
Volume g o

June 1988

Rsgis~r~l ~,y Australia Pe~t P~i~lc=~o,n No. NBC.~524

The Australian UNIX* systems User Group Newsletter

Volume 9 Number 3

June 1988

CONTENTS

AUUG General Information 3

Editorial 4

Ross Nealon, 1958-1988 6

A Tribute to Ross Nealon 7

AUUG 88 Winter Conference And Exhibition 9

AUUG 88 Key Speaker Biographies 10

AUUG 88 Programme 12

AUUG 88 Registration 13

AU~t.IG 88 Contact Details 14

Adelaide UNIX Users Group Information 15

Western Australian UNIX systems Group Information16

Book Review - The AWK Programming Language17

Book Review - Software Configuration Management18

Report from the Fifth Workshop on Real-Time Software and Operating Systems19

PostScript On Screen: Here is the NeWS 24

Evolution of the SunOS Programming Environment 26

SunOS Virtual Memory Implementation 42

From the ;login: Newsletter - Volume 13 Number 3 59

Know Your Board and Staff 60

Call for Papers - UNIX Security Workshop 61

Call for Papers - Workshop on UNIX and Supercomputers62

Call for Papers - C++ Conference 63

Call for Papers - Workshop on Large Installation Systems Administration64

Call for Papers - EUUG Autumn Conference 65

LOCK/ix: An Implementation of UNIX for the LOCK TCB 66

An Update on UNIX Standards Activities 80

Local User Groups 85

AUUGN 1 Vol 9 No 3

From the ;login: Newsletter - Volume 13 Number 3 continued 87
Future Events 87
Publications Available . . . , 87

Management Committee Meeting Minutes - February 1988 88
AUUG Membership Catorgories 95
AUUG Forms 97

Copyright © 1988. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 9 No 3 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

AUUG Executive

President John Lions

johnl@c heops.eecsounsw.oz
School of Electrical Engineering

and Computer Science,
University of New South Wales,
New South Wales

Secretary Robert Elz

kre@munnari.oz
Department of Computer Science,
University of Melbourne,
Victoria

Treasurer Chris Maltby

chris@softway.sw.oz
Softway Pty. Ltd.,
New South Wales

Committee
Members

Chris Campbell

chris@comperex.oz
Comperex Pty. Limit~l,
New South Wales

Piers Lauder

piers@basser.cs.su.oz
Basser Department of Computer Science,
Sydney University,
New South Wales

Tim Roper

timr@labtam.oz
Labtam Limited,
Victoria

Peter Wischart

pjw@anucsd.oz
NEC Information Systems,
Canberra

Next AUUG Meeting
The next meeting will be held in Melbourne at the Southern Cross Hotel from the 13th to the 15th of September 1988.
Futher details are provided in this issue.

AUUGN 3 Vol 9 No 3

AUUG Newsletter

Editorial
Welcome to another issue of the AUUG Newsletter.

As reported to you in the last issue, I have moved to Webster Computers, and have put a lot of effort
into making the transision as smooth as possible as far as Newsletter production is concerned. This has
not been done alone, and I have had help from many people including the staff at Websters, Monash
Computer Centre, and the AUUG Committee. I wish to thank them very much.

There are still minor production, distribution, renewal problems occuring with AUUGN and the
Committee and myself are working to rectify them.

The AUUG is hosting its major conference at the Southem Cross Hotel in Melbourne during September.
Details appear in this issue and you will be receiving forms in the mail in the near future.

I hope you enjoy this issue and please feel free to contribute an article soon.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Webster Computer Corporation
1270 Ferntree Gully Road
Scoresby, Victoria 3179
AUSTRALIA

ACSnet: john@wcc.oz

Phone: +61 3 764 1100

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 12th of August 1988.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Vol 9 No 3 4 AUUGN

Acknowledgement
This Newsletter was produced with the kind assistance and equipment provided by Webster Computer
Corporation.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 9 No 3

Ross Nealon, 1958-1988

AUUG recently lost one of its founding members, and one of its staunchest supporters in Ross
Nealon, who passed away in the early hours of Sunday, March 27, 1988, after a fifteen-month struggle
with Hodgkinson’s disease. Ross had accomplished much in thirty years, but there was still much that he
wanted to do.

As the University of Wollongong’s first Honours Graduate in Computing Science, through his
participation in the original port of UNIX from the PDP/11 to the Interdata 7/32 computer, and through all
his subsequent activities, he had a legitimate claim to be one of Australia’s pioneers and foremost experts

on the UNIX system. He attended all the early meetings of AUUG and most of the recent ones. He was
always cheerful, always willing to help out and always able to provide sound opinions and good advice.

A tribute to Ross provided by his guide and mentor over many years, Professor Juris Reinfelds of the
University of Wollongong, appears on the next pages.

Ross was a ’good bloke’ in the most genuine sense of the term. He will be missed by his family,
colleagues and many friends.

John Lions
University of New South Wales

Vol 9 No 3 6 AUUGN

A Tribute to Ross Nealon

Ross joined the University of Wollongong as a first year student in 1976, the year that the

University first offered a course sequence for Computing Science majors. As a student with an

avid interest in Computing Science and a naturally gifted programmer, Ross participated in the

course development more than he realized at the time. His actions and responses to each new

subject were of great value in the development of the subject and in the integration of the

subjects into a coherent course with a unique flavour that was entirely our own.

Ross completed our BSc. programme in 1978 and took out First Class Honours in 1979.

Every Computing Science major at Wollongong University in his or her final year has to

participate in a major programming project that draws on, and ties together, the knowledge

acquired in the previous two and a half years. For his third year project Ross designed and

implemented a universal cross-assembler for all then available microcomputers. The concept

and code were very good, so we placed the the cross assembler on the Usenix distribution tape.

It was so good in fact that a couple of years later, GenRad Inc., a well-known maker of circuit

board testing devices, called me up from the USA and volunteered a payment for the use of

Ross’s software in their products. This generous action by a far away company gave Ross

enough funds for his first microcomputer and it restored my faith in industry-university

relations.

An old proverb says: ’Tell me what your friends are, and I will tell you what you are’.

This can be paraphrased for system programmers: ’Tell me what code you read, and I will tell

you what sort of systems expert you are’. Ross enjoyed reading others’ programs as much as he

enjoyed writing his own. He was only a first year student when, in December, 1976, Richard

Miller and I decided to port UNIX to the Interdata 7/32. For this port -- which became the first

successful port of UNIX world-wide -- Richard read all the available UNIX source code as

well as the Interdata system code, and started writing. I did my best to sustain our enthusiasm

and confidence against the collected wisdom and scepticism of all our colleagues. Ross, not

having been taught what is impossible, offered to help and was made responsible for the UNIX

editor, ed, which he successfully ported to the Interdata 7/32 computer by January 10, 1977, a

most impressive feat for a first year student! Ross completed many other support tasks for the

first UNIX port, and we were not at all surprised that after graduation Ross joined our

department as a Professional Officer to continue with the development and evolution of the

UNIX system and other projects.

AUUGN 7 Vol 9 No 3

A Tribute to Ross Nealon

In 1979, I initiated a series of yearly computing summer schools for the best year 11

students in NSW and interstate. In 1981, Ross took over the editing of the proceedings and,

from assorted lecture notes every year for three years, produced a book of lasting value to the

participants. As a perfectionist with an excellent sense of beauty and a splendid sense of

humour, Ross put a lot work and energy into improvements of the nroffand troffsuite of

formatting tools of UNIX. In 1985, when the Australian Computer Journal was experiencing

difficulty in obtaining suitable typesetting services, the editor, John Lions, converted a number

of articles that were already available in machine readable form to troffformat, and arranged

with Ross to typeset them on the Wollongong University Computer Centre’s phototypesetter.

There were more than a few software hurdles to cross before all worked successfully because

Ross was working with the early version of troff (i.e. pre-ditroff) which he had converted to

work with the Compugraphic typesetter. Since November, 1985, many of the articles that have

appeared in the ACJ were typeset by Ross. The high spot was the August, 1986 issue that was

entirely set at the University of Wollongong with his assistance.

In 1980, the Department of Computing Science decided to develop a platform for studies

in distributed systems. The basis for this platform was to be a commercially available

Cambridge Ring with all the software and some interfaces developed by the department.

Without earmarked resources for such developments, the project was the the mercy of graduate

student interest and academic staff enthusiasm. These waxed and waned without much progress

for a number years until one day at an especially low point of the project, Ross volunteered to

take it on in addition to all his other duties. He finished it in a remarkably short period of time,

and it turned out to be his last major completed project. Ross’s Cambridge Ring software will

connect Computing Science terminals to computers without extra wiring or expensive crossbar

switches for several years to come.

Ross’s devotion to duty and his professionalism were total; his honesty and integrity were

impeccable. Whether he was making sure that all lecture materials, office tools and accessories

were available at lectures or seminars in locations away from Wollongong or whether he was

arranging the system or developing the software for a new course or project for our students or

staff, one could always count on everything being in place and working when needed. Ross’s

UNIX expertise was in demand in Australia and overseas. He conducted several lecture courses

and workshops in Sydney, Singapore and the Philippines.

Ross helped to shape Computing Science in Wollongong from its beginnings. His style,
his dedication, his professionalism and his personality have all contributed to the development

and future direction of our department, and through this he will always be with us and with

future generations of Wollongong Computing Science graduates.

Juris Reinfelds

University of Wollongong

Vol 9 No 3 8 AUUGN

AUUG 88 Winter Conference and Exhibition

The 1988 Winter Conference and Exhibition of the Australian UNIX’f systems User Group will be
held on Tuesday 13th - Thursday 15th September 1988 at the Southern Cross Hotel in Melbourne,
Australia. AUUG has concentrated its efforts in 1988 into this major event
¯ the largest conference and exhibition ever held by AUUG
¯ the first to offer so many renowned overseas speakers

the first to be held in a first class venue
¯ the first to offer a three day, wide ranging programme
We expect this to be the most significant public event featuring the UNIX system in Australia in 1988.
It will be accompanied by the biggest exhibition of computers running the UNIX system ever seen at an
AUUG conference.
The conference theme is

Networking - Linking the UNIX World.

We are delighted to have Michael Lesk delivering the keynote address. Whilst at Bell Laboratories,
Michael invented uucp, the original and still the most widespread UNIX networking software. Michael
will also give. a presentation on human interface and natural language issues.
John Mashey started working with the UNIX system in 1973 at AT&T and has continued to do so with
Convergent Technologies and MIPS Computer Systems. His expertise in software engineering and
RISC architectures as well as his highly regarded talent for public speaking should make for an informa-
tive and entertaining time. John will speak on hardware/software tradeoffs with RISC architectures and
on software engineering issues.
Major work has been done at the Computer Systems Research Group, University of California at Berke-
ley, on the UNIX system and particularly its networking features. Mike Karels is one of the leaders of
that group and as a noted expert on networking will be a welcome speaker at the conference. He will be
speaking on current and future developments of the BSD UNIX system and on its support of OSI/ISO
networking.
AUUG is honoured that Ken Thompson will be attending and speaking at the conference. Ken was one
of the principal designers of the UNIX system at Bell Laboratories.
In addition to talks by the the invited speakers, there will be presentations of refereed papers. These are
on various aspects of the UNIX system, with some but not all relating to the Networking theme. A
Conference Proceedings will be published as a special issue of the group’s newsletter AUUGN. This
will be available at the conference and is included in the registration fee.
A traditional highlight of AUUG conferences is the Conference Dinner. This year it will be held at the
Southern Cross on the evening of the second day, Wednesday 14/9/88. A new feature this year will be
a Cocktail Party on the evening of the first day, Tuesday 13/9/88.

UNIX is a tradgmark of Bell Laboratories.

AUUGN 9 Vol 9 No 3

AUUG 88 Key Speaker Biographies

Ken Thompson
AT&T Bell Laboratories

Ken Thompson was born in New Orleans, Louisiana in 1943. He attended the University of California
at Berkeley and received B.S. and M.S. degrees in Electrical Engineering.
In 1966 he joined Bell Laboratories where he has worked until the present. In 1975, he returned to
Berkeley to teach Computer Science for a year.
Ken Thompson and Dennis M. Ritchie, the principal designers of the UNIX system have received recog-
nition many times. In 1983 they were presented with the most prestigous award in computing, the ACM
A. M. Turing Award.

Ken is also one of the principal designers of Belle, the former World Computer Chess Champion and
five times winner of the North American Computer Chess Championship.

Michael E. Lesk
Bell Communications Research
With a prescient market instinct, Michael made text formatting accessible to the masses with the generic
macros -ms, which were to troff what a compiler is to assembly language. He rounded out -ms with
the preprocessors tbl for typesetting tables and refer for bibliographies. He also made the lex generator
for lexical analysers. Eager to distribute his software quickly and painlessly, Michael invented uucp,
thereby begetting a whole global network. Uucp gave operational meaning to the phrase "Unix com-
munity". News now travels electronically among users all over the world; and technical collaborations
proceed between distant locations almost as easily as within one building. Over the years, often helped
by Ruby Jane Elliot, he initiated fascinating on-line audio, textual, and graphical access to phone books,
news wire apnews, and weather. With Brian Kemighan, he was responsible for the UNIX computer-
assisted software learn.

Mike Karels
University of California at Berkeley

Mike Karels is one of the leaders of the Computer Systems Research Group at the University of Califor-
nia, Berkeley. This group is the current focal point of the world’s UNIX research initiative, and has
been since AT&T stopped distributing the work done by Bell Laboratories, where UNIX was originally
created in the early 1970’s.

During the 80’s, Berkeley has created, and collected from other sources, the most advanced UNIX sys-
tem currently available, overcoming many of the limitations and restrictions of the original Bell Labora-
tories releases. So successful has this been, that AT&T have now adopted, or are in the process of
adopting, most of Berkeley’s enhancements, either unaltered, or with some cosmetic variations, as is to
be expected when a research effort is transformed into a commercial product. The Berkeley enhance-
ments are already supported by most of the various UNIX vendors, and have been for some years, the
offering of a UNIX product without "Berkeley enhancements" is almost unheard of today.
As one of the leaders of the Berkeley group in recent years, Mike has been one of the principal archi-
tects of future UNIX commercial systems. His decisions will have a lasting effect on the future of com-
puting.

The theme of the AUUG Winter Conference and Exhibition is "Networking", and in this area Mike is a
particular expert. He and Van Jacobsen, from the Lawrence Berkeley Laboratory, have recently released
into the public domain a much enhanced implementation of the TCP/IP networking protocols for UNIX.
Earlier versions of this code now form the basis of many vendor’s TCP networking products.

Vol 9 No 3 10 AUUGN

We are sure that Mike will be able to inform us on the current status of networking in UNIX, an area
where Berkeley are the clear leaders, and of future plans in this important area. Mike will also indicate
the current, and expected future, status of the UNIX research work at Berkeley, from which we should
be able to draw some informed conclusions as to the likely appearance of commercial UNIX releases in

the next decade.

John R. Mashey
Vice President, Systems Technology
MIPS Computer Systems
Dr. Mashey joined Bell Laboratories in 1973, joining the Programmer’s Workbench department the same
week it received its first PDP 11/45. He worked on various UNIX-related projects, including
PWB/UNIX, the merger of UNIX versions that resulted in UNIX/TS 1.0, and UNIX-based applications
for use in the Bell System. In 1983, he moved to Convergent Technologies, ending as Director of
Software Engineering for the Data Systems Division. In 1985, he joined MIPS Computer Systems,
where he helped design the MIPS R2000 RISC microprocessor, and managed operating systems, net-
working, and software QA. He was an ACM National Lecturer for 4 years, and has given about 200
public talks on software engineering, UNIX, and RISC architectures.

Vol 9 No 3
AUUGN 11

AUUG 88 Programme

Day 1- Tuesday 13/9/88

0900-1000
1000-1100

1100-1130
1130-1300
1300-1430
1430-1500
1500-1530

Registration
Keynote: Michael Lesk
Unix Networks: Why Bottom-Up Design Beats Top-Down
Coffee & Exhibition Viewing
Windowing Systems
Lunch
Future Telecommunication Developments
Wide Area Networks 1

1530-1600 Coffee & Exhibition Viewing
1600-1700 ISO/OSI under UNIX

1730-1900COCKTAIL RECEPTION

Day 2- Wednesday 14/9/88

0830-0900Registration
0900-1000 Futures for UNIX Software:

1000-1100
1100-1130
1130-1230
1230-1400
1400-1430
1430-1500
1500-1530
1530-1600
1600-1700
1700-1730

Larry Crume, AT&T UNIX Pacific
The Open Software Debate
Coffee & Exhibition Viewing
Future Berkeley UNIX Developments: Mike Karels
Lunch
Distributed File Systems
Legal and Social Issues
Security Issues
Coffee & Exhibition Viewing
Human Interface Issues: Michael Lesk
AUUG General Meeting

1900-2300 CONFERENCE DINNER

Day 3- Thursday 15/9/88

0830-0900
0900-0930
0930-1030
1030-1100
1100-1200
1200-1230
1230-1400

Registration
AULIG ACSnet SIG Meeting
Wide Area Networks 2
Coffee & Exhibition Viewing
RISC and the Motion of Complexity: John Mashey
Local Area Networks
Lunch

1400-1430 Programming Language Issues
1430-1500 A New C Compiler: Ken Thompson
1500-1600 Operating System Issues
1600 Close

Vol 9 No 3 12 AUUGN

AUUG 88 Registration

Registration forms will be mailed to all AUUG members or may be obtained by contacting the AUUG
88 Secretariat (see below). Accommodation at the Southern Cross or the Victoria Hotel and extra tick-
ets for the Conference Dinner should also be booked on that form if required.

Registration Fees

3 Day Registration
members
non-members

Includes coffees, lunches, Proceedings, Cocklails, Conference Dinner

Full-time Student 3 Day Registration
Includes coffees and Proceedings

Single Day Rate
Includes coffees and lunch on the day and Proceedings

Late Fee
Added to the above for payment after 26/8/88

$200
250

80

100

50

AUUGN 13 Vol 9 No 3

AUUG 88 Contact Details

AUUG88 Secretariat
c/o ACMS
26 Hopewell St
Paddington
NSW 2021
Australia

Registration, Accommodation and Exhibition

Phone: International
National

Fax: International
National

Telex: AA176765
Viatel Mailbox No:
Minverva/Dialcom:

+61 2 3324622
02 3324622

+61 2 3324066
02 3324066

233246220
07:WDF001

Timothy Roper
AUUG 88
c/o Labtam Limited
43 Malcolm Road
Braeside
Victoria 3195
Australia

Programme Committee

Phone:

Fax:

Telex:
ACSnet:
UUCP:
ARPA:

International
National
International
National
LABTAM AA33550
timr@labtam.oz
uunet!munnari!labtam.oz!timr
timr%labtam.oz@uunet.uu.net

+61 3 5871444
03 5871444

+61 3 5805581
03 5805581

Vol 9 No 3 14 AUUGN

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change Of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, ~ contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: { decvax,pesnta,vax 135 } !mulga! aegir.dmt.oz! dhj
ARPA: dhj %aegir.dmt.oz! dhj@ seismo.arpa
CSNET: dhj@aegir.dmt.oz

AUUGN 15 Vol 9 No 3

WAUG
Western Australian UNIX systems Group

PO Box 877, WEST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed in late 1984, but
floundered until after the 1986 AUUG meeting in Perth. Spurred on by the AUUG
publicity and greater commercial interest and acceptability of UNIX systems, the group
reformed and has grown to over 70 members, including 16 corporate members.

A major activity of the group are monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

Meetings are held on the third Wednesday of each month, at 6pm. The (nominal) venue is
"University House" at the University of Western Australia, although this often varies to
take advantage of corporate sponsorship and facilities provided by the speakers.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the. latest news
and information available.

For further information contact the Secretary, Skipton Ryper on (09) 222 1438, or
Glenn Huxtable (glenn@wacsvax.uwa.oz) on (09) 380 2878.

Glenn Huxtable,
Membership Secretary, WAUG

Vol 9 No 3 16 AUUGN

Book Review

Tim Roper

The AWK Programming Language

Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger
Addison-Wesley

Anyone maintaining a library of significant books relating to UNIX~- operating systems will buy this one.
The status of awk as part of the UNIX toolkit and the standing of the authors ensures that. Their techni-
cal authority can hardly be questioned and previous works of (at least two of) the authors are well
known.

Otherwise, this book can be purchased confidently by
1. new awk users who want a gentle introduction
2. managers assessing the language for suitability to their cause
3. existing awk users who want a complete reference manual or a refresher course

This structure of this book as explained in the Preface (that should be read) accommodates each
group. The first chapter is a tutorial introduction with many small examples that the new user will want
to read alongside their terminal. The second chapter is a complete language description, without quite
being a reference manual, as it uses examples and some repetition. The rest of the book consists of
examples grouped into subject areas, one per chapter. Suitable approaches for the three readerships are
1. read the first chapter with terminal at the ready, read one or two example chapters to gain breadth,

study the second chapter for depth, and complete the remaining example chapters in time.
2. read the first chapter and whichever example chapters are of interest
3. read the second chapter, explore the example chapters for new ideas, and then refer to the sum-

mary appendix and second chapter as required.
There is a problem when using the book as a reference manual. It incorporates "new awk" (as

distributed in System V Release 3.1) and hence some features may be missing from other implementa-
tions. This fact is noted in the Preface but the likely differences are not noted in the text. Differences
could have been noted in the summary appendix if not in the second chapter.

My copy cost $31-95 at McGill’s Newsagency, Melbourne.

UNIX is a trademark of Bell Laboratories.

AUUGN 17 Vol 9 No 3

Book Review

Tim Roper

Software Configuration Management

Wayne A. Babich
Addison-Wesley

I liked this book. It was immediately relevant to what I was doing at the time and the writer’s style and
the book’s length of 162 pages makes it easy to read.

Babich builds on a theme of F. P. Brooks’ The Mythical Man-Month, namely the worse-than-linear rela-
tionship between productivity and number of programmers which Brooks attributes to problems of com-
munication between staff members. Babich defines his rifle:

The art of coordinating software development to minimize this particular type of confu-
sion is called software configuration management.

He develops his arguments through a series of presumably fictitious but realistic and often amusing
anecdotes. Sketches of headless chooks loose in a computer room add to the atmosphere. Some of the
problem scenarios and their multiple choice answers have a humour that you may fred dry, sarcastic or
trite. (Many will find them all too familiar.)
One aspect of the book that I found useful was that it offered an extensive set of terms for naming many
elements and problems of software management. Unfortunately it does not include a glossary.

