strings before comparing them. This is a sensible separation
of functionality.

slightly different routines are used for handling date and time.

NLS includes some enhanced I/O routines -- n:~_pr±n~:f(3C), etc. -- that allow
parameters to be passed in variable orders to print routines, to support
variations in word order between languages. These are extremely useful
routines, surprisingly absent from XJ311.

Overall, there are no substantial or irreconcilable differences between the two
standard specifications. It is to be expected that they will eventually converge --
hopefully taking up the best features from both.

8. 16-Bit Character Sets

At some stage in the future it is inevitable that NLS will have to take the question
of the extremely large Far Eastern alphabets into consideration. Since they contain
so many characters, these languages can only be represented with 16-bit (or larger)
character sets.

16-bit implementations of UNIX already exist, especially in Japan, where a number
of companies (including AT&T Pacific) have their own proprietary Kanji solutions.
The problem here is suggested by the very word proprietary. Many different
methods of implementing 16-bit character sets are used and it is difficult at present
to predict which, if any, will eventually turn out to be a future standard.
Meanwhile, it is a fact of life that there is little or no data compatibility between
different vendors’ systems, and that software must be rewritten, maybe substantially,
to work on different vendors’ machines.

Moreover, if UNIX needs a lot of work to make it 8-bit compatible, it needs an
order of magnitude more work to make it support 16-bit character sets.

There are certain other problems that may or may not crop up depending on the
way in which 16-bit character sets are implemented. These include, amongs, t others:

-- in designing a 16-bit character set, there is a trade-off between efficiency of data
storage and efficiency of run-time processing (i.e. either one or the other will
deteriorate, in certain circumstances badly);

AUUGN 135 Vol 8 No 3-4

NLS TERRY

byte redefinition may occur. For example, a "’/’" in the second byte of a
character in a 16-bit filename might be taken as a directory delimiter;

most implementations, allow for a mixture of 8- and 16-bit characters, which
may cause difficulties in character recognition (and thus especially in string
handling), and

due to the large size of the alphabets, dictionary collation may entail an
excessive amount of processing (in fact, there are at least three possible different
collation orders for Kanji).

The viability of UNIX in the Far East cannot really be assured until standard
codesets are agreed for each country, such that reliable, portable software can be
produced, and machines of all persuasions can talk to each other easily.

9. The Future

It is the intention of the X/OPEN group to continue to develop and extend the NLS
specification. It is likely that NLS and the ANSI XJ311 standards will converge at
some future point.

It k~ to be expected that eventually all the UNIX commands will have to be 8-bit
clean. Other areas will be cleaned up to support 8-bit data, most notably and
importantly regular expressions and the ou~:aen library.

We can also expect to see an internationally accepted set of translations of the UNIX
utility error messages, hopefully administered by an international bedy such as the
X/OPEN group. Currently, if any translations exist at all, they are proprietary
translations, and so the same error message will appear differently on different
systems. However terse and incomprehensible the original UNIX error messages may
be, they do have the advantage of being (with some minor exceptions) identical on
all UNIX systems D this is a great help to debugging shell scripts, and generally to
feeling at home in the UNIX environment. It is obviously vitally important that
standards are maintained in this area.

At some stage, NLS will be extended to include other 8-bit codesets, to support such
languages as Greek, Turkish, Arabic and Hebrew. The latter two pose new
problems, being right-to-left alphabets (e.g. how are left-to-right and right-to-left
languages embedded within each other?). Eventually, 16-bit codesets will be
introduced.

My personal view is that one day in the future, when storage and processing are
really cheap, we will see the introduction of a single, literally global, 32-bit
character set. This character set would be so large that it could contain every
single character of every single alphabet in the world, with some left over for the
extra-terrestrials when they arrive. Such a codeset would be capable of referencing
other things beyond mere characters m graphical icons, colours, etc.. Gone would be
the problems of having somehow to work out what character set someone is trying
to communicate with.

"And .ASCII shall lie down with Cyrillic..."

10. Finagy...

Internationalisation has become a real market requirement now that UNIX is starting
to become widely accepted and used outside the academic world. There has always
been fierce debate as to whether UNIX is a user-unfriendly operating system. If
that is true in any way, its solidly American bias must be the most .user-unfriendly
aspect of all. Despite its limitations, NLS does at least offer a standard solution to

Vol 8 No 3-4 136 AUUGN

TERRY NLS

the problems of internationalising software.

All the member companies of X/OPEN are committed to supporting NLS on their
UNIX systems. According to Mike Lambert of ICL, speaking on behalf of the
X/OPEN group at a recent UNIX seminar in London, the .members of X/OPEN are
committed to conformance with Issue 2 of the XPG by the last quarter of 1987.

Portability of software that utilises the NLS interface will thus be guaranteed across
the entire range of X/OPEN companies’ UNIX systems. In addition, it can be
expected that other computer manufacturers will follow the X/OPEN lead and
provide NLS on their systems.

X/OPEN also guarantees a future upgrade path with backwards compatibility. This,
in conjunction withthe portability of NLS applications, ensures protection of
software investment.

Although the present NLS specification is not perfect and is limited in many ways,
it represents at least a pragmatic solution to the problem of internationally
acceptable UNIX.

Ref erenceg
[1] XVS Supplementary Definitions X/OPEN Portability Guide, Volume 3, January

1987, Elsevier Science Publishers B.V.

[2] Conor Sexton European Languages in UNIX Proceedings, EUUG Autumn 1985
Conference, pp. 195-210.

AUUGN 137 Vol 8 No 3-4

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

Grouse: Messages and Prompts in Programs

Ahzin D. D. Williams
... lmcvax luk cl inset l p hcompt add w

Parliament Hill Computers

Alain Williams is an independent consultant specialising
in UNIX and C. His interests are: finding what
people’s problems are, and building good tools to solve
them once and for all; doing the job properly as it
takes less time: drinking cider: and jumping out of
small boats into a cold sea.
He is the editor of the EUUG newsletter.

Editor’s Note:
This is a reprint of a paper which was given at the UKUUG meeting, 15 December
1986.

Grouse ca~ be used in programs to replace printf() statements, the
text for the messages coming from files. Print f() style argument
substitution is available, arguments can appear in any order.

This paper discusses:

~ What grouse is like to use.

~ Implementation.

m The advantages of choosing compiled text files.

m The way in which grouse is used by higher level functions to
permit automatic interpretation of errno in error messages.

B A greatly simplified prompting procedure allowing help to be
taken with little action by the applications programmer.

m Language independent option prompting trivially supplied.

m The way this is tied into a help package.

~ How grouse can easily crash a program and why this is, in
practice, not a problem.

m Portability of code and message files.

Version 1.4
Updated 12/9/86

Vol 8 No 3-4 138 AUUGN

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

I like work: it fascinates me. I can sit and look at it for hours.
Jerome K. Jerome

WILLIAMS

Grouse: (noun) grumble (slang) (Oxford English Dictionary).

~1. Introduction
What follows is basically an exercise in laziness, one in which I was prepared to
invest a large amount of effort. There are two major topics in this paper: 9=ouse a
text from files subroutine, and a set of subroutines built up on top of 9=ouse.

1ol Ancient Hi~tory

The initial impetus came from a set of routines which I first wrote in 1979. These
were to help me debug BCPL programs. I put assert type traps in them which
printed a rude message, and quit. Often needing different amounts of information I
soon got bored with recompiling, something which took a long time -- even with an
illegally raised priority.

Editing text files was fast. So I put all the messages into a file (along with flags
requesting things like dumps, and stack traces) and wrote a routine to find and
print numbered messages. Because .this was always used in a situation where
programs complained about errors I called the routine ~rouse.

The next ingredient is numbering arguments. Thus referenced I could substitute and
format them using wr±tef1. This is easy to do in BCPL, which implements a word
based machine architecture: I just indexed on the address 6f the first argument.

I then became a UNIX® acolyte and implemented grouse on a PDPll. The way the
C compiler worked allowed the old. indexing trick, but different objects had different
lengths. This caused problems. I wrote a compiler to fudge the issue, it massaged the
numbers. A compiled file also offered greater efficiency of message location and
meant that the run time code could do away with much format checking -- code
size ever a problem on a 64K machine.

1.2 The Present Day

As a simple message system grouse is nothing unique. Its great usefulness has come
from a set of subroutines which all use gzouse as a base. The most interesting are
those concerned with prompts in interactive programs. The programmer is presented
with a simple, clean, standard interface; he need not care if the actual form of the
prompt is changed to suit the flavour of the month.

Grouse and its family are in the throes of a third birth. This opportunity has
allowed me to try and avoid past problems (and introduce new bugs). It is this
version that is described here.

