—_—

UGN

Australian Unix systems

User Group Newsletter

Volume 8

Number 5
Includes Winter 1987 Conference Papers

Registered by Australla Post Publication o, NBG6S24

The Australian UNIX* systems User Group Newsletter

Volume 8 Number 5

October 1987

CONTENTS

AUUG General Information

Editorial

President’s Report

Softway Advertisement

Adelaide UNIX Users Group‘ Information

0 NN N AW

Winter 1987 Conference Papers »
UNIX at the Tumn of the Century - Abstract « « « « « « o « + = 10
The Locking of Critical Regions Under UNIX« « « ¢« « o o = 11
Fun with Virtual Memory + « + ¢ ¢« « ¢ o« e 0 e e e e e 20
Recent Work on Research UNIX « « « « « « « o o . . 26
The Shared Library Minefield « ¢« « « « « « o o« o o 27
SunOS Release 4.0 ¢ v o 4 4 e e e e e e e e e e e 36
Writing Parallel Programs for the Sequent Multiprocessor - Abstract 44
UNIX on the Cray - Abstract . . . « « « ¢« « « « o« o« o« o o o o « = 44
A Low Cost, Short Range, Reconfiguarable Microwave DataLink 54
Some Aspects of System V Release 3 Networking « « . « « o« « 75
Optimizing C - Benchmarks and Real Work - Abstract« . & 75
Measuring Database Performance using TPI benchmark - Abstract 76
DBMS - Efficient Implementations for UNIX systems - Abstract & 77
What’s in a name? (or coping with lots of small files) R 78
An Image of the Future - Abstract ¢« « o « « o o o o o o o 84
Plexus XDP System - Background Information« . « « « « .« . 85
Awk-ward yacc i=1eX 0 v 4 e e e e e e e e e e e e e 90
Mail links from VMS to UNIX « . « « « « « o « o o« o o = 94
The SUN Network File System: Design, Implementation and Experience 96
Shared Libraries in SunOS ¢ « « ¢ ¢ 4+ e e e e e e e e 112
Vitual Memory Aritecture in SunOS« .« v o« + e e 4 e e e o« o« . 128
Virtual Address Cache in UNIX . . .« . . + & « ¢ « o« « « o o« o o« o« « o« 143

AUUGN 1 Vol 8 No 5

From the ;login: Newsletter - Volume 12 Number5 151
Computer Graphics Workshop '. T b7
POSIX Portability Workshop . . . « +« « « « « « « « « « « « « o« o 152
C++Workshop v v & ¢ « « « o o « + « o o« o o« . . 153
Call for Papers: Winter 1988 USENIX Conference « 154
Call for Papers: Summer 1988 USENIX Conference '« . . « . . . 155
Second Distribution of Berkeley PDP-11 Software forUNIX 156
RT PC Distributed Service: File Systems . . . + + « « « « « « « « « . 159
Book Review: UNIX System Security « +« « « « « « « « « « . 170
Book Review: troff typesetting for UNIX Systems « . « « « « .« . . 172
Work-in-Progress Reports from the Phoenix Conference 174

Management Commitee Meeting Minutes - May 1987 180

Management Committee Meeting Minutes - August 1987 184

Annual General Meeting Minutes - August 1987 188

AUUG Membership Catorgories . . .« « « « « « « o « o o o « o« « « « o 191

AUUGFOMNS .« .« v v v v v o« o 0 o o v o o o o v 0 v v v v 0. 193

Copyright © 1987. AUUGN is the joumal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 8 No 5 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.
All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA
General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melboure University,

Parkville, Victoria 3052,
AUSTRALIA

ACSnet: avug@munnari.oz

AUUG Executive
Ken McDonell, President

kenj@moncsbruce.oz
Department of Computer Science, Monash University, Victoria

Robert Elz, Secretary

kre@munnari.oz
Department of Computer Science, University of Melboume, Victoria

Chris Maltby, Treasurer

chris@ gris.oz
Softway Pty. Ltd., N.S.W.

Chris Campbell, Commiitee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

Piers Lauder, Commitiee Member

piers@basser.cs.su.0z
Basser Department of Computer Science, Sydney University, N.S.W.

John Lions, Committee Member

johnl@elecvax.oz
School of Electrical Engineering and Computer Science, University of New South Wales, N.S.W.

Tim Roper, Committee Member

timy@labtam.oz
Labtam Limited, Victoria

Next AUUG Meeting

The next meeting will be held in Melbourne during August-September 1988.
Futher details will be provided in the next issue.

AUUGN 3 Vol 8 No 5

AUUG Newsletter

Editorial

I hope you enjoy this issue and please contribute to the next issue.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey

AUUGN Editor
Computer Cenire,
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSpet: avugn@monul.oz
Phone: +61 3 565 4754

Contributions

The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 11th of December 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff -mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.
Advertising

Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists

For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

Vol 8 No 5 4 AUUGN

President’s Report

This issue of AUUGN contains most of the papers presented at the recent Winter Technical Meeting held at NSWIT,
August 27-28,

That meeting, and the ‘‘up-market’’ approach to the associated exhibition was the result of some very hard wor_k and
innovation on the part of the local organizing committee under Greg Webb’s chairmanship. Once again I'd like to
thank them for an excelient job, well done.

Concurrent with the Sydney technical meeting was an AUUG management committee meeting at which the following
resolutions were made,

@ There will be a serious attempt to increase benefits that flow from AUUG membership, particularly in respect
of redistribution of software and publications from affiliated user groups.

A second round of 4.3BSD manual orders will be processed; the order form will appear in the next AUUGN.

AUUG should actively solicit support from vendors of Unix-related products, especially in respect of publiciz-
ing the group and attracting prospective new members.

® The AUUGN editor shall henceforth be invited to attend management committee meetings to be involved in
discussions relating to publications and to prepare a report on the meeting for the next AUUG (prior to publica-
tion of the minutes of the meeting).

® AUUG should take a more active role in soliciting financial support and more equitable cost-sharing arrange-
ments to guaranice the long-term viability of ACSnet.

e Matters of policy relating to meeting organization (dinner costing, sponsorship, credit card facilities, student
participation, etc.) will be formalized and collected into a document that will be given to future meeting organ-
izing committees.

Long-term planning of activities, including the venue, schedule and format of technical meetings is a matter requiring
our urgent attention. At this stage there seems to be considerable support for a NSWIT-like meeting held once per
year (probably in August or September); this leaves the format of the other (summer) meeting unresolved. At this
stage, convergence on a rational short-term schedule may demand that no national summer meeting be held in 1988,
but a revamped and professionally organized winter meeting with full-scale equipment exhibition would be held in
Melboume around early September 1988.

As a substitute for a pational 1988 summer meeting, there is possibility that AUUG could sponsor an overseas

speaker(s) tour in February, or encourage several smaller State-based informal technical meetings in the same time
frame.

Given the importance of this departure from historical precedent, and the fact that the matter cannot be finally
resolved until the next management committee meeting on December 10, all members can expect to receive
correspondence from AUUG by mid-December outlining the meetings programme for 1988 and beyond.

In the interim, I would welcome your comments either spoken ((03) 565 3899), e-mail (kenj@moncsbruce.oz) or via
news (aus.auug).

As this will be my last contribution in this role (I depart for the U.S. soon, and shall be resigning as AUUG
President), I would like to take this opportunity to extend my sincere thanks to all members of AUUG for their con-
tributions, and in particular to the members of the management committees and the AUUGN editors.

Ken J, McDonell

AUUGN 5 Vol 8 No 5

a Techway company S

for

o UNIX System V

™ Documentor’'s Workbench 2.0
- and various back-end drivers

- PostScript support of plain text
- support for graphs and images

¥ Ports & Device Drivers
™ Intelligent Benchmarking
@ SUN-IIl (ACSnet) + installation

o Biway - Bi-directional modem software for System V
and 4bsd

o Courses:

- Beginner’'s Workshop

- Fast start to UNIX

- System Administrators’ workshop
™ Technical Backup

- and all sorts of interesting software development.

Softway Pty Ltd. (Incorporated in NSW)
120 Chalmers St, Strawberry Hills, NSW.
PO Box 305, Strawberry Hills, NSW 2012.
= (02) 698 2322 Fax (02) 957 6914

Vol 8 No 5 6 AUUGN

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis "The UNIX Literature"
K. Maciunas "Security"
" R. Lamacraft "UNIX on Micros"
W. Hosking "Office Automation”
P. Cheney "Commercial Applications of UNIX"
J. Jarvis "troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.
UUCP: ({decvax,pesnta,vax135}!mulgalaegir.dmt.oz!dhj

PHONE: +61 8 268 0156 ARPA: dhj%aegir.dmt.oz!dhj@seismo.arpa
CSNET: dhj@aegir.dmt.oz

AUUGN 7 Vol 8 No 5

AUUG Winter 1987 Conference Papers

In order of presentation

UNIX at the Turn of the Century
Abstract Only

Michael Tilson
HCR Corporation, Canada

The Locking of Critical Regions under UNIX
Paper
Frank Crawford
Q.H. Tours
Jagoda Crawford
Australia Nuclear Science and Technology Organization

Fun with Virtual Memory
Paper
Lucy Chubb
Univeristy of New South Wales

Recent Work on Reseach UNIX
Abstract Only

Peter Weinberger
AT&T, US.A.

The Shared Library Minefield
Paper
Michael Selig
Olivetti Australia

SunOS 4.0
Paper

Richard Burridge
Sun Microsystems Australia

Writing Parallel Programs for the Sequent Mutiprocessor
Abstract Only

Stephen Frede
Softway Pty. Ltd.

Vol 8 No 5§ 8

AUUGN

AUUG Winter 1987 Conference Papers

continued

UNIX omn the Cray
Abstract Only

Peter Weinberger
AT&T, U.S.A.

A Low Cost, Short Range, Reconfigurable Microwave Data Link
Paper
Chris Clarkson, Ian Dall, and Alex Dickenson
University of Adelaide

Some Aspects of System V Release 3 Networking
Paper
Tim Roper
Labtam Pty. Ltd.

Optimizing C - Benchmarks and Real Work
Abstract Only

Michael Tilson
HCR Corporation, Canada

Measuring Database Performance using TPI Benchmark
Abstract Only

Ken McDonell
Monash University

Database Management Systems - Efficient Implementations for UNIX systems
Abstract Only

Angela Heal
Queensland Department of Primary Industry

What’s in a Name? (or Coping with Lots of Small Files)
Paper
John Lions
University of NSW

An Image of the Future
Abstract and XDP Product Background

Julian Day
Microprocessor Applications

AUUGN 9 Vol 8 No 5

UNIX at the Turn of the Century

Michael Tilson
HCR Corporation
130 Bloor Street West, 10th Floor
Toronto, Ontario MS5S INS Canada
(416) 922-1937
{utzoo,ihnp4,...} ! hcr!mike

UNIX has been available outside Bell Labs since about 1974. Thirteen years ago the system was
new, still experimental, and rarely used. Today, UNIX is mature, becoming standardized, and
widely used. What can we expect in the next thirteen years? This talk discusses the technology
trends that will determine the status of UNIX at the turn of the century.!

UNIX has become a standard working environment for software development. The lifetime of
standards is surprisingly long. FORTRAN has been with us for a long time, and it looks like it will
be with us for decades to come. Today's UNIX system will still work fine until at least late

January, 2038.2

On the other hand, technology continues to advance at a rapid rate. Systems that once appeared
modern become obsolete and obstacles to productivity. There is no reason to believe that the rate of
change will slow between now and the end of the century. The important trends that must be
considered include memory sizes, processor speed, network bandwidth, networking and
communications software, user interface hardware and software, and software development
technologies. We will see low cost, extremely powerful, more friendly computer systems, that
have very high bandwidth connections to other systems. UNIX must adapt to these changes.

The existence of virtually identical software environments on almost all machine architectures
opens up possibilities that never before existed. The multi-vendor NFS demos that now occur at
many UNIX commercial exhibitions would have been unthinkable not very long ago. But in the
next thirteen years UNIX will open the door to possibilities for distributed processing and
distributed applications that go far beyond anything we can do today.

This talk attempts to reconcile the conflict between the pressing need for change and the inertia of
standards. A technical forecast is provided, giving a framework for looking at UNIX systems
development over the next decade. The goal is to understand why a typical obsolete C application
written in the mid-80's might be still running on an incredibly advanced architecture, moving data
from New York to Tokyo in the year 2000.

Forecasting for the next millenium is a dangerous business. Historically, the advent of a new
millenium triggered a plethora of forecasts. The talk will touch on some of the interesting parallels
with events that occurred around the year 1000.

[Note: A shorter version of this talk was given at the Usenix Conference, June 1987.]

IThe pedantic reader will notice that the turn of the century is assumed to be the year 2000, and of course this really
happens January 1, 2001. However, I suspect that when the time comes, the big celebration (or the wait for the end
of the world) will come a ycar carlicr. Anyway, UNIX programmers prefer 0-indexing.

20n 32-bit processors the current UNIX time algorithms will overflow after this date. Still, this is it quite a bit
better than some other systems that will fall over dead after December 31, 1999. When 64-bit processors become the
norm, future timekeeping may be restricted only by limitations of storage nceded to hold the time zone and daylight
savings algorithms.

Vol 8 No 5§ 10 AUUGN

The Locking of Critical Regions Under UNIX ™

Frank Crawford

Q.H. Tours
PO 630, North Sydney 2060

and

Jagoda Crawford

Australian Nuclear Science and Technology Organisation
Private Mailbag 1, Menai 2234

ABSTRACT

As more multiprocessor systems running UNIX come into common use, there is a need to
re-examine the standard techmiques employed to lock critical regions in concurrent
processes. This paper identifies some of the inadequacies of these methods and details a
number of functions available in AT&T’s System V and/or Berkeley’s 4.2/4.3 BSD that give
secure locking in both single and multiprocessor environments. Finally, an example is given
of a method suitable only for a single processor environment and a corresponding method
for multiprocessors.

™ UNIX is a registered trademark of AT&T in the USA and other countries.

AUUGN 11 Vol 8 No 5

1. Introduction

To meet the continuing demand from science and industry, manufacturers are seeking new methods
for realising more computer power. One method that has emerged recently is to utilise a number of
separate processors in the one system, i.e. multiprocessor systems. In all current commercial
applications, the aim of multiprocessor systems is to increase throughput rather than decrease the
execution time of a single process.

There are two broad categories of multiprocessing. One is to dedicate all available processors to the
execution of a single job, dividing it into a number of separate threads, each of which is run on a
separate processor with the system handling synchronisation and communication. This is still a very
active research area and is not yet available for commescial use. The second approach is much coarser,
each job being run on a separate processor, with no interaction between jobs.

The simple view of multiprocessing given above does not describe the whole picture. When a
modern operating system supporting multiprogramming is introduced, additional complexities arise. As
an example, it is not desirable to tie a given process to a particular processor; rather it must be capable
of being switched between any of the available processors. Further, the scheduling algorithm must be
able to handle a number of jobs concurrently.

Despite the additional complexity, multiprocessors have a number of advantages over a number of
separate processors, mainly in the sharing of resources, e.g. memory, peripherals and especially sharing
the workload. This sharing of resources has long been a feature of multiprogramming and many of the
principles can be applied to multiprocessing. In effect, multiprocessors are a development of
multiprogramming,

2. Synchronisation

When resources are shared by a number of processes, it is possible that the same resource, e.g. tape
drives, shared memory or files, will be required by more than one process at a given time. Care must
be taken to ensure that access to any one of these resources is serialised. Serialisation may be handled
directly by the operating system (e.g. for tape drives) or left to the processes to synchronise their
activities. The type of resource generally dictates at which level the synchronisation is done, i.e. kemel
or process. This paper only considers synchronisation at the process level and, in general, ignores how
the kemel may handle it.

To take a more concrete example, access to shared memory is considered, although it would be just
as easy to consider access to a file (e.g. a database application) or to some other device.

2.1 Simple Locking Scheme

One of the simplest means of locking is to put aside a single variable, called lock, and to set it to
one to lock the resource. Similarly, set lock to zero to unlock the resource. The scheme in Figure 1
shows a simple function, for this purpose'.

1. Examples in this paper show only relevant parts, no attention being given to dealing with error conditions, efc.

Vol 8 No 5 12 AUUGN

extern int lock;

void lock resource ()
{
while (lock != 0)
/* Wait */ ;
lock++;
}

void unlock resource ()
{

lock = 0;
}

Figure 1. Simple Locking Scheme,

This is the most common form of locking used, and on single processor systems it works well.
However, it may fail in a multiprocessor environment, and further it can even fail in a single processor
environment. The reason for this failure is fairly simple to explain; if two processes are using this
scheme to lock a resource, it is possible that one of the processes will be swapped between finding lock
to be zero and setting it, during which time the other process may well execute the same code, and so
both may gain access.

This procedure can be modified to work on a single processor system by making use of two or more
variables. However, on a multiprocessor system it can still fail. This is more difficult to explain, but
the basic problem is that there is no indivisible instructions available to the programmer, unlike the ++
operation on a single processor system?,

On a multiprocessor system it would be possible for two (or more) processes to be executing the
same instructions at the same time, so that both attempt to increment the lock variable at the same time.
More realistically the memory read and write cycle would mean that only one increment would be
effective, overiding the other one,

2.2 Theoretical Considerations

Synchronisation problems, such as those mentioned above, have been studied extensively since the
mid 1960s, and a number of solutions proposed. The sequence of statements that must appear to be
executed as an indivisible operation, such as the lock_resource and unlock_resource functions above, is
called a critical section. The term mutual exclusion refers to the fact that only one process can be in its
(common) critical section at any time. Mutual exclusion is used to refer to shared objects (e.g. data
structures, files, efc.) whereas critical sections refer to process segments.

The proposed solutions can be grouped into two broad categories: one where the programmer
controls all of the details of the exclusion, and the second, where a set of primitives or programming
constructs are provided which hide the details.

2.2.1 User controlled synchronisation Even within this category there are two separate areas: the low
level (hardware) method, e.g. locking the bus, disabling interrupts and test and set instruction, all of
which may be used within a kernel, but are not directly available to user level programs; and higher
level algorithms such as Dekker’s algorithm [Dijkstra 1965] and others. All of the software proposals
require a knowledge of how many processes are going to be sharing the resource, something which is
not generally known beforechand in a multiprogramming environment. They also suffer from the

2. This is not guaranteed but is commonly assumed, as any useful computer architecture should have an increment instruction,
whether on a register or a memory location. Similar arguments apply to a clear instruction,

AUUGN i3 Vol 8 No §

drawback of requiring a busy-wait, which is wasteful of processor time. Thus these methods are not
suited to the average computing environment.

2.2.2 System supplied constructs In all of these methods the system hides the details of implementation
within the kemel, and provides various calls for the programmer. These methods include semaphores,
monitors and message passing. These can all be shown to be equivalent, i.e. each one can be
implemented in terms of another. For a more detailed discussion see Tanenbaum [1987].

From this brief discussion, it can be seen that for a programmer to make use of any of the
synchronisation methods, it is necessary for the construct to be built into the kemel. This is the case
with the two most common versions of UNIX, AT&T’s System V and 4.2/4.3BSD.

3. General UNIX Facilities

Although Edition 7 and earlier versions of UNIX did not offer explicit methods of locking regions,
there were a number of features which could be utilised to achieve locking. Creat can be used to create
a file with mode 0 (or anything without write permission). If this fails, repeat the process until
successful, i.e. a busy wait. When processing is finished, remove the file. Using a lock file, the
previous example can be rewritten as follows:

#define LOCKFILE "lock"

void lock_resource ()

{
int £d;

while ((fd = creat (LOCKFILE, 0)) < 0)
/* Wait */ ;
(void) close (£d);
}

void unlock_ resource ()

{
(void) unlink (LOCKFILE);

}

Figure 2. Locking using creat.

The example in Figure 2 relies on the use of permissions to stop the creation of an existing file.
However this procedure fails for root, who commonly needs to perform some form of locking. It also
has the side effect of creating a number of files which are not required, and the possibility of leaving a
lock after the process has died.

A number of schemes relying on the linking of files can also be used, but these suffer from problems
such as race conditions within the kemnel. On these versions of UNIX it is not possible, in general to
implement a reliable locking scheme.

4. 4.2BSD Facilities

Berkeley Software Distributions® 4.2 (and 4.3) offer a number of methods of concurrency control, the
- majority of which again make use of the file system.

3. Berkeley Software Distribution was developed from Edition 7 uNix and is distributed by the University of California, Berkeley.

Vol 8 No 5 14 AUUGN

The simplest of the methods enhances the method shown in Figure 2. The main change is the
ability to specify that file creation is to fail if it already exists (i.e. specifying (O_CREAT|O_EXCL) to
open). Again all these methods entail busy waiting,

Another method using the file system is to use the file locking system call, flock. This can be used
as a semaphore and is guaranteed to enable concurrency among cooperating process. It enables
processes to be blocked awaiting the release of the ‘lock’, thus not wasting processor time. Also, as the
kemel is handling the lock, it is able to remove it automatically if the locking process dies.

Again, the fact that flock uses the file system has the possible disadvantage that for concurrency
control not involving files, a special file must be created. This means it cannot be implemented across
distributed systems without a common file system. For processes using common files, this is a
reasonable method.

A general but more complex method available under 4.2BSD is to use message passing. For
processes sharing a common parent it can be as simple as pipes, but for those without a common
ancestor, it becomes necessary to use sockets. The concept of message passing is simple; all processes
wanting access to a particular resource send a message to a single locking process or daemon, who’s
sole function is to serialise entry into critical sections.

Individual processes wishing to enter their critical regions send a request to the locking daemon and
wait for a reply. Upon leaving they send another message. This is depicted in Figure 3. This method
is used in some database management systems, e.g. Ingres™. An example of this is shown below,
however the detail of setting up the connection and the locking daemon are omitted.

#define REQUEST "My Turn?"
#define FINISHED "Finished"
extern int lock_£d;

void lock resource ()

{

char buf;

(void) write (lock fd, REQUEST, sizeof (REQUEST));
(void) read (lock_f£d, &buf, sizeof (buf)) ;
}

void unlock_resource ()

{
(void) write (lock_fd, FINISHED, sizeof (FINISHED));

}

Figure 4. Locking Using Message Passing.

5. System V Facilities

System V offers a number of different facilities for handling concurrency and locking, As with
4.2BSD, it is possible to use the file system via creat or open. It is also possible to use file locking
with fenel and/or lockf. Although the details are different, the outcome is the same.

Apart from these facilities, System V also offers some direct support for concurrency. These are
semaphores and messages. Again, although the implementation of messages is very different from

™ Ingres is a trademark of Relational Technology International.

AUUGN 15 Vol 8 No 5

Process

‘

Process grant request

Locking
Daemon

! Block request
’

oo ‘

AN
N

Process

o
= @ e @ Ng
®

2

(a) Multiple lock requests (b) One request granted

Process

Process Process

Locking
Daemon

Locking
Daemon

tee ”

grant request

Process Process

’ vee ‘
‘

(c) Unlock signalled (d) Grant a blocked request

Figure 3. Sequence of Events with Message Passing.
42BSD’s sockets, for the purpose of locking it can be considered the same,

Semaphores are not directly available under any other version of UNIX, and their implementation is
similar to standard text book definitions.

5.1 An Example Using Semaphores

Consider an example of a system where there are a number of processes using shared memory, such
as a relational database with a per table write through cache. Accessing this cache is a critical section,
as any writes must not change the data being read. Further even reading can modify the cache because
entries not in the cache will cause it to update.

As there are a number of separate tables, it is best to have a separate semaphore for each table (using
only one would degrade performance of the entire system).

The initialisation procedure could be as follows:

Vol 8 No 5 16 AUUGN

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define DATABASE "file.db"
#define NOTABLES 75
#define VERSION 1
#define SEMPERM 0666
extern key t ftok ();

extern int semid;

void sem _init ()

{
register int i;
union semum arg;

semid = semget (ftok (DATABASE,

/*
/*
/*
/*

The database file */

Number of database tables */
Some version number */
Everyone can get it */

(char) VERSION),

NOTABLES,

arg.val = 1;
for (i = 0; i < NOTABLES;

}

Figure 5. Initialising the Semaphores.

it++)
(void) semctl (semid,

/*

(SEMPERM | IPC_CREAT));

Initial value of semval */

SETVAL, arg);

This initialisation sets the maximum number of processes in the critical region to one, by setting
arg.val. This is known as a binary semaphore. In other applications it could be set to different values.

AUUGN

17

Vol 8 No 5

After this initialisation, individual semaphores within the set would be used to control access to each
table, as follows:

extern int semid;

void lock resource (table)
int table;
{
struct sembuf sops,
*sops_ptr = &sops;

sops.sem_num = table;

sops.sem op = -1

/* Increment semadj for process exit */
sops.sem flg = SEM _UNDO;

(void) semop (semid, &sops_ptr, 1);

void unlock_ resource (table)
int table;
{

struct sembuf sops,
*sops_ptr = &sops;

sops.sem num = table;

sops.sem op = 1

/* Decrement semadj for process exit */
sops.sem flg = SEM_UNDO;

(void) semop (semid, &sops_ptr, 1);

}

Figure 6. Locking Using Semaphores.

The functions in Figure 6 can then be used around the critical sections to ensure the integrity of the
cache. Further, if a process terminates before unlocking the semaphore, the semaphore is automatically
released by the system because the flag SEM_UNDO is set in the call to semop within lock_resource.
For a more detailed description of these functions, see the UNIX System Programmer’s Manual [1983].

The advantage of using these procedures is that the kernel suspends execution of the calling process
if another process is already in its critical region.
6. Conclusions

Although many programs use varying degrees of concurrency, only a few atiempt to implement
mutual exclusion. In the past, this was because UNIX did not offer many facilities, however with recent
versions, various methods have become available. With the growing emphasis on interprocess
communication and multiprocessor machines, it is becoming more important for programmers to make
use of these facilities to ensure the integrity of shared resources.

References

Dijkstra, E.W. [1965] - Co-operating Sequential Processes. In Programming Languages, ed. F.Genuys,
Academic Press, London.

Vol 8 No 5 18 AUUGN

Tanenbaum, A.S. [1987] - Operating Systems - Design and Implementation, Prentice-Hall, Englewood
Cliffs, New Jersey.

Unix System Programmer’s Manual [1983] - AT&T, Murray Hill, New Jersey.

AUUGN 19 Vol 8 No 5

Fun with virtual memory
L. Chubb

University of New South Wales, Kensington, NSW 2033

ABSTRACT

A version of the UNIX version 7 kernel ported to an NS32016 based microcomputer
will form the starting point for modifications designed to allow shared memory,
incremental loading, the mapping of files into a process’s address space and changes to
the way shared text is implemented.

The standard version 7 memory management software swapped entire segments
between memory and secondary storage. During the port it was changed to use
demand paging. Paging is done from a process image file, a regular file corresponding
to the process’s address space. This gives a one to one mapping between the pages in
the address space and the contents of the file.

The proposed changes will allow many files to be mapped into a single process’s
address space and will allow different processes to use the same file. Processes
shareing a file use the same in-memory copies of pages belonging to that file,
effectively allowing them to share memory.

Three new system calls have been designed to create, delete and extend
mappings between portions of the address space and files. The fork, exec and exit
system calls will also be modified to use these mappings.

1. Introduction

On finding myself engaged in porting UNIX* as part of a masters degree I decided it would
be a good opportunity to investigate what could be done with virtual memory in UNIX. This paper
reviews briefly some of the more interesting functions provided by two implementations of virtual
memory in UNIX today and present a fcw of my own ideas on the subject. The use of virtual
memory in UNIX system V with its regions and shared memory and then UNIX Version 8§ with the
concept of processes as files will be examined briclly.

My ideas evolved while I was porting the UNIX Version 7 kemel to an NS32016 based
microcomputer and contain elements found in the other versions of UNIX. During the port the use
of swapping in standard Version 7 was replaced by demand paging from a process image file.
Version 7 was ported as it was the only version of the source readily available to me when I started.

By associating each segment of the address space with a file and allowing the user to create
and remove segments the process can be debugged by reading and writing the file representing
stack and data areas, as in Version 8; and sharcd memory can be provided, which is a feature of
System V. The same mechanism can be used to map any regular file into the process’s address
space allowing dynamic linking and shared text.

* UNIX is a registered trademark of A.T.&T. Bell Laboratories

Vol 8 No 5 20 AUUGN

2. Processes under UNIX Version 8

UNIX Version 8 [Killian 85] provides a new directory called /proc. Each file in this
directory corresponds with the process image of a running process and is used for swapping or
paging. This representation appears to have been motivated by the limitations of previous versions
of UNIX during interactive debugging where the debugger and the object being debugged are
separate processes.

The owner of the process image file is the same as the owner of the process. When the file is
created the permissions allow reading and writing for the owner only. The size of the file is the
size of the virtual space of the process. A feature particularly useful for debugging is the ability to
read and write any part of the process’s virtual space using the read, write and Iseek system calls.
When a write is performed on a shared text segment a private copy is made. Using these routines
to access the files allows them to be protected using the normal file protection mechanisms.

3. SystemV

System V [Bach 86] divides the address space of a process into areas called regions
containing either text or data. There are two data structures involved in mapping regions. One is a
region table containing an entry for each active region in the system giving information about
where its contents are located in physical memory, a pointer to the inode whose contents were
originally read into the region by exec, the size, status, region type and number of processes
referencing the region. The second is a pregion table, or per process region table, containing the
virtual starting address of each region, a pointer to the region table and the permissions associated
with each region.

The text, data and stack regions are created by fork or exec, but system calls are also provided
for the user to manipulate regions. When exec creates the text and data regions the contents of the
executable file are read into these regions.

Shared memory is provided when a region is attached to the address spaces of several
processes at once. Each shared region has an entry in the shared memory table shmid_ds giving
such information as the size of the region, the creator’s identity, the number of times it is currently
attached to an address space, and so on. The shared memory is protected in a manner similar to
that of files having read and write permissions for the owner, the group and others. Shared memory
must not overlap other regions in the address space. If the size of the region is to be increased its
location must be carefully chosen to allow for this expansion.

Before shared memory can be used a new region of shared memory has to be created using a
system call shmget. It returns a shared memory identifier which uniquely identifies the region. A
region specified by the shared memory identifier can be attached to a process’s address space by
using the shmat system call specifying the virtual address where it will reside. If the user does not
specify an address the operating system chooses one.

When a process is finished with the shared memory the region can be removed from its
address space by using the shmdt system call. The region to be detached is identified by the virtual
address in case the same region is attached to the address space more than once.

Another system call, shmctl, is provided to return information about shared memory, change
the user or group id’s or the permissions, and remove the shared memory region.

AUUGN 21 Vol 8§ No 5

4. Functions to be provided by my system

What is discussed here are some building blocks which may be placed within utilities or
runtime libraries to provide new functions. The new functions possible are:

1. Shared text.

2. Dynamic linking (or incremental loading) is provided by allowing object files to be mapped
into the address space. This would involve providing some runtime library routines to store
the address of the object code and transfer control. Giving executable objects a one block
header would simplify the matter so that the header need not be mapped into the address

space.

3. Shared memory is obtained by mapping a file with read/write permission into the address
spaces of more than one process at once.

4. The process image can be accessed by using read or write on the process image file which
contains the data and stack segments.

5. A data file can be mapped a data file into a process’s address space allowing the file to be
used as if it were memory.

The benefit of most of these features is well enough known to forgo any discussion of them here
but the ability to map data files into a process’s address space deserves further comment. One of
the big advantages of accessing files in this way is reducing the complexity of any program needing
access to a file, particularly when the access is random. Examples where this type of access may
simplify a program are an editor mapping in its work file or an interpreter mapping in the
interpreted code. As the usual file handling routines are used by the page fault routine it takes no
longer to process a file in this way than using the read or write system calls.

All the functions mentioned above are provided by the same mechanism which is of benefit
in terms of the complexity of the kernel. Overall there may be some price associated with paging
but this has yet to be determined.

4.1 Segments

Users will notice the effects of this implementation of segments only if they choose to use
the new system calls makeseg, rmseg, exseg and segstat to map files into the address space. The
use of process image files by fork, exec, and exit makes little visible difference except for the
existence of the directory /proc containing the process image files. This makes existing programs
compatible with the new system. There is no rcason why mapping should be used if not desired as
files can still be accessed in the usual way.

The process image is maintained as a normal UNIX file whose size is exactly 16MByte,
which is the maximum size of an address spacc on the NS32016. It contains the data and stack
segments. The existing kernel file handling routines are used to access, create and delete the
process image files created during a fork or exec. These files are maintained until the process exits.

Only the data and stack segments created upon execution are kept as part of the process
image file. No actual data blocks are allocated for the gap between the data and stack segments
which lie at opposite ends of the address space. The gap between them in the process image file
allows for the expansion of those segments. When the segments are extended using exseg to cover
non-existent parts of the file missing blocks are rcad as nulls by the file system software. An
implications of having a gap in the process image file is that the usual file copying procedure
cannot be followed when the process image is duplicated during a fork. It would write blocks for
each block in the gap wasting large amounts disk space. Process image files are copied by a kernel

Vol 8§ No § 22 AUUGN

routine which copies files exactly, preserving any gaps.

The system call makeseg will map a file into the address space so that the mapped section of
the file appears to be a section of memory containing the information stored in the file. The paging
software reads in the block corresponding to that part of the address space when it is accessed, and
in a manner invisible to the user. When either the system call rmseg is used to remove a mapping
or the process exits the file is updated if it is read/write, and closed.

There are costs in time and memory in representing segments in this way. The segment map
and shared file array require more memory. More time is needed for paging. When a page is to be
supplied it is possible that file index blocks need to be read also in order to find where the required
file block is located. Buffer caching may negate this to some extent. If a second level page table is
required the list of page tables in the shared file array must be searched before allocating a new
page table to ensure it does not exist elsewhere in the system.

4.2 Data Structures

A segment, corresponding roughly to a region in System V, is an area of the address space
mapped onto a contiguous block within a single file. The mapping of a segment to a file is defined
by two data structures, the segment map and the shared file map. These structures are used when
pages are read into memory or released and in the allocation and freeing of second level page

tables.

The segment map is an array within the user arca. Each segment map entry gives all the
information required to map a single segment within the process’s virtual space. It includes the
virtual address, size, length, and permissions associated with the segment.

The shared file array contains an entry for each file mapped into any process’s address space.
It maintains a count of the number of processes using that file at any time allowing the entry to be
deleted when the count falls to zero. Its main purpose is to keep track of any pages belonging to
the file residing in memory, by maintaining a list of the second level page tables which map those
pages and a count of the number of processes using each table.

There is a cost in maintaining a shared file entry for files that are not being shared. The
maximum cost will be bome if all files are always shareable. Savings may be made either if files
are assumed to be shareable unless otherwise stated or if they are assumed to be non-shareable
unless stated. Sharing a file involves extra processing when paging and requires memory to store
information on the file. However, treating all segments in the same way does simplify the kemnel
code.

4.3 Paging

The memory management hardware requires each process to have its own first level page
table and set of second level tables used to translate virtual addresses. Processes share pages in
memory by sharing the second level page tables which map them. This structure implies that
segments start on page boundaries. As a result of sharing second level page tables, no second level
page table should be used in mapping more that one segment.

Sharing page tables makes no difference to address translation but must be taken into account
when manipulating page tables. The fact that each segment is mapped to a file affects the strategy
used to find where the page must be read from. When the address cannot be translated because of
the absence of a page table entry for the virtual address indicating the page is not in memory or an
operation caused a violation of permissions an exception called a page fault is generated by the
memory management hardware. A page request is illegal if it is for an unpaged part of the kernel,
an unmapped part of the user address space, or if it violates the permissions on a segment. No
paging is done on the kernel address space so a page fault for any kemel address indicates an

AUUGN ' 23 Vol 8 No 5

operating system error.

When a page fault occurs the page fault routine determines the identity of the missing page.
The segment map is used to find which page within the segment is missing. The shared file entry
pointed to by the segment map is used to determine which file is to be read and the block
corresponding to the missing page. The process sleeps while the block is being read. The use of
existing kernel file access routines during paging ensures the use of the readahead mechanism if
pages of a segment are being used sequentially. When the read is finished, the process which was
sleeping on paging is woken up and an entry created for the page in the second level page table.

It is possible, when a page fault occurs, that the second level page table does not exist.
Allocating a second level page table is not completely straightforward because processes with the
same file mapped into their address spaces share second level page tables. The shared file array can
be used to determine if the second level page table exists elsewhere in the system. Associated with
each shared file array entry is a list of second level page tables being used to map blocks from the
file which are in memory. When allocating a sccond level page table this list is searched to see if
the table already exists so an entry for the table can be placed in the process’s level 1 page table. If
it does not exist a new page table is allocated and an entry added to the list.

4.4 Freeing Level 2 Page Tables

Periodically all the pages belonging to a process are examined to see if they are still in use; if
not, they can be released. Pages are also released when a segment is removed. When no pages are
left in a second level page table it also can be rcleased, but the release algorithm must take into
account the ability of page tables be shared by some other process.

To release a second level page table the entry in the process’s first level table is invalidated.
The reference count for the table in the shared file array is decremented and the memory used by
the page table physically released if the reference count is zero.

4.5 Setting Up Segments

The system call makeseg creates a new segment in the address space associated with a named
file. This involves creating a segment map entry, opening the file and creating a shared file entry or
associating the segment with an existing one. The system call, if successful, returns the virtual
address of the base of the segment. Makeseg will have the following parameters:

1. The name of the file to be mapped in.

2. The virtual address, on a page boundary, of the start of the segment. A suitable base address
will be chosen if this is not specified.

3. The number of pages contained in the scgment which will default to the number of blocks in
the file if this parameter is zero.

4. The offset in blocks within the file where the mapping is to begin.

5. Possible flags are: permissions for the segment, to prevent the segment from being deleted
by the user particularly the text, data and stack segments created by fork or exec, allowing
exclusive access to the file making the scgment non-sharable, requesting that the file be
created if it does not exist, and to have the file truncated on opening.

If the file exists the user must have the appropriate permissions on the file. A file that does not
exist can only be created if the user has appropriate pcrmissions on the directory. The existing file
system software is used to validate the file name and open the file. The fourth parameter allows a
part of a file to be mapped or even different parts of a file to be mapped to different segments such

Vol 8 No 5 24 AUUGN

as when data and stack segments are both mapped to the same process image file. Segments are
prevented from overlapping within the virtual space. The size of a segment can be larger than the
file if the segment and the file both have write permission. In this case the file can be extended.

4.6 Extending Segments

The system call exseg will be provided to enable a segment to be explicitly extended upwards
or downwards. Exseg replaces the brk system call which increases the amount of real memory

allocated to a process. The parameters are:
1. The virtual address at which the segment starts, which is used to identify the segment.

2. The number of blocks (or bytes rounded up to the nearest block) by which the segment is to
be extended. If this is positive the segment is extended upwards, and if negative the segment

is extended downwards.

The call fails either if there is no existing segment with the specified base, if extending would cause
the segment to overlap another segment or overlap the begining of the file it is mapped to.
Extending beyond the end of a read only file is a non-productive activity which should be
prevented. The virtual address of the segment base is returned if the call is successful. If the
segment was extended downwards the base address may have changed.

4.7 Removing Segments

The system call rmseg will remove a segment mapping. It is passed the virtual address of the
segment base and removes the corresponding entry from the segment map array. If the segment
has write permission any modified pages are written to the file before closing it. The reference
count in the shared file map entry is decremented but only deleted when the number of references

falls to zero.
4.8 Getting Information about Segments

The system call segstat can be used to obtain information about the segment whose base
address is passed as a parameter. The information is returned into a buffer specified by the second

parameter.
4.9 Fork, Exec and Exit

In the same way as the child inherits the open files of its parent when forked it shares all the
sharable segments in its parent’s address space. The process image file and non-sharable segments
are duplicated for the child. Since an exec overlays the calling process with the contents of the
named file, all segments including files mapped to segments by makeseg are released. When a
process terminates exit removes all segments and deletes the process image file.

4.10 Design Problems

A problem arises when a page has been modified but is not in a buffer because it is still in
use resulting in an unmodified copy of the information being read from the file when another
process reads the file. This may happen if a file is being read or written using a combination of
access methods, say a process has it mapped into its address space and another process is reading it
in the usual manner. The simple solution is to only allow one type of access at a time. Another
solution is to force modified pages to be written every time the process is switched out where the
file is being shared.

AUUGN 25 Vol 8 No 5

5. Conclusion

Extensions to the UNIX Version 7 kemel have been described which provide the
functionality of System V’s regions and of Version 8’s /proc directory but is more uniform in
approach than either of these. The extensions involve fairly localized changes to the kernel after
alterations to provide paged virtual memory have been made.

6. References

[Bach 86] Bach, Maurice J. The Design of the UNIX Operating System. Prentice-hall Inc.,
New Jersey, 1986

[Killian 84] Killian, T. J. Processes as files European UNIX Systems User Group, Autumn
Meeting September 1984

Recent Work on Research Unix

Peter J. Weinberger
UNIX Research Group
Bell Laoratories, AT&T, USA
researchlpjw

Work continues on modifications of version 9 of research Unix, in networking, in file system
types, and in coping with our new VAX 8550. I shall survey the present and immediate future
with an unseemly emphasis on my work on network file systems.

Vol 8 No 5 26 AUUGN

THE SHARED LIBRARY MINEFIELD

Michael Sellg
Olivetti Australia Pty. Ltd.

) ABSTRACT :
You have just installed Unix System V Release 3, and have read all the glossies about
the benefits of Shared Libraries, yet there are some niggling questions in the back of your
mind.

- Can | really make use of them?

- What overheads are involved when using them?

- What benefits am | really likely to get?

- Are they easy to use?

- How much work will be involved to convert my programs to use them?

This paper attempts to shed some light on the use of Shared Libraries and help to
answer these questions.

1. HOW THEY WORK

The traditional Library under the Unix Operating System is a concatenation of a group of object modules
(".0" files) in a single file. The format of this file is such that the Linker (Id) is able to scan the Library to resolve
references from the user's program to external objects (both functions and data items). When such a
reference is resolved, the object module from the Library is appended to the executable file ("a.out" file).
Once the external object is assigned an address, all references to that object can be fixed to refer to this ad-
dress. The Linker only picks out those modules from the Library that are actually needed, so that the amount of
memory that the final executable program requires is as small as possible.

Using this Library mechanism, several programs, all using the same routine, will each have their own copy of
that routine (Fig. 1). When Shared Libraries are used, however, the code for the subroutine is not appended
to the executable file, but is kept in the "Target Library” file. This is shared by all programs using the Library
(Fig. 2). As a result, using Shared Libraries generally means that executable files are smaller, and when
several programs using the same routines from a Shared Library are executed concurrently, less memory is re-
quired.

The code contained in the Shared Library is mapped at runtime into a fixed address within the address space
of each program that uses the Library. This mapping works in a similar way to Shared Memory Segments but is
done automatically when the program is executed by the exec(2) system call. As a program may use several
Shared Libraries, each must have a unique base address so that they do not clash, and all must be mapped to
addresses that cannot clash with the non-shared code. On the 3B2 computer, for example, the virtual addresses
0x80000000 to 0x80800000 are reserved for Shared Libraries.

If a Shared Library is modified, the addresses of the routines are likely to change. Therefore all references to
routines in the Library are done via a Jump Table. As long as the positions in the Jump Table are not changed,
routines can be altered, and new ones added without having to relink the programs that use the Library.

Unix is a registered trademark of AT&T in the USA and other countries

AUUGN 27 Vol 8 No 5

2. HOW TO USE THEM

When a program is linked with a Shared Library the Linker uses a file called the Host Library. This file is in the
normal library archive format that the Linker uses, but instead of containing the real routines, it consists of
'stubs’ which define the addresses of the routines and data items in the Target Library.

To use a Shared Library rather than a normal one, all that is required is to link the program with the Host Library
file.

For example, if the non-Shared C Library is called 'libc.a’ and the Host Library file of the Shared C Library is
called 'libc_s.a’ then the command:

Id prog1.o libc.a will use the non-Shared Library, and
ld progi.olibc_s.a will use the Shared Library.

Thus the use of Shared Libraries is very easy, and re-compilation of the programs that use the Library is not
necessary.

When a program requiring a Shared Library is executed, the Operating System automatically maps the Text
and Data regions from the Target Library file into the process’ address space. This operation happens
transparently, so that running programs which use Shared Libraries is no different to any other program.

3. BENEFITS AND DRAWBACKS

Up to this point, the Data regions of the Library have not been discussed. In the current implementation, if a
process uses a Shared Library, all Text (Instruction) and Data regions in the Target Library are mapped into the
process’ address space whether they are needed or not. Since the Data regions cannot be shared, this can
cause a process’ Data region to be larger than expected.

Furthermore, in this implementation, all external references from within a Shared Library must be satisfied every
time a program is linked with the Library. Thus, if a routine in the Library references an object in a non-
Shared Library, this object will be linked into every program that uses the Shared Library, even if the routine that
references it is not used by the program.

However, if care is used when the Shared Library is built, these situations can be avoided.
3.1 DISK SPACE

As explained in the previous section, when a program is linked with the Host Library file, the routines are not
copied into the a.out file, but are stored in one file, the Target Library. Therefore with the exception of the
situation described above, using Shared Libraries always results in smaller a.out files.

3.2 MEMORY

As long as several programs using the same Shared Library are likely to be executed concurrently there will vir-
tually always be a saving in memory requirements. However, in a demand paged environment, the amount of
memory that a process needs is not as important asin a swapped system; itis more important to reduce the
number of page faults (see below). Again, the situations described at the beginning of this section can actually
lead to increased memory requirements, but this is unusual.

3.3 SHARED LIBRARY CAN BE MODIFIED WITHOUT RELINKING PROGRAMS

Since the code from the Shared Library is stored in one file only (the Target Library) rather than storing copies
in each program, when the library is modified, all programs using it will immediately use the new code.

Vol 8 No 5 28 AUUGN

Because the routines in the Library are called via a jump table, whose order is not changed, they can grow and
shrink without the user having to worry about their addresses changing.

3.4 PAGE FAULTS

As the code in a Shared Library is shared by several concurrently executing programs, it is likely that the
commonly used routines will stay in memory. This means that when a new program starts and calls one of
these routines, there will not be a page fault, whereas a program using conventional libraries would probably
cause one. On the other hand, rarely called routines in a Shared Library will almost certainly cause a page
fault when called because they unlikely to be present in memory. If such a routine is linked into the program
in the normal manner, there is less chance of a page fault because it may already be in memory due to its
proximity to other routines in the same program.

3.5 OVERHEADS

There is a very small overhead using Shared Libraries, as the routines are called indirectly. As discussed in
section 4, objects outside the Library must be referenced indirectly from routines within the Library, adding
another insignifiscant overhead.

Benchmarks have been run comparing demand paged systems usin& the standard C Library versus the
Shared C Library, which show that total sysiem performance is very similar®. A lot more work is yet to be done
to compare the performance of other more specialised Libraries, such as database or graphics Libraries. J.
Arnold © feels that in a more controlled environment that usually exists in a real world computer system, the
use of say a shared database library, should decrease paging activity and hence increase system perfor-
mance.

In summary, the benefits of using Shared Libraries clearly outweigh any drawbacks as long as the Library has
been built with the possible pitfalls in mind.

4. HOW TO CREATE THEM

When a Shared Library is created, all external references from within the Library must be satisfied. If this
were not the case, all references would have to be linked at runtime, causing a considerable overhead. This
leads to the problem: How does a routine in a Shared Library call a routine outside that Library whose ad-
dress may be different from program to program (Fig. 4a) ? The solution used is to reference all objects out-
side the Library indirectly through a static pointer (Fig. 4b). This pointer is initialised to the address of the ob-
ject by each program. Such a reference is known as an ‘lmported Symbol’.

Unfortunately, this means that changes must usually be made to the source code of a Library to make it
Shared. It also means that it is almost impossible to convert an existing standard library to a Shared Library
without access to the source code.

The work to change the source code can be made less painful by using the C Preprocessor. For instance, if the
routine 'printf’ is to be imported, an include file, say "import.h" can be created containing the line:

define printf (*sl_printf)

This file must be included in each source file that uses 'printf’. As well, the pointer must be declared by adding a
line to afile called say, "import.c™

int (*s|_printf)() = 0;

These files "import.n" and "import.c” should have a declaration for each imported symbol. Of course, "import.c”
must be compiled and included as a module in the Shared Library.