One chapter discusses configuration management under the UNIXt operating system and its tools such as
make, SCCS and RCS. Although Babich compares SCCS with RCS he emphasises them as primitives
providing a possible basis for implementing higher level procedures. He outlines but does not detail
how this might be done. The next chapter discusses the Ada Language System of which Babich was an
designer. He claims some bias in this respect I don’t think that any is significant. I was interested to
read about a system that is more ambitious and better integrated than make and SCCS or RCS.

The final chapter Applying the Principles Babich suggest applying his principles of configuration
management throughout the software development process starting with the system design phase. This
seems reasonable. However he appears to gives the configuration manager excessive influence over the
detailed design phase, to the point where minimising configuration management problems may be
stressed to the exclusion of others.
This book is relevant to project leaders managing the development of software products involving
several programmers, several alternative versions of the product or where the software has or will have a
long life cycle. Other programmers may also find it useful, interesting or entertaining. If you are a lone
developer not using a source code control system and surviving or using one and finding it adequate, the
book may just offer promises of things to come. If you don’t use a source code control system and are
in a mess, you should read it. It may explain some of the reasons for your trouble. If you are using
one but find that it does not solve problems due, for example, to double maintenance, shared data or
simultaneous update, you should read it. If you are about to embark on a significant project involving a
team of programmers producing a product with many versions and a long life cycle and think that SCCS
or RCS is all you need, you definitely should read it.

Price was about $A28-00.

UNIX is a trademark of Bell Laboratories.

Vol 9 No 3 18 AUUGN

The Australian National University

G.P.O. Box 4, Canberra A.C.T. 2601, Australia
C. J. Fidge
Department of Computer Science
cjf@ anucsd.oz
(062) 49-4725

10th June 1988

J. Carey,
AUUGN Editor,
Webster Computer Corporation,
1270 Ferntree Gully Road,
Scoresby, Victoria 3179.

Dear Dr. Carey,

Enclosed please find a contribution for the next issue of the Australian Unix systems User
Group Newsletter.

As the only Aussie at the real-time workshop, and considering that your last issue included
the workshop announcement, I felt that a brief description of the meeting would be timely.

Yours sincerely,

Colin Fidge

AUUGN 19 Vol 9 No 3

Report from the Fifth Workshop on
Real-Time Software and Operating Systems

C. J. Fidge
Department of Computer Science
Australian National University

cjf@anucsd.oz

ABSTRACT
This article briefly summarises the issues discussed at the Fifth Workshop on Real-Time Software
and Operating Systems, held in Washington D.C., 12-13 May 1988. The workshop was sponsored
by the IEEE Computer Society and the USENIX Association.

INTRODUCTION

During a recent U.S. trip (to present a paper at the
ACM Workshop on Parallel and Distributed Debug-
ging) I took the opportunity to attend RTSOS’88 in
Washington D.C. My interests are principally cen-
tred around parallel programming environments and
the concept of time in distributed systems, rather
than operating systems per se, and this report re-
flects that bias.

The workshop was held in the luxurious Omni-
Shoreham Hotel and run in a very businesslike man-
ner. Despite the conscious decision to include more
panel sessions than in previous years, the meeting
still felt more like a short conference than a "work-
shop", with an emphasis on formal presentations.

In all 20 extended abstracts were selected to ap-
pear in the proceedings from 76 submissions. The
following is an attempt to briefly summarise the ma-
jor issues discussed.

OPENING ADDRESS

John Stankovic (Univ. of Massachusetts) opened the
workshop with a summary of the problem area.
He characterised the field as one in which program
corectness depends not only on the results of a com-
putation, but also on the speed at which these results
are produced. He identified the following application
areas, in increasing order of difficulty:

o simple experiments,
¯ data acquisition,
¯ process control,

avionics,
¯ expert systems in real-time,
¯ space station,
¯ mobile robots in hazardous environments, and
¯ SDI.

Most of these areas, including the last (!), received
attention during the course of the workshop.

Session I: REAL-TIME SCHEDULING TECH-
NIQUES

The principal problem discussed during this session
was how to schedule a number of tasks given that
each has a priority and/or deadline. Deadlines may
be either hard, i.e. specifying an absolute time limit,
or soft, i.e. an average response time is given for
tasks of this type. For example, assuming that all
deadlines cannot be met, is it better to let one high-
priority task miss a deadline, or several low-priority
tasks? Another major issue was the question of fair-
ness vs. priority scheduling. In the first case all
tasks get roughly equal access to the CPU, mak-
ing progress at their own pace. This is obviously
a very simply scheduling policy. In the latter case
low-priority tasks are starved, in favour of those with
higher priorities.

Hideyuki Tokuda (Carnegie Mellon University)
opened proceedings with an interactive tool for
schedulability analysis called Scheduler 1-2-3. This
includes a graphics interface, with histograms repre-
senting activity in each task, for checking timing con-
straints in the design phase of program development.
Currently the tool only supports a single scheduling
policy; future work will allow for greater flexibility.

Insup Lee (Univ. of Pennsylvania) took a more
theoretical approach. He presented an extension to
the 1985 version of Hoare’s CSP language, with ex-
plicit features for specifying the real-time duration of
events. Formal axioms and proof rules for this model
have been defined:

Sara Biyabani (Univ. of Massachusetts) anal-
ysed the performance of two new scheduling algo-
rithms which differed in the way low-priority tasks
are "bumped" by higher priority tasks. In the first,
the lowest is always selected, and in the second,
any lower priority task is chosen. Both alternatives
were shown to perform better than several popular
algorithms, even under adverse conditions such as

Vol 9 No 3 20 AUUGN

"bursty" task requests. The point was made that in
many applications the "value" of a task vs. elapsed
time is a step-function; after the deadline has been
missed the results are worthless and further compu-
tation is just a waste of CPU time.

Ragunathan Rajkumar (Carnegie Mellon Univ.)
presented, a solution to the "priority inversion prob-
lem" in which high-priority tasks are blocked by low-
priority tasks for an indefinite period of time. This
took the form of a variant of a priority inheritance
protocol where each executing task inherits the high-
est priority of those tasks currently waiting. This
prevents several low-priority tasks from continually
pre-empting each other to the detriment of waiting
high-priority tasks. Priority scheduling was felt to
be better than fairness since, although low-priority
tasks may be starved, important deadlines will be
met. He also noted that "time" should be a consid-
eration throughout the entire software development
lifecycle.

Panel I: MYTHS IN REAL-TIME SYSTEMS -
FAIRNESS CONSIDERED HARMFUL

The deliberatively provocative title of the first panel
session triggered a lively discussion. Using fairness
as the run-time scheduling policy was seen to lead
to a system that maximised CPU usage, but made
it difficult to predict beforehand which tasks would
meet their deadlines. Prof. Stankovic advocated the
reverse approach--sacrificing some speed for the sake
of predictability. Program correctness was thus easier
to guarantee.

Douglass Locke (IBM) emphasised the danger
of fragility in real-time systems undergoing mainte-
nance. Modifying one task may unexpectedly lead
to missed deadlines in other, unchanged tasks, even
when there is no logical connection between them,
due to the effects of scheduling. An unanswered
question raised during a later session related to this:
should context switching be seen as a synchronisa-
tion event?

Lui Sha (Carnegie Mellon Univ.) advocated pri-
ority scheduling and asserted that it had proved its
value in solving "real life" problems in the past, but
admitted that more work was required.

Aioysius Mok (Univ. of Texas) pointed out that
fairness is needed to guarantee progress when the
program is nondeterministic, but conceded that it
cannot be used in general when we must guarantee
a bounded response time.

Finally, Pat Watson (IBM) noted that FIFO
queueing, like fairness, will lead to unpredictable
real-time deadline satisfaction behaviour (presum-

ably since it arbitrarily interleaves events based on
arrival time).

Session I1: LANGUAGES AND O/S

Among the issues considered during this session was
the effect of process "weights" at the applications
program level, i.e. fine vs. large grained parallelism,
on the desirable o/s primitives.

David Jameson (IBM) presented a lively talk on
the ORE language and run-time environment, de-
signed for programming high-speed, real-time sys-
tems. The current application area, "the juggling
robot", caused as much comment as the language
itself. It was pointed out that the robot is a good
testbed for experimentation since it is difficult, real-
time and, most importantly, safe. The language
included lightweight parallelism, efficient synchroni-
sation primitives, and a "restructurable" scheduler.
The latter means that the programmer explicitly de-
fines the scheduling policy. This was done since
it was felt that scheduling is not understood well
enough as yet to be "hard-wired" into the system.
Non-preemptive scheduling is used so that memory
requirements, stack offsets, etc. can be calculated at
compile-time, thus maximising run-time speed. The
language, and robot, are both still under construc-
tion.

Kwei-Jay Lin (Univ. of Illinois) treated time as
an operating system resource that, like any other,
may become "unavailable". Granted that deadlines
may be variable, techniques were presented for gen-
erating imprecise results that made the best use of
available time. Of primary importance was the con-
cept of monotonicity---an algorithm must not oscil-
late around the desired result, but must continu-
ally approach it so that whenever the program runs
out of time, the result produced is the best possi-
ble. Progress towards a goal was’ measured either as
data-oriented (e.g. the number of input items used),
or operation-oriented (e.g. the number of statements
executed). Termination could be classified either as
completion of the algorithm, reaching a fixed point,
stopping on an error, out of time, etc. These two
measures, progress and termination, define the pre-
cision of the resul.t.

Ahmed Gheith (Ohio State Univ.) described an
object oriented operating system for real-time ap-
plications, CHAOS. An industrial robot application
was used to critically analyse CHAOS and suggest
improvements.

Mok formally analysed the "Earliest Deadline"
algorithm for enforcing hard deadline constraints,
and concluded that a "heap of heaps" data struc-

AUUGN 21 Vol 9 No 3

ture for managing control blocks improved on the
traditional single heap implementation.

Session II1: REAL-TIME OPERATING SYSTEMS
This brief session discussed operating system support
for real-time concepts.

John Barr (Motorola) described an operating
system kernel that could support both UNIX* and
a locally produced o/s. Features emphasised were
support for scheduling, interprocess communication,
interrupt handling and fast memory management.

Lou Salkind (New York Univ.) described the
SAGE operating system kernel. The emphasis was
on real-time supervisory control, with robotics appli-
cations, including the experimental "four finger ma-
nipulator".

Panel I1: POSIX

Real-time extensions to the new IEEE UNIX Stan-
dard were also hotly debated. Barr emphasised the
need for simpler kernels, with as few primitives as
possible. Sol Kavy (Hewlett-Packard) similarly as-
serted that the cost of any proposed kernel features
must be among the primary considerations.

However Marc Donner (IBM) attracted the
most attention by daring to ask "why?". Acting as
devil’s advocate he suggested that UNIX is intended
as an environment for development, not execution.
Real-time constructs therefore have no place in the
kernel at all[

Session IV: REAL-TIME SOFTWARE DEVELOP-
MENT

Programming tools for real-time software develop-
ment were the focus of this session.

Watson presented a number of metrics for mea-
suring the "goodness" of architectures for real-time
applications, with an eye towards embedded military
systems. These included predictable response times,
high utilisation of shared resources, dynamic recon-
figurability, and a short software update cycle time
(minimising re-testing after changes).

Venu Banda (Univ. of Michigan) pointed out
the scarcity of debugging tools for real-time pro-
grams and discussed the well-known issues of repro-
ducibility and intrusiveness in nondeterministic par-
allel program debugging. It was noted that the only
way to avoid the "probe effect", i.e. the observer af-
fecting the system under observation, was to use spe-
cialised hardware to satisfy our observability require-
ments.

* UNIX is a registered trademark of AT&T

Sang Son (Univ. of Virginia) emphasised the im-
portance of timely response to data-base requests in
real-time systems and proposed a prototyping tool
for evaluating distributed database control mecha-
nisms.

Hugh Sparks (MTS Systems Corp.) and Bob
Chatham (BBN Advanced Computers) described
graphical programming tool for icon-based program-
ruing of real-time systems. Graphical objects are
linked to produce flowchart-like programs. Success-
ful applications to date include a laser welding robot
and an automated visual inspection system. An im-
plementation for the BBN ButterflyTM processor is
under development.

Session V: REAL-TIME APPLICATIONS

A number of very lively presentations characterised
this session.

Thomas Bihari (Adaptive Machine Technolo-
gies) compared two robotic control programs. The
first was for the "Adaptive Suspension Vehicle".
Funded by DARPA, this is a three ton, six-legged
walking robot for rough terrain. Powered by an in-
ternal combustion engine, it houses 14 Intel 8086 pro-
cessors on-board, pressure sensors in the hydraulic
actuators and a laser range finder. A second robot
project, the "High-Performance Manipulator", es-
sentially a sophisticated robotic arm controlled by an
Inte180386, was also funded by DARPA. After expe-
rience with programming the ASV using a functional
technique, it was decided to use object-oriented pro-
gramming for the HPM. The latter was felt to pro-
vide a superior programming methodology.

Gianfranco Ciccarella (Univ. of L’Aquila) was
the only overseas speaker (and indeed one of only a
handful of overseas attendees), and presented a paper
advocating the value of occam and the Transputer as
a development environment for real-time controller
software due to the close relationship between pro-
gramming language and hardware.

Tom Ralya (IBM) described experiences with
developing microprocessor control software for a
LAN-network, in which the first draft only achieved
7% of the anticipated performance, but a software
rewrite changed this to 430%! This was achieved by
using a totally different approach to scheduling based "
on uninterruptible priority-scheduled "worksteps".

However, the overall prize for the most enter-
taining talk undoubtedly belongs to Tom Richard-
son (Martin Marietta Info. and Comm. Sys.) for
his account of writing control programs for the Au-
tonomous Land Vehicle. Funded by DARPA this
project aims to produce a self-navigation system for

Vol 9 No 3 22 AUUGN

armoured vehicles. The prototype unit has both a
colour camera (supported by a SUN workstation)
and a laser range finder (supported by a WARP sys-
tolic array machine). Overall the unit houses 63 pro-
cessors(!) and runs 150,000 lines of code (300,000
with vendor code). Two types of data were iden-
tified, refresh (in which case only the most recent
copy need be kept), and multiple occurence. The pre-
sentation was enlivened by colour photographs, and
several anecdotes of the project’s early days, such
as when it was necessary to wash the special test
track, and to ensure that no shadows fell on it be-
fore the ALV could be "released" to guarantee that
it could recognise the road! This situation has im-
proved somewhat; the system can now navigate the
course at any time (as long as it is daylight) and can
avoid obstacles placed on the track.

Session VI: REAL-TIME DATABASES

The final brief session considered data base access
with time constraints.

Jane Liu (Univ. of Illinois) formally looked at
the problem of scheduling hard real-time tasks sub-
ject to the constraints of shared data access. A con-
cept of temporal consistency, based on the "age" of
data items, was introduced.

Susan Davidson (Univ. of Pennsylvania) cited
the SDI problem of identifying a light source from
space, as one in which data base accesses were sub-
ject to unpredictable deadlines. In these situations
distributed relational database queries take the form
of iterative computations whose accuracy improves
with time. At one extreme an imprecise response re-
turns a subset of the desired tuples, at the other, a
superset. Techniques for deciding when such a par-
tial answer was useful were discussed.

In addition to the above, two further panel ses-
sions debated the problems associated with "Real-
Time Applications" and "Building Real-Time Ker-
nels".

CONCLUSION

Although a newcomer to this field, I found the papers
presented and the discussion they sparked very inter-
esting. The lack of concensus, and sometimes even
clear-cut opinion, on many fundamental issues sug-
gests that a considerable amount of experience still
needs to be gained. Specific solutions to particular
problems, rather than theory, seemed to dominate
the proceedings. The number of papers with explic-
itly stated military goals also came as a surprise to
your naive correspondent.

The sixth workshop, to be held in Pittsburgh in
1989, will emphasise progress on the Ada* revision
currently underway. One of the aims of the revision
is to improve support for real-time programming in
the language.

APPENDIX: Papers Pr.esented

H. Tokuda and M. Kotera, Scheduler 1-2-3: It’s Better to be
Predictable Than Ad Hoc
I. Lee, R. Gerber and A. Zwarico, Speci]ying Scheduling
Paradigms]or Time Dependent Processes
S. Biyabani, J. Stankovic and K. Ramamritham, The Inte-
gration o] Deadline and Criticalness Requirements in Hard
Real- Time Systems
R. Rajkumar and J. Lehoczky, Task Synchronlsation in Real-
Time Operating Systems
D. Jameson, ORE: Programming in Real-Time Applications
K. Lin and S. Nataxajan, Refinement and Enhancement:
Primitives]or Monotonic Computations
A. Gheith, P. Gopinath, K. Schwan and P. Wiley, CHAOS
and CHAOS-ART- Extensions to an Object-Based Kernel
A. Mok, Task Management Techniques]or En]orcing ED
Scheduling On Periodic Task Set
J. Barr, Co-Resident Operating System: Unix and Real-Time
Distributed Processing

L. Salkind, The SAGE Operating System
P. Watson, An Overview o] Architectural Directions]or Real-
Time Distributed Systems
V. Banda and R. Volz, Debugging Distributed Real- Time Soft-
ware

S. Son, A Message Based Approach to Distributed Database
Prototyping
B. Chatham and S. Sparks, Butterfly Hose: Graphical Pro-
gramming]or Parallel Systems
T. Bihari, Functional vs. Object-Oriented Development o]
1~obot-ControI So~tware (A Comparison o] Two Robot-Control
Programs)
G. Ciccarella, Design and Implementation of a Real-Time
Multivariable Adaptive Controller
T. Ralya, Real-Time Operating System Architecture: Work-
steps and Related Subjects

T. Richardson and J. McSwain, Real-Time Control o] an Au-
tonomous Land Vehicle
J. Liu, K. Lin and X. Song, Scheduling Hard Real-Time Trans-
actions
S. Davidson and A. Wafters, Partial Computation in Real-
Time Database Systems

* Ada is a trademark of the U.S. Department of Defence

AUUGN 23 Vol 9 No 3

PostScript On Screen: Here is the NeWS

by

Steve Holden
Sun Microsystems (UK) Ltd.

[Now: Desktop Connection Ltd.]

Sun Microsystems recently announced a system they call the Network/extensible Window System, or
NeWS for short. There are several windowing systems currently available. The PC world uses Gem
and Windows, and in the UNIX world there are packages called X Windows and Andrew.

So why bring out yet another windowing system? What’s so special about NEWS? How will this help
desktop publishers? To answer these questions we need to look at the way computing in general, and
workstations in particular, are heading.

The Workstation Market

Windowing systems are produced for *workstations*, which in this context we define to be dedicated
desktop computers with significant CPU power, local or networked storage and a high-resolution
display. The high-end PCs challenge the performance of the low end of the workstation market, and
desktop publishing is a growth area here too. Increasingly, workstations are installed with access to a
local area network (LAN), which offers communications in the Mbits/second range.

The workstation market is growing very fast and, if we discount the MS-DOS PC low end, UNIX is the
accepted operating system. Workstation vendors have traditionally provided a proprietary windowing
system for their ranges of equipment, but this has disadvantages: particularly, software vendors have to
maintain several different versions of their product for the various workstations, with consequent
development and maintenance problems.

The logical response to this situation is to produce a standard which can be agreed by all parties. This
was done for file access over a LAN about four years ago, when Sun introduced the Network File
System. The "protocols", specifications of what messages need to be transferred to achieve file access,
were put in the public domain, which allowed anybody to write their own NFS drivers. Sun also license
their proprietary code, to make it easier to get a new NFS running. There are now over 100 NFS
licensees including Dec, HP, Cray and Apollo.

Network Services

Like all good network services, NFS is independent of the hardware and the operating system it runs on.
Buyers can, for example, add PCs to their network and use huge shared databases mounted from their
mainframes. The independence from hardware is achieved by defining "server" processes which run on
the mainframe, and "client" processes on the PCs which apply over the network to read and write files
on the servers’ disks.

Printing can also be thought of as a network service: a client desktop publishing system produces
PostScript which is interpreted by a "print server" such as a LaserWriter~ Once you realise that the
image can be generated on one computer and rendered on another, it seems obvious that PostScript can
be used to send images to computer screens as well as printers.

A desktop workstation running a PostScript server program can display images from many different
sources on the network. NeWS allows this and offers a network service with advantages over
conventional window systems. Neither Windows nor Gem offer direct support for distributed
applications. X does, but it works in terms of bitmaps, and does not adapt well to the need to handle
user input such as mouse movements and key depressions.

Vol 9 No 3 24 AUUGN

PostScript on a Network

NeWS gives the advantages of PostScript on a network. Rather than bulky bitmaps, fragments of
PostScript are transmitted; these are usually much smaller than the bitmaps, and so are transmitted more
quickly. Also PostScript can use tricks such as sending fragments with programmed loops rather than
repeating instructions for each of a number of similar objects to be drawn.

The client program, generating PostScript image descriptions, does not need to be coded for the
resolution of a specific device. The display hardware is of concern only to the server program which
renders the images, and this can reasonably be assumed to handle its local display hardware correctly.

NeWS extends PostScript to make it a suitable language for responding to a mouse and keyboard. In
the X way of doing things, when you click a mouse button on the server a message has to be sent across
the network to the client program, which then needs to compute a response and ship bitmapped images
back as a result. Even on a fast LAN this all lakes time. Under NeWS the client, as a part of its
initialisation, sends PostScript to the server which gets executed *on the server* when a button click
occurs. The screen image can be modified locally without the need for network communications.

The server process which drives the screen can be one of many processes running on a desktop
workstation, or the sole process under MSDOS or other such single-user system. The former approach
gives triae distributed computing, while the latter allows the PC to enter the networking world in fine
style.

NeWS has several interesting wrinkles. Not only does it accommodate different screen resolutions, it
can render colour images in colour on a colour screen, in dithered monochrome on a black-and-white
screen, and in appropriate grey levels on a greyscale screen. A single application can thus drive all
these types of hardware without modification. An arbilrary image (including scanned images) can be
scaled and rotated through any angle.

Conclusion

NeWS has introduced new concepts in windowing systems. It has been demonstrated on Atari ST and
Intel 80386-based hardware as well as Sun workstations, and the applicability of the ideas is now
proved. The initial release offers X Windows emulation by PostScript code, although this will be
moved into the server itself in later releases.

By using NeWS you do not confine yourself to using a single interface style imposed by a hardware or
software vendor. The Macintosh and Windows environments can also be emulated, so programs can be
run under the appropriate regime, and can even offer the user a choice of styles. The window manager
is written in PostScript.

Best of all, anything that is displayed can be printed on a PostScript printer. No longer need
applications struggle to produce hard copy. PostScript is set to become a standard in a previously
unconsidered area.