2. Overview

This section should give you an impression of what using grouse is like, and the
effort involved in using it.

1. The BCPL equivalcni of printf.

AUUGN 139 Vol 8 No 3-4

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

/* Report the open failure ./
egrouse(stderr, GR_OPEN, (char.)errno, progname, file_name);

/* What does he want to do ? ./

switch(gaskq(GR_PROMPT, (char.)O, name, old, new)) {
case I: /* He agrees with me ! ./

break

Notes:

Figure 3. Grouse

-- There is less code to type.

--The message text is not obvious.

-- The reply has been checked, there is no need for an error condition.

--Both prompt and reply are language independent.

--Help comes free, the programmer does not need to do anything to get it.

--The second argument is always errno, even if it is not wanted. It must be cast
as shown.

Unfortunately the immediacy of having text in the code is lost You have to look
in a message file to inspect or create that text. The messages are referenced
symbolically by #defines -- which are probably contained in a third file. This
requires a disciplined approach and a little documentation.

Grouse can also be used to obtain constant text which may be expected to change
from one situation to another; e.g. the names of days of the week, customer name,
file/directory names.

3. Message Files and Message access
A message file exists in two forms: source and compiled.

There are two compiled files that 9rouse may use at any one time. The idea is that
one contains text that may be common between a group of related programs.
Grouse decides from which file to obtain the message on the basis of the message
number: numbers in the range 0 to 19999 are read from the first file, numbers
20000 and up from the second.

The way that I have used this feature is to put in the first file text used in many
places, e.g.: strings representing the values of errno, prompts for help routines
(being library routines common to a suite of programs), a language collating
sequence.

There may be large gaps in the message numbering sequence. This is very
important in providing a stable environment to existing code, yet allowing new
messages to be added to a common part. In previous versions a break in the
sequence meant a corresponding waste of disk space.

Vol 8 No 3-4 140 AUUGN

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

2.1 The Bad Old Days

This is the era in which most programmers still live. Two examples follow: they
are fragments of code typical of what I have seen many people generate -- though
they usually don’t have as many comments.

fprlntf(stderr, "~s: Cannot open "Ns" as Ns\n", progname, file_name,
sys_errlist[errno])~

Figure 1. An error reported

name I "master"~
for(;;) {

position(22, 0);
line_clear();
position(23, 0);
line_clear();
position(22, 0);
printf("Oh Ns: shall I rename Ns as

name, old, new);
switch(getchar()) {
case ~y’: /~ He agrees with me
case

default:
break~

/~ Idiot can’t read the options ~/
position(21, 0);
line_clear();
posltion(21, 0);
printf("Please reply with one of the options below");
name ~ "idiot";
continue;

Figure 2, A Question Asked

Notes on the examples:

-- The message text is embedded in the program.
m In Example 2, the programmer needs to cope with the error case himself. This

results in extra, unwanted, code. A for loop is needed with resultant extra
indenting, control structures, and so complexity.

--An explicit test needs to be made for both upper and lower case.

-- There needs to be screen positioning code, etc.

2.2 Modern Times

With grouse the two examples may be coded like this:

AUUGN 141 Vol 8 No 3-4

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

.3.1 How to Find a Compiled Message File

This is a big key to (human) language independence. The name of the file opened is
built up of: an application supplied grouse file name: a constant part; a suffix, and
two environment variables. These variables are LANGUAGV. and I~SG_LEVEL. Standard
uses are: the first names the user’s mother tongue, and the second is a measure of
his incompetence.

In this way an individual’s environment can be set so that he uses the machine
(reading, and replying) in his native language. Similarly it is trivial to arrange for
a beginner to see prompts that would be unacceptably long to an expert. So two
people running the same application, on the same computer, at the same time could
see something very different.

3.2 The Source Message File

This is a plain text file created with a suitable editor. The messages are delimited on
a line basis. They contain the text that is to be retrieved by grouse; this may be
several lines long. The backslash \ Character is used in a similar, but extended, way
to the C language.

As with printg, arguments are introduced with a g. However, the character
immediately following indicates the position of the argument as passed to the top
level function. If any arguments are unused, what they are must be indicated in a
special way.

There are several different message formats. This corresponds to the different higher
level function that will end up using it. The type will be checked by the message
compiler.

What does it look like?

~Is: Cannot open "%2s" as %0s

Figure 4. Grouse Text for the First Example

Oh master: shall I rename ~Is as ~2s ?
Reply (Y)es (N)o (H)elp : ^ lylnlh?rename_help

Figure 5. Grouse Text for the Second Example

Notes:

m The arguments are indexed by the character after the ~.

--The arguments can occur in any order.

m You don’t have to use the first argument.

--Message length, in lines, is not important to the application programmer.

-- In choice prompts the reply is encoded in text after the prompt.
B Help is obtainable by entering H. The file containing the help text is also

encoded as part of the reply text.

3J The Compiled Message File
This is what the grouse subroutines see. The main advantages of a compiled
message file remain as they were originally:

--The ability to work on a non-word-based architecture. The message numbers are
changed to make the old, simple indexing scheme work. With some awkward

Vol 8 No 3-4 142 AUUGN

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

machines it is necessary to also include extra information on length and
positioning.

m The message file contains information that allows g~:ouae to calculate the file
offset of the desired message. This is much more efficient than sequentially
searching for it.

--The compiler has syntax-checked the messages, and made them easier to parse for
use.

The compiler offers facilities such as argument type cross check (with the
corresponding message in another file) and symbolic referencing of one message to
another.

There is also a certain amount of control information, including version numbers and
the compilation date.

Higher Level Functions

This is where the fun starts.

4.1 Egrouse ~ Errno Interpretation
You have already seen this in the new coding method for the first example.
~grouae is functionally the same as grouse except that it takes its second argument
to be a value of errno. It calls a function to return a string into a secondary
buffer, which provides an interpretation of the number. It then overwrites that
argument with the address of the secondary buffer and calls

It is because of this overwriting that, as you will have noticed, er~:no must be cast
to ohare. Many of the high level functions use egrouse and so need a cast value
of errno passed to them. This is initially confusing, but soon becomes natural.

If the situation has no use for a value of errno one must still be provided. In this
case zero may be passed. The empty string will then be assumed, i.e. no file access
will occur.

4.1.1 Errno Extended
Not being restricted to the list of messages that I found in ay~_err:~±a¢: came as a
boon. I was able to easily add my own definitions of values for errno.

Up until now if something went wrong in a library routine it had to report the
problem itself. This might be difficult if it was something of general use m what
method should it use, should it complain at all?

All that was needed was for the routine to set something meaningful into errno
and return failure, this being transmitted up a calling sequence. At some convenient
level, and if appropriate, the problem could be reported with egrouse. It made no
real difference whether the error status was one of my own invention, or one from
the vanilla list.

4.2 Gaskq ~ Prompts

A common event in an interactive program is prompting of the user for information.
This can occur in several different ways, the most common of which is a prompt
for a choice of action. This is what was happening in the second example. Gaakq
e~rouaes the message into a buffer and calls aakq. The latter puts the message on
the terminal and looks at the reply.

A list of acceptable replies is encoded at the end of the message. If a match is
found the default action is to return the position in the list of the matching reply.

AUUGN 143 Vol 8 No 3-4

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

Thus, in the example, y returns, one and n returns two. This action may be changed
by following the reply by an action string. The one illustrated directs askq to call
the help function, and gives the name of the help file to use.

Other actions include: reprompt with another prompt and return a number other
than that deduced from the positional rule. It is possible to specify a default.

Related functions prompt for a string or simply display a message.

4.3 Help

One of the askq built-in actions is the provision of help. This is obtained through a
standard interface from gaskq. The default help routine allows the user to peruse
or dip into the help text as he wishes, moving back and forth in the text, following
links into other files for explanation of common parts.

The routines prompt the user to direct his perusal using gaskq. Help on how to
use help is trivially provided.

A "mini help", i.e. a slightly longer, more explicit, prompt can be obtained by
switching to another message number to use as prompt. This will be displayed, again
using the same arguments as the original.

The calling program knows nothing of all of this as it is done by askq directed
from the message file.

4.4 List Building

There are occasionally lists of words that a program may need to get going, for
instance the names of the days of the week, or column headings. These can be
obtained from grouse.

The action in each case is similar, i.e. read the text, allocate storage, and split it up
into different elements of a string array. A routine is available to do this, and it
checks more than one might normally do on a once off basis: are the number of
elements between certain limits, is any element too long?

5. Programming Considerations
As you have seen grouse may be used in a similar way to fprintf(). To be
useful in the higher level functions, the text needs to be put into a character buffer
-- as with sprintf(). The trick employed is that if grouse sees that the message
number is negative it considers its first argument to be a char. rather than a
FXLE*.