AUUGN 29 Vol 8 No 5

To make matters even more tricky, it is not always easy to find all the symbols that must be imported. This is
especially true if the Shared Library uses the Standard I/O Library which implements some routines as macros.
The best way that | have found to determine what symbols need to be imported is to try to build the library without
importing any, and then to note all the undefined symbols that are listed.

In order to build a Shared Library, a Library Description file should be created. A sample file appears below:

#target /shiib/libtest_s
#address .text 0x80680000
#address .data 0x806a0000
#branch

proc1t 1

proc2 2
#objects

proci.o

proc2.0
#init proci.o

sl_printf printf

sl_strcpy strcpy
#init proc2.0

sl_printf printf

sl_read read

sl_write write

This file contains:
- The base address of the Text & Data regions of the Library.

- A list of the routines in the Library. This list is used to build the Jump (or Branch) Table
into the Library and, as mentioned before, the order of this table (and hence this list) must
not be changed once the Library has been used.

- A list of the object files to link together to form the Library.
- A list of the imported symbols and their values.
This file is used as input to the "mkshlib" command, which then builds the Host and Target Libraries.

The process of converting existing Library source code into a form suitable for a Shared Library is very tedious
and some simple tools to make this process easier should be provided. It would not be hard for instance, to
write a program to automate the production of the 'import’ files described above.

Another short-coming of the current implementation is that there seems no.way of avoiding the importing of a
symbol that is known to be in another Shared Library, and hence has a fixed address. For instance, if our Library
calls "printf’, it would be nice if we could force it to call *printf’ from the Shared C Library, because then the ad-

dress of the routine would be known, and we would not have to import it. Unfortunately, this cannot be
done.

If it were possible to avoid having to import any symbols, then no source changes would be necessary, and
you could then convert a normal Library to a Shared Library without re-compiling. In practice, this is virtuaily im-
possible as nearly every Library at some stage, calls a routine from the C Library.

As you can see, building a Shared Library is not a trivial task, and cannot be done without access to the source
code of the Library.

Vol 8 No § 30 AUUGN

5. SUMMARY

The implementation of Shared Libraries in Unix System V Rel. 3 is very flexible, and once they are created, are
very easy to use. Any normal user can create and use Shared Libraries, as they do not have to be con-
figured into the operating system as is required in some implementations.

Furthermore, as long as a Shared Library has been created properly, it will result in savings in disk space and
memory, with improvements in system performance, and no appreciable overhead. Building the Libraries, as we
have seen, is not as easy as may first be thought. Also, to make the library perform as efficiently as possible, a
lot of work must be done profiling programs in an effort to reduce page faults. Only after this has been done, is it

possible to determine whether a particular routine should be shared or not. Also, extra tools to aid in the con-
struction of Shared Libraries should be provided which could make their building as easy as that of a conven-

tional Library archive.

6. APPENDIX

GOLDEN RULES OF SHARED LIBRARIES
1. Do not Include small, Infrequently called routines.

2. Keep static and global data to a minimum. Prefer to use 'malloc’ to allocate buffers etc, rather than
declaring them as data.

3. Try to keep references to objects external to the Library to a minimum. In particular, avold using ex-
ternal data items - prefer to use a pointer passed as a parameter.

4. Try not to export data ltems at all. Prefer to pass data back to the calling program via a function
return value or through a polnter passed as a parameter.

5. Preserve the order of the Jump Table.
References

1. Unix System V Release 3 Programmer’s Guide, AT&T Technologies.

2. Shared Libraries on Unix System V, James Q. Arnold, $echo, AT&T Unix Pacific Co. Ltd., Feb 1987.

AUUGN ' 31 Vol 8 No §

progi.o libc.a prog2. o
call printf call printf
printf.o
id Id
prog1 prog2
call 3020
call 6148
3020 printf.o
6148
printf.o
Fig.1 Use of Conventional Libraries
Vol 8 No 5 32 AUUGN

progi.o

call printf

id

prog1

libc_s.a

prog2.0

printf = 800000020

call printf

call 800000020

AUUGN

800000020

800006800

id

prog2

call 800000020

lib_s

jmp 800006800

printf.o

33

Jump Table

Fig 2. Use of Shared Libraries

Vol 8 No 5

Prog 1

Text

Data

Prog 2

Text

Data

Shared
Library

Text

S.L. Data

S.L. Data

Fig. 3 The Shared Library is mapped into the address space

Vol 8 No 5

of each program that uses it.

34

AUUGN

prog1 prog2

215
proc

proc 3028

Target Library

call proc

Fig. 4a A dilema: The address of ‘proc’ is different in the 2 programs
that use the Shared Library.

s|_proc <- &proc s|_proc <- &proc

proc
proc

Target Library

Text

call *(sl_proc)

S.L Data S.L. Data

s|_proc = 3028 s|_proc = 2150

Fig. 4b The solution: Call the routine indirectly, and Import the value
of the routine when the program starts.

AUUGN 35 Vol 8 No 5

SunOS Release 4.0
Rich Burridge

Sun Microsystems Australia,
123 Camberwell Rd,
Hawthorn, VIC 3122.
richb@ sunk.oz

ABSTRACT

SunOS Release 4.0 is targeted for availability in the first quarter of calendar year
1988. This paper summarises the planned content. It is being issued early in the recognition
of our customers’ needs for advance information to accommodate their product planning
efforts. All contents and schedules are subject to change without notice. Sun will, to the

best of its ability publicise any such changes.

A. Positioning Overview

SunOS Release 4.0 follows the Sun tradition of:

o promoting a single UNIX standard converging System V and BSD features,
o providing maximum functionality,

o incorporating the latest state-of-the-art operating system technology, and

o supporting computing in heterogeneous environments

This release of SunOS includes many enhancements for the installed base:

o extended converged UNIX functionality,
o addressing key systems administration needs, and
o creating a foundation for the anticipated hardware architectures

The Sun UNIX kemnel has been significantly redesigned as another step in the on-going process of incorporat-
ing state-of-the-art technology to establish a stable architectural base for the next decade. This base includes
work to incorporate the latest virtual memory management techniques, shared libraries, and improved system

security

While this type of implementation work is essential to maintain the leading performance and functionality of
SunOS, Sun is committed to retaining industry standard interface compatibility. In this manner, implementa-
tion changes can be accomodated while maximising code portability to this and future SunOS releases.

Vol 8 No 5 36 AUUGN

B. Contents Overview.

The following is a partial list of the new features in 4.0:

Support for Sun-4

Release 4.0 supports the new Sun-4 product family workstations. This involved changes to the kernel, as well
as to the compilers.

New Architectural Features

Features: Description or comments:
1. Major New Kernel The kernel has been significantly restructured to accomodate a new
Architecture virtual memory management scheme that promotes sharing system

resources. Swap space requirements are reduced, system resources are
utilised more efficiently, cacheing of frequently accessed data is more
efficient, and files can be treated as part of virtual memory making
access to large files more convenient and efficient.

The new VM system provides sharing on a page-by-page basis and
employs a copy-on-write mechanism to create individual copies of pages
as they become necessary.

Swap area is now a regular file sharing disk resources with other files.

2 Shared Library Using shared libraries reduces program size and swap space
Facility requirements and provides the flexibility to incorporate new versions
of libraries automatically, thus facilitating bringing new libraries into
system-wide use. libc and user built libraries are sharable in this
release and future releases will offer more system libraries converted to
shareable format.

Shared libraries utilise the new virtual memory system and a revised
link editor (/d). The C compiler has been enhanced to generate position
independent code (pic) and Id supports either linking code dynamically
at run-time or statically at initial program load.

Note: Sharing and its associated dynamic binding is the current planned
default operation although a small performance penalty may result from

run-time linking.
3. Resizable swap area Resizing client swap space no longer requires taking a server and all its
for diskless clients clients off-line or reinstalling the system.

Only the client(s) being modified needs to be suspended.

4, Lightweight Processes Provides the ability for a C program to have multiple concurrent
threads of execution. Lightweight processes facilitate developing
programs that manage asynchronous events.

Facilities provided include messages, monitors, exception handling,

and flexible context switching. Both coroutines and preemptive
scheduling are possible.

AUUGN 37 Vol 8 No 5

5. Other Kernel
Enhancements
a.

Networking

1. Improved support for
diskless clients

2. Filesystem re-org

4. YP Enhancements

5. Secure networking
features

Vol 8 No 5

4.0 provides lightweight processes only at the user application level.
Kemel support is not provided.

These include:

System V shared memory implementation now supports paging of
shared data space.

Network interface tap (NIT) improvements include packet
filtering and integration with the streams environment.

Packet filtering provides an Etherfind-like capability allowing
applications to monitor ethernet traffic selecting, for example,
ethernet packets from a certain host or with a specific field setting.

Diskless clients are supported via the NFS file system. nd

and its associated partitions no longer exist. This improves
heterogeneity support (non-Sun servers can now support diskless Sun
clients) and improves administration since swap area is now a regular
file. (Note: Being a regular file also means that client swap areas
shares disk resources with other applications running on the client and
with other clients.)

The performance goal is to achieve Release 3.2 performance levels in the
absence of nd. Eliminating nd does NOT impact the number of clients
a server can handle.

A boot block server will be provided to support Sun-2s with proms
that don’t support tftp booting, so no prom change is required by this
change.

The re-organized filesystem facilitates maintenance of servers by
permitting more sharing of binaries, matching diskfull and diskless
file layouts, easier mixing of multiple architectures, and easier access
to remote executables in general. A single server can more easily
support multiple architecture clients and non-Sun servers can support
diskless Suns.

The root filesystem and /usr/lib have been re-organised.
Shareable files, including architecture dependent files, are now all in
{usr/lib and client private data is all in root.

The YP databases can be updated over the network. This simplifies
system administration and, depending on local administrative policy,
the system administrator need no longer be solely responsible for
incorporating YP map updates.

Secure networking improvements provide more thorough authentication
of user identification prior to allowing file access. Security is provided
by supporting the exchange of conversation keys and by preventing
superusers from masquerading as other users to access secure filesystems
across the network.

38 AUUGN

6. NFS performance

Standards

1. System V
enhancements
a.

2. ‘More 4.3BSD

Peripherals

1. New setup utility

AUUGN

NFS utilizes secure RPC so that servers can optionally become more
secure. Secure operation is selected by specifying the -secure option for
individual /etc/exports entries. For secure operation RPC utilises a YP
database of public and private conversation keys.

NFS benefits significantly from the improved cacheing improvements
provided by the new virtual memory system.

New features include:

Remaining system calls required for Base Level Release 2
functionality: chown, creat, fcntl, kill, mknod, open, and utime.

Complete System V STREAMS interface incorporated in the kernel.
Using STREAMS simplifies writing device drivers by supporting
portable protocol modules.

Fully System V and BSD compatible tty interface using STREAMS.
System V compatible archive utility (ar).
System V batch utility and job scheduler (at, batch, cron and crontab).

Access to Sun added-value libraries (e.g., SunView) from System V
programs.

Most 4.3BSD functionality is provided, including the new upper limit
of 64 (vs. 30) on the number of open files per process and a fully
4.3BSD compatible subnet facility.

In general, 4.3BSD provided many bug fixes and performance
enhancements. Most of those which are applicable to Sun
Workstations and which were not already in SunOS prior to the
availability of 4.3BSD or added since then are provided by SunOS
Release 4.0. (Note: Sun Consulting has developed an implementation
of XNS that includes the Transport and Network layers on top of
standard ethernet.)

The new setup utility provides convenience and flexibility. New
capabilities include the ability to reuse configuration files for common
configurations, to edit existing configuration files to correct errors or
support minor configuration differences, and for sophisticated users
to specify variants to Sun supplied configuration alternatives.

setup runs off a table interface much like the 3.x terminal version of
setup; there is no window version.

39 Vol 8 No 5

2. On-line disk
formatting utility

3. New Mass Storage

Systems

4, Removal of
Interphase 2180
driver

Other Enhancements

1. Secure System Work

2. C Global Optimizer

3. Internationalization

4, Documentation

Vol 8 No 5

The disk formatting utility now runs under UNIX and can be used to
format any drive not currently mounted. Formatting disks is now much
faster and no longer requires a dedicated system. Multiple disks can be
formatted simuitaneously.

Support for as yet to be announced mass-storage systems
is provided.

The driver for the Interphase 2180 Disk Controlier is no longer
included in the SunOS. The removal of obsolete drivers is part of the
on-going program to unburden the standard system software from
supporting an ever growing number of devices. As drivers become
obsolete, the pending removal at the next release is announced.
Systems (a few Sun-2/100Us and Sun-2/150Us) with Interphase 2180
Controllers must be upgraded before they can run Release 4.0.

Optional security measures provide an auditing log of failed and/or
successful attempts to use system resources on both a system wide or
individual user basis and identifying who was using the system at the
time of attempted security breaches. Improved protection of the
password database is also provided.

In DoD parlance, Release 4.0 provides "unevaluated C2" level security.
This is the groundwork for a future secure system product.

Significant run-time performance for C routines is now possible via the
C compiler optimization option which applies the same global
optimizing technology that is available in Sun’s FORTRAN compiler.

8-bit integrity will be assured at this release in order to support
non-ascii character sets. This is the first step towards an
internationalized UNIX that supports local character sets. The 8-bit
kernel and tty driver support creating file names with 8-bit characters
from within C programs. However, utilities such as suntools, csh, sh,
vi and other tools do not incorporate this 8-bit filenaming at this
release.

New manuals, and improved introductory guides and system
administration guides ease the tasks of mastering and administering the
system. New documents include: System Services Overview and a
Global Index to all system manuals. Documents with major revisions
include:

Installing UNIX and Programming Utilities.

Repackaging of the documentation offers the convenience of selecting
the set of manuals targeted to the specific users needs, e.g. introduction
to system use, system reference, system administration, and program
development.

40 AUUGN

5. Obsolescence Instigation of /usr/old directory and movement of obsolete modules to
Mechanism that directory. This introduces a warning system to prepare users that
the included modules will be removed in the next release. For Release
4.0, the following programs will be moved to /usr/old:

sun3cvt Was only needed for 2.0 to 3.0 transition.
compact Replaced by faster and more efficient but incompatible

compress program from 4.3BSD.

eyacc Was used only to implement Pascal. Has been removed in
4.3BSD.

make Pre 3.4 version of make.

prmail Replaced with mail -u by 4.3BSD.

pti Replaced with troff -a by 4.3BSD

C. Release Specifications

Performance

Release 4.0 is expected to achieve performance levels at least equivalent to that of Release 3.2.

Resource Requirements

Release 4.0 resource requirements (memory and disk) for the system software are expected to be the same as
for Release 3.2. Shared libraries have contributed to making the basic resource requirements of Release 4.0
comparable to those of 3.2 in the presence of added capability. The full set of system software and associated
files (including text files such as man pages and font files which do not benefit from the space savings provid-
ed by shared libraries) will likely require more disk space than consumed by Release 3.x files.

Code Migration and System Administration Changes

Maximizing binary compatibility is a major design objective of Release 4.0. To date no known widespread
sources of binary incompatibility for well-written code exist. As incompatibilities arise they will be careful-
ly documented. Source code changes may be required in some binary compatible programs when they are
recompiled. The following lists key known compatibility issues and areas subject to visible impact on adminis-
trative or program-build procedures:

Features: Compatibility Issues & Procedural Changes:

New Architectural Features

1. Major New Kernel Programs that read the structure or depend on the format of core files
Architecture may require revisions.

2. Shared Library Build procedures for libraries may need to change.
Facility Existing programs will work but will require rebuilding to take

advantage of shared libraries. Build procedures for programs requiring
a non-shared library must explicitly select this option.

3. Resizable swap area New, easier administrative procedures required.

4, NIT Improvements Programs utilizing NIT will require source changes and recompilation.

AUUGN 41 Vol 8 No 5

Networking

1. Improved support for
diskless clients

2. Filesystem re-org
3. YP Enhancements

4, Secure networking

Standards

1. System V enhancements:
SVID Compliance
System V/BSD tty
Batch utility/job
scheduler

2. System V shared
memory

Peripherals

1. New setup utility

2. On-line disk
formatting utility

3. Removal of
Interphase 2180
driver

Other Enhancements

1. Secure System Work

Installation

Release 4.0 is a major release introducing extensive architectural changes. As such, it requires a full system
installation. With the new setup utility, system installation and configuration is, however, much more conve-

nient.

Vol 8 No §

New, easier administrative procedures required

New, easier administrative procedures required.
Potential changes to administrative procedures.
Pre-4.0 (insecure) yppasswd may not work against a secure 4.0. yp

yp server. Secure authentication will prohibit access to setuid
programs lacking authorised access.

Programs using creat, fcntl, kill, mknod, open, and utime may have to
be relinked.

. Programs using System V termio ioctl calls will perform better if they

are relinked.

Slight impact on system administration procedures only.

Programs using the System V shared memory shmdi library call that
were linked on a Release earlier than Release 3.4. should be relinked to
avoid a spurious message to the console window.

New, easier administrative procedures required.

New, easier administrative procedures required.

Systems using Interphase 2180 must be upgraded.

Modules using the encrypted password field in /etc/passwd or
fetc/group will require modification.

42 AUUGN

D. Acknowledgements.

This paper is mainly based on an internal pre-release report written by Pat Harding, plus a presentation given
to Sun personnel at Palm Springs in late July.

E. References

[GING 87) Gingell, R. A., M. Lee, X. T. Dang, M. S. Weeks, "Shared Libraries in
SunOS", Summer Conference Proceedings, Phoenix 1987, USENIX
Association, 1987.

[GING 871 Gingell, R. A., J. P. Moran, W. A. Shannon, "Virtual Memory
Architecture in SunOS", Summer Conference Proceedings, Phoenix
1987, USENIX Association, 1987.

[CHEN 87] Cheng, R., "Virtual Cache in UNIX", Summer Conference Proceedings,
Phoenix 1987, USENIX Association, 1987.

AUUGN 43 Vol 8 No 5

Writing Parallel Programs for the Sequent Multiprocessor

_Stephen Frede
Softway Pty Ltd.

The Sequent family of computers are symmetric multiprocessors. In order to take fullest advantage
of the multiple processors available, a single application has access to specialised parallel
programming primitives. This talk is a discussion of those primitives in the context of the C
programming language and the Dynix (parallel UNIX clone) operating system.

Unix on the Cray
Peter J. Weinberger
Bell Laboratories has had a Cray XMP-24 for about 18 months. During most of that time the
machine ran both COS and Unicos, Cray's version of Unix. Recently it started ranning Unix on

both processors. Supercomputers are unlike the usual run of Unix machines, and I shall talk about
our experience, and implications for the system.

Vol 8 No 5 44 AUUGN

A low cost, short range, reconfigurable microwave
data link *

Chris Clarkson, Ian Dall & Alex Dickinson

1 Introduction

Many institutions, such as research facilities and universities, that utilize large scale
computer services are distributed geographically, with buildings being separated by dis-
tances of up to several kilometers. Historically such institutions have had computer
services provided by a centralized facility with user terminals connected via serial lines.
The more recent availability of minicomputers, workstations and powerful personal com-
puters has led to a change in the distribution of computer facilities. Processors are in
general moving closer to the user, often onto the desk. This redistribution has in turn
increased the need for computer interconnect. A great deal of a computers power as a
tool comes from its information sharing capability. Users can share programs, data and
messages and this move to distributed processing requires networking facilities that can
maintain these services as users move off central machines.

This paper describes a flexible networking link based around digital and microwave
hardware. The link has been designed to support a variety of different networking
needs in a single, user reconfigurable unit:

1. Distributed Processing. Interconnection of mainframes, minicomputers, worksta-
tions and file servers is supported by the provision of fast TCP/IP capable links,
allowing use of higher level facilities such as NFS and ACSnet.

2. Mized Processing. Interconnection of personal computers is supported by the pro-
vision of simple links that appear as serial lines thus economically interconnecting
personal computers via serial ports and the use of simple communication facilities

such as Kermit.

3. Centralized Processing. Interconnection between ordinary terminals, printers or
personal computers to central machines is also provided by the provision of simple
links that appear as reconfigurable serial lines.

*Copyright ©1987 C. Clarkson, I. Dall, A. Dickinson

AUUGN 45 Vol 8 No 5

The unit itself has a number of advantages in addition to its flexibility in terms of
networking tasks:

1. Channel reconfigurability. The unit may be configured with between four and one
hundred and twenty-eight channels by installation of the required number of four
channel sub-systems. The baud rate of each channel may be separately selected,
with the channels being multiplexed onto a single 500k bits per second link.

2. Interface simplicity. The unit provides a link that is transparent to the user. RS-
232 connections, which can make use of either XON/XOFF or DTR/CTS flow
control, are provided at either end and appear to be connected by a “virtual wire”
provided by the link hardware and software. However the microwave medium is
inherently less reliable than a “physical wire”. Therefore the protocols within the
link ensure that it appears to the user as a one hundred percent reliable “virtual
wire”.

3. Installation simplicity. The only requirement on transceiver installation is line-of-
sight capability. This has obvious cost and time advantages over installing cabling,
without cabling’s poor expansion capacity.

4. Recurring costs. The recurring costs are independent of volume of data transfer,
basically equipment servicing and a yearly licence fee. Telecom’s proposed move
to time based local digital data charging makes this style of link attractive as an
alternative to local modem links.

In this paper the system design, communication protocols and hardware implementation
of the link are described.

2 System Design

The system design of the link is partitioned at the uppermost level into digital and
microwave modules. The microwave module is regarded as providing a single, high
bandwidth, unreliable serial link. The creation of multiple, reliable link channels be-
comes the province of the digital module, and it is the design of this dlgltal module that
is described in this section.

The digital system is partitioned into three modules, each providing an increasingly
abstract layer of communication services. This structure is analogous to that provided
by the lower levels of the International Standards Organization Open Systems Intercon-
nection model. Interactions between layers occur only through well defined interfaces
that operate on a client-server basis, the lower levels acting as servers (clients) to the
higher levels for incoming (outgoing) data.

Vol 8 No 5 46 AUUGN

The three modules are:

1. Input Level: The Multichannel Processor (MCP).
2. Intermediate Level: The Polling Processor (PP).
3. Link Level: The Link Management Processor (LMP).

Microwave

Figure 1: System overview.

The overall system. design is illustrated in Figure 1. The operation of the three digital
modules is described in the following subsections.

2.1 The Multichannel Processor

The input level section provides the interface between the system and the RS-232 data
circuits. It has been named the Multichannel Processor (MCP). The MCP provides
for an initial level of data concentration/distribution. An MCP supports four RS-232
ports. The configuration of speed, flow control interpretation and parity is facilitated
for all the four channels. The design of the MCP is shown in Figure 2.

The MCP operates in the following manner. Whenever a byte of incoming data is
received on any one of the four channels the MCP reads this data and attaches an
address to it. This address is derived from which channel supplied the data and where
the MCP is in the system backplane. The MCP then writes this data into a queue
which is presented for the next level to read. The MCP must in addition read from a
second queue, which another layer writes outgoing data into, and transfer this to the

appropriate RS-232 circuit.

AUUGN 47 Vol 8 No 5

1 FIFO out

| LMP/PP Decoding

ROM

Figure 2: Multichannel Processor (MCP) overview.

The MCP must also cope with flow control of the channels. Flow control can either
take the form of in band XON/XOFF or out of band DTR/CTS. An additional flow
control consideration for the MCP is the filling of its internal queues and the prevention
of loss of data. The MCP accomplishes these tasks by means of in band signaling of
both out of band data and control information by means of special packets. The MCP
must therefore keep track of the state of the flow control on each channel. Options are
provided for interpreting XON/XOFF or not and utilizing DTR/CTS or not.

2.2 The Polling Processor

The Polling Processor (PP) is responsible for polling the MCPs and presenting the
collected data to the next level. At this level a statistical multiplexing scheme could be
implemented. However in the prototype design a straight poll of the MCPs is carried
out. The complexity of this section could be decreased by reducing this processor
to nothing more than a multiplexer, a counter and some combinational logic. However
using a microprocessor provides a high level of flexibility in implementing efficient polling
strategies. The design of the PP is illustrated in Figure 3.

2.3 The Link Management Processor

The Link Management Processor (LMP) is responsible for the majority of complex high
level link functions. The LMP must read data from the PP and assemble it into packets
to be sent to the microwave module. It transfers these packets to devices that subse-
quently feed the microwave hardware. It must hold copies of these packets in memory

Vol 8 No 5 48 AUUGN

1 FIFO Out

| LMP Decoding

| On Board Decoding

M68000 5

Figure 3: Polling Processor (PP) overview.

until it has received positive acknowledgement of their receipt. If positive acknowledge-
ment is not received for a packet then the LMP must resend it. Therefore these packets
must contain packet identification, acknowledgement or otherwise of sent packets, and
error checking information. The LMP must also disassemble incoming packets, check-
ing their validity, placing acknowledgement information in outgoing packets and finally
present the data to an MCP. The design of the LMP is illustrated in Figure 4.

2.4 Performance

The link data rate is limited by two factors, the raw bit rate of the microwave system
and overheads within the digital system. Radio frequency bandwidth limitations dictate
a raw bit rate of 500k bits per second between the microwave components. There are
three sources of overhead in the digital system. The first comes from constructing
packets in the MCP to be passed to the next level. The second source of overhead
comes in the additional information required in the LMP packet constructs. This is
in fact minimal and only of the order of five percent because of the LMP packet size.
The final overhead is introduced by packet storage and retransmission. This overhead
is somewhat indeterminate but may be as high as twenty five percent depending on the
protocol used. From these consideration a figure for the effective bit rate of the link
may be derived and the baud rate of a channel when the maximum number of MCPs
are present. It can be shown that the effective bit rate of the link is approximately 200k
bits per second, implying that the average baud rate of a channel when all MCPs are
equally loaded is a little more than 1200 baud. However much higher peak baud rates
on each channel can be achieved.

AUUGN 49 Vol 8 No §

DMA Controllier

On Board Decoding

M68B000

Figure 4: Link Management Processor (LMP) overview.

3 Communication Protocols

The system essentially utilizes only two protocols. One of these is concerned with the
concentration and flow control handling within the MCP and is internal to the sending
and receiving systems. The other protocol appears at link level and is used to obtain
reliable end to end transfer of data over the unreliable microwave media. This is the
more complicated of the protocols.

The MCP packet protocol entails a concentration step and signaling for out of band
data and control information. The MCP packet has three elements. The first element
is the data that is being sent. The second element is the address of the channel the
data is destined for. The final element is a flag signaling that the packet is either a
conventional packet or a packet that contains out of band or control information.

The link level protocol is an error detection and retransmission protocol as opposed
to an error detection and correction one. A sixteen bit Cyclic Redundancy Check is
used to perform packet verification. A windowing system is therefore implemented to
facilitate the resending of packets out of order. The link packet has four elements.
The first element is packet identification information. The second is acknowledgement
information used for packet verification. The third element is link status information.
The final element is a stream of MCP packets followed by CRC information. The
protocol is tailored for use on a synchronous link.

Vol 8 No 5 50 AUUGN

4 Hardware Design

The system is packaged in two units, the microwave transceiver hardware and the digital
hardware. The two are connected by a single high speed RS-422 serial data link. This
enables the microwave unit to be placed in a position with line-of-sight access to the
other end of the link and the digital unit to be placed in a position such as a machine

room.

It should be noted that the digital hardware is independent of the medium employed
and could be applied for use with other unreliable physical links such as line of sight
infra-red or laser links.

4.1 Digital Hardware Unit

The design of the digital hardware is a compromise between performance, flexibility
and cost. Microprocessors are used in all three modules of the digital system because
of their low cost and flexibility. However, in several cases novel designs for interfaces
between microprocessors and the rest of the associated hardware have minimized the
processing to be done in software. This occurs with little or no extra hardware costs
and with minimal reduction in flexibility. Extensive use has been made of hardware
FIFO queues in communicating between the digital system components. This allows a
very simple interface between the three sections without the complexity of multi-ported
memory which would otherwise be necessary to achieve sufficient performance.

The Motorola 68000 processor has been selected as the processor for use throughout the
system. While in some cases an eight bit processor such as the Zilog Z80 may have been
adequate, the cost difference would have only a minimal effect on the overall cost of the
system, and the extra processing power would prove invaluable if more sophisticated
algorithms are used in future developments.

Each MCP consists of a 68000 processor, two dual asynchronous receiver transmitters,
an input FIFO, an output FIFO plus associated RAM, ROM and a small amount of SSI
“glue”. The output FIFO of the MCP connects with some control logic to the PP via
the split system bus (SSB). The PP always controls one half of the SSB and so avoids
all bus latency and arbitration overheads.

The PP consists of a 68000 processor, RAM, ROM an output FIFO and some SSI
“glue”. The “glue” logic has been kept to a bare minimum by using a very simple
address decoding scheme. This is possible because the physical address space of the
68000 is much larger than will be used in this application. The PP communicates with-
the LMP via a FIFO.

AUUGN 51 Vol 8 No 5

The LMP consists of a 68000, RAM, ROM, a four channel DMA controller, two Univer-
sal Synchronous Receiver Transmitters with in built CRC generation and testing and
associated SSI “glue”. Most of the data handling is done by the four channel DMA
controller which transfers data from the input FIFO to RAM, from RAM to the output
USART, from the input USART to RAM and from RAM to the SSB.

Data is transferred from the LMP to the MCP via the other half of the SSB. The LMP
simply places the MCP packets on the SSB. No extra processing is necessary since the
packets contain the address of the destination MCP.

4.2 Microwave Hardware Unit

The system utilizes a simple microwave transceiver capable of full duplex operation. The
transceiver operates in the X band of the Ultra High Frequency ranges. The transmitter
incorporates an amplitude modulated ten milliwatt Gunn diode oscillator. Superhetro-
dyne technology is employed within the receiver. Modulation and demodulation are
accomplished using standard amplitude modulation techniques. An RS-422 channel is
provided for communication with the digital hardware unit. The design of microwave
hardware is illustrated in Figure 5.

unn Diod
scillator}

Antennas

Figure 5: Microwave hardware overview.

Vol 8 No 5 52 AUUGN

5 Conclusion

This paper has described a versatile, reconfigurable and extendable microwave data link
for use in economically providing a spectrum of networking services to localized sites.

A prototype link is currently being produced. It is to be installed between the University

of Adelaide computer centre and a university residential college. The link will provide
for the college’s growing needs by virtue of its extendability, as more ports are required,

further MCP boards may be installed.
Acknowledgements

Many thanks to the other members of the design team: Nick Davias, Paul Franzon,
Mike Pope and Mike Liebelt.

AUUGN 53 ‘ Vol 8 No 5

Some Aspects of System V.3 Networking

Tim Roper
timr@labtam.oz

Labtam Limited

ABSTRACT

Several features new to Release 3 of System V are intended to support the
implementation of network protocols and applications. STREAMS provides the under-
lying mechanism for implementing network functions as layered kemel modules with
well defined interfaces. AT&T has tendered its Transport Interface (based on the ISO
Transport Service Definition) as the common interface to be presented by transport
providers to higher layers of kernel modules and user programs. This framework is
supposed to set the scene for the future development of network protocols and services
in System V.

The STREAMS mechanism and the Transport Interface will be described. Remote File
Sharing and cu/uucp will be cited as examples of applications using them. Cursory
comparisons with alternative systems may be made.

1. Introduction

The UNIXt operating system has frequently been used as a vehicle for research into and experimentation
with new ideas in computer networking. However the traditional character I/O system was designed
with slow terminal lines in mind. It handled data a character at a time with minimal processing con-
cerned only with the user interface (such as input editing).! For high bandwidth communication techno-
logies and complex network protocols it lacked efficiency and generality. Various enhancements were
made to the system over time. Efficiency improvements included handling groups of characters together
where possible. Some functionality was added with line disciplines. Of course ad hoc changes did not
improve the general appeal (structure, maintainability, extensibility) of an area of the system that had
long been complicated. Dennis Ritchie redesigned it. His Stream Input-Output System was described,
appropriately, in the October 1984 special issue of the Bell Laboratories Technical Journal.?

When seeking to redress the lack of support for networking services in UNIX System V, AT&T chose
Ritchie’s Stream I/O System as the basis for the new framework on which such services could be imple-
mented. They called their variant STREAMS 2

By predefining the service interfaces of certain levels of protocols AT&T intends System V to help the
implementation of both applications that are independent of the protocols whose services they use, and
of higher level protocols that are independent of the implementation details of lower level ones. In par-
ticular a Transport Interface has been defined.

To allow user processes to access services provided by STREAMS modules in the kernel various
enhancements were made to the user/kemel interface. The lack of a good method for user level pro-
grams under System V to do I/O on several devices in a demand driver manner (‘‘synchronous I/O mul-
tiplexing’’) has been dealt with to a limited extent.

These new facilities are available in Release 3 and are introduced in this paper. It should be stated at
the outset that some other UNIX operating systems have features which address similar problems as

+ UNIX is a trademark of Bell Laboratories.

Vol 8 No 5 : 54 AUUGN

these, A brief reference to them is made.
2. STREAMS

2.1. Motivation

Figure 1 shows the protocol components of a file transfer session using DARPA Internet protocols over
Ethernet.%5 Data flows from the server process to the client process via the protocol modules on the
server’s host, the physical medium and the protocol modules on the client’s host, and vice versa. It
undergoes processing in the various modules mostly concerned with managing the communication as
well as the file transfer. We are concerned with using STREAMS to implement the flow and processing
of the data within a host running System V Release 3.

2.2. The Structure of a Stream

Figure 2 shows a simple use of STREAMS. A device driver in the kemel is connected by a full-duplex
connection, called a Stream, to a user process. It is created when the user process opens a character spe-
cial file that is distinguished in the kernel configuration as identifying a STREAMS device rather than a
traditional character device. The Stream is then referenced with the returned file descriptor as with trad-
itional character special files. All Streams start out this way. A Stream disappears from the system
when last closed.

The Stream head manages the user/kernel interface (Section 3). That is, it implements those system
calls relevant to STREAMS. For example, it copies data between a user process’s memory and a
Stream in response to system calls.

A more interesting Stream may be constructed by pushing a module onto it. This causes the module
named to be interposed in the Stream at the top and hence to receive, presumably process, and re-send
messages flowing up or down the Stream. Conversely the module currently at the top may be popped
off. Each time a module is pushed a new instance of it is created. Modules, drivers and heads com-
municate by passing pointers to messages; copying is generally avoided. Modules, like drivers, are
implemented in the kernel; a given module must have been configured to be pushed.

Suppose that the device in Figure 2 is a serial interface (presumably with a terminal attached). Data
written to the Stream is transmitted to the terminal with no post processing (eg. tab expansion). Input
read by the process has not been subject to canonical processing (eg. no carriage-return to line-feed
mapping). A request for parameters from the Stream provides the baud rate and number of stop bits
being used but not the current erase or interrupt character. In Figure 3 a module implementing tradi-
tional #ty features has been pushed onto the Stream. Data put onto the Stream by the process and the
driver will now be processed in the manner of traditional ttys.

Alternative line disciplines may be implemented as distinct modules. Note that the hardware dependent
details have been contained in the driver. The generic, hardware independent, terminal functions have
been placed in a module that may be used above any serial device driver. In fact it may be pushed onto
any Stream that is associated with a terminal user, such as a network connection to a remotely logged in

user.

2.3. The Structure of a Message

The unit of data on a Stream is a message. Whether a module or driver respects the boundaries between
successive messages depends on the semantics that it implements. The serial interface driver in Figure 3
would ignore message boundaries in both directions treating each character as the unit of data. The y
module may assemble incoming characters into lines and place each line in a separate message so that
the process reads one line at a time as is expected of ttys. However, boundaries between messages from
the process are likely to be arbitrary, perhaps corresponding to the process’s output buffer size. A
module doing packet assembly/disassembly may treat data to and from the disassembled (start-stop) side
one character at a time whereas each message to and from the assembled (packet mode) side may
correspond to one packet on the network. Any meaning attached to message boundaries is by conven-
tion between cooperating modules, drivers and processes. Of course structure information may be

AUUGN 55 Vol 8 No 5

encoded in the data using other conventions.

Since modules, drivers and processes communicate by passing messages a mechanism is required for
them to pass control information. This is done by tagging each message with a type. The set of mes-
sage types is fixed and includes the following.

DATA user data, protocol headers etc.

PROTO service primitives and their parameters (Section 4)
IOCTL an encapsulated user process ioct! call

IOCACK

IONAK the response from the driver to an IOCTL

ERROR a driver notifying the head of an error condition

STOP

START

DELAY a request to a driver to start, stop or delay transmission

Some message types flow in sequence with DATA and are subject to flow control. Other types are
given priority, jump to the head of queunes and are never held up by flow control. For example PROTO
messages are in the first category. This is necessary as they may delimit state changes in the data
stream. A PROTO message that enables or disables a data encryption module would cause havoc if it
travelled out of sequence with the DATA messages concerned. On the other hand a STOP message is
given priority as it is assumed that the remote end of the communication has requested, in a protocol
dependent manner, that transmission be stopped immediately. For example, in Figure 3 it may be the ¢y
module that recognises XON/XOFF characters from the remote end and signals the driver with
START/STOP messages.

Memory for messages is allocated in fragments of a small number of fixed sizes (‘‘quick fit’’). A mes-
sage consists of one or more chained fragments of the same or different types. For example an IOCTL
fragment is followed by a DATA block containing the arguments to the call.

2.4. The Structure of a Module

A module is composed of two halves. The write half handles data flowing downstream from user to
device. The read half handles data flowing upstream from device to user. For each instance of a
module there are two queue structures, one for each half, called the read and write queues. These
queues may be used for buffering data, if required by a module. Messages are queued by linking the
head of the first message to the queue and linking the head of each subsequent message to the head of
the previous message. In any case queues serve as the kernel’s handle on the module (halves).

Data arriving at a module from upstream may be immediately processed and passed onto the next
module downstream. Or it may be put on the module’s write queue pending later processing. Similarly,
data arriving from downstream may or may not linger on the read queue. The entry points to a module
consist of two functions for each direction, the read and write put and service routines. Put routines are
mandatory; service routines are optional. When a message arrives at a module the appropriate put rou-
tine is called with (pointers to) the appropriate queue and the message as arguments. Passing the queue
distingnishes between multiple instances of a module. At the choice of the module designer, the mes-
sage may be immediately processed and passed onto the next module. Or it may be placed on the
queve, In that case the associated service routine is implicitly scheduled to be called at some later time
(if the quene was previously empty).

Service routines are called with a queue as their sole argument. By writing modules so that they save
state in a ‘‘per Stream’’ data structure they can be made to function a bit like coroutines. One of the
queue structure’s fields is an otherwise unused ‘‘generic’’ pointer that is usually initialised by the
module (when it is pushed onto the Stream) to point to that Stream’s data. Hence the quene argument
establishes the module’s state for the particular Stream. It is important to note that modules are not
processes, but just kernel subroutines. The only context supplied them by the kernel is the queue argu-

ment.

Vol 8 No 5 56 AUUGN

Service routines are called by the kernel scheduler and may be interrupted. Put routines are generally
assumed to be called at (hardware) interrupt time and hence with interrupts masked. The module
designer can therefore separate processing into a priority part that must be done as soon as possible even
if interrapts are disabled, and a less urgent part that may be done with interrupts enabled.

2.5. Multiplexing

Although a module may be pushed onto many Streams each instance is independent. A driver, however,
may be involved in many Streams simultaneously. The serial interface driver in Figure 4 is handling a
device with several ports. It must be concerned with aspects of the system’s single interface to the dev-
ice as well as the device’s many interfaces to its attached lines. Such a driver is said to have upper
multiplexing. Individual Streams are created by opening different minor devices.

A hardware device driver is a special case of the need for multiplexing when implementing networks.
More generally, multiplexors may be required at intermediate points in a Stream. Implementing a tran-
sport protocol that provides many process to process connections on one host to host link requires upper
multiplexing (Figure 5). Alternatively, an internetworking protocol deals with messages from many net-
work interfaces, hiding higher level protocols from this fact (Figure 6). This is called lower multiplex-
ing.

STREAMS provides multiplexing by generalising the notion of a driver. Multiplexing drivers have a
minor device for each Stream that they are willing to connect to simultaneously. Streams above a multi-
plexing driver are created by opening the device as with device drivers. Attaching a Stream below a
multiplexor is more complicated. The head of the Stream that is to be multiplexed is connected to the
lower side of the multiplexing driver. This is done by opening the device and issuing an ioct! call on it
with the lower Stream as an argument. The lower Stream is then accessible only through the multiplex-
ing driver until the process explicitly breaks the connection with another ioct! or closes the device. A
lower multiplexing driver is configured by requesting many such connections below it. A driver may be
both upper and lower multiplexing. For example, the ARPAnet Internet Protocol® is designed to connect
to multiple networks and to dispatch packets to different higher level protocols depending on a field in
the IP header (Figure 7). Note that Stream configurations are determined at run time from a set of com-
ponents determined when the kernel is configured.

2.6. Flow Control on a Stream

The STREAMS flow control mechanism is tied to queues and service procedures. Before passing a
(low priority) message on, a module is expected to check that there is room for it in the next module’s
queue. If there is not, it is expecied to keep the message on its own queue. When the next module’s
queue has enough room, the first module’s service routine is automatically called to restart the data
flow. In this way, congestion at a driver causes data to back up in the previous module, then the one
previous to that, and so on. This will extend back to the Stream head, if necessary, causing any further
writes by the process to block and put it to sleep. When the driver’s output queue drops sufficiently the
previous module is re-enabled and its queue then drops, re-enabling the module previous to it. Eventu-
ally the Stream head is re-enabled, the process wakes up and the write call completes. A module (or
more correctly a read or write half of a module) that has no service routine takes no part in flow control.

If modules obey the rule about service routines checking for space before passing a message to the next
module, they need not be concerned with flow control. The system takes care of suspending and re-
enabling modules. This is because one instance of a module takes part in only one Stream. However
multiplexing drivers are more complex. They take part in multiple Streams. In general, data entering
on one Stream may leave on any other. The automatic re-enabling of service routines across modules
does not happen for drivers. Modules have exactly two queues, a read queue and a write queue. Each
queue has a put and a service routine. But drivers have a pair of queues for every upper and lower con-
nection point. It is up to the driver to route messages between them according to whatever protocol it is
implementing, Drivers can have different upper and lower read and write put and service routines, a
total of eight entry points (as well as those for initialisation). In the example of Figure 7, congestion in
the serial driver should not stall the IP driver and inadvertently affect the Ethernet. There are separate
queues on the lower side of the IP driver for them. It is up to the driver writer to decide how

AUUGN. 57 Vol 8 No 5

congestion on the lower side should be reflected on the upper side, and vice versa. For example, a mul-
tiplexing protocol that flow controls virtual circuits individually could base advertised window sizes on
the state of the appropriate upper Stream. Note the distinction between Streams flow control and net-

work flow control.

3. The User/Kernel Interface

As mentioned in the previous section, the Stream head translates between user process system calls and
messages on the Stream. This includes suspending and rewaking a process according to the require-
ments of flow control. In addition it can affect a process by posting a signal on it at the request of a
module or driver, such as when a terminal user types the interrupt character.

There are several new system calls in System V.3 associated with Streams. The most obvious are those
for writing data to and reading data from a Stream, putmsg and getmsg. Unlike read and write, each
call specifies two buffers using a control and a data parameter. Hence module control information is
separated from ordinary data. The control parameter of a putmsg call specifies data to go in a PROTO
fragment. The data parameter specifies data to go in as many DATA fragments as required. The mes-
sage placed on the Stream consists of the DATA fragments linked behind the PROTO fragment. Con-
versely, any PROTO fragment in a message arriving at the head is transferred to the process according
to the control parameter of a getmsg call and the data fragments are transferred according to the data
parameter. Note that the PROTO part is not intended to contain a protocol header but rather a request
to or an indication from a service provider.

A common need when writing user level programs providing network services is to be able to do I/O on
many (real or pseudo) devices in a demand driven manner. An example is a window manager that mul-
tiplexes data for many pseudo-terminals onto one serial line. The problem is that initiating a read on
one pseudo-terminal when no data is available causes the process to sleep awaiting its arrival, oblivious
to data output by other pseudo-terminals or input from the line (ie. reads block). A similar problem
exists when writing, as a device whose output queue is full may cause the process to sleep until it drains
(ie. writes block). Previous releases of System V have allowed the programmer to specify immediate
return from a I/O calls that cannot be immediately satisfied. The problem is often not that the program
doesn’t want to block, it just doesn’t want to block on one device when it could be doing I/O on
another. STREAMS avoids these problems with the poll system call. A process can determine which
of many devices can be read from or written to immediately. It may elect to carry on if none can be
read immediately, or to block until at least one can be and/or a timer expires. Unfortunately, poll is
only applicable to Streams. Under System V.3 the pseudo-terminals mentioned above could be imple-
mented as Streams devices and/or modules but if the real device is not driven by a Streams driver we
still have a problem.

There are some situations in which it is desirable to expedite the processing of data to or from a Stream
over other ‘‘background’” processing. In this case the programmer can request (per Stream) that a signal
is to be posted when an “‘interesting’’ condition has occured, such as the arrival of data, System V sig-
nal handling has been improved to make this feasible.

4. Service Interface Definitions

Applications that require only simple, common network services could ideally be written in a network
independent manner. That is, the same program could be run over different underlying networks simply
by giving the name of the service provider as an argument. A similar ideal is that where a higher level
protocol requires only a common, simple service from a lower level protocol, it should be possible to
use implementations of the two protocols of diverse origin with no re-writing.

STREAMS provides a general framework for implementing protocol modules. It does not enforce the
compatibility of programs with protocol modules or the compatibility of implementations of protocols
from the same family (let alone different families). In addition to STREAMS, in System V.3 AT&T
have promoted the idea of protocol independent applications via standard service interface definitions.

Vol 8 No § , 58 AUUGN

4.1, Transport Interface

AT&T have defined an interface to be presented to higher levels by transport service providers. Also,
they have developed some guidelines for achieving protocol independence in applications. Known as
TLI, the Transport Interface is modelled on the ISO Transport Service Definition.” Note the difference
between a service definition and a service interface definition. The former defines the services to be
provided in an abstract manner, for example the primitives. The latter defines how they may be
accessed, for example how requests for service are encapsulated as subroutine calls or messages. Stan-
dards bodies usually deal with the former definitions and deliberately avoid the latter.

A kemel level service interface is via messages passed on Streams. The messages are structured as a
PROTO fragment whose data contains a code for the primitive required plus any parameters, followed
by zero for more DATA fragments containing user data. Such messages may be read and written by a
user process with the getmsg and putmsg system calls. For the Transport Interface, a library is provided
to simplify programming. It includes routines corresponding to each service primitive.

Future service interface definitions for System V are expected. For example a well accepted link level
service interface definition could allow one vendor’s Ethernet controller (with driver) to be used with
another’s Internet Protocol implementation without modification of source code by any party.

4.2. Uucp

Uucp is a package that provides store and forward transfer of files and jobs between machines running
UNIX operating systems.® Historically this has used dedicated serial lines or connections dialled over a
telephone network. Where a more sophisticated network is available it may still be useful to provide
uucp services in the interests of uniformity.

With System V.3 the configuration management of uucp has been modified. One modification is the
addition of a routine to set up calls over any network that implements a TLI compatible transport ser-
vice. A host on such a network can be contacted by uucp by configuring the transport provider as the
device, the host’s transport address as the telephone number, and the device type as TLI rather than one
of the other known types (such as diallers).

Of course cu is similarly enhanced. These are examples of protocol independent applications imple-
mented as user level programs using TLIL

4.3. Remote File Sharing

An example of a transport service user implemented in the kemel is AT&T’s Remote File Sharing.?
This is a mechanism for extending the file system of one machine with those of other machines on a
common network, thus making remote files transparently accessible. (Its functionality may be compared
with the Network File System!0 from Sun Microsystems.) When RFS is started (usually at boot time)
the kernel is informed of the TLI compatible transport service to be used. This service is also used by
various RFS support processes such as name servers. It is possible to shutdown RFS and restart it using
a different transport service without rebooting the machines.