AUUGN 25 Vol 9 No 3

Evolution of the SunOS Programming Environment

Robert A. Gingell

Sun Microsystems, Inc.
2550 Garcia Ave.

Mountain View, CA 94043 USA

ABSTRACT

Recent changes to Sun’s implementation of the U-NIX~" operating system
(SunOS~:) have provided new functionality, primarily file mapping and shared
libraries. These capabilities, and the mechanisms used to build them, have made.
significant changes to the programming environment the system offers. Assimilating
these new facilities presents many opportunities and challenges to the application pro-
grammer, and these are explored in this paper.

The new mechanisms also provide the application programmer with a flexibility
comparable to that previously reserved for the operating system developer. Much of
this flexibility is based on mechanisms for dynamic linking that support interposition.
The future developments and ramifications of these mechanisms, as well as other areas
for similar system refinements, are also explored.

1. Introduction
Several new capabilities have been added to Sun’s’implementation of the UNIX operating system

(SunOS), most notably file-mapping and shared libraries. These capabilities not only introduce impor-
tant new facilities, they also present new issues with which a programmer must be concerned, while at
the same time enabling new performance and functional opportunities, and sometimes even making new
classes of applications possible.

The manner in which these new capabilities have been incorporated into the system is also of
interest. They are often applications of some more primitive and general underlying facility. These
facilities are not necessarily new in the sense of being "original", all that is new is their implementa-
tion in SunOS. Their utility lies in being general, fundamental abstractions. They are interesting to the
system architect because they provide a basis for a compact and efficient system implementation. How-
ever, they may be of more interest to an application developer, because the "system" functions they
provide are but one of many possible applications for them - application areas now open to more than
just "system programmers".

An examination of these facilities involves not only a description of how to use and work with
them, but must also include the architectural and implementation decisions made in deciding how the
system provides a given capability. For us, these decisions are driven-by a desire to find the fundamen-
tal abstractions common to a group of related problems, and then address those problems uniformly
from those fundamentals.

We do not claim there is anything particularly remarkable about these activities. Some would
properly claim that they simply represent a restatement of precepts of long-standing programming dis-
ciplines or the " ’ "UNIX-phdosophy. Where we believe we may be particularly successful is in our

UNIX is a trademark of AT&T.

SunOS is a trademark of Sun Microsystems, Inc.

Vol 9 No 3 26 AUUGN

consistency in following the abstraction process and in a willingness to reimplement extant parts of a
system to maintain architectural integrity. This approach leads to a particularly powerful system archi-
tecture, one that more easily lends itself to future evolution than if we had provided a specific capability
as a closed system addition. It also transcends arbitrary software boundaries Such as "the kernel",
instead representing a systemic philosophy of providing abstractions through basic mechanisms that are
applied to create (or perhaps recreate) a specific system capability. Further, this approach helps retain
the "essential character" of the UNIX system, allowing us to extend it and at the same time provide a
powerful and efficient implementation of standard interfaces and thus gain from the large and growing
body of UNIX software.

The sections that follow will briefly describe the new facilities present in SunOS. For the most
part, these are more completely described elsewhere, and the discussion provided here is simply for
background. Also examined will be the application of these facilities to recreate portions of the system
based on new fundamentals, and the issues and potential difficulties the new facilities can present to
application developers. Then our experiences in applying these facilities will be described, as well as a
perspective on how they will evolve and the opportunities they present for application development. In
addition, future opportunities for the evolution of the system will be explored.

2. New Virtual Memory System
The demands to support different forms of shared memory, mapped file access, shared libraries,

and practical demands of increased system portability have led us to the development of a new Virtual
Memory (V1V0 system for SunOS. The new system unifies all the system’s operations on memory
(including the "memory" in files) around the single notion of file mapping. The following summary
covers the system’s general concepts and how they were used to reimplement existing operations on
memory. A more complete examination of the systems architecture and operations can be found in
[GING 87a] and a detailed treatment of its implementation structure found in [MORA 88]. Conceptually,
the system owes much to MULTICS [ORGA 72] and TENEX [MURP 72].

2.1. General Concepts
The new VM system provides a page-based facility in which the fundamental concept is file-

mapping. The system’s virtual memory consists of all its available physical memory resources, includ-
ing local and remote file systems, pools of unnamed memory (swap space), and other random access
memory devices. Named objects in the virtual memory are referenced through the UNIX file system.
Previous SunOS work on file system interfaces permits many different implementations of file objects
that are manipulated through an abstraction of the original UNIX inode, called a vnode [KLEI 86]. The
object manager for a vnode is called a Virtual File System (VFS), and is itself an abstraction of the ser-
vices required to implement a file system.

A process’s address space is defined by mappings onto objects in the virtual memory. The map-
pings are constrained to be sized and aligned according to the page boundaries of the system on which
the process is executing. Each page in an address space is independently mappable (or not), and thus
the programmer may treat the address space as a simple vector of pages. A given process page may
map to only one object, although a given object address may be the target of many process mappings.
An important characteristic of a mapping is that the object to which the mapping is made need not be
affected by the mere existence of the mapping. The implications of this are that it cannot, in general,
be expected that an object has an "awareness" of having been mapped.1 Establishing a mapping to an
object simply provides the potential for a process to access or change the object’s contents.

The establishment of mappings provides an access method that renders an object directly address-
able within an address space. Unlike the access methods provided by read and write that require an
application to operate only on a copy of object data (i.e., a program buffer), this method eliminates the
inefficiency of copying while permitting the object to retain its identity during the access operation.

[1] It is not prohibited for an object to be aware of being mapped, it is simply not guaranteed that all objects can have such
awareness.

AUUGN 27 Vol 9 No 3

The ability to directly access an object and have it retain its identity over the course of the access is
unique to this access method, and promotes sharing of common code and data.

The VM system consists of programming that operates as a cache manager for data in the virtual
memory. The physical resources for the cache are the processor’s primary memory. References to VM
objects result in either an access to a "cache entry" or the fetching of data into the cache, possibly
requiring removal of other data. The latter two functions are simply "page-in" and "page-out".

An important characteristic of the system is the balance between the responsibilities of the VM
system as cache manager, and those of the VFS that obtains data for filling a cache entry and to which
data is passed when flushing an entry. This balance permits different handling of requests based on the
object manager, where the differences may reflect either semantic changes or performance enhance-
ments, or both. For example, predictive operations such as the old function of "read-ahead" are sup-
ported by object managers that "page-ahead" in response to sequential accesses.

2.2. Application in System Primitives

The most basic operation is that establishing a mapping between a process address and an object
in the virtual memory. This operation is available through the mmap system call, fully specified in the
system’s architectural description and first described in [JOY 83]. It should be noted that the only
memory that a process can address is that to which a mapping has been established.

mmap provides for two primary "types" of mappings: one, called MAP SHARED, creates a
mapping that lets store operations change the mapped object (i.e., the result of t~e "write" is shared
with all users of the object). The second type of mapping, MAP PRIVATE, creates a mapping that
makes the changes made by store operations private to the ad&-ess space containing the mapping.
MAP_PRIVATE is often referred to as copy-on-write, reflecting a common implementation technique of
intercepting the first store to a page, copying the page, and redirecting the original store and successive
references to the copy.

The mapping abstraction for accessing memory has been used in a reimplementation of several
UNIX kernel operations. These include exec, fork, and brk. Perhaps surprisingly, these also include
read and write. The reimplemented operations still exist as system calls to retain a compatible interface
for old applications. However, from a memory management perspective there is little motivation to
implement them this way. The common uses of the read, write, and brk system calls in particular can
easily be implemented in application code using mmap. And all of the functions of exec save the
implied "overlay-and-jump" function could similarly be implemented outside of the kernel, a fact used
in the development of shared libraries.

2.2.1. exec
exec overlays a process’s address space with a new program to be executed by performing an

internal version of mmap to the file containing the program.2 The process’s stack and uninitialized data
areas are mapped to unnamed, zero-initialized storage. The mappings exec establishes are all the
MAP_PRIVATE type.

The use of MAP_PRIVATE mappings simplifies the system call ptrace. Formerly, ptrace would
refuse to deposit breakpoints or otherwise write on the text of a program executing in more than one
process. With the changes to exec, this restriction has been removed: ptrace does its work by setting a
text page writable, depositing its breakpoint, and restoring the write-protection. Because the page where
the breakpoint is deposited is mapped MAP_PRIVATE, when ptrace stores into it, the store will really
access a copy.

[2] The code and data in this file must be in the (default) "demand-page" format. Executables in other formats are handed by
copying them to a paged format in mapped unnamed storage.

Vol 9 No 3 28 AUUGN

2.2.2. fork
Perhaps the most interesting application of the new facilities is in fork. In the new system, fork

has been redefined. Formerly it would copy the address space of the parent to build the child. It now
merely copies the mappings describing the address space. If a mapping was MAP_PRIVATE in the
parent, it is MAP_PRIVATE in the child, and neither sees changes made by the other. Copies of
address space data are made only if necessary, and then only a page at a time. Since most forks are
followed immediately by an exec, this avoids wasting substantial effort in making copies that are never
used.

If a parent mapping is MAP_SHARED, then the corresponding mapping in the child will also be
MAP_SHARED. This provides the capability for parent and child to share memory after a fork, some-
thing that was not previously possible in Berkeley-based UN/X systems [JOY 83].

The new fork illustrates that it is possible to reimplement and even redefine standard operations
while both maintaining compatibility and improving system functionality and performance. Although
the definition of fork has changed to take advantage of a more general underlying memory management
mechanism, its function to programs not using the new features of the system is completely compatible.
And those programs that take advantage of functions not previously available (e.g., MAP_SHARED
mappings of files) have a more powerful facility with which to work.

2.2.3. read and write
When mappable objects are accessed through the read or write system calls, the kernel performs

the internal equivalent of an mmap to the kernel’s address space to gain access to the file. This is fol-
lowed by the appropriate copyin or copyout operation to drain or fill the caller’s buffer. The changes to
read and write unify the system’s I/O functions on memory objects around the notions of mapping.
Mapping access to files has not been some extra wart added on top of the system. Instead, the fight
abstraction has been identified and then used to ensure that comparable system functions could be
expressed in terms of it - thereby simplifying the system and its implementation.

2.2.4. "Segments"
The new system provides a programmer with an address space that can be viewed as a simple

vector of pages. The old notions of "text", "data", and "stack" segments no longer have any real
meaning to the implementation of the system. The system as a whole retains the notions, but they are
conventions imposed by the language tools, rather than a fundamental system-imposed constraint. For
compatibility purposes, exec still establishes a range of memory to use as a heap, another for a stack,
and brk adds or retnoves mappings to manage a "data segment". However, there is nothing to stop a
program from having multiple non-contiguous heaps, or multiple text and data segments. The latter
actually occurs when running programs constructed with shared libraries.

3. Dynamic Linking and Shared Libraries
The text of a program consists of some body of code that implements the function for which the

program was written and also of code copied from libraries. Although UNIX has long supported sharing
code among processes running the same program, the fact that nearly every program makes use of rou-
tines such as prin(f means that at any given time there are as many copies of these routines competing
for system resources as there are different programs. As the body of UNIX programs grows, so does the
percentage of system resources devoted to these copies. The notion of "shared libraries" attempts to
extend the benefits of code sharing to processes executing different programs, by sharing the libraries
common to them.

The following sections summarize Sun’s approach to providing a shared library facility; a more
complete treatment can be found in [GING 87b].

AUUGN 29 Vol 9 No 3

3.1. General Concepts
Shared libraries in SunOS are provided through the application of other mechanisms. These are:
¯ a revised system link editor (ld) that supports dynamic loading and binding;
¯ use of the file mapping facilities to introduce an object (i.e., a file containing a shared

library) to an address space; and

compiler changes to generate position-independent code (PIC).
It should be noted that the only one of these mechanisms provided by the UNIX kernel is file-

mapping. This is simply the mmap function. There is no kemel support specific to the support of
shared libraries.

3.1.1. ld
Many of the functions relating to shared libraries are embedded in the link-editor, ld. Conceptu-

ally, ld has been transformed from a just a batch utility that combines object files to a more persistent
facility, available to perform link-editing functions at various times over the life of program. Previ-
ously ld built all programs statically - executable (a.out) files contained complete programs, with all
code and data bound and relocated in a single batch operation. The new /d will build "incomplete"
a.out files, deferring the incorporation (and binding) of certain object files until some later time (gen-
erally program execution). Still other bindings (procedure calls) are deferred until the object is first
referenced.

The object files on which /d defers link editing are added to the address space at execution time
using the system file mapping facilities to address and thus share these objects directly. These "shared
object" (.so) files are simply executable files (demand page format) lacking an entry point.

Dynamic link editing is still the same operation as static link editing, all that has changed is the
time at which it occurs. But, what a linker such as /d does is edit: it changes a program reference to
resolve it to something a processor can execute directly. To change something involves writing on it,
and to write on it means that it can no longer be shared. What has really been built with these facilities
is not so much "shared libraries", but "dynamic libraries;’. "Shared" becomes a property of code that
can be added to a program directly without any change, rather than a functional characteristic.

3.1.2. PIC

To make code more sharable, the C compiler was enhanced with an option to generate position-
independent code (PIC). PIC does not require relocation to be incorporated into an address space, and
is thus inherently sharable. This is accomplished by generating references to static storage as indirec-
tions through a linkage table. When ld link edits a PIC module, it builds this linkage table, initializing
it with pointers that will eventually themselves be relocated.3 The PIC references to the linkage table
itself are relocated by ld, leaving pure ready-to-execute code behind.

Generally, .so files are built as PIC. At execution time all that need be relocated from these exe-
cutables are their linkage tables. These are usually small relative to the entire object file. However, the
use of PIC to avoid dynamic link editing operations is simply a performance optimization, not a func-
tional one. While it will be shown that this optimization is important for effective system operation,
not constraining the mechanisms to enforce sharing provides an important flexibility advantage.

3.2. Use of Shared Libraries
In addition to supporting static and dynamic linking, ld’s conventions regarding the interpretation

of its -1 option were augmented. -l is the shorthand reference for a library name, implying both a
search path and a name format. For instance, a command line such as

[3] /d readly builds two "linkage tables", one for data references and the other for procedure calls. The procedure call table is
(usually) loaded with code and more properly thought of as a "jump table".

Vol 9 No 3 30 AUUGN

formerly meant search for library x in a file named libx.a, located in one of several directories, specified
explicitly or implicitly. The new ld performs this function as well, but expands on it to allow the
library to have a different name, specifically libx.so. If Id is enabled to perform dynamic linking (now
the default), it will search for either the .a or .so, preferring the .so form if both are present. A
"shared library" is thus simply a .so file containing the objects comprising the library, named accord-
ing to the format of library file names, and placed in one of the standard directories.

Since these mechanisms axe applied after a program has been compiled or assembled, it follows
that building a program with shared libraries involves no change to either the program nor the manner
in which it is built. All that is required is to install a form of the library suitable for dynamic linking.
In our system, for instance, there axe both libc.a and libc.so. The .so form is almost universally used.

3.3. Version Control
To handle the independent evolution of shared libraries and the programs that use them, a version

control scheme has been established. The .so files used as shared libraries really have a more complex
name, involving a suffix that describes the version of the library contained in the file. Interface version
"2" of the C library, in its third compatible revision would be placed in a .so having the name
libc.so.2.3. The suffix may be an arbitrary string of numbers in Dewey-decimal format, although only
the first two components are significant to the operation of the link editors at present.

The first component of the string (often called the "major version number") describes the
library’s interface, and the second component ("minor version number") documents implementation
revisions to that interface. When an application is linked by ld, the interface numbers of each of the
library .so files /d processed axe recorded in the dynamic linking information retained in the resulting
executable. At execution time, this information is used by the dynamic link editor to determine the
"best" library to use in an environment that may contain multiple versions of a given library. The
rules followed axe:

Interfaces identical: the interface used at execution time must exactly match the version
found at/d-time. If an exact match cannot be found, the dynamic load will fail.
Most recent revision: in the presence of multiple revisions of a given interface, the one
with the highest revision number will be used. A warning is issued if a revision appears to
have been deleted since the application was built, although execution will continue.

4. Issues
As with most changes in technology, the developments in SunOS bring both benefits and chal-

lenges. The benefits axe largely in programmer abstractions that provide improved performance,
increased flexibility, or greater functionality. The challenges axe often less cleax, and pose subtle (and
therefore insidious) issues that, if ignored, can trap the programmer trying to exercise a newly-available
tool. Such issues include:

Illusions of Compatibility. A pair of implementations axe often considered "compatible"
if they present the same "interface". However, interfaces generally only describe a narrow
set of positive assertions about a facility: what a user can assume about its use. It is rare,
however, for an interface to specify what its users may not assume. Further, interface
descriptions are generally devoid of non-functional issues such as performance.

Inflation of Responsibility. More powerful programming tools, perhaps paradoxically,
often bring with them the obligation to use increased thought and skill in their application.
Correct and skilled use brings increased benefits, careless use merely brings more spectacu-
lax disasters.
Threats to Conventional Wisdom. Programming habits axe acquired through a series of
experiences that train the programmer in "what works". However, new tools and facilities,
particularly those that generalize or refine an abstraction or the environment in which they
axe applied, threaten those habits. A practice once considered acceptable may no longer be
adequate because the problems to which it is applied may have scaled beyond its

Vol 9 No 3
AUUGN 31

applicability.

4.1. Working Set Size

One of the significant side-effects of the availability of shared libraries has been an increase in
working set size [DENN 72]. This effect was expected, and has appeared in other implementations of
shared libraries [ARNO 86]. The effect can be explained by the nature of a shared library: rather than
including in the address space of a program only the library functions actually required during its exe-
cution, the entire library is provided. The (usually proper) subset of the library really needed is likely
to be distributed over more pages, and thus the memory demand imposed by the program is greater.

Although more pages are required, as long as the pages are shared among multiple processes the
incremental cost is decreased. This emphasizes the need to minimize the amount of private working set
size, and suggests that the priorities for minimizing size are to first:

¯ reduce the percentage of the working set that involves physical memory unique to this pro-
cess; and then
reduce the shared physical memory requirements.

Experience has shown that the system is effective at handling pages that are truly shared, in that they
are rarely removed from memory and thus impose little per-access cost. However, the per-process
private pages must compete for the remaining physical memory resources with a comparable set of
pages from other processes.

Although it has always been important for programs to impose a reasonable resource demand on
the underlying system, the "working set" inflation created by shared libraries makes this a considera-
tion not just of the application builder, but of the library builder as well. Although the functional
requirements of the library have not changed (the interfaces are compatible), the performance side
effects of this library "program" are not compatible with previous engineering considerations. It is, for
instance, perfectly acceptable to ignore these issues and create a library that works, however the global
impact of something like a poorly shared C library is potentially devastating.

4.2. Improving Sharing

The programmer can use several tools to increase the degree of sharing in a program or library
and thus address the issues of working set size. Although these tools have always been available, the
programmer may not have been sufficiently motivated to use them. In some (more insidious) cases, the
changes to the system have caused the tools to be "broken" or otherwise changed in some non-
functional way. For instance, the SunOS C compiler has supported an option (-R) to enter initialized
data in the text segment of an object file. When programs were linked with archive libraries con-
taining such objects, the read-only data was shared among all the users of a program. However,
with position-independent shared libraries, the use of an option such as -R is no longer as simple: a
PIC module built with -R and containing an initialized array of character pointers will actually
worsen the sharing of code, since the pointers in the initialized data will require relocation when
the object is actually added to the program at execution.4 While it is important to move the truly
invariant data to sharable memory, it is also important to recognize, what is really a piece of
invariant data.

Invariant data can also be obtained by recoding programs to use position-independent data (PID).
Although a compiler can be changed to emit PIC, the position-dependence of static storage is a function
of the program’s algorithms. Clearly C is a language that favors a coding style using pointers, but
often substantial efficiences can be gained if a data structure is accessed as PID, using relative addresses
(array indices) to describe the desired address. The C treatment of array names as pointers makes this
coding simple, if a little unnatural. Languages such as C++ [STRO 86] that contain support for over-
loaded operators such as ’[]’ can make this more aesthetically satisfying.

[4] An alternative to -R is to have a C compiler that supports the const storage class: when generating PIC for a const data
definition the compiler could issue the pointers and invariant data under separate relocation counters.

Vol 9 No 3 32 AUUGN

The use of PID is also important for databases that are expected to be accessed through mapping
operations. Such databases might include, for instance, character font descriptions for a bit-map
display, and be used by many processes simultaneously. Having the data be PID allows the client
applications to structure their address space around their application, rather than the requirements
imposed by a common piece of data.

Finally, private data storage requirements can sometimes be lessened through the use of dynami-
cally allocated global storage. This can be accomplished by removing static declarations and changing
their references to access lazily malloced data. In a body of code such as the C library, where the aver-
age program uses little of the entire library, this can represent a substantial space savings. Further, the
data that is used is generally allocated contiguously with other used data, often on the same page of the
malloc heap.

4.3. Interfaces and Configuration Management
The availability of a version control mechanism for dynamically linked objects places a require-

ment on the programmer to recognize and manage library interfaces. The programmer’s responsibilities
range from simply updating version numbers appropriately to designing the interface to be more suit-
able for dynamic linking. In addition, the ability to selectively use the dynamic linking facilities may
require some decisions about program configuration management with respect to dynamic linking.

4.3.1. Interfaces
Although the management of library interfaces has always been important, before the availability

of dynamic linking an erroneous or unanticipated incompatibility would not break existing programs.
With dynamically loaded objects, such errors are possible. However, they are also generally easier to
detect earlier in the development cycle. Because the new code can be easily inserted into almost every
program in a system, it becomes easier to perform large-scale testing.

A problem with interface management is that the languages and tools most programmers use do
not provide much support for it. Further, the interface is more diffuse than just the functions, argu-
ments, and results that one usually associates with a library. It extends to the shape (and sometimes
content) of data structures shared by, or defined in, both applications and libraries. For example, if the
size of a jmp_buf (as defined in the file setjmp.h) changes, then this constitutes a C library interface
change. If the interface did not change, the extant applications containing instances of jmp__buf struc-
tures might fail if run with a C library that expected the differently sized jmp_buf. If the size the
library expects is greater than that built in to the program, then the application will most likely mal-
function as the library routines overwrite the area reserved in the application.