The programmer has to specify the names of the two grouse files. This is managed
by setting a name into a global structure. There is no need to explicitly open the
files.

The defined arguments to the open routine are a name and a suffix. This routine is
thus available for finding other sorts of file in a similar way, for example, help
files. If screen layout files are used, this area of the MMI can also vary in the
same way as the messages and prompts.

5.1 Ranargs

This is a facility which enables the arguments to a function to be accessed in a
random order. It is designed to have a feel similar to vararg~.

Define an argument list as being the arguments that a function has, possibly
omitting a specified number at the start. There are two things that ranargs lets
you do with a list of arguments: access a specific argument, and pass the list to

Vol 8 No 3-4 144 AUUGN

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

another function. The latter ability is vital in constructing the higher level functions.

This is all simple enough on machines where the arguments are placed, one after
another, on the stack, and there is no greater alignment needed than that of an
integer. If these conditions are not met, the ~:ana~:~8 macros become complicated,
possibly invoking functions. To get some idea of the problems involved consider
why, on a machine where doubles indeed have a greater alignment than an integer,
the compiler may have to leave a gap on the stack before it.

The lack of exact control over what the compiler does is one of the consequences of
using a high level language. The problems I have had are similar to those who try
to do single precision floating point in C, and I know of several device drivers that
cannot be optimised.

5.2 Errors

As with print£() cj~:ouae returns -1 if it can’t do what it was asked to.
Frequently programmers don’t bother to test return values because "’It always
works", and because it is a chore. The problem becomes even more difficult if an
error is detected by a higher level function; what should it do7

Firstly, the external result is always sensible. Even if the function’s return value is
ignored there should be no bad effects, e.g. q~:ouse never leaves an unterminated
string. Next, on finding trouble all the routines in the package call an error
function, suitably indicating the problem. The library default of this function does
nothing, but it can easily be replaced by the application programmer.

5.3 Robustness

The code in y~:ou~e, and the higher level functions, has proved solid. The problems
that are likely to arise are in their use; probably not in the coding itself but
through the message file -- particularly if this gets changed.The three areas with
greatest potential for ~ro~ae crashing a program are:

1. Inappropriate use of an argument.
For example trying to output an integer as a string. In practice this is rare as
the programmer will normally create the message file when he writes the code.
If the messages are changed by someone else, the compiler cross-check action
can be used to pick up any mistakes.

2. Overwriting the end of a string buffer.
If text is going to a character buffer grouse does not check that it does not
overflow the buffer. In four years of having a primary buffer of 550 bytes,
and a secondary one of 150, I have not experienced any problem because of
this. The choice of buffer size is important and needs to be carefully
considered; those changing the message file should be aware of the problem,

3. A message not being found.
This could be because ’ the message file is not accessible, or a message is missing.
This occasionally hapl~nS (often in ~yaskq); the usual result is that at that
point the program always takes a certain branch m occasionally leading to an
infinite loop. This situation is now easier to trap with the introduction of the
~:o~ne error function.

If the file exists, the usual cause is running a new program with an old file.
The version number feature is designed to avoid this.

AUUGN 145 Vol 8 No 3-4

WILLIAMS GROUSE: MESSAGF~5 AND PROMPTS IN PROGRAMS

5.4 Malleability

Much recent effort has been made in the area of ease of programmer customisation:
how he can best make it do what., he wants. This has been done without making
simple or standard use any more difficult. The programmer has much control, but
only if he wants it.

Some standard routines can easily be replaced by the programmer. One version of
the grouse open function that I have searches down a path taken from the
environment in a similar way to the shell when finding commands.

Askq (and hence gaskq) iS independent of the method of communication with the
terminal. Thus by replacing the low level display routine it is easy to change the
user’s view of the program from dumb terminal, to a cursor addressed prompt line
scheme, to a mouse-driven pop-down menu approach; all involving no change to the
main body 0f the program. It may be expected that the message file may have to
change to match the different styles, though I am working on a way of
transparently incorporating alternatives into the message file.

The ~:ous~ package is designed to cope with 16 bit characters. There is no hard-
wired dependence on special characters or character size; these may exist in utility
functions called by the package. There is still much work to do in this area:
have still to find a 16 bit terminal on which to test this.

Portability

There are two aspects here: the code and the message files.

With the invention of ~:ana~=gs the code has proved to be portable. Other than this
there is little in the code that is contentious m except to l±n~= which is vastly
unhappy about some of the strange type casts.

The message files are only portable in source form. This is because of the massaging
needed on message number.

6. How does it Work in Practice?

A version of grouse has been available for four years. During this time it has been
used on two major projects, both involving several large programs, and a total of
some 1500 messages. The latest version is too young to have been used in anger, but
was designed to alleviate problems or restrictions in earlier attempts.

6.1 Programming

The main problem has been one of initial learning and acceptance. People get set in
their ways, and I found that, even with some encouragement, some are reluctant to
use new tools. There is a short learning phase (grouse has always been well
documented), and a certain discipline is required to ensure that the symbolic
numbering does not get out of step with what is in the file. Once this has been
done the attitude changes to "’this is the easier way".

If a model of interaction is chosen ’that is not available as standard, then some new
low level display routines need to be written. This can be a barrier to those with
the "I’m only interested in today’s problem" attitude -- especially if they know
that someone else is to maintain and possibly modify the code for another language.

6.2 Speed

I have not done much quantitative analysis. However, is it pleasing to report that
an interactive groused program does not appear to be significantly slower than a
hard-wired equivalent. This is even in a situation where a composite message may

Vol 8 No 3-4 146 AUUGN

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

be produced from several fragments.

6.3 Altering Messages

Documentation is the key. If this is not complete and explicit then references need
to be made to the code: having a quick peep is error prone -- even for an
experienced programmer. This applies if the text is being translated or the style is
being changed. Rewriting a grouae file is not a quick and easy task. Message files
tend to be large, and the translator needs some understanding of p~r±n~:£.I have
found that, with a little tuition, even managers can do this.

7. Conclusions

It has been worth while. The increase in productivity through using the tools
discussed here is great. More work is needed to take them further, both in the
programmers’ tool kit and to simplify the task of the application customiser.

C has been criticised for being too low level a language for applications
programming m I quite agree. However lack of precision can cause problems, as
evidenced by ranargs. What to do is not obvious, C has served us well and
doubtless will for some time yet.

There are many things which I find boring: writing similar code several times is
one of them. Subroutines were discovered years ago. I am still surprised by how
often people who ought to know better will still "’lift and hack" code rather
than "’doing it once and doing it well".

AUUGN 147 Vol 8 No 3-4

COLLINS NEWS SCHEME

Another Proposal for a News Scheme

John Collins
jmc@ xisl.co.uk

Xi Software Limited

1. The Problem

There are at present two options regarding the news:

1. Don’t get it at all.

2. Get all of it.

Assuming that the reader wishes to avoid option 1. option 2 may be undesirable for
any or all of the following reasons.

1. There is so much of it he/she doesn’t have the disk space.

2. It takes so long to transmit that the phone is constantly engaged.

3. The phone bills involved are prohibitive.

4. Having got it, about 5% is interesting and the remainder is about someone
selling a second-hand goldfish bowl on the other side of the world (usually an
American with an imperfect understanding of the relationship "’usa ~= world").

5. People at various sites spend hours every morning wading through all these
news items trying to find interesting ones instead of doing useful work.

The following is my suggestion for a way to compromise between the two extreme
options with regard to the news.

2. The Proposed Solution

For the sake of argument, let us suppose that a section of the network is as
follows:

A B

B1 B2

UKC

/\
D

B3

B3A B3B B3C

At present, sites A to D obtain news from UKC, and site B sends a copy to each of
sites B1 to B3, site B3 sends further copies to B3A to B3C. This represents a great

Vol 8 No 3-4 148 AUUGN

NEWS SCHEME COLLINS

deal of duplication m especially if only a few items are of interest at each site.

The proposal is that site B continues to receive the news from UKC as at present
(note: no work for UKC[), but instead of passing it on, passes a "’headline file" to
each of the sites on the line. This file is a text file, derived from the newsgroup
name, the article id and the subject line, possibly of the form:

mod. sources

xyzabco1234
xyzabc.1235

misc.rumors

Public Domain ADA compiler Part 01/87
Public Domain ADA compiler Part 02/87

foobar.1234
blech.1383
frozb.3934

AT&T to give free source licence with every 3B
IBM to pull out of computers
Re: IBM to pull out of computers

Users on each site then put up this file and request any articles of interest, using a
full screen program. The requests are collected at each site one down from the
"’headline sender" site. Thus each of sites B1 to B3 collects requests relating to the
"’headlines" sent by site B.