5. Protocol Migration

It is interesting to consider whether STREAMS lends itself to protocol migration. By this we mean
moving the implementation of a protocol between user and kernel or between kernel and hardware (or
firmware.) It is usually more convenient to debug user level code than kernel code. But a user level
implementation may not perform as well as a kernel implementation. Debugging an implementation as
a user level program and then putting it into the kemel may therefore be attractive. (Of course if the
rewriting required to fit it in is too great this approach may not be worthwhile.) Sometimes it may help
to devise Stream configurations that provide the required inter-process communication. For example, a
pseudo-terminal may be constructed from a loopback driver, a #y module and a control module (Figure
8).

Since Streams are dynamically constructed it is possible to switch between user and kerel versions of a
module without rebooting, although existing connections are presumably lost. A virtual terminal proto-
col is a likely candidate for migrating in this fashion. Figure 9 shows a remote login server

AUUGN 59 Vol 8 No 5

configuration with a user mode virtual terminal protocol implementation. (A pseudo-terminal connects
the virtual terminal module and the user’s process.) In Figure 10 it has migrated into the kernel. Figure
11 shows the client end in user mode and Figure 12 shows its migration.

Taking the kernel’s viewpoint we may call the above immigration. On the other hand, consider emigra-
tion. When a low level protocol implementation has been well tested and tuned it may become a candi-
date for moving onto a dedicated processor. There are various reasons for doing this; it may improve
performance, reduce the load on the main CPU(s) or it may be easier to package a product in this
manner. (But none should be taken for granted.) Of course STREAMS says nothing about the structure
of the hardware involved in a Stream. There is nothing hard and fast about where we ‘‘draw the bottom
line’’ in configurations such as that of Figure 2. For example the functions of the #fy module could emi-
grate to firmware on the serial interface board. It may be possible to ease this by using mechanisms
similar to those of STREAMS in the firmware when it is first designed. A hardware driver or expatri-
ated module on the outboard processor could be given the impression of a Stream connecting it to the
lowest level module in the kernel, and vice versa. This would be assisted by designing the
hardware/kernel interface so that it appears transparent to the modules above and below. Of course
these principles would also simplify the repatriation of modules if required for further enhancement or
debugging. Figure 13 shows a variation of Figure 7 with several low level modules emigrated onto their
associated hardware.

If the hardware/kemel interface supports many Streams crossing it simultaneously, an upper multiplexor
could emigrate. This would be the case with an outboard TCP implementation. There may be examples
of usefully expatriated lower multiplexors. Unless all the network interfaces are accessible by one out-
board processor, IP does not look like one of them!

Ideally the location of a module within the kernel or an outboard processor should be transparent to the
configuration of Streams. That is, a user process should be able to push and pop modules and link up
multiplexor drivers without regard to their implementation. We believe that this is possible above multi-
plexors but that transparent dynamic linking below multiplexors may require changes to STREAMS.

" Given such a mechanism for implementing and configuring the lower modules of a Stream on an out-

board processor, we raise the possibility of expatriating middle level modules as well. That is, a module
is to be implemented outside the kemel on an outboard processor but is to appear on a Stream between
modules that are both implemented inside the kernel. Clearly the transparency of the hardware/kernel
interface from the point of view of Streams is crucial to such a scheme. A module doing data encryp-
tion is a likely candidate for such treatment as these functions are heavy consumers of both processing
and programming resources. Figure 14 shows an encryption/decryption module added to the Virtual
Terminal Server of Figure 10.
Of course outboard processor implementations of network protocols are common, including TCP (with
IP limited to one network interface). Our interest here is with structuring kemel software and network
interface firmware so that migration between them is easy and the architecture of the whole system is
preserved.

6. Alternative Systems

The Eighth Edition of the UNIX system (ie. the Bell Laboratories research version) implements Ritchie’s
streams with some interesting extensions!! and a Network File System.12 It is also understood to have
synchronous I/O multiplexing support.

The Berkeley Software Distribution (release 4.1 and later) has extensive support for kernel implementa-
tions of network protocols, defines a service model for the user/kemel interface, has synchronous I/O
multipexing support and has “‘asynchronous’’ I/O support using signals.!3

7. Summary

System V.3 STREAMS offers a basis for development of new computer networking products for System
V and for the rationalisation of old ones. The development of terminal oriented services would be
assisted if terminal drivers were consistently written or rewritten using STREAMS.

Vol 8 No 5 60 AUUGN

Standard service interface definitions allow some applications to be written in a protocol independent
fashion and allow mixing of kemel protocol modules. However these possibilities may not be achieved
if such definitions are not developed and published in a timely manner.

The way in that STREAMS passes information in messages rather than by procedure calling lends itself
to protocol migration especially between kernel and hardware. Such migration may not be not limited to

the ends of a STREAM.

References

1. K. Thompson, ‘‘UNIX Implementation,” in UNIX Programmer’s Manual, Seventh Edition, vol. 2,
Bell Laboratories, October 1978.

2. D. M. Ritchie, ““A Stream Input-Output System,”” AT&T Bell Laboratories Technical Journal, vol.
63, no. 8, pp. 1897-1910, October 1984.

3. David J. Olander et al, ‘‘A Framework for Networking in System V,”” USENIX Conference
Proceedings, Atlanta, Georgia, June 1986.

4, Defense Communications Agency, DDN Protocol Handbook, December 1985.

5. Robert M. Metcalfe and David R. Boggs, ‘‘Ethernet: Distributed Packet Switching for Local Com-
puter Networks,’” Communications of the ACM, vol. 19, no. 7, July 1976.

6. DOD Standard Internet Protocol, Internet Working Group, IEN 128, January 1980.

7. 1SO IS 8072, Information Processing Systems — Open Systems Interconnection — Transport Service
Definition, 1986.

8. D. A. Nowitz and M. E. Lesk, ‘‘A Dial-Up Network of UNIX Systems,’’ in UNIX Programmer’s
Manual, Seventh Edition, vol. 2, Bell Laboratories, October 1978.

9. Andrew P. Rifkin et al, ‘““RFS Architectural Overview,”” USENIX Conference Proceedings,
Atlanta, Georgia, June 1986.

10. Russel Sandberg, ‘‘Design and Implementation of the Sun Network Filesystem,’’ Usenix Confer-
ence Proceedings, p. 119, Portland, Oregon, Summer 1985.

11. D. L. Presotto and D. M. Ritchie, ‘“Interprocess Communication in the Eighth Edition Unix Sys-
tem,”” Usenix Conference Proceedings, pp. 309-316, Portland, Oregon, Summer 1985.

12. P. J. Weinberger, ‘““The Version 8 Network File System,”’” Usenix Summer Conference Proceed-
ings, Salt Lake City, Utah, June 1984,

13. W. Joy et al, ““Berkeley Software Architecture Manual, 4.3BSD Edition,” in UNIX Programmer’s

AUUGN

Supplementary Documents, vol. 1 (PS1:6), Computer Systems Research Group, University of Cali-
fornia, Berkeley, May 1986.

61 Vol 8 No 5

S ON 8 IoA

29

NONNY

FTP FTP
TCP TCP
IP IP
Ethernet Ethernet
Hardware Hardware

Figure 1
Data Flow through Protocol Stacks

process

user
head | kernel
driver kernel
Figure 2 hardware
A Simple Stream

AUUGN 63 Vol 8 No 5

shell
process

head

module

serial
device driver

Figure 3
Pushing a Module

Vol 8 No 5 AUUGN

processes

heads

modules

v v v

device driver

Figure 4

A Multiplexing Driver

AUUGN 65 Vol 8 No 5

Figure 5
Upper Multiplexing

_nﬁ_Em 6
Lower Multiplexing

AUUGN

66

Vol 8 No §

TCP

UDP

Internet Protocol

|

AUUGN

convergence
protocol
X.25 Ethernet
Figure 7

SLIP

serial
driver

An Upper and Lower Multiplexor

67

Vol 8 No 5

device shell
emulator

/) 4
pity v v
control ity
module 4 &
\ 4 \ 4

loopback driver
Figure 8

Construction of Pseudo-Terminals

Vol 8 No 5 68 AUUGN

virtual terminal shell

protocol
user
kernel
ptly ity
loopback driver
transport
provider
Figure 9

Virtual Terminal Server
User Mode Implementation

AUUGN 69 Vol 8 No §

shell

user

kernel

virtual terminal
protocol

transport
provider

Figure 10

Virtual Terminal Server
Kernel Mode Implementation

Vol 8 No 5§ 70 AUUGN

virtual terminal protocol

AUUGN

user
kernel
transport
provider
terminal network
driver driver
Figure 11

Virtual Terminal Client
User Mode Implementation

71

Vol 8 No §

user

remote login process

kernel

Vol 8 No 5

inverted
loopback
driver

/

terminal
driver

N

virtual
terminal
protocol

transport
provider

network
driver

Figure 12

Virtual Terminal Client
Kernel Mode Implementation

72

AUUGN

TCP UDP
Internet Protocol
kernel
hardware
convergence
protocol SLIP
X.25 Fthernet serial
driver
Figure 13

Low Level Protocol Emigration

AUUGN

73

Vol 8 No 5

shell

user | t

kernel L f

ity

virtual terminal
protocol

bardware? encrypt | decrypt

transport
provider

v ¢

Figure 14
Virtual Terminal Server

with Data Encryption

Vol 8 No 5 74

AUUGN

Optimizing C: Benchmarks and Real Work
Michael Tilson

Many UNIX systems are now supplied with "globally optimizing" C compilers. These compilers
perform a wide range of program transformations, such as common sub-expression elimination or
loop invariant removal. These transformations can considerably improve the speed of benchmark
programs (such as the ever popular "Sieve"), and they improve the speed of certain classes of
applications programs.

However, users have been disappointed to discover that optimizing C compilers make little or no
improvement to heavily used UNIX utilities or to the UNIX kemel itself.! Many parts of the
UNIX system have been hand-tuned over the years; the opportunities for traditional mechanical
optimization are limited since the C language allows the programmer to perform, at source level,
optimizations such as register allocation and indexing strength reduction via pointer variables.

This talk will discuss current work at HCR aimed at using an optimizing C compiler to improve the
performance of real UNIX utilities. The talk will review the state of optimizing C compilers,
performance that can be expected on various classes of program, variations with computer
architecture, and the issues involved when attempting to boost the performance of already

well-tuned utilities.

Optimization will be shown as a "programmer productivity" issue. In C at least, almost any degree
of optimization can be achieved by hand. Developers of optimizing compilers should look for
high-payoff transformations that would be difficult to perform by hand, or that would destroy the
readability and structure of the program if performed at source level.

1With some compilers, you are lucky if the program continues to work after "optimization", especially in the case of
the UNIX kemel. The C language presents optimization difficulties, especially with global variables, pointers, and
asynchronous events, and some supplicrs are not sufficiently careful. The UNIX "signal" mechanism ensures that
even uscr-level programs can and do process interrupts, so an optimizer that can't compile the kemel also shouldn't be
trusted with uscr-level code. But if a compiler is careful to preserve the proper semantics, then the job of improving
performance becomes even more difficult.

AUUGN - , 75 ' Vol 8§ No 5

MEASURING DATABASE PERFORMANCE
USING THE TP1 BENCHMARK |

Ken J. McDonell

Department of Computer Science
Monash University
Clayton, Victoria 3168, AUSTRALIA

Acsnet: kenj@moncsbruce.oz
ABSTRACT

This note reports on some performance experiments conducted with a commercially
available relational database management system (let’s call it DBMS-R) in conjunction
with the TP1 benchmarkl. These tests are of particular interest given the popularity of
TP1 as a de facto standard for measuring on-line transaction processing throughput.
This paper assumes the reader is familiar with the TP1 benchmark; full details may be

found inl.

In all cases, the tests were run on an unloaded Unix! machine in multi-user mode
(with the usual assortment of daemons, especially the Ethernet ones). Several Unix
machines were used, all from the one vendor’s model range; they shall be referred to
as Model-1, Model-2 and Model-4 (model numbers crudely approximate to relative
_raw performance).

Except where stated to the contrary (for some Model-4 tests), the filesystems all had a
default configuration with a block size of 16K bytes.

The same brand of disk drives was used in all tests.

This paper appeared in AUUGN Volume 8 Number 3-4.
AUUGN Editor

1. Unix is a trademark of AT&T Bell Laboratories.

Vol 8 No 5 ‘ 76 AUUGN

Database Management Systems:
Efficient Implementation for UNIX systems

Angela Heal BSc
Queensland Department of Primary Industry

The recent past has seen the rise in importance of Database Management systems as UNIX utilities.
In this paper we examine some techniques which may be used to implement an efficient and reliable
UNIX DBMS. The centralised and noncentralised approaches and the system resources that they
require in the area of concurrency control are discussed. Several commercially available DBMS's
are explored and the techniques used in them discussed. An analysis is made of the case where
concurrency control is implemented by using an undo log and record locking. Here, providing a
minimal level of interprocess communication (the fifo or named pipe) is available, the centralised
approach offers many advantages over the non-centralised. This approach makes it possible to
create a fast and reliable DBMS on a UNIX system and still retain a high level of portability.
Decreasing the portability of the communications module makes it possible to substantially increase
the throughput of such a system without significant rises in system complexity by exploiting
version specific features such as shared memory.

AUUGN 77 Vol 8 No 5

What’s in a name? (or coping with lots of small files)
J. Lions
University of New South Wales, Kensington, NSW 2033.

ABSTRACT

The UNIX System provides both tools and guidance for carrying out particular tasks. It encourages
users to organise their data as lots of small files, and, for program developers, it provides strong
guidance for ways to organise these files. For other tasks that can also be effectively organised using
many small files, the tools are provided, but the guidance is not nearly so clear or effective.

This paper describes one attempt to manage several hundred small files for an ‘office’ application where
the main complicating factor has been the sheer number of files. These have been arranged in a
directory hierarchy up to four levels deep and containing approximately more than eighty subdirectories.
Certain major subdirectories have been designated as ‘areas’, and some simple, effective tools have been
developed to allow convenient ‘navigation’ between areas. Further developments have been made to the
original concept, e.g. to migrate many area-specific procedures from the usual bin directory to the
various area directories.

Keywords

data files and directories, UNIX system commands, office automation
CR Categories

ES, H32, H4.1, 1.7

Note

* This paper is to be presented at the Australian UNIX systems User Group meeting in Sydney on August
28, 1987.

Vol 8 No 5 78 AUUGN

1. Introduction

The UNIX* system has many facets. Most obviously it provides a kernel program plus many useful
user level programs (software tools) including filters and command interpreters that can be assembled
into interesting and versatile combinations. More subtly, UNIX provides some strong models for
organising programs and data in particular ways, and gives strong guidelines for carrying out many
computational tasks. In so doing the UNIX System expresses a particular ‘bottom-up’ philosophy for
organising and arranging computations (a philosophy that has won many disciples and converts).

The UNIX System appeals particularly to program developers. (This is hardly surprising in view of its
origins.) By providing strong conventions for arranging files into directories, for naming files and
directories, and through such commands as make, ar, etc., it provides program developers with a clear
model as to how they should use the system (e.g. choose file names, arrange directories, use PATH to
control the selection of executable files, etc.). However the system does not provide such a clear model
for some other types of application, especially where files proliferate and do not seem to fall into neat
categories. At this point many people rush out and buy a conventional DBMS package, but that isn’t
always the real solution, The unadomed UNIX system with its support for handling many small files
economically does provide a suitable base system for many data applications. What the standard system
does not do, in my experience, is give strong hints how this should be done.

This paper describes some of the conventions that I have established for my own use and the software
tools that have resulted. They are not particularly spectacular (it is possible that a wholesale conversion
to emacs might be an even better solution, but it is not clear that it would — especially on heavily
loaded machines such as our VAX system — and of course @macs is not universally available).
Although the basic approach and tools are now stable, I haven’t yet run out of ideas for extending and
refining them. The approach may be summarised as follows:

1. Devise a suitable hierarchy and associated directory tree for the storage of data files. This is not
necessarily easy but the aim will be to make an obvious place for each possible file, and to cluster
related files close together in the directory tree;

2, Designate major subtrees as areas. Give each of these a distinctive name and associated code-
letter. The areas will generally, but need not necessarily, be distinct and non-overlapping.
Moreover, some subtrees may not belong to any area (but experience suggests that these should be
as few as possible!);

3. If the number of files in an area is large, the area directory may contain subdirectories which
contain the data files. The location of a file in a particular subtree can then be used to convey
status information;

4. Give files short, convenient names (e.g. generated mechanically) rather than particularly
meaningful names which may be difficult to devise. For each area, devise an index file which, for
each file in the area, contains a record relating the file name (relative to the area directory) with a
string of meaningful terms;

5. Provide convenient commands to skip from one area to another. Set up procedures (using grep)
to search index files for particular terms or strings, and hence to select files for editing;

6. Procedures will be needed to carry out functions for each area (e.g. to create the index or a new
data file). Some of these will be general, but others will need to be tailored for individual areas,
or will only apply to particular areas. Locate such procedures within the area’s base directory (i.e.
not within a2 more normal bin directory), but use them indirectly, i.e. via other procedures that are
located via the normal bin directory or equivalent.

* UNIX is a registered trademark of A.T. & T. Bell Laboratorics.

AUUGN 79 Vol 8 No 5

2. A Solution to a Problem

This paper describes a solution to a real problem. As a journal editor for some years, I had to
correspond with numerous people about articles offered for publication, books offered for review, etc.
The average ‘life-time’ for correspondence on a particular item is over a year, and more than one
thousand items of outgoing correspondence are generated each year. After experimenting with a number
of different arrangements (see Lions, 1985), a firm decision was made to establish a separate data file
(item activity file) for each item (article or book). When correspondence relating to an item is needed,
the corresponding item activity file is edited to add letter-generating commands. These commands lie
dormant until despatch time draws near. Then a special command (take) is executed to find all the
recently modified item activity files, and to generate the actual letters in a batch. (Take is a shell script
that uses find, nroff with special macro files, a special filter program, etc.)

The names. for item activity files consist simply of an alphabetic character followed by a serial number,
e.g. a347, b545, with serial numbers simply being assigned sequentially in chronological order. (This
highly unoriginal practice was established long before the computer system.) The alphabetic character a
is used for all articles, and b, for all books. When later the need to establish individual files for people
also became apparent, by some arcane reasoning, the letter ¢ (for colleagues) was chosen to prefix the
serial number for such files.

Files relating to items of the same type originally appeared in the same same directory, i.e. level one
subdirectories (of the editor’s directory tree) called articles, books and colleagues have existed ‘always’.
As the number of files grew, these directories soon became uncomfortably large. Level two directories
were soon established, and the item activity files were demoted down a level. Assignments to the level
two subdirectories can be made in various ways, but the most useful way is to cluster items so that those
at the same stage of processing appear together, so that an item’s presence in a particular directory
reflects its current state. The obverse side to this is that items migrate between level two directories
during their life-times, and hence they do not retain a single path-name forever.

‘Imagine that two letters have just been received and require acknowledgement: a review for a book
called ‘Denotational Compilers’ by Simonsen (or should it be ‘Simmonson’), and a report from a referee
on article on ‘Information Hiding’. Clearly, if the serial numbers for the two items are already known,
the associated item activity files can be found as soon as their status (and hence level two subdirectory)
is determined. However, if the serial number is not known, then the available information needs to be
translated into the file name, with any ambiguities resolved along the way. Clearly this is a task well-
suited to a computer, and can be achieved very effectively using grep applied to purpose-built index
files that relate file names to a string derived from the item title and author name(s) for individual areas.
Sample index records might be:

current/a347: information hiding mccarthy
ready/b545: denotational compilers simonson

(File names are relative to the area directory and terminated by a colon. For simplicity, all letters are in
lower-case.) All the details of searching, etc. have now been embedded in a shell script called edit (that
eventually invokes vi), so that to start an editor for the book’s activity file, any one of the following
commands with suffice:

edit -b 545
edit =-b mons
edit -b compile

The first argument, -b, specifies the area, and the second, a search string for the index. The first
argument may be omitted if the current area is already books. Which one of the three alternatives is
selected at a particular time will depend on the information readily to hand. If the serial number is
known, it is always the best choice for the search string (second argument) because it should be unique.
If it is not known, then a string derived from the title or author name(s) can be used, but it may not be
unique, and the user may have to supply (interactively) a second search string.

Vol 8 No 5 80 AUUGN

If, while editing the book file to prepare a ‘receipt and thank-you’ letter for the reviewer (name
‘Robinson’), it is apparent that the reviewer’s address needs changing, the command:

edit =-c binso

can be interpolated into the editing session so that the file recording Robinson’s vital statistics can be
found and modified. If the wording of letter needs refining, the command: ’

edit -m receipt

can be used. What is m? It stands for macros, which was always a level two directory, but only was
made an area some time ago once the potential usefuiness of the above command became apparent.

3. Areas

An area is a collection of files and directory that form a sub-tree of the main directory tree. The
distinguishing feature of an area is the existence of a particular type of executable file in (my) bin
directory. For example, for the books area, there exists a file bin/b that contains:

#!/bin/sh
AREA=$HOME /books
export AREA

cd $AREA
PS1=" ’

This procedure is designed to be executed ‘in-line’ by the Boume shell. The ‘current area’ (remembered
as the variable AREA) and the current directory are changed to the books area directory (the shell
prompt is also adjusted). The procedure may be invoked directly (via a command ‘. b’) to change the
current area semi-permanently (e.g. after all the articles have been processed, and it is time to deal with
the books). It can also be invoked indirectly, and temporarily, via the command bin/go:

#!/bin/sh
change area - exec’d in line
case $1 in

-a) . a ; A="articles® ;;

-b) . b ; A="books" ;;

-c) . ¢ ; A="colleagues" ;;

=d) . d ; A="documents™ ;;

-q) . g ; A="general® ;;

=h) . h ; A="home directoxy" ;;
-3) . j ; A="journal" ;;

-1) 1 ; A="log" ;;

-m) . m ; A="macros" ;;

-r) PWD=‘pwd' ; export PWD
. ¥ ; A="reviews" ;;

-g) . 8 ; A="suppliers" ;;

-x) . X ; A="bin directory" ;;

-?) echo unknown area $1 && exit 3 ;;
esac

case $1 in

-?) [-t 0] && echo $A ; shift

esac

This procedure, which is called in line by e.g. edit, contains an entry for each of the twelve areas used
in the editorial application. With a little ingenuity, it has been possible to find a unique letter to
associate with each area. There are a number of special cases that can be mentioned in passing:

1. Book suppliers have both the general property of receiving correspondence and the special
property of receiving certain types of correspondence. As a result, it has been convenient to have
the suppliers area as a sub-area of the colleagues area.

AUUGN 81 Vol 8 No 5

2. The home area corresponds to the home (i.e. level one) directory. It is useful occasionally to have
this.

3. The directory for the area designated by X is simply the bin directory, which contains executable
files. Most of these are shell scripts, which need to be adjusted (edited) occasionally. Where the

executable file is actually a compiled C program the index entry points to the corresponding entry
in the src directory. Thus the bin directory also has an index file that contains entries such as:

take: generate batch of letters
mk: miscellaneous things to do in area directory
../srxc/enter.c: update fields in pattern file

Take has already been mentioned; mk is described below; and enter happens to be a simple
data-entry program that is used for creating new data files.

-4, Area-Related Procedures

Possibly the most successful outcome of the formalisation of areas has been finding suitable homes for a
variety of special purpose shell scripts. Activities such as creating new data files, or recreating the
index files, in different areas have many things in common, but also have individual differences. To
create a new data file in the current area, there is a procedure new in the bin directory that invokes a
procedure called newpart that resides in the area’s directory. This in turn may call enter (that lives in
bin) and uses a data file called pattemn (that lives in the area’s directory). Thus there is a uniform way
of calling one of a set of area dependent procedures.

Special purpose shell scripts that apply to only one, or a few, areas used to clutter up the bin directory
and naming them appropriately was a problem. (Another problem was to find them again if they were
used only infrequently!) To make a long story short, a command mk has solved this problem quite
successfully. It takes an optional first argument to select the area of interest, and another argument to
select a procedure from a ‘super shell-script’. The latter occurs in a file, mk.file, located in the area
‘directory. The code for mk is quite simple:

#!/bin/sh
mk - operates on a file called mk.file
located in the current directory or above.
. go # change areas if -a argument
for 3 in 1 2 3 ; do
[s mk.file] && break
cd .. ; pwd # climb tree ...
done
if [$1] ; then option=$1 ; else
grep ‘##’ mk.file # show choices
echo ’'enter option (or gq): \c¢’
read option

fi

case $option in

q) exit ;; # quit
) sh mk.file $option $2 ;;
esac

After changing areas, a mk.file is sought in the current directory or above. If no option is specified on
the command line, all lines in the mk.file with the patiern ‘##’ are displayed, and the user is asked to
make a choice. A sample mk.file is as follows:

Vol 8 No 5 82 AUUGN

@#S$: miscellaneous things to do with macro files
. m
case $1 in
gpsmacs) ## combine & strip gmacs, pmacs & smacs
WC gmacs pmacs smacs &
sed * /*\.\\"/d
s/\\".*//
s/ 1 1*$// .
VAN S AR ALALE RN IVAY V)
s/ \.ds \(..\)/ .ds\1/
’ gmacs pmacs smacs > gpsmacs
wC , gpsmacs
rrs
symbols) ## list all nroff symbols used
uncompress mksymbols.Z
mksymbols
]
index) ##
rm -s temp* */temp¥*
echo ’'index:’ > index
grep ‘@#\$:’ * */* \
| sed "s/:.*@#\$:./: /' \
| soxrt >> index
7
*) echo $0: Option [’ $1 ’}’ not recognised. ;;
esac

It will be seen that the file consists almost entirely of a shell case statement, with four entries. The
first three, which represent valid options, have ‘##’ lines. (The first option, for anyone who is
interested, shows a script for stripping redundant blanks and comments from nroff/troff files.)

The third option is to recreate the index file. For the original areas, which contain item activity files
that conform to a prescribed pattern, the index is generated according to fixed rules. However for other,
less disciplined areas, an altemative method is needed. My solution is, for each file that is to be entered
in the index, to embed an identifying comment line containing the pattem '@#$:’ before the meaningful
part of the comment, (See line 1 of the above mk.file.) Such lines can then be sought using grep and
edited to create the new index, as shown.

5. Conclusion

The idea of formally designating subdirectories as ‘areas’ and providing suitable support mechanisms
has been canvassed. These mechanisms have greatly improved the usability of the UNIX system for at
least one office application. It has been found that the area concept can be stretched well beyond the
original idea.

6. Reference

Lions, J. (1985): The Development of a Correspondence Package, Australian Computer Journal, 17,
pp. 131-135.

AUUGN 83 Vol 8 No 5

An Image of The Future

Julian Day
Microprocessor Applications

ABSTRACT

In the United States much research has been carried out to solve the complex solution needed to
integrate images, text, alphanumeric data and other forms of unstructed data into a database management
system using a diverse collection of specialized hardware and software components.

This paper discusses the emergence of an Extended Data Processing (XDP) environment which has been
jointly developed by Plexus Computers and Informix Software as a database to store, retrieve and
manipulate very large datafiles, including scanned images of very large documents.

Such an environment has extensive applications throughout industry and govemment allowing all types
of data, image and text to be stored on high-density optical disk.

The XDP system merges a departmental computer and relational database management system with
personal Workstations, document scanners, omnifont optical character readers, facsimile machines, laser
printers, optical disks, an optical "Jukebox", microfilm and microfiche scanners, plus support for
industry-standard network communications protocols.

Already, two large contracts have been taken in the US for such systems. One of these, US WEST
'DIRECT, is managing a Yellow Pages publishing operation with the system combining images of
advertisements along with numeric and text copy into a mixed-mode database.

Plexus is represented in Australia by Microprocessor Applications who are currently identifying potential
target markets in industry and govemment.

This abstract and following information copied from a poor reproduction caused by facsilime
transmission. Apologies for any typographical errors.

AUUGN Editor

Vol 8 No § 84 AUUGN

PLEXUS XDP SYSTEM
PRODUCT BACKGROUND

Plexus Computess, Inc
3833 North First St.
San Jose, CA 95134

(4080 943-9433

Microprocessor Applications Pty Ltd.,
Suite 2, 156 Military Road,
Neutral Bay N.S.W. 2089

(02) 908 3666

The Plexus XDP Extended Data Processing System is the first comprehensive commercial computer
system optimized for "mixed-mode" data processing. The XDP System integrates database management
capabilities with a diverse collection of specialized hardware and software components required to
manage various modes of information, including images, text, alphanumeric data and other forms of
unstructured data. It solves complex data processing problems with a system that is far more flexible
and accessible to end users than previous commercial computer systems.

The XDP System merges a departmental computer and relational database management system with
personal computer workstations, document scannets, omnifont optical character readers, facsimile
machines, laser printers and optical disks into a comprehensive mixed-mode data management system.
It captures, stores, catalogues, manipulates and retrieves many different kinds of information -- from text
and alphanumeric data to images and other forms of unstructured data.

Plexus P/95, P/75 and P/55 computers act as data management hubs in XDP Systems, providing
powerful but flexible data processing capabilities for a variety of system configurations integrating
numerous industry-standard components.

Plexus has signed a $6.6 million research and development contract with the PruTech Research and
Development Partnerships to develop and bring to market the next generation of its recently announced
XDP System DataServer. The R&D-funded XDP DataServer will be designed as a specialized mixed-
mode processor.

One of the company’s first customers for the XDP System, US WEST Direct, is managing a Yellow
Pages publishing operation with the system. The system combines images of advertisements along with
numeric and text copy into a mixed-mode database.

The integration and automation of these various modes of information is expected to pay for itself in its
first year of operation and substantially improve customer service and production tumnaround time,

Additional target markets for the Plexus XDP System include other telecommunications companies, the
military services, federal and state governments, pharmaceutical and health care companies and other
organizations requiring solutions to complex data processing problems.

Plexus, with more than 2,200 computer systems installed worldwide, is recognised as an innovator and
leader in providing industry-standard computing solutions. With 70 percent of its customers already
performing database-intensive applications, the company is well-positioned to extend its product family
to provide mixed-mode data integration for commercial systems applications. Additionally, the
company’s widely imitated multiprocessor architecture for UNIX super-microcomputers, which delivers
minicomputer-level performance, is an ideal platform for mixed-mode XDP System applications.

AUUGN 85 Vol 8 No §

XDP SYSTEM ARCHITECTURE

Plexus provides Extended Data Processing System capabilities in a variety of configurations. The XDP
System consists of two major hardware elements managed by Plexus’ XDP Operating Environment
software,

The hardware components are an XDP DataServer and a network of XDP WorkStations.

Plexus super-microcomputers are ideally suited for the XDP DataServer role, because they employ a
powerful multiprocessor architecture. The Plexus P/95, P/75 or P/55 can be used as an XDP DataServer.

The DataServer uses optical and high-speed magnetic disk technology for data storage and management.
Overall system storage capacity can be expanded to up to 280 gigabytes with an optional optical disk
"jukebox".

The XDP WorkStation is an IBM PC-AT-compatible microcomputer enhanced with an image processing
board, interfaces for a variety of peripheral products, and communications software. XDP WorkStations
communicate with the XDP DataServer over an Ethernet local area network.

XDP SYSTEM SOFTWARE

The XDP Operating Environment contains XDP DataServer and XDP WorkStation software optimized
for mixed-mode data processing, The XDP DataServer software operates under UNIX Sys5, while XDP
WorkStation software executes under Microsoft Windows running MS-DOS 3.1. Xdp DataServer and
XDP WorkStation software includes standard and extended components designed to allow the
development of custom applications for mixed-mode data processing.

XDP DataServer software includes the XDP DataManager and XDP Application Utilities Modules. The
XDP DataManager module integrates the Informix-SQL relational database management system with
Plexus-supplied extensions for mixed-mode data management. XDP Application Utilities provide support
for system security, optical jukeboxes and application accelerators,

XDP WorkStation software consists of a library of mixed-mode data manipulation routines (XDPLIB)
and an extended SQL query processor (XESQL). XDP DataServer and XDP WorkStation software are
available in runtime and development versions. Applications in this environment are written in the
high-level language "C."

Plexus will release an extended version of Informix incorporating additional features and an Extended
Development Environment (XDE) for mixed-mode application development in the second half of 1987.
The Plexus XDE will run in the Microsoft Windows environment. These enhancements provide a
development platform designed to allow value-added resellers (VARs), original equipment manufacturers
(OEMSs), application programmers at the customer site, or Plexus to quickly develop mixed-mode
applications.

APPLICATIONS AND BENEFITS

Plexus’ comprehensive solution for controlling and managing mixed-mode data allows business and
government organizations to eliminate data processing frustrations and reduce information management
costs.

Companies no longer need to invest in numerous expensive and incompatible hardware and software
products to manage diverse modes of information. MIS managers and end users gain significantly
greater control over information processing, because Plexus XDP System solutions provide a single
system for consolidating disparate modes of information.

The XDP System is ideal for any application managing and integrating large volumes of diverse types of
information, including database management, transaction processing, image processing, office
automation, and republishing,

For example the system can automate Army tank maintenance and repair records, including handwritten
forms, technical documentation with illustrations, and detailed forms cataloguing replacement parts and

Vol 8 No 5 86 AUUGN

service calls. In the pharmaceuticals industry, it can automate the paper-intensive process of applying for
and gaining Federal Drug Administration approval on new drugs. It can be used by federal and state
governments in processing medical insurance forms. And in telecommunications, it is already being used
to automate the publishing of U.S. WEST Direct’s Yellow Pages business.

Plexus’ comprehensive solutions to mixed-mode processing problems also enable VARs, OEMs and

customers to identify and develop new business opportunities as they recognize the benefits associated
with implementing this new approach to managing information.

In early 1986, Plexus formed a Custom Systems Group (CSG) to begin working directly with VARSs,
OEMs and large end-user customers in implementing mixed-mode data processing applications. The
group is helping these traditional Plexus customers identify and develop new business opportunities
made possible by Plexus XDP System applications.

MARKET POTENTIAL

The XDP System advances Plexus from the UNIX super-microcomputer market into the heart of the $50
billion commercial computer systems market. The company’s research and independent market studies
indicate that the demand for complex data processing solutions which require products like the Plexus
XDP System is a significant segment of the commercial data processing market and is growing faster
than the market as a whole.

Plexus initially will focus on providing XDP Systems to customers in several of its existing markets,
These markets include military, civilian government, pharmaceuticals/health care, and the Regional Bell
Operating Companies.

Through its Custom Systems Group (CSG) Plexus has established a strategic partnership program with
key customers and third parties in each of these target markets to develop XDP System application
programs optimized to solve their unique data processing problems.

XDP SYSTEMS COMPONENTS

XDP Workstation

Additional workstations communicate with each other and over an Ethemet local area network.

DP DataServer

The XDP DataServer is a Plexus P/75 or P/95 with up to 6. 7 gigabytes of magnetic memory and up to
eight gigabytes of optical disk storage, or a Plexus P/55 with up to 900 megabytes of magnetic memory.

Optical Disks

The storage requirements for mixed-mode applications typically require optical disk as a mass storage
alternative to magnetic storage. Optical drives are offered in the expansion cabinet of the DataServers, A
total of eight 12" optical drives are supported in up to 4 expansion cabinets per system. The drives are
interfaced to the host through an SCSI adaptor in the host backplane. Applications have the capability
to use the optical drive as a write-once file system.

Jukebox

The system includes an optical jukebox for mass storage of images. The maximum capacity of the
jukebox is approximately 280 gigabytes with an average access time of 7-10 seconds.

Film and Fiche Scanners

The system is designed to support microfilm and/or microfiche scanners as host peripherals, interfaced
into the bus of a Plexus DataServer.

AUUGN 87 Vol 8 No 5

Compression/Decompression/Scaling Co-Processor

Co-processor hardware in the backplane of the AT performs compression, decompression, and scaling of
images. CCITT Group 3 and Group 4 algorithms are supported. '

Facsimile Support

Direct connection to facsimile machines is supported by use of a facsimile communications card in tl3e
backplane of the workstation. Image information may be sent directly over facsimile lines through this
card. ‘

Scanners

The workstation can ‘support a range of attached scanning devices for input of images from paper. The
first released scanner operates at resolutions of 200, 240, 300, and 400 dots-per-inch, with scan times
from three to 20 seconds. Both flatbed and page feed scanners are supported, up to 50 sheets per batch.
Sheet sizes of 8.5" x 11" and 8.5" x 14" are supported. The scanners are interfaced to the ATs through
an interface card in the AT backplane. '

Print Server

The system supports a range of laser printer output devices. Typically, the laser printers will be
controlled by PC-AT host that is attached to the network. Images are sent to the print server in
compressed form, spooled, and decompressed locally when prepared to print. The PC-AT host is
responsible for spooling (i.e. job control and workflow).

OCR Server

Optical Character Recognition functions are provided for both batch and interactive operation. The OCR
device is capable of running at a minimum of 60 characters per second with greater than 99% accuracy.
DP DataServer Network Communication

Images and data are camied by a standard Ethemet network. TCP/IP protocols are used for XDP
DataServer transfers.

XDP SYSTEM OPERATING ENVIRONMENT

Operating Systems

The XDP DataServer operates under the UNIX Sys S operating system. The XDP WorkStation operating
system is DOS 3.1,

Database Manager

The system provides extensions to traditional database technology by offering transparent support of text
and image data types in a relational database paradigm.

Processing SQL Queries

A key function of the system is the ability to process extended WQL queries extended for mixed-mode
data.

Windows

Applications written for the system platform will execute under the Microsoft Windows graphical
environment. Windows provides a standard target for development that supports mixed-mode data, and
guarantees application compatibility with future operating system enhancements.

Vol 8 No 5 88 AUUGN

Applications

The specific user application code executes on the workstation, generating SQL queries tha.\t are sent
over the network to the XDP DataServer. This application code may be written by an experienced end
user or by Plexus.

Security, File and Record Locking

Data security is primarily available through the standard SQL GRANT and REVOKE access statements.
File and record locking rely, for the most part, on facilities provided by the host operating system, the
RDSMS, and network software.

TRADEMARKS

Plexus is a registered trademark and XDP and XDP System are trademarks of Plexus Computers, Inc.
UNIX is a registered trademark of AT&T IBM PC-AT is a registered trademark of International
Business Machines Corporation Ethemnet is a registered trademark of Xerox Corporation MS-DOS and
Windows are registered trademarks of Microsoft Corporation Informix is a registered trademark of
Informix Software, Inc.

For further information, contact:

Julian Day
Microprocessor Applications
(02) 908 3666

or

Lesley Angus
Microprocessor Applications
(03) 894 1500

AUUGN 89 Vol 8 No 5

Awk-ward yacc ::= lex

Bob Buckley

School of Mathematics, Physics, Computing and Electronics,
Macquarie University,
NSW 2109.

ABSTRACT

Some of the tedium of writing simple lexical phases for a yacc parser can be
eliminated by using awk to extract input for lex from yacc source code. In other cases,
a slightly more complex treatment is required. This article describes a small awk-script
which can save time in the development and testing of parsers and languages.

Introduction.

One of the most boring parts of developing a new translator is the process of producing yet
another lexical analyser. If you are using yacc to produce a parser, the lexical analyser tends to be par-
ticularly tedious because it is relatively straight forward, given the yacc input. The maintenance of both
the lexical analyser and the parser while you develop a language is tedious.

This short article shows how the amount of work was diminished in one project. The technique
should be applicable to other projects.

Yacc input.

Input to yacc enumerates lexical items (terminal symbols). It isn’t difficult to extract most of the
information from a yacc file and automatically generate input for lex. Terminals are of two forms: they
are explicitly listed as

Stexm terminal_list

or they appear in the grammar as single character symbols surrounded by quotes. Consider the follow-
ing yacc input:

Sterm IF THEN ELSE

%left 4/

Sleft ' */

%

block: ' {/ stmts '}/;

stmts: stmt | stmts stmt ;

stmt: IF exp THEN stmt | IF exp THEN stmt ELSE stmt | block | var '='/ exp ;
exp: exp '+' exp | exp '*' exp | '(/ exp ')’ | var ;
var: 'a’ | 'b’ | '’ | 'd! ;

%

fiinclude "lex.o"

A suitable lexical analyser might have the form:

Vol 8 No 5 90 AUUGN

%%

[\t\n] ; /* ignore whitespace */
- %3 ; /* ignore comments? */
IF return (IF);

TREN return (THEN) ;

ELSE return (ELSE) ;

return(yytext[0]);/* single character symbols %/
In some cases, this can be automatically extracted from the yacc file using the following awk-script.
BEGIN {

print "s§" ;
print "[\\t\\n)\t; /* ignore whitespace* /" ;

print "--.%3\t; /* ignore comments? */" ;
}
/*%term/ {for(i=2;i<=NF';i++) print $i"\treturn("$i");";)}
END {print ".\treturn(yytext[0]);/* single char symbols */"; }

This over simple approach has a few problems. One difficulty is in avoiding some special cases of
items used as tokens - particularly C reserved words and lex/yacc macros (eg. lex uses BEGIN). The
other problem is that symbols (eg. identifiers, numbers, etc.) normally require a more complex treat-
ment. Some terminal symbols have semantics attached.

To provide this flexibility, an extended capability is needed. The following extensions were made
to the input language:

%lex token pattern
%lex <type> token pattern semantics

Awk reads the source and produce both yacc and lex files. When awk reads the above it generates in the
yacc file, lines of the form:

Sterm foken
Stexrm <fype> token
and lines in the lex file of the form:

pattern return (foken) ;
pattern { yylval.type = semantics; return (loken); }

An effort is made to ensure that each line of input to the awk -script produces a line of yacc source code
on the output. The reward for this effort, is reasonable error reporting (unfortunately, /ex on most sys-
tems isn’t as good as yacc in this respect).

The following awk-script will deal with both the simple case above, and this more complex situa-
tion.

AUUGN 91 Vol 8 No 5

BEGIN {
lexfile = "prep.l";
print "$%" >lexfile;
print "[\\t\\n] |--.%8\t;" >lexfile;

/[slex/6&32~/2</ {
print "Sterm%, §2, §3;
type = substr(§2,2, length($2)-2);
print $4 "\t{ yylval." type "="§5"; retuxn("§3%);}" >lexfile;
}
/*%lex/6&82~/7[*<1/ {
print "$term%, $2;
print $3 "\treturn(" $2 ");" >lexfile;
}

/*%term/ { for(im2;i<=NF;i++) print $i"\treturn("§i");" >lexfile;}
1/*%lex/ { print $0;)
END { print ".\treturn(yytext[0]);" >lexfile;)}

It is important to remember that the order of lex patterns is significant. The order from the source file is
preserved in the output,

The following example shows how a more conventional treatment of identifiers can be incor-
porated using this scheme:

%union (
struct symbol *symb;
}
%term IF THEN ELSE END
%¥lex BBEGIN BEGIN
%lex <symb> VAR [a-sA-Z] [a-2A-%0-9]%* symtab()
$left 4/
$left %/
%%
block: BBEGIN stmts END;
stmts: stmt | stmts stmt ;
stmt: IF exp THEN etmt | IF exp THEN astmt ELSE stmt | bleck | VAR ’'=/ exp ;
exp: exp '+’ exp | exp ‘*’ exp | '(’ exp ')’ | VAR ;
L 1]
struct symbol * agymtab();
#include "lex.a"

There are some slight problems here. In this example, the description for VAR must follow the others -
for lex to operate as expected. The awk-script does not check syntax or report any errors. Care is
needed to ensure that fields are acceptable to awk (ie. contain no blanks or tabs) or a special mechan-
isms will be needed.

Interaction with make.
In the simple case, the lex input depends on the yacc file. Assuming the awk-script is in the file
prep.awk, the following entry in Makefile would be adequate:

x.,0: X.Y¥ prep.c
prep.l : x.y
awk -f prep.awk x.y >/dev/null

Make knows how to make prep.c from prep.l. The only problem is that lex is used whenever x.y
changes. In most cases, this can be avoided with a construct like:

Vol 8 No 5 92 AUUGN

x.0 : X.y lex.c prep.l
prep.l : x.y
awk -f prep.awk x.y >/dev/null
cmp -8 prep.l lex.l || cp prep.l lex.l
In this case, x.y includes lex.c to access the lexical analyser. This version only invokes lex if the lexical
analyser has changed, which is generally not the case. The dependancy of x.0 on prep.l forces make to
check that lex.c is current.
In the more complex case, both lex and yacc input depend on a single file. Any changes to that
file will result in a relatively complete rebuild. The following treatment will usually work.
X.0 : x.y lex.c
x.y : x.yl
awk -f prep.awk x.yl >x.y
cmp -8 prep.l x.l && mm prep.l || mv prep.l lex.l
lex.l : ; touch lex.l # create a file if it doesn’t exist
Generally, changes are made to the yacc part of the file and don’t affect the lexical part. As lex is rela-
tively slow, it is only used when the lex input changes.

Extensions.

This simple technique is easily extended. Instead of automatically generating white-space and
comment patterns, other lexical processing could be kept in the single source file by allowing lines of
the form:

%lgnore pattern
%ignoxe pattern action

When (and if) a translator starts to stabilise, the performance of its lexical analyser may become
an issue (code generated by lex is not known for its performance). Typically, one produces a hand writ-
ten ‘scanner’. In some cases it will be worth retaining some of the automation used to build the lexical
analyser (eg. to build a reserved word table).

Conclusions.

A simple technique is given to reduce some of the tedious activity in using yacc. This technique
is particularly useful during the early stages of translator development. Production code will probably
require a higher performance lexical analyser than /ex usually produces.

The ability to unify syntax and lexical specification into a single source file was recognised by the
authors of aardvark/llama software as an advantagous. This shows that lex and yacc can be used in a
similar fashion.

This technique does not avoid the need for a reasonable understanding of lex and its input.

Acknowledgements.

This technique was developed while working at ANU with Brian Molinari and Chris Johnsc?n.
They created the situation in which this technique became appropriate. Chris pointed out the similarity
to aardvarkillama .

AUUGN 93 Vol 8 No 5

Mail Links from VMS to UNIX
Robert Smart <smart@ditmelb.oz>

CSIRO Division of Information Technology
55 Barry St, Caslion, Vic 3053"

The problem of interconnecting the two most common operating systems in the academic and research
environment, Unix and VMS, particulardy for the purpose of transferring mail, has a number of solutions
of varying degrees of complexity, cost and neatness. Some standard Digital products can be used to link
VMS and Unix. A common solution is to have an Ultrix VAX which can then talk DECnet mail
(MAIL-11 protocol) to VMS machines, and SMTP over TCP/IP to other Unix machines. Another
possibility is X.400. X.400 implementations exist for Unix in the form of EAN (or the slightly souped
up version sold by the Sydney Development Corp). EAN itself is cheaply available to educational
institutions. The latest version is running at munnari, and we have successfully received mail from
munnari using Digital’s X.400 product. We don’t anticipate any great problem establishing 2-way
communication when the next release of Digital’s X.400 product becomes available.

There are are number of other public domain or cheap third party solutions. The first problem is how to
get mail in and out of the VMSmail environment, to send it off to some protocol other than the ones it
knows about. The first method discovered was that To: addresses with appended comments (anything
following a "!" in a VMSmail address is a comment) would keep the comments. So the user could
address mail to something like acsnetluser@domain. This is a horrible hack, and anybody still using it
should try to give it up. It doesn’t support many ordinary VMSmail functions like reply, or using
VMSmail from the command line, or forwarding.

Then Digital introduced products such as PSImail (MAIL-11 protocol over X.25), which used a
previously unknown foreign protocol hook, For example for PSImail the user specifies the destination as
PSI%dte::username. This was reverse engineered by Kevin Carosso of Hughes Aircraft in the US, and
by Phil Taylor of RHBNC London. Carosso’s version was the basis of Peter Wishart’s excellent
ACSNET% interface. It also lead to a more ambitious project, an internet mailer for VMS, namely
PMDF.

PMDF (Pascal Memo Distribution Facility) was originally designed by Ira Winston to be a portable and
simple system whose main job would be to run CSNET’s phonenet protocol, and hence interface to the
Unix product mmdfIl. The VMS version of PMDF has grown a long way from the portable version, and
now supports many protocols, and has a system for choosing routes on the basis of destinations and for
altering addresses as required (not as sophisticated as sendmail, but at least comprehensible).