4.3.2. Configuration Management
The provider of a given application (or set of applications) may not wish to expose itself to

changes made to libraries on which the application depends. Yet, the application may consist of
application-specific libraries that are dynamically linked to simplify maintenance. Further, when an
application does fail, the problem of determining the environment in which the failure occurred is more
complex. Not only must one determine exactly what version of an application failed, it is important to
know what versions of shared objects were involved. We have found it important to develop tools such
as the program ldd (list dynamic dependencies) that displays the shared objects used to execute a given
application. We have also modified other tools, notably debuggers, to interpret a program’s dynamic
configuration.

The apparent complexity of the configuration management issues is not so much a problem as it
is a manifestation of an opportunity: vendors and computing suppliers now have a vehicle that supports
multiple interfaces simultaneously. It has become more practical to ship "field-replaceable" software
units as libraries, because a mechanism exists that no longer requires an "all or nothing" form of pro-
gram replacement.

Further, the specification of interfaces at a dynamic linking level encourages innovation. Pro-
grammers modifying or enhancing the UNIX kernel have benefited for years from the ability to replace

AUUGN 33 Vol 9 No 3

the code behind an interface that was dynamically linked with applications. This flexibility has now
been extended to more than just kernel developers - now virtually any programmer producing a general
purpose facility has in the concept of a library much more than "a related collection of object files",
there is an interface that exists independent of its implementation.

4.4. Foiled Assumptions: "Unexec"

Some facilities exist that are predicated on old conventions and practices. They presume a lim-
ited model in such a highly constrained manner that any attempt at generality foils them. An example
is "unexec" utilities common in the building of programs that are "saved" in a memory-image initial-
ized state. UNIX examples of such programs include TeX and some versions of the EMACS text editor.

These facilities were built on assumptions that the three segment memory model of a process was
all there could ever be, something the use of shared libraries and dynamic binding invalidates. It is not
that this function cannot be provided, simply that the considerations on which it is based need to be
changed. It can be argued that "unexec" is simply the ability to save a program image, something that
ld performs when finished link editing a program. This suggests that the dynamic abstraction of ld is
incomplete, and that future work to complete it would include the capability for saving a program
image.

5. Experiences and New Capabilities

The changes to the system brought about by the new VM and dynamic linking facilities, while
creating sometime subtle changes in the programming environment that require increased programmer
vigilance, have mostly brought about a more flexible environment in which it has become possible to
vastly simplify or improve applications. In some cases, the changes have made it just possible to write
a given application. In this section, we examine a few of these advantages to illustrate both their
immediate value and their potential future impact.

5.1. Address Space Freedom

One of the goals of the new memory management’facilities was to provide programmers with an
address space that could be used flexibly. No longer does the operating system enforce any particular
structure to the address space, nor does it impose any semantic requirement on any specific area of it.
Requirements on address space structure have become conventions applied by language tools and utili-
ties.

The resulting flexibility has simplified the implementation of shared libraries. A dynamically
linked program consists of multiple text and data segments: one for each a.out file mapped into the
program’s address space. The notions of a "text" or "data" segments remain useful for describing the
assembly of executable files, but no longer have a system interpretation. Without this generality, the
mechanisms might have required specialized kernel support. We have often found that the imposition
of a fixed semantic interpretation by a lower software layer eventually forms a barrier to flexibility.

Other uses of the unstructured address space have involved disjoint collections of data. Coroutine
libraries creating multiple stacks now create them surrounded by "holes" in the address space that form
red zone protection areas. Multiple storage heaps (either to improve locality or to isolate data for
placement in stable storage) can also be easily established. The stable storage heap is simpler still: the
stable storage is simply mapped into the address space for direct access.

5.2. Incremental Maintenance and Development

The dynamic linking of libraries permits easy incremental maintenance. A bug-fix to a library is
easily incorporated into programs that use the library simply by installing the repaired version. This
effect can be extended naturally to the program development process as well.

Developing a complex program involves many compile, link, and debug cycles. If the time taken
to perform any of these operations can be shortened, programmer productivity will be improved. With
the dynamic linking facilities in the new system, a crude form of incremental development is easily
practiced. Consider a program consisting of many individual object files, such that the program is built

Vol 9 No 3 34 AUUGN

with
% cc -o prog main.o ... many other .o files ...

Using shared objects, it is possible to build a "linking hierarchy" such that for any one edit and compi-
lation of a single object file, only a few objects need be processed by ld rather than the entire set.

By way of illustration, assume a program built from 100 object files. For the purposes of this
example, let each object file be named from 00.o to 99.0. A possible hierarchy might be to collect the
ten .o files with the same leading digit into a single .so file, such as with:

% ld -o 0.so 0?.o

The program would then be built with:
% cc -o prog 0.so 1.so ... 9.so

that creates prog from 10 .sos dynamically linked at execution. If at some later time, a bug requires the
recompilation of 23.0, then only the modules comprising 2.so (or just 10% of the total number of .o
files) need be relinked to incorporate the change.

Of course, each time that prog executes, it incurs the cost of dynamic linking. However, this cost
is often negligible when compared with static linking, since the dynamic linking process does not
require that a new output file be built and written to the file system. Judicious grouping of .o files may
provide further efficiencies.

Other groupings are possible of course. In the limit, each single object could be built as its own
.so file. In practice, there is most likely some middle ground between the one-to-one extreme and corn-
plete relinking.

5.3. Application Performance
The access method provided by mapping has two fundamental performance advantages over its

counterparts read and write:
1.) a buffer copy operation is avoided, reducing the demand for processing power; and

2.) not having to support access to a second block of memory to contain the same information
reduces the demand on the system’s memory resources.

This suggests that programs in which buffer copying represents a significant fraction of the execution
time can benefit from optimizing out the copy with mapped accesses.

cat and cp have been reimplemented to incorporate this optimization, and use mmap rather than
read when accessing a mappable file. This has had the dual advantage of removing both copy overhead
and reducing the number of system calls. These programs map a large section of the file being read
(one megabyte) and write it out in a single operation. A code fragment from a very simplified version
of a cat that simply maps the entire file is:

int fd; /* file descriptor */
struct stat sb; /* file status */
caddr_t cp; /* file pointer */

]*

* Take "fd" (opened for read), and map the entire length of
* the file. Write it to standard output with a single write.
*/
(void) fstat(fd, &sb);
cp = mmap(0, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (cp t= (caddr_t)- 1)

(void) write(l, cp, sb.st_size);

AUUGN 35 Vol 9 No 3

An interesting side effect of the use of mapping in these programs is that it provides a useful
illustration of the "lazy evaluation" properties of the VM system. Directing their output to/dev/null
will cause the program to take practically no time to execute, no matter how big the input file is. The
reason for this is that mmap really performs no access on the data mapped, it merely describes to the
system the potential for an access to occur. The driver for/dev/null on the other hand, never performs
the access. The above program, when asked to do nothing, really does nothing.t

5.4. Multithreaded I/O
If an application required the ability to perform multiple I/O operations in parallel, it had to be

programmed using non-blocking I/O facilities and the select system call. Even with this, many I/O
operations remained synchronous, since facilities such as the file systems did not support non-blocking
I/O. With mapped files, the problems of initiating parallel I/O are even more acute, as I/O is only per-
formed in response to a page fault, and such faults occur only on a single page at a time.

.However, multiple processes can be created that are identically mapped (or have a significant
overlap) in the construction of their address spaces. These processes can each perform their own I/O
requests (or page faults) by dividing up the work between them. The maximum amount of parallelism
is limited by the number of concurrent processes available.

This illustrates a crude example of multiple processes executing from a single (or heavily over-
lapped) set of memory objects. A more refined example is the notion of lightweight processes
[KEr’E 85], addressed in more detail further on. However, this example illustrates an important facet of
the new system’s architecture: the independence of address space contents from specific processes.

5.5. Global Performance Analysis

To support the development of the dynamic link editor, it became desirable to profile its execu-
tion. The granularity of the profiling process (generally at a line-clock rate), coupled with the short
execution of the linker, required many samples. The problems of initializing and saving of profile
buffers also presented a number of issues that were easily addressed with mapped files. A special ver-
sion of the dynamic link editor was created that would map a specific file into its address space as part
of its initialization. The kemel’s profiling facilities were then directed to the mapped area. Other parts
of the link editor accumulated other statistical information into the mapped area.

By mapping the file into the address space shared, all instances of the link editor in the system
(nearly every process) contributed to the statistics collection in the shared file. At the end of a sample
period of several hours, a significant set of information had been collected, one that almost certainly
reflected an excellent description of how the link editor’s time had been spent. The use of a mapped
file obviated the need for the linker to engage in end-of-program activities to dump and merge the
information with previous execution, and thus avoided any issues of saving the information from pro-
grams that did not end normally. Further, the information collected came from a large variety of pro-
grams, summed over the course of a long period of system execution. Although this example describes
an implementation unique to the dynamic link editor, it suggests a general means of performing global
instrumentation of a given piece of code, one that could benefit the construction of tools to improve the
performance of programs on a global basis.

5.6. Interposition

A powerful aspect of the dynamic linking facilities is the ability to interpose targets for symbolic
references. For example, consider the building of a program that uses a library, libinterpose, supplied
as a .so rile."

% cc -o prog prog.o -linterpose
This command invokes ld, and invisibly includes a reference to the C library after libinterpose, libin-
terpose defines entry points for read and write that in addition to performing the required system calls
take statistics on the use of these system calls.

Vol 9 No 3 36 AUUGN

In this case, both libinterpose and libc define entry points for read and write, the latter being the
standard entry points for the "stub" routines performing the respective system calls. In the presence of
multiple definitions of a symbol, the link editor resolves the issue of which to select by using the order-
ing established when prog was linked: since libinterpose was specified first, its entry points are used for
references to read and write. These entry points are used globally, so that read and write references
made internal to the C library (such as from standard I/O routines) also use libinterpose.

Interposition offers the opportunity for programmers to provide "added value" to a "standard"
system function by providing a new implementation of the function. In this respect, the act of interpos-
ing is the control-flow analog to the effect of UNIX I/O redirection on data-flow. An example of such a
"value-added" feature is an instrumented malloc function, used to drive a graphical display termed a
"mallometer". One approach to implementing this would be to replace malloc and build a new shared
C library. While this would be more than sufficient, it presumes that it is possible to replace a single
module in a shared library, which it is not. Further, the obligation to rebuild the library is unneces-
sarily cumbersome.

An easier approach is to "insert" a modified malloc into an already running program. This could
be accomplished by building a .so out of just the modified malloc (say, malloc.so) and providing it to
programs with a sequence such as:

% setenv LD_PRELOAD malloc.so
% prog

where LD PRELOAD is interpreted by the dynamic link editor as a list of objects to be loaded before
loading th~se requested by the program itself. The malloc defined by malloc.so would thus take pre-
cedence over that in the C library.

An even more flexible capability would be to allow a new malloc to simply "jacket" the "real"
malloc, thereby not requiring any rewriting or reimplementation of the real function. The use of an
interposing routine in this fashion can be viewed as the control-flow analog of a filter [RITe 74].

6. Trends and Future Developments
Development follows cyclical patterns: new developments bring new understanding that in turn

brings further developments. The new facilities have brought with them both new capabilities and new
requirements for their evolution. In areas such as dynamic linking, the application potential has barely
been explored, as shared libraries represent but one potential use of the mechanisms. And, there are yet
other areas of the system beyond memory and binding that can benefit from such evolution.

6.1. VM
Future developments of the VM system are likely to focus on the management policies of the sys-

tem, such as the global page replacement algorithms and processor and memory scheduling. The likely
outcomes of these developments include a page replacement policy supportive of a high degree of
memory sharing, and an integrated process and memory scheduler. Support for program-directed per-
formance functions such as "advising" the system as to expected process behavior (as in "these pages
expected to be needed soon"), or "commanding" the system to have some behavior (as in page lock-
ing), are expected to be created from these efforts.

6.2. A Global View of Binding
Many problems in operating systems and programming languages reduce to issues of "binding".

For example, the VM system implements a .per-reference address binding operation using hardware
assists such as memory management units supplemented with software interpretation on exceptional
conditions (page faults). The "logical name" the program uses is simply a process address, and the
VM facilities translate the name to some physical storage address, a binding that occurs on each
memory reference. The existing link-editing mechanisms provide a "global symbol to process address"
binding. The dynamic linking facilities have changed this activity from one that is "compiled" to one
that is "interpretive". Finally, many problems in dislributed computing, such load balancing, server
selection, and failure containment, are problems of binding a client to a specific instance of a server.

Vol 9 No 3
AUUGN 37

The binding mechanisms implementing shared libraries do not yet offer any direct functional
interface to the programmer, whose interface is through command-line interaction with /d. When con-
trasted with the VM changes, which provided functions to programmers in the form of system calls
such as mmap, the dynamic binding mechanisms have at present but one application: shared libraries.
The mechanisms themselves have not been made directly available - though this reflects product and
business priorities rather than an architectural limitation. The global use of shared libraries suffices to
establish the architecture into which new capabilities and interfaces can be easily introduced.

The existence of an interpretive binding facility in the programming environment architecture
presents many opportunities for innovation not just by UNIX system vendors, but also by independent
parties and individual programmers. These opportunities begin with the availability of a generalized set
of link-editing functions and the definition of a programmatic interface by which they are accessed.
Such an interface would include, but not be limited to functions that supported:

¯ Object loading: the addition of an object file to an "address space".
¯ Image saving: the/d function of producing an executable is generalized. This would obvi-

ate the need for special functions such as "unexec" for programs that wish to preserve a
running image.

Symbol lookup: obtain the value of a given symbol (perhaps syntactically as a pointer), or
in the presence of multiple definitions of a given symbol, the value of any one or all of
them.

¯ Object "unbinding": removal of an object from an address space.
¯ Exception handling: programmatic control of link editor exceptions such as references to

undefined symbols.

Extensibility: programmatic interpretation of link editor functions such as relocation.
In addition to their programmatic availability, such functions might also be invoked implicitly by the
establishment of conditions through environment variable settings. The functions of interpretation could
be enhanced with the (perhaps selective) use of interface descriptions maintained in upgraded object file
formats. ¯

These facilities could vastly simplify the use of link-editor properties such as interposition,
thereby enabling them to be a more useful tool for the application developer. Consider the "mallome-
ter" example described previously. With a function that performs symbol lookup, the "value-added"
version of malloc could be written as:

char *
malloc(n)

unsigned int n;

char *cp;
extern void *ld._lookup0;

... accumulate statistics about n ...

/*

* Look up and call the "next" malloc0.
*/
cp = (char *)(*ld_lookup("malloc", "_next__"))(n);

... accumulate statistics about result ...
return (cp)

This interposed malloc skeleton is an example of use of interposition to invoke the control-flow
analog of a UNIX filter, ld_lookup is a link editor function that returns a pointer to a (qualified)

Vol 9 No 3 38 AUUGN

function name. In this case, the qualifier was _next_, a special qualifier meaning the "the malloc found
by searching dynamically linked objects after this one in the symbol precedence order". For the sake
of simplicity, disposition of failures has been omitted from the example.

However, since the link editor is interpretive, the reference to the "next" malloc might as easily
have been coded as:

cp = _next__$malloc(n)
An unqualified reference to malloc would simply invoke the normal symbol lookup rules. Still other
qualifiers could be used to identify "absolute" or "fully qualified" function or symbol names. For
instance, if a program wanted to call the C language library routine called malloc, the reference could
be:

cp = _c_$malloc(n)
Qualifiers need not be exclusively string based of course; these have merely been used in these exam-
ples as a suggestion of possible program references.

The interpretive nature of the binding process can also be integrated the activity with other pro-
gram development facilities. At present, the exception handling facilities in the dynamic link editing
process handle errors solely through program termination. Consider a program fragment containing an
invocation of prin(f that is erroneously typed in as pin{f. The execution of such a call would today
cause the program to be terminated.5 An alternative exception-handling facility could be used to inter-
cept such references, and dispatch them to a debugger, perhaps automatically. The programmer could
redirect the erroneous reference to prin~f, and with the assistance of sophisticated software-engineering
tools update the source at the same time. In the event that the program referenced some truly undefined
(as opposed to misspelled) symbol, an even more sophisticated software engineering environment could
support the incremental addition of the missing symbol and the code or data it labeled to the program.

The interpretive nature of the binding process not only permits deferred and possibly interactive
bindings, it also provides the opportunity to defer the implementation of the binding. For instance,
using information either supplied through the environment or programmatically, the dynamic link editor
could bind subroutine references not to the final target of the reference, but instead through some inter-
mediate that performed some instrumentation such as "call graph profiling".

Alternatively, a function reference could be implemented as something other than a simple sub-
routine call instruction. This would allow system calls to be defined entirely as library function inter-
faces. Or, in a general network environment, and if coupled with additional support information such
as interface descriptions in object files or configuration databases, the call could be implemented with a
Remote Procedure Call (RPC) facility, thereby making the use of distributed resources transparent to
the coding of the application and treating it as a problem in application configuration. In this case, the
programming environment architecture has treated a symbolic reference as an abstraction that has its
semantics defined through execution-time interpretation. In this respect, the symbolic reference is serv-
ing the same role for distributed computation as the UNIX file descriptor played in the implementation
of transparently networked file systems: a handle for interpreted semantics.

6.3. Future Evolution: Asynchrony
UNIX systems have traditionally provided only one form of asynchrony: the process. Although

Berkeley-based systems have introduced a form of asynchronous activity in the support of non-blocking
I/O operations and the select system call, these are at best crude approximations to truly asynchronous
operation. Several applications environments, notably those requiting response to multiple input stimuli
(such as window systems or server processes of various kinds) or perhaps requiring real-time con-
straints, can profit from full support of asynchronous activities.

The traditional approach to providing asynchronous services in a system is to provide specialized
interfaces that provide asynchronous operation. For instance, the support of asynchronous I/O

[5] In reality, /d anticipates this eventuality and reports it at the time the program is link-edited, thus it is difficult for this
scenario to occur in the current system.

AUUGN 39 Vol 9 No 3

operations would be provided by variants on the system calls read and write. The variants would
accept additional arguments describing the disposition of completed I/O requests, and would return
almost immediately after being called. The actual transfer would complete some time later.

The implementation of such facilities is generally built to capture the parameters of the requested
operation in some form of control block that is used to manage the real I/O activities. On completion,
the control block contains a description of how to notify the invoking process that the operation has
completed, and what its status was. Other asynchronous interfaces would be similarly constructed, each
requiring a specialized control block to capture the required operation and allowing the invoking pro-
cess to return.

The asynchronous "control blocks" created in support of these interfaces can be viewed as the
representation of an extremely specialized "process". These specialized entities record the state of
such processes throughout their "execution" (e.g., progress of I/O). Each new form of asynchrony to
be added to the system usually involves the creation of a new form of such "processes". The special-
ized nature of their representation often makes each implementation ill-suited to the needs of any later
requirement, and over time Me system becomes an accretion of such specialized structures.

A view proving popular is that the notion of a "process" in UN/X is excessively "heavy": a
"process" is more than just the desired parallel thread of control, it is also an address space, a range of
descriptors, and a description of event handling among other things. An alternative notion is that of
lightweight processes (lwps) [KE~’E 85] [TEVA 87], in which the notion of a thread of control is broken
out of its UNIX semantics and treated as a distinct entity in itself. A lwp can be created efficiently,
and multiple lwps can coexist in the address space associated with a single "heavyweight" UNIX pro-
cess.

In an environment supporting lwp constructs, it is not necessary to provide specialized interfaces
to selectively support asynchronous operation. Any operation can be accessed asynchronously with
inexpensively created and managed threads of control. The resulting system is more open to applica-
tion expansion, as new asynchronous abstractions do not require the services of a "kernel programmer"
or clumsy user-program approximations to avoid kernel changes. Note that use of a lwp-facility can be
"hidden" behind implementations of asynchronous interfaces, and thus any present or future standards
requiring the more traditional approach can be easily accommodated.

The programming facilities supported by the lwp model of computing provide additional benefits
beyond a simple abstraction of asynchrony, lwps are "lighter" than traditional UNIX processes because
they share heavyweight structures such as address spaces. With such sharing comes mechanisms to
manage that sharing, such as monitors for the implementation of critical sections, messages (often using
shared memory) for asynchronous interchange, and condition variables for synchronization. In turn,
these mechanisms enable the building of reentrant and preemptable code, and render the resulting pro-
gramming more suitable for execution in a multiprocessor, and more responsive to the preemption
demands of real-time and interactive environments.

7. Conclusion

Several changes to the SunOS programming environment have been described. These changes
represent a functionally compatible reimplementation of standardized or generally accepted UNIX inter-
faces. In addition, the changes enrich the environment by providing new capabilities that simplify, and
sometimes even render possible, various applications. In still other cases, system and application per-
formance is improved.

The architectural approach of providing simple, fundamental, and general abstractions as primitive
mechanisms that are consistently applied has been quite successful. The system has been conceptually
simplified while presenting applications programmers with more powerful facilities. In many cases,
these programmers have obtained a flexibility previously available only to the "systems programmer".
The increased flexibility is demonstrated particularly well with the interpretive binding facilities used to
provide shared libraries. The general abstraction of binding mechanisms promises to provide an archi-
tectural cornerstone for a wide range of new applications.

Vol 9 No 3 40 AUUGN

These changes show that new implementations of standard functions based on new abstractions
are both possible and effective. They also show that the standardizing of clean system interfaces is not
necessarily a barrier to innovation and, in areas such as dynamic binding, even promotes innovative
activity. The resulting and anticipated evolutions have substantially enriched the application program-
ming environment available under SunOS for both ourselves and our user commun!ty.

8. Acknowledgements
The ideas and implementations presented here are the product of discussions with and work by

many people at Sun. In addition to their contributions to the work itself, Xuong Dang, Jon Kepecs, Joe
Moran, and in particular Glenn Skinner provided a great deal of support and assistance through their
review of this paper. Other notable participants have included Evan Adams, Bill Shannon, and Richard
Tuck.

9. References
[ARNO 86]

[GING 87a]

[GING87b]

[KEPE 85]

[KLEI 86]

[MORA 88]

[MURP 72]

[ORGA 72]

[RITC 74]

[STRO 86]

[TEVA 87]

Arnold, J. Q., "Shared Libraries on UNIX System V", Summer Conference Proceed-
ings, Atlanta 1986, USENIX Association, 1986.
Denning, P., S. C. Schwartz, "Properties of the working set model", Communications
of the ACM, Volume 15, No. 3, March 1972.
Gingell, R. A., J. P. Moran, W. A. Shannon, "Virtual Memory Architecture in
SunOS", Summer Conference Proceedings, Phoenix 1987, USENIX Association,
1987.
Gingell, R. A., M. Lee, X. T. Dang, M. S. Weeks, "Shared Libraries in SunOS",
Summer Conference Proceedings, Phoenix 1987, USENIX Association, 1987.
Joy, W. N., R. S. Fabry, S. J. Leffler, M. K. McKusick, 4.2BSD System Manual,
Computer Systems Research Group, Computer Science Division, University of Cali-
fornia, Berkeley, 1983.
Kepecs, J. H., "Lightweight Processes for UNIX: Implementation and Applications",
Summer Conference Proceedings, Portland 1985, USENIX Association, 1985.
Kleiman, S. R., "Vnodes: An Architecture for Multiple File System Types in Sun
UNIX", Summer Conference Proceedings, Atlanta 1986, USENIX Association, 1986.