At the sites B1 to B3 the requests are "’weighted" using some or all of the
following factors:

1. Number of requests for each item.

2. Age of item (so that old news decays in importance)

3. Cost of transmission to requesting site.

4. News group importance.

5. Item size in bytes.

For each site B1 to B3 there is a "request threshold"; if the total weight of requests
exceeds this, then the item is obtained from site B.

Likewise for each site B3A to B3C there is maintained at site B3 a threshold for
passing the item on.

This can all be extended downwards, say from one of sites B3A to B3C, and in
that way, subject only to a day or so’s delay in getting the news, some control is
obtained in the volume of the news.

AUUGN 149 Vol 8 No 3-4

HAGEN EUUG

EUUG
Teus Hagen
IKIUG Chair

teus@ oce-rd l.nl

EUUG executive board

Teus Hagen was born in 1945.He graduated from the
University of Amsterdam. His computer science
knowledge was gained mostly at the Free University of
Amsterdam.

He has been involved in UNIX since 1975, at the
Mathematical Center (currently CWI) in Amsterdam (the
second UNIX site in Europe?).

Since 1985, he has worked in UNIX companies, and is
currently at Oce Holland (Office Automation).

Teus has been involved with the EUUG since 1977, and
has been the EUUG chairman since 1985. He was
responsible for starting Eunet at Paris in 1982, and
arranging the current structure of the EUUG in 1983.

1. Academic, that is a long time ago

Some old hackers say the group started in Edinburgh, others say it was in
Canterbury, continental hackers believe it was in Amsterdam, but nevertheless all
are right. It was about ten years ago that some enterprising people started to
complain about UNIX. They exchanged software on huge disk cartridges in order to
adjust their feelings for the next time. From about 15 academic students and
professors from a few countries in Europe, the EUUG went in ten years to 2500
members (mainly from institutions and industry) from almost every country in
Europe. In Dublin the EUUG will celebrate its tenth anniversary. That event
should not be missedi

Apart from the countries behind the iron curtain, and Portugal, a national UNIX
group can be found in every country, all bundling their common efforts under the
umbrella of the EUUG. Each national group has appointed her representative to the
governing board. The daily bother is left to eight persons in the executive board.
They meet about every two months in order to keep the EUUG going. The
secretarial assistance comes from the people at Owles Hall in England. Those people
really make a good job of all the peculiarities arising from all those languages and
national specialities.

With the big growth and the success of the organisations and the EUUG one can
expect some growing pains. On the national level, there is plenty work in
combating the national problems. This means less effort to be expended on the
European level. Also the enormous amount of work which accompanies the EUUG
work is very hard to see. Conferences need a lead time of at least one y~ar. To
get plans adjusted and agreed takes a very long time on the European level. The
effect of all that work is seen too late. Still, the enormous encouragement from the
national level is a big motivation for the executive board to continue.

Vol 8 No 3-4 150 AUUGN

EUUG HAGEN

COUNTRY GROUP
Denmark DKUUG
Finland FUUG
Sweden EUUG-S
France AFUU
Italy I2U
Holland NLUUG
Iceland ICEUUG

MEMBERS COUNTRY GROUP MEMBERS

Britain UKUUG 304
Ireland IUUG 43

Swiss UNIGS 28
Germany GUUG 392
Austria AUUG 20
Belgium BUUG 31
Norway NUUG 68

164
131
195
362
291
190
10

EWG Membership JanuarF 1987

Normally the time spent by board members on EUUG tasks is too long (usually
about 20% of their working hours). One can expect that more full time paid
personnel will be needed in the future to limit their EUUG working hours.

Clearly the conferences, with their technical contents, industry presentations, and
tutorials, are the first things from the EUUG one sees. The EUUG newsletter is felt
not to be distributed frequently enough. More effort is being put into meeting that
problem. More EUUG publications similar to UNIGRAM weekly, a glossy journal
(probably UNIX Review), a UNIX technical journal, a catalogue and a European UNIX
diary, can be expected.

Unexpectedly, the EUUG software distributions are meeting the needs of the
members. There are thoughts of making that software available on other media as
well as magnetic tapes. Also there are discussions going on about making them
available on EUnet.

EUnet is being registered as a trademark throughout Europe. The network is
recognised as one of the largest in Europe. Gateways exist to other networks such
as CSNET and DFN. For every country a domain is being registered (was Holland
with the domain rd the first?). The backbones are very well interconnected.
Sometimes I’m a bit angry that my electronic mail takes more than an hour to get
answered by someone in France. Sometimes I get worried that the people of a
particular company in the US have gone home before they have had a chance to
read my mail. Due to the efforts of the people involved directly with EUnet, email
has less failures than one could imagine some years ago. EUnet is very successful.

Sometimes it is necessary not to put some of the work in the direct sunlight. That
certainly is true for the regular meetings with the organisations in the front lines of
the UNIX fields: for instance UNIX Europe, AT&T International, but also X/OPEN.
Especially, perhaps, X/OPEN needs some more input from the user group. More
manpower is needed to support that effort. Think about the enormous experience
Europe has with international peculiarities (character sets, languages, etc.).

The EUUG has recovered from her past financial problems. The financial situation is
sound now, so we can direct our attention more now on those problems and tasks
which are common throughout Europe. For just that reason, there is an EUUG.
The enormous stimulation, the contributions, from the national groups make this
UUG organisation a success, which should not be missed in any country.

AUUGN 151 Vol 8 No 3-4

BOLDYREFF ANSI/ISO C STANDARDISATION

Progress of ANSUISO C Standardisation

Cornelia Boldyreff
. . . Imcvaxlukclread in g luoseevlcorn

Department of Electronic and Electrical Engineering
University of Surrey
Guildford GU2 5XH

1. Brief His~orica2 Background

There exists a high degree of homogeneity between various implementations of C for
a variety of reasons:

® the common origins of C compilers;

its link with the UNIX system (it has been remarked that successfully compiling
the UNIX system is quite a rigorous test for a C compiler);

® C is used as a vehicle to achieve portability in general which militates against
adding non-standard extensions;

Dennis Ritchie and Brian Kernighan’s clear exposition of the C language.

The latters" book. "’The C Programming Language". has become an informal standard
for the language; it is not uncommon for suppliers of’ non-UNIX C compilers to
assert that they support Kernighan and Ritchie. This book was published in 1978
and as a standard is becoming somewhat outdated.

It formed the base document for the ANSI C standard committee’s development of a
standard for C. They also drew on work by the US commercial UNIX users group,
/usr/group; particularly for the definition of the C library. The ANSI effort has
received support from AT&T as well as major C compiler developers, suppliers and
users including UK companies: ICL, The Instruction Set and Edinburgh Portable
Compilers. In December 1985, ANSI proposed a New Work Item on C to the
International Standards Organisation based on their work.

2. Introduction ~o Work of the BSI C Panel
The BSI Technical Committee on Programming Languages, IST/5, had been monitoring
the progress of C standardisation efforts prior to the proposal by ANSI of an ISO
New Work Item on the programming language C. Following approval of the C NWI
in April 1986, an ISO Working Group on C was formed; and the formation of the
BSI C Panel was set in motion. The role of the C Panel is to provide a UK focus
for contributing to the progress of an ISO Standard for C. This panel met for the
first time in the summer of 1986. The first meeting of the ISO Working Group was
in September 1986; countries represented were the USA, 12anada and the UK. The
ISO standard work is progressing in parallel with that of the ANSI X3J11
Committee. It is very much a collaborative effort as the draft proposed ANSI 12
standard is the basis for the ISO standard rather in the way that the BSI Pascal
standard was the basis of ISO Pascal.

The BSI C Panel

is a representative group of UK experts including commercial, industrial and
academic users of C as well as suppliers and developers of C compilers;

Vol 8 No 3-4 152 AUUGN

ANSI/ISO C STANDARDISATION BOLDYREFF

meets informally and has no official BSI status; all members of~the panel act in a
voluntary capacity usually supported by their employers;

reports regularly to the BSI’s Technical Committee on Programming Languages,
IST/5, through its Convenor who is a member of IST/5 on its activities and the
progress of the C standard;

advises IST/5 on issues concerning C and ISO ballots relating to C;

monitors progress of and contributes to the ANSI work on C;

contributes to the progress of the ISO C Standard through participation in the ISO
Working Group on C as individual experts with "’awareness of UK reactions".

collaborates with other UK BSI committees concerned with C related standards
work; for example, graphics standards with C Bindings, and the proposed POSIX
standard.

The C Panel meets quarterly preceding ANSI (ISO) meetings and BSI IST/5 meetings.
Panel meetings are usually attended by a dozen or so members -- the panel officially
has 16 members. New members are always welcome. Membership is considered to
lapse if a member does not attend for three consecutive meetings of the panel.
(Interested parties could contact the author who is convertor and chairman of the C
Panel.)