The user interface to PMDF is as clean as it can be with current restrictions in VMSmail (we hope for
improvements in version 5 of VMS). The user uses addresses of the form IN%"user@domain". These
addresses also appear in the From: field on incoming mail, so reply works correctly, as does forwarding.

PMDF Channels for Interfacing to UNIX

The currently available PMDF channels are most easily interfaced to BSD Unix systems, or at least to
systems running sendmail. A wucp interface is in the works, and the guy who is working on it is Kevin
Carosso who is very good, so there is a good chance that it will be in the next release. Meanwhile
Andrew Wossley, who now wotks for DIT, is trying to get sendmail up on our System V system (an
ICL Clan4). It's not trivial: you certainly can’t just say "make SysV". Unfortunately you have to turn off
SMTP to avoid getting socket code included, and you thus lose the ability to run smtp over other lower
level protocols. If anyone has solved this problem we would be interested.

PMDF interfaces exist for all the VMS implementations of TCP/IP that I know of. TCP/IP used to be a
difficult or expensive thing to get for VMS, but it is now very easy. Camegie-Mellon University
distribute the CMU-TEK version of TCP/IP for the cost of distribution. To get the license to fill in, send
paper mail (no e-mail accepted) to CMU-TEK IP Software Request, Computing Services, Carnegie
Mellon University, 4910 Forbes Ave, Pittsburgh, PA15213-3890. The good news is that you get the
source, the bad news is that it’s in Bliss (but you get the binaries so it’s no problem if you don’t want
to modify it). Monash University is the only site that I know of to receive their copy at the time of

Vol 8 No 5 94 AUUGN

writing,

If you have an Ultrix machine you will find that interfacing to it from PMDF via MAIL-11 is not very
satisfactory. Warwick Jackson of Praxa in Melbourne has written a PMDF channel that rans SMTP over
DECnet. This should be easy to interface to sendmail on an Ultrix machine, and this is being
investigated at Melboumne University. Warwick has also written an SMTP over raw X.25 channel, and a
Unix version of this is also being investigated. This certainly holds out hope for all the VMS and Unix
machines on Austpac to talk to each other directly.

Finally we come down to reality. The only thing linking your VMS machine to your Unix machine is a
length of damp string, or perhaps a modem by which one can call the other. Traditional in Australia is a
pseudo-kemmit protocol system which is used with the early ACSNET! system which is distributed with
ACSnet, and the improved ACSNET% system from Peter Wishart. In this system the Unix system logs
in to the VAX which plays a completely passive role. If there is anybody with this system who wants to
run PMDF but doesn’t want to disturb the Unix end of the current arrangement, then I have an
equivalent PMDF channel which I coded but never tested: any suckers want to try it?

However PMDF has its own dialup protocol, plus script facility for logging in to other systems. The
protocol is the phonenet protocol used by CSNET in the USA. It was first implemented in the Unix
mmdf software. Mmdfll is available on the BSD 4.3 tapes, but does not seem to be public domain, nor
is it easily available in any other way. Further mmdfIl is designed as an alternative to sendmail and
wants to duplicate many sendmail functions, What was needed was a more efficient implementation of
the phonenet protocol, and one which is easy to interface to sendmail. Andrew Worsley, then at
Melbourne University, wrote cmdf to fill this need, and this is used by munnari to talk (over X.25) to
relay.cs.net (csnet-relay). We use it at the moment to provide dialup access from our Sun to Praxa’s
Vax. Cmdf is public domain, and can be obtained from me, or from worsley@ditmela.oz. Those who
already have it, and are thinking of interfacing it to PMDF may find it worthwhile to at least get the
document describing my experiences getting the link going.

AUUGN 95 Vol 8 No 5

THE SUN NETWORK FILE SYSTEM:
Design, Implementation and Experience

Russel Sandberg

Sun Microsystems, Inc.
2550 Garcia Ave.
Mountain View, CA. 94043
(415) 960-7293

Introduction

The Sun Network File System (NFS™) provides transparent, remote access to filesystems.
Unlike many other remote filesystem implementations under UNIX®, NFS is designed to be
easily portable to other operating systems and machine architectures. It uses an External Data
Representation (XDR) specification to describe protocols in a machine and system
independent way. NFS is implemented on top of a Remote Procedure Call package (RPC) to
help simplify protocol definition, implementation, and maintenance.

To build NFS into the UNiX kernel in a way that is transparent to applications, we decided to
add a new interface to the kernel which separates generic filesystem operations from specific
filesystem implementations. The “filesystem interface” consists of two parts: the Virtual File
System (VES) interface defines the operations that can be done on a filesystem, while the
virtual node (vnode) interface defines the operations that can be done on a file within that
filesystem. This new interface allows us to implement and install new filesystems in much the
same way as new device drivers are added to the kernel.

In this paper we discuss the design and implementation of the filesystem interface in the UNIX
kernel and the NFS virtual filesystem. We compare NFS to other remote filesystem
implementations, and describe some interesting NFS ports that have been done, including the
IBM PC™ implementation under MS-DOS™ and the VMS™ server implementation. We also
describe the user-level NFS server implementation that allows simple server ports without
modification to the underlying operating system. We conclude with some ideas for future
enhancements.

In this paper we use the term server to refer to a machine that provides resources to the
network; a client is a machine that accesses resources over the network; a user is a person
“logged in” at a client; an application is a program that executes on a client; and a workstation
is a client machine that typically supports one user at a time.

Design Goals

NFS was designed to simplify the sharing of filesystem resources in a network of
non-homogeneous machines. Our goal was to provide a way of making remote files available to
local programs without having to modify, or even relink, those programs. In addition, we
wanted remote file access to be comparable in speed to local file access.

The overall design goals of NFS were:

Machine and Operating System Independence
The protocols used should be independent of UNIX so that an NFS server can
supply files to many different types of clients. The protocols should also be
simple enough that they can be implemented on low-end machines like the PC.

Crash Recovery
When clients can mount remote filesystems from many different servers it is
very important that clients and servers be able to recover easily from machine
crashes and network problems.

Transparent Access
We want to provide a system that allows programs to access remote files in
exactly the same way as local files, without special pathname parsing, libraries,
or recompiling. Programs should not need or be able to tell whether a file is
remote or local.

Vol 8 No 5 96 ' AUUGN

UNIX Semantics Maintained on UNIX Client
For transparent access to work on UNIX machines, UNIX filesystem semantics
have to be maintained for remote files.

Reasonable Performance
People will not use a remote filesystem if it is no faster than the existing
networking utilities, such as rcp, even if it is easier to use. Our design goal was
to make NFS as fast as a small local disk on a SCSI interface.

Basic Design

The NFS design consists of three major pieces: the protocol, the server side, and the client
side.

NFS Protocol

The NFS protocol uses the Sun Remote Procedure Call (RPC) mechanism '. For the same
reasons that procedure calls simplify programs, RPC helps simplify the definition, organization,
and implementation of remote services. The NFS protocol is defined in terms of a set of
procedures, their arguments and results, and their effects. Remote procedure calls are
synchronous, that is, the client application blocks until the server has completed the call and
returned the results. This makes RPC very easy to use and understand because it behaves like
a local procedure call.

NFS uses a stateless protocol. The parameters to each procedure call contain all of the
information necessary to complete the call, and the server does not keep track of any past
requests. This makes crash recovery very easy; when a server crashes, the client resends NFS
requests until a response is received, and the server does no crash recovery at all. When a
client crashes, no recovery is necessary for either the client or the server.

If state is maintained on the server, on the other hand, recovery is much harder. Both client
and server need to reliably detect crashes. The server needs to detect client crashes so that it
can discard any state it is holdmg for the client, and the client must detect server crashes so
that it can rebuild the server’s state.

A stateless protocol avoids complex crash recovery. If a client just resends requests until a
response is received, data will never be lost due to a server crash. In fact, the client cannot tell
the difference between a server that has crashed and recovered, and a server that is slow.

Sun’s RPC package is designed to be transport independent. New transport protocols, such as
ISO and XNS, can be “plugged in” to the RPC implementation without affecting the higher
level protocol code (see appendix 3). NFS currently uses the DARPA User Datagram Protocol
(UDP) and Internet Protocol (IP) for its transport level. Since UDP is an unreliable datagram
protocol, packets can get lost, but because the NFS protocol is stateless and NFS requests are
idempotent, the client can recover by retrying the call until the packet gets through.

The most common NFS procedure parameter is a structure called a file handle (fhandle or fh)
which is provided by the server and used by the client to reference a file. The fhandle is
opaque, that is, the client never looks at the contents of the fhandle, but uses it when
operations are done on that file.

An outline of the NFS protoco! procedures is given below. For the complete specification see
the Sun Network Filesystem Protocol Specification 2.
null() returns ()
Do nothing procedure to ping the server and measure round trip time.
lookup(dirfh, name) returns (fh, attr)
Returns a new fhandle and attributes for the named file in a directory.
create(dirfh, name, attr) returns (newth, attr)
Creates a new [ile and returns its fhandle and attributes.
remove(dirfh, name) returns (status)
Removes a file from a directory.
getattr (fh) returns (attr)
Returns file attributes. This procedure is like a stat call.
setattr(fh, attr) returns (attr)
Sets the mode, uid, gid, size, access time, and modify time of a file. Setting the size to
zero truncates the file.

AUUGN 97 Vol 8 No 5

read(fh, offset, count) returns (attr, data)
Returns up to count bytes of data from a file starting offset bytes into the file; read also
returns the attributes of the file.
write(fh, offset, count, data) returns (attr)
Writes count bytes of data to a file beginning offset bytes from the beginning of the file.
Returns the attributes of the file after the write takes place.
rename (dirfh, name, tofh, toname) returns (status)
Renames the file name in the directory dirfh, to toname in the directory tofh.
link(dirfh, name, tofh, toname) returns (status)
Creates the file toname in the directory tofh, which is a link to the file name in the
directory dirfh.
symlink(dirfh, name, string) returns (status)
Creates a symbolic link name in the directory dirfh with value string. The server does
not interpret the string argument in any way, but saves it and makes an association to the
new symbolic link file. ‘
readlink (fh) returns (string)
Returns the string that is associated with the symbolic link file.
mkdir(dirfh, name, attr) returns (fh, newattr)
Creates a new directory name in the directory dirfh and returns the new fhandle and
attributes.
rmdir(dirfh, name) returns(status)
Removes the empty directory name from the parent directory dirfh.
readdir(dirfh, cookie, count) returns(entries)
Returns up to count bytes of directory entries from the directory dirfh. Each entry
contains a file name, file id, and an opaque pointer to the next directory entry called a
cookie. The cookie is used in subsequent readdir calls to start reading at a specific entry
in the directory. A readdir call with the cookie of zero returns entries starting with the
first entry in the directory.
statfs(fh) returns (fsstats)
Returns filesystem information such as block size, number of free blocks, etc.
New fhandles are returned by the lookup, create, and mkdir procedures that also take an
fhandle as an argument. The first remote fhandle, for the root of a filesystem, is obtained by
the client using the RPC based MOUNT protocol. The MOUNT protocol takes a directory
pathname and returns an fhandle if the client has access permission to the filesystem
containing that directory. The reason for making this a separate protocol is that this makes it
easier to plug in new filesystem access checking methods, and it separates out the operating
system dependent aspects of the protocol. Note that the MOUNT protocol is the only place
that UNIX pathnames are passed to the server. In other operating system implementations the
MOUNT protocol can be replaced without having to change the NFS protocol.

The NFS protocol and RPC are built on top of the Sun External Data Representation (XDR)
specification 3. XDR defines the size, byte order and alignment of basic data types such as
string, integer, union, boolean and array. Complex structures can be built from the basic XDR
data types. Using XDR not only makes protocols machine and language independent, it also
makes them easy to define. The arguments and results of RPC procedures are defined using an
XDR data definition language that looks a lot like C declarations. This data definition
language can be used as input to an XDR protocol compiler that produces the structures and
XDR translation procedures used to interpret RPC protocols ''.

Server Side

Because the NFS server is stateless, when servicing an NFS request it must commit any
modified data to stable storage before returning results. The implication for UNIX based
servers is that requests that modify the filesystem must flush all modified data to disk before
returning from the call. For example, on a write request, not only the data block, but any
modified indirect blocks and the block containing the inode must be flushed if they have been
modified.

Another modification to UNIX necessary for our server implimentation is the addition of a
generation number in the inode, and a filesystem id in the superblock. These extra numbers

Vol 8 No 5 98 AUUGN

make it possible for the server to use the inode number, inode generation number, and
filesystem id together as the fhandle for a file. The inode generation number is necessary
because the server may hand out an fhandle with an inode number of a file that is later
removed and the .inode reused. When the original fhandle comes back, the server must be
able to tell that this inode number now refers to a different file. The generation number has to
be incremented every time the inode is freed.

Client Side

The Sun implementation of the client side provides an interface to NFS that is transparent to
applications. To make transparent access to remote files work we had to use a method of
locating remote files that does not change the structure of path names. Some UNIX based
remote file access methods use pathnames like host:path or /../host/path to name remote files.
This does not allow real transparent access as existing programs that parse pathnames have to
be modified.

Rather than doing a “late binding” of file address, we decided to do the hostname lookup
and file address binding once per filesystem by allowing the client to attach a remote filesystem
to a directory with the mount command. This method allows the client to deal with hostnames
only once, at mount time. It also allows the server to limit access to filesystems by checking
client credentials. The disadvantage is that remote files are not available to the client until a
mount is completed.

Transparent access to different types of filesystems mounted on a single machine is provided
by a new filesystem interface in the kernel 13. Each “filesystem type” supports two sets of
operations: VFS interface defines the procedures that operate on the filesystem as a whole;
and the Virtual Node (vnode) interface defines the procedures that operate on an individual
file within that filesystem type. Figure 1 is a schematic diagram of the filesystem interface and
how NFS uses it.

CLIENT

System Calls

SERVER

System Calls

VNODE/VFS VNODE/VFS

N N
PC Filesystem || 4.2 Filesystem | |NFS Filesystem

Server Routines

RPC / XDR RPC / XDR

Floppy Disk

Netork
L]

Figure 1

The Virtual File System Interface

The VFS interface is implemented using a structure that contains the operations that can be
done on a filesystem. Likewise, the vnode interface is a structure that contains the operations
that can be done on a node (file or directory) within a filesystem. There is one VFS structure
per mounted filesystem in the kernel and one vnode structure for each active node. Using this
abstract data type implementation allows the kernel to treat all filesystems and nodes in the
same manner without knowing which underlying filesystem implementation it is using.

Each vnode contains a pointer to its parent VFS and a pointer to a mounted-on VFS. This
means that any node in a filesystem tree can be a mount point for another filesystem. A root
operation is provided in the VFS to return the root vnode of a mounted filesystem. This is

AUUGN 99 Vol 8 No 5

used by the pathnamé traversal routines in the kernel to bridge mount points. The root
operation is used instead of a pointer so the root vnode for each mounted filesystem can be
released. The VFS of a mounted filesystem also contains a pointer back to the vnode on
which it is mounted so that pathnames that include “..” can also be traversed across mount
points.

In addition to the VFS and vnode operations, each filesystem type must provide mount and
mount_root operations to mount normal and root filesystems. The operations defined for the
filesystem interface are given below. In the arguments and results, vp is a pointer to a vnode,
dvp is a pointer to a directory vnode and devvp is a pointer to a device vnode.

Filesystem Operations

mount(varies) System call to mount filesystem
mount_root() Mount filesystem as root

VFS Operations '

unmount (vfs) Unmount filesystem
root(vfs) returns(vnode) Return the vnode of the filesystem root
statfs(vfs) returns(statfsbuf) Return filesystem statistics
sync(vfs) Flush delayed write blocks
Vnode Operations
open(vp, flags) Mark file open
close(vp, flags) Mark file closed
rdwr(vp, uio, rwflag, flags) Read or write a file
ioctl(vp, cmd, data, rwflag) Do 1/O control operation
select(vp, rwflag) Do select
getattr(vp) returns(attr) Return file attributes
setattr(vp, attr) Set file attributes
access(vp, mode) Check access permission
lookup (dvp, name) returns(vp) Look up file name in a directory
create(dvp, name, attr, excl, mode) returns(vp) Create a file
remove(dvp, name) Remove a file name from a directory
link(vp, todvp, toname) Link to a file
rename (dvp, name, todvp, toname) Rename a file
mkdir(dvp, name, attr) returns(dvp) Create a directory
rmdir(dvp, name) Remove a directory
readdir(dvp) returns(entries) Read directory entries
symlink(dvp, name, attr, toname) Create a symbolic link
readlink (vp) returns(data) Read the value of a symbolic link
fsync(vp) Flush dirty blocks of a file
inactive(vp) Mark vnode inactive and do clean up
bmap(vp, blk) returns(devp, mappedblk) Map block number
strategy(bp) Read and write filesystem blocks
bread(vp, blockno) returns(buf) Read a block
brelse(vp, bp) Release a block buffer

Notice that many of the vnode procedures map one-to-one with NFS protocol procedures,
while other, UNIX-dependent procedures such as open, close, and ioctl do not. The bmap,
strategy, bread, and brelse procedures are used to do reading and writing using the buffer
cache.

Pathname traversal is done in the kernel by breaking the path into directory components and
doing a lookup call through the vnode for each component. At first glance it seems like a
waste of time to pass only one component with each call instead of passing the whole path and
receiving a target vnode back. The main reason for this is that any component of the path
could be a mount point for another filesystem, and the mount information is kept above the

Vol 8 No 5 100 AUUGN

vnode implementation level. In the NFS filesystem, passing whole pathnames would force the
server to keep track of all of the mount points of its clients in order to determine where to
break the pathname; this would violate server statelessness. The inefficiency of looking up one
component at a time can be alleviated with a cache of directory vnodes.

Implementation

Implementation of NFS started in March 1984. The first step in the implementation was
modification of the 4.2 kernel to include the filesystem interface. By June we had the first
“vnode kernel” running. We did some benchmarks to test the amount of overhead added by
the extra interface. It turned out that in most cases the difference was not measurable, and in
the worst case the kernel had only slowed down by about 2%. Most of the work in adding the
new interface was in finding and fixing all of the places in the kernel that used inodes directly,
and code that contained implicit knowledge of inodes or disk layout.

Only a few of the filesystem routines in the kernel had to be completely rewritten to use
vnodes. Namei, the routine that does pathname lookup, was changed to use the vnode lookup
operation, and cleaned up so that it doesn’t use global state. The direnter routine, which adds
new directory entries (used by create, rename, etc.), was fixed because it depended on the
global state from namei. Direnter was also modified to do directory locking during directory
rename operations because inode locking is no longer available at this level, and vnodes are
never locked.

To avoid having a fixed upper limit on the number of active vnode and VFS structures, we
added a memory allocator to the kernel so that these and other structures can be allocated and
freed dynamically. The memory allocator is also used by the kernel RPC implementation.

A new system call, getdirentries, was added to read directory entries from different types of
filesystems. The 4.2 readdir library routine was modified to use getdirentries so programs
would not have to be rewritten. However, this change means that programs using readdir must
be relinked.

Beginning in March 1984, the user level RPC and XDR libraries were ported from the
user-level library to the kernel, and we were able to make kernel-to-user and kernel-to-
kernel RPC calls in June. We worked on RPC performance for about a month until the round
trip time for a kernel to kernel null RPC call was 8.8 milliseconds on a Sun-2 (68010). The
performance tuning included several speed ups to the UDP and IP code in the kernel.

Once RPC and the vnode kernel were in place the implementation of NFS was simply a matter
of- writing the XDR routines to do the NFS protocol, implementing an RPC server for the NFS
procedures in the kernel, and implementing a filesystem interface which translates vnode
operations into NFS remote procedure calls. The first NFS kernel was up and running in mid-
August. At this point we had to make some modifications to the vnode interface to allow the
NFS server to do synchronous write operations. This was necessary since unwritten blocks in
the server’s buffer cache are part of the “client’s state.”

Our first implementation of the MOUNT protocol was built into the NFS protocol. It wasn’t
until later that we broke the MOUNT protocol into a separate, user level RPC service. The
MOUNT server is a user level daemon that is started automatically by a mount request. It
checks the file /etc/exports which contains a list of exported filesystems and the clients
that can import them (see appendix 1). If the client has import permission, the mount
daemon does a getfh system call to convert the pathname being imported into an fhandle that
is returned to the client.

On the client side, the mount command was modified to take additional arguments including a
filesystem type and options string. The filesystem type allows one mount command to mount
any type of filesystem. The options string is used to pass optional flags to the different
filesystem types at mount time. For example, NFS allows two flavors of mount, soft and hard.
A hard mounted filesystem will retry NFS requests forever if the server goes down, while a soft
mount gives up after a while and returns an error. The problem with soft mounts is that most
UNIX programs are not very good about checking return status from system calls so you can
get some strange behavior when servers go down. A hard mounted filesystem, on the other
hand, will never fail due to a server crash; it may cause processes to hang for a while, but data
will not be lost.

AUUGN 101 Vol 8 No 5

To allow automatic mounting at boot time and to keep track of currently mounted filesystems,
the /etc/fstab and /etc/mtab file formats were changed to use a common ASCII format
that is similar to the /etc/fstab format in Berkeley 4.2 with the addition of a type and an
options field. The type field is used to specify filesystem type (nfs, 4.2, pc, etc.) and the
options field is a comma separated list of option strings, such as rw, hard, and nosuid (see
appendix 1).

In addition to the MOUNT server, we have added NFS server daemons. These are user leve)
processes that make an nfsd system call into the kernel, and never return. They provide a
user context to the kernel NFS server that allows the server to sleep. Similarly, the block 1/O
daemon, on the client side, is a user level process that lives in the kernel and services
asynchronous block I/O requests. Because RPC requests block, a user context is necessary to
wait for read-ahead and write-behind requests to complete. These daemons provide a
temporary solution to the problem of handling parallel, synchronous requests in the kernel. In
the future we hope to use a light-weight process mechanism in the kernel to handle these
requests 4.

We started using NFS at Sun in September 1984, and spent the next six months working on
performance enhancements and administrative tools to make NFS easier to install and use.
One of the advantages of NFS was immediately obvious; the df output below is from a diskless
machine with access to more than a gigabyte of diskl

Filesystem kbytes used avail capacity Mounted on
/dev/ndo0 7445 5788 912 86% /

/dev/ndp0 5691 2798 2323 55% /pub

panic: /usr 274817 21398 3340 86% /usr
fiat:/usr/src 345915 220122 91201 1% /usr/src
panic:/usr/panic 148371 116505 17028 87% /usr/panic
galaxy:/usr/galaxy 7429 5150 1536 T7% -/usr/galaxy
mercury:/usr/mercury 301719 215179 56368 79% /usr/mercury
opium:/usr/opium 327599 36392 258447 12% /usr/opium

The Hard Issues

Several hard design issues were resolved during the development of NFS. One of the toughest
was deciding how we wanted to use NFS. Lots of flexibility can lead to lots of confusion.

Filesystem Naming

Servers export whole filesystems, but clients can mount any sub-directory of a remote
filesystem on top of a local filesystem, or on top of another remote filesystem. In fact, a
remote filesystem can be mounted more than once, and can even be mounted on another copy
of itself! This means that clients can have different “names” for filesystems by mounting them
in different places.

To alleviate some of the confusion we use a set of basic mounted filesystems on each machine
and then let users add other filesystems on top of that. Remember that this is policy, there is
no mechanism in NFS. to enforce this. User home directories are mounted on
/usr/servername. This may seem like a violation of our goals because hostnames are now
part of pathnames but in fact the directories could have been called /usr/1, /usr/2, etc.
Using server names is just a convenience. This scheme makes NFS clients look more like
timesharing terminals because a user can log in to any machine and the user's home directory
will be there. It also makes tilde expansion (where ~username is expanded to the user’s home
directory) in the C shell work in a network with many machines.

To avoid the problems of loop detection and dynamic filesystem access checking, servers do
not cross mount points on remote lookup requests. This means that to see the same filesystem
layout as a server, a client has to remote mount each of the server’s exported filesystems.

Credentials, Authentication and Security

NFS uses UNIX-style permission checking on the server and client so that UNIX users see
very little difference between remote and local files. RPC allows different authentication
parameters to be “plugged-in” to the message header so we are able to make NFS use a UNIX
flavor authenticator to pass uid, gid, and groups on each call. The server uses the

Vol 8 No 5 102 AUUGN

authentication parameters to do permission checking as if the user making the call were doing
the operation locally.

The problem with this authentication method is that the mapping from uid and gid to user must
be the same on the server and client. This implies a flat uid, gid space over a whole local
network. This is not acceptable in the long run and we are working on a network
authentication method that allows users to ‘‘login” to the network'2. This will provide a
network-wide identity per user regardless of the user’s identity on a particular machine. In the
mean time, we have developed another RPC~based service called the Yellow Pages (YP) to
provide a simple, replicated database lookup service5. By letting YP handle /etc/hosts,
/etc/passwd and /etc/group we make the flat uid space much easier to administer.

Another issue related to client authentication is super-user access to remote files. It is not
clear that the super-user on a machine should have root access to files on a server machine
through NFS. To solve this problem the server can map user root (uid 0) to user nobody (uid
-2) before checking access permission. This solves the problem but, unfortunately, causes
some strange behavior for users logged in as root, since root may have fewer access rights to a
remote file than a normal user.

Concurrent Access and File Locking

NFS does not support remote file locking. We purposely did not include this as part of the
protocol because we could not find a set of file locking facilities that everyone agrees is correct.
Instead we have a separate, RPC-based file locking facility. Because file locking is an
inherently stateful service, the lock service depends on yet another RPC based service called
the status monitor 8. The status monitor keeps track of the state of the machines on a network
so the lock server can free the locked resources of a crashed machine. The status monitor is
important to stateful services because it provides a common view of the state of the network.

Related to the problem of file locking is concurrent access to remote files by multiple clients.
In the local filesystem, file modifications are locked at the inode level. This prevents two
processes writing to the same file from intermixing data on a single write. Because the NFS
server maintains no locks between requests, and a write may span several RPC requests, two
clients writing to the same remote file can receive intermixed data on long writes.

UNIX Open File Semantics

We tried very hard to make the NFS client obey UNIX filesystem semantics without modifying
thé server or the protocol. In some cases this was hard to do. For example, UNIX allows
removal of open files. A process can open a file, then remove the directory entry for the file
so that it has no name anywhere in the filesystem, and still read and write the file. This is a
disgusting bit of UNIX trivia and at first we were just not going to support it, but it turns out
that all of the programs that we didn’t want to have to fix (csh, sendmail, etc.) use this for
temporary files.

What we did to make open file removal work on remote files was check in the client VFS
remove operation if the file is open, and if so rename it instead of removing it. This makes it
(sort of) invisible to the client and still allows reading and writing. The client kernel then
removes the new name when the vnode becomes inactive. We call this the 3/4 solution
because if the client crashes between the rename and remove a garbage file is left on the
server. An entry to cron can be added to clean up on the server, but, in practice, this has
never been necessary.

Another problem associated with remote, open files is that access permission on the file can
change while the file is open. In the local case the access permission is only checked when the
file is opened, but in the remote case, permission is checked on every NFS call. This means
that if a client program opens a file, then changes the permission bits so that it no longer has
read permission, a subsequent read request will fail. To get around this problem we save the
client credentials in the file table at open time, and use them in later file access requests.

Not all of the UNIX open file semantics have been preserved because interactions between two
clients using the same remote file cannot be controlled on a single client. For example, if one
client opens a file and another client removes that file, the first client’'s read request will fail
even though the file is still open.

AUUGN 103 Vol 8 No 5

Time Skew

Time skew between two clients or a client and a server can cause the times associated with a
file to be inconsistent. For example, ranlib saves the current time in a library entry, and Id
checks the modify time of the library against the time saved in the library. When ranlib is run
on a remote file the modify time comes from the server while the current time that gets saved
in the library comes from the client. If the server’s time is far ahead of the client’s it appears
to Id that the library is out of date. There were only three programs that we found that were
affected by this, ranlib, Is and emacs, so we fixed them.

Time skew is a potential problem for any program that compares system time to file
modification time. We plan to fix this by limiting the time skew between machines with a time
synchronization protocol.

Performance

The final hard issue is the one everyone is most interested in, performance. Much of the
development time of NFS has been spent in improving performance. Our goal was to make
NFS comparable in speed to a small local disk The speed we were interested in is not raw
throughput, but how long it takes to do normal work. To track our improvements we used a
set of benchmarks that include a small C compile, tbl, nroff, large compile, {77 compile,
bubble sort, matrix inversion, make, and pipeline.

To improve the performance of NFS, we implemented the usual read-ahead and write-behind
buffer caches on both the client and server sides. We also added caches on the client side for
file attributes and directory names. To increase the speed of read and write requests, we
increased the maximum size of UDP packets from 2048 bytes to 9000 bytes. We cut down the
number of times data is copied by implementing a new XDR type that does XDR translation
directly into and out of mbufs in the kernel.

With these improvements, a diskless Sun-3 (68020 at 16.67 Mhz.) using a Sun-3 server with a
Fujitsu Eagle disk, runs the benchmarks faster than the same Sun-3 with a local Fujitsu
2243AS 84 Mega-byte disk on a SCSI interface.

The two remaining problem areas are getattr and write. The reason is that stat-ing files
causes one RPC call to the server for each file. In the local case the inodes for a whole
directory end up in the buffer cache and stat is just a memory reference. The write operation
is slow because it is synchronous on the server. Fortunately, the number of write calls in
normal use is very small (about 5% of all calls to the server, see appendix 2) so it is not
noticeable unless the client writes a large remote file.

Release 3.0 Performance

25

NFS I___]
20

ScSt
15 EAGLE |,
10

tbl nroff bbble matrix ake pipe

Figure 3

In Figure 3, above, we show some benchmark results comparing NFS and local SCSI disk
performance for the current Sun software release. The scale on the left contains unitless
numbers. It is provided to make comparison easier.

Vol 8 No 5 104 AUUGN

Many people base performance estimates on raw transfer speed. The current numbers on raw
transfer speed are: 250 kilobytes/second for read (cp bigfile /dev/null) and 60
kilobytes/second for write on a Sun-3 with a Sun-3 server.

Other Remote Filesystems

Why, you may ask, do we need NFS when we already have Locus'4, Newcastle Connection's,
RFS8, IBIS'®¢ and EFS'0. In most cases the answer is simple: NFS is designed to handle
non-homogeneous machines and operating systems, it is fast, and you can get it today. Other
than the Locus system, which provides file replication and crash recovery, the other remote
filesystems are very similar to each other.

RFS vs NFS

The AT&T Remote File System (RFS), which has been demonstrated at USENIX and
UniForum conferences but is not yet released, will provide much of the same functionality as
NFS. It allows clients to mount filesystems from a remote server and access those files in a
transparent way. The differences between them mostly stem from the basic design
philosophies. NFS provides a general network service, while RFS provides a distributed UNIX
filesystem®. This difference in philosophy shows up in many different areas of the designs.

Networking

RFS does not use standard network transport protocols, like UDP/IP. Instead it uses a special
purpose transport protocol which has not been published, and implementations of it are not
generally available. This protocol cannot easily be replaced because RFS depends on
properties of the transport virtual circuit to determine when a machine has crashed. NFS uses
the RPC layer to hide the underlying protocols, which makes it easy to support different
transport protocols without having to change the NFS protocols.

RFS does not use a remote procedure call mechanism, instead it extends the semantics of
UNIX system calls so that a system call that accesses a remote file goes over the network and
continues execution on the server. When the system call is finished, the results are returned to
the client. This protocol is complicated by the fact that both client and server can interrupt a
remote system call. In addition, the system calls that deal with filenames had to be modified to
handle a partial lookup on the server when a client mount point is encountered in the
pathname. In this case the server looks up part of the name then returns control to the client
to look up the rest.

Non-Homogeneous Machines and Operating Systems

While NFS currently runs on 25 different vendors hardware, and under Berkeley 4.2, Sun OS,
DEC Ultrix, System V.2, VMS and MS-DOS, RFS will run only System V.3-based UNIX
systems. The NFS design is based on the assumption that most installations have many
different types of machines on their network, and that these machines run widely varying
systems. The RFS protocol includes a canonical format for data to help support different
machine architectures, but no attempt is made to support operating systems other than System
V.3. The NFS design does not try to predict the future. Instead, it includes enough flexibility
to support evolving software, hardware, and protocols.

Flexibility :
Because RFS is built on proprietary protocols with UNIX semantics built in, it is hard to
imagine using those protocols from different operating systems. NFS, on the other hand,
provides flexibility through the RPC layer. RPC allows different transport protocols,
authentication methods, and server versions to be supported in a single implementation. This
allows us, for example, to use an encrypted authentication method for maximum security
among workstations, while still allowing access by PC’s using a simpler authentication method.
It also makes protocol evolution easier since clients and servers can support different versions
of the RPC based protocols simultaneously.

RFS uses streams 7 to hide the details of underlying protocols. This should make it easy to plug
in new transport protocols. Unfortunately, RFS uses the virtual circuit connection of the
transport protocol to detect server and client crashes®. This means that even the reliable byte

AUUGN 105 Vol 8 No 5

stream protocol TCP/IP cannot be plugged in because TCP connections do not go away when
one end crashes unless there is data flowing at the time of the crash.

Crash Recovery

The RFS uses a stateful protocol. The server must maintain information about the current
mount points of all its clients, the open files, directories, and devices held by its clients, as well
as the state of all client requests that are in progress. Because it would be very difficult and
costly for the client to rebuild the server’s state after a server crash, RFS does not do server
crash recovery. A server or client crash is detected when the protocol connection fails, at
which point all operations in progress to that machine are aborted. When an RFS server
crashes it is roughly equivalent, from the client’s point of view, to losing a local disk.

Yet if server crashes are rare events, doing no recovery is acceptable. Keep in mind however,
that network delays, breaks, or overloading usually cannot be distinguished from a machine
crash. As networks grow the possibility of failure increases, and as the connectivity of the
network increases so does the chance of a client or server crash. We decided early in the
design process that NFS must recover gracefully from machine and network problems. NFS
does not need to do crash recovery on the server because the server maintains no state about
its clients. Similarly, the client recovers from a server crash simply by resending a request.

Administration

There are two major differences between administration of NFS and RFS. The use of a uid
mapping table on RFS servers removes the need for uniform uid to user mapping throughout
the network. NFS assumes a uniform uid space and we provide the Yellow Pages service to
make distribution and central administration of system databases (like /etc/passwd and
/etc/group) easier. NFS also has a MOUNT RPC service for each machine acting as a
server. The exported filesystem information is maintained on each machine and made
available by this service. RFS uses a centralized name service running on one machine on the
network to keep track of advertised filesystems for all servers. A centralized name service was
not acceptable in NFS because it forces all clients and servers to use the same protocol for
exchanging mount information. By having a separate protocol for the MOUNT service we can
support different filesystem access checking and different operating system dependent features
of the mount operation.

UNIX Semantics

NFS does not support all of the semantics of UNIX filesystems on the client. Removing an
open file, append mode writes, and file locking are not fully implemented by NFS. RFS does
implement 100% of the UNIX filesystem semantics. However, if a server crashes or a
filesystem is taken out of service, client applications can see error conditions that normally
could only happen due to a disk failure. Since this is an error condition that is so severe that it
usually means that the whole system has failed, most applications will not even try to recover.

Availability

NFS has been a product for more than a year. Source and support for NFS on Berkeley 4.2
BSD is available through Sun and Mt. Xinu, and for System V.2 through Lachman Associates,
The Instruction Set, and Unisoft. RFS has not yet been released.

Conclusion

For a small network of machines all running System V.3, RFS is the obvious choice for remote
access to files since it will come with V.3 and it implements all of the UNIX semantics. For a
large network or a network of mixed protocols, machine types, and operating systems, NFS is
the better choice. It should be understood that NFS and RFS are not mutually exclusive. It will
be possible to run both on a single machine.

Porting Experience

In the many ports of NFS to foreign hardware and systems, we have found only a few places
where additions to the protocol are helpful. The IBM-PC client side port was done almost

* The exclusive use of transport properties 1o drive session semantics is a common design flaw in many net-
work applications.

Vol 8 No 5 106 AUUGN

exclusively from the protocol specification, and a simple, user-level server was also
implemented from the specification.

NFS has been ported to five different operating systems, two of which are not UNIX-based,
and to many different types of machines. Each port had its own interesting problems.

The first port of NFS was to a VAX 750 running Berkeley 4.2 BSD. This was also the easiest
port since our code is based on 4.2 UNIX. Modifying the kernel to use the vnode/VFS
interface was the most time consuming part of the porting effort. Once the vnode/VFS
interface was in, the NFS and RPC code pretty much just dropped in. Some libraries had to be
updated, and programs that read directories had to be recompiled. The whole port took about
two man-weeks to complete. This port was then used as the distribution source for later ports.

The System V.2 port was done in a joint effort by Lachman Associates and The Instruction Set
on a VAX 750. In order to avoid having to port the Berkeley networking code to the System V
kernel, an Excelan board was used. The Excelan board handles the Ethernet, IP, and UDP
layers. A new RPC transport layer had to be implemented to interface to the Excelan board.
Adding the vnode/VFS interface to the System V kernel was the hardest part of the port.

The port to the IBM-PC, done by Geoff Arnold and Kim Kinnear at Sun, was complicated by
the need to add a "redirector” layer to MS-DOS to catch system calls and redirect them. An
implementation of UDP/IP also had to be added before RPC could be ported. The NFS
client-side implementation is written in assembler and occupies about 40K bytes of space.
Currently, remote read operations are faster than a local hard disk access but remote write
operations are slower. Overall, performance is about the same for remote and local access.

DEC has ported NFS to Ultrix on a Microvax II. This port was harder than the 4.2 port
because the Ultrix release that was used is based on Berkeley 4.3beta. The most time
consuming part of the port was, again, installing the vnode/VFS interface. This was
complicated by the fact that Berkeley has made many changes to much of the kernel code that
deals with inodes.

Another interesting port, while not a different operating system, was the Data General MV
4000 port. The DG machine runs System V.2 with Berkeley 4.2 networking and filesystem
added. This made the RPC and vnode/VFS part of the port easy. The hard part was XDR.
The MV 4000 has a word addressed architecture, and character pointers are handled very

differently than word pointers. There were many places in the code, and especially in the XDR
routines that assumed that (char *) == (int *).

As an aid to porting we have implemented a user-level version of the NFS server (UNFS). It
uses the standard RPC and XDR libraries and makes system calls to handle remote procedure
call requests. The UNFS can be ported to non-UNIX operating systems by changing the system
calls and library routines that are used. Our benchmarks show it to be about 80% of the
performance of a kernel based NFS server for a single client and server.

The VMS implementation is for the server side only. The basic port was done by Dave
Kashtan at SRI. He started with the user-level NFS server and used the EUNICE
UNIX-emulation libraries to handle the UNIX system calls. The RPC layer was ported to use a
version of the Berkeley networking code that runs under VMS. Some caching was added to
the libraries to speed up the system call emulation and to perform the mapping from UNIX
permission checking to VMS permission checking.

At the UniForum conference in February 1986, all of the completed NFS ports were
demonstrated. There were 16 different vendors and five different operating systems all sharing
files over an ethernet.

Also at UniForum, IBM officially announced their RISC-based workstation product, the RT.
Before the announcement, NFS had already been ported to the RT under Berkeley 4.2 BSD
by Mike Braca at Brown University.

Conclusions

We think that the NFS protocols, along with RPC and XDR, provide the most flexible method
of remote file access available today. To encourage others to use NFS, Sun has made public
all of the protocols associated with NFS. In addition, we have published the source code for
the user level implementation of the RPC and XDR libraries.

AUUGN 107 Vol 8 No 5

Acknowledgements

There were many people throughout Sun who were involved in the NFS development effort.
Bob Lyon led the NFS group and helped with protocol issues, Steve Kleiman implemented the
filesystem interface in the kernel from Bill Joy’s original design. Russel Sandberg ported RPC
to the kernel and implemented the NFS virtual filesystem, and Tom Lyon designed the
protocol and provided far-sighted inputs into the overall design. David Goldberg worked on
many user level programs, Paul Weiss implemented the Yellow Pages, and Dan Walsh is the
one to thank for the performance of NFS. The NFS consulting group, headed by Steve Isaac,
has done an amazing job of getting NFS out to the world.

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]

(9]

(10]
(11]
[12]
(13]
(14]
(15]

(16]

Vol 8 No 5

References

B. Lyon, “Sun Remote Procedure Call Specification,” Sun Microsystems, Inc.
Technical Report, (1984).

R. Sandberg, “Sun Network Filesystem Protocol Specification,” Sun Microsystems,
Inc. Technical Report, (1985). :

B. Lyon, "Sun External Data Representation Specification,” Sun Microsystems, Inc.
Technical Report, (1984). '

J. Kepecs, "“Lightweight Processes for UNIX Implementation and Applications,”
USENIX (1985).

P. Weiss, “Yellow Pages Protocol Specification,” Sun Microsystems, Inc. Technical
Report, (1985).

J. M. Chang, “SunNet,” USENIX (1985).

D.L. Presotto and D. M. Ritchie, “Interprocess Communication in the Eighth Edition
UNIX System,” USENIX Conference Proceedings, (June 1985).

P. J. Weinberger, “The Version 8 Network File System,” USENIX Conference
Proceedings, (June 1985).

M. J. Hatch, et al., “AT&T’s RFS and Sun’s NFS, A Comparison of Heterogeneous
Distributed File Systems,” UNIX World, (December 1985).

C. T. Cole, et al., “An Implementation of an Extended File System for UNIX,”
USENIX Conference Proceedings, (June 1985).

B. Taylor, “A protocol compiler for RPC,” Sun Microsystems, Inc. Technical Report,
(December 1985).

B. Taylor, “A Secure Network Authentication Method for RPC,” Sun Microsystems,
Inc. Technical Report, (November 1985).

S. R. Kleiman, “An Architecture for Multiple File Systems in Sun UNIX,” Sun
Microsystems, Inc. Technical Report, (October 1985).

Popek, et al., “The LOCUS Distributed Operating System,” Operating Systems Review
ACM, (October 1983).

D. R. Brownbridge, et al., “The Newcastle Connection or UNIXes of the World
Unite!,” Software -- Practice and Experience, (1982).

W. F. Tichy, et al., “Towards a Distributed File System,” USENIX Conference
Proceedings, (June 1985).

108 AUUGN

Appendix 1

/etc/fstab and /etc/mtab format

The format of the filesystem database files /etc/fstab and /etc/mtab were changed to
include type and options fields. The type field specifies which filesystem type this line refers to,
and the options field specifies mount and run time options. The options field is a list of
comma separated strings. This allows new options to be added, for example when a new
filesystem type is created, without having to change the library routines that parse these files.
The example below is the /etc/fstab file from a diskless machine.

(Filesystem mount point type options)

/dev/ndo0O / 4.2 rw 11
/dev/ndp0O /pub 4.2 ro 00
speed: /usr.MC68010 /usr nfs ro,hard 0 O
#opium: /usr/opium /usr/opium nfs rw,hard 00
speed: /usr.MC68020/speed /usr/speed nfs rw,hard 00
panic: /usr/src /usr/src nfs rw,soft,bg 0 O
titan: /usr/doctools /usr/doctools nfs ro,soft,bg 0 O
panic: /usr/panic /usr/panic nfs rw,soft,bg 0 O
panic:/usr/games /usr/games nfs ro,soft,bg 0 O
wizard: /arch/4.3alpha /arch/4.3 nfs ro,soft,bg 0 O
sun: /usr/spool/news /usr/spool/news nfs ro,soft,bg O O
krypton: /usr/release /usr/release nfs ro,soft,bg 0 O
crayon: /usr/man /usr/man nfs soft,bg 0 0
crayon: /usr/local /usr/local nfs ro,soft,bg 0 O
topaz:/MC68010/db/release /usr/db nfs ro,soft,bg 0 O
eureka: /usr/ileaf /usr/ops nfs soft,bg 0O 0
wells: /pe /pe nfs rsize=1024 0 O

Mount Access Permission: the /etc/exports File

The file /etc/exports is used by the server's MOUNT protocol daemon to check client
access to filesystems. The format of the file is <filesystem> <access-list>. If the access list is
empty the filesystem is exported to everyone. The access-list consists of machine names and
netgroups. Netgroups are like mail aliases, a single name refers to a group of machines. The
netgroups database is accessed through the Yellow Pages. Below is and example
/etc/exports file from a server.

(filesystem access-list)

/usr argon krypton

/usr/release

/usr/misc

/usr/local

/usr/krypton argon krypton phoenix sundae
/usr/3.0/usr/src systems

/usr/src/pe pe—users

AUUGN 109 Vol 8 No 5

Appendix 2

Below are the server NES and RPC statistics collected from a typical server at Sun. Statistics
are collected automatically each night, using the nfsstat command, and sent to a list of system
administrators. The statistics are useful for load balancing and detecting network problems.
Note that 1499689 calls/day = 62487 calls/hour = 17 calls/second, average over twenty four
hours for one server!

Server rpc:

calls
1499688

Server nfs:

calls
1499688

null
0 0%

read
452090 30%

link
683 0%

Vol 8 No 5

badcalls
0

badcalls
0

getattr
79897 5%

wrcache
0 0% .

symlink
83 0%

nullrecv
0

setattr
708 0%

write
50151 3%

mkdir
1 0%

110

badlen

root
0 0%

create
25394 1%

rmdir
1 0%

xdrcall
0

lookup
760709 50%

remove
5605 0%

readdir
6960 0%

readlink
116712 7%

rename
687 0%

fsstat
7 0%

AUUGN

Appendix 3

Sun Protocols in the ISO Open Systems Interconnect Model

-Teln

7 Application

6 Presentation

5 Session

4 Transport

3 Network
2 pata Link
1 Physical

Sun’s Native Architecture

@1 Future Additions

S
% sun

microsystems

Corporate Headquarters European Headquarters Canadian Headquarters
Sun Microsylems, Inc. Sun Microsystems Europe, Inc. 416 477-6745
2550 Garcia Avenue Sun House
Mountain View, CA 94043 31-41 Pembroke Broadway Europe, Middle East, and
415 960-1300 Camberley, Surrey GU15 3XD Africa, call European
TLX 287815 England Headquarters:

0276 62111 0276 62111
For U.S. Sales Office TLX 859017
locations, call: Elsewhere in the world,
800 821-4643 Germany: (89) 926900-0 call Corporate Headquarters:
In CA: 800 821-4642 UK: 0276 62111 415 960-1300

France: (1) 46 30 23 24 Intercontinental Sales

Japan: (03) 221-7021

©1986 Sun Microsystems, Inc.
Printed in USA 4/87 FF146/20K

UNIX is a registered trademark of AT&T. IBM PC is a trademark of the International Business Machines Corp.
MS-DOS is a registered trademark of Microsoft Corporation. VMS is a registered trademark of Digital Equipment
Corporation. NFS is a trademark of Sun Microsystems, Inc. Sun Microsystems, Sun Workstation and the Sun logo

are registered trademarks of Sun Microsystems, Inc.

AUUGN 111 Vol 8 No §

Shared Libraries in SunOS

Robert A. Gingell
Meng Lee
Xuong T. Dang
Mary S. Weeks

Sun Microsystems, Inc.
2550 Garcia Ave.
Mountain View, CA 94043

ABSTRACT

The design and implementation of a shared libraries facility for Sun’s implemen-
tation of the UNIXt operating system (SunOS) is described. Shared libraries extend
the resource utilitization benefits obtained from sharing code between processes run-
ning the same program to processes running different programs by sharing the libraries
common to them,

In this design, shared libraries are viewed as the result of the application of
several more basic system mechanisms, specifically

e kernel-supplied facilities for file-mapping and ‘‘copy-on-write’’ sharing;
® a revised link editor supporting dynamic binding; and
® compiler and assembler changes to generate position-independent code.

The use of these mechanisms is transparent to applications code and build pro-
cedures, and also to library source code written in higher-level languages. Details of
the use and operation of the mechanism are provided, together with the policies by
which they are applied to create a system with shared libraries. Early experiences and
future plans are summarized.