Moran, J. P., "SunOS Virtual Memory Implementation", Spring Conference Proceed-
ings, London 1988, European UNIX Users Group, 1988.
Murphy, D. L., "Storage organization and management in TENEX", Proceedings of
the Fall Joint Computer Conference, AFIPS, 1972.
Organick, E. I., The Multics System: An Examination of Its Structure, MIT Press,
1972.
Ritchie, D. M., K. Thompson, "The UNIX Time-Sharing System", Communications
of the ACM, Volume 17, No. 7, July 1974.
Stroustrup, B., The C++ Programming Language, Addison-Wesley Publishing Com-
pany, 1986.
Tevanian, A., R. F. Rashid, D. B. Golub, D. L. Black, E. Cooper, M. W. Young,
"Mach Threads and the UNIX Kemel: The Battle for Control", Summer Conference
Proceedings, Phoenix 1987, USENIX Association, 1987.

AUUGN 41 Vol 9 No 3

SunOS Virtual Memory Implementation

Joseph P. Moran

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View, CA 94043 USA

ABSTRACT

The implementation of a new virtual memory (VM) system for Sun’s implementa-
tion of the UNIX~- operating system (SunOS:~) is described. The new VM system was
designed for extensibility and portability using an object-oriented design carefully con-
structed to not compromise efficiency. The basic implementation abstractions of the new
VM system and how they are managed are described. Some of the more interesting
problems encountered with a system based on mapped objects and the resolution taken to
these problems are described.

1o Introduction
In December 1985 our group at Sun Microsystems began a project to replace our 4.2BSD-based VM

system with a VM system engineered for the future. A companion paper [1] describes the general architec-
ture of our new VM system, its goals, and its design rationale. To summarize, this architecture provides:

¯ Address spaces that are described by mapped objects.
¯ Support for shared or private (copy-on-write) mappings.
¯ Support for large, sparse address spaces.
¯ Page level mapping control.
We wanted the new VM system’s implementation to reflect the clean design of its architecture and

felt that basing the implementation itself on the proper set of abstractions would result in a system that
would be efficient, extensible to solving future problems, readily portable to other hardware architectures,
and understandable. Our group’s earlier experience in implementing the vnode architecture [2] had shown
us the utility of using object-oriented programming techniques as a way of devising useful and efficient
implementation abstractions, so we chose to apply these techniques to our VM implementation as well.

The rest of this paper is structured as follows. Section 2 provides an overview of the basic object
types that form the foundation of the implementation, and sections 3 through 6 describe these object types
in detail. Sections 7 through 9 describe related changes made to the rest of the SunOS kernel. The most
extensive changes were those related to the file system object managers. A particular file system type is
used to illustrate those changes. Section 10 Compares the performance of the old and new VM implemen-
tations. Sections 11 and 12 discuss conclusions and plans for future work.

2. Implementation Structure

The initial problem we faced in designing the new VM system’s implementation was finding a clean
set of implementation abstractions. The system’s architecture suggested some candidate abstractions and
examining the architecture with an eye toward carving it into a collection of objects suggested others.

UNIX is a trademark of Bell Laboratories.
SunOS is a trademark of Sun Microsystems.

Vol 9 No 3 42 AUUGN

We ultimately chose the following set of basic abstractions.
The architecture allows for page-level granularity in establishing mappings from file system
objects to virtual addresses. Thus the implementation uses the page structure to keep track of
information about physical memory pages. The object managers and the VM system use this
data structure to manage physical memory as a cache.
The architecture defines the notion of an "address space". In the implementation, an address
space consists of an ordered linked list of mappings. This level defines the external interface
to the VM system and supplies a simple procedural interface to its primary client, the UNIX
kernel.
A segment describes a contiguous mapping of virtual addresses onto some underlying entity.
The corresponding layer of the implementation treats segments as objects, acting as a class in
the C++ [3] sense1. Segments can map several different kinds of target entities. The most
common mappings are to objects that appear in the file system name space, such as files or
frame buffers. Regardless of mapping type, the segment layer supplies a common interface to
the rest of the implementation. Since there are several types of segment mappings, the imple-
mentation uses different segment drivers for each. These drivers behave as subclasses of the
segment class.
The hardware address translation (hat) layer is the machine dependent code that manages
hardware translations to pages in the machine’s memory management unit (MMU).

The VM implementation requires services from the rest of the kernel. In particular, it makes heavy
demands of the vnode [2] object manager. The implementation expects the vnode drivers to mediate
access to pages comprising file objects. The part of the vnode interface dealing with cache management
changed drastically. Finding the right division of responsibility between the segment layer and the vnode
layer proved to be unexpectedly difficult and accounted for much of the overall implementation effort.

The new VM system proper has no knowledge of UNIX semantics. The SunOS kernel provides
UNIX semantics by using the VM abstractions as primitive operations [1]. Figure 1 is a schematic diagram
of the VM abstractions and how they interact. The following sections describe in more detail the imple-
mentation abstractions summarized above.

3. page Structure
The new VM architecture treats physical memory as a cache for the contents of memory objects.

The page is the data structure that contains the information that the VM system and object managers need
to manage this cache. The page structure maintains the identity and status of each page of physical
memory in the system. There is one page structure for every interesting2 page in the system.

A page represents a system page size unit of memory that is a multiple of the hardware page size.
The memory page is identified by a <vnode, offset> pair kept in the page structure. Each page with an
identity is initialized to the contents of a page’s worth of the vnode’s data starting at the given byte offset.
A hashed lookup based on the <vnode, offset> pair naming the page is used to find a page with a particular
name. The implementation keeps all pages for a given vnode on a doubly-linked list rooted at the vnode.
Maintaining this list speeds operations that need to find all a vnode’s cached pages, page structures can
also be on free lists or on an "I/O" list depending on the setting of page status flags. The page structure
also contains an opaque pointer that the hat layer uses to maintain a list of all the active translations to the
page that are loaded in the hardware. In the machine independent VM code above the hat layer, the only
use for this opaque pointer is to test for NULL to determine if there are any active translations to the page.
When the machine-dependent hat layer unloads a translation it retrieves the hardware reference and
modified bits for that translation to the page, and merges them into machine-independent versions of these
bits maintained in the page structure.

Actually, as a class whose public fields are all virtual, so that subclasses are expected to define them.
Pages for kernel text and data and for frame buffers are not considered "interesting".

AUUGN 43 Vol 9 No 3

Unix System Calls and Services

Address
Space

Physical

Pages

Segment
Drivers

&
VM routines

Vnode

Drivers

Machine Independent

Machine Dependent

Hardware Address Translation Physical IO

Figure I

4. Address Space

The highest level abstraction that the VM system implements is called an address space (as), which
consists of a collection of mappings from virtual addresses to underlying objects such as files and display
device frame buffers. The as layer supports a procedural interface whose operations fall into two basic
classes. Procedures in the first class manipulate an entire address space and handle address space alloca-
tion, destruction, duplication, and "swap out". Procedures in the second class manipulate a virtual address
range within an address space. These functions handle fault processing, setting and verifying protections,
resynchronizing the contents of an address space with the underlying objects, obtaining attributes of the
mapped objects, and mapping and unmapping objects. Further information on these functions may be
found in [1].

The implementation must maintain state information for each address space. The heart of this infor-
mation is a doubly linked list of contiguous mappings (termed segments for lack of a better name) sorted
by virtual address. Section 5 describes segments in detail. The as layer implements its procedural inter-
face by iterating over the required range of virtual addresses and calling the appropriate segment operations
as needed.

In addition, the as structure contains a hardware address translation (hat) structure used to maintain
implementation specific memory management information. Positioning the hat structure within the as
structure allows the machine dependent hat layer to describe all the physical MMU mappings for an
address space, while the machine independent as layer manages all the virtual address space mappings.
The hat structure is opaque to the machine independent parts of the system and only the hat layer exam-
ines it. Section 6 describes the hat layer in detail. The as structure also includes machine independent
address space statistics that are kept separately from the machine dependent hat structure for convenience.

Vol 9 No 3 44 AUUGN

4.1. Address Space Management
The implementation uses several techniques to reduce the overhead of as management. To reduce

the time to find the segment for a virtual address, it maintains a "hint" naming the last segment found, in a
manner similar to the technique used in Mach [4]. Any time the as layer translates a virtual address to a
segment, this hint is used as the starting point to begin the search.

Another optimization reduces the total number of segments in a given address space by allowing seg-
ment drivers to coalesce adjacent segments of similar types. This reduces the average time to find the seg-
ment that maps a given virtual address within an address space. By using this technique, the common
UNIX brk (2) system call normally reduces to a simple segment extension within the process address space.

4.2. Address Space Usage
SunOS uses an as to describe the kemel’s own address space, which is shared by all UNIX processes

when operating in privileged (supervisor) mode. A UNIX process typically has an as to describe the
address space it operates in when in non-privileged (user) mode3. An as is an abstraction that exists
independent of any of its uses. Just as several UNIX processes share the same kernel address space when
operating in supervisor mode, an as can have multiple threads of control active in a user mode address
space at the same time. Future implementations of the operating system will take advantage of these facili-
ties [5].

Most UNIX memory management system calls map cleanly to calls on the as layer. The as layer
does not have knowledge of the implementation of the segment drivers below it, thus making it easy to add
new segment types to the system. The as design provides support for large sparse address spaces without
undue penalty for common cases, an important consideration for the future software demands that will be
placed on the VM system.

5. Segments
A segment is a region of virtual memory mapped to a contiguous region of a memory object4. Each

segment contains some public and private data and is manipulated in an object-oriented fashion. The pub-
lic data includes the base and size of the segment in page-aligned bytes, pointers for the next and previous
segments in the address space, and a pointer to the as structure itself. Each segment also contains a refer-
ence to a vector of pointers to operations (an "ops" vector) that implement a set of functions similar to the
as functions, and a pointer to a private per-segment type data structure. This is similar to the way the
SunOS vnode and vfs abstractions are implemented [2]. Using this style of interface allows multiple seg-
ment types to be implemented without affecting the rest of the system.

To most efficiently handle its data structures, a segment driver is free to coalesce adjacent segments
of the same type in the virtual address space or even to break a segment down into smaller segments. Indi-
vidual virtual pages within a segment’s mappings may have varying attributes (e.g. protections). This
design allows the segment abstraction control over the attributes and data structures it manages.

Of equal importance to what a segment driver does is what it does not do. In particular, we found
that having the segment driver handle the page lookup operation and call the vnode object manager only
when a needed page cannot be found was a bad idea. After running into some problems that could not be
solved as a result of this split, we restructured the VM system so that the segment driver always asks the
object manager for the needed page on each fault. Having the vnode object manager be responsible for the
page lookup operation allows it to take action on each new reference.

5.1. Segment Driver Types
The implementation includes the following segment driver types:
seg_vn Mappings to regular files and anonymous memory.

Some processes run entirely in the kernel and have no need for a user mode address space.
Note that the name "segment" is not related to traditional UNIX text, data, and stack segments.

Vol 9 No 3
AUUGN 45

seg_map Kernel only transient <vnode, offset> translation cache.
seg_dev Mappings to character special files for devices (e.g. frame buffers).
seg_kmem Kernel only driver used for miscellaneous mappings.
The seg_vn and seg_map segment drivers manage access to vnode memory objects and are the pri-

mary segment drivers.

5.2. vnode Segment

The seg_vn vnode segment driver provides mappings to regular files. It is the most heavily used
segment driver in the system.

The arguments to the segment create function include the vnode being mapped, the starting offset,
the mapping type, the current page protections, and the maximum page protections. The mapping type can
be shared or private (copy-on-write). With a shared mapping, a successful memory write access to the
mapped region will cause the underlying file object to be changed. With a private mapping the first write
access to a page of the mapped region will cause a copy-on-write operation that creates a private page and
initializes it to a copy of the original page.

The UNIX mmap (2) system call, which sets up new mappings in the process’s user address space,
calculates the maximum page protection value for a shared mapping based on the permissions granted on
the open of the file. Thus, the vnode segment driver will not allow a file to be modified through a mapping
if the file was originally opened read-only.

5.2.1. Anonymous Memory

An important aspect of the VM system is the management of "anonymous" pages that have no per-
manent backing store. An anonymous page is created for each copy-on-write operation and for each initial
fault to the anonymous clone object5. For a UNIX executable, the uninitialized data and stack are set up as
private mappings to the anonymous clone object.

The mechanism used to manage anonymous pages has been isolated to a set of routines that provide
a service to the rest of the VM system. Segment drivers that choose to implement private mappings use
this service. The vnode segment driver is the primary user 0f anonymous memory objects.

5.2.1.1. Anonymous Memory Data Structures

The anon structure serves as a name for each active anonymous page of memory. This structure
introduces a level of indirection for access to anonymous pages. We do not wish to assume that
anonymous pages can be named by their position in a storage device, since we would like to be able to
have anonymous pages in memory that haven’t been allocated swap space. The anon data structure is
opaque above the anonymous memory service routines and is operated on using a procedural interface in
an object-oriented fashion. These objects are reference counted, since there can be more than one refer-
ence to an anonymous page6. This reference counting allows the anon procedures to easily detect when an
anonymous page and corresponding resident physical page (if any) are no longer needed.

The other data structure related to anonymous memory management is the anon map structure.
This structure describes a cluster of anonymous pages as a unit. The anon map structur~ consists of an
array of anon structure pointers with one anon pointer per page. Segment-drivers that wish to refer to
anonymous pages do so by using an anon map structure to keep an array of pointers to anon structures for
the anonymous pages. These segment d~ivers lazily allocate an anon map structure with ~ anon
structure pointers at fault time as needed (i.e., on the first copy-on-write For the segment or on the first fault
for an all anonymous mapping).

The name of this object in the UNIX file system name space is/dev/zero.
Typically from an address space duplication resulting from a UNIX fork (2) system call.

Vol 9 No 3 46 AUUGN

5.2.1.2. Anonymous Memory Procedures
There are two anon procedures that operate on the arrays of anon structure pointers in the

anon map structure, anon_dup 0 copies from one anon pointer array to another one, incrementing the
refer~-nce count on every allocated anon structure. This operation is used when a private mapping involv-
ing anonymous memory is duplicated. The converse of anon_dup 0 is anon_free 0, .which decrements the
reference count on every allocated anon structure. If a reference count goes to zero, the anon structure
and associated page are freed, anon_free 0 is used when part of a privately mapped anonymous memory
object is unmapped.

There are three anon procedures used by the fault handlers for anonymous memory objects.
anon_private 0 allocates an anonymous page, initializing it to the contents of the previous page loaded in
the MMU. anon zero 0 is similar to anon_.private (), but initializes the anonymous page to zeroes. This
routine exists as an optimization to avoid having to copy a page of zeroes with anon_private 0. Finally,
anon_getpage 0 retrieves an anonymous page given an anon structure pointer.

5.2.2. vnode Segment Fault Handling
Page fault handling is a central part of the new VM system. The fault handling code resolves both

hardware faults (e.g., hardware translation not valid or protection violation) and software pseudo-faults
(e.g., lock down pages). The as fault handing routine is Called with a virtual address range, the fault type
(e.g., invalid translation or protection violation), and the type of attempted access (read, write, execute). It
performs a segment lookup operation based on the virtual address and dispatches to the segment driver’s
fault routine, which is responsible for resolving the fault.

The vnode segment driver takes the following steps to handle a fault.
Verify page protections.

®

If needed, allocate an anon_map structure.
If needed, get the page from the object manager.
Call the hat layer to load a translation to the page.

If needed, obtain a new page by performing copy-on-write.
Call the hat layer to load a writable translation to the new page.

Some specific examples of vnode segment fault handling and how anonymous memory is used are
given below.

Ox30000 [.... "~,
I
I
!

ox3 ooo

(As Yet Unallocated)
Segment Private

Anon_map Array

<vpl, 0x6000>

<vpl, 0x8000>

Address Space Contents

Figure 2
<vpl, 6000> Mapped Private to Address 0x30000 for 0x4000 Bytes

0x30000

0x32000

Figure 2 depicts a private mapping from offset 0x6000 in vnode vpl to address 0x30000 for a length
of 0x4000 bytes using a system page size of 0x2000. If a non-write fault occurs on an address within the
segment, the vnode segment driver asks the vnode object manager for the page named by <vpl, 0x6000 +
(addr - 0x30000)>. The vnode object manager is responsible for creating and initializing the page when
requested to do so by a segment driver. After obtaining the page, the vnode segment driver calls the hat
layer to load a translation to the page. The permissions passed to the hat layer from the vnode segment
driver are for a read-only translation since this is a private’mapping for which we want to catch a memory
write operation to initiate a copy-on-write operation.

AUUGN 47 Vol 9 No 3

0x30000

0x32000

Segment Private
Anon_map Array

anon structure for
<anon page1>

<vpl, OxSO00>

<anon pagel>

Address Space Contents

Figure 3
After Copy-On-Write Operation to Address 0x32000

0x30000

0x32000

Figure 3 shows the results of a copy-on-write operation on address 0x32000 in Figure 2. The vnode
segment driver has allocated an anon_map structure and initialized the second entry to point to an allo-
cated anon structure that initially has a reference count of one. The anon__private 0 routine has allocated
the anon structure in the array, returned a page named by that anon structure, and initialized to the con-
tents of the previous page at 0x32000. After getting the anonymous page from ’anon_.private O, the vnode
segment driver calls the hat layer to load a writable translation to the newly allocated and initialized page.

Note that as an optimization, the vnode segment driver is able to perform a copy-on-write operation,
even if the original translation was invalid, since the fault handler gets a fault type parameter (read, write,
execute). If the first fault taken in the segment described in Figure 3 is a write fault at address 0x32000
then the first operation is to obtain the page for <vpl, 0x8000> and call the hat layer to load a read-only
translation. The vnode segment driver can then detect that it still needs to perform the copy-on-write
operation because the fault type was for a write access. If the copy-on-write operation is needed, the
vnode segment driver will call anon_private 0 to create a private copy of the page.

0x34000

0x36000

NULLI

Segment Private
Anon_map Array

anon structure for
<anon page2>

???

<anon page2>

0x34000

0x36000

Address Space Contents

Figure 4
Private Mapping to/dev/zero for 0x4000 bytes at Address 0x34000

After a Page Fault at Address 0x36000

Figure 4 depicts a private mapping from the anonymous clone device/dev/zero to address 0x34000
for length 0x4000 after a page fault at address 0x36000. Since there is no primary vnode that was mapped,
the vnode segment driver calls anon_zero 0 to allocate an anon structure and corresponding page and ini-
tialize the page to zeroes.

Figure 5 shows what happens when the mapped private vnode segment shown in Figure 4 is dupli-
cated. Here both segments have a private reference to the same anonymous page. When the segment is
duplicated, anon_dup 0 is called to increment the reference count on all the segment’s allocated anon
structures. In this example, there is only one allocated anon structure and its reference count has been
incremented from one to two. Also, as part of the vnode segment duplication process for a privately
mapped segment, all the hat translations are changed to be read-only so that previously writable
anonymous pages are now set up for copy-on-write.

Figure 6 shows the result after the duplicated segment in Figure 5 handles a write fault at address
0x36000. When the segment fault handler calls anon_getpage 0 to return the page for the given anon

Vol 9 No 3 48 AUUGN

0x34000

0x36000

0x34000

0x36000

/~ ref2cnt~ ~

Segment 1 / a n<°~n SoT;~ ~re~f°r~

Segment 2

???

<anon page2>

Address Space 1

???

<anon page2>

Address Space 2

0x34000

0x36000

0x34000

0x36000

Segment Private
Anon_map Array

Address Space Contents

Figure 5
After the Private Mapped Vnode Segment is Duplicated

0x34000

0x36000

0x34000

0x36000

NULL

,: ~

Segment 1

Segment 2

anon structure for
<anon page2>

anon structure for
<anon page3>

???

<anon page2>

Address Space 1

??? .

<anon page3>

Address Space 2

0x34000

0x36000

0x34000

0x36000

Segment Private
Anon_mapArray

Address Space Contents

Figure 6
After Write Fault on Address 0x36000 in Address Space 2

structure, it will return protections that force a read-only translation since the reference count on the anon
structure is greater than one. The segment driver fault handler will then call anon_private 0 to allocate a
new anon structure and page structure and to initialize the page to the contents of the previous page loaded
in the MMU. In contrast to the case depicted in Figure 3, anon_private 0 is copying from another

AUUGN 49 Vol 9 No 3

anonymous page and will decrement the reference count of the old anon structure after the anon pointer in
the segment’s anon_map array is changed to point to the newly allocated anon structure. Since the refer-
ence count on the original anon structure reverts to one, this means that the original segment will no longer
have to do a copy-on-write operation for a subsequent write fault at address 0x36000. If a fault were to
occur at 0x36000 in the original segment, anon_getpage 0 w0"uld not enforce a read-only mapping, since
the reference count for the anon structure is now one. "

5.3. Kernel Transient vnode Mapping Segment

The seg_map segment driver is a driver the kernel uses to get transient <vnode, offset> mappings. It
supports only shared mappings. The most important service it provides to the as layer is fault resolution
for kernel page faults. The seg_map driver manages a large window of kernel virtual space and provides a
view onto a varying subset of the system’s pages. The seg_map driver manages its own virtual space as a
cache, so that recently referenced <vnode, offset> pairs are likely to be loaded in the MMU and no page
fault will be taken when the virtual address within the seg_map segment are referenced.

This segment driver provides fast map and unmap operations using two segment driver-specific sub-
routines: segmap_getmapO and segmap_release 0. Given a <vnode, offset> pair, segmap_getmapO
returns a virtual address within the seg_map segment that is initialized to map part of the vnode. This is
similar to the traditional UNIX bread 0 function used in the "block IO system" to obtain a buffer that con-
tains some data from a block device. The segmap release 0 function takes a virtual address retumed from
segmap_getmapO and handles releasing the m~apping, segmap release 0 also handles writing back
modified pages, segmap release 0 performs a similar function to tffe traditional UNIX brelse 0 / bdwrite 0
/ bwrite 0 / bawrite 0 "bi-ock IO system" procedures depending on the flags given to segmap release O.