3. C Standard Open Meeting

The British Standards Institution’s C Panel organised a one-day "’Open Meeting" on
the proposed C standard to coincide with the BSI’s publication of a Draft for Public
Comment on the programming language C. The meeting was held on the 9th
February 1987 at City University. London.

The keynote speaker at the meeting was Dr P. J. Plauger, President of Whitesmiths
Ltd. Bill P!auger is a prominent member of the ANSI committee, X3Jll, which
drafted the proposed C standard, acting as secretary to X3Jll; and chairman of the
C library sub-committee. In hisopening lecture, he gave delegates an overview of
the current draft C standard concentrating on major decisions reached by X3Jll and
issues which had taken up the most "air time" in committee meetings over the past
three years. He enumerated the tenets of the philosophy which has guided X3Jll in
their efforts to standardise C as follows:

Codify existing practice.

Existing code is important.

Portability needs a "’fighting chance".

Non-portable code is OK, too.

--Quiet changes (to C) are bad.

The standard is a treaty between implementor and programmer.

--The "’Spirit of C" is important.

He discussed three major decisions made by X3J11 regarding characteristics of the C
machine, C programs’ conformance to the standard, and implementations of C. A "’C
machine" has 8 bit or larger bytes; "’no holes" in objects (i.e. except for bit fields,
objects are contiguous sequences of bytes); performs weighted binary arithmetic; and
has an arbitrary character set. A C program is either strictly conforming to the
standard i.e. fully portable; conforming; undefined, or erronious. An implementation
of C may be either hosted or freestanding.

AUUGN 153 Vol 8 No 3-4

BOLDYREFF ANSI/ISO C STANDARDISATION

The standard has endeavoured not to radically change the C language; major issues
which have concerned the committee identified by PIauger were:

Conformance issues;

Widening rules;

Preprocessor issues;

Library issues.

In conclusion, Plauger explained the rationale behind the iritroduction of function
prototypes to the C language by elaborating the committee’s own version of the US
Supreme Court’s Miranda Ruling. He also listed extensions considered by the
committee which failed to gain approval showing that there was scope for framers
of the C standards to come in the 1990s.

Cornelia Boldyreff, the Convenor and Chairman of the BSI C Panel, spoke briefly
introducing the work of the BSI language panel concerned with C standardisation.
The BSI C Pdnel was formed in the summer of 1986. Its role is largely advisory; it
advises the BSI’s Technical Committee on Programming Languages on issues
concerning C and ISO ballots relating to C. It monitors progress of and contributes
to the ANSI work on C; and panel members contribute to the progress of the ISO C
Standard through participation in the ISO Working Group on C as individual experts
with "’awareness of UK reactions".

The morning session was concluded by John Sourer of the. BSI’s Certification and
Assessment Service addressing the issue of testing conformance to standards by
language processors. He outlined the work of the BSI evaluating potential candidates
for a C Validation Test Suite. According to Soutero the USA Validation service is
planning to follow the British lead in establishing a test service for C language
processors.

The afternoon session was given over to discussing the three main aspects of the
standard, dealing with the C language, the C library, and the C preprocessor. Mike
Banahan of The Instruction Set addressed the C language and the C preprocessor in
two lectures; and Bill Plauger spoke again in greater detail on the C library.

Banahan reiterated that it was not the intention of the committee to radically change
the C language; he reassured the meeting that much of Ritchie’s original description
of C could still be found in the text of the draft standard. His lecture concentrated
on illustrating key points where the language has changed°

In his introductory remarks on the work of the library sub-committee, Plauger
mused given his involvement in the development of the Whitesmith’s C library,
some must have seen his selection as chairman of this group as comparable to
putting "°a fox in charge of the hen house". Of particular interest to the
international C user community were the ways outlined by Plauger in which the
committee had addressed the issue of °’Internationalisation" by inclusion in the
library of a runtime selectable locale. The library defined in the draft standard has
had ASCII dependencies removed; is more complete; and covers domain and range
errors in mathematical functions° Areas of the library identified by Plauger as still
needing attention included functions to restore calling environment: 8et:jmp/longjmp;
signal handling: 8±gna:t/~ra±ae; and variable arguments handling macros.

Describing his reactions to the preprocessor defined in the draft, Banahan speculated
that here the ANSI committee had used great artistic licence. Existing preprocessor
code would be broken. On the positive side, Banahan suggested that now the
preprocessor was better described. By a series of interesting-examples, he illustrated

Vol 8 No 3-4 154 AUUGN

ANSI/ISO (3 STANDARDISATION BOLDYREFF

features of the proposed preprocessor.

The final lecture in the afternoon session was given by David Tilbrook, a veteran C
programmer and UNIX guru. Tilbrook gave a historical prespective to the
development of C from its early PDP-11 days to the present. Tilbrook made the
point that most early C programmers were experienced professionals while today C
is being used by programmers without knowledge of any other language and little
understanding of the underlying machine on which their programs will run. These
programmers will certainly benefit from the proposed standard.

The open meeting concluded with a panel session including all the speakers. The
audience raised a variety of questions ranging from when will AT&T supply UNIX
with a standard conforming C compiler to the relationship between the proposed
standard C and Stroustrup’s C++. The BSI organisers co-ordinated by Paul Neale
received a vote of appreciation from the chair for their efforts in contributing to the
success of the meeting.

A major objective of the C Panel in organising this open meeting was to promote
standardisation of C and faciliate UK public comment on the draft standard. The
meeting was attended by the C user community at large in commerce, industry and
education as well as C compiler developers and suppliers in the UK.

Interested BSI members and members of the public can obtain copies of the current
C standard draft directly from the BSI. Public comment is invited; and all
comments received by the BSI will be processed by the BSI C Panel and copied to
the ANSI X3Jll committee.

4. Future Meetings in 1987
ANSI
X3Jll

ISO BSI
Working Group 14 IST/5/14 "C Panel"

June 87
Joint ISO/ANSI Meeting

Paris

14-18 Sept 87
Boston

7-11 Dec 87
Phoenix

5 May 87

11 Aug 87

3 Nov 87

Once an ANSI standard for C has been approved, it is likely to be put forward for
registration as a Draft International Standard for C and, following review and
approval, become the basis for ISO C. The ISO Standard for C would then be
adopted as a BSI C standard. It would be subject to regular standard review
procedures; and as long as C continues to be a "living language" subject to new
developments, the work of the BSI C Panel will continue.

5. Summary of Progress to Date and Future Timescales
The standardisation process is essentially an iterative one; the essence being to
achieve agreement between all parties -- in a word:consensus. The figure below
charts progress to date and milestones for the future.

AUUGN 155 Vol 8 No 3-4

BOLDYREFF ANSI/ISO C STANDARDISATION

ANSI
C project approved and
X3J11 committee formed
(1983)
C Language Information
Bulletin published for
informal comment (July
1985)

X3J11 reach consensus on
Draft Proposed Standard
(Sept 1986)

Public Review of dpANS
(7.11.86-7.3.87)

ANSI Standard (end of
87?)

ISO

NWI on C proposed by
ANS;I (Dec 85)
NW’I approved and
Working Group 14
formed (Apt 86)

dpANS submitted as
Working Paper
Registration of dpANs;
as ISO DP Letter ballot
11.86

Draft International
Standard (end of 87?)
International Standard
for C (sometime in
887) -, BSl C
Standard

Monitoring C
Standard Progress

BSI C Panel formed
(July 86)

BS;I publication of
dpANS as BSI Draft
for Public Comment
(Jan 87)
C Panel Open
Meeting (Feb 87)

The iteration involved in the process consists of several loops. Within the ANS;I
work, there is a tight inner loop where agreement on the proposed standard must be
achieved within X3Jll and an outer loop where public approval is sought.
Internationally, agreement on the standard must be achieved within the C Working
Group and the standard must gain approval from the member countries of I5;O.

Vol 8 No 3-4 156 AUUGN

TOTTENHAM X/OPEN

X/OPEN m What, Who, Why, When

John Tottenham
ICL

1. What is X/OPEN?
The X/OPEN Group is a unique consortium of eleven of the world’s major
information systems suppliers who have come together to agree on standards for
operating systems and applications portability.

X/OPEN is not a standards setting organisation, it is a joint initiative by members of
the business community to integrate evolving standards into a common, beneficial
and continuing strategy. The keystone of this strategy is the common Applications
Environment, a complete environment for the easy development, porting and running
of applications across systems from all X/OPEN Group members.