1. Imtroduction

The UNIX operating system has long achieved efficiencies in memory utilization through sharing a
single physical copy of the text (code) of a given program among all processes that execute it, How-
ever, a program text usually contains copies of routines from one or more libraries, and occasionally a
program consists mostly of library routines, Considering that virtually every program makes use of rou-
tines such as prinif(3), then at any given time there are as many copies of these routines competing for
system resources as there are different active programs.

In an environment containing single-user systems, such as workstations, the likelihood of achiev-
ing much benefit from sharing multiple copies of entire programs seems small. As the number of pro-
grams in a system increases (a guaranteed attribute of each new system release), so does the waste in
file storage resources containing yet more copies of common library routines. Thus, there is increasing
motivation to extend the benefits of sharing to processes executing different programs, by sharing the
libraries common to them.

This paper describes the design and implementation of a shared libraries facility for Sun’s imple-
mentation of the UNIX operating system, SunOS. We discuss our goals for such a facility, our approach

t UNIX is a trademark of Bell Laboratories.

Vol 8 No 5 112 AUUGN

to its design and implementation, and our plans for its use. We also discuss our early experiences, and
our plans for the future.

2. Goals

Most of our goals were driven by a desire to have a facility that was as simple to use and evolve
as possible. We also wanted to provide mechanisms that were as flexible as possible, so that the work
we performed could be used to support other activities and projects. Providing mechanisms with great
apparent simplicity would also help motivate their use. To that end, we arrived at the following specific

goals:
®

AUUGN

Minimize kernel support. Clearly, any support we put in the kemel would be very inflexi-
ble, and further complicate an already complex environment. We considered an ideal situa-
tion to be one involving no kemel changes.

Do not reqliire shared libraries. Although we might make the use of shared libraries the
default system behavior, we felt we could not require their use or otherwise build funda-
mental assumptions requiring them into other system components,

Minimize new burdens. The introduction of any new facility creates the potential for new
burdens to be imposed upon its users. To minimize these, we decided how shared libraries
should impact various groups:

° Application programmers: The use of shared libraries must be transparent to applica-
tion source code, program build procedures, and the use of standard utilities such as
debuggers. It was also considered desirable to be able to use existing object files.

° Library programmers: That a body of library code is to be built as a shared library
must also be transparent to its source code. However, it need not be transparent to the
procedures used to build the library, and such a goal appeared contradictory in any
case — someone has to decide that a shared library will be built. The goal to not
change library source was a direct consequence of not having the resources to change
the large amount of library code already in existence. Even source alterations such as
those used with System V shared libraries [ARNO 86] appeared more than we wished to
do.

° Administrative: There should be no requirement to administer and coordinate the
allocation of address space. Libraries should be able to evolve and be updated
without requiring rebuilding of the programs that used them as long as their interfaces
are compatible, and mechanisms would bave to be available to handle interface
changes. :

Improve the environment. Where possible, we wanted our changes to provide functional
benefits beyond the resource utilization ones we expected. This included having a great deal
of flexibility in easily testing updates to libraries.

Performance. Shared libraries represents a classic time vs. space trade-off opportunity. We
were deferring the work of incorporating library code into an address space in order to save
both secondary and primary storage space. Thus, we expected to pay a time penalty in pro-
grams using shared libraries. However, the expectation was that if sharing of library code
really occurred, then the I/O (real) time required to bring in a program and get it executing
would be greatly reduced. As long as the CPU time required to merge the program and its
libraries did not exceed the I/O time we saved, the apparent performance would be the same
or potentially even better. This approach fails if sharing does not occur, or if the system is
CPU saturated already.

Even though a moderate cut in I/O time offers a large window for computation, we felt that
an attempt to equal the performance of current systems was unrealistic, and instead set two
performance goals permiiting a limited degradation in CPU performance for programs that
used shared libraries. These goals were:

113 Vol 8 No 5

° < 10% for programs not dominated by start-up costs; and
° < 50% for programs that were dominated by start-up costs,

A program was considered to be dominated by start-up costs if it took less than half a
second to execute on a Sun-3/75.

3. Approach

Given our goals for flexibility, the most productive approach was not to build a mechanism
specific to shared libraries. Rather, by abstracting the general properties we required of shared libraries
and providing mechanisms to deliver those properties directly, we hoped to achieve the sought-for bene-
fits and flexibility to address the needs of other projects. The mechanisms we chose were:

® a high degree of memory sharing of general objects (e.g., files) at a fine level of granularity
(pages);
® a revised system link editor (/d) that supports dynamic loading and binding; and

@ compiler changes to generate position-independent code (PIC) that need not be relocated for
use in different address space arrangements and thus may be directly shared.

3.1. Memory Sharing

The mechanism that provides our memory sharing is a new Virtual Memory (VM) system for
SunOS. Although more completely described elsewhere [GING 87], the principal features of the new sys-
tem include: ,

® file mapping as its principal mechanism, accessed by programs through the mmap(2) system

call;

® sharing at the granularity of a file page; and
@ a per-page copy-on-write facility to allow run-time modification of a shared object without
affecting other users of the object.

The new VM system uses these features internally, so that the act of exec’ing a program is
reduced to the establishment of copy-on-write mappings to the file containing the program. A ‘‘shared
library’’ is added to the address space in exactly the same way, using the general file mapping mechan-
ism. The use of files in this way originated with MULTICS [ORGA 72], and the use of file page map-
ping to incorporate library support at execution time was established with TENEX [MURP 72] and its
evolution as Digital Equipment’s TOPS-20. Comparable approaches have been applied with UNIX-based
systems as described in [SZNY 86] and [DOWN 84].

3.2. Newld

The changes to /d reflect an observation that the activities that must occur to execute a program
with shared libraries are no different than those to execute one without them, at least conceptually. All
that has really changed is when, and over what scope of material, those activities occur. Conceptually,
Id has been tumed into a more general facility available at various times in the life of a program (in
pethaps different guises) to perform its link editing function,

The old /d built all programs statically. Executable (a.ouf) files contained complete programs,
including copies of necessary library routines. Executables were created by link editing the program in
(usually) a single batch operation using /d. Id would refuse to build an incomplete executable file.

The new /d will build ‘‘incomplete’’ a.out files, deferring the incorporation of certain object files
until some later time (generally program execution). These deferred link editing operations employ the
system’s memory management facilities to map to and thus share these objects directly. A ‘‘shared
library’’ is simply the code and data constituting a library built as such a shared object (.s0) file. A .so
is simply one of these ‘‘incomplete’’ a.out files that lacks an entry point. It should be noted that a .so
file can be any object, a *‘library’’ is simply one of many possible semantic uses for it.

As previously noted, dynamic link editing is still essentially the same operation as static link edit-
ing, but occurring at a different time. A link editing operation effects some change to either the material

Vol 8 No 5 114 AUUGN

being added, or that to which it is added, or more likely both. However, when an object is changed as
the result of such processing, it can no longer be shared with other users of the object, as the change is
unlikely to be useful to any program other than the one in which it occurs. Such changes are accommo-
dated automatically by the VM system, using its copy-on-write facilities to create per-process private
copies of the pages of the file the process attempts to modify. Thus, the extent of the changes a link
edit performs affects the degree to which sharing can occur.

Although a dynamic link edit operation may impact the degree to which sharing can occur in a
system, it does not affect the correctness of the resulting program. A strong characteristic of our
approach is this separation between ‘‘right and wrong’’ vs. ‘‘good and bad’’. Almost any legitimate
combination of objects can be link edited into a program at any time (e.g., there are very few ‘‘wrong’’
combinations), but those that maximize sharing will be ‘‘best’’.

3.3. PIC

In the previous section it was observed that code that minimizes the amount of dynamic link edit-
ing promotes sharing and is thus ‘‘best’’. To increase the prospects for having the ‘‘best’’ code, we
changed our C compiler to optionally generate position-independent code (PIC). PIC needs link editing
only to relocate references to objects external to the body of code that has been built as PIC, and is thus
more sharable. Again, it is not necessary to have PIC, just better.

However, PIC programs will be slower than non-PIC ones. To localize the link editing for refer-

ences to global objects, the code refers to such objects indirectly through linkage tables. The specific
amount of degradation is a function of the number of dynamic references to global objects.

4. Mechanisms

The previous section provided an overview of the approach we have employed, and briefly identi-
fied the mechanisms we would use. With this background, we describe the mechanisms in greater
detail,

4.1. Compiler Changes

The C compiler has been altered to take a new option (-pic) that causes it to generate PIC, When
-pic is specified, the code generated by the compiler changes in the following ways:
® Bach function prologue is extended to include the initialization of a register that is used as
the base address of a linkage table to global objects, this table is called the global offset
table (GOT). For the Motorola 680x0 used in Sun’s workstations, this code is:
movl #__GLOBAL_OFFSET_ TABLE, a5 | Get offset to GOT
lea pc@(0,a5:L),a5 | Get absolute address
which computes the absolute address of the GOT associated with this function based on a
PC-relative offset from the function prologue to the table. The register a5 is unavailable
for the life of the function, and is one of those that the compiler expects called functions to
preserve.
® Each reference to a global data object is generated as a dereference of a pointer in the GOT.
For example, a reference to the external integer errno in C is generated as:
movl a5@ (_errno:w),al | Get address of _errno
movl a0@,do | Get contents

Currently, the code generation scheme for static data objects is identical to that used for glo-
bals. This represents an area for future optimization work.

® Each function call is generated as an assembler pseudo-operation including a ‘‘free regis-
ter’’, for example:

jbsr _foo,al | _foo()

for an expression involving a call to the function foo. The assembler will, if _foo is
undefined to it, expand the pseudo-operation to an instruction sequence that involves loading
a PC-relative reference to an entry in a procedure linkage table into the *‘free register’’, and

AUUGN 115 Vol 8 No §

then issuing a subroutine call instruction involving the PC in the calculation of the effective
address.
The code sequences generated for the 680x0 assume that the linkage tables are of a limited size,
specifically no larger than 64K bytes. In the event the tables require a larger size, the compiler
can be coerced into generating more clumsy code sequences permitting linkage tables to a full 32
bits in size (by expressing -pic as -PIC). However, we have yet to find a program that requires
the use of this option.

4.2. Assembler Changes

The code generated by the compiler with the -pic option requires support from the assembler. The
support required is that the assembler generate some new relocation information for certain constructs,
and a change in interpretation for some syntactic forms. This support is enabled by the assembler flag
-k, and is generated automatically by the C compiler driver when invoking the assembler for a compila-
tion that contained the -pic or -PIC options.

When assembling a module with the -k flag enabled, the assembler:
e interprets a relocatable expression in an operand involving an ‘‘immediate’’ addressing

mode as a PC-relative reference to any symbol involved and generates a PC-relative reloca-
tion record for the expression;

® interprets symbolic relocatable expressions in operands involving base-register relative
addressing as a reference to the GOT entry for the symbol and generates a relocation record
indicating such; and
@ generates a ‘‘procedure call’’ relocation type for all jbsr pseudo-operations it assembles.
It should be noted that although examples have been provided using an assembler for the 680x0 proces-
sor employed in Sun workstations, the requirements for these special relocation types are architecture
independent,

4.3. Link Editor changes

The most extensive changes have been performed to the link editor, /d. These not only include
changes to the batch form of the link editor (embodied as Id), but also the creation of an execution-time
version (Id.so).

4.3.1. Batch link editor (Id)

The batch link editor, /d, combines a variety of module types to produce an a.out file. How that
a.out file can be used is very much dependent on what /d can determine to do with the information it
has been fed. Whereas the previous version of Id had to determine everything about a program, the new
version simply stops working when it runs out of information on the assumption that later events will
provide more.

Id’s output can be one of two basic types, including:

® a ‘‘simple object’’ (.o file), produced by simply combining other .0’s into a single, larger

one (-r flag);

® an ‘‘executable’’ (a.out), which is is either a ‘“‘program’’ (has an entry point) or a shared

object (.so) (does not have an entry point).
The production of a .o file through the use of the -r flag is a special use of /d that, while useful, is not
relevant to the issues being discussed and will not be considered further.

Exactly what gets produced depends on what Id was fed in the way of input files and command
line options. /d will process the following kinds of input files:

® simple object files, .o's;

® archives, .a’s, conglomerates of simple objects and also referred to as libraries; and

® shared objects, .so's, also known as dynamically bound executables and sometimes called

shared libraries.

Vol 8 No 5 116 : AUUGN

Each .o file is simply concatenated to previous .o files in the order it is encountered. In this
respect, Id is unchanged except that it handles the new relocation operations required by code the assem-
bler generated as PIC,

Each .a is searched exactly once as it is encountered — only those entries matching an unresolved
external reference are extracted and concatenated. Again, this is exactly as /d has always done, with the
addition of PIC handling,

Any .so encountered is (usually) searched for symbol definitions and references, but does not con-
tribute any material to be concatenated except under certain conditions involving other options
(described further below). However, their occurrence in the command line is stored in the resulting
a.out file and utilized by the execution-time Id.so to effect dynamic loading and binding.

Id’s -1 flag is used to specify a short name for an object file to be used as a library. The full
name of the object file is derived by adding the prefix lib and a suffix of either . or .so (for archive or
shared library, respectively). The specific suffix applied depends on the binding ‘‘mode’’ /d is operating
in at the time the -1 flag is processed. /d’s binding ‘‘mode’’ is specified by a new flag, -B that takes
several keyword arguments:

dynamic Allow dynamic binding, do not resolve symbolic references, and allow creation
of execution-time symbol and relocation information. This is the default setting.

static Force static binding, implied by options that generate non-sharable executable
formats.

-Bdynamic and -Bstatic may be specified multiple times and may be used to toggle each other on
and off. Like -1, their influence is dependent upon their location. When -Bdynamic is in effect, any -1
searches may be satisfied by the first occurrence of either form of library (.so or .a), but if both are
encountered the .so form is preferred. Since -Bdynamic is the default setting, the use of shared libraries
in the construction of a program thus ‘‘falls out’’ from simply installing the .so that represents the
shared library in the library search path used by /d.

If -Bstatic is in effect, however, Id will refuse to use any .so forms of libraries it encounters and
continue searching for the .a form. Further, an explicit request to load a .so file is treated as an error.

After Id has processed all its input files and command line options, the form of the output it pro-
duces is based on the information it has been able to discern. Id first tries to reduce all symbolic refer-
ences to relative numerical offsets within the executable it is building. To perform this ‘‘symbolic
reduction’’, ld must know that either

e all information relating to the program has been provided, in particular, no .so will be added
at execution time; and/or

® this program has an entry point and symbolic reduction can be performed for all symbols
having definitions existing in the material it has been provided.

It should be noted that uninitialized ‘‘common’’ areas (essentially all uninitialized C globals) are allo-
cated by the link editor after it has collected all references. In particular, this allocation can not occur in
a program that still requires the addition of information contained in a .so file, as the missing informa-
tion may affect the allocation process. Initialized ‘‘commons’’, however, are allocated in the executable
in which their definition appears.

After Id has performed all the symbolic reductions it can, it attempts to transform all relative refer-
ences to absolute addresses. Id is able to do this ‘“‘relative reduction’’ only if it has been provided some
absolute address, either implicitly through the specification of an entry point, or explicitly through other
Id options. If, after performing all reductions it can, there are no further relocations or definitions to per-
form, then /d has produced a completely linked executable — essentially its old behavior.

However, if any reductions remain, then the executable being produced will require further link
editing at execution time in order to be useable. In the data spaces of such executables, /d creates an
instance of a link_dynamic structure that has the label _ DYNAMIC. The link_dynamic struc-
ture has the form:

AUUGN 117 Vol 8 No 5

struct link_dynamic {

int 1d_version; /* Version # */

struct link_map *1d loaded; /* Loaded objects */

long 1d need; /* Needed objects */

long 1d_got; /* Global offset table */
long 1d _plt; /* Procedure linkage table */
long 1d_rel; /* Relocation table */

long 1d_hash; /* Symbol hash table */
long 1d_stab; /* Symbol table itself */
long (*1d_stab_hash) () ; /* Hash function */

long 1d_buckets; /* Number of hash buckets */
long 1d_symbols; /* Symbol strings */

long 1d_text; /* Size of text area */

i
This data structure is used by Id.so to obtain .so’s on which this executable depends, and to find the
symbolic and relative reduction operations that remain to be performed. The link dynamic struc-
ture contains elements that allow evolution of the interfaces to occur without invalidating existing pro-
grams. These include the 1d_version element, and the incorporation of the hash function for the
execution-time symbol table as part of the executable. ’

4.3.2. Relocation of PIC

As described previously, code generated as PIC contains several new relocation record entries: PC
relative, references to entries in a global offset table (GOT), and references to entries in a procedure
linkage table (PLT).

PC relative relocations are easily handled by /d: the value replacing the relocation is simply the
offset between the location reference and definition of its target.

GOT and PLT entry references are more complex, however. Both of these data structures are allo-
cated by I/d as part of creating an executable comprised of at least one PIC module, that is, a module
containing either GOT or PLT or both relocation forms. Id is responsible for assigning entries in each of
these tables for each unique symbol referenced in either a GOT or PLT reference, and creating a new
relocation entry for the table entry. The resulting relocations are then processed just like any other han-
dled by /d, by first attempting symbolic and then relative reductions. The table entries themselves are
(at least conceptually) indirect pointers to the targets of global references.

4.3.3. crtd

Every main program produced by the standard languages is linked with a program prologue
module, cri). This module actually contains the program’s entry point, and performs various initializa-
tions of the environment prior to calling the program’s main function or logical starting point. crt) was
modified to contain a reference to the symbol __ DYNAMIC. As described above, when /d builds an
executable requiring execution-time link editing, it defines this symbol as the address of a data structure
containing information needed for execution-time link editing operations. If the structure is not needed,
any reference to the symbol _ DYNAMIC is relocated to zero.

Thus, at program start-up, crt0 tests to see whether or not the program being executed requires
further link editing. If not, crt0 simply proceeds with the execution of the program as it always has —
no further processing is involved. However, if __ DYNAMIC is defined, crt0 opens the file
/1ib/1d. so and requests the system to map it into the program’s address space via the mmap system
call. It then calls /d.so, passing as an argument the address of its program’s __ DYNAMIC structure.
crt) assumes that ld.so’s entry point is the first location in its text. When the call to /d.so retums, the
link editing operations required to begin the program’s execution have been completed.

Vol 8 No 5 118 AUUGN

4.3.4. ld.so

After crt0 transfers control to Id.so, ld.so executes a short bootstrap routine that performs any relo-
cations Id.so itself requires. The process of building /d.so, described further below, results in only very
simple forms of relocation that can be easily handled by this bootstrap routine. Id.so then processes the
information contained in the __ DYNAMIC structure of the program that called it, in order to perform
the link editing required to start execution of the program.

ld.so’s first action is to examine the 1d_need entry of the program’s __ DYNAMIC structure.
This entry contains an offset relative to the _ DYNAMIC structure of an array of link object
structures. Each element of the array has the structure:

struct link object {

char *1lo_name; /* Name of object */
int lo_library : 1; /* Library search */
short lo_major; ‘ /* Major version */
short lo_minor; /* Minor version */

}i
and identifies a .so that must be added to the program’s address space and link edited. The identifica-
tion is the name specified on the /d command line used to build the program, and includes a bit indicat-
ing whether the object was named explicitly or via an /d -1 option. Some version control information is
also recorded, however a discussion of the use of this information is deferred.

For each entry in the 1d_need array, Id.so looks up the file identified and maps it into the
process’s address space. The location in the address space to which the .so is mapped is left to the sys-
tem to decide, and a given .so may reside at different locations in the address spaces of different
processes. Failure to find a needed object is a fatal error and results in the program’s termination. At
the end of the initial program’s 1d_need array, /d.so examines the __ DYNAMIC structure of the first
so file it mapped in. It processes that .so’s 1d_need array, and proceeds likewise through all the
loaded .so’s. Any references to already processed .so files are ignored.

For each .so that is loaded, /d.so builds a 1ink_ map data structure having the form:

struct link map {

caddr_t lm_addr; /* Address mapped */
char *1m name; /* Absolute pathname */
struct 1link map *1lm next; /* Next .so */

}i
Each such structure is placed on a singly linked list in the order it was loaded. The head of the list is
rooted in the 1d_loaded member of the initial program’s __ DYNAMIC structure. This ordering of
the loaded .so’s is used to establish the search order for undefined symbol look-ups.

After all of the modules comprising the complete program have been placed in the address space,
ld.so attempts to complete the link editing operations begun by Id. Specifically, it attempts to perform
first symbolic and then relative reductions on all the references outside of procedure linkage tables left
in the program. In particular, this includes the allocation of any uninitialized commons (since all infor-
mation regarding their use is finally present). If all non-procedural references can not be reduced to
absolute addresses, then it is because a definition for a given symbol is not available, in which case ld.so
terminates the program with an ‘‘undefined symbol’’ diagnostic.

All non-reduced references in any PLT’s in the loaded executables are not processed during pro-
gram startup. Rather, all such references are initialized to cause the initial calls to the procedures they
reference to result in the transfer of control to /d.so. Upon receiving control from such a reference, ld.so
will reduce the original reference to the appropriate absolute address and modify the referencing PLT
entry to direct future calls directly to the targeted procedure. Deferring the binding of procedure entry
points until their first reference saves performing perhaps thousands of unnecessary bindings to entry
points programs may never call,

AUUGN 119 Vol 8 No 5

4.3.5. Version Management of .50’s

The previous discussion of the handling of .so files in the course of processing an /d -1 option was
simplified with respect to .so version control. One of the goals of our project was to accommodate the
evolution of shared libraries: to permit them to be updated without impacting the programs that used
them so long as the interfaces remained compatible.

The .so files used as shared libraries actually employ a more complex name than has been
described so far, involving a suffix that describes the version of the library contained in the file. Thus,
interface version ‘‘2”’ of the C library, in its third compatible revision, would be placed in a .so having
the name libc.so.2.3. The suffix may actually be an arbitraty string of numbers in Dewey-decimal
format, although only the first two components are significant to the operation of the link editors at this
time.

The first component is called the library’s ‘‘major version’’ number, and the second component its
‘‘minor version’’ number. When /d records a .so used as a library, it also records these two numbers in
the database used by ld.so at execution time. When Id.so finally searches for libraries, it uses these
numbers to decide which of multiple versions of a given library is ‘“‘best’’, or whether any of the avail-
able versions are acceptable. The rules it follows are:

@ Major Versions Identical: the major version used at execution time must exactly match the
version found at /d-time. Failure to find an instance of the library with a matching major
version will cause a diagnostic to be issued and the program’s execution terminated.

® Highest Minor Version: in the presence of multiple instances of libraries that match the
desired major version, Id.so will use the highest minor version it finds. However, if the
highest minor version found at execution time is less than the version found at ld-time, a
warning diagnostic will be issued, although execution will continue,

The semantics of version numbers are such that major version numbers should be changed when-
ever interfaces are changed. Minor versions should be changed to reflect compatible updates to libraries,
and programs will silently prefer the highest compatible version they can obtain, If minor version
numbers drop, then although the interfaces should remain compatible, it is possible that certain bug fixes
or compatible enhancements that the program builder wanted are unavailable: hence the warning diag-
nostic.

Although the mechanisms for supporting version evolution of shared libraries have been provided,
we have not yet provided any tools to automate their use. As before, the detection of incompatibilities
remains the responsibility of the library developer.

4.3.6. Link Editor Environment Variables
Id interprets the values of the environment variables LD_LIBRARY_PATH and LD_OPTIONS.
LD_LIBRARY_PATH augments /d’s built-in rules for directories to be used when searching for
libraries specified with the -1 option. If defined, the value of LD_LIBRARY_PATH should be a colon-
separated list of directory names (as for the PATH variable of sh). The list specified by
LD_LIBRARY_PATH is prepended to the list of /d’s built-in rules, and follows any further directories
specified on the command line with -L options.

LD_OPTIONS specifies a default set of options to /d. LD_OPTIONS is interpreted by Id just as
though its value had been placed on the command line immediately following Id’s invocation, as in:

% 1ld $LD_OPTIONS ... other ld arguments ...

ld.so also interprets the LD_LIBRARY_PATH environment variable, and may be used to substi-
tute test versions of libraries in their own environments at execution time.

4.3.7. Considerations of Dynamically Linked Programs

Beyond providing a basis for improved sharing of system resources, the ability to defer the bind-
ing of library and other code offers a number of other potential advantages in terms of increased flexibil-
ity for maintenance and development. However, the environment they create is also inherently more
complex, something that the policies governing the application of the mechanisms must address. Some

Vol 8 No 5 120 AUUGN

aspects of this more complex environment include:

® Maultiple files: a dynamically bound program consists not only of the executable file that is
the output of I/d, but also of the files referenced during execution. Moving a dynamically
bound program may also involve moving a number of other files as well. Moving (or delet-
ing) a file on which a dynamically bound program depends may prevent that program from
functioning.

@ Ubiquitous link editor: the previous behavior of /d was to produce only a fully linked exe-
cutable. Link editing issues could be forgotten or ignored once the executable had been suc-
cessfully produced. However, deferring some of the link editing means (potentially) defer-
ring some of the errors that could occur. With the new facilities, it is possible for a running
program to produce a link editor error.

Consider the following example: a programmer misspelling in the use of the function call
printf results instead in a reference to ‘‘pintf”’. During testing of the code in which the
misspelling occurs, no path to the ‘‘pintf’’ reference is ever exercised. However, a later pro-
duction user does exercise the path. The (no doubt surprised) user will find the program ter-
minated with the message: ‘‘_pintf: undefined’’.

To deal with such problems, /d has been provided with an assertion-checking facility that
(among other things) can be used to determine if a given program will encounter undefined
symbols during execution if used with the dynamic objecis now on the system. Later errone-
ous changes to such dynamic objects might still create this problem, however. Program
builders wishing to isolate themselves from such problems should simply link their pro-
grams statically,

® Semantic Differences: there are some semantic differences between the dynamic and static
binding algorithms. The differences are not expected to manifest themselves as problems
with existing programs, unless such programs engaged in questionable practices in their use
of library search ordering. The major semantic difference that can create a problem involves
old programs built from several components, where several of those components suddenly
become dynamically loadable and others remain static.

Consider the /d command:
% 1d o x ... <dc> <sc>

The executable x consists of several objects including a dynamic component (<dc>) and a
static component (<sc>). <dc> was, prior to the introduction of the new mechanisms, an
unordered archive file. <dc> and <sc> both contain definitions for the symbol bar. In
addition, <dc> contains a reference t0 bar. If, in <dc>’s prior existence as an unor-
dered static archive, the definition of bar preceded its reference, the 1d operations to
build x may have satisfied <dc>’s reference with the definition from <sc>. However, in
its dynamic form, <dc>’s own definition will be used. This is a consequence of the fact
that at execution time, all searches for a symbol definition start with the main program and
then all .so’s in load order. This behavior preserves the ability to interpose on library entry
points.

4.4. Debuggers

The debuggers used in the SunOS environment, adb and dbx, have been modified to deal with the
dynamic linking environment provided by the new Id. In particular, they understand that symbol defini-
tions may appear afier a program starts executing, Such dynamically added symbols are found by not-
ing the creation of the link_map structure list in the initial program’s _ DYNAMIC structure, and
adding the symbols for the .so’s that have been added to the debugger’s database of symbols.

Despite our goal for transparency in the tools application programmers use, debugger users must
also have some awareness of the use of dynamic linking. For example, if they reference the symbol
printf in a program that uses a shared C library but has not yet started executing, the debugger will
fail to find it. If, however, such a reference has been made after the same program has executed far

AUUGN 121 Vol 8 No 5

enough to call the program’s main (), then print£ will appear.

5. Policies: Applying the Mechanisms

The previous sections have provided descriptions of our approach to providing a shared library
capability through the application of basic mechanisms. We have also described the basic mechanisms
involved. In this section, we describe the policies by which we use the mechanisms to build a system
that provides and uses shared libraries. In general, the considerations applied in setting these policies
were (in decreasing order of priority):

® maximize sharing (resource utilization performance);
° maximize flexibility (enriched environment);
e ‘‘Principle of Least Astonishment’ (user compatibility).
This is to say that a conflict between something that was completely compatible and something that

improved sharing or flexibility, generally favored the latter. However, in many cases, it has been possi-
ble to accomplish all three considerations.

5.1. System Construction

To meet the goals for resource reduction in the system, the system itself should be built to use
shared libraries, and thus, dynamic link editing. This creates the potential for three sorts of problems:

@ deferred errors (the so-called ‘‘pintf’’ problem) that are manifested after the system is
installed;

® the potential for chaos if an important shared library is deleted; and
® the potential for security problems with ‘‘setuid’’ programs.

To deal with the problem of deferred errors, a set of programs that are supposed to be self-
consistent should be built using the assertion-checking facilities previously described.

To deal with the chaos that would result if (for example) a shared C library were deleted from the
system, a number of commands and utilities will not be built with shared libraries. These include but
would probably not be limited to: init(8), getty(8), the shells, mv(1), In(1), Is(1), tar(l) and restore(8)
— essentially programs that would be necessary to restore the missing library from some other other
source.

Finally, programs that are built as ‘‘setuid’’ (or ‘‘setgid’’ for that matter) are not built to use
shared libraries. Such programs could be easily subverted by incorporating a ‘‘trojan horse’’ into a
library on which they depend.

5.2. Dynamic Binding

To maximize the benefits of shared libraries, we have decided to make their use the default by
having the default binding mode for /d be -Bdynamic. This creates the potential for users of the pro-
grams Id builds to be ‘‘surprised’’ by the special considerations of dynamically linked executables the
next time they rebuild their programs. In this case, our preference for maximizing sharing took pre-
cedence over the potential for user surprise, a choice we made because we believe:

® most users want the benefits; and

® the mechanisms are sufficiently transparent that the ‘‘potential’’ for surprise is not con-
sidered to be the same as ‘‘likelihood’’.

The greatest impact is expected to be on those users who create programs for shipment to other
systems. Such users probably want to be isolated from the various problems that a dynamically linked
program can have, and should force their programs to be linked statically. While this may impact exist-
ing build procedures, such developers usually take special steps when building production programs
(such as removing debugging features and employing extra optimization). The addition of another con-
sideration appeared to be a small cost relative to the benefits obtained by the community through max-
imizing sharing,

Vol 8 No § 122 AUUGN

5.3. Use of assertions

To help deal with the potential complexities created by dynamic linking, Id has been provided
with the ability to validate some assertions about an executable it builds. The assertion checking is
invoked with the /d flag -assert, followed by a keyword argument from one of:

definitions if the resulting program were run now, there would be no run-time undefined
symbol diagnostics;

nosymbolic there are no symbolic relocation items remaining to be resolved; and

pure-text the resulting executable requires no further relocations to its text.

Together, these assertions are intended to support the development of production programs by
allowing the verification of important properties: for instance that a program will not produce run-time
link edit diagnostics, or that a piece of code intended to be a ‘‘shared library’’ is in fact sharable.

5.4. PIC Generation

As has been pointed out, PIC in dynamically linked objects improves their ability to be shared and
is thus a more efficient use of system resources. However, PIC executes slower than non-PIC, the
degree of degradation being dependent on the number of dynamic indirect references the code incurs.
Although refinements to the generated code may ultimately make the performance impact of PIC negli-
gible, we have chosen to make the use of PIC an option. Our expectation is that only code intended to
be part of a shared library will be compiled as PIC.

We also expect that few users will enable the generation of PIC in their application programs,
simply because it takes extra effort to do so. However, this raises the issue of the binding of non-PIC
code to the PIC shared libraries it uses. The binding that must occur involves all references to:

® commons: allocated after the program is completely assembled;
® initialized data: imported from the shared libraries; and
e entry points: supplied by the shared libraries,

The implication of these binding operations is simply that the link editing that implements the binding
will render the edited code unsharable.

To improve the degree of sharing for such programs, /d can be made to force the allocation of
commons and to create aliases for library entry points. These allocations and aliases are created as part
of the non-PIC executable, and result in ‘‘pure-text’’ non-PIC programs even if they have dynamically
linked components. These options (-dc to force the definition of common storage, and -dp to force the
definition of procedure aliases), are included by the C compiler driver automatically in the /d command
line it generates.

6. Examples: .so Construction

6.1. Shared C Library
The construction of the shared C library involved:
® compilation of all of its C source modules using the -pic option;
® modifications of some assembly-language source files so that the assembly source was also
position-independent; and
@ Id’ing the resulting collection of .o files to create libc.so.1.0.

The modification of the assembly-language source files was, of course, not a requirement for the library
to function — simply to make it more sharable. In this area, we fell short of our goal for having shared
libraries be transparent to library source code, though happily the amount of assembly source in the sys-
tem is relatively small.

The Id operation, although in reality involving more complex operations resulting from the way
we build the various versions of the C library, is conceptually just:

AUUGN 123 Vol 8 No 5

% 1d -o libec.so.1.0 -assert pure-text *.o

assuming the current directory for the command contained only the .o files comprising the C library.
Since no entry point is supplied, and lacking any other clue to an absolute address, Id simply stops pro-
cessing after it has combined all the object files, built the GOT and PLT’s, and performed any intra-
library PC-relative relocations. The assertion request will cause /d to issue a diagnostic if the library
requires further relocation to the code contained within it, a sign that a non-PIC object has found its way
into the library.

6.2. ld.so
The execution-time link-editor, /d.so is built with an /d command that has the form:
% 1d -o 1d.so -Bsymbolic -assert nosymbolic ... list of modules ...

and is conceptually just like other .so files. However, it also involves the use of a special binding con-
trol option -Bsymbelic and the assertion mosymbolic.

Normally when /d builds a program lacking an entry point or other absolute addressing informa-
tion, it is unable to perform its symbolic reduction operations simply because it can not assume that
symbols from other executable files will not be added later. However, Id.so must be self-contained, or
else it would require itself to operate and would otherwise pollute the symbol space of the programs it
link edits.

The -Bsymbolic flag forces /d to perform symbolic reduction operations using the information it
has now, leaving only relative reductions to be performed — something /d.so resolves as part of its
bootstrapping operations. The result should be a completely self-contained program, in which all sym-
bolic references are satisfied by its own internal definitions. The nosymbeolic assertion tests whether or
not this is in fact the case.

7. Examples: Application Construction

To illustrate the use of the mechanisms by applications users, we will consider several simple
examples of application program construction.

7.1. “Hello World”’

The classic simple C program is the one that simply prints ‘‘Hello world’’ on its standard output
using pringf and then exits. In an environment whese the standard libraty path includes a .so form of the
C library, the command

% cc -o hello hello.c
generates the /d command
% 1d -e start -dc -dp =o hello /lib/crt0.0 hello.o -1lc

This Id command will cause the creation of the executable file hello. Since the default behavior of Id
is to prefer the use of shared libraries, hello will be built as an ‘‘incomplete’’ executable requiring
the inclusion of the library file libc.so[.v] (where [.v] represents the required version string) at
execution time.

When the program is executed, cr#0 will discover the __ DYNAMIC structure /d left behind and
map in the execution-time linker, /d.so. Id.so will map in the appropriate version of libc. so, allocate
any uninitialized commons required by the program, and cause unresolved procedure references in both
hello and libc.so to call ldso. The user’s call to pringf invokes such a call, causing /d.so to
search first the symbol table of hello and then libc.so for a definition of printf. The definition is
found in libc.so and the PLT entry for the original call is updated to cause future references to go
directly to printf. prinif internally makes other calls to various paris of the C library, each of these
intercepted and relocated by /d.so.

Although it might be argued that the relocations of intra-C-library calls could have been optimized
by prebinding them. However, this would break interposition, as demonstrated by the next example.

Vol 8 No 5 124 AUUGN

7.2. Interposition

Consider the building of the program hello again, this time involving a special library, libin-

terpose. This library, like libc, is available in a .so form. The command used to build hello is:
% cc -o hello hello.c ~linterpose

transparently invoking an /d command referencing libinterpose before libc. libinterpose

defines entry points for various system calls, such as read and write, that in addition to invoking the

required system call also take various statistics on the use of the system calls they surround.

As before, ld.so is invoked and maps in the two libraries, first libinterpose and then libc.
The program calls printf requiring a relocation to the entry point in libc. Eventually, the code that
implements printf and its descendents issues a call to write.

As previously noted, libinterpose defines an entry point for write. However, so does
libe, as the standard interface for the write system call. Id.so resolves the ambiguity by using the ord-
ering it established when mapping in .so’s, which places libinterpose first. Thus, libinter-
pose is effectively interposed for all uses of write in this program, If hello itself had defined a
write entry point, it would have taken precedence over both libinterpose and libc.

7.3. Mixing Static and Dynamic Binding

Consider a program linked with two shared libraries, liba and (automatically) libc. A third
library, 1ibb, however it is only available in an archive, or .a, form. These are combined with the
program foo.c with the command

% cc -o foo foo.c -la -lb

foo references a procedure bar defined in both liba and libb. Id handles this problem by recog-
nizing that liba contains a definition for bar, and ignoring the one provided in libb. Thus, even
though the material from 1iba is not incorporated ito the program until execution time, libb is
prevented from contributing a definition.

However, suppose foo did not reference bar, but liba did and further, had no definition for
it? In this case, Id would incorporate the definition from 1ibb, and again the intent of the ordering on
the command line is followed despite the difference in binding times.

8. Conclusions and Future Work
We have described the design of a shared libraries facility satisfying most of our goals, including:
e no kernel support specific to shared libraries or dynamic linking;
® transparency to application source code and build procedures;
® transparency to library source in higher-level languages; and
® no administrative procedutes required to create or use shared libraries.
Some goals for transparency were only partially achieved, the most significant being the potential confu-

sion to those using the system’s debugging tools. The need to change some library assembly source is
considered an acceptable minor shortcoming.

Although we have only limited experience with the implementation, early performance measure-
ments indicate that we should meet our performance goals for ‘‘average’’ programs. These early meas-
urements reveal:

@ PIC degradation: the use of PIC in libraries does degrade execution time, although in many
programs the degradation in negligible. The degradation is most noticeable in those pro-
grams that execute primarily in the libraries, and in some cases the degradation fails to meet
our limits of 10%, However, we believe there are opportunities for improving the genera-
tion of PIC.

® Start-up costs: programs previously dominated by start-up costs and that use only a few
libraries fall within our 50% goals. We have identified several areas for optimizing the
start-up process, including caching the results of library searches. The start-up overhead for

AUUGN 125 Vol 8 No §

programs that use many libraries is unacceptably large, and is an area we are investigating,

® Space reduction: measurements over most of the system’s standard utilities suggest that the
average per-program savings from the use of shared libraries will be approximately 24K
bytes.

During the time we obtained these early measurements, the new VM system on which the work was per-
formed was also being debugged and shaken-out. The measurements were taken in a worst case
environment where only the test programs employed shared libraries. Thus, any benefits or problems
created by the dynamics of an environment that is based on shared libraries have not been determined,
though it is expected that the sharing of the C library will have a positive impact.

Like most technologies, shared libraries and the mechanisms from which we build them can be
abused. The execution-time loading we perform clearly has a cost, and excessive use of it in production
programs may produce upacceptable performance. However, extensive use during program development
adds a new element of flexibility that developers can use to enhance their development environment.
An additional consideration is that a library is now a more powerful construct. Previously, the benefits
of libraries were in the packaging they provided commonly used facilities. However, that packaging can
now be used to provide performance and functional benefits as well,

Our future plans include:

e Performance enhancement: continuing efforts in this area for the foreseeable future. An
area of particular interest is work to provide different space/time trade-off points than the
two provided by the current implementation,

® Common Link Editor source: although they can be conceptually viewed as one, at present
the two link editors /d and Id.so are implemented as separate programs. Id.so is particularly
simplified, a short-cut taken to speed implementation of a first cut at the facility. We would
like to build both programs from a common source. Ideally, /d should just be an executable
jacket to the common code in /d.so.

® Programmatic interface: some programs, particularly based on interpretive languages such
as LISP, can dynamically generate dynamic references. We would like to support the han-
dling of such references through a common mechanism, and thus wish to provide a
program-accessible interface to the services now provided invisibly.

® Different exception handling: the current disposition of execution-time errors is to abort
the program in which they occur. We would like to investigate the program development
environments that might be created with other exception handling policies.

9. Acknowledgements

David Goldberg worked on the initial design for a shared libraries prototype that was the basis of
this effort. Evan Adams and particularly Richard Tuck spent many hours discussing and helping to
refine the philosophies of link editing employed in this design. Bill Joy provided advice and helpful cri-
ticism as well as several alternative and interesting implementation strategies. Bill Shannon was helpful
in reviewing drafts of this paper.

10. References

[ARNO 86] Amold, J. Q., ‘‘Shared Libraries on UNIX System V'’, Summer Conference
Proceedings, Atlanta 1986, USENIX Association, 1986.

[DOWN 84] Downing, C. B, F. Farance, ‘‘Transparent Implementation of Shared Libraries”’,
UniForum Conference Proceedings, Washington DC, [usr/group, January 1984,

[GING 87] Gingell, R. A,, J. P. Moran, W. A. Shannon, ‘‘Virtual Memory Architecture in
SunOS’’, Summer Conference Proceedings, Phoenix 1987, USENIX Associa-
tion, 1987.

[MURP 72] Murphy, D. L., ‘‘Storage organization and management in TENEX"’, Proceed-

ings of the Fall Joint Computer Conference, AFIPS, 1972,

Vol 8 No § 126 AUUGN

[ORGA 72] Organick, E. I, The Multics System: An Examination of Its Structure, MIT
Press, 1972.

[szNY 86] Sznyter, E. W., P. Clancy, J. Crossland, ‘‘A New Virtual-Memory Implementa-
tion for UNIX"’, Summer Conference Proceedings, Atlanta 1986, USENIX Asso-
ciation, 1986.

AUUGN 127 Vol 8 No §

Virtual Memory Architecture in SunOS

Robert A. Gingell
Joseph P. Moran
William A. Shannon

Sun Microsystems, Inc,
2550 Garcia Ave.
Mountain View, CA 94043

ABSTRACT

A new virtual memory architecture for the Sun implementation of the UNIXt
operating system is described. Our goals included unifying and simplifying the con-
cepts the system used to manage memory, as well as providing an implementation that
fit well with the rest of the system, We discuss an architecture suitable for environ-
ments that (potentially) consist of systems of heterogeneous hardware and software
architectures. The result is a page-based system in which the fundamental notion is
that of mapping process addresses to files.

1. Imtroduction and Motivation

The UNIX operating system has traditionally provided litde support for memory sharing between
processes, and no support for facilities such as file mapping. For some communities, the lack of such
facilities has been a barrier to the adoption of UNIX, or has hampered the development of applications
that might have benefited from their availability. Our own desire to provide a shared libraries capability
has provided additional incentive for us to explore providing new memory management facilities in the
system,

We have also found ourselves faced with having to support a variety of interfaces. These included
the partially implemented interfaces we have had in our 4.2BSD-derived kernel [JOY 83] and those speci-
fied by AT&T for System V [AT&T 86]. Aggravating these situations were the variations on those inter-
faces being developed by a number of vendors that were incompatible with or extended the original pro-
posals. Also, entirely new interfaces have been proposed and implemented, most notably in Camegie-
Mellon’s MACH [ACCE 86]. There has been no market movement to suggest which, if any, of these
would become dominant, and in some cases a specific interface lacked an important capability (such as
System V’s lack of file mapping).

Finally, our existing implementation is too constraining a base from which to provide the new
functionality we wanted. It is targeted to traditional models of UNIX memory management and specifi-
cally towards the hardware model of the VAX.} The work required to enhance the current implementa-
tion appeared to be adding its own new wart to an increasingly baroque implementation, and we were
concemed for its long-term maintainability.

Thus, we decided to create a new Virtual Memory (VM) system for Sun’s implementation of
UNIX, SunOS. This paper describes the architecture of this new system: the goals we had for its design
and the constraints under which we operated, the concepts it embodies, the interfaces it offers the UNIX
application programmer and its relationship to the rest of the system. Although our primary intent is to

+ UNIX is a trademark of Bell Laboratories.
$ VAX is a trademark of Digital Equipment Corporation

Vol 8 No § 128 AUUGN

discuss the architectural issues, information relating to the project and its implementation is provided to
add context to the presentation.

2. Goals/Non-Goals

Beyond the previously mentioned functional issues of memory sharing and file mapping, our goals
for the new architecture were:

Unify memory handling. Our primary architectural goal was to find the general concepts
underlying all of the functions we wanted to provide or could envision, and then to provide
them as the basis for all VM operations. If successful, we should be able to reimplement
existing kemel functions (such as fork and exec) in terms of these new mechanisms. We
also hoped to replace many of the existing memory management schemes in the kemel with
facilities provided by the new VM system,

Non-kernel implementation of many functions. If we were successful in identifying and
providing the right mechanisms as kernel operations, then it seemed likely that many func-
tions that otherwise would have had to be provided in the kemel could in fact be imple-
mented as library routines. In particular, we wanted to be able to provide capabilities such
as shared libraries and the System V interfaces as applications of these basic mechanisms.

Improved portability. The existing system was targeted towards a specific machine archi-
tecture. In many cases, attributes of this architecture had crept cancerously through the code
that implements software-defined functionality. We therefore wanted to describe software-
defined objects using data structures appropriate to the software, and relegate machine-
dependent code to a lower system layer accessed through a well-defined and narrow inter-
face.

Consistent with environment. We wanted our system to fit well with the UNIX concepts
we were not changing, It would not be acceptable to build the world’s most wonderful
memory management system if it was completely incompatible with the rest of the system
and its environment. Particularly important to us in this respect was the use of the file sys-
tem as the name space for the objects supported by the system. Moreover, we sell systems
that are intended to operate in highly networked environments, and thus we could not create
a system that presented barriers to the networked environment.

In addition to these architectural goals, there were other goals we had for the project as a whole. These
project goals were:

Maintain performance. Although it is always desirable to tag a project with the label
“‘improves performance’’, we chose the apparently more conservative goal of simply provid-
ing more functionality for the same cost in terms of overall system performance. While the
new functionality might enable increased application performance, the performance of the
system itself seemed uncertain, Further, when one considers that we replaced a mature
implementation with one which has not been subjected to several years of tuning, getting
back to current performance levels appeared to be an ambitious goal, something later experi-
ence has proven correct. '

Engineer for the future. We wanted to build an implementation that would be amenable

to anticipated future requirements, such as kemnel support for ‘‘lightweight’’ processes
[KEPE 85] and multiprocessors.

When engaging in a large project, it is often as important to know what one’s goals are not. In
the architectural arena, our principal ‘‘non-goals’’ were:

AUUGN

New external interfaces. As previously noted, a large number of groups were already
working on the refinement and definition of interfaces. To the extent possible, we wanted
to use such interfaces as had already been defined by others, and to provide those that were
sufficiently defined to be implementable and that the market was demanding.

Compatible internal interfaces. An unfortunate characteristic of UNIX is the existence of
programs that have some understanding of the system’s internals and use this information to

129 Vol 8 No §

rummage through the kemel by reading the memory device. The changes to the system we
contemplated clearly made it impossible for us to try to support these programs, and thus we
decided not to fool ourselves into trying.

Relevant project non-goals included:

® Pageable kernel. We did not intend to produce an implementation in which the kemnel
itself was paged — beyond a general desire in principle for the kemel to use less physical
memory, we would have satisfied no specific functional goal by having the kemel pageable.
However, it has turned out that a considerable portion of the memory that was previously
“‘wired down”’ for kemel use is in fact now paged, although kernel code remains physically
locked.

® Massive policy changes. Our interests lay in changing the mechanisms and what they pro-
vide, not in the policies by which they were administered. Although we would eventually
like to support an integrated view of process and memory scheduling using techniques such
as working set page replacement policies and balance set scheduling, we decided to defer
these to future efforts.

3. Constraints

Working within the framework of an existing system imposed a number of constraints on what we
could do. The constraints wete not always limits on our flexibility; in fact, those reflecting specific cus-
tomer requirements provided data that guided us through a number of design decisions. A major con-
straint was that of compatibility with previous versions of the system — ultimately, compatibility drove
many decisions.

One such decision was that the new system would execute existing a.out files. This was neces-
sary to preserve the utility of the programs already in use by customers and third parties. An important
implication is that the system must provide a binary-compatible interface for existing programs, which
means that existing system calls that perform memory management functions must continue to work. In
our case, this meant supporting our partial implementation of the 4.2BSD mmap(2) system call, which
we used to map devices, such as frame buffers, into a process’s address space.