The seg_map driver is simply used as an optimization in the kernel over the standard~node driver.
It is important to be able to do fast map and unmap operations in the kernel to implement read(2) and
write (2) system calls. The basic algorithm for the vnode read and write routines is to get a mapping to the
file, copy the data from/to the mapping, and then unmap the file. Note that the kernel accesses the file data
just as user processes do by using a mapping to the file. The vnode routines that implement read and write
use segmap_getmap 0 and segmap_release 0 to provide the fast map and unmap operations within the
kernel’s address space.

5.4. Device Driver Segment

The seg_dev segment driver manages objects controlled by character special ("raw") device drivers
that provide an mmap interface. The most common use of the seg_dev driver is for mapped frame buffers,
though it is also used for mappings to machine-specific memory files such as physical memory, kernel vir-
tual memory, Multibus memory, or VMEbus memory. This driver currently only supports shared map-
pings and does not deal with anonymous private memory pages. The driver is simple since it doesn’t have
to worry about a many operations that don’t make sense for these types of objects (e.g., swap out). To
resolve a fault, it simply calls a function to return an opaque "cookie" from the device driver, which is
then handed to the machine-specific hat layer to load a translation to the physical page denoted by the
cookie.

5.5. Kernel Memory Segment

The seg_kmem segment driver is an example of the use of a machine independent concept to solve a
machine dependent problem. The kernel’s address space is described by an as structure just like the user’s
address space. The seg_kmem segment driver is used as a catch-all to map miscellaneous entities into the
kernel’s address space. These entities includes the kernel’s text, data, bss, and dynamically allocated
memory space. This driver also manages other machine dependent portions of the kernel’s address space
(e.g. Sun’s Direct Virtual Memory Access space [6]).

The seg_kmem driver currently only supports non-paged memory whose MMU translations are
always locked7. In the previous 4.2BSD-based VM system, the management of the kernel’s address space

7 This means that the hat layer cannot remove any of these translations without explicitly being told to do so by the
seg..kmem driver.

Vol 9 No 3 50 AUUGN

for things like device registers was done by calls to a mapin 0 procedure that set up MMU translations
using a machine-dependent page table entry. For kernel and driver compatibility reasons, the seg_kmem
driver supports a mapin -like interface as a set of segment driver-specific procedures.

6. Hardware Address Translation Layer

The hardware address translation (hat) layer is responsible for managing the machine dependent
memory management unit. It provides the interface between the machine dependent and the machine
independent parts of the VM system. The machine independent code above the hat layer knows nothing
about the implementation details below the hat layer. The clean separation of machine independent and
dependent layers of the VM system allows for better understandability and faster porting to new machines
with different MMUs.

The hat layer exports a set of procedures for use by the machine independent segment drivers. The
higher levels cannot look at the current mappings, they can only determine if any mappings exist for a
given page. The machine independent levels call down to the hat layer to set up translations as needed.
The basic dependency here is the ability to handle and recover from page faults (including copy-on-write).
The hat layer is free to remove translations as it sees fit if the translation was not set up to be locked.
There exists a call back mechanism from the hat layer to the segment driver so that the virtual reference
and modified bits can be maintained when a translation is take away by the hat layer. This ability is
needed for alternate paging techniques in which per address space management of the working set is done.

6.1. hat Procedures

Table 1 lists the machine independent hat interfaces. All these procedures must be provided,
although they may not necessarily do anything if not required by the hat implementation for a given
machine.

Operation Function

hat: init: () One time hat initialization.
hat alloc (as) Allocam hat structure for as.

hat free (as) Release all hat resources for as.

hat__pageunload (pp) Unload all translations to page pp.

hat_pagesync (pp) Sync ref and mod bits to page pp.
hat unlock (seg, addr) Unlock translation at addr.
hat_chgprot (seg, addr, len, prot) Change protection values.
hat unload (seg, addr, len) Unload translations.

hat memload(seg, addr, pp, prot, flags) Load translation topagepp.

hat devload(seg, addr, pf, prot, flags) Load translation to cookie pf.

Table 1
hat operations

6.2. hat Implementations
Several hat implementations have already been completed. The first implementations were for the

Sun MMU [6]. The MMUs in the current Sun-2/3/4 family are quite similar. All use a fixed number of
context, segment, and page table registers in special hardware registers to provide mapping control. The
Sun-2 MMU has a separate context when running in supervisor mode whereas the Sun-3 and Sun-4 MMUs
have the kernel mapped in each user context. The maximum virtual address space for the Sun-2, Sun-3,
and Sun-4 MMUs are 16 megabytes, 256 megabytes, and 4 gigabytes respectively.

Some machines in the Sun-3 and Sun-4 families use a virtual address write-back cache. The use of a
virtual address cache allows for faster memory access time on cache hits, but can be a cause of great

AUUGN 51 Vol 9 No 3

trouble to the kemel in the old VM system [7]. Since the hat layer has information about all the transla-
tions to a given page, it can manage all the details of the virtual address cache. It can verify the current vir-
tual address alignment for the page and decide to trade translations if an attempt to load a non-cache con-
sistent address occurs. In the old 4.2BSD-based VM system the additional support needed for the virtual
address cache permeated many areas of the system. Under the new VM system, support for the virtual
address cache is isolated within the hat layer.

Other hat implementations have been done for more traditional page table-based systems. The
Motorola 68030 has a flexible on-chip MMU. The hat layer chooses to manage it using a three level page
table to support mapping a large sparse virtual address space with minimal overhead. The Intel 80386 also
has an on-chip MMU, but it has a fixed two level translation scheme of 4KB pages. The problem with the
80386 MMU is that the kernel can write all pages regardless of the page protections (i.e., the write protec-
tion only applies to non-supervisor mode accesses)! This means that explicit checks must be performed for
kernel write accesses to read-only pages so that kernel protection faults can be simulated. Another imple-
mentation has been done for IBM 370/XA compatible main frames. The biggest problem with this
machine’s architecture for the new VM system is that an attempted write access to a read-only page causes
an protection exception that can leave the machine in an unpredictable state for certain instructions that
modify registers as a side effect. These inslructions cannot be reliably restarted thus breaking copy-on-
write fault handling. The implementation resorts to special work arounds for the few instructions that exhi-
bit this problem8.

7. File System Changes

The VM system required changes to several other parts of the SunOS kernel. The VM system relies
heavily on the vnode object managers, and required changes to the vnode interface as well as to each
vnode object type implementation. It took us several attempts to get the new vnode interface right.

Our initial attempt gave the core VM code responsibility for all decisions about operations it ini-
tiated. We repeatedly encounted problems induced by not having appropriate information available within
the VM code at sites where it had to make decisions, and realized that the proper approach was to make
decisions at locations possessing the requisite information. The primary effect of this shift in responsibility
was to give the vnode drivers control on each page reference. This allows the vnode drivers to recognize
and act on each new reference. These actions include validating the page, handling any needed backing
store allocation, starting read-ahead operations, and updating file attributes.

7.1. File Caching

Traditionally, buffers in the UNIX buffer cache have been described by a device number and a physi-
cal block number on that device. This use of physical layout information requires all file system types
implemented on top of a a block device to translate (bmap) each logical block to a physical block on the
device before it can be looked up in the buffer cache.

In the new VM system, the physical memory in the system is used as a logical cache; each buffer
(page) in the cache is described by an object name (vnode) and a (page-aligned) offset within that object.
Each file is named as a separate vnode, so the VM system need not have any knowledge of the way the
vnode object manager (file system type) stores the vnode. A segment driver simply asks the vnode object
manager for a range of logical pages within the vnode being mapped. The file system independent code in
the segment drivers only has to deal with offsets into a vnode and does not have to maintain any file
system-specific mapping information that is already kept in the file system-specific data structures. This
provides a much cleaner separation between the segment and vnode abstractions and puts few constraints
on the implementation of a vnode object manager9.

The smallest mapping unit relevant to the. VM system is a system page. However, the system page
size is not necessarily related to the block sizes that a file system implementation might use. While we

8 Such instructions are highly specialized and the standard compilers never generate them.
9 We have taken advantage of this and have implemented several interesting vnode object managers that are nothing

like typical file systems.

Vol 9 No 3 52 AUUGN

could have implemented a new file system type that used blocks that were the same size as a system page,
and only supported file systems that had this attribute, we did not feel this was an acceptable approach. We
needed to support existing file systems with widely varying block size. We also did not feel that it was
appropriate to use only one system page size across a large range of machines of varying memory size and
performance. We decided it was best to push the handling of block size issues into each file system imple-
mentation, since the issues would vary greatly depending on the file system type.

The smallest allocatable file system block is potentially smaller than the system page size, while the
largest file system block may be much larger than the system page size. The vnode object manager must
initialize each page for a file to the proper contents. It may do this by reading a single block, multiple
blocks, or possibly part of a block, as necessary. If the size of the file is not a multiple of the system page
size, the vnode object manager must handle zeroing the remainder of the page past the end of the file.

Using a logical cache doesn’t come without some cost. When trying to write a page back to the file
system device, the VOP_PUTPAGE routine (discussed below) may need to map the logical page number
within the object to a physical block number, or perhaps to a list of physical block numbers. If the file
system-specific information needed to perform the mapping function is not present in memory, then a read
operation may be required to get it. This complicates the work the page daemon must do when writing
back a dirty page. File system implementations need to be careful to prevent the page daemon from
deadlocking waiting to allocate a page needed for a bmap-like operation while trying to push out a dirty
page when there are no free pages available.

7.2. vnotle Interface Changes
We defined three new vnode operations for dealing with the new abstractions of mappings in address

spaces and pages. These new vnode operations replaced ones that dealt with the old buffer cache and the
4.2BSD-based VM system [2]. The primary responsibility of the vnode page operations is to fill and drain
physical pages (page-in and page-out). It also provides an opportunity for the managers of particular
objects to map the page abstractions to the representation used by the object being mapped.

The VOP_MAP() routine is used by the mmap system call and is responsible for handling file system
dependent argument checking, as well as setting up the requested mapping. After checking parameters it
uses two address space operations to do most of the work. Any mappings in the address range specified in
the mmap system call are first removed by using the as_unmap 0 routine. Then the as_map 0 routine
establishes the new mapping in the given address space by calling the segment driver selected by the vnode
object manager.

The VOP_GETPAGE0 routine is responsible for returning a list of pages from a range of a vnode. It
typically performs a page lookup operation to see if the pages are in memory. If the desired pages are not
present, the routine does everything needed to read them in and initialize them. It has the opportunity to
perform operations appropriate to the underlying vnode object on each fault, such as updating the reference
time or performing validity checks on cached pages.

As an optimization, the VOP_GETPAGE0 routine can return extra pages in addition to the ones
requested. This is appropriate when a physical read operation is needed to initialize the pages and the
vnode object manager tales to perform, the I/O operation using a size optimal for the particular object.
Before this is done the segment driver is consulted, using a "kluster" segment function, so that the seg-
ment driver has the opportunity to influence the vnode object manager’s decisions. The
VOP_GETPAGE0 routine also handles read-ahead if it detects a sequential access pattern on the vnode. It
uses the same segment kluster function to verify that the segment driver believes that it would be
worthwhile to perform the read-ahead operation. The I/O klustering and read-ahead conditions allow both
the vnode object manager and the segment driver controlling a mapping onto this object to have control
over how these conditions are handled. Thus, for these conditions we have set up our object-oriented inter-
faces to allow distributed control among different abstractions that have different pieces of knowledge
about a particular problem. The vnode object manager has knowledge about preferred I/O size and refer-
ence patterns to the underlying object, whereas the segment driver has the knowledge about the view esta-
blished to this object and may have advice passed in from above the address space regarding the expected
reference pattern to the virtual address space.

AUUGN 53 Vol 9 No 3

The other new vnode operation for page management is VOP_PUTPAGE0. This operation is the
complement of VOP_GETPAGE0 and handles writing back potentially dirty pages. A flags parameter
controls whether the write back operation is performed asynchronously and whether the pages should be
invalidated after being written back. ~

The VOP_GETPAGE0 and VOP_PUTPAGE0 interfaces deal with offsets and pages in the logical
file. No information about the physical layout of the file is visible above the vnode interface. This means
that the work of translating from logical blocks to physical disk blocks (the bmap function) is all done
within the vnode routines that implement the VOP_GETPAGE0 and VOP_PUTPAGE0 interfaces. This
is a clean and logical separation of the file object abstractions from the VM abstractions and contrasts with
the old 4.2BSD-based implementation where the physical locations of file system blocks appeared in VM
data structures.

8. UFS File System Rework

Another difficult issue pertinent to the conversion to a memory-mapped, page-based system is how to
convert existing file systems. The most notable of these in SunOS is the 4.2BSD file system [8], which is
known in SunOS as the UNIX File System (UFS). The relevant characteristics of this file system type
include support for two different blocking sizes (a large basic block size for speed, and a smaller fragment
size to avoid excessive disk waste), the ability to have unallocated blocks ("holes") in the middle of a file
which read back as zeroes, and the need to bmap from logical blocks in the file to physical disk blocks.

8.1. Sparse UFS File Management

ufs_getpage 0 is the UFS routine that implements the VOP_GETPAGE0 interface. When a fault
occurs on a UFS file, the segment driver fault routine calls this routine, passing it the type of the attempted
access (e.g., read or write access). It uses this access type information to determine what to do if the
requested page corresponds to an as yet unallocated section of a sparse file. If a write access to one of
these holes in the file is attempted, ufs_getpage 0 will attempt to allocate the needed block(s) of file system
storage. If the allocation fails because there is no more space available in the file system, or the user pro-
cess has exceeded its disk quota limit, ufs_getpage 0 returns the error back to the calling procedure which
then propagates back to the caller of address space fault routine.

When ufs_getpage 0 handles a read access to a page that does not have all its disk blocks allocated, it
zeroes out the part of the page that is not backed by an allocated disk block and arranges for the segment
driver requesting the page to establish a read-only translation to it. Thus no allocation is done when a pro-
cess tales to read a hole from a UFS file. However, an attempted write access to such a page causes a pro-
tection fault and ufs_getpage() can perform the needed file system block allocation as previously
described.

8.2. UFS File Times
Another set of problems resulted from handling the file access and modified times. The obvious way

to handle this problem is to simply update the access time in ufs_getpage 0 any time a page is requested
and to update the modification time in ufs_putpage 0 any time a dirty page is written back. However, this
approach has some problems.

The first problem is that the UFS implementation has never marked the access time when doing a
write to the filel°. The second problem is related to getting the correct modification time when writing a
fi!e. When doing a write (2) system call, the file is marked with the current time. When dirty pages created
by the write operation are actually pushed back to backing store in ufs_putpage 0, we don’t want to over-
ride the modification time already stored in the inode 11.

To solve these problems, inode flags are set in the "upper layers" of the UFS code (e.g., when doing
a file read or write operation) and examined in the "lower layers" of the UFS code (ufs_getpageO and
ufs..putpageO), ufs_getpage 0 examines the inode flags to determine whether to update the inode’s access

The "read" that is sometimes needed to perform a write operation never causes the file’s access time to be updated.
The inode is the file system private rhode information used by the UFS file system [2].

Vol 9 No 3 54 AUUGN

time based on whether a read or write operation is currently in progress, ufs_putpage 0 can use the inode
flags to determine whether it needs to update the inode’s modification time based on whether the
modification time has been set since the last time the inode was written back to disk.

8.3. UFS Control Information
Another difficult issue related to the UFS file system and the VM system is dealing with the control

information that the vnode driver uses to manage the logical file. For the UFS implementation, the control
information consists of the inodes, indirect blocks, cylinder groups, and super blocks. The control infor-
mation is not part of the logical file and thus the control information still needs to be named by the block
device offsets, not the logical file offsets. To provide the greatest flexibility we decided to retain the old
buffer cache code with certain modifications for optional use by file system implementations. The biggest
driving force behind this is that we did not want to rely on the system page size being smaller than or equal
to the size of control information boundaries for all file system implementations. Other reasons for main-
taining parts of the old buffer cache code included some compatibility issues for customer written drivers
and file systems. In current versions of SunOS, what’s left of the old buffer cache is used strictly for UFS
control buffers. We did improve the old buffer code so that buffers are allocated and freed dynamically. If
no file system types choose to use the old buffer cache code (e.g., a diskless system), then no physical
memory will be allocated to this pool. When the buffer cache is being used (e.g., for control information
for UFS file systems), memory allocated to the buffer pool will be freed when demand for these system
resources decreases.

9. System Changes
With the conversion to the new VM system, many closely related parts of the SunOS kernel required

change as well. For the most part time constraints persuaded us to retain the old algorithms and policies.

9.1. Paging
The use of the global clock replacement algorithm implemented in 4.2BSD and extended in 4.3BSD

is retained under the new VM system. The "clock hands" now sweep over page structures, calling
hat_pagesync 0 on each eligible page to sync back the reference and modified bits from all the hat transla-
tions to that page. If a dirty page needs to be written back, the page daemon uses VOP_PUTPAGE0 to
write back the dirty page.

9.2. Swapping
We retained the basic notion of "swapping" a process. Under the new VM system there is much

more sharing going on than was present in 4.2BSD where the only sharing was done explicitly via the text
table. Now a process’s address space may have several shared mappings, making it more difficult to
understand the memory demands for an address space. This fact is made more obvious with the use of
shared libraries [9, 10].

The address space provides an address space swap out operation as__swapoutO which the SunOS
kernel uses when swapping out a process. This procedure handles writing back dirty pages that the as
maps and that no longer have any MMU translations after all the resources for the as being swapped are
freed. The as swapout 0 operation returns the number of bytes actually freed by the swap out operation.
The swapper s~ves this value as a working set estimate12, using it later to determine when enough memory
has become available to swap the process back in. Also written back on a process swap out operation is the
process’s user area, which is set up to look like anonymous memory pages.

The as and segment structures used to describe the machine independent mappings of the address
space for the process are currently not swapped out with the process since we don’t yet have the needed
support in the kernel dynamic memory allocator. This differs from the 4.2BSD VM implementation where
the page tables used to describe the address space are written back as part of the swap out operation.

Unfortunately, a poor one; this is an opportunity for future improvement.

AUUGN 55 Vol 9 No 3

9.3. System Calls

We rewrote many traditional UNIX system calls to manipulate the process’s user address space.
These calls include fork, exec, brk, and ptrace. For example, the fork system call uses an address space
duplication operation. An exec system call destroys the old address space. For a demand paged execut-
able it then creates a new address space using mappings to the executable file. For further discussion on
how these system calls were implemented as address space operations see [1].

Memory management related system calls based on the original 4.2BSD specification [11] that were
implemented include mmap, munmap, mprotect, madvise, and mincore. In addition, the msync system
call was defined and implemented. For further discussion on these system calls see [1].

9.4. User Area

The UNIX user area is typically used to hold the process’s supervisor state stack and other per-
process information that is needed only when the process is in core. Currently the user area for a SunOS
UNIX process is still at a fixed virtual address as is done with most traditional UNIX systems. However, the
user area is specially managed so context switching can be done as quickly as possible using a fixed virtual
address. There are several reasons why we want to convert to a scheme where the user areas are at dif-
ferent virtual addresses in the kemel’s address space. Among them are faster context switching13, better
support for multi-threaded address spaces, and a more uniform treatment of kernel memory. In particular,
we are moving toward a seg_u driver that can be used to manage a chunk of kernel virtual memory for use
as u-areas.

10. Performance

A project goal for the new VM work was to provide more functionality without degrading perfor-
mance. However, we have found that certain benchmarks show substantial performance improvements
because of the much larger cache available for I/O operations. There is still much that can be done to the
system as a whole by taking advantage of the new facilities.

Table 2 shows some benchmarks that highlight the effects of the new VM system and dynamically
linked shared libraries [9, 10] over SunOS Release 3.2. Dynamic linking refers to delaying the final link
edit process until run time. The traditional UNIX model is based on static linking in which executable pro-
grams are completely bound to all their libraries routines at program link time using/d (1).

Running a new VM kernel with same 3.2 binaries clearly shows that the new VM system and its
associated file system changes has a positive performance impact. The effect of the larger system caching
effects can be seen in the read times.

One way that the system uses the new VM architecture is a dynamically linked shared library facil-
ity. The fork and exec benchmarks show that the flexibility provided by this facility is not free. However,
the benefits of the VM architecture that provides copy-on-write facilities more than compensate for the cost
of duplicating mappings to shared libraries in the fork benchmark. The exec benchmark is the only test
that showed performance degradation from dynamically linked executables over statically linked execut-
ables run with a SunOS Release 3.2 kernel. These numbers show that the startup cost associated with
dynamically linking at run time is currently about 74 milliseconds. These results are preliminary and more
work will be undertaken to streamline startup costs for dynamically linked executables. We feel that the
added functionality provided by the dynamic binding facilities more than offsets the performance loss for
programs dominated by start up costs.

11. Future Work

The largest remaining task is to incorporate better resource control policies so that the system can
make more intelligent decisions based on increased system knowledge. We plan to investigate new
management policies for page replacement and for better integration of memory and processor scheduling.
We believe that the VM abstractions already devised will provide the hooks needed to do this. SunOS

13 This is especially true with a virtual address cache and a fixed user area virtual address, since the old user area must
be flushed before the mapping to the new user area at the same virtual address can be established.

Vol 9 No 3 56 AUUGN

Kernel Tested SunOS 3.2 Pre-release New VM Pre-release New VM

Binaries Executed 3.2 3.2 Dynamically Linked

Tests Performed Time (secs) Time (secs) Time (secs)

exec 112k program 100 times 7.3 3.3 10.7

fork 112k program 200 times 8.8 4.4 7.7

Recursive stat of 125 directories 4.9 1.4 1.3

Page out 1 Mb to swap space 2.0 2.0 0.8

Page in 1 Mb from swap space 4.6 3.8 3.5

Demand page in 1 Mb executable 1.7 0.9 0.8

Sequentially read 1 Mb file (lst time) 1.6 1.5 1.5

Sequentially read 1 Mb file (2nd time) 1.6 0.4 0.4

Random read of 1 Mb file 5.7 0.7 0.8

Create and delete 100 tmp files 6.3 4.7 4.7

Table 2
System Benchmark Tests on a Sun-3/160

with 4 Megabytes of Memory and an Eagle Disk

kernel ports to different uniprocessor and multiprocessor machine bases will provide further understanding
of the usability of the abstractions and our success in isolating machine dependencies.

Other future work involves taking advantage of the foundation established with the new VM archi-
tecture -- both at the kernel and user level. Specialized segment drivers can be used at the kernel level to
more elegantly support various unique hardware devices and to support new functionality such as map-
pings to other address spaces. Shared libraries are an example of the usefulness of mapped files at the user
level. We expect to find the features of the new VM system used in various new facilities yet to be ima-
gined. As new uses for the VM system are better understood, we can refine and complete the interfaces
that have not yet been fully defined.