2. Who are the members of X/OPEN?
Currently, the eleven full members of X/OPEN are: AT&T, Bull, DEC, Ericsson,
Hewlett-Packard, ICL, Nixdorf, Olivetti, Philips, Siemens, and Unisys. All these
eleven members have made substantial financial and technical commitments and will
continue to do so, providing users with a higher level of insurance for the future
supply of systems based on industry standards than a single manufacturer alone
could do.

In addition to the full members, numerous other companies and consultants in the
Information Technology Industry have contributed to the technical and marketing
programmes of X/OPEN.

3. Why was X/OPEN formed?

The formation of the X/OPEN Group was a direct result of two major changes in
the Information Technology Industry in the early 1980’s, the emergence of the
Department as a large scale user of computer systems, and the growing market
fragmentation caused by propriety operating systems, particularly amongst the small
to medium sized mini-computers.

The three major categories of systems are simply identified according to the number
of terminals attached:

Mini-Computers

Personal
Mini-Computers

Mainframe
Computers

1 - 4 Users 4 - 64 Users 65+ Users

AUUGN 157 Vol 8 No 3-4

X/OPEN TOTTENHAM

This breakdown is significant since it maps the current areas where market dominant
or defacto operating systems prevail, i.e. the personal and mainframe segments, and
the "middle ground" when major growth was predicted but lacked any dominant
operating regime.

It was this absence of a single operating system standard that was seen as a
constraint on the development of the middle ground or Departmental computing
market. The continuation of propriety operating systems fragmenting the market
into small machine specific populations that would not attract the software industry
to develop applications and hence the application software tends to be limited to
that developed by the manufacturer. This means that the computer manufacturers
find themselves caught in a vicious spiral with insuf~cient applications to expand
their base and too small a base to attract the independent software industry to
develop applications for it.

Recognising this problem, X/OPEN was formed in early 1984 to adopt an Industry
Standard Operating System (ISOS) in the "’middle ground". At that time, the only
credible ISOS appeared to be UNIX, and it is the System V Interface Definition
(SVID) that was eventually adopted as the first plank of the Common Applications
Environment.

4. When did X/OPEN happen?
As mentioned above. X/OPEN was originally formed in early 1984, though at that
time it was wholly European with the initial five members being: Bull. ICL, Siemens,
Olivetti. and Nixdorf (in these early days it was called BISON from the company
initials).

During 1985 Philips and Ericsson joined, and the first edition of the Portability
Guide was published, making the X/OPEN standards available to the public.

In 1986 X/OPEN gained its American members, Hewlett-Packard, Sperry (Unisys),
and DEC, with AT&T joining in January 1987 at the same time as the second edition
of the Portability Guide became available.

In three years X/OPEN had evolved from an idea to a practical reality backed by
eleven major international information systems suppliers and with wide support from
users, software industry, and government.

Vol 8 No 3-4 158 AUUGN

HOULDER EUNET

EUnet

Peter Houtder
uknet@ ukc.ac.uk

Computing Laboratory, University of Kent

Peter Houlder has been in the Computing Laboratory at
the University of Kent for the last 30 months and
looked after day to day uknet admin work in the last
18 months of that period.

He graduated in Geography from Kings College, London
in 1970 and then spent 9 years in business m dropping
out in 1979. He then spent a year touring Norh,
Central, South and Carribean America, became interested
in archaeology and spent three years excavating in
Britain and Europe.

Two Masters degrees, the first in Archaeological Sciences
and the second in Computer Science, followed in
successive years. Maggie in the meantime reduced
archaeological funding, so he arrived in 1984 kicking
and screaming in the world of Computing.He has since
got to quite enjoy it.

He is married with two labradors.

1. Introduction

This is the first of a series of articles giving information about the European UNIX
network, EUnet. This particular article contains a short section on the UK network
and it is hoped that network administrators in different countries will write later
articles, or sections for inclusion in articles.

2. tKlnet as part of International Networks

EUnet is the European UNIX network, which started in April 1982 at the European
UNIX Systems Users’ Group .(EUUG) meetingin Paris. EUnet is part of the
international group of UNIX based networks,which at present include ACSnet
(Australia), USENET (USA), CDAnet (Canada),JUNET (Japan), SDN (Korea) and
unnamed n~twork in Israel and New Zealand.Unlike its US predecessor, which
splits news and mail as two separate services,EUnet uses the same network for
both news and mail. There is some confusionin terminology when referring to
USENET. Officially it should be only used only to refer to the North American
mail network, but unofficially it tends to be used as a term for all the international
UNIX networks. The number of UNIX hosts connected to the international networks
listed above varies daily, but the number of unique claimed names at present
(27/4/87) stands at 9509. The backbone site for EUnet is mcvax in Amsterdam,
which has direct links to all the other intercontinental and European backbone sites,
along with direct or indirect links to many other non-UNIX based networks. Each

AUUGN 159 Vol 8 No 3-4

EUNET HOULDER

country in EUnet also has its own backbone site: see table below. There are also
many important feed sites on the individual national networks, such as seismo and
ucl-cs, which have important links to other networks. All backbone and feed sites
must be capable of running UUCP, UNIX to UNIX CoPy, but it is possible for non-
UNIX based sites to connect to a UNIX site for mail purposes. All backbone and
feed sites must be capable of running UUCP, UNIX to UNIX CoPy, but it is possible
for non-UNIX based sites to connect to a UNIX site for mail purposes. All backbone
sites and some feed sites provide automatic routing, news feeding and some
gatewaying between networks, but only the backbone sites handle registration.
Backbone sites are important for several reasons. First they ensure uniqueness of
uucp names, as backbone sites should only register unique names. Second they try
to ensure protocols are maintained, by rejecting mail or warning sites that indulge in
dubious mail practices. Finally they pay the bills to the various carriers and in turn
collect the money to pay those bills on a network agreed usage basis.

At present 16 countries, listed in the table below, are part of the EUnet. This is
not strictly true as the Greek and Norwegian sites are only acting as backbones and
the Yugoslavian site is not yet on-line. The actual size of any particular network is
however difficult to assess because "hosts" may be anything from single-user
machines to gateway machines for the internal networks of large multi-user
organisations. The other problem is that sites may use more than one name, either
because of name aliasing or the use of a local network that is not hidden to the
outside world. The terms "site" and "’host" are both used to refer to individual
mail-handling machines connected directly to EUnet national networks.

EUnet as of 27th April 1987
Country Hosts Names Used Backbone

Austria 19 27 tuvie tuvidplank
Belgium 11 29 prlb2 prlb21ml
Denmark 38 42 diku krus@diku

Eire 9 10 einode einodelsimon
Finland 45 45 rut tutlhmj
France 68 68 inria inria~devill
Great Britain 208 248 ukc. uknet@ukc.ac.ukc
Greece 4 8 ariadne ariadne[kostas
Iceland 1 1 hafro hafrolgunnar
Italy 25 25 i2unix i2unixlroby
Netherlands 93 159 mcvax piet@cwi.nl
Norway 6 7 nuug kvvax4!franki
Sweden 123 146 enea enealber
Switzerland 29 29 cernvax dietrich@cernvax
West Germany 107 107 unido ap@unido
Yugoslavia 1 1 yupiter yupiteriroot

Total 787 952

3.1 Uknet as part of EUnet

Great Britain started its EUnet links back in 1982, but a fortuitous short term link,
via an ex-student, directly to USENET in the USA. meant that its close involvement

Vol 8 No 3-4 160 AUUGN

HOULDER EUNET

really began in 1984. In early 1985 it had some 29 sites all connecting directly or
indirectly to the Computing Laboratory at the University of Kent, hereinafter
referred to as ukc. The creation and continuation of the network is almost entirely
due to Peter Collinson, who had the necessary UNIX know-how and contacts to get
the network started. However Sean Leviseur, Richard Hellier and. in the last 18
months myself have all helped with support software and day-to-day administrative
work. The first sites to join the network were predominately academic or
commercial sites with close academic affiliations. Later growth has however been
fairly evenly split between academic and commercial sites. In the first three months
of the network the number of sites doubled to some 60 sites. By the end of 1985
this number had increased to 80 sites. Since that time the number of, sites has
grown by a steady 8 sites per month, and now stands at 209 sites (27/4/87). The
growth in the network shows no sign of flattening off, so if this continues in the
foreseeable future approximately 100 extra sites can be expected to join annually.

4. Further Reading

An excellent article on international networks called "’Notable Computer Networks m
John S. Quartermain and Josiah C. Hoskins" appeared in the October 1986 edition of
The Communications of the ACM. Some of the above information has been gleaned
from this article.