Although the system had to be binary-compatible, we did not feel constrained to leave it source-
compatible, nor to use mmap as the principal interface to the memory management facilities of the sys-
tem. Users with programs that used interfaces we changed in this manner would have to change their
programs the next time they compiled them, but they would not be forced to recompile just to install
and continue operating on the new system.

A wide variety of customer requirements implied that the interfaces we would offer would have to
present very few constraints on a process’s use of its address space. Some applications wanted to
manage their address space completely, including the ability to assign process addresses for objects and
to use a large, sparsely populated address space. Our own desire to build a base on which many different
interfaces could be easily constructed suggested that we wanted as much flexibility as possible in user
level address space management. However, other factors and requirements suggested that the system
should also be able to control many details of an address space. One such factor was the introduction of
a virtual address cache in the Sun-3/200 family of processors, where system control of address assign-
ment would have a beneficial impact on performance. We also wanted to use copy-on-write techniques
to enhance the level of sharing in the system, and to do this efficiently required page-level protection.

4. New Architecture: General Concepts

This section describes in general terms the abstractions and properties of the new VM system, and
some reflections on the decisions that led to their creation. In many cases, our decisions were not based
on obvious considerations, but rather ‘‘fell out’’ of a large number of small issues. Although this makes
the decisions more difficult to explain, the process by which they were reached increased our confidence
that, given our goals and constraints, we had in fact reached the best conclusion.

Vol 8§ No 5 130 AUUGN

4.1. Pages vs. Segments

Our earliest decision was that the basic kemel facilities would operate on pages, rather than seg-
ments. The major factors in this decision included:

compatibility with current systems (the 4.2BSD mmap is page-based);
@ implementing efficient copy-on-write facilities required maintenance of per-page information

anyway,

® pages appeared to offer the greatest opportunity to satisfy customer requirements for flexibil-
ity; and

® segments could be built as an abstraction on top of the page-based interface by library rou-
tines.

The major advantage to a segment-based mechanism appeared simply to be that it was a ‘‘better’’ pro-
gramming abstraction. Since we could still build abstraction from the page-based mechanisms, and in
fact gained some flexibility in building different forms of the abstraction as libraries, providing segments
through the kemnel appeared to offer little benefit and possibly even presented barriers to accomplishing
some of our goals.

Although we believed we could gain the architectural advantages of segments through library rou-
tines built on our page-based system, another potential advantage to a segment-based system was the
opportunity to implement a compact representation for a sparsely populated address space. However,
since we needed per-page information to implement per-page copy-on-write and perform other physical
storage management, at the very least we would end up with a mix of page- and segment-oriented data
structures. We recognized that we could keep the major implementation advantage of a segment-based
system, i.e., the concise description of the mapping for a range of addresses, by viewing it as an optimi-
zation (a sort of run-length encoding) of the per-page data structure (a similar scheme is used in
MACH.)

4.2. Virtual Memory, Address Spaces, and Mapping

The system’s virtual memory consists of all its available physical memory resources. Examples
include file systems (both local and remote), pools of unnamed memory (also known as private or
anonymous storage, and implemented by the processor’s primary memory and swap space), and other
random access memory devices. Named objects in the virtual memory are referenced through the UNIX
file system. This does not imply that all file system objects are in the virtual memory, but simply that
all named objects in the virtual memory are named in the file system, One of the strengths of UNIX has
been the use of a single name-space for system objects, and we wished to build upon that strength.
Some objects in the virtual memory, such as process private memory and our implementation of System
V shared memory segments, do not have names. Although the most common form of object is the
UNIX ‘“‘regular file”’, previous work on SunOS has allowed for many different implementations of
objects, which the system manipulates as an abstraction of the original UNIX inode, called a vnode
[KLEI 86].

A process’s address space is defined by mappings onto the address spaces of one or more objects
in the system’s virtual memory. As previously discussed, the system provides a page-based interface,
and thus each mapping is constrained to be sized and aligned with the page boundaries defined by the
system on which the process is executing. Each page may be mapped (or not) independently, and thus
the programmer may treat an address space as a simple vector of pages. It should be noted that the only
valid process address is one which is mapped to some object, and in particular there is no memory asso-
ciated with the process itself — all memory is represented by virtual memory objects.

Each object in the virtual memory has an object address space defined by some physical storage,
the specific form being object-specific. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory’s associated physical storage is thus
accessed by transforming process addresses to object addresses, and then to the physical store. The
system’s VM management facilities may interpose one or more layers of logical caching on top of the
actual physical storage used to implement an object, a fact that has implications for coherency, discussed

AUUGN 131 Vol 8 No 5

below.

A given process page may map to only one object, although a given object address may be the
subject of many process mappings. The amount of the object’s address space covered by a mapping is
an integral multiple of the page size as seen by the process performing the mapping. An important
characteristic of a mapping is that the object to which the mapping is made is not required to be affected
by the mere existence of the mapping. The implications of this are that it cannot, in general, be
expected than an object has an ‘‘awareness’’ of having been mapped, or of which portions of its address
space are accessed by mappings; in particular, the notion of a ‘‘page’’ is not a property of the object.
Establishing a mapping to an object simply provides the potential for a process to access or change the
object’s contents,

The establishment of mappings provides an access method that renders an object directly address-
able by a process. Applications may find it advantageous to access the storage resources they use
directly rather than indirectly through read and write. Potential advantages include efficiency (elimina-
tion of unnecessary data copying) and reduced complexity (e.g., updates changed to a single step rather
than a read, modify buffer, write cycle). The ability to access an object and have it retain its identity
over the coutse of the access is unique to this access method, and facilitates the sharing of common
code and data.

It is important to note that this access method view of the VM system does not directly provide
sharing, Thus, although our motivations included providing shared memory, we have actually only pro-
vided the mechanisms for applications to build such sharing. For the system to provide not only an
access method but also the semantics for such access is not only difficult or impossible, it is not clear
that it is the correct thing to do in a highly heterogeneous environment. However, useful forms of shar-
ing can be built in such environments, as the previous mechanisms for sharing in the kemel (such as the
shared program text and file data buffer cache) have been subsumed by kemel programming building on
top of these mechanisms.

4.3. Networking, Heterogeneity, and Coheremce

Many of the factors that drove our adoption of the access method view of a VM system originated
from our goal of providing facilities that *‘fit’” with their expected environment. A major characteristic
of our environment is the extensive use of networking to access file systems that would be part of the
system’s virtual memory, These networks are not constrained to consist of similar hardware or a com-
mon operating system; in fact, the opposite is encouraged. Making extensive assumptions about the pro-
perties of objects or their access creates potentially extensive barriers to accommodating heterogeneity.
These properties include such system variables as page sizes and the ability of an object to synchronize
its uses. While a given set of processes may apply a set of mechanisms to establish and maintain various
properties of objects, a given operating system should not impose them on the rest of the network.

As it stands, the access method view of a virtual memory maintains the potential for a given
object (say a text file) to be mapped by systems running our memory management system but also
accessed by systems for which the notion of a virtual memory or storage management techniques such
as paging would be totally foreign, such as PC-DOS. Such systems could continue to share access to
the object, each using and providing its programs with the access method appropriate to that system.
The alternative would be to prohibit access to the object by less capable systems, an alternative we find
unacceptable.

A new consideration arises when applications use an object as a communications channel, or oth-
erwise attempt to access it simultaneously. In addition to providing the mapping functions described
previously, the VM management facilities also manage a storage hierarchy in which the processor’s pri-
mary memory is often used as a cache for data from the virtual memory. Since the system cannot
assume either that the object will coordinate accesses (o it, nor that other systems will in fact cooperate
with such coordination, it does mot attempt on its own to synchronize the ‘‘virtual memory cache’’ it
maintains. This is not to say that such objects can not exist, nor that systems will not cooperate; simply
that in general the system can not make such an assumption. Even within a single system, the sharing
that results is a consequence of the system’s attempt to use its cache resources efficiently, not part of its
defined functionality.

Vol 8 Ne 5 132 AUUGN

However, the lack of cache synchronization is not the limitation it might first appear. Applica-
tions that intend to share an object must employ a synchronization mechanism around their access and
this requirement is independent of the access method they use. The scope and nature of the mechanism
employed is best left to the application to decide. While today applications sharing a file object must
access and update it indirectly using read and write, they must coordinate their access using semaphores
or file locking or some application-specific protocol. In such environments, either caching is totally dis-
abled (resulting in performance limitations) or the applications must employ a function such as fsync to
ensure that the object is updated. Coherency of shared objects is not a new issue, and the introduction
of a new access method simply exposes a new manifestation of an old problem. All that is required in
an environment where mapping replaces read and write as the access method is that an operation com-
parable to fsync be provided.

Thus, the nature and scope of synchronization over shared objects is something that is
application-defined from: the outset. If the system attempted to impose any automatic semantics for
sharing, it might prohibit other useful forms of mapped access that have nothing whatsoever to do with
communication or sharing. By providing the mechanism to support coherency, and leaving it to
cooperating applications to apply the mechanism, our design meets the needs of applications without
providing barriers to heterogeneity. Note that this design does not prohibit the creation of libraries that
provide coherent abstractions for common application needs. Not all abstractions on which an applica-
tion builds need be supplied by the ‘‘operating system’’.

4.4. Historical Acknowledgements

Many of the concepts we have described are not new. MULTICS [ORGA 72] supported the notion
of file/process memory integration that is fundamental to our system. TENEX [BOBR 72] [MURP 72] sup-
ported a page-based environment together with the notion of a process page map independent of the
object being mapped.

5. External Interfaces: System Calls

The applications programmer gains access to the facilities of the new VM system through several
sets of system calls. At present, we have defined our principal interface to be a refinement of those pro-
vided with 4.2BSD. We also provide interfaces for System V’s shared memory operations. The new
system also impacted other system calls and facilities, These are described further below, Although
these represent the initial interfaces we intend to support, others may be provided in the future in
response to market demand.x

N
5.1. 4.2BSD-based Inte@aces

The 4.2BSD UNIX specification [JOY 83] included the definition of a number of system calls for
mapping files, although the system did not implement them, Earlier releases of SunOS included partial
implementations of these calls to support mapping devices such as frame buffers into a process’s address
space. The basic concepts embedded in the interface were very close to our own, namely a page-based
system providing mappings from process addresses to objects identified with file descriptors, and thus
working from this base was a natural thing to do.

However, we had problems with the 4.2BSD interfaces due to their sketchy definition. Although
the intent was well understood, the lack of an implementation left many semantic issues unresolved or
ambiguous, We required some facilities that were not part of the specification, and other facilities were
part of the specification but seemed superfluous. Thus, although we did manage to avoid creating an
entirely new interface, we did find ourselves refining an existing, but unimplemented one. The process
of refinement involved many people; in fact most were external to Sun and involved exchanges utilizing
a ‘‘VM interest’’ mailing list supported and maintained by the developers at UC Berkeley, CSRG. Table
1 summarizes our refined interface, and the following sections expand on vatious areas of refinements.

AUUGN 133 Vol 8 No 5

Table 1 — Refined 4.2BSD Interfaces
Call Function
madvise (addr, len, behav) , Gives advice about the handling of
caddr_t addr; int len, behav; memory over a range of addresses.
mincore (addr, len, vec) Determines residency of memory
caddr_t addr; int len; result char *vec; pages. (Will be replaced by more
general map reading function.)
caddr_t Establish mapping from address
mmap (addx, len, prot, flags, £fd, off) space to object named by £d.
caddr_t addr; int len, prot, flags, fd;
off t off;
mprotect (addr, len, prot) Change protection on mapped
caddr_t addr; int len, prot; pages.
msync (addr, len, flags) Synchronizes and/or invalidates
caddr_t addr; int len, flags; cache of mapped data.
munmap (addr, len) Removes mapping of address
caddr_t addr; int len; range.
5.1.1. mmap

The mmap(2) system call is used to establish mappings from a process’s address space to an
object. Its definition is:

caddr_t mmap(addr, len, prot, flags, fd, off)

mmap establishes a mapping between the process’s address space at an address paddr for len bytes to
the object specified by fd at offset off for len bytes. The value of paddr is an implementation-dependent
function of the parameter addr and values of flags, further described below. A successful mmap call
retums paddr as its result. The address ranges covered by [paddr, paddr + len) and [off, off + len)
must be legitimate for the address space of a process and the object in question, respectively. The map-
ping established by mmap replaces any previous mappings for the process’s pages in the range [paddr,
paddr + len).

The parameter prot determines whether read, execute, write or some combination of accesses are
permitted to the pages being mapped. The values desired are expressed by or’ing the flags values
PROT_READ, PROT_EXECUTE, and PROT_WRITE. It is not expected that all implementations
literally provide all possible combinations. ~PROT_WRITE is often implemented as
PROT_READIPROT_WRITE, and PROT_EXECUTE as PROT_READIPROT_EXECUTE. However,
no implementation will permit a write to succeed where PROT_WRITE has not been set. The behavior
of PROT_WRITE can be influenced by setting MAP_PRIVATE in the flags parameter.

The parameter flags provides other information about the handling of the pages being mapped.
The options are defined by a field describing an enumeration of the ‘‘type’’ of the mapping, and a bit-
field specifying other options. The enumeration currently defines two values, MAP_SHARED and
MAP_PRIVATE., The bit-field values are MAP _FIXED and MAP_RENAME. The ‘‘type’’ value
chosen determines whether stores to the mapped addresses are actually propagated to the object being
mapped (MAP_SHARED) or directed to a copy of the object (MAP_PRIVATE). If the latter is speci-
fied, the initial write reference to a page will create a private copy of the page of the object and redirect
the mapping to the copy. The mapping type is retained across a fork(2). The mapping ‘‘type’’ only
affects the disposition of stores by this process — there is no insulation from changes made by other
processes. If an application desires such insulation, it should use the read system call to make a copy of
the data it wishes to keep protected.

MAP_FIXED informs the system that the value of paddr must be addr, exactly. The use of
MAP_FIXED is discouraged, as it may prevent an implementation from making the most effective use

Vol 8 No 5 134 AUUGN

of system resources.

When MAP_FIXED is not set, the system uses addr as a hint in an implementation-defined
mannper to arrive at paddr. The paddr so chosen will be an area of the address space that the system
deems suitable for a mapping of len bytes to the specified object. All implementations interpret an addr
value of zero as granting the system complete freedom in selecting paddr, subject to constraints
described below. A non-zero value of addr is taken to be a suggestion of a process address near which
the mapping should be placed. When the system selects a value for paddr, it will never place a map-
ping at address 0, nor will it replace any extant mapping, nor map into areas considered part of the
potential data or stack ‘‘segments’’. In the current SunOS implementation, the system strives to choose
alignments for mappings that maximize the performance of systems with a virtual address cache.

MAP_RENAME causes the pages currently mapped in the range [paddr, paddr + len) to be effec-
tively renamed to be the object addresses in the range [off, off + len). The currently mapped pages
must be mapped as MAP_PRIVATE. MAP_RENAME implies a MAP_FIXED interpretation of addr.
fd must be open for write. MAP_RENAME affects the size of the memory object referenced by fd: the
size is max(off + len - 1, flen) (where flen was the previous length of the object). After the pages are
renamed, a mapping to them is reestablished with the parameters as specified in the renaming mmap.

The addition of MAP_FIXED and corresponding changes in the default interpretation of addr and
mmap’s tetum value represent the principal change made to the original 4.2BSD specification. The
change was made to remove the burden of managing a process’s address space from applications that
did not wish it.

5.1.2. Additions
We added one new system call, msync. msync has the interface
msync(addr, len, flags)

msync causes all modified copies of pages over the range [addr, addr + len) in system caches to be
flushed to the objects mapped by those addresses. msync optionally invalidates such cache entries so
that further references to the pages will cause the system to obtain them from their permanent storage
locations, The flags argument provides a bit-field of values which influences msync’s behavior. The bit
names and their interpretations are:

MS_ASYNC Retum immediately
MS INVALIDATE Invalidate caches

MS_ASYNC causes msync to retum immediately once all I/O operations are scheduled; normaily,
msync will not return until all /O operations are complete. MS_INVALIDATE causes all cached copies
of data from mapped objects to be invalidated, requiring them to be re-obtained from the object’s
storage upon the next reference.

5.1.3. Unchanged Interfaces

Two 4.2BSD calls were implemented without change. They were mprotect for changing the pro-
tection values of mapped pages, and munmap for removing a mapping.

5.1.4. Removed: mremap

We deleted one system call, mremap. Upon reading the 4.2BSD specification, we had the impres-
sion that mremap was the mapping equivalent of the UNIX mv command. However, discussions with
those involved in its original specification created confusion as to whether it was in fact supposed to be
the equivalent of mv, ¢p, or In. In the presence of the uncertainty and lacking any other motivation to
include it, mremap was dropped from the system,

AUUGN 135 Vol 8 No 5

5.1.5. Open Issues

Two 4.2BSD system calls, madvise and mincore, remain unspecified. madvise is intended to pro-
vide information to the system to influence its management policies. Since a major rework of such poli-
cies was deferred to a future release, we decided to defer full specification and implementation of mad-
vise until that time. .

mincore was specified to return the residency status of a group of pages. Although the intent was
clear, we felt that a more comprehensive interface for obtaining the status of a mapping was required.
However, at present, this revised interface has not been defined.

Also unspecified is an interface for locking pages in memory. We envision either a new mlock
system call, or a variation on madvise.

5.2. System V Shared Memory

The ‘‘System V Interface Definition’’ [AT&T 86] defines a number of operations on entities called
‘‘shared memory segments’’. Early in our project, we had hoped to implement these operations not as
system calls but rather as library routines which built the System V abstractions out of the basic
mechanisms supplied by the kemel. Unfortunately, System V shared memory is almost, but not com-
pletely the same as, a UNIX file. The primary differences are:

@ name space: a shared memory segment exists in a name space different from that of the
traditional UNIX file system; and

® ownership and access: a shared memory segment separates the notion of ‘‘creator’’ from
(X3 "
owner’’.

Together, these differences motivated a kemel-based implementation to allocate and manage the different
name space (which shared implementation with other System V-specific objects such as semaphores),
and to administer the different ownership and access control operations.

Although the databases peculiar to these differences are maintained inside the kemel, the imple-
mentation of the objects and access are built from the standard notions. Specifically, the memory object
representing the shared memory segment exists as an unnamed object in the system’s virtual memory,
and the operation which attaches processes to it performs the internal equivalent of an mmap.

Implementation plans call for the object used to represent the shared memory segment to be sup-
ported by an anonymous memory-based file system. /tmp could be implemented as a file system of
this type, potentially eliminating all I/O operations for temporary files and simply supporting them out
of the processor’s memory resources.

5.3. Other System Calls and Facilities

The new VM system has had an impact on other areas of the system as well, either extending or
slightly altering the semantics of existing operations.

5.3.1. ‘‘Segments’’

Traditionally, the address space of a UNIX process has consisted of three segments: one each for
write-protected program code (text), a heap of dynamically allocated storage (data), and the process’s
stack. Under the new system, a process’s address space is simply a vector of pages and there exists no
real structure to the address space. However, for compatibility purposes, the system maintains address
ranges that ‘‘should’’ belong to such segments to support operations such as extending or contracting the
data segment’s ‘‘break’’. These are initialized when a program is initiated with exec.

5.3.2. exec

exec overlays a process’s address space with a new program to be executed. Under the new sys-
tem, exec performs this operation by performing the internal equivalent of an mmap to the file contain-
ing the program. The text and initialized data segments are mapped to the file, and the program’s unini-
tialized data and stack areas are mapped to unnamed objects in the system’s virtual memory. The boun-
daries of the mappings it establishes are recorded as representing the traditional ‘‘segments’’ of a UNIX

Vol 8 No 5 136 AUUGN

process’s address space.

exec establishes MAP_PRIVATE mappings, which has implications for the operation of fork and
ptrace, as discussed below. The text segment is mapped with only PROT_READ and
PROT_EXECUTE protections, so that write references to the text produce segmentation violations. The
data segment is mapped as writable; however any page of initialized data that does not get written may
be shared among all the processes running the program.

5.3.3. fork

Previously, a process created by fork had an address space made from a copy of its parent’s
address space. Under the new system, the address space is not copied, but the mappings defining it are.
Since exec specifies MAP_PRIVATE on all the mappings it performs, parent and child thus effectively
have copy-on-write access to a single set of objects. Further, since the mapping is generally far smaller
than the data it describes, fork should be considerably more efficient. Any MAP_SHARED mappings in
the parent are also MAP_SHARED in the child, providing the opportunity for both parent and child to
operate on a common object.

5.3.4. vfork

Berkeley-based systems include a ‘‘“VM-efficient’’ form of the fork system call to avoid the over-
head of copying massive processes that simply threw away the copy operation with a subsequent exec
call. At one point we hoped that the efficiencies gained through a reimplemented fork would obviate the
need for vfork. Unfortunately, vfork is defined to suspend the parent process until the child performs
either an exec or an exit and to allow the child full access to the parent’s address space (not a copy) in
the interim. A number of programs take advantage of this quirk, allowing the child to record data in the
address space for later examination by the parent. Eliminating vfork would break these programs, a fact
we discovered in numerous ways when early versions of the system simply treated a vfork as fork.
Further, vfork remains fundamentally more efficient than even a fork that only copies an address space
map, since vfork copies nothing.

However, to encourage programmers at Sun to avoid the use of vfork, we took our time restoring
it to the system and as a result got many programs ‘‘fixed’’.

8.3.5. ptrace

In previous versions of the system, the ptrace system call (used for process debugging) would
refuse to deposit a breakpoint in a program that was being run by more than one process. This restric-
tion was imposed by the nature of the old system’s facility for sharing program code, which was to
share the entire text portion of an executable file.

In the new system, the system simply shares file pages among all those who have mappings to
them. When a mapping is made MAP_PRIVATE, writes by a process to a page to which writes are
permitted are diverted to a copy of the page — leaving the original object unaffected. ptrace takes
advantage of the fact that an exec establishes the mapping to the file containing the program and its ini-
tialized data as MAP_PRIVATE, as it inserts a breakpoint by making a read-only page writable, deposit-
ing the breakpoint, and restoring the protection. The page on which the breakpoint is deposited, and
only that page, is no longer shared with other users of the program — and their view of that page is unaf-
fected.

58.3.6. truncate

The truncate system call has been changed so that it sets the length of a file. If the newly speci-
fied length is shorter than the file’s current length, truncate behaves as before. However, if the new
length is longer, the file’s size is increased to the desired length. When writing a file exclusively
through mapping, extending through fruncate is the only alternative to MAP_RENAME operations for
growing a file. :

AUUGN 137 Vol 8 No §

5.3.7. Resource Limits

Berkeley-based systems include functions for limiting the consumption of certain system
resources. We have introduced a mew resource limit: RLIMIT _PRIVATE. This limit controls the
amount of ‘‘private memory’’ that a process may dynamically allocate from the system’s source of
unnamed backing store. In many respects, RLIMIT PRIVATE really describes the limit that
RLIMIT_DATA and RLIMIT_STACK attempt to capture, namely the amount of swap space a given
process may consuime,

6. Internal Interfaces

The new VM system provides a set of abstractions and operations to the rest of the kernel. In
many cases, these are used directly as the basis for the system call interfaces described above. In other
areas they support internal forms of those system call interfaces, allowing the kemel to perform map-
pings for the address space in which it operates. The VM system also relies on services from other
areas of the kernel. '

6.1. Imternal Role of VM

In general, the kemel uses the VM system as the manager of a logical cache of memory pages and
as the object manager for ‘‘address space objects’’. In iis role as cache manager, the VM system also
manages the physical storage resources of the processor, as it uses these resources to implement the
cache it maintains, The VM system is a particularly effective cache manager, and maintains a high
degree of sharing over multiple uses of a given page of an object. As such, it has subsumed the func-
tions of older data structures, in particular the text table and disk block data buffer cache (the ‘‘buffer
cache’’). The VM system has replaced the old fixed-size buffer cache with a logical cache that uses all
of the system’s pageable physical memory. Thus its use as a ‘‘buffer cache’’ in the old sense dynami-
cally adapts to the pattern of the system’s use — in particular if the system is performing a high percen-
tage of file references, all of the system’s pageable physical memory is devoted to a function that previ-
ously only had approximately 10% of the same resources. The VM system is also responsible for the
management of the system’s memory management hardware, although these operations are invisible to
the machine-independent portions of the kemel,

Kernel algorithms that operate on logical quantities of memory, such as the contents of file pages,
do so by establishing mappings from the kemel’s address space to the object they wish to access. Those
algorithms that implement the read and write system calls on such memory objects are particularly
interesting: they operate by creating a mapping to the object and then copying the data to or from user
buffers as appropriate. When mapping is used in this manner, users of the object are provided with a
consistent view of the object, even if they mix references through mapped accesses or the read and write
system calls. Note that the decision to use mapping operations in this way is left to the manager of the
object being accessed.

The VM system does not know the semantics of the UNIX operating system. Instead, those pro-
perties of an address space that are the province of UNIX, such as the notions of ‘‘segments’’ and stack-
growth, are implemented by a layer of UNIX semantics over the basic VM system. By providing only
the basic abstractions from the VM system itself, we believe we have made it easier to provide future
system interfaces that may not have UNIX-like characteristics.

The VM system relies on the rest of the system to provide managers for the objects to which it
establishes mappings. These managers are expected to provide advice and assistance to the VM system
to ensure efficient system management, and to perform physical I/O operations on the objects they
manage. These responsibilities are detailed further below.

6.2. as layer

The primary object managed by the VM system is a (process) address space (as). The interfaces
through which the system requests operations on an as object are summarized in Table 2, and are collec-
tively referred to as the as-layer of the system. An as contains the memory of the mappings that
comprise an address space. In addition, it contains a hardware address translation (hat) structure that

Vol 8§ No 5 138 AUUGN

Table 2 — as operations

Operation Function
struct as *as alloc() as allocation,
struct as *as_dup (as) Duplicates as — used in fork.
struct as *as;
void as_free (as) ' as deallocation.
struct as *as;
enum as_res Internal mmap. Establish a
as_map(as, addr, size, crfp, crargsp) mapping to an object using the
struct as *as; addr_t addr; u_int size; mapping manager routine
int (*crfp) (); caddr_t crargsp; identified in crfp, providing

object specific arguments in the
opaque structure crargsp.

enum as_res Remove a mapping in as.
as_unmap (as, addr, size)
struct as *as; addr t addr; u int size;

enum as_res Alter protection of mappings in
as_setprot (as, addr, size, prot) as.

struct as *as; addr_t addr;

u _int size, prot;

enum as_res Determine whether — mappings
as_checkprot (as, addr, size, prot) satisfy protection required by
struct as *as; addr_t addr; prot,
u int size, prot;
enum as_res Resolves a fault.

as_fault (as, addr, size, type, rw)
struct as *as; addr_t addr; u_int size;
enum fault type type; enum seg _rw rw;

enum as_res Asynchronous fault — used for
as_faulta(as, addr, size) ““fault-ahead”’.
struct as *as; addr_t addr; u int size;

holds the state of the memory management hardware associated with this address space. This structure
is opaque to much of the VM system, and is interpreted only by a machine-dependent layer of the sys-
tem, described further below.

An as exists independent of any of its uses, and may be shared by multiple processes, thus setting
the stage for future integration of a multi-threaded address space capability as described in [KEPE 85].
The ‘‘address space’’ in which the kermel operates is also described by an as structure, and is the handle
by which the kemel effects internal mapping operations using as_map.

The operations permitted on an as generally correspond to the functions provided by the system
call interface. An implication of this is that just about any operation that the kernel could perform on an
address space could also be implemented by an application directly. More work is necessary to define
an interface for obtaining information about an as, to support the generation of core files, and the as-yet
unspecified interfaces for reading mappings. An additional interface is also needed to support any
advice operations we might choose to define in the future.

Internally to an address space, each individual mapping is treated as an object with a ‘‘mapping
object manager’’. Such mappings are run-length compact encodings describing the mapping being per-
formed, and may or may not have per-page information recorded depending on the nature of the map-
ping or subsequent references to the object being mapped. Due to a regrettable lack of imagination at a
critical junction in our design, these ‘‘mapping objects’’ are termed segments, and their managers are

AUUGN 139 Vol 8 No 5

called ‘‘segment drivers’’.

6.3. hat layer

As previously noted, a hat is an object representing an allocation of memory management
hardware resources. The set of operations on a hat are not visible outside of the VM system, but
represent a machine-dependent/independent boundary called the har-layer. Although it provides no ser-
vices to the rest of the system, the hat-layer is of import to those faced with porting the system to vari-
ous hardware architectures. It provides the mapping from the software data structures of an as and its
internals to those required by the hardware of the system on which it resides.

We believe that the hat-layer has successfully isolated the hardware-specific requirements of Sun’s
systems from the machine-independent portions of the VM system and the rest of the kernel, In particu-
lar, under the old system the addition of support for a virtual address cache permeated many areas of the
system. Under the new system, support for the virtual address cache is isolated within the hat layer.

6.4. ¥/O Layer

The primary services the VM system requires of the rest of the kemel are physical I/O operations
on the objects it maps. These operations occur across an interface called the ‘‘I/O Layer’’. Although
used mainly to cause physical page frames to be filled (page-in) or drained (page-out) operations, the
1/O layer also provides an opportunity for the managers of particular objects to map the system-specific
page abstraction used by the VM system to the representation used by the object being mapped.

For instance, although the system operates on page-sized allocations, the 4.2BSD UNIX file system
[MCKU 84] operates on collections of disk blocks that are often not page-sized. Efficient file system per-
formance may also requite non-page-sized 1/O operations, in order to amortize the overhead of starting
operations and to maximize the throughput of the particular subsystem involved. Thus, the VM system
will pass several operations (such as the resolution of a fault on an object address, even one for which
the VM system has a cached copy) through the object manager to provide it the opportunity to intercede.
The object manager for NFS files uses these intercessions to prevent cached pages from becoming stale.
Managers for network-coherent objects enforce coherence through this technique.

The I/O layer is to some extent bi-directional, as a given operation requested by the VM system
may cause the object manager to request several VM-based operations. 1/O clustering is an example of
this, where a request by the VM system to obtain a page’s worth of data may cause the object manager
to actually schedule an I/O operation for logical pages surrounding the one requested in the hopes of
avoiding future I/O requests. The old notion of ‘‘read-ahead’’ is implemented in this manner, and each
object manager has the opportunity to recognize and act on pattems of access to a given object in a
manner that maximizes its performance.

7. Project Status & Future Work

The architecture described in this paper has been implemented and ported to the Sun-2 and Sun-3
families of workstations. At present, all our major functional goals have been met. The work has con-
sumed approximately four man-years of effort over a year and a half of real time. A surprisingly large
amount of effort has been drained by efforts to interpose the VM system as the logical cache manager
for the file systems, in particular with respect to the 4.2BSD UNIX file system.

With respect to our performance goals, more tuning work is required before we can claim to meet
them. However, in some areas dealing with file access, early benchmarks reveal substantial performance
improvements resulting from the much larger cache available for I/O operations. We expect further per-
formance improvements when more of the system uses the new mechanisms. In particular, we expect an
implementation of shared libraries to have a substantial impact upon the use of system resources. Future
uses of mapping include a rewritten standard I/O library to use mmap rather than read and perhaps
write, thus eliminating the dual copying of data and providing a transparent performance improvement to
many applications. As sharing increases in the system, we expect the requirements for swap resources
to decrease.

Vol 8 No 5 140 AUUGN

Other future work involves refining and completing the interfaces that have not yet been fully
defined. We plan an investigation of new management policies, especially with respect to different
page-replacement policies and the better integration of memory and processor scheduling. We would
also like to port the system to different hardware bases, in particular to the VAX, to test the success of
the hat layer in isolating machine dependencies from the rest of the system.

8. Conclusions
We believe the new VM architecture successfully meets our goals. Reviewing these reveals:

® Unify memory handling. All VM operations have been unified around the single notion of
file mapping. Extant operations such as fork and exec have been reconstructed and their
performance, and in some cases function, has been improved through their use of the new
mechanisms.

® Non-kernel implementation of many functions. Although we were disappointed that ker-
nel support was required to implement System V shared memory segments, we believe that
this goal has been largely satisfied. In particular, our implementation of shared libraries
[GING 87] requires no specific kernel support. We believe the basic operations the interfaces
provide will permit the construction of other useful abstractions with user-level program-
ming.

@ Improved portability. Although more experience is required, we were pleased with the
degree to which the Sun-3 virtual address cache was easily incorporated into the new sys-
tem, in comparison with the difficulty experienced in integrating it into the previous system.

® Consistent with environment. The new system builds on the abstractions already in UNIX,
in particular with respect to our use of the UNIX file system as the name space for named
virtual memory objects. The integrated use of the new facilities in the system has helped to
extend the previous abstractions in a natural manner. The semantics offered by the basic
system mechanisms also do not impede the heterogeneous use of objects accessed through
the system, an important consideration for the networked environments in which we expect
the system to operate.

Finally, we have provided the functionality that motivated the work in the first place.

9. Acknowledgements

The system was designed by the authoss, with Joe Moran providing the bulk of the implementa-
tion. Bill Joy offered commentary and advice on the architecture, as well as insights into the intents of
the 4.2BSD interface, and an initial sketch of an implementation of the internal VM interfaces. Kirk
McKusick and Mike Karels of UC Berkeley, CSRG, spent several days discussing the issues with us.
The other members of Sun’s System Software group gave considerable assistance and advice during the
design and implementation of the system.

16. References
[ACCE 86] Accetta, M., R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M.
Young, ‘““Mach: A New Kemel Foundation for UNIX Development’’, Summer
Conference Proceedings, Atlanta 1986, USENIX Association, 1986.

[AT&T 86] AT&T, System V Interface Definition, Volume I, 1986

[BOBR 72] Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX,
a Paged Time Sharing System for the PDP-10"", Communications of the ACM,
Volume 15, No. 3, March 1972,

[GING 87] Gingell, R. A, M. Lee, X. T. Dang, M. S. Weeks, ‘‘Shared Libraries in
SunOS’’, Summer Conference Proceedings, Phoenix 1987, USENIX Associa-
tion, 1987.

[Joy 83] Joy, W. N, R. S. Fabry, S. J. Leffler, M, K. McKusick, 4.2BSD System Manual,

Computer Systems Research Group, Computer Science Division, University of

AUUGN 141 Vol 8 No 5

California, Berkeley, 1983.

[KEPE 85] Kepecs, J. H., ‘‘Lightweight Processes for UNIX Implementation and Applica-
tions’’, Summer Conference Proceedings, Portland 1985, USENIX Association,
1985.

[KLEI 86] Kleiman, S. R., ‘“Vnodes: An Architecture for Multiple File System Types in
Sun UNIX"’, Summer Conference Proceedings, Atlanta 1986, USENIX Associa-
tion, 1986.

[MKCU 84] McKusick, M. K., W. N. Joy, S. J. Leffler, R. S. Fabry, ‘‘A Fast File System
for UNIX"’, Transactions on Computer Systems, Volume 2, No. 3, August 1984.

[MURP 72] Murphy, D. L., ‘‘Storage organization and management in TENEX"’, Proceed-
ings of the Fall Joint Computer Conference, AFIPS, 1972.

[ORGA 72] Organick, E. 1., The Multics System: An Examination of Its Structure, MIT
Press, 1972,

Vol 8 No 5 142 AUUGN

Virtual Address Cache in UNIXY}

Ray Cheng

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, Ca. 94043
rcheng@Sun.COM or sunlrcheng

Most of the cache memories in computer systems are addressed by physical addresses. In systems
that support virtual addresses, this means that the cache is accessible after a virtual to physical transla- -
tion is done. In order to reduce the cache access time, Sun-3 Series 200 workstations include a cache
accessed by virtual addresses. However, unlike physical address caches, virtual address caches are not
transparent to software. Data consistency problems arise when there is a change to the virtual to physi-
cal mapping or when two or more virtual addresses map to the same physical address.

To hide this data consistency problem from application programs, the kemel should ensure that a
program runs on a machine with a virtual address cache produces the same result as the one it produces
when it runs on a machine without a virtual address cache. To guarantee such system correctness, the
kernel maintains the following invariant: if an entry is in the cache, its virtual to physical mapping must
be correct and no other virtual address maps to that physical address without going through the same
cache entry.

There are three things the kemel can do to satisfy this condition. The first is to flush an entry
from the cache when its virtual to physical mapping becomes incorrect, e.g. when the mapping of u page
of the out-going process becomes incorrect during a context switch. The second is to make virtual
addresses differ by modulo 128K when we set up a virtual address that maps to the same physical
address as another virtual address, e.g. in the implementation of AT&T System V shared memory.
Finally, if the kernel doesn’t know when to flush the cache and the assignment of virtual addresses that
map to the same physical address is beyond the kemel’s control, e.g. in the implementation of the mmap
routines in 4.2BSD UNIX, the kemel makes these virtual addresses non-cacheable.

This paper first gives some background in cache memories and the Sun-3 cache architecture in
particular. It then describes the approach we took and the new routines we added to the kemel. Several
examples illustrate why and how some entries are flushed from the cache when a mapping is invali-
dated, when a mapping becomes invalid implicitly, and when the protection attributes of a mapping are
changed. Since flushing an entry from the cache takes up to several hundred microseconds, we avoid
cache flushing as much as possible. This paper describes several cases where cache flushings are
avoided even when the mappings become incorrect. After that, the uses of modulo 128K addressing and
non-cache pages are discussed. The debugging turned out to be as difficult as we had feared, especially
due to the fact that we debugged the kemel and the cache hardware at the same time. Finally, the over-
head of cache flushings as well as their measurement are discussed.

t UNIX is a registered trademark of AT&T

AUUGN 143 Vol 8 No 5

1. Introduction

To increase effective memory access speed, modemn computer systems use a cache memory in
front of main memory. Almost all computer systems address cache memories by physical addresses.
This means that a Translation Lookaside Buffer (TLB) lookup and possibly a virtual-to-physical transla-
tion is needed before the information in the cache memory can be accessed.

In Sun-3 200 series machines, the cache memory is addressed by virtual addresses. The advantage
is that TLB is eliminated and the cache can be accessed without a virtual-to-physical mapping. How-
ever, this cache is not transparent to software. To relieve users of the need to modify their programs,
the operating system has to make the cache transparent to user level programs. In this paper we present
our experience with the extension of a 4.2BSD based UNIX kernel for a machine with such a cache
memory.

2. Background

Cache memories are small, high speed memories used to hold information that is believed to be
currently in use [Smith, 82]. Information located in cache memories can be accessed in much less time
than that located in the main memory. Thus, a CPU with a cache memory spends less time waiting for
instructions or data to be fetched or stored.

When a write operation is performed, main memory can be updated in two fashions. In the first
method, the cache memory receives the write and the main memory is not updated until that cache line
is replaced. This method is known as copy-back (or write-back). The second method, known as write-
through, updates both the cache memory and the main memory when the write is performed.

Cache memories can be addressed either by physical addresses or by virtual addresses. The cache
memory that is addressed by physical addresses is called a physical address cache while the cache
memory that is addressed by virtual addresses is called a virtual address cache. Their conceptual differ-
ence relative to the virtual-to-physical address translation is illustrated in Figure 1.

CPU virtual address physical I; Z}élsrieizl physical main
address translation | address address memory
cache
oPU virtual :(;d“;’efs virwal | address | physical | main
address cache address ~ | translation | address memory

Figure 1 physical address cache vs. virtual address cache

3. Sun-3 Cache Architecture

The Sun-3 virtual memory architecture provides each process with a 256 megabytes virtual
address space [Sun, 86]. The Sun-3 MMU uses a page size of 8K bytes and segment size of 128K
bytes. The MMU consists of eight distinct address spaces or "contexts", each of them has a size of
256M bytes. The kemel is responsible for multiplexing the hardware resource of contexts among the set
of processes it supports, using each context to represent a process’s virtual address space.

The Sun-3 cache is a virtual address, write-back cache. The cache is 64K bytes in size with 16

byte lines. It has a context field in its cache tags to distinguish the eight contexts of the Sun-3 MMU.
Hence the entire cache is not wiped out on a context switch. When a virtual-to-physical mapping is set

Vol 8 No 5 144 AUUGN

up in the MMU, a page may be made non-cacheable. If a page is made non-cacheable in the MMU, the
information in this page will not be put in the cache.

To make it possible for the system to work correctly with the virtual address cache, the architec-
ture includes three cache flush operations: the page match flush, the segment match flush, and the con-
text match flush. These flush operations flush all cache lines whose tags match a page address, a seg-
ment address, or a context number. When a cache line is flushed, if that line is modified and valid, a
write-back to the main memory is done. In addition, if the line is valid, it becomes invalid after being
flushed. (A hit occurs when the requested virtual address matches with the virtual address of a valid
line as well as the type of the access satisfies the protection check.)

Further, the Sun-3 cache guarantees that all virtual addresses that map to the same physical
address are put to a common cache location if their (virtual) addresses differ by a multiple of 128K
bytes. This applies to virtual addresses within the same context or between different contexts.

4. Problems with Virtual Address Caches

The correctness criterion for introducing a cache is that any program run on a system with a cache
should produce the same result as it produces from a system without such a cache. A system with a vir-
tual address cache introduces two kinds of data consistency problems:; mapping change and synonyms.

4.1. Mapping Changes

Mapping change introduces data inconsistency as follows (Figure 2): At time t1, virtual address v
maps to physical address pl and there is a write operation that writes value x to the content of virtual
address v. This value x is associated with virtual address v in the cache. At a later time t2, the map-
ping of v is changed such that it maps to physical address p2 which contains a value y. Then, the CPU
issues a read operation to v. On systems without such a cache, the value y should be the result of this
read access. However, if <v, x > is valid in the cache, the value x will be the result of the read access.
Furthermore, the value x is not written to the physical memory pl.

v X tl » pl
t2
p2| vy
tl <2

Figure 2 Data Inconsistency due to Mapping Changes

AUUGN 145 Vol 8 No 5

4.2, Synonyms

Synonym is the case when there is more than one virtual address mapped to the same physical
address. Synonyms introduce another kind of data inconsistency as follows: Virtual addresses vl and
v2 both map to physical address p. At time tl1, the CPU writes the value x to v1. At time t2 > tl, the
CPU writes the value y to v2, (Figure 3) At this time the value x is associated with v1 in the cache
while the value y is associated with v2 in the cache. The physical memory p should contain the value y
since it is written at the later time, Next, at time t3 > t2 the CPU reads from vl. Since <vl, x > is
stored in the cache, the value x is returned to the CPU. However, on systems without a virtual address
cache, the value y is returned to the CPU.

vl X = p

v2 y

Figure 3 Data Inconsistency due to Synonyms

5. Unix Kernel Extensions

The goal of the kemel extensions is to ensure that any user level program running on machines
with a virtual address cache produces the same result as it would produce when running on machines
without such a cache. Also, attention is paid to introduce as little cache-induced overhead as possible.
Such overhead can be the result of cache flush operations or of non-cacheable page accesses.

The kemel uses cache flush operation to solve the data inconsistency problem introduced by map-
ping changes. For synonyms, the kernel tries to utilize the modulo 128K feature of the Sun-3 cache
architecture, to execute cache flush operations, and to make pages non-cacheable. Since cache flush
operations take tens to hundreds of microseconds, we attempted to avoid such operations as much as we
could.

5.1. Mapping Changes

This data inconsistency problem can be solved if the kernel flushes the affected portion of the
cache whenever there is a mapping change. As shown in Figure 4, before the mapping v-to-pl is
changed to v-to-p2, we issue a cache flush operation to virtual address v. Then, the value x is written
physical memory pl and there is no valid entry for virtual address v in the cache, When the CPU reads
from virtual address v after the mapping v-to-p2 is set up, since v doesn’t have a valid entry in the
cache, the read causes a cache miss and the value y is obtained from the physical memory.

Vol 8 No 5 146 AUUGN

Figure 4 Mapping Changes with cache flushes

If the mapping of v-to-pl is invalidated before the mapping v-to-p2 is set up, as occurs in lots of
places in 4.2BSD Unix, we only have to flush the cache when a mapping becomes invalid. The map-
ping change from invalid to v-to-p2 doesn’t need a cache flush, because there is no valid entry for vir-
tual address v in the cache. We generalized this cache flushing strategy as follows: There is always a
cache flush operation when a mapping is changed from valid to invalid, but there is no cache flush
operation when a mapping is changed from invalid to valid. This saves a number of unnecessary cache
flush operations while maintaining the correctness criteria.

Example 1. In SunOS Release 3.2, the u page is in the kemel virtual address space. This kernel
virtual address maps to the physical u page of the running process. Therefore, when a process is
schedule to run during a context switch, a mapping from virtual address _u to the physical address of its
u page has to be set up. Similarly, such a mapping is invalidated when a process is "switched” out dur-
ing context switch. To avoid the data inconsistency due to this mapping change during context switch,
we do a page match flush when the mapping of u page is invalidated. (We don’t do a page match flush
when a new mapping for the u page is being set up.)

Example 2. In pageout(), the pageout daemon marks not-recently-used pages to be invalid. If
there is no page match flush for this page and the MMU mapping is invalidated accordingly, a subse-
quent write-back of this page to the physical memory will fail.

There are also cases where a mapping is not released or invalidated explicitly. To follow our
cache flushing discipline, namely, flush when a mapping becomes invalid not when a mapping becomes
valid, we deem the mapping to be invalid when this mapping is not used any more and start the flush
operation at this time. For example, forkutl is used to map to the physical u page of the child process
when the kernel is servicing the fork(2) system call. This mapping is not released explicitly when the
routine using forkutl retuns, However, we deem the mapping to be invalid before the routine returns.
Therefore, the page match flush for forkutl is done before the routine retums.

S.2. Synonyms

If the virtual addresses in a case of synonym can be set by the kemnel, such virtual addresses are
set such that their differences are modulo 128K. Thus, the Sun-3 cache architecture guarantees that all
such virtual addresses that map to the same physical address occupy the same cache line in the cache
memory. This solves the data inconsistency problem without any cache flush overhead. This technique
was used in the implementation of the System V shared memory in SunOS Release 3.2.

Many times it is inconvenient to assign values to virtual addresses. For example, it is impractical
to allocate kemel global variables that may be used to map to same physical addresses at addresses that
differ by a multiple of 128K. However, if the kernel knows about the access pattem of synonyms v1
and v2, we can treat the other mapping as invalid while one mapping is actively in use. Then we can
flush the virtual address when its mapping becomes invalid. The following example illustrates this
method.

AUUGN 147 Vol 8 No 5

Example 3. In SunOS Release 3.2, a Direct Virtual Memory Access (DVMA ™ operation from
virtual address vl starts with the kernel setting up a mapping from another virtual address v2 in the
DVMA region to the same physical address as vl maps to. Then, the requested DVMA operation,
either read or write, is started through virtual address v2. Thus, both v1 and v2 map to the same physi-
cal address, a case of synonyms.

However, in this case, we know that vl is accessed first, then v2 is accessed, and finally v1 is
accessed again (Figure 5). When the mapping of v2-to-p is being set up, we view the mapping of v1-
to-p as invalid and do a page match flush on vl. When v2 is not accessed any more for this DVMA
operation, we view that the mapping of v2-to-p becomes invalid and do a page flush on v2. All these
flush operations turned out to be necessary both on DVMA read operations and on DVMA write opera-
tions.

vi t1, t3 p

v2

tl1<2<t3

Figure 5 Synonyms with cache flushes

5.3. Don’t Cache Page

If in a case of synonyms, we can neither set the virtual addresses nor know about the access pat-
tern of the virtual addresses, we make all these virtual pages non-cacheable. As discussed in Section 3,
any page that is made non-cacheable in the MMU is not included in the cache. On Sun-3 200 series
implementation, when a page is non-cacheable, its access is much slower than the the speed CPU can
access memory. Thus, a number of wait states are needed. Therefore, this method is used as the last
resort to guarantee system correctness.

Example 4. The mmap(2) routine from 4,2BSD Unix allows different user level programs to map
to the same physical address. In this case, user level addresses are determined by user programs and
their access behavior is unknown to the kernel. As a result, the kernel makes these user pages non-
cacheable. If the kernel page is also used by a device driver, the device driver should make the shared
kerel page non-cacheable also (Figure 6).