12o Conclusions
From our experience in implementing the new VM system, we draw the following conclusions.

Object oriented programming works. The design of the new VM system was done using
object-oriented techniques. This provided a coherent framework in which we could view the
system.

® The balance of responsibility is important. When partitioning a problem amongst different
abstractions, it is critical that the system be structured so that each abstraction has the right
level of responsibility. When an abstraction gets control at the right time it has the opportunity
to recognize and act on events that make sense for that abstraction.

~ The layering in the new VM system is effective. For example, the hat layer provides all the
machine dependent MMU translation control and has been found to be easily ported to new
hardware architectures. The use of segment drivers has proven to make the system more
extensible.

® Performance did not suffer. Although the new VM system provides considerably more func-
tionality, it did so without any performance loss. Performance often improved because the
new VM system better uses memory resources as a cache. By carefully designing the abstrac-
tions with optimizations for critical functions, we reduced the cost sometimes associated with
object-oriented techniques to provide clean abstractions that are sdll efficienL

AUUGN 57 Vol 9 No 3

13. Acknowledgements

I would like to thank Rob Gingell, Dave Labuda, Bill Shannon, and especially Glenn Skinner, for
reviewing this paper and helping to make it presentable and for their work with the new VM system. And
most of all I would like to give a big thank you to my understanding wife Laurel, who continued to tolerate
me during the countless extra hours I put into this project.

14. References

[1] Gingell, R. A., J. P. Moran, W. A. Shannon, "Virtual Memory Architecture in SunOS", Sum-
mer Conference Proceedings, Phoenix 1987, USENIX Association, 1987.

[2] Kleiman, S. R., "Vnodes: An Architecture for Multiple File System Types in Sun UNIX",
Summer Conference Proceedings, Atlanta 1986, USENIX Association, 1986.

[3] Stroustrup, B., The C++ Programming Language, Addison-Wesley Publishing Company,
1986.

[10]

[11]

[4] Rashid, R., A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, J. Chew,
"Machine-Independent Virtual Memory Management for Paged Uniprocessor and Multipro-
cessor Architectures", Operating Systems Review, Volume 21, No. 4, October, 1987.

[5] Kepecs, J. H., "Lightweight Processes for UNIX Implementation and Applications", Summer
Conference Proceedings, Portland 1985, USENIX Association, 1985.

[6] Sun Microsystems Inc., Sun-3 Architecture: A Sun Technical Report, 1985.
[7] Cheng, R., "Virtual Address Cache in UNIX", Summer Conference Proceedings, Phoenix

1987, USENIX Association, 1987.
[8] McKusick, M. K., W. N. Joy, S. J. Leffler, R. S. Fabry, "A Fast File System for UNIX",

Transactions on Computer Systems, Volume 2, No. 3, August, 1984.
[9] Gingell, R. A., M. Lee, X. T. Dang, M. S. Weeks, "Shared Libraries in SunOS", Summer

Conference Proceedings, Phoenix 1987, USENIX Association, 1987.
Gingell, R. A., "Evolution of the SunOS Programming Environment", Spring Conference
Proceedings, London 1988, EUUG, 1988.

Joy, W. N., R. S. Fabry, S. J. Leffler, M. K. McKusick, 4.2BSD System Manual, Computer
Systems Research Group, Computer Science Division, University of California, Berkeley,
1983.

Vol 9 No 3 58 AUUGN

;login"
The USENIX Association Newsletter

Volume 13, Number 3 May/June 1988

CONTENTS

Results of the Election for the USENIX Association Board of Directors3

Know Your Board and Staff ...4
5San Francisco Conference June 20-24 ..
5Best Student Paper ...

Fifth Annual Computer GO Tournament ..5

1988-89 USENIX Scholarship Winner ...5

Call for Papers: UNIX Security Workshop ..6

Call for Papers: Workshop on UNIX and Supercomputers ..7
8Call for Papers: C++ Conference ..

Call for Papers: Workshop on Large Installation Systems Administration9

EUUG Autumn Conference ..10

Addendum to the Computer Graphics Workshop Proceedings .. 10
11LOCK/ix: An Implementation of UNIX for the LOCK TCB ...

Mark A. Schaffer and Geoff Walsh
An Update on UNIX Standards Activities ... 25

Shane P. McCarron
Additional Corrigenda to the 1987 Graphics Proceedings ..29

Summary of the Board of Directors’ Meeting Dallas, TX, February 7, 8 & 11, 198830
31

Financial Statements for the USENIX Association for Fiscal Year 1987 32
Future Events ..
Publications Available ..35

4.3BSD Manuals ...36

4.3BSD Manual Reproduction Authorization and Order Form37

Local User Groups ..38

The closing date for submissions for the next issue of,’login: is June 24, 1988

THE PROFESSIONAL AND TECHNICAL
UNIX® ASSOCIATION

Vol 9 No 3
AUUGN 59

;login:

Know Your Board and Staff

Alan G. Nemeth
President

Deborah K. Scherrer
Vice President

Stephen C. Johnson
Treasurer

Rob Kolstad
Secretary

M. Kirk McKusick Sharon Murrel Michael O’Dell John S. Quarterman

Peter H. Salus
Executive Director

Judy DesHarnais
Conference Coordinator

Betty M~dden

John Donnelly
Tutorial/Exhibit Manager

Office Manager
Emma Reed

Membership Secretary

Vol 9 No 3 60 AUUGN

;login:

Call for Papers
UNIX Security Workshop

Marriott Hotel
Portland, Oregon

August 29-30, 1988

Matt Bishop is chairman for the UNIX
Security Workshop to be held in Portland, OR,
on Monday and Tuesday, August 29th and
30th, 1988. This workshop will bring together
researchers in computer security dealing with
UNIX and system administrators trying to use
UNIX in environments where protection and
security are of vital importance. It is believed
these people battle many of the same problems
repeatedly and can share their unique solu-
tions to some problems in order to avoid
duplication of effort in making UNIX secure
enough for their needs. It is intended that
each participant will present briefly unique
attributes of his/her environment and/or
research and contribute a short (five minute)
discussion (and paper) detailing some solution
from their environment or work.

Some topics to be considered include:
password security (password file integrity,
enforcing choice of a safe password, spotting
and handling crackers), network security
(problems arising from logins over an
unprotected ethernet, containing a break-in to
one machine in a networked environment), file
system security (auditing packages, security in
an NFS environment), new designs to obtain
C-level (or better) certification, making existing
UNIX systems more secure, and locating and
fixing UNIX security problems.

Workshop Format

This gathering will follow a "workshop"
format rather than a "paper presentation"
format. Each participant submits (electroni-
cally, to the address below) a one or two page
single-spaced summary describing a solution to
some problem from the topics above (or some-
thing equally interesting/important). Use the
first paragraph to describe the properties of the
environment and anything that makes it
unique (e.g., distributed, large, supercomput-
ers, mixed-vendors). Follow with a description
of the problem and a description., of the solu-
tion (detailed enough that fellow researchers
and administrators can implement or use it).
Also, please include with your submission a set
of five (or so) topics that you’d like to hear
about. It is possible that some participants
will not present their papers at this first
workshop.

The workshop chairman will collate the
papers to schedule sessions which have
appropriate audiences. It is anticipated that
some sessions will include all 60-100
participants; some may require breaking into
smaller groups. Send your submissions to
Matt Bishop by noon EDT July 1, 1988.

For further details on the workshop:

Matt Bishop
Dept. of Mathematics and Computer Science
Bradley Hall
Dartmouth College
Hanover, NH 03755

(603) 646-3267
(ihnp4,decvax) ! dartv ax !bear!bishop
bishop%bear.dartmouth.edu@relay.cs.net

AUUGN 61 Vol 9 No 3

;login:

Call for Papers
Workshop on UNIX and Supercomputers

Westin William Penn Hotel
Pittsburgh, Pennsylvania

September 26-27, 1988

A large number of supercomputers are now or will in the future be running UNIX as
their primary operating system. This is the first workshop to consider the general problems
of running UNIX on supercomputers, and will cover topics both practical and abstract.
Areas of specific interest include but are not limited to:

Systems administration
Archiving
Scheduling
File systems
Networking and network protocols
Job batching systems
Monitoring performance/parallelism
Programming languages and environments
Fast file I/O
Shared memory management
IPC
Very large files
Checkpoint-restart

The workshop will include both shorter presentations and full-length papers, and there
will also be tours of Pittsburgh Supercomputing Center and Westinghouse Energy Center
facilities and a reception at the Pittsburgh Supercomputing Center. Workshop proceedings
will be available at the Workshop.

If you are interested in presenting either a full paper or a brief discussion of your
current work, please send an abstract of your paper or presentation to Melinda Shore by
July 15, 1988. If you are sending your submission by US Mail, please send three copies. All
submissions will be acknowledged.

Program Co-chairs:

Lori Grob
NYU Ultracomputer Research Lab
715 Broadway, 10th Floor
New York, NY 10003

(212) 998-3339
grob@lori.ultra.nyu.edu

Melinda Shore
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh, PA 15213

(412) 268-5125
shore@reason.psc.edu

Vol 9 No 3 62 AUUGN

;login:

Call for Papers
C+ + Conference

Denver, Colorado, October 17-21, 1988

USENIX is pleased to host its first full
C++ conference in Denver, Colorado, Monday
through Thursday, October 17-20. A one-day
limited-enrollment implementor’s workshop
will follow the conference on Friday, October
21.

Papers are solicited on all aspects of C++,
including:

applications
libraries
new or improved implementations
programming environments
case studies

We intend this conference to be interest-
ing to a broad range of C++ users and poten-
tial users. Even if you have never written a
C++ program, you will probably be able to
learn enough from the tutorials to follow the
technical sessions.

Tutorials, Monday and Tuesday

The tutorial program is ideal for people
who have been thinking about using C++ but
haven’t had the opportunity to learn it. In
addition, we expect to cover selected advanced
topics for people who are already using C+ +.

Please contact the program chair if you
are interested in giving a tutorial or have a
topic you would particularly like to see
covered.

Technical sessions, Wednesday and Thursday

One characteristic of C++ that stands out
is the diversity of its applications and users.
They range from microcomputers to large
systems, from graphics and databases to real-
time process control, from single-programmer
efforts to large projects.

The technical sessions will present a
,cross-section of this diverse and rapidly grow-
ing community.

Implementor’s Workshop, Friday

This small workshop is intended for peo-
ple who are actively involved in C++ imple-
mentation. The workshop fee covers hotel

accommodations for Thursday and Friday
nights, meals through Friday lunch, and
round-trip transportation leaving Denver after
the main technical sessions and returning
Saturday morning.

The workshop is primarily for speakers at
this and last year’s C++ meetings. If space
permits, a few others will be admitted. If you
don’t want to speak at the conference, but
wish to attend the workshop, let us know and
submit a paper or abstract of your relevant
work just as you would if you were interested
in speaking at the conference. Details about
the workshop will be sent with acceptance
notices.

Program Committee

Andrew Koenig, AT&T, chair

Keith Gorlen, National Institutes of Health
Mark Linton, Stanford University
Richard Myers, Apple Computer
Peggy Quinn, AT&T
Mark Rafter, University of Warwick
Michael Tiemann, MCC

Extended abstracts (2-4 pages) or papers
(9-12 pages) must be received, either electroni-
cally (preferred) or on paper, by Tuesday, June
14. Authors will be notified of acceptance by
August 1 and must submit a full paper
electronically (preferred) or in camera-ready
form by August 30.

Send all submissions to Peter H. Salus at
usenix.tpeter or the Association office.

Direct all queries about the technical
program to:

Andrew Koenig
Room 4N-R 12
AT&T Bell Laboratories
184 Liberty Corner Road
Warren, NJ 07060-0908

ark@europa.att.com or (attmail,research) !ark
+1 201 580 4127 (FAX)
+1 201 580 4883 (last resort)

AUUGN 63 Vol 9 No 3

;login:

Call for Papers
Workshop on Large Installation Systems Administration

Monterey, California

November 17-18, 1988

In light of last year’s successful workshop on Large Installation Systems Administration,
Alix Vasilatos will again be chairing a workshop on this subject in Monterey, CA on Thurs-
day and Friday, November 17th and 18th, 1988. There is demonstrable benefit in bringing
together system administrators of sites with 100 or more users (on one or more processors)
to compare notes on solutions that they have found for a variety of common problems.
These include but are not limited to:

Large file systems (dumps, networked file systems)
Password file administration
Large mail system administration
USENET/News/Notes administration
Heterogeneous environments (mixed vendor and/or version)
Load control and batch systems
Monitoring tools
Software release to multiple systems
Output device management

We are particularly interested in technical solutions to problems involving changes
which directly affect users.

The workshop will focus on short papers and presentations. Please submit (electroni-
cally, to alix@athena.MIT.EDU) a one or two page single-spaced summary describing the
solution to a problem. Include a description of the unique characteristics of the site, an out-
line of the problem, and a description of the solution (detailed enough that fellow adminis-
trators can implement it). Workshop proceedings will be available at the workshop.

The deadline for submissions is September 15, 1988. For further details about the
workshop, contact:

Alix Vasilatos
MIT Project Athena
E40-357
1 Amherst Street
Cambridge, MA 02139

alix@athena.MIT.EDU
(617) 253-0121

For details about registration, contact the USENIX Conference Office.

Vol 9 No 3 64 AUUGN

;login:

EUUG Autumn Conference
Portugal

October 3-7, 1988

The Autumn ’88 European UNIX systems User Group Technical Conference will be
held in southern Portugal. Technical tutorials will be held on October 3 & 4, followed by
the three day conference.

The theme of the conference is "New Directions for UNIX." Papers are expected on a
wide variety of topics.

For further information about this and future EUUG events, contact the Secretariat.

Secretariat
EUUG
Owles Hall
Owles Lane
Buntingford, Hens. SG9 9PL UK

Phone: (+44) 763 73039
Fax: (+44) 763 73255 (G2)
Email: euug@inset.uucp

Tutorial Officer
Neil Todd
IST
60 Albert Court
Prince Consort Road
London SW7 2BH UK
Phone: (+44) 1 581 8155
Fax: (+44) 1 581 5147 (G3)
Telex: 928476 ISTECH G
Email: neiI@ist.co.uk

Programme Chair
Peter Collinson
Computing Laboratory
University of Kent
Canterbury, Kent CT2 7NF UK

Phone: (+44) 227 764000, x7619
Email: pc@ukc.ac.uk

AUUGN 65 Vol 9 No 3

;login:

[This paper was inadvertently omitted from the Winter 1988 Conference Proceedings -PITS]

LOCK/ix: An Implementation of UNIX for the LOCK TCB

Mark A. Schaffer

Honeywell
Secure Computing Technology Center
2855 Anthony Lane South - Suite 130

Minneapolis, MN 55418
(612) 782-7134

Geoff Walsh

R&D Associates
4640 Admiralty Way

Marina del Rey, CA 90295
(213) 822-1715

ABSTRACT

The LOgical Coprocessing Kernel (LOCK) is a Trusted Computing Base (TCB) that is
designed to meet and exceed the requirements for a Class A1 secure system. This paper
describes the results of a study that determined how to port the UNIX System V Operating
System to the LOCK TCB, while maintaining maximum compatibility with the System V
Interface Definition (SVID) [SVID86].

1. Background of the Problem

Over the years, UNIX has gained
widespread acceptance as the de facto standard
Operating System (OS) within the U.S.
Government and private industry. During the
same time that UNIX has gained in popularity,
a demand for secure computing systems has
developed. Recently, the demands for these
two technologies have created a demand for
secure UNIX systems within the user
community.

security has been provided by redesigning the
OS. These purely software approaches to pro-
viding multi-level security have four primary
disadvantages:

I. DECREASED ASSURANCE since a
software malfunction could cause total security
failure,

2. DECREASED PERFORMANCE to usually
unacceptable levels because of the high over-
head incurred by performing the security
access checks in software,

To meet the demand for secure UNIX
systems, we decided to port UNIX to LOCK
rather than develop a new OS. This is very
appealing from a practical point of view
because a large amount of portable UNIX
applications already exists.

1.1. Background of the Solution

Traditional approaches to providing
Multi-Level Secure (MLS) computing systems
have emphasized implementing software
security kernels that run in the target
processor’s privileged mode. In some cases,

3. LOSS OF EXISTING APPLICATION
SOFTWARE because of the extensive redesign
of the operating system, and

4. INABILITY TO FUNCTIONALLY
ENHANCE the OS without requiring expensive
and time-consuming re-verification and
revaluation [SAYD87].

The LOCK TCB is a MLS computing system
currently being prototyped at Honeywell
Secure Computing Technology Center. It has
been designed to meet and exceed the require-
ments for a Class A I system as defined in the
DoD Trusted Computer System Evaluation
Criteria (the Orange Book) [TCSEC85].

This effort has been supported by National Computer Security Center contract MDA904-87-C-6011.

Vol 9 No 3 66 AUUGN

;login:

LOCK is the third phase of a continuing
project previously called the Secure Ada
Target (SAT), which was started by Honeywell
in 1982. The first phase of the SAT program
(SAT-0) resulted in a high-level requirements
specification [I-lONE83]. The second phase
(SAT-I) resulted in an intermediate
specification [HONE86]. The third phase
(SAT-II), renamed LOCK, will result in a
detailed design specification and MLS mini-
computer prototype in 1990 [SAYD87].

I.I.1. The LOCK Solution to Multi-Level
Security

The LOCK system takes a hardware-
oriented approach to providing a MLS comput-
ing system which should enable the system to
overcome the disadvantages associated with
purely software approaches.

The security policy of the system is
enforced by a physically separate, multi-
processor, coprocessing unit called the
System-Independent, Domain-Enforcing,
Assured, Reference Monitor (SIDEARM). The
SIDEARM has its own processors, memory,
and mass storage. All security-related data is
stored on the SIDEARM mass storage unit. All
access decisions and computations are
performed by the SIDEARM.

The physical separation of the protection-
critical from .the non protection-critical ele-
ments in the LOCK system makes it physically
impossible for a user process to access or
tamper with the SIDEARM firmware or its
data, giving the LOCK system a high degree of
assurance.

The host processor provides TCB-
mediated resource management and comput-
ing power for user applications. Since it
performs no security access checks, the
performance degradation imposed on the
system by the security mechanisms should be
minimal.

The OS for LOCK will not be responsible
for enforcing the security policy of the system,
and therefore, it will not be part of the TCB
and not have to be verified or evaluated when
it is updated.

Since UNIX is not part of the TCB, we will
not have to modify it to provide MLS features.
These capabilities are provided by the underly-
ing TCB. Because of this, we should be able to
maintain a great deal of compatibility with the
SVID and, hence, with the existing base of
applications.

1.2. The Study Goals and Results

During 1987, we performed a study of the
UNIX kernel to determine if it could be
(relatively easily) ported to the LOCK system,
and if so, determine what the effect on the
interfaces be. To enable us to determine if it
would be worthwhile to port UNIX, we
established the following research goals:

¯ The number of modifications to the UNIX
kernel should not be extensive.

¯ The TCB could not be modified to "tailor"
it to running UNIX.

¯ UNIX had to be able to service many
concurrent users running at different security
levels without becoming part of the TCB.

¯ The file system had to be able to manage
data at different security leveIs requiring
trusted servers and without introducing covert
channels.

° The resultant system must maintain a
maximum compatibility with the SVID.

The results of our study indicate that these
goals can be met. The application-visible
interface to the LOCK implementation of
UNIX (LOCK/ix) is nearly identical to that of a
standard implementation of UNIX System V.
The security policy enforced by the underlying
LOCK TCB should have little, if any, impact
on the majority of existing UNIX applications.

We feel one major result of the study is
our approach for implementing an untrusted
file system that will manage the multi-level
data. Internally, our file system implementa-
tion will be quite different than in a standard
UNIX kernel. However, users and applications
should not notice the differences.

AUUGN 67 Vol 9 No 3

;login:

1.3. Overview of the LOCK Architecture

The LOCK system consists of two comput-
ing units: the SIDEARM and the host proces-
sor. The majority of the TCB functionality
resides in the SIDEARM, whose firmware
coordinates with a small (TCB) software kernel
(the Supervisor) that runs on the host proces-
sor.

The resultant TCB provides low-level
services for subject, object, and device
management. The LOCK TCB is restricted, for
reasons of verifiability, to minimum
functionality. It is intended to support, not
replace, traditional OS services, such as a
hierarchical file system.

The Supervisor (see Figure 1) functions as
a low-level resource manager, and provides an
application visible interface to the TCB’s
capabilities. The Kernel Extensions are a set
of verified, security-related utilities whose
capabilities cannot be providedby the
SIDEARM in a generic fashion.

1.3.1. The SIDEARM

The SIDEARM implements what is called
the Reference Monitor (RM) concept (see Fig-
ure 2). In general, an RM can be thought of as
a guard between people and the information
they would like to access. There are three
important criteria for an RM:

1. It must always be invoked.

2. It must be verified to be correct (i.e., prop-
erly enforce the security policy of the system).

3. It must be tamperproof.

The LOCK hardware-oriented approach (see
Figure 3) provides a good match to the RM
model [SAYD87].

When the system is booted, the SIDEARM
is booted and initialized before the host
processor begins to run and continues to run
until the system is shut down. All security-
related data and most of the security
functionality is implemented in the SIDEARM,
thus making it possible to verify that it is
correct. And finally, since the SIDEARM is
physically separate (see Figure 4) and main-
tains its own memory, there is no (physical)
way for a user process to tamper with its

firmware or data. It is unbypassable since it is
the SIDEARM, and not the Host processor,
that has exclusive control over the Memory
Management Unit (MMU).

1.3.2. The Host Processor

As mentioned previously, a small software
kernel (which is part of the TCB) runs on the
host processor. This software kernel is
responsible for preserving the security policy
of the system by performing correct, low-level
resource management. This software kernel,
called the Supervisor, consists of code that
runs in both privileged and user mode of the
host processor.

The portion of the Supervisor that runs in
the privileged mode is only that code which is
forced there by the hardware, such as the
interrupt handlers. Other code, such as the
subject scheduler, runs in the processor’s user
mode.

All code that runs in privileged mode will
be placed in Read-Only Memory (ROM)) that
is addressable only when the processor is run-
ning in privileged mode, thereby making it
tamperproof. Other software, such as the OS,
will run in user mode on the host processor.