AUUGN 161 Vol 8 No 3-4

HORNE UNIX CLINIC

UNIX Clinic

Nigel Horne
njh @ root.co.uk

ROOT Technical Systems

Nigel Horne has worked solely on UNIX since graduating
in 1980 from Westfield College, London (and to a
certain amount as an undergraduate as well). He has
been involved in UNIX from the early days of "’real’"
UNIX, the days of aeek{), roof, PDPll"s (they didn’t
even have split I+D in those days), keys for typing in
the bootstrap, through to today when there are System
V, 4.3 BSD, industry standards, and just as much
confusion as when it all started.

Nigel is .now a Director of Root Technical Systems.

It is hoped that this page becomes a regular feature in future EUUG newsletters.
The idea is to start a forum of discussion and trouble .shooting, on all aspects of
using the UNIX system. Whilst many of the questions may well be slanted towards
the beginner, it is hoped that there will be something of interest for just about
everyone in the column.

You can send questions to me either via EUUG, by direct mail or even using
electronic mail if your machine is connected to EUNET either directly or via another
machine. If you want to try sending mail electronically try both of the following
commands: if neither of them work, it is unlikely that your machine is connected
to EUNET.

mail mcvaxlukclroot441njh

or

mail njh@root.co.uk

I’m sorry that I can’t enter into any discussions about advice given in this column,
and any material sent to me by any of the means above will be deemed to be
acceptable for publication.

As an introduction I thought I’d cover two questions in one by covering a question
that recently showed itself to me. I’ve slightly doctored it for this example and no
names are mentioned to hide certain peoples’ identity. The problem manifested itself
on a PC/AT look-alike running System V Release 2. Everything was in order except
when we came to use the supplied screen editor v±. All that the editor did was to
print the message memory faul~: -- core dumped and leave the terminal in a strange
mode -- without echo and the such. The problems here were: why didn’t v±
work, and how do we get the terminal back into a sensible state? Answering the
second question is easy. The terminal was left in so called "’raw" mode, which
meant no echo, no backspace facility, and the system no longer accepted carriage-
return as you’d expect. The cure is simple: first type control J. Why? Ah well,
UNIX actually takes control J to mean end of input, not carriage return; however it

Vol 8 No 3-4 162 AUUGN

UNIX CLINIC HORNE

normally maps one on to t’other, so typing control J just clears any junk characters
in the input buffer. After doing this. type

stty sane~^J~

making sure to use control J again. This brings the terminal and keyboard back
into a "sane" state, that is with echo on, carriage return accepted, and so on.

The problem of the core dump? This took some looking for. No other programs
on the machine acted in this way, and we began to suspect that our copy of the
image of v± on the hard disk was corrupt. In fact it was far simpler, we were
using a PC/AT with 512Kb of RAM. v± needs more RAM than this to enable it to
run (remember that a fair proportion of the 512Kb is taken up by the UNIX
operating system image), and instead of exiting gracefully with a need more, core
message and returning the terminal to a sane state, it just crashed. Solution? Buy
more memory.

I hope to hear any questions about UNIX that you may have in the near future. I
regret that I cannot answer questions about which hardware to buy, or that I may
not cover all the questions I receive, but rest assured that I will try to acknowledge
all material I receive.

AUUGN 163 Vol 8 No 3-4

BOLDYREFF REVIEW OF POSIX

Review of IEEE Trial-Use Standard
Portable Operating System for Computer Environments

POSEK+

Cornelia Boldyre ff
... lmcvaxfukclread in g luoseevtcorn

Department of Electronic and Electrical Engineering
University of Surrey

Guildford, Surrey GU2 5XH

The draft standard published by the IEEE for comment and criticism was issued in
April 1986 with the proviso that its distribution for comment shall not extend
beyond one year. In order to facilitate wide-spread distribution, the standard is
available from the IEEE and ANSI as well as Wiley-Interscience. Its purpose is to
define a standard operating system interface and environment based on the UNIX
operating system. Primarily, its focus is the C language operating system interface
required to support portable applications at source code level. Similar issues are
addressed by the AT&T publication, System V Interface Definition (SVID). The SVID
addresses source-level interfaces across AT&T’s UNIX System V product; however,
unlike the SVID, the POSIX standard is not a specification of a commercial product.
The X/OPEN group of UNIX manufacturers has also defined a similar UNIX
applications interface, the Common Applications Environment (CAE), based on the
SVID, their principal aim being to ensure software portability of UNIX-based
commercial products. Like the SVID, CAE is tied to the AT&T UNIX product.
X/OPEN has expressedits long term support for the POSIX standard, and AT&T’s
SVID states that conformance with the IEEE standard will be "’strongly considered"
after its formal approval.

There are three major components to the standard:

Definitions n this initial chapter deals with terminology used through the
standard, general concepts are described informally, and various symbolically
named variables and constants are defined.

System Interface and Functions -- this forms the core of the standard. These
chapters define a C Language Binding for Process Primitives and the Process
Environment; Files, Directories and File Systems; Input and Output Primitives;
Device- and Class-Specific Functions; and Password Security.

Key Interface issues m Portability; Media Formats; and Error Handling and
Recovery.

Currently, the POSIX standard does not address the user interface and associated
commands; graphical interfaces; DBMS interfaces; record I/O; or object or binary code
portability. Since publication, the PI003 Working Group has formed in addition two
new groups addressing the shell and tools interfaces and conformance testing:

® P1003.2 -- The shell and tools facilities

® PI003.3 m Verification test specifications

POSIX explicitly does not provide recommendations for an end-user interface; the
recently formed POSIX subcommittee is concerned with shell and tools facilities from

Vol 8 No 3-4 164 AUUGN

REVIEW O1~ POSlX BOLDYREFP

the standpoint of syntax and services that an applications programmmer might wish
to access via the popen or system function calls. There are other groups concerned
with defining a User-Interface for Applications: the X/OPEN group and the ECC
ESPRIT PCTE. The latter tests are required because there is a Federal Information
Processing Standard targetted for POSIX in the USA.

The IEEE Working Group formulating the POSIX standard includes staff from all the
major US computer companies in the UNIX market. Those at a recent meeting
included staff from Amdahl. Apollo. AT&To Charles River. Concurrent Computer
Corp. DEC. DG. Gould. IBM. Interactive Systems. H-P. P-E. Sperry. Sun. Tektronix.
and TI. UNIX user groups (USENIX. X/OPEN /usr/group) and US government and
military users are also represented on the Working Group; and there has been some
participation from outside the USA including British members. British companies
active in reviewing the POSIX standard include British Airways. In the
Acknowledgements concluding the P1003.1 text. over 200 organisations are thanked
for their contributions to the Working Group.

The POSIX standard is closely related to two other standards: the 1984 /usr/group
Standard and the Draft Proposed ANSI Standard for C formulated by the ANSI
X3J11 Committee. The /usr/group Standard work has been subsumed by IEEE
P1003’s POSIX Standard and ANSI’s X3J11 C Standard work. P1003 has left the
definition of library functions required for a C implementation in any environment
to X3Jll; that is. POSIX refers to the C Standard for these. The C standard in turn
does not define operating-system-specific functions, leaving these as the province of
the POSIX P1003 Standard. There is active liaison between the P1003 committee and
the X3Jll committee who over the past few years have developed a good working
relations.

This Trial Use Standard is expected to become a full-use IEEE standard and an ANSI
standard within two years; ANSI in turn have proposed to ISO a New Work Item
based on the P1003.1 effort. Their aim is to facilitate international participation in
this work leading to its adoption as an international standard.

In its present form, POSIX does not provide a "’functional" specification of a portable
operating system independent of any specific language, i.e. in this case C, binding.

POSIX is a much needed effort to standardise an existing applications environment
interface based on UNIX systems and complementary to the C standard work. If it
could be made to assume this more generalised functional role, then it could well
become the basis for related standards work in the area of Open Systems
Interconnection.

AUUGN 165 Vol 8 No 3-4

THIS PAGE INTENTIONALLY LEFT BLANK

Vol 8 No 3-4 166 AUUGN

Letters to the Editor

Date: 29 Jun 87 12:51:21 +i000 (Mon)
From: greg@grisooz (Greg Rose)
To: john@moncskermit
Subject: Determination to have the last word

Re: Chris Rusbridge’s letter to the editor
Re: The Claytons Unix Programmer

In my defence, I just want to mention that I was talking
about *Future needs* and how Unix *Would* solve them. If I
at any time said (or wrote) that this was already the state
of affairs, it was a slip of the tongue (or digital
dislexia, resp.). I also mentioned that some of the setup of
menu systems, particularly for system administration, was a
significant advance; I like to think that I did not say it
was, as yet, acceptable.

In short, I agree with your comments, and it is certainly
nice to know that somebody read the article. I might talk
again one day.