Vol 8 No 5 148 AUUGN

kemel

userl P

user2

Figure 6 Synonyms that Require the Use of Don’t Cache Pages

5.4. Don’t Flush if Not Necessary

The cache flush operations are rather time consuming in our implementation. Therefore, we avoid
flushing as much as possible. One trick in the case of u page flush is that since only half of an 8K
bytes pages is really used, the kernel flushes 4K bytes instead of flushing the entire page. There are a
number of cases where flush operations can be avoided when a mapping changes from valid to invalid.
For example in swap() of 4.2BSD Unix, dirty pages are mapped to the context of proc[2] and hence
invalidate the previous mapping. Since dirty pages have been flushed in pageout() already, there is no
need to flush these pages again in swap().

6. Performamnce

In order to measure the cache-induced overhead, we added instrumentation code to the kemel to
record the total number of each kind of flush. Then we wrote a user level program that reads these ker-
nel numbers. Next, before and after we ran benchmark programs we probed the number of each type of
flushes. The differences of these numbers approximate the number of each kind of flush occurred from
running this benchmark program.

Though hardware engineers are able to give us the minimum time needed to do each kind of
flushes, the time that a flush really takes depends on the number of lines beingrmodiﬁed at the time of
flush and on other system activities such as Ethernet traffic and VMEbus M activities. Lacking
analytical data, we decided to use a logical analyzer to measured the average time needed to do a flush.
Since different benchmarks cause the cache lines modified quite differently, we measure the average
flush time separately for each benchmark we ran. We also estimated the time spent in software to
instruct the hardware to do a flush. Next we multiplied the number of each kind of flushes by the aver-
age time of each kind of flushes to get an approximate total time spent in flushing the cache for a
benchmark program. Lastly, we divided the time spent in flushing the cache by the total amount of time
spent in running the benchmark program.

We ran one benchmark program at a time on lightly loaded multi-user mode. For the dhrystone
benchmark, only 0.13% of total time was spent in flushing the cache. Most of the flushes were to flush
the u page during context switches. Also, the u page was barely modified hence the cache hardware
spent minimal time doing write-back. Another benchmark program which causes page faults to occur
continuously spent 3.0% of total time in flushing the cache. In this benchmark, paging to and from the
disk using DVMA operations caused many page match flushes. Also, almost all of such flushes needed
write-back operations.

AUUGN 149 Vol 8 No 5

7. Conclusions

To guarantee the correctness of the system, we keep the following invariant condition true at all
time. Throughout the design, this invariant condition was checked against to decide whether a cache
flushing was needed.

If an entry is in the cache, its mapping (including protection violation check) from the virtual
address to physical address must be correct.

Mappings are changed, both implicitly and explicitly, in many different places in the 4.2BSD ker-
nel. It would be easier to identify all mapping changes if they were placed only in a few routines.

The debugging was as tricky as we had feared, worsened by the fact that we debugged the kernel
and the cache hardware with the kemel at the same time. When the system crashed, the cause could be
that the kernel missed a cache flush a short time ago in this context, or that the kemel missed a cache
flush several context switches back. It also could be that somewhere the kemel flushed at the right time
but flushed a wrong address. Still, as it sometimes turned to be, it could also be that the cache hardware
didn’t flush the cache as it should.

Finally, it was nice to see the system ran faster than we had anticipated. Also, the flush overhead
was found to be smaller than we expected.

Acknowledgements

Ed Hunter provided enormous help in the debugging stage, especially in using logical analyzer to
identify hardware bugs to the hardware people. Jo Moran and Bill Shannon helped to find the last
(known) bug.

8. References
[Smith, 82]
Smith, Alan Jay, ‘‘Cache Memories’’, ACM Computing Surveys, September 1982,

[Sun, 1986]
Sun Microsystems, Inc., ‘‘Sun-3 Architecture: A Sun Technical Report’’ August 1986

Vol 8 No 5 150 AUUGN

:login:

The USENIX Association Newsletter

Volume 12, Number 5 September/October 1987
CONTENTS
Computer GraphiCs WOTKSHODcccviierieiiiiiiiieiieeiniieeessinneecsisneessssessessesessssesessssesssssnassssses 3
POSIX Portability Workshopcccceveeviveeccnireecrnnns Ceeerereessesrarteeerissaeesesesaanteeeesebaraesnesesrers 3
CH 4 WOTKSNOD ittt eceniriieteerieseeeesesesesesessssssssssnssssseeseseessssasssssssssasssnnsanssnassns 4
Call for Papers: Winter 1988 USENIX Conferencecccccceeceveneeeiccrrnneeneesesssnneseescsssnns 5
Call for Papers: Summer 1988 USENIX Conferenceccoveevrereereirneersirreeesssneesessssseses 6
Second Distribution of Berkeley PDP-11 Software for UNIXcocccovviieeiiiieercrneeiccnneeenne 7
Manuals Now Available to All MEMDETIS!ccccceiiiiieiieiririieiierecisneeesneeeessseenessneessnsonsesssones 10
4.3BSD Manual Reproduction Authorization and Order FOrmccccvevvveerireeerennneeenns 11
RT PC Distributed Services: File SYStEIMccccceicriniiieercieninerceessneeneeiereeesssesssesessnssssees 12

Charles H. Sauer, Don W. Johnson, Larry K. Loucks,
Amal A. Shaheen-Gouda, and Todd A. Smith

The 1988 Election of the USENIX Board of DITECLOIScccvvriiiiiireerenciereereessecnnnseneeeneens 22
BOOK REVIEWS ...uuvirreeiiiiiiiieeeeriiniereeesssnserieessssseeessssssssasssossosssssssesssssnsssssssssssssessssssssssssasessssss 23
UNIX System Security eetereebereebebeebereesebestebtabereeb et eherbeRaebe e b et ehsaReResRebe s eR e bens 23
Robert E. Van Cleef
troff typesetting for UNIX SYSIEIMScceeecrerieiiiereenieneesirereeesisseeesessseesssnsesssssasessssssssessens 25
Jaap Akkerhuis
COMPUTING SYSTEMS — New USENIX QUarterlyccccocveenruereicrnnecsrreeesrneeesesseeeenns 26
Work-in-Progress Reports from the Phoenix CONfErencecccoevvvevieriiierirrnenseneseseessnnessans 27
Have YOU M-0-V-€-A7 .oviiiiiiiiciiiiiriiiiiieeceniirieeeeesssnasesessesssssssessesssssasaesessssssssssssssssssasssesessns 32
Future Meetings e eeeeeteeeerreeeeietirrteeetaresateeeeera e aaaeeeee e rbeeeee e bataseeeeebstnteeeeessarnrtnan 33
Publications AVaAIlabIecccievcieiiereriiinirineeneeenecseessseeesssesesassesssesssnesssassssasssssasssnsassns 33
LOCAl USET GTOUPS ..evevvrvreeeiiererinreesiseiessseesensneeesssseesssssssessssssesssssassssssassssssassssssssessssnsassssssans 34

The closing date for submissions for the next issue of ;login: is October 30, 1987

THE PROFESSIONAL AND TECHNICAL
UNIX® ASSOCIATION

AUUGN 151 Vol 8 No 5

;login:

Computer Graphics Workshop

Boston Marriott Cambridge
Cambridge, MA

October 8-9, 1987

The Fourth USENIX Computer Graphics Workshop will be held at.the Boston Marriott
Cambridge in Cambridge, MA, October 8 and 9, 1987, with a no-host reception on the even-
ing of October 7.

Registration will be $200 per attendee and must be paid in advance. There will be no
on-site registration.

There is a special hotel rate for workshop attendees of $115 per night, single or double.
Call the Marriott direct for reservations: 617-494-6600. Be sure to mention that you are a
USENIX Workshop attendee. The Marriott has a strict cut-off of September 16 for its spe-
cial rate. Reservations made after that date will be on a space and rate available basis.

For further program information, contact:
Tom Duff at researchitd or Lou Katz at ucbvax!lou.

POSIX Portability Workshop

Berkeley Marina Marriott
Berkeley, CA

October 22-23, 1987

This USENIX workshop will bring together system and application implementors faced
with the problems, ‘“‘challenges,” and other considerations that arise from attempting to
make their products compliant with IEEE Standard 1003.

The first day of the workshop will consist of presentations of brief position papers
describing experiences, dilemmas, and solutions. On the second day it is planned to form
smaller focus groups to brainstorm additional solutions, dig deeper into spemﬁc areas, and
attempt to forge common approaches to some of the dilemmas.

For further program information, contact:
Jim McGinness

(603) 884-5703
decvax!jmcg or jmcg@decvax.DEC.COM

Vol 8 No 5 152 AUUGN

;login:

C++ Workshop

Eldorado Hotel
Santa Fe, NM

November 9-10, 1987

USENIX is pleased to be hosting a workshop on the C++ language. This two-day event
will bring together users of the C++ language to share their experiences. The program will
be somewhat informal, comprising a mix of full presentations and shorter talks.

Bjarne Stroustrup, designer of the C++ language, has agreed to speak on topics
guaranteed not to be in the C++ book, including multiple inheritance and other futures.

In conjunction with the workshop, USENIX will publish two documents:

Presentation Summaries: one or two pages from each speaker. A free copy will be available
on-site to each registrant.

Full Proceedings: The proceedings will be mailed free to each registrant and will be avail-
able to the public through the USENIX office.

Vendors of products related to C++ are encouraged to send technical personnel to
demonstrate their products. Call the USENIX Conference Coordinator below for more infor-
mation.

The Conference Chair;

Keith Gorlen
Building 12A, Room 2017
National Institutes of Health
Bethesda, MD 20892

301-496-5363
usenix!nih-csl!keith

For registration or hotel information for any USENIX workshop, contact:

Judith F. DesHarnais (213) 592-3243
USENIX Conference Coordinator usenix!judy
P.O. Box 385

Sunset Beach, CA 90742

AUUGN 153 Vol 8 No §

;login:

Call for Papers
Winter 1988 USENIX Conference

Dallas, Texas
- February 9-12, 1988

Please consider submitting an abstract for your paper to be presented at the Winter
1988 USENIX conference. Abstracts should be around 250-750 words long and should
emphasize what is new and interesting about the work. The final typeset paper should be
8-12 pages long.

The Winter conference will be four days long: two days of tutorials only and two days
of papers only.

Suggested topic areas for this conference include (but are not limited to):

e Electronic Publishing

Novel Kernels

New Software Tools

New Applications

System Administration :
(including distributed systems and integrated environments)

Security in UNIX

e Future Trends in UNIX

This conference may include a ‘“miscellaneous’ session which will include those papers
which do not fit into standard tracks. Vendor presentations should contain technical infor-
mation and be of interest to the general community.

Abstracts are due by October 23, 1987; papers absolutely must be submitted by January
4, 1988. Notifications of acceptance of abstracts will be sent out by November 6. Papers
that do not meet the promise of their abstract will be rejected. Talks will be given on all
papers published in the Proceedings; failure to submit a paper for an abstract will result in
forfeiture of the talk.

Please contact the program chairman for additional information:

Rob Kolstad 214-952-0351 (W)
CONVEX Computer Corporation 214-690-1297 (H)
701 Plano Road 214-952-0560 (FAX)

Richardson, TX 75081

{usenix,ihnp4,uiucdcs,allegra,sun}!convex!kolstad

Please include your network address (if available) with all correspondence. It should be
an ARPANET (EDUNET, COMNET), BITNET, or CSNET address or a UUCP address relative
to a well-known host (e.g., mcvax, ucbvax, decvax, or, ihnp4).

Vol 8 No 5 . 154 AUUGN

;login:

Call for Papers
Summer 1988 USENIX Conference

San Francisco
June 20-24, 1988

Papers in all areas of UNIX-related research and development are solicited for formal
review for the technical program of the 1988 Summer USENIX Conference. Accepted
papers will be presented during the three days of technical sessions at the conference and
published in the conference proceedings. The technical program is considered the leading
forum for the presentation of new developments in work related to or based on the UNIX
operating system.

Appropriate topics for technical presentations include, but are not limited to:

e Kernel enhancements e Performance analysis and tuning

e UNIX on new hardware e Standardization efforts

e User interfaces e UNIX in new application environments
e UNIX system management e Security

e The internationalization of UNIX e Software management

All submissions should contain new and interésting work. Unlike previous technical
programs for USENIX conferences, the San Francisco conference is requiring the submission
of full papers rather than extended abstracts. Further, a tight review and production cycle
will not allow time for rewrite and re-review. (Time is, however, scheduled for authors of
accepted papers to perform minor revisions.) Acceptance or rejection of a paper will be
based solely on the work as submitted.

To be considered for the conference, a paper should include an abstract of 100 to 300
words, a discussion of how the reported results relate to other work, illustrative figures, and
citations to relevant literature. The paper should present sufficient detail of the work plus
appropriate background or references to enable the reviewers to perform a fair comparison
with other work submitted for the conference. Full papers should be 8-12 single spaced
typeset pages, which corresponds to roughly 20 double spaced, unformatted, typed pages.
Format requirements will be described separately from this call. All final papers must be
submitted in a format suitable for camera-ready copy. For authors who do not have access
to a suitable output device, facilities will be provided.

Four copies of each submitted paper should be received by February 19, 1988; this is an
absolute deadline. Papers not received by this date will not be reviewed. Papers which
clearly do not meet USENIX’s standards for applicability, originality, completeness, or page
length may be rejected without review. Acceptance notification will be by April 4, 1988, and
final camera-ready papers will be due by April 25, 1988.

Send technical program submissions to:

Sam Leffler 415-499-3600
SF-USENIX Technical Program ucbvax!sfusenix
PIXAR

P.O. Box 13719
San Rafael, CA 94913-3719

AUUGN 155 Vol 8 No 5

;login:

Second Distribution of Berkeley PDP-11T Software for UNIX*

Release 2.10
(Revised April 1987)

The USENIX Association and the Computer Systems Research Group (CSRG) of the University
of California, Berkeley, are pleased to announce the distribution of a new release of the “Second
Berkeley Software Distribution” (2.10BSD).

This release will be handled by the USENIX association, and is available to all V7, System III,
System V, and 2.9BSD licensees. The Association will continue to maintain the non-profit price of
$200, as was charged by the CSRG. The release will consist of two 2400 foot, 1600 bpi tapes
(approximately 80Mb) and approximately 100 pages of documentation. If you require 800 bpi tapes,
please contact USENIX for more information.

If you have questions about the distribution of the release, please contact USENIX at:

2.10BSD

USENIX Association
P.O. Box 2299
Berkeley, CA 94710

+1 415 528-8649
USENIX may also be contacted by electronic mail at:
{ucbvax,decyax }!usenix!office

If you have technical questions about the release, please contact Keith Bostic at:

{ucbvax,seismo}!keith
keith@okeeffe.berkeley.edu

- +1 415 642-4948

Q: What machines will 2.10BSD run on?

2.10BSD will run on:

11/24/34/44/53/60/70/73/83/84
11/23/35/40/45/50/55 with 18 or 22 bit addressing

2.10 WILL NOT run on:

T11, 11/03/04/05/10/15/20/21
11/23/35/40/45/50/55 with 16 bit addressing

Q: What’s new in this release?

Lots of stuff. This release is 4.3BSD. We don’t expect to distribute manuals this time, we expect
people to simply use the 4.3BSD ones. A list of some of the larger things that have been added:

22-bit Qbus support

4.3BSD networking, (TCP/IP, SLIP)
4.3BSD serial line drivers

4.3BSD C library

1 DEC, PDP, and VAX are trademarks of Digital Equipment Corporation.
1 UNIX is a trademark of Bell Laboratories.

Vol 8 No § 156 AUUGN

;login:

most of the 4.3BSD application programs

complete set of 4.3BSD system calls

MSCP device driver for (RQDX? UDAS50, KLESI)
RAM disk

inode, core, and swap caching

conversion of the entire system to a 4.3BSD structure

Q: Why get this release?

You want to get this release for one of two reasons. Either you have a number of 4.3BSD
programs or machines in your environment and you’d like consistency across the environment, or you
want a faster, cleaner version of 2.9BSD, with or without networking.

This release is, without question, considerably faster than any other PDP-11 system out there.
There have been several major changes to the 2.10BSD kernel to speed it up.

e The kernel namei routine has been modified to read the entire path name in at once rather than
as a single character at a time, as well as maintaining a cache of its position in the current direc-
tory.

e The exec routine now copies its arguments a string at a time, rather than a character at a time.

e All inodes are placed in an LRU cache, eliminating going to disk for often used inodes; kernel
inodes also contain more of the disk inode information to eliminate require disk access for

stat(2) calls.

e Both core and swap are LRU cached; the former is particularly interesting on PDP-11’s with
large amounts (for PDP’s, anyway) of memory. Our experience with an 11/44 with 4M of
memory, in a student environment, is that it never swaps, and only rarely do programs leave
core.

This change is largely responsible for My Favorite Timing: Ultrix 11, V3.0, on my 11/73, with
a single RD52, takes 1.1 system seconds to run vi. 2.9BSD takes approximately .9 system
seconds, a difference probably attributable to the fact that 2.9BSD has vfork. Once 2.10BSD has
the vi image in its core cache, it executes vi in .2 system seconds.

e Finally, many other speedups, such as rewriting several of C library routines in assembler,
replacing the kernel clist routines with the faster 4.3BSD ones, caching and hashing process id’s,
and splitting the process list into multiple lists have been added.

Q: How good is the networking?

The networking is 4.3BSD’s. It runs, it runs correctly. It eats space like there’s some kind of
reward. We are considering fixing the latter by moving the networking into supervisor space.

Q: Will this release be supported?

This release is not supported, nor should it be considered an official Berkeley release. It was
called 2.10BSD because 2.9BSD has clearly become overworked and System V was already taken.

The “bugs” address supplied with this release (as well as with the 4BSD releases) will work for
some unknown period of time; make sure that the “Index:” line of the bug report indicates that the
release is “2BSD.” See the sendbug(8) program for more details. All fixes that we make, or that are
sent to us, will be posted on USENET, in the news group comp.bugs.2bsd. USENIX is aware of this
problem and is willing to make hard-copy bug reports available to those of you not connected to the
net.

To summarize, all that I can say is that any major problems will be fixed, i.e. if you’ve got a
program that’s crashing the kernel, we’ll be inclined to fix it. If /s is misformatting its output, you’re
probably on your own.

AUUGN 157 Vol 8 No 5

;login:

Q: Is this the last release?

Yes, at least by us; quite frankly, we’d rather sacrifice our chance at heaven than look at a 16-bit
machine again.

Q: Who did all this wonderful, exciting, neat stuff?

Mostly Casey Leedom, of California State University, Stanislaus, and Keith Bostic, of the CSRG.
From the “Changes to the Kernel in 2.10BSD” paper:

The authors gratefully acknowledge the contributions of many other people to the work
described here. Major contributors include Gregory Travis of the Institute for Social Research,
and Steven Uitti of Purdue University. Jeff Johnson, also of the Institute for Social Research,
was largely responsible for the port of 4.3BSD’s networking to 2.10BSD. Cyrus Rahman of Duke
University should hold some kind of record for being able to get the entire kernel rewritten with
a single 10-line bug report. Much credit should also go to the authors of 4.2BSD and 4.3BSD
from which we stole everything that wasn’t nailed down and several things that were. (Just diff
this document against Changes to the Kernel in 4.2BSD if you don’t believe that!) We are also
grateful for the invaluable guidance provided by Michael Karels, of the Computer Science
Research Group, at Berkeley — although we felt that his suggestion that we “just buy a VAX,”
while perhaps more practical, was not entirely within the spirit of the project.

The tape that USENIX will be distributing for the first few weeks will only support machines with
split I/D and floating point hardware. This is not because any work remains to be done, but because
we just haven’t had the time to build and test a system.

Sites wishing to run 2.10BSD should also be aware that the networking is only lightly tested, and
that certain hardware has yet to be ported. Contact Keith Bostic at the above address for current
information as to the status of the networking. As of August 6, 1987, the complete 4.3BSD network-
ing is in place and running, albeit with minor problems. The holdup is that only the Interlan
Ethernet driver has been ported, as well as some major space constraints. Note, if we decide to go to
a supervisor space networking, 2.10 networking will only run on:

11/44/53/70/73/83/84
11/45/50/55 with 18 bit addressing

Keith Bostic
Casey Leedom

Vol 8 No 5 158 AUUGN

;login:

RT PC Distributed Services: File System

Charles H. Sauer
Don W. Johnson
Larry K. Loucks
Amal A. Shaheen-Gouda
Todd A. Smith

IBM Industry System Products
Austin, Texas 78758

Introduction

RT PC Distributed Services (RT/DS) provides distributed operating system capabilities for the
AIX! operating system. These include distributed files with local/remote transparency, a form of
“single system image” and distributed interprocess communication. The distributed file design
supports “traditional” AIX and UNIX? file system semantics. This allows applications, including
data management/data base applications, to be used in the distributed environment without
modification to existing object code. The design incorporates IBM architectures such as SNA and
some of the architectures of Sun Microsystems’ NFS. This paper focuses on key characteristics and
decisions in the design of the Distributed Services file system.

There have been numerous research efforts and a number of products with goals and
characteristics similar to the RT/DS file system. Perhaps the best known of these are LOCUS [Popek
et al 1981, Popek and Walker 1985}, NFS [Sandberg et al 1985, Sun 1986] and RFS [Rifkin et al
1986]. We studied each of these, and many other, previous designs. As we describe the RT/DS file
system, we will contrast our design with some of its predecessors.

Administrative Environments

Assumptions about administrative environments are fundamental to design of distributed
systems, yet administrative concerns are often omitted from primary consideration. Two primitive
elements can be identified in the environments we anticipate: multi-machine clusters and
independently administered machines.

Multi-Machine Clusters

All of the machines® in a multi-machine cluster are administered uniformly, let us assume by
the same person. The machines in the cluster are likely owned by the same department, and
members of the department can use the machines equivalently, i.e., the multiple machines present a
“single system image.” Regardless of which machine in the cluster is used, login ids and passwords
are the same, the same programs/data files/directories are accessible and authorization characteristics
are the same. The large boxes marked D46, D29, ... in Figure | are meant to suggest multi-machine
clusters, with each small box representing a machine. Of course, the machines may be dispersed geo-
graphically within the limitations of the networks used - they are shown together in a room for
convenience in drawing the figure.

I'AIX is a trademark of International Business Machines Corporation.

2 Developed and licensed by AT&T. UNIX is a registered trademark in the U.S.A. and other countries.

3 Sun Microsystems is a trademark of Sun Microsystems, Inc.

4 We use “machine” to indicate a generic computer - a personal computer, workstation or larger computer.

AUUGN 159 Vol 8 No 5

;login:

/usr/news

/ust/lpp/pl8cc

/dev/aps5
/dev/mt

o

0 O

[

D29

/7,

O

/usr/src

o O

O
m]

[

0 _ D94

Figure 1. Multi-machine clusters and separately administered machines.

Independently Administered Machines

The other primitive element is the independently administered machine, These machines fall
into two subcategories: servers and private machines. Servers in this sense are not functionally
different from other servers (e.g., file or device servers) which may be found within multi-machine
clusters, but they are administered independently from other machines/clusters. The boxes with path
names in Figure | are intended to suggest file/device servers administered independently. Other
machines may be independently administered because the owners are unwilling to allow others to
assume administrative responsibility. Both of these subcategories can be considered degenerate cases
of the multi-machine cluster, but it is convenient to discuss them separately.

Networks of Multi-Machine Clusters/Indepgndently Administered Machines

As organizations evolve toward connecting all machines with multimegabit per second networks,
administrative configurations such as the one depicted in Figure 1 will inevitably occur. It will be
required that all of the machines be able to communicate with one another, and a high degree of net-
work transparency will be required. But administrative clustering of machines according to sub-
groups of the organization will be natural, and cooperation/transparency within these clusters will
usually be a primary issue. Authorization characteristics will vary across the clusters/independent
machines. Organizations will change, and correspondingly, machines will be added to/deleted from
clusters, and clusters/machines will be added to/deleted from networks. Distributed system designs
must be prepared to cope with these configurations and changes in configuration.

Vol 8 No 5§ 160 AUUGN

;login:

Distributed Services Design Goals

The primary design goals in our design of Distributed Services were

Local/Remote Transparency in the services distributed. From both the users’ perspective and the
application programmer’s perspective, local and remote access appear the same. .

Adherence to AIX Semantics and UNIX Operating System Semantics. This is corollary to local/remote
transparency: the distribution of services cannot change the semantics of the services. Existing
object code should run without modification, including data base management and other code which
is sensitive to file system semantics.

Remote Performance = Local Performance. This is also corollary to transparency: if remote access is
noticeably more expensive, then transparency is lost. Note that caching effects can make some
distributed operations faster than a comparable single machine operation.

Network Media Transparency. The system should be able to run on different local and wide area net-
works.

Mixed Administrative Environments Supported. This was discussed in the previous section. Addi-
tionally, services must be designed to make the administrator’s job reasonable.

Security and Authorization Comparable to a Single Multiuser Machine.

RT/DS File System

Remote Mounts

Distributed Services uses ‘“remote mounts” to achieve local/remote transparency. A remote
mount is much like a conventional mount in the UNIX operating system, but the mounted filesystem
is on a different machine than the mounted on directory. Once the remote mount is established, local
and remote files appear in the same directory hierarchy, and, with minor exceptions, file system calls
have the same effect regardless of whether files(directories) are local or remote’. Mounts, both
conventional and remote, are typically made as part of system startup, and thus are established before
users login. Additional remote mounts can be established during normal system operation, if desired.

Conventional mounts require that an entire file system be mounted. Distributed Services
remote mounts allow mounts of subdirectories and individual files of a remote filesystem over a local
directory or file, respectively. File granularity mounts are useful in configuring a single system image.
For example, a shared copy of /etc/passwd may be mounted over a local /etc/passwd without
hiding other, machine specific, files in the /etc directory. Directory granularity and file granularity
mounts are now also allowed with AIX local mounts.

Distributed Services does not require a file system server to export/advertise a file system before
it can be mounted. If a machine can name a directory/file to be mounted (naming it by node and
path within that node), then the machine can mount the directory/file if it has the proper permissions.
The essential permission constraints are

1. Superuser (root) can issue any mount,

2. System group® can issue local device mounts defined in the profile /etc/filesystems.

5 The traditional prohibition of links across devices applics to remote mounts. In addition, Distributed Services does not
support direct access (o remote special files (devices) and the remote mapping of data files using the AIX extensions to the

shmat () system call. Note that program licenses may not allow execution of a remotely stored copy of a program.

% In AIX, we have given the system group (gid 0) most of the privileges traditionally restricted to the superuser. Only especial-
ly “*dangerous” or “sensitive” operations are restricted to the superuser [Loucks 1986].

AUUGN 161 Vol 8 No 5

;login:

3. Other users/groups are allowed to perform remote directory/file mounts’ if the process has
search permission for the requested directory/file, owns the mounted upon object
(directory/file) and has write permission in the parent directory of the mounted upon object.

The objectives of these constraints are to maintain system integrity but allowing users the flexibility
to perform ‘“casual” mounts. Userid/groupid translation, as discussed below, is implicit in the above
definitions.

File System Implementation Issues

Virtual File Systems. The Distributed Services remote mount design uses the Virtual File
System approach used with NFS [Sun 1986]. This approach allows construction of essentially
arbitrary mount hierarchies, including mounting a local object over a remote object, mounting a
remote object over a remote object, mounting an object more than once within the same hierarchy,
mount hierarchies spanning more than one machine, etc. The main constraint is that mounts are
only effective in the machine performing the mount.

Inherited mounts. 1t is desirable for one machine to be able to “inherit” mounts performed by
other machines. For example, if a machine has mounted over /usr/src/icon and a second machine
then mounts the first machine’s /usr/src, it might be desired that the second machine see the
mounted version of /usr/src/icon. This would not happen in the default case, but Distributed
Services provides a query facility as part of a new mntctl() system call. The mount command
supports a —i (inherited) flag which causes the query to be performed and the additional mounts to
be made. By use of inherited mounts, clients of a file server need not know of restructuring of the
scrver’s mounts underneath the initial mount. For example, if a client always uses an inherited
mount of /usr/src, it does not need to change it’s configuration files when the server uses additional
mounts to provide the subdirectories of /usr/src.

lookup. In conjunction with using the Virtual File System concept, we necessarily have replaced
the traditional namei() kernel function, which translated a full path name to an i-number, with a
component by component lookup() function. For file granularity mounts, the string form of the file
name is used, along with the file handle of the (real) parent directory. This alternative to using the

file handle for the mounted file allows replacement of the mounted file with a new version without
loss of access to the file (with that name). (For example, when /etc/passwd is mounted and the

passwd command is used, the old file is renamed opasswd and a new passwd file is produced. If we
used a file handle for the file granularity mount, then the client would continue to access the old ver-
sion of the file. Our approach gives the, presumably intended, effect that the client sees the new ver-
sion of the file.) ‘

Statelessness and Statefulness. One of the key implementation issues is the approach to “state-
lessness” and “‘statefulness.” Wherever it is practical to use a stateless approach, we have done so.
For example, our remote mounts are stateless. However, in some areas where we believe a stateful
approach is necessary, we maintain state between server and client and are prepared to clean up this
state information when a client or server fails. In particular, we maintain state with regard to direc-
tory and data caching, so that cache consistency can be assured.

Directory Caching. Use of component by component lookup means, in the worst case, that
there will be a lookup() remote procedure call for each component of the path. To avoid this over-
head in typical path searches, the results of lookup() calls are cached in kernel memory, for direc-
tory components only. Cached results may become invalid because of directory changes in the server.

We believe that state information must be maintained for purposes of cache validity. Whenever any
directory in a server is changed, client directory caches are purged. Only clients performing a

7 Remote device mounts are not supported, but the only practical effect is that a remote device that is not mounted at all at the
owning machine can not be remote mounted. This is likely desirable, since this situation is only likely to occur during mainte-
nance of the unmounted device.

Vol 8 No 5 162 AUUGN

;login:

Lookup() since the previous directory change are notified, and they, of course, only purge the entries
for the server that had the directory change. This purpose of this strategy is to keep the directory
cache entries correct, with little network traffic.

Data Caching. Distributed Services uses data caching in both client and server, to avoid
unnecessary network traffic and associated delays. The caching achieves the traditional read ahead,
write behind and reuse benefits associated with the kernel buffer cache, but with both client and
server caches. As a result, read ahead (write behind) can be occurring in the client cache with regard
to the network and in the server cache with regard to the disk. As a result, disk to disk transfer rates
to/from remote machines can be substantially greater than local rates. In AIX we have carefully tuned
the local disk subsystem, yet use of cp for remote files yields significantly higher disk to disk
throughput than for local only files. Note that stateless designs may not support write behind, in
order to guarantee that all data will be actually on the server’s disk before the write rpc returns to the
client.

Data Cache Consistency. In general, it is difficult to keep multiple cached data blocks
consistent. We designed a general cache invalidation scheme, but chose to implement instead a state
machine based on current opens of a given file. We emphasize that this mechanism is applied at a
file granularity, and that it is strictly a performance optimization - the mechanism is designed to
preserve the traditional multircader/multiwriter semantics of the UNIX file system. Any particular file
will be in one of the following states:

. Not open.

2. Open only on one machine This may be a different machine than the server for the file.
(““async mode”)

3. Open only for reads on more than one machine. (“read only mode’)
4. Open on multiple machines, with at least one open for writing. (“fullsync mode”")

We believe that the read only and async modes are dominant in actual system operation, and our
client caching applies to these modes only. In fullsync mode, there is no client caching for the given
file, but the server caches as in a standalone system.

Close/Reopen Optimization. A frequent scenario is that a file is closed, say by an editor, and
then immediately reopened, say by a compiler. Our data cache consistency mechanisms are extended
to allow reuse of cached data blocks in the client data cache, if and only if the file is not modified
elsewhere between the close and subsequent reopen.

Kernel Structured Using Sun “vhode” Definition. We have used the Sun vnode data structure
[Kleinman 1986] to support multiple file system types in the AIX kernel. This allows a clean division
between the local AIX filesystem code and the remote filesystem code.

Virtual Circuit Interface. Distributed Services assumes virtual circuits are available for network
traffic. One or more virtual circuits must remain in force between a client with a file open and the
server for that file. (The mere existence of a remote mount does not require retention of a virtual cir-
cuit.) Execution of cleanup code, e.g., decrementing usage counts on open files, will be triggered by
loss of a virtual circuit. The architecture of Distributed Services includes a Virtual Circuit Interface
(VCI) layer to isolate the Distributed Services code from the supporting network code. Our current
code uses the SNA LU 6.2 protocol to provide virtual circuit support, but, potentially, another
connection oriented protocol, e.g., TCP, could be used. The basic primitives of the VCI are the

dsrpc(), dsrpc_got() and dsgetdata() functions. dsrpc() acquires a connection with a
specified machine and then issues dsrpc.got() to invoke a function on that machine.

dsrpc_got() is called directly if the caller has a previously established connection available. Both of
these calls return without waiting for the result of the remote function, allowing continued execution
on the calling machine. dsgetdata() is used to request the result of a remote functions; it will wait
until the result is available.

AUUGN 163 Vol 8 No §

;login:

System Calls System Calls
vnodes vnhodes AlX
remote
o Jax AKX . AIX
Potential |15cqf | Femote Potential local
Expansion Virtual Expansion ¢ Virtual
Circuit Circuit
Interface Interface
LU 6.2 LU 6.2
. , Server Side
Client Side Etherneté Ethernet
SDLC SDLC

Figure 2. Architectural Structure of Distributed Services File System

SNA LU 6.2 Usage. We chose to use LU 6.2 because of its popular position in IBM’s network-
ing products and because of its technical advantages. In particular, LU 6.2 allows for *“‘conversa-
tions” within a session. Conversations have the capabilities of virtual circuits, yet with low overhead
of the order typically associated with datagrams. Typically, one or two sessions are opened to support
the flow between two machines, regardless of the number of virtual circuits required. We have care-
fully tuned the LU 6.2 implementation, exploiting the fully preemptive process model of the AIX
Virtual Resource Manager [Lang, Greenberg and Sauer 1986]. By properly exploiting the basic
architecture of LU 6.2 and careful tuning, we have been able to achieve high performance without
using special private protocols [Popek and Walker 1985] or limiting ourselves to datagrams.

The AIX implementation of LU 6.2 supports both Ethernet and SDLC transport. The AIX LU
6.2 and TCP/IP implementations are designed to coexist on the same Ethernet — in our development
environment, we use both protocols on a single Ethernet, e.g., TCP for Telnet and/or X Windows and
LU 6.2 for Distributed Services.

Distributed Services Security and Authorization

Encrypted Node Identification

When considering networks of the sort suggested by Figure 1, it is clear that each machine needs
to be suspicious of the other machines. If a machine is going to act as a server for another, it should
have a mechanism to determine that the potential client is not masquerading. The AIX implementa-
tion of SNA LU 6.2 provides an option for encrypted node identification between a pair of
communicating machines. The identification is by exchange of DES encrypted messages. The
identification occurs at session establishment time and at random intervals thereafter. Once a

8 Ethernet is a trademark of Xerox Corporation.
9 This is not intended as speculation of future products.

Vol 8 No 5 164 AUUGN

;login:

client/server have each determined that the other is not masquerading, then they can take appropriate
actions authorized according to (the translated) userid’s/groupid’s associated with each request.

Userid/Groupid Translati.on

There are a number of reasons why a common userid space and a common group id space are
impractical in the environment of Figure 1:

1. An individual machine, whether a private machine or a server, should not be required to
give superuser (root) authority to a request from a process with root authority on another
machine. Rather, it should be possible to reduce the authority of the remote process. The
reduced authority may retain some administrative privileges, may be that of an ordinary user
or may bc no access at all, depending on the preferences of the administrator of the
individual machine. Similar statements apply to the cluster of machines.

2. A user may have logins provided by several different administrators on several different
machines/clusters, and these will typically have different numeric userids. When that user
uses different machines, he/she should have access to his/her authorized resources on all
machines in the network.

3. Previously operating machines may join a network or move to a new network, and existing
networks may merge. When this happens, there may be different users/groups with the same
numeric ids. Such reconfiguration should be possible without requiring users/groups to
change numeric ids or changing userids/groupids in all of the inodes.

Our response to these requirements is to define a network wide (“wire”’) space of 32 bit userids and
groupids. Each request leaving a machine has the userid translated to the wire userid and each
request entering a machine has the wire userid translated to a local userid. The above requirements
are met by proper management of the translations.

Distributed Services Administration

In addition to the normal system profiles, e.g., /etc/filesystems, there are profiles for both
the SNA support and for Distributed Services. With these new profiles, we have taken care to organ-
ize the directories containing the profiles so that we can use remote mounts to administer remote
machines, without use of remote login (or roller skates). For Distributed Services, there are three
profiles, for machine ids and passwords, for userid/groupid translation and for registry of message
queues.

Part of the AIX design is provision of a user interface architecture for a screen oriented
(“menu”) interface, to simplify system management and usage [Kilpatrick and Green 1986, Murphy
and Verburg 1986]. Configuration of both SNA and Distributed Services, i.e., management of the
SNA and Distributed Services profiles, is normally performed using menus conforming to this user
interface architecture.

Distributed Services “Single System Image”

Our definition of “Single System Image” is as follows: Users of the given system, users of exter-
nal systems which communicate with the given system and application programmers ARE NOT aware of
differences between single and multiple machine implementation. System administrators and mainte-
nance personnel ARE aware of distinctions amongst machines.

AUUGN 165 Vol 8 No 5

;login:

User/Programmer View of Distributed Services Single System Image

Though there are inherent exceptions to this, e.g., the uname() system call is designed to return
the machine name, we believe that Distributed Services largely meets this definition. The key
mechanism is to be able to properly configure the several machines so that they share the files and
directories which matter to the user and the application programmer. These include basic profiles
such as /etc/passwd, home directories, and directories containing applications, commands and
libraries. Figure 3 sketches one such possible configuration.

Once this is accomplished, most of the desired properties just fall in place. The login process
will be the same because of the sharing of /etc/passwd related files. Normal file system manipula-
tions and applications work in the shared directories. Administrative commands for ordinary users,
e.g., passwd, also work properly if they follow reasonable conventions (we had to rework several
commands such as passwd, as discussed below.)

Administrator’s View of Single System Image Configurations

Some of the administrator’s tasks must be be performed for each machine individually. For
example, the administrator must install and configure AIX and Distributed Services on each machine.
Other tasks can be performed once for the entire single system image cluster. For example, installa-
tion of an application, in the usual case where the installp command retrieves files from diskette
and places them in the appropriate subdirectory of /usr/lpp, need only be done once, assuming it is
done after normal system startup. Similarly, the adduser command, which creates an entry in
/etc/passwd, creates a home directory and copies standard files to the home directory, need only be
applied once.

Routine maintenance, e.g., backing up and restoring files, can be done for the system as a whole
while the system is in normal operation. Error logs are intentionally kept separately for each machine
- otherwise, the first problem determination step would be to isolate the anomalous machine. Some
maintenance operations, e.g., image backups of disks and hardware diagnostics, are necessarily
performed on a machine by machine basis, while the machine is in maintenance mode.

Implementation Issues in Distributed Services Single System Image

There is an obvious question of ordering in starting the separate machines. We have added a
number of options to the mount command and /etc/filesystems to allow simple retry
mechanisms to be executed in the background when initial mount attempts fail. This is done to allow
arbitrary ordering of the startup of machines.

‘Many of the interesting commands, e.g., passwd, use private locking mechanisms, e.g., based on
creating/deleting dummy lock files. We have had to modify a number of these commands to use the

Lockf() system call.

A more subtle issue is the “copy/modify/unlink/relink” idiom used in a number of interesting
programs such as editors. This idiom does not work in all cases of file granularity mounts, because a
client may be attempting to violate the prohibition of linking across devices. In more detail, the
idiom is as follows, for updating foo in the current directory:

1. cp foo .foo.tmp
2. modify .foo.tmp
3. rm foo

4. ln .foo.tmp foo
5. rm .foo.tmp

If foo is a file mount from a different device, step 4 will fail. We have had to modify several
programs to do a copy if the link step (4) fails. Note that this is not a problem with directory
mounts, only file granularity mounts.

Vol 8 No 5 166 AUUGN

;login:

bin emsmms® \ount points
dev
etc ~ file-granularity sharing — passwd, group, ... from "/etc server”
Lo ey
lib
tmp
u (users' "home" directories) — shared from "data server”
.]
| SAUCL .
LWOON
yusr
adm
Lhin s Shared from "application server” machine
— shared from application server
Ipp 19~ shared from application server
| 50001,

LSYR e
Ltmp_

Figure 3. Example Shared File System.

There is also a potential problem with routines such as mktemp() and tempnam(), which use
process ids to generate unique file names. Since process ids are not unique across machines, we have
modified these routines to use the machine id as well as the process id in deriving a file name. (The
modified versions of these routines are packaged with AIX, so that object code does not have to be
recompiled/relinked to run with Distributed Services.)

Separate Machine Operation

Clearly, it is desirable that a client machine of the servers in Figure 3 be able to operate if one
or more of the servers is down. A critical aspect of this is having recent copies of the shared files

from the “/etc server.” As part of the mountinﬁ of these files, before the mount is actually
performed, the file is copied from the server to the client. For example, before mounting the shared

/etc/passwd over the client /etc/passwd, the shared version is mounted temporarily over another
file and copied to /etc/passwd. For each user that is to be able to use a machine when the “home
directory server” is not available, a home directory must be created and stocked with essential data
files. Similarly, for a machine to be able to use an application when the “application server” is not
available, that application must be installed in the client’s /usr/lpp, when the server’s /usr/lpp is

10 An AIX convention is to place most applications in subdirectories of /usr/lpp.

AUUGN 167 Vol 8 No 5

;login:

not mounted. The resulting machine is certainly not as useful as when the servers are available, but
it is usable, and much better than no machine at all.

Summary

We believe we have done well in meeting our design goals:

1. Distributed Services provides local/remote transparency for ordinary files (both data and
programs), for directories and for message queues.

2. Our implementation adheres closely to AIX semantics, except for the lack of support for
remote mapped files.

3. We have achieved good remote performance in general, and some remote operations are
actually faster than corresponding local operations.

4. Use of a popular network protocol, SNA LU 6.2, gives us synergy with other SNA develop-
ment and independence of the underlying transport media.

5. We have been careful to provide for flexibility in configurations and administrative environ-
ments.

6. Our encrypted node identification and id translation mechanisms give us strong control over
security and authorization,

7. Our use of architectures such as LU 6.2, the vnode concept, our Virtual Circuit Interface,
etc. allows us substantial room for potential extension and growth in network media, file
systems and network protocols, respectively.

Further, we believe we have advanced the state of the art with the following

[. Our simple, but effective approach to single system image.

2. Use of a standard virtual circuit protocol, SNA LU 6.2, while achieving high performance.
3. Our performance optimizations, especially our caching strategies.
4

. Our extensions for administrative flexibility and control, e.g., file granularity mounts,
inherited mounts, administration based on remote mounting of profiles, etc.

References

1.

IBM, IBM RT Personal Computer AIX Operating System Technical Reference Manual, SA23-0806,
January 1986.

P. J. Kilpatrick and C. Greene, “Restructuring the AIX User Interface,” IBM RT Personal Com-
puter Technology, SA23-1057, January 1986.

S. R. Kleinman, “Vnodes: An Architecture for Multiple File System Types in Sun UNIX,”
USENIX Conference Proceedings, Atlanta, June 1986.

T. G. Lang, M. S. Greenberg and C. H. Sauer, “The Virtual Resource Manager,” IBM RT Per-
sonal Computer Technology, SA23-1057, January 1986.

L. K. Loucks, “IBM RT PC AIX Kernel - Modifications and Extensions,” IBM RT Personal Com-
puter Technology, SA23-1057, January 1986.

T. Murphy and R. Verburg, “Extendable High-Level AIX User Interface,” IBM RT Personal Com-
puter Technology, SA23-1057, January 1986.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin and G. Thiel, “A Network
Transparent, High Reliability Distributed System,” Proceedings of the 8th Symposium on
Operating Systems Principles, Pacific Grove, CA, 1981.

Vol 8 No 5 168 AUUGN

;login:

8. G. Popek and B. Walker, The LOCUS Distributed Operating System, MIT Press, 1985.

9. A. P. Rifkin, M. P. Forbes, Richard L. Hamilton, M. Sabrio, S. Shah and K. Yueh, “RFS
Architectural Overview,” USENLX Conference Proceedings, Atlanta, June 1986.

10. R. Sandberg, D. Goldberg, S. Kleinman, Dan Walsh and B. Lyon, “Design and Implementation
of the Sun Network File System,” USENIX Conference Proceedings, Portland, June 1985.

11. Sun Microsystems, Inc., Networking on the Sun Workstation, February 1986.

AUUGN 169 Vol 8 No 5

;login:

Book Reviews

UNIX System Security

by Patrick H. Wood and Stephen G. Kochan
(Hayden Book Company) 299 Pages, $34.95

Reviewed by Robert E. Van Cleef

NAS-RNS Workstation Subsystem Manager
General Electric Corporation
NASA Ames Research Center
Mail Stop 258-6
Moffet Field, CA 94035

Summary: A very valuable book. A must read
for any UNIX system administrator.

With the current proliferation of UNIX
systems in areas outside of the traditional
University and Research environments, UNIX
system security is becoming a real concern for
many people. Unfortunately, most of the
currently available books on the UNIX operating
system avoid any discussion of security beyond
using user passwords and basic file protection.
Current system manuals only discuss bits and
pieces of system security in a haphazard fashion.
This means that anyone wanting to evaluate
their system’s security has a problem. In fact,
cven if you are an experienced computer user, if
you come from a non-UNIX environment you
will not be able to find the information you need
in the manuals that are being delivered with
many of the newer UNIX boxes, including
AT&T’s.

Many of us ‘“old-timers” were first intro-
duced to UNIX security concerns by reading D.
M. Ritchie’s [I] and R. H. Morris’ [2] discus-
sions on system security in Volume Two of the
UNIX Programmer’s Manual, but most vendors
don’t deliver Volume Two with their systems
any more. And I wonder how many people in
the small system world would have copies of
Ken Thompson’s Turing Award lecture, on
Trusting Trust [3] in their personal libraries?
Knowledge of UNIX system security can be hard
to come by.

Seeing this need, Patrick Wood and Stephen
Kochan have collected all of the bits and pieces

Vol 8 No 5

170

into a concise and very readable reference
manual that should be on the shelf of every
UNIX system administrator. Their stated goal
was to “teach security awareness to UNIX users
and administrators.” They not only achieved
that goal, but they have provided a collection of
tools to help the system administrator determine
the level of security of their system, and to alter
that level of security to meet their needs. They
achieve this with a high level of readability and
accuracy. I found it almost impossible to put
down - highly unusual for a technical book.
There was also a side affect in that some of their
sample programs and shell scripts taught me
some very useful “tricks.”

This is not just another introduction to
UNIX book. The authors assume that you
understand enough about shell scripting and C
programs to allow them to concentrate on their
subject and not spend their time teaching
programming. On the other hand, they do
explain completely, and with many examples, the
shell scripts and C programs that they introduce.
In fact, in some ways this can be considered a
“Cook Book” on system security, in that they
include appendixes with the full source listings
for the programs that they discuss. But it is
more than just a cook book: like most good
security manuals it not only shows you what
security holes are in you system, but it gives you
the tools to close those holes, with a complete
index to allow you to find those examples when
you need them.

Finally, a thought to those of you who aren’t
worried about security. If you don’t pay

AUUGN

;login:

attention to the security holes discussed in this
book, someone else might . . .

Chapter |, Introduction.

Chapter 2, A Perspective on Security, is the
complete written testimony of Robert Morris, of
AT&T’s Bell Laboratory, before the House
Committee on Science and Technology’s
subcommittee on Transportation, Aviation and
Materials.

Chapter 3, Security for Users, not only cov-
ers the traditional subjects, such as password
security, file permissions, Set User ID and Set
Group ID programs, it also discusses the day-to-
day security problems associated with such
common programs as c¢p, mv, In, and cpio. The
discussion includes Trojan horses, viruses, and
the problems with Intelligent Terminals, and
how to deal with them.

Chapter 4, Security for Programmers,
introduces you to the writing of secure programs.
They discuss process control, file attributes, UID
and GID processing, and dealing with the pass-
word file. They give you clear guidelines for
SUID/SGID programs, and show you how to
write a SUID/SGID program to safely allow
selective access to protected data using both a
shell script and a C program.

Chapter 5, Security for Administrators,
starts with system file and device file permis-
sions. - In this chapter the authors put together
something that I have never seen elsewhere, a
full discussion of the administrator’s security
responsibilities, complete with a discussion on
the proper use of the Super User privileges.
They discuss password aging and control, and
introduce the use of restricted shells. Under a
summation on small system security, they also
discussion the physical security of the system.

Chapter 6, Network Security, mainly
discusses the UUCP world, including the
Honeydanber UUCP that now is part of System
V, but it does include some discussion of the
problems associated with RJE links, NSC’s
Hyperchannel network, and AT&T’s 3B Net, and
using encrypted data links.

Appendix A - References.

AUUGN 171

Appendix B - Security Commands and Func-
tions. ‘

Appendix C - Permissions.

Appendix D - Security Auditing Program.
secure — perform a security audit on a UNIX
system.

Appendix E - File Permission Program. perms -
check and set file permissions.

Appendix F - Password Administration
Program. pwadm - perform password aging
administration.

Appendix G - Password Expiration Program.
pwexp — prints weeks to expiration of user’s pass-
word.

Appendix H - Terminal Securing Program.
lock — locks terminal until correct password is
entered.

Appendix 1 - SUID/SGID Shell Execution
Program. setsh - run a SUID/SGID/execute-
only shell.

Appendix J - Restricted Environment Program.
restrict — establishes a user in a restricted
environment.

Appendix K - DES Encryption Program.
descrypt — encode/decode using DES.

Appendix L - SUID Patent. A copy of US

Patent 4,135,240, D. M. Ritchie’s patent of the
SUID concept.

Appendix M - Glossary

Index

References

[1] D. M. Ritchie, “On the Security of UNIX,”
UNIX Programmer’s Manual, Section 2,
AT&T Bell Laboratories.

[2] R. H. Morris and K. Thompson, ‘“Password
Security: A Case History,” UNIX
Programmer’s Manual, Section 2, AT&T
Bell Laboratories.

[3] K. Thompson, “Reflections On Trusting
Trust,” 1983 ACM Turing Award Lecture,
CACM, Volume 27, Number 8§ (August
1984), pp. 761-763.

Vol 8 No 5

;login:

troff typesetting for UNIX Systems

by Sandra L. Emerson and Karen Paulsell
(Prentice Hall, 1987, ISBN 0-13-930959-4)

Reviewed by Jaap Akkerhuis

CWI, Amsterdam
mcvax!nl.cwiljaap

Goal of the Book

The book is intended to be an introduc-
tion to the use of troff for the novice and also
a reference manual for experienced users. It
tries to correct the lack of adequate end-user
documentation for troff. Alas, any explanation
about the concepts of troff —or any other
formatting program is missing. For instance,
the term “partial collected lines” is used a lot
but never explained.

As an introduction to troff the authors
explain all the basic requests and how to write
macros. It is a pity that they do so in a
haphazard way. They often use a request, like
.de, with the remark that the full details will
be explained further on.in the book. This is
sometimes confusing. Apparently, the authors
did not have a clear idea on how to introduce
a novice to the game of troff.

What [do like is that they give a full
treatment of the .nx and .rd requests.
Hardly any of the existing literature explains
the possibilities of creating form letters with
n/trofl” using these requests. Also, every possi-
ble trofl request is explained, cach description
accompanied with an example of its use. But
for the more experienced user there is not a lot
new. Even small tricks, for example, what you
can do with the .ss request, are not
explained. Fancy techniques, like how to do
balanced columns, are not handled at all. The
chapters about the preprocessors and macro
packages are sketchy and don’t give more
information than the existing literature.

To be a reference manual, it should at
least replace the original n/troff reference
manual. Some finer points haven’t been
covered, like the full definition of certain
requests, for instance, the append to macro
command: .am xx yy. So, don’t throw the
original manual from Ossanna out of the
window; you will still need it.

Vol 8 No 5

172

Typesetting

The most disturbing and misleading thing
about the book is its title. Apart from a
remark like “You should think as a
typesetter,” there is nothing in the book about
typesetting or the noble art of typography. All
the examples deal with the standard non-
interesting cases of typesetting.

The typesetting of the book itself is not
really done exceptionally well, it is just another
book which is typeset by the authors. I'm
always wondering why authors don’t ask
advice from a typographical consultant, it
would do miracles for book design. Of course,
this is partly the failure of the publisher.
These firms are more and more interested in
making money by cranking out printed paper
and not caring at all about how the product
looks. I’'m afraid that ignoring the issues
involved with typography in this book will
lead to even more horrible looking books than
there are around already.

Errors in the Book

In general, there will always be errors in
books. In this case, the advanced troff user
will spot them easily, but for the novice they
may be very disturbing.

The first one pops up in the first example
in the first chapter (pages 3 & 4). This one
can be waved away if you consider that novice
shouldn’t be hampered too much with details,
but the next example (page 5) is unforgivable.
The quoted troff source of .PP for the -ms
macro package is missing some back slashes!
This demonstrates again that it is not always
easy to write about a tool by using it. There
are more places in the book where these things
happen. When showing the pitfalls of the
arithmetic in troff using the .ll request the
complete promised test file isn’t around. Some
parts of how the file might have looked and
some of the (incorrect) output is shown.
Something really went wrong there.

AUUGN

:login:

Who Should Buy the Book which don’t provide the original documenta-

tion. For these cases, the book fills a gap.

Although I'm not very impressed by the Also, people complaining about the terseness

book, it may be of some use for a lot of peo- of the original reference manual might want to
ple. There are many UNIX systems around read it.

AUUGN 173 "Vol 8 No 5

;login:

Work-in-Progress Reports from the Phoenix Conference

The Siemens RTL Tiled Window
Manager

Ellis S. Cohen
Mark R. Biggers
Joseph C. Camaratta

Siemens Research & Technology Laboratories
105 College Road East
Princeton NJ 08540-6668
(609) 734-6524
siemenslellis (uucp)
ellis.cohen@a.gp.cs.cmu.edu (arpa)

The Siemens RTL Tiled Window Manager
is a network window manager which is
currently implemented on a Sun and interacts
with clients using the CMU/ITC Andrew
protocol. It has been in operation since Fall
1986, and is the window manager of choice
within our group. It is currently being ported
to run as a window manager for X.

Except for menus and transient pop-up
windows, a tiled window manager does not
permit windows to overlap. If opening, mov-
ing, or enlarging a window would cause
overlap, then either the operation is
disallowed, or windows are automatically
shrunk, moved, or closed to avoid the overlap.

Unlike other tiled window managers
which lay out windows in columns, the Sie-
mens RTL window manager supports arbitrary
tiled layouts and thus avoids the limitations of
other systems. The system is also
distinguished by a number of important
features including;

e Minimum sizes to better support what
appear as ‘‘slivers” in overlapping systems —
the portion of a window which remains par-
tially visible while other windows are fully
visible.

e Desired sizes — a preferred size of the
window (as set by the user) which the system
automatically = attempts to maintain. A
window may automatically be enlarged to its
desired size when it becomes the focus -
analogous to exposing a window upon focus in
an overlapping system.

Vol 8 No 5

174

e Zooming as both a means of temporarily
enlarging a window and icons to represent
windows which are closed.

e Automatic placement for finding the best
place to open a window.

e Automatic prorating for fairly allocating
space when not all windows on the screen can
attain their desired size as well as automatic
filling for fairly allocating additional space to
windows when extra space is available on the
screen.

e Automatic plowing for shrinking or mov-
ing windows out of the way when a window is
opened or enlarged. Plowing is used instead of
prorating when the goal is to cause changes in
as few adjacent windows as possible.

e Enlargement for making a window as large
as possible by shrinking, but not closing, other
windows on the screen.

e The use of dynamically resettable options
(initialized via profiles) for controlling the
degree of automation and the character of the
user interface.

Camelot: A Full Function,
Distributed Transaction Facility
for the MACH, BSD
4.3-Compatible Operating System

Jeffrey L. Eppinger

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(arpanet: jle@spice.cs.cmu.edu)

The Camelot distributed transaction
facility is designed to simplify the construction
of reliable, distributed applications that access
shared data. Camelot provides simple
interfaces (via macros and C library calls) for
executing transactions and defining servers
that encapsulate permanent data objects.

Camelot runs on the Mach, BSD 4.3-
compatible operating system and should
AUUGN

execute on all the uniprocessors and
multiprocessors that Mach supports., Imple-
mentations of Camelot for the RT PC and
VAX computers are currently being tested.
Some work remains before the system can be
released to others. Josh Bloch, Dean Daniels,
Rich Draves, Dan Duchamp, Sherri Menees,
Alfred Spector, Dean Thompson, and the
speaker have designed and built Camelot.

This presentation will briefly describe
Camelot and its status. In particular, it will
describe Camelot’s goals, features, program-
ming interface (i.e., man 3 library interface),
implementation, and performance. Camelot
will demonstrate that transaction processing is
an easy to use, useful programming technology
that can be very efficiently implemented for
the Mach environment. A user’s guide and
other documentation can be obtained from the
speaker.

Authentication for Untrusted
Networks of Untrusted Hosts

Dan Geer

Manager of Systems Development
Project Athena - E40-342F
Massachusetts Institute of Technology
I Ambherst Street
Cambridge, Massachusetts 02139
geer@athena.mit.edu

Most conventional time-sharing systems
require a prospective user to identify him or
herself and to authenticate that identity before
using its services. In an environment consist-
ing of a network that connects prospective
clients with services, a network service has a
corresponding need to identify and
authenticate its clients. When the client is a
user of a time-sharing system, one approach is
for the service to trust the authentication that
was performed by the time-sharing system.
For example, the network applications lpr and
rcp provided with Berkeley 4.3 UNIX trust the
user’s time-sharing system to reliably
authenticate its clients.

In contrast with the time-sharing system,
in which a protection wall separates the
operating system from its users, a workstation

AUUGN

;login:

175

is under the complete control of its user, to the
extent that the user can run a private version
of the operating system, or even replace the
machine itself. As a result, a network service
cannot rely on the integrity of the workstation
operating system when it (the network service)
performs authentication.

The Kerberos design extends the conven-
tional notions of authentication, authorization
and accounting to the network environment
with untrusted workstations. It establishes a
trusted third-party service, Kerberos, that can
perform authentication to the mutual satisfac-
tion of both clients and services. The
authentication approach allows for integration
with authorization and accounting facilities.
The resulting design is also applicable to a
mixed time-sharing / network environment in
which a network service is not willing to rely
on the authentication performed by the client’s
time-sharing system.

The Kerberos system will be made avail-
able in a manner consistent with our previous
release of the X-Window System. Parties with
serious interest in participating in a beta-test
of this software are invited to contact Athena
at this time.

Threads in System V: Letting
UNIX Parallel Process

J. C. Wagner
J. M. Barton

Silicon Graphics, Incorporated

With the rise of numerous multiprocessor
UNIX machines, programming environments
that allow easy use of the newly available
power are becoming more important. At SGI,
considerable effort is being placed on the
design and implementation of a powerful
parallel programming environment.

Among the enhancements under develop-
ment are a multi-threaded execution process
model, expanded shared memory features,
user-level synchronizing features and matching
debugging capabilities. The main goals for the
multi-threaded processes is to offer
independently schedulable threads with a

Vol 8 No 5

create/destroy rate an order of magnitude fas-
ter than the typical fork(2) system call and
context switch times significantly faster than
process to process. This allows threads to be
used for both classic cooperating task applica-
tions as well as parallelizing compilers.
Threads share all text and data of the underly-
ing process and have the same UNIX attributes
as the underlying process — one pid, one user
area, same file table, etc., implying that any
instance of a thread can execute inside the
kernel. Other enhancements include ptrace
support for retrieving task state information.
This is combined with a graphical debugger to
allow multiple threads to be displayed and
debugged simultaneously. The System V
shared memory facility is enhanced to allow
heap allocation out of shared segments, grow-
able segments, and system cleanup of unused
segments. Programs that need multiple
threads performing system calls can then sim-
ply use fork(2), and use shared memory as the
current data space; this gives functionality
superior to many system’s “shared fork.”

The multi-thread work is being integrated
into a stable multi-processor System V kernel.
The low level process/thread management and
scheduling code has ‘has been running for 2
months. The base set of kernel synchroniza-
tion primitives have been implemented.
Multiple tasks in a process have been working
for | month, current performance tests show it
to be ~10x the system fork rate. The kernel
hooks for accessing the state information of
tasks is also in place. The continued effort
involves performance enhancements, full scale
user synchronization primitives, debugger
integration, and inter-thread messaging.

CCMD: A Version of COMND
in C

Andrew Lowry

Howard Kaye

Columbia University

CCMD is a general parsing mechanism for
developing User Interfaces to programs. It is
based on the functionality of TOPS-20’s
COMND Jsys. CCMD allows a program to

Vol 8 No 5

;login:

176

parse for various field types (file names, user
names, dates and times, keywords, numbers,
arbitrary text, tokens, etc.). It is meant to sup-
ply a homogeneous user interface across a
variety of machines and operating systems for
C programs. It currently runs under System V
UNIX, 4.2/4.3 BSD, Ultrix 1.2/2.0, and MS-
DOS. The library defines various default
actions (user settable), and allows field comple-
tion, help, file indirection, comments, etc. on a
per field basis. Future plans include command
line editing, command history, and ports to
other operating systems (such as VMS).

CCMD is available for anonymous FTP
from

[CU20B.COLUMBIA.EDU]JWS:<SOURCE.CCMD>* *
For further information, send mail to:

info-ccmd-request@cu20b.columbia.edu
seismo'columbialcunixc!info-ccmd-request

CAP - Columbia AppleTalk
Package for UNIX (4.2 BSD)
(For use with AppleTalk/Ethernet bridge)

Charlie C. Kim

User Services Group
Libraries and Center for Computing Activities

Bill Schilit

Columbia University

CAP is written under UNIX BSD 4.2 and
implements a portion of Apple Computer’s
AppleTalk protocols. In order to use this
package you need an AppleTalk/Ethernet
bridge (e.g. Kinetics FastPath box).

CAP routines are structured, for the most
part, the same as the Apple routines described
in “Inside AppleTalk” and “Inside Laser-
Writer.” Refer to the Apple documents and
the procedure comments for a complete
description of the routines and how to call
them.

Bill Croft’s original work in this area pro-
vided the inspiration for CAP.

AUUGN

Availability

Copyright © 1986, The Trustees of

Columbia University in the City of New York.
Charlie C. Kim, User Services Group,
Academic Information Services Division,
Libraries and Center for Computing Activities
& Bill Schilit, Computer Research Facilities,
Computer Science Department.

Permission is granted to any individual or
institution to use, copy, or redistribute this
software so long as it is not sold for profit, pro-
vided that this notice and the original
copyright notices are retained. Columbia
University makes no representations about the
suitability of this software for any purpose. It
is provided “as is” without express or implied
warranty.

Portions Copyright © 1985, Stanford
University SUMEX project. May be used but
not sold without permission.

Portions Copyright © 1984, Apple Com-
puter Inc. Gene Tyacke, Alan Oppenheimer,
G. Sidhu, Rich Andrews.

Release

Distribution at present is limited to
anonymous FTP from CU20B.COLUMBIA.EDU.
See the Release notes in the directory
US:<US.CCK.CAP.D4> in the file RELEASE for
information on the current release (including
. the file locations). There are no current plans
for any other types of distribution.

m———

MDPIC - MacDraw to PIC
Converter

Daniel Klein

Avatar Corp.
5606 Northumberland
Pittsburgh, PA 15217

412/422-0285

PIC provides users of UNIX a convenient,
but somewhat difficult mechanism for drawing
pictures inside of troff documents. All of
PIC’s commands are in “plain English,” but it
is usually very difficult to envision the pictoral
representation of a set of words. The
Macintosh, on the other hand, provides users a

AUUGN

;login:

177

simple to use, easy to visualize WYSIWYG
(what you see is what you get) drawing
mechanism. Unfortunately, the only way to
interface a Macintosh with troff was through
physical cut and paste. No automated,
electronic mechanism existed.

A new program, (MDPIC, for MacDraw
to PIC) has been developed, that allows users
to create intricate pictures with a Macintosh,
and include them directly into a troff docu-
ment. The MDPIC program takes a binary
representation of the MacDraw picture
(confusingly called PICT format), and
translates this picture into UNIX PIC format.
Most of the Macintosh drawing primitives are
translated accurately — boxes, rounded rectan-
gles, arcs, ovals, circles, arrows, text, and lines.
Fill patterns are supported, although a 100%
accurate representation is not possible (the
Macintosh can draw with arbitrarily colored
pens, while PIC supports only a black pen).
Varying line sizes, fonts, point sizes, and dot-
ted lines are all translated accurately. In short,
anything that would ordinarily be drawn with
PIC can be accurately translated from the
Macintosh.

MDPIC enables creators of documents to
quickly generate pictures to include in their
documents using a WYSIWYG editor, then
translate them to a format usable by UNIX.
Since this new format is human readable,
changes to the pictures may either be made in
the original WYSIWYG form, or in the PIC
source file that MDPIC generates. Because the
Macintosh presents all of its pictures graphi-
cally, the user is spared the headache of
painstakingly measuring and placing all of the
lines, arcs, and boxes in a picture — a task that
is required by using PIC alone.

MDPIC presently runs on the Sun, VAX,
and Masscomp machines, and a future port
directly to the Macintosh is planned for the
future.

Vol 8 No 5

Directional Selection is Easy as
Pie Menus!

Don Hopkins

University of Maryland
Heterogeneous Systems Laboratory
College Park, MD 20742
(301) 454-1516

Simple Simon popped a Pie Men-
-u upon the screen;
With directional selection,
all is peachy keen!

The choices of a Pie Menu are positioned
in a circle around the cursor, instead of in a
linear row or column. The choice regions are
shaped like the slices of a pie. The cursor
begins in the center of the menu, in an
inactive region that makes no selection. The
target areas are all adjacent to the cursor, but
in a different directions.

Cursor direction defines the choice. The
distance from the menu center to the cursor,
because it’s independent of the direction, may
serve to modify the choice. The further away
from the Pie Menu center the cursor is, the
more precise the control of the selection is, as
the Pie slice widens with distance.

With familiar menus, choices can be made
without even seeing the menu, because it’s the
direction, not the distance, that’s important.
“Mousing ahcad” with Pie Menus is very easy
and reliable. Experienced users can make
selections quickly enough that it is not actually
necessary to display the menu on the screen, if
the mouse clicks that would determine the
selection are already in the input queue.

The circular arrangement of Pie Menu
items is quite appropriate for certain tasks,
such as inputing hours, minutes, seconds,
angles, and directions. Choices may be placed
in intuitive, mnemonic directions, with
opposite choices across from each other,
orthogonal pairs at right angles, and other
appropriate arrangements.

Piec menus have been implemented for
uwm, a window manager for X-Windows ver-
sion 10, for the SunView window system, and
for NeWS, Sun’s extensible PostScript window
system. Don Hopkins did the uwm and NeWS

Vol 8 No 5

;login:

178

implementations, and Mark Weiser did the
SunView implementation.

Jack Callahan has shown Pie Menus to be
faster and more reliable than linear menus, in
a controlled experiment using subjects with lit-
tle or no mouse experience. Three types of
eight-item menu task groupings were used: Pie
tasks (North, NE, East, etc...), linear tasks
(First, Second, Third, etc...), and unclassified
tasks (Center, Bold, Italic, etc...). Subjects
were presented menus in both linear and Pie
formats, and told to make a certain selection
from each. They were able to make selections
15% faster, with fewer errors, for all three task
groupings, using Pie Menus. Ben Shneider-
man gave advice on the design of the experi-
ment, and Don Hopkins implemented it in
Forth and C, on top of the X-Windows uwm.

The disadvantage of Pie Menus is that
they generally take up more area on the screen
than linear menus. However, the extra area
does participate in the selection. The wedge-
shaped choice regions do not have to end at
the edge of the menu window - they may
extend out to the screen edge, so that the
menu window only needs to be big enough to
hold the choice labels.

Proper handling of pop-up Pie Menus
near the screen edge is important. The menu
should idealy be centered at the point where
the cursor was when the mouse button was
pressed. If the menu must be moved a certain
amount from its ideal location, so that it fits
entirely on the screen, then the cursor should
be “warped” by that same amount.

Pie Menus encompass most uses of linear
menus, while introducing many more, because
of their extra dimension. They can be used
with various types of input devices, such as
mice, touch pads, graphics tablets, joysticks,
light pens, arrow keypads, and eye motion sen-
sors. They provide a practical, intuitive,
efficient way of making selections that is quick
and easy to learn. And best of all, they are not
proprietary, patented, or restricted in any way,
so take a look and feel free!

References:

“Pjes: Implementation, Evaluation, and Appli-
cation of Circular Menus,” By Don Hopkins,
Jack Callahan, and Mark Weiser (Paper in
preparation. Draft available from authors.)

AUUGN

“A Comparative Analysis of Pie Menu
Performance,” By Jack Callahan, Don Hop-
kins, Mark Weiser, and Ben Shneiderman
(Paper in preparation. Draft available from
authors.)

Worldnet — Computer Networks
Worldwide

John S. Quarterman

Texas Internet Consulting
701 Brazos, Suite 500
Austin, TX 78701-3243

(512) 320-9031
Jjsq@longway.tic.com
uunet!longway!jsq

Computer networks extend throughout the
world, have millions of users, and provide
unique services. Yet the only publication that
has dealt with existing networks at length on a
global scale is my article “Notable Computer
Networks™ in the October 1986 Communica-
tions of the ACM [Quarterman1986] (the long-
est article CACM has ever published and one
well-received by the readers). I propose to
write a book on the same subject to include
material which could not be fit into the article.
Ths book will discuss existing computer net-
works throughout the world, their interconnec-
tions, the services they provide, their composi-
tion, their administration, their users, and
their effects. The article is already 40 pages
(30,000 words) in CACM, or about 60 book
pages. There is at least that much more tex-
tual information available, and there will be
many pages of additional tables, figures, and
maps, so the book should be about 200 to 250
pages long.

Reference:

[Quarterman1986] John S. Quarterman and
Josiah C. Hoskins, “Notable Computer
Networks,” Communications of the ACM,
vol. 29, no. 10, pp. 932-971, Association
for Computing Machinery, New York,
NY, October 1986.

AUUGN

;login:

179

Multiple Programs in One UNIX
Process

Don Libes

[The full report appeared on pages 7-13 of the
July/August 1987 issue of ;login..]

Vol 8 No 5

6.

7.

Minutes of the AUUG Management Committee Meeting
May 15, 1987

The meeting opened at 14:10. Present were Robert Elz (KRE), John Lions (JL),
Chris Maltby (CM), and Tim Roper (TR). Apologies were received from Chris
Campbell (CC), Ken McDonell (KENJ), and Lionel Singer (LS). Also present
were Nobuo Saito, Jun Murai, and Kouichi Kishida from the Japan Unix
Society, and Greg Webb and Ian Waters from NSWIT, hosts of the next AUUG

meeting.

In the absence of the chairman, John Lions was elected to take the chair.
The minutes of the previous meeting (September 1986) were read.
Corrections to the minutes:

a. The abbreviation for The Japan Unix Society in item 14 was incorrect, it
should be JUS not JUG.

Moved (TR, seconded CM) That the minutes as amended be accepted.
Carried (4-0)

Business arising from the minutes

Item 12 The token for the previous newsletter editor is now in the hands of JL,

who had offered to present it, and is now waiting for a suitable occasion.

Moved (KRE, seconded TR) That the token be presented at the next
AUUG meeting, whether the recipient is present or not. Carried (4-0)

There was lengthy discussion on the possibilities of a Unix meeting in Singapore
in 1988. Computerworld are interested in holding an exhibition there then, and
JUS would be interested in having a meeting there about the time of the ICSE10
meeting (the week of April 11).

We would need to contact the Singapore Users Group about arrangements.

Participants from some countries would need travel support, IBM, AT&T, and
DEC might be approached.

We support it, Singapore is an appropriate place.

The Secretary is to write to Computerworld, and suggest they hold their
exhibition in the week immediately before or after ICSE10.

Computerworld should run the meeting.
We need to talk to all User Groups.
Greg Webb presented his proposals for the August AUUG meeting.

A committee has been formed (5 members), and the meeting dates were
available (and had been for some time). Rooms for the exhibition and lectures

Vol 8 No § 180 AUUGN

10.

11.
12.

13.

14.

15.

16.

17.

18.
19.

20.

have been booked, though there was some concern about the capacity of the
rooms, a limit on numbers, or a TV relay, or parallel streams were suggested as
ways around this. Running tutorials or BOF’s in parallel was suggested as one
reasonable alternative.

There was some discussion about the prize to be offered to the best student
paper, and possible other methods of financial assistance for attendees.

Moved (JL, seconded TR) That an additional sum of $1000 be made
available to subsidise travel expenses to a maximum of the minimum of
$300 or return economy apex air fair for any full time student whose paper
is accepted and who submits a written paper by the deadline (August 14).

An amendment, moved (CM, seconded TR) That the amounts be altered to be
‘“‘at the discretion of the programme committee’’. Carried (4-0).

Motion as amended carried (4-0).

Yet another discussion on whether we should have published proceedings. It
was accepted as a good idea, but is not required for this conference, but should
be done, sometime. If proceedings are published, they should form an issue of
AUUGN, either at, or after, the conference.

A proposal from ACMS to professionally host the exhibition was presented.
ACMS would require ‘‘contact lists’’ of potential exhibitors.

Moved (KRE, seconded CM) That approval be given for alternative 2 of the
ACMS proposal, and to the meeting committee to negotiate with Stephen
Moore, and others, re contact lists. Carried (4-0).

Some discussion on possible guest speakers was undertaken, and a short list
produced.

The meeting adjourned at 17:00, and resumed at 17:20 after the various guests
had departed.

Moved (KRE, seconded TR) That all memberships from the Adelaide
meeting be accepted. Carried (4-0).

The meeting adjoumed at 17:55 and resumed at 19:05.
The secretary’s report was presented.

Current membership numbers were presented, together with a details of
correspondence received and sent.

Moved (CM, seconded TR) That the secretary’s report be accepted. Carried
4-0).

The treasurer presented his report.

The treasurer congratulated the Adelaide meeting organisers, whose affairs were
fully wound up in a very timely, and satisfactory fashion.

AUUGN 181 Vol 8§ No 5

21.

22.
23.

24,

25.

26.

27.

28.
29.

Most of AUUG’s money is still in the bank.
Mastercard, Bankcard, and Visa are in the process of being arranged.

Moved (TR, seconded KRE) That the treasurer’s report be accepted. Carried
4-0).

There was some discussion on possible extra benefits for institutional members.
These could include access to the membership list in the form of mailing labels
at cheaper rates, discounts on advertising, and discounts on extra copies of
AUUGN. The latter was suggested as a possibility for all members.

It was agreed to defer this issue for presentation in AUUGN, and extra
consideration, including any representations from members.

Discussion on membership lists was deferred to a later meeting.
The membership fees for the coming financial year were set.

Moved (JL, seconded TR) That the rate for ordinary members be $55.
Carried (2-2, KRE, CM opposed, the chairman exercised a casting vote).

Moved (CM, seconded KRE) That the rate for student members be $30, the
rate for Institutional members be $250, and the rate for a newsletter
subscription be $55. Carried (4-0).

It was suggested that the fee increase be deferred for a short time, to allow new
members to join at the cheaper rate. This was agreed to by all.

A proposal from /usr/group which resulted from contacts initiated by AUUG on
the topic of forming links was discussed.

Moved (TR, seconded CM) That the secretary make a polite negative reply to
lusr/group. Carried (4-0).

NZUSUGI also suggested an agreement, in response to initiatives from AUUG.

Moved (KRE, seconded TR) That the NZUSUGI proposal be accepted.
Carried (4-0).

A proposal that AUUG import 4.3BSD manuals and proceedings from USENIX,
for distribution to members was discussed. Because of licensing restrictions,
AUUG could only do this through some agent organisation.

Moved (KRE, seconded CM) That AUUG underwrite the costs of such a
venture. Carried (4-0).

A paper mail letter should be sent to EUUG to follow up on the tentative
agreement that we have with them.

The next committee meeting will be held on Wednesday August 26, at Softway.

Other business..

Vol 8 No 5 182 AUUGN

AUUGN: it was noted that AUUGN would benefit from lowering the amount of
white space, and paying attention to the resulting weight.

Moved (TR, seconded JL) That the secretary write to the AUUGN editor,
expressing thanks, and pleasure with the quality of the newsletter, and also
pointing out that some attention to compacting white space, and to printing
size with respect to postage rates is desirable. Carried (4-0).

30. The meeting closed at 20:45.

AUUGN 183 Vol 8 No 5

Minutes of the AUUG Management Committee Meeting
August 26, 1987

1. The meeting opened at 14:09. Present were Piers Dick-Lauder (PL), Robert Elz
(KRE), John Lions (JL), Ken McDonell (KENJ) in the chair, and Tim Roper
(TR). An apology was received from Chris Maltby (CM), and for the initial part
of the meeting from Chris Campbell (CC).

2. Moved (JL, seconded PL) That the meeting take place, despite the lack of
formal motice. Carried (5-0).

3. Moved (TR, seconded PL) That the agenda as presented be ratified. Carried
(5-0).

4. The minutes of the previous meeting (May 1987) were read.
Corrections to the minutes:

a. Moved (PL, seconded JL) That the wording of item 13 be changed by
altering the words ‘“‘to professionally host’’ to ‘‘to manage’’. Carried
(5-0).

6. Moved (JL, seconded TR) That the minutes as amended be accepted as an
accurate record. Carried (3-0, KENJ, PL, abstaining)

7. Business arising from the minutes

Item 6 The plaque will be presented at the dinner, at which Peter Ivanov will be
present. JL to make the presentation.

Item 7 No action taken, president to ring Stephen Moore or Alan Power in the
next few days to discover the current status.

Items 8—11 Information from the Programme Committee is needed to determine if
any bursaries are to be presented, and if so, to present them at the dinner.

Item 20 Mastercard and Bankcard are now done, and AUUG can accept these
credit cards for payments. Paperwork for Visa is proceeding.

Item 21 Nothing has appeared in AUUGN yet. Further discussion was deferred
to the agenda item on membership services.

Item 23 The new rate is now in effect. It was noted that the dissenting votes in
the motion on this point were proposing a higher fee, rather than no
increase at all.

Item 24 No action yet taken. Clarification was sought on the nature of the
proposal being rejected. The secretary explained (for members not at the
previous meeting, and for the record) that the /usr/group proposal
amounted to a scheme where AUUG members would join /usr/group at
the normal rate, and with AUUG then obtaining some percentage of the
/ust/group membership fee.

Vol 8 No 5 184 AUUGN

10.

11.

12.

13.
14.

15.

Item 25 Letter still needs to be written.

Item 26 Done. Order has been placed, delivery is imminent. After this, a second
offer should be circulated to members in AUUGN (and news) for a
possible second order.

Item 29 Not yet done.

— Moved (PL, no seconder) That the minutes of meetings be circulated
within two weeks of the meeting. Discussion of this was deferred, and
forgotten.

— The question of which issue of AUUGN the minutes should be published
in was also raised (that is, as soon as possible, or after circulation, or
after ratification at the next meeting).

The president had no report to present, as he had been away for most of the
period since his last report. Matters of business were to be covered in other
agenda items.

The meeting adjourned at 14:51 and resumed at 14:53.

The secretary presented a very brief report, including copies of some
correspondence.

There was no treasurer’s report, since there was no treasurer present. It was
noted that the most recent estimate was that AUUG had about $25,000 in the

bank,

The constitutional amendments needed for incorporation were approved at the
referendum, and an application for incorporation under the Associations
Incorporation Act, 1981, Vic. The secretary is to attempt to determine the
current state of this before the AGM.

CC arrived, and apologised for being late, at 15:02.

Meeting policy guidelines: Questions to be answered included
e method of charging for the dinner, unbundling, and FBT.
e the equipment exhibition, to be done again?
e credit card facilities
e proceedings
e student papers and bursaries

e coordination between management committee, the hosts, and the
programme committee

There is a meeting guidelines document, that is now out of date (again out of
date). PL offered to update it and publish it in AUUGN. It should include
mention of the student paper prize, and bursary.

AUUGN 185 Vol 8 No 5

16.

17.

18.

19.

20.

21.
22,

23,
24,

25.

26.

27.

28.

29.

30.

31.
32.

Moved (JL, seconded TR) That Piers Lauder shall prepare a document to be
circulated four weeks prior to the next management committee meeting.
Carried (6-0).

On the issue of dinner costs FBT was decided to be not an issue.

However, the management committee is in favour of unbundling the cost of the
dinner, PL to include this in the guidelines.

If the equipment exhibition is to be done again in a similar manner, it will affect
the choice of a venue in Melbourne.

Committee members are to seek opinions from attendees and from exhibitors
(independently from the organiser).

PL and KENJ to contact exhibitors.

Exhibitors should be asked if they would be willing to provide sponsorship at a
future AUUG meeting.

Credit card facilities should be available for registrations.

Proceedings: there is still an issue of whether it is possible to produce
proceedings to be available at the meeting. The committee feels that this would
obviously be desirable, and in general there meetings should aim to do it, but it
is not to be regarded as mandatory.

Finance: Last year’s statement, and a current statement are needed before
anything else can be done. This is needed very quickly, by the end of
September was agreed as necessary.

Moved (KENJ, seconded KRE) That the treasurer forward to the president
the 1986/1987 statement, and a current financial statement, no later than
the end of September, 1987. Carried (6-0).

The secretary is to obtain the membership list, and all support, and move it to
Melbourne in the immediate future.

The Post Office is to be asked to redirect AUUG’s Post Office Box to an
appropriate address in Melbourne.

Operation of the management committee: Minutes need to be prepared and
circulated quickly. However, for AUUGN it was felt that a report of the
meeting, rather than the formal minutes, was a more suitable procedure.

Moved (JL, seconded PL) That the newsletter editor be invited to
management committee meetings to prepare a report of the meeting for
AUUGN, and his expenses are to be paid, if necessary. Carried (6-0).

Some secretarial/bookkeeping assistance is needed.

There was discussion of future AUUG meetings, dates, and potential invited
speakers.

Vol 8 No 5 186 AUUGN

33.

34.

35.

36.

37.

38.

39.
40.

41.

42,

43.

44,

45.
46.

47.

It was decided to hold a meeting in Melbourne in February, on a standards
theme, with the Winter 1988 meeting possibly in Newcastle.

A venue and date for the Melbourne meeting are yet to be decided, advice from
the exhibition organiser should be sought.

There was some discussion of the possibilities of AUUG participating in some
way in the various standards efforts. No conclusion was reached.

A possible service that might be offered to members is the distribution of
software tapes from usenix. Usenix is willing to make these tapes available to
AUUG at no cost. AUUG needs to determine the costs of tape duplication and
distribution, KENJ to follow up.

The meeting adjourned at 16:17 for a conference with the meeting committee,
and resumed at 17:00.

The secretary reported that he had contacted the solicitors who are handling the
incorporation, and they had informed him that there were some more papers to
sign before incorporation could proceed, but that no other obstacles were
currently known. The secretary will proceed with this next week.

More discussion on conference organisation took place.

Moved (CC, seconded PL) That the president should enter into negotiations
and discussions with Wael Fada (ACMS) with a view to having his company
run the next meeting in Melbourne. Carried (6-0).

On links with other user groups: The position of Australian chapters needs to be
tidied up. We need to rationalise the state of extemal links.

There was much discussion on the possibilities for network support. Should, or
can, AUUG help, or help find organisations willing to provide support. There
was general agreement that ways to help fund ACSnet are needed, but it was not
clear how this should be done.

It was suggested that vendors be invited, or requested, to run their courses, or
symposia, at about the time of the AUUG meetings. This would allow
participants at their meetings to attend AUUG meetings, with mutual benefits.

It was recognised that AUUG’s constitution needs some changes (such as
creation of the office of vice president). A list of potential changes should be
circulated four weeks before the next meeting. TR to coordinate.

It was pointed out (again) that secretarial services are needed.

The next management committee meeting is to be held in Melbourne on
Wednesday December 9, at a time to be decided.

The meeting closed at 18:03.

AUUGN 187 Vol 8 No 5

Minutes of the AUUG Annual General Meeting
August 27, 1987

1. The meeting opened at 17:35. Present were an undetermined number of
members of the AUUG, and several others. The AUUG president, secretary, and
committee members Campbell and Lions (and Roper??) were present. The
treasurer and returning officer sent apologies (the former being overseas on
business, the latter’s wife having just given birth).

2. Moved (John Carey, seconded Peter Tyres) That the required notice of the
meeting be waived, and that the agenda as presented be accepted. Carried
without dissent.

3. Moved (Burn Alting, seconded Chris Campbell) That the minutes of the AGM
as published in AUUGN V7 # 2 be accepted. Carried without dissent.

4. Moved (Peter McMahon, seconded John Carey) That the minutes of the
previous general meeting, as published in AUUGN V7 # 6 be accepted.
Carried without dissent.

5. There was no business arising from the minutes.

6. In the absence of the returning officer (John O’Brien) the president presented the
returning officer’s report. He announced the results of the election recently held
for the AUUG management committee. Elected unopposed were McDonell
(president) Elz (secretary) and Maltby (treasurer). Elected to the committee
were Campbell, Dick-Lauder, Lions, and Roper. O’Brien was elected returning
officer, the post of assistant returning officer is vacant. All the referenda were
passed with the necessary majorities, and the modified constitution now applies.

7. The president (Ken McDonell) gave his report:

a. Incorporation of AUUG is proceeding, final administrative details are
being attended to, and it is anticipated that AUUG will be incorporated in
the very near future.

b. The newsletter is now being published regularly, and the issue numbering
has now (after the issue currently at the printers) caught up. Thanks
should go to the editor. This resulted in acclamation from the audience.

c. The president then gave some indication on what AUUG planned to do in
the future (he emphasised what not when).

e aim to increases the level of service, including affiliations with other
user groups, obtaining the usenix 4.3 bsd manuals for members, and
a possible distribution of the usenix software distribution tapes, at
whatever it costs AUUG to distribute them.

e convince vendors that AUUG has value to offer, and encourage
vendors to assist to raise AUUG’s profile in the community.

Vol 8 No 5 . 188 AUUGN

10.

11.

12.

13.

14.

15.

e start paying for secretarial and administrative support, to help speed
up membership enquiries and general business.

The secretary (Robert Elz) presented a brief report. Membership numbers are
remaining approximately stable, though we are gaining more institutional
members. Failure of members to renew through neglect, aided by lack of
renewal notices is a problem.

The treasurer (Chris Maltby) was not present to give a report, and no suitable
substitute was available. The president advised that a financial statement and
budget will be published in AUUGN before the next general meeting.

There was some discussion on the possibility of advertising to increase the
UNIX community’s knowledge of the existence of the AUUG. However it was
recognised that there is unlikely to be sufficient to be gained from this to justify
the high cost. It was suggested that articles prepared for publication and
submitted to the computer newspapers might be a better solution. It was also
noted that representatives from several of these papers had been present at the
meeting.

An association with ACS was suggested. It was pointed out that this had been
suggested before, and rejected, and that no formal arrangement was likely.
Some publicity in the ACS newsletter may be beneficial though.

The existence of a C users group was pointed out. It was said to be a small
group (about 22 members) but is growing. The possibility of some links with
this group was mentioned.

The question of the pricing structure of the meeting was raised, especially the
bundling of the conference dinner. The president reported that the management
committee had decided at its committee meeting the day before that the dinner
cost be unbundled in future. This was not to be treated as a rebuff to the
organisers of the current meeting, who had attempted many innovations, most of
which were most successful.

The financial strain upon some members of attending two interstate meetings a
year was raised. It was suggested that perhaps an annual meeting, and more
frequent local meetings would be a better structure. Not all members present
were in favour of this proposal. If this were to be done, and perhaps in any
case, longer meetings might be a good idea, 3 days was suggested. The
possibility of holding tutorials was also raised. Input on this issue from the
AUUG members was requested.

Meeting closed 18:07.

AUUGN 189 Vol 8 No 5

News s I

The International Network ol UNIX Users

’ 4655 Old Ironsides Drive, Suite 200
Santa Clara, CA 95054 (408) 986-8840

/usr/group has announced the publication of a booklet entitled “POSIX
Explored”, a technical overview of the Full-Use IEEE 1003.1 POSIX
Standard specification. The 24 page document follows the earlier
publication of “Your Guide to POSIX” in March 1987.

The new publication explains the Standard’s history, strengths and
weaknesses. It provides an overview of the changes made to the trial-use
version of the 1003.1 standard, and also covers the relationship of POSIX
to the proposed ANSI C Language standard.

Also detailed in “POSIX Explored” are the changes planned or being
made in both AT&T’s System V and in the Berkeley 4.3 based systems in
order to make them conform to the POSIX specifications. The material is
intended to assist software designers and implementors build conforming
applications.

Both POSIX publications are available from /usr/group, 4655 Old
Ironsides Drive, Suite 200, Santa Clara CA 95054, USA (Phone +1 408 986
8840). Prices are US$1 for “Your Guide to POSIX”; “POSIX Explored” is
US$7 for /usr/group members and US$10 to non-members. Bulk order
discounts are available.

Vol 8 No 5 190 AUUGN

AUUG

Membership Categories

Once again a reminder for all ‘‘members’’ of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the
contents, or the association.

AUUGN 191 Vol 8 No 5

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right comer you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Robert Elz

AUUG Secretary.

Vol 8 No 5 192 AUUGN

AUUG

Application for Ordinary, or Student, Membership
Australian UNIX" systems Users’ Group.

“UNIX Is & reglsiered trademark of AT&T In the USA and other counirles

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

. @ Please don’t send purchase orders — perhaps your

?gli;G N;%nﬁlbemhlp Secretary purchasing department will consider this form to be an
oX invoice.

Kensington NSW 2033 ® Foreign applicants please send a bank draft drawn on an

Australia Australian bank, or credit card authorisation, and remember

to select either surface or air mail.

Ly e e e e e r e e e e e e e e e e e e e e e e naneneseaenens do hereby apply for
[] Renewal/New Membership of the AUUG $55.00

[J Renewal/New Student Membership $30.00 (note certification on other side)
L] International Surface Mail $10.00
(] international Air Mail $50.00

Total remitted AUD$____

(cheque, money order, credit card)
" Delete one.

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date: __ / / Signed:

[Tick this box if you wish your name & address withheld from mailing lists made avallable to vendors.

For our mailing database - please type or print clearly:

NAMIE: ..o e PRONE: ooeevii vt (bh)
o Lo | (=T OSSP N (ah)
.. Net Address.
.. Write ‘‘Unchanged’’ if details have not
.. ' altered and this is a renewal.

to my [| Bankcard [] Mastercard []| Visa.
Account number: . Expiry date: __/ .

Please charge $

Name on card: Signed:

Office use only:

Chq: bank bsb - alc #
Date: _ | | 3 CC type V¥
Who: Member#

AUUGN 193 Vol 8§ No 5

Student Member Certification (to be completed by a member of the academic staff)

L reeerrrae et enennes creerrtee e resarae s crreeereeresnrreeseane vrveeens certify that
.............. TP P PP PPN (/77 1//1
1S @ FUll tMNE STUAENE B ..eiovveeeieieeiieieeieieeeeeeeseseeesesseeeeseesessssesessteesessessssssseessnseeeses (institution)

and is expected to graduate‘ apbroximately [[.

Title: Signature:

Vol 8 No 5 194 AUUGN

AUUG

Application for Institutional Membership
Australian UNIX" systems Users’ Group.

"UNIX Is a regletered trademark of AT&T In the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary e Foreign applicants please send a bank draft drawn
PO Box 366 on an Australian bank, or credit card authorisation,
Kensington NSW 2033 and remember to select either surface or air mail.
Australia
.. does hereby apply for

[] New/Renewal Institutional Membership of AUUG $250.00

(] International Surface Mail $ 20.00

(] international Air Mail $100.00
Total remitted AUD$

. (cheque, money order, credit card)
Delete one.

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: _ / [/ Signed:
Title:

[1 Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

..

..

.. Write *'Unchanged’’ if details have not

.. altered and this is a renewal.

Please charge $ to my [] Bankcard [] Mastercard [] Visa.

Account nomber: ___ . Expiry date: __/ .
Name on card: Signed:

Office use only: Please complete the other side.
Chq: bank bsb - alc #

Date: __ | 1 $ CC type V¥

Who: Member#

AUUGN 195 Vol 8 No 5

Please send newsletters to the following addresses:

Name:ccccveeireeneerrneennns cerrernerenes Phone:ccoeevevieeiiiiiiiiniiennens veerennn (bh)

o Lo | T O PPN (ah)
"""""""""""""""""""""""""" Not AAress:ccorrvvereeeeeennennenennnnsene

NaME: oo Phone:cccccovvveeennnmiirineennnneencnane (bh)

AdAresS: ...ooviviiviiiiiiccirirrnrecere e ciecinees ssseeseseereeensensess s (ah)
.. NGt ADAIOSS: ooeoeeoeeeeoeoeoeo o

--

Write “‘unchanged’’ if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke eatlier ones, please indicate only licences which are current, and indicate

any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System I or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[J System V.3 source [System V.3 binary
[J System V.2 source [System V.2 binary
] System V source [System V binary
[0 System III source] System III binary

] 4.2 or 4.3 BSD source

[4.1 BSD source

[J V7 source

[0 OUREE (THAICAtE WHICH) ovoveviviriiiervinisisireriniine s sesisssssesersssssbsssssssssssesssssssssssmessssstsossasssseisssssrsrorosssssssssasasnseses

Vol 8 No 5 196 AUUGN

AUUG

Application for Newsletter Subscription
Australian UNIX" systems Users’ Group.

"UNIX Is a reglstered trademark of AT&T In the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

. ® Please don’t send purchase orders — perhaps your
AUUG MembefShlP Secretary purchasing department will consider this form to be an
PO Box 366 invoice.
. , ® Foreign applicants please send a bank draft drawn on an
Kensmgton NSW 2033 Australian bank, or credit card authorisation, and remember
Australia to select either surface or air mail.

@ Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter /| renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

"" Net AdAresSs: ..cooveiiiie it ee e e e naee

..

.. Write ‘‘Unchanged’’ if address has

.. not altered and this is a renewal.

For each copy requested, | enclose:

[] Subscription to AUUGN $ 55.00
[] International Surface Mail $ 10.00
[] International Air Mail $ 50.00

Copies requested (to above address)

Total remitted AUD$
(cheque, money order, credit card)
[Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $ to my [] Bankcard [] Mastercard [] Visa.
Account number. __ . Expiry date: __/ .
Name on card: Signed:

Office use only:

Chq: bank bsb - alc #
Date: __ |/ $ CCtpe V¥
Who: Subscr#

AUUGN 197 Vol 8 No 5

AUUG

Notification gf Change of Address
Australian UNIX systems Users’ Group.

*UNIX Ie a reglstered trademark of AT&T in the USA and other countrles.
If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
PO Box 366

Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)
NAINE: ..cviiiicicrineinenirnnnessnresssnisseresesssssnssssssssrsssssans PROME: ..covoiiirevrrienneeneeenseeseressnsenssasssssnssssone (bh)
AddIESS: ...covvveviiieerrreteee e ceenreene fevesrenresiesins trresseessesssesaessaresanenaseserseresorsnessssrasnsses (ah)

oo
oo
..

oo

New address (leave unaltered details blank)

: Phone: bh
NAME: ...ooviiriirriiirnecienienrennessersesressesressssssssesssorsoraonss E1E. vvverevnreececsrrnrensassessossssssrsrnnsntssossossrans
Address: ah)
L reesenrerissnaraensssssasessaneesssranrssssresessssnnessnasssssannnes seseesserseessersesesssnnnessersntessssnsntesorassasesnns
..
t Address:
el D evesersreeesrssansssersasesssrnnssesbonnasanessasassats
..
..
..
Office use only:
Date: [/
:

Who: Memb#

Vol 8 No 5 198 AUUGN