AUUGN 167 Vol 8 No 3-4

11 Mahogany Crescent
Karama N.T. 5793 FAX 61 89 411 016

PHONE: (089) 279 957

G.P.O. Box 866
DARWIN N.T. 5794

Mr J Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, VIC 3168

Dear Johr~,

I found the article "A Supplemental Document for AWK" by John W
Pierce very interesting. Section 3.8 sought comments regarding
output redirection, and as we have had this same type of problem,
the following crude methods may give food for thought. Hopefully
it will inspire someone to show us neater ways of achieving the
same results.

The CASS accounting system consists purely of shell and ~ shell
processes. It does not use C, and it was written after a search
throughout tile known sources of software in Australia indicated that
accounting systems at that time were reworks of Cobol or other languages.
The indexing, naming and order of general ledger’accounts are
determined by the user. Assuming that the user has allocated the
code 200600 for telephone expenses, the system provides for 2
files for each account. Thus the telephone account has the files
"200600b" and "200600e". The first line.of each file contains
the number and name separated by a tab, e.g. "200600 Telephone".
The second line of the "b" account contains the current balance at $1,
while the "e" account can best be described as a bank statement
style account, with each transaction or "entry" including tile
closing balance, being appended to the file. The number of
accounts in a small commercial system would be about 50, thus
requiring I00 files to be generated,

OUTPUT EXCEEDING 10 FILES

The task was how to process the chart of accounts through an awk
process which produced 2 files as described for each account.
The process "split" creates files, but the naming is arbitrary.
The following process, which we have dubbed "splitchart" produces
the required result.

Vol 8 No 3-4 168 AUUGN

splitchart glchart
#
#splitchart
#
onintr cleanup
if ($#argv < 1) then

exit
endif
foreach i (’awk ’ BEGIN { FS = "

{ print $1 }’ $1")
egrep $i $1 >! trap
awk ’ BEGIN { FS = " " ; OFS = "
awk ’ BEGIN { FS = " " ; OFS = "

{ print zero }’ trap >> $i"b"
awk ’ BEGIN { FS = " " ; OFS = "
end
c i eanup :
if (-e trap) then
rm tmp
endif
exit

" ; OFS = " " }

" } { print $I,$2 }’ trap > $i"b"
" ; zero = "0,00" }

" } { print $1,$2 }’ tmp > $i"e"

We have adapted this to other operations. For exmnple, an
importer allocates a unique inventory number to each item, when
preparing customs documents. The customs schedule is awked by a
variation of splitter to create a file for each item.

INPUT INVOLVING INDIRECT ACCESS

Sometimes the difficulty lies in not being able to directly
access the file through an awk process. For example, the file
name may have been generated by an awk process, and it is not the
output file that is required, but rather the particular field
within the output file which contains the filename.
In our general ledger system, the operator is required to input
the account codes to the ,debit and credit files, followed by some
other details. A t~pical line involving the telephone and bank
account would read:
"200600 300101 pay phone a/c 155.77"
with tabs separating each of the 6 fields. That input is output
to the file "onejnl" However it is not only the file "onejnl"
that is required, but also the files specified in $1 and $2 of
standard input. To process the account, other files, namely date,
sequential ID and the awk file are all marshalled into the file
awkl. The file awkl has already been created when the system is
initialised, and has been changed to executable mode.
~hen the complete input is signalled by CTRL d, the following
command is executed.

awk ’{ print > "onejnl" ; printf "awk -f gljnlawk ndate glcount
%s %s onejnl\newline", $1"b",$2"b" > "awkl" }’

After execution awkl contains the command:
"awk -f gljnlawk ndate glcount 200600b 300100b onejnl"
which it executes.

AUUGN 169 Vol 8 No 3-4

INDIRECT INPUT/OUTPUT

If output from one awk process is likely to exceed the I0 file
limit, intermediate output can be directed to one file for
treatment by a subsequent awk process. In the following example
the file names (account numbers), which are always located in $I
are embedded in output which itself is an awk process located in
an executable file. The awkprocessl file contains:

BEGIN (FS = " " ; OFS = " "
prefix = "awk -f awkprocess2 " ; suffix = "b"
conclude = " ! tee tem ; awk -f awkprocess3 tem " }
(print prefix ($] suffix) conclude)

Using the telephone account example, one output line of
awkprocessl would read:
awk -f awkprocess2 200600b I tee tem; awk -f awkprocess3 tem
Awkprocess2 selects the account balance ($I of line 2) and
performs some calculations, then writes the output to "tem".
Awkprocess3 processes each line, directing the output back to each
original input file. In this case, file "tem" contains only I line.
In other applications, tem may contain an indefinite number of
command lines, accessing a number of files, and qutputting to
the same files. Thus while one awkprocess is not permitted
to produce 50 lines of output, 50 command lines may each have 1
line of output, because awk recommences counting its output each
time it restarts the process.

The awk file plawk produces a Profit and Loss Statement from the
balances of selected files. The command "awk -f plawk [O-2]*b"
will not work from within the C shell program. However the following
commands do work because awkl is a shell process.

echo "awk -f plawk [0-2]*b I tee glpltem" > awkl
awkl

Yours sincerely,

t(Frame ~
Managing Director
C.A.S.S. Pty Ltd
8 July 1987

Vol 8 NO 3-4 170 AUUGN

AUUG

Membership Categories

Once again a reminder for all "members" of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just fight for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the
contents, or the association.
AUUGN 171 Vol 8 No 3-4

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower fight corner you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Robert Elz

AUUG Secretary.

Vol 8 No 3-4 172 AUUGN

A G
Application Ordinary, or S uden , Membership

A s ralian UNIX* systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary ® Please don’t send purchase orders m perhaps your
purchasing department will consider this form to be an

P O Box 366 invoice.
Kensington. NSW 2033 ® Foreign applicants please send a bank draft drawn on an
Australia Australian bank, or credit card authorisation, and remember

to select either surface or air mail.

I, ... do hereby apply for
[--I Renewal/New* Membership of the AUUG

[--1 Renewal/New* Student Membership

[---I International Surface Mail

[~1 International Air Mail

Total remitted

Delete one.

$55.00

$30.00 (note certification on other side)

$1o.oo
$50.00

AUD$
(cheque, money order, credit card)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date" / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: ...

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

Name on card:

Office use only:

Chq: bank

Date: / /

Who:

to my [~] Bankcard ~] Mastercard.

bsb - a/c

Signed:

#
CC type ~ V#

Expiry date: [

Member#

AUUGN 173 Vol 8 No 3-4

Student Member Certification (to be completed by a member of the academic staff)

I, ...~ ...certify that

... , ..(name)

is a full time student at ...(institution)

and is expected to graduate approximately / / .

Title: Signature:

Vol 8 No 3-4 174 AUUGN

A
Application Ins i ional Membership
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

® Foreign applicants please send a bank draft drawn
on an Australian bank, or credit card authorisation,
and remember to select either surface or air mail.

.. does hereby apply for
[--I New/Renewal* Institutional Membership of AUUG $250.00

i--I International Surface Mail $ 20.00

[---I International Air Mail $100.00

Total remitted AUD$.
(cheque, money order, credit card)

Delete one.
I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to rime, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date" / / Signed:

Title"
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: .. Phone: ... (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

to my/our [--] Bankcard [--I Mastercard.
Expiry date: / .

Name on card:

Office use only:
Chq: bank
Date: / /
Who:

bsb - a/c #
CC type

Signed:
Please complete the other side.

V#
Member#

AUUGN 175 Vol 8 No 3-4

Please send newsletters to the following addresses:

Name: ..
Address: ..

Name: ..
Address: ..

Phone" (bh)
.. (ah)

Net Address: ..

Phone" (bh)
.. (ah)

.. Net Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the tide and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source [] System V.3 binary

[] System V.2 source [] System V.2 binary
[] System V source [] System V binary
[] System I]/source [] System III binary
[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

[] Other (Indicate which) ..

Vol 8 No 3-4 176 AUUGN

A G

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Application Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

~ Please don’t send purchase orders ~ perhaps your
purchasing department will consider this form to be an
invoice.
e Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
e Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: ... (bh)

Address: ... (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

I---I Subscription to AUUGN

[---] International Surface Mail

I--I International Air Mail

Copies requested (to above address)

Total remitted

$ 55.00

$ lO.OO
$ 50.00

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $
Account number:

Name on card:
Office use only:

Chq: bank

Date: / /

Who:

to my ~] Bankcard V-] Mastercard.

bsb - a/c #

Signed:

Expiry date: /

$ CC type ~ V#

Subscr#

AUUGN 177 Vol 8 No 3-4

A
Notification o~ Change o~ Address

Australian UNiX systems Users’ Group.
*UNIX is a registered trademark of AT&T In the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:
AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ... :

Phone: ...(bh)

... (an)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (an)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 8 No 3-4 178 AUUGN