2. Overview of the LOCK Security
Model

The LOCK TCB enforces a MLS policy.
The policy is enforced by mediating access
between subjects, the active entities of the
system, and objects, the inactive entities of the
system.

To enforce this policy, the SIDEARM
maintains a large database called the Global
Object Table (GOT). Each time a subject or
object is created, it is assigned a unique
identifier (UID). A GOT entry is then created
for the new entity where the UID is used as the
primary key. A GOT entry will contain addi-
tional information, such as the level and the
creator.

The LOCK TCB provides Discretionary
Access Control (DAC) and Mandatory Access
Control (MAC) mechanisms to enforce the
system’s security policy. In order for a subject
to be granted access to an object, the request

Vol 9 No 3 68 AUUGN

;login:

must be allowed by both the DAC and MAC
mechanisms of the system.

!

2.1. Discretionary Access Control Policy

A DAC policy is discretionary because its
administration is up to the discretion of the
system users. The LOCK TCB provides Access
Control Lists (ACLs) as the mechanisms for
providing DAC.

ACLs allow a user to specify, for each
named object he owns, a list of named
individuals and a list of groups of named
individuals and their respective modes of
access to the object. Additionally, for each
named object a user owns, he may specify a
list of named individuals and a list of groups
of named individuals for which no access to
the object is to be given. The currently
supported modes of discretionary access are
read (r), write (w), execute (x), and null (n).

2.2. Mandatory Access Control Policy

A MAC policy is mandatory because it is
always enforced by the system. Unlike a DAC
policy, the system users have no say in how
the policy is administered. The LOCK MAC
policy is enforced by Labeled Security Protec-
tion and Type Enforcement mechanisms.

2.2.i. Labeled Security Protection

The LOCK TCB enforces Labeled Security
Protection as required by the Orange Book.
The policy is enforced over all system
resources (e.g., subjects, objects, and I/O
devices) that are directly or indirectly accessi-
ble by subjects external to the TCB.

The LOCK TCB maintains a SIDEARM-
resident data structure that is a partially
ordered set (POSet) of all security levels known
to the system. When a subject and/or object is
created, it is assigned one of the levels from
the POSer. Access is then computed using the
level of the subject requesting access and the
level of the object being accessed in the follow-
ing manner:

¯ To read an object, the level of the subject
must dominate the level of the object (the
Simple Security Property).

¯ To write an object, the level of the subject
must be dominated by the level of the object
(the *-Property).

As used in the rules above, the term
"dominate" means less than or equal to. The
POSer is consulted to determine if one level
dominates another.

2.2.2. Type Enforcement

Type enforcement is a mechanism that is
unique to the LOCK TCB. Not required by the
Orange Book, it is this mechanism that will
allow the LOCK TCB to exceed the Orange
Book Class A I requirements. Type enforce-
ment is based on two attributes:

The domain of execution of a subject

¯ The type of the object a subject is
attempting to access.

A domain is similar in concept to rings in
ringed architecture machines. Unlike rings,
though, there is no hierarchical .relationship
between domains. Moving from one domain
to another does not necessarily imply an
accumulation of increasing system privilege.
Rather, each domain has a set of privileges
different from other domains.

To represent the domains and the
privileges allowed in them, the TCB maintains
a SIDEARM-resident data structure called the
Domain Table. It contains the following infor-
mation:

The UID of the domain

The human-readable name of the domain

list of special privileges

list of domains that can be transitioned
to.

The special permissions that are allowed in
domains are the ability for a subject to take
exception to the DAC and/or the Labeled
Security Protection mechanisms of the system.
Since it is the. type enforcement mechanism
that allows a subject to have these special
privileges, a subject may never take exception
to the type enforcement rules of the system.

When a subject is said to have the ability
to transition to another domain, this means
that it can create another subject in the
domain that is allowed to betransitioned to.

AUUGN 69 Vol 9 No 3

;login:

The domain of execution is an attribute of a
subject that remains constant throughout its
lifetime. In other words, a subject can only
execute in one domain.

All objects have a type associated with
them. The concept of type is similar in nature
to types in high level programming languages.
The TCB restricts operations on objects of
specilic types based on the domain of execu-
tion of the subject attempting the access.

To represent types and the operations
allowed on them, the TCB maintains a
SIDEARM-resident data structure called the
Type Table. It contains the following informa-
tion:

¯The UID of the type

¯The human-readable type name

¯ Allowable object sizes (miriimum and
maximum)

¯ List of access vectors for the type in exist-
ing domains

Default ACL.

The list of access vectors defines all operations
allowed on objects of a specific type for each
domain defined in the Domain Table.

When a subject requests access to (or
attempts to create) an object, the TCB consults
the Domain and Type Tables to determine if
the access, based on the domain of execution
and object type, is allowed.

Both the Domain Table and Type Table
are initialized at sysgen time by the System
Security Officer (SSO) and are inaccessible to
user processes.

As mentioned earlier, type enforcement
can be used to grant special privileges. For
example, it may be necessary to implement an
application that is allowed to downgrade files.
The list of special privileges in the Domain
Table is used to grant such privileges. The list
of access vectors in the Type Table is used to
restrict which object types can be read and
written in the downgrade process.

Type enforcement is also useful for
integrity reasons. For example, the system
may grant subjects running in a system
administration domain read and write access
to objects of type "password file." Subjects

running in the OS domain may be granted only
read access to objects of type password file.
With the Domain and Type Tables established
in this fashion, the system, will prevent
unauthorized modification (integrity) of
objects of the type password file.

The type enforcement mechanism can be
used to support a variety of integrity models
such as the Clark-Wilson [CLARK87] model,
and as describedin [BOEB85], the Biba
[BIBA75] model.

2.3. Subjects

The basic execution (active) entity in
LOCK is the subject. A subject is a process
that executes in a particular security context.
The security context comprises the level of the
subject, the domain of execution, and the user
on whose behalf the subject is executing. In
many ways, a subject is like a UNIX process:
it shares the processor with other subjects
through timeslicing, it has access to a "file
system" that other subjects also have access to,
it can open and operate on "files," and it has
limited capabilities for communicating with
other subjects.

There are some notable differences
between subjects and UNIX processes. There
are no hierarchical parent/child relationships;
each subject is independent of the subject that
created it. For UNIX processes with effective
user IDs of superuser, the entire system is
accessible; there is no corresponding notion of
superuser in the LOCK UNIX world. Under
UNIX, multiple processes can be writing to the
process control terminal simultaneously; LOCK
allows only one subject to perform terminal
I/O at a time.

All subjects have associated with them a
Subject Translation Table (STT). The STT
contains an entry for each object that the
subject has opened (see Figure 5). In LOCK/ix
objects are data files, text segments, data seg-
ments,, stack objects, and kernel level data
structures. The STT is similar in nature to the
UNIX per-user open file table. Each entry in
the STT identifies an object and the current
access that the subject has to it. The STT is
resident in the host processor’s memory and
provides the first level of address translation
for the MMU.

Vol 9 No 3 70 AUUGN

;login:

Subjects within the LOCK system are
characterized by the following:

¯ Each subject is uniquely identified within
the system’s security database (the GOT). A
subject is uniquely identified by the UID the
SIDEARM assigned to it when it was created.

¯ The subject manager within the TCB
maintains an Active Subject Table. The
Active Subject Table contains an entry for
each active subject within the system. Subject
scheduling and multiplexing is performed by
the TCB’s subject manager.

¯ A user subject may execute instructions if
and only if the host processor is operating in
user mode. (Only TCB subjects may operate
when the host processor is in privileged mode.)

User subjects are created as a result of a TCB
Create Subject request. They come into
existence as the result of a user action,
perform their.function, and are terminated by
a TCB Destroy Subject request at some later
time. When a subject is destroyed, the subject
ceases to exist within the system. All objects
allocated by the subject (contained within its
STT) are closed, and all resources (e.g.,
memory) previously allocated to the subject
are released.

2.3.1. Relation to UNIX Virtual
Machines/UNIX Processes

The differences between UNIX processes
and LOCK subjects strongly influenced the way
UNIX processes are represented in LOCK/ix.
To cleanly support UNIX process functionality,
each subject, represents the equivalent of an
abstract UNIX virtual machine.

The LOCK subject has capabilities not
provided by UNIX processes. To support
operating systems built on top of LOCK, as
well as multitasking applications such as an
Ada run-time environment, a subject has a
periodic interrupt, similar to a timeslice
interrupt, available to it. A "beginning
timeslice" signal is sent to all subjects from the
TCB when they begin to execute in a new
timeslice. To take advantage of this feature, a
subject must enable a signal handler, in much
the same way as is done for UNIX signal
handlers. If a subject does not wish to take
advantage of this signal and does not define a
handler for it, the signal is ignored and the

subject is allowed to run without the
knowledge of receipt of the signal.

Unlike .tl!e UNIX signal, handling
mechanism, the LOCK signal handling
mechanism provides its context to the subject
in the form of register, stack pointer, and
program counter values when the signal
occurred. However, there is no way to control
the frequency of this signal. The frequency of
occurrence of this signal is directly related to
the system load.

The use of this feature allows a subject to
perform its own process multiplexing. Each
subject can run its own process (or task)
multiplexing to providemultiprocessing
support within the subject.

2.4. Objects

One of the most unusual features of LOCK
(at least for those accustomed to UNIX) is that
there is no notion of external files or a file
system; instead, there are objects.. Objects are
containers for visible data that reside in the
virtual memory and can be (physically) stored
on disk, tape, or other media such as optical
disk. Every object in the system has a size,
security level, owner, physical location, and
(potentially) an ACL associated with it.

Objects are a generalization of the seg-
mented memory system used by Multics. The
~rCB Open Object operation maps the object
into the virtual address space of the subject
and returns a pointer to a memory address.
Data with an open object can be accessed by
referencing offsets into the object’s memory
range. I/O is performed on objects by modify-
ing the contents of memory addresses in the
open object. One object can be open by multi-
ple subjects simultaneously, with the object
mapped to different virtual addresses in each
subject’s address space.

2.4.1. Relation to UNIX Virtual Memory

All memory that a subject references, ev.en
the subject itself, consists of open objects. The
code and data that a subject executes consists
of several open objects. The virtual memory
space of a subject is the union of open object
virtual addresses. LOCK imposes a limit on
the number of open objects a subject is

AUUGN 71 Vol 9 No 3

;login:

allowed, which is currently 256. The
maximumsize of an object is 16Mbytes.

Disk I/O is performed by LOCK without
explicitly doing I/O. The MMU provides the
mapping between memory references and
modifications and physical I/O. If a piece of
an open object that has been paged out to disk
is referenced, the MMU brings the appropriate
piece of the object into memory. To an appli-
cation, the entire contents of an object appear
to be in memory when an object is opened,
and the contents disappear when the object is
closed. Referencing a memory address that is
not mapped to an open object generates a bus
error. A bus error will be interpreted by the
TCB as an attempt to violate the security
policy of the system and cause the termination
of the offending subject.

LOCK object operations are analogous to
UNIX memory management functions in many
ways. Opening an object is similar to allocat-
ing a region, in order to obtain memory for a
process. Objects can expand and shrink, as
can regions. Open objects are memory regions
associated with each process.

2.4.2. Relation to UNIX File System and
Files

Objects provide the foundation for build-
ing a LOCK file system that will appear to
operate similar to UNIX. However, from a
programming standpoint, object operations are
quite different than file I/O operations.

The LOCK/ix kernel is responsible for pro-
viding the functional bridge between the LOCK
TCB and UNIX applications. LOCK/ix will
need to provide the functionality to support a
UNIX file system on top of LOCK object opera-
tions.

File creation requires that an object be
created and cataloged into the file system in
the proper directory, with the inode table pro-
viding the linkage between physical storage
and external appearance. Open and close
operations logically perform the same function
in both LOCK and UNIX, allowing or remov-
ing file access from the executing process, but
the implementation methods differ. LOCK/ix
will map the UNIX-style access operations into
their LOCK counterparts. UNIX-style I/O
operations will be mapped into open object

references and updates. File deletion removes
a reference to an object from the file system,
and if there are no references remaining, the
object will be deleted.

3. Process Management in LOCK/ix

The UNIX process management services
provide process creation and deletion, program
execution, and synchronization between
related processes. The UNIX model of process
creation, using the fork () operation, enforces
parent-child relationships between processes
and ensures that a child process is initially
created to be an exact copy of its parent. The
UNIX model of program execution, using the
exec () operation, provides for the inheritance
by the new program of part of the environ-
ment of the process that executes the program.

In contrast to UNIX System V, in which
all user processes are managed and
coordinated by a single kernel entity, the
LOCK/ix implementation encapsulates the
management of processes for each LOCK/ix
login session within a single LOCK subject (see
Figure 6). Each LOCK/ix subject contains a
(virtual) instance of the UNIX kernel that
manages only the user processes associated
with its login session. The LOCK/ix kernel is
in reality a shared text segment that is used by
all LOCK/ix subjects. However, at any point
in time, the kernel only knows about the single
LOCK/ix subject that it is currently servicing.

This approach to process management
provides a fork() and exec() implementa-
tion that is compatible with UNIX System V
from the viewpoint of an executing user
program. Since most explicit communication
between user processes provided by UNIX
requires the processes to be directly related or
within the same process group, such functions
can be provided locally within a LOCK/ix
subject.

Process management is affected by the
TCB security .mechanisms only with regard to
access to executable files by the exec() func-
tion. The LOCK/ix subject performing an
exec() must have execute access to the
executable file according to both the MAC and
DAC policies being enforced by the TCB.

The set-user-ID and set-group-ID modes
for file execution are supported as in System

Vol 9 No 3 72 AUUGN

;login:

V, but with the same mandatory access restric-
tions imposed by the TCB. The set-user-ID
execution mode affects only the UNIX-specific
access permissions implied by UNIX user-IDs
and does not cause a change in the LOCK user
UID of the subject.

There are two problems that arise with
set-user-ID and set-group-ID applications.
The problems exist because UNIX maintains
both an effective-user-ID and real-user-ID for
each process. These user-IDs are not always
the same. In contrast, the LOCK TCB main-
tains only a user-ID for each active subject. A
LOCK subject user-ID and a process real-user-
ID will be the same (the person who is actually
running an application).

The first problem arises from the fact that
file system objects have ACLs associated with
them. The LOCK TCB evaluates ACLs based
on the real user’s identity. What this means is
that there must be an ACL entry for the real
user (who exec()ed the program) with the
desired access rights for all files that the appli-
cation will access. UNIX may allow a process
to inherit the access rights of the owner of a
sct-user-ID application, but the TCB will not.

The second problem arises from the fact
that when an object is created, the TCB assigns
as the owner attribute the name of the real
user who created the file. Additionally, the
ACL for the file is initialized with one entry for
the owner. This will result in a conflict
between who UNIX thinks is the owner and
who the TCB thinks is the owner.

When an object is initially created by the
TCB, it is assigned a default ACL. This default
ACL will contain only one entry that gives the
owner read and write permission. This will
have the effect (from a UNIX point of view), of
giving the wrong person object access. The
ACL entry will specify the name of the
individual who ran the set-user-ID application,
rather than the name of the individual who
owns the application.

We are currently investigating several
alternative approaches to solving this problem.
Since the UNIX user community appears to
have a strong desire to continue to run set-
user-ID applications, our current design will
most likely be criticized as providing unaccept-
able support for set-user-id applications.

There are some within the computer
security community who argue that a capabil-
ity such as setuid should not be provided by
A1 systems. This is a debate that is likely to
continue for many years to come. Our feeling
is that, in general, existing UNIX protection
mechanisms and in particular the setuid capa-
bility are really integrity mechanisms. If a
method can be devised to support a fully func-
tional setuid capability in a secure manner, we
see no disadvantage to doing so.

3.1. Memory Management

UNIX kernel memory management func-
tions provide user processes with an expand-
able data area that can be used for dynamic
heap allocation. The heap allocation algo-
rithms are supplied by the run-time library
and provide a generalized memory block allo-
cation scheme to user programs. They call on
the kernel to expand the user process’s data
area as needed to increase the pool of memory
that is available for allocation.

Although not explicitly visible at the user
program interface, UNIX memory management
also normally enforces protection of user
process address space from access by other
processes. The kernel’s memory space is also
protected from access by any user process.
These attributes are dependent on the MMU
hardware characteristics of the target machine.
Since a LOCK/ix subject has no explicit control
over the TCB’s MMU, such protection cannot
be provided by LOCK/ix.

The LOCK/ix kernel manages memory via
calls to the TCB storage manager. The physi-
cal allocation of memory is replaced by
requests to create, delete,, open, close, and
expand the LOCK objects that compose the
address space of user processes. Each user
process within the subject is assigned text, data
and stack objects by the kernel which are open
to the subject as long as the process is execut-
able. When a process terminates, these objects
are closed and deleted by the kernel.

Expansion of the data area of a user
process is implemented by calling the TCB
storage manager to expand the data object for
the process. This TCB function automatically
handles physical relocation of the object if
needed and zeros the newly allocated space for
LOCK/ix.

AUUGN 73 Vol 9 No 3

;login:

Expansion of the stack of a user process is
implemented by a special LOCK/ix system call,
which is used to request that the stack of the
calling process be extended. This requires that
the compiler generate a stack overflow check
as part of every C function’s entry preamble
code. Although relatively inetficient, this
method of automatic stack growth is used on
standard UNIX machines that have no
hardware support for stack overflow detection
in the MMU. Memory management is not
affected by the TCB security mechanisms, since
all functions are local to the LOCK/ix subject.

4. The LOCK/ix File System Design

During the course of the study, three
options were identified for supporting a UNIX
file system and accessing files at lower levels.
It became clear that either a significant
amount of trusted code would be required to
support the UNIX file system as currently
implemented, that a totally separate file system
was required for each different level, or that
the file system structure would have to change,
but still appear to users and applications like
the UNIX file system.

The first option was discarded as being
unacceptable from a design and implementa-
tion point of view. Separate file systems
would require minimum changes from the
current UNIX implementation, but would
create problems in usability and system
maintainability since lower level files would be
inaccessible. A redesign of the file system to
make it appear as much like the UNIX file
system as possible, yet fit into the MLS frame-
work, became the most viable alternative.

A separate file system at each level is
supported. A separate inode table for each
level will be stored in an object at the level of
the file system. Directories map inodes to files
as in existing UN1X implementations. The key
difference in LOCK/ix is that directories with
the same path name will exist at the multiple
levels that are accessible to a subject. The
directories are logically overlaid to produce a
combined virtual directory. To a user process,
there will always appear to be only one file
system, as with UNIX. The level at which the
user process is executing will determine which
files are visible in its view of the file system.

A directory can only contain files that are
at the same level as the directory. However, if
the same directory path exists at several levels,
each containing files, applications are given the
illusion that the directory contains files at
multiple levels. Only the directory paths need
to be duplicated, not the files.

Figure 7 illustrates a simple two-level file
system. Level 0 is lower in security level than
Level 1. A LOCK/ix process running at Level
0 would see the files cat and is in the /bin
directory. A Level 1 process would see those
two files, and, in addition, the "magic" file.
LOCK/ix performs the logical combination of
the file systems at multiple levels. The files at
Level 0 that the Level 1 process is aware of
will never be writable. The view of the file
system presented to a Level 1 process will con-
tain the Levell file system overlaid on top of
the Level 0 file system, as if each were a
transparent figure. A Level 0 process will have
no way of determining the existence of any-
thing in Level 1 (or beyond), because LOCK
will deny access to any Level 1 (or beyond) file
system objects, including the inode table and
root directory.

The concept of virtual directories could
also be applicable to a conventional, unsecure
networked UNIX environment. If file systems
resided on multiple machines, some with the
same directory path names, virtual directories
could be created. The issue of which network
machine a file resided on would no longer be
significant.

4.1. Path Inheritance

In order to support virtual directories, a
method is needed whereby files can be created
at the current level if the directory path exists
at a lower level. It would be incompatible
with UNIX to allow the creation of a directory
that already exists. Therefore, LOCK/ix
automatically creates ("inherits") directory
paths that exist at a lower level, but not the
current level, when creating a new file in a
directory.

If a directory does not exist at an observ-
able level, attempting to create a file in the
directory will fail, as with UNIX. If the direc-
tory does exist at the current level, no further
action needs to be taken in terms of path crea-
tion. Only when components of the path do

Vol 9 No 3 74 AUUGN

;login:

not exist at the current level does LOCK/ix
need to automatically create them. The crea-
tion of path components at the current level is
handled in a completely transparent manner.
Other than noting a slight delay, a user or
process will not be aware that it is occurring.

Path inheritance creates only the directory
paths that are needed at a given level. A good
analog is a virtual memory system. The work-
ing set is at first very small, containing only
the top-level path components. As files are
created, as with pages not in memory, a fault
occurs and the appropriate pages are brought
in from disk, or in this case, path components
are created. Eventually, a stable working set is
established that handles most references, for
either virtual memory or the LOCK/ix file
~ystem. The major difference is that the direc-
tory paths created are permanent, real direc-
tory entries that exist in the file system. There
is no way to determine afterwards whether a
directory path was inherited or explicitly
created.

If directories are created with names that
(unknowingly and unintentionally) match
those at a higher level, the higher level virtual
directory view will contain all the files. The
lower level view will only consist of those at
the lower level.

An open issue currently is how to resolve
name collisions. If identically named files
exist at multiple levels in a directory, the
higher level processes will need a way to
determine which version gets accessed. An
extension to the namei routine, which
performs name to inode mapping, is planned
for the future. The main changes in logic to
support file systems at different levels that are
combined to appear as one composite file
system have been in the name i module.

4.2. File System Examples

A few simple examples will help illustrate
how the file system appears and operates. The
examples are built on the file system shown in
Figure 7.

Figure 8 shows how the file system would
appear if an application running at Level 1
created a file named z in the directory
/usr/user3. Before creating the z file, the
LOCK/ix subject was required to create the full

directory path at Level 1 so that the file would
end up at the correct level in the file system.
In this case, only the usee3 path component
was created, because the /use component
already existed. The inode numbers for each
level can be, and typically will be, different for
each level of the file system. The Level 1
application creating the file z is unaware that
the path is being inh.erited. There will still
appear to be one /usr/user3 directory to
both Level 0 and Level 1 applications, and
they will appear to be the same, although the
Level 1 application can potentially access addi-
tional files. If a file named /usr/user3/z
already existed at Level 0, the Level 1 applica-
tion would not be able to create the file, since
one would already exist as a read only file. A
Level 0 application can create a file named
/usr/user3/z, since the Level 1 version
would not be visible. The Level 1 application
would still access the Level 1 copy. If the
Level 1 application deleted its copy of the z
file, the Level 0 file z would remain in the file
system.

¯

Figure 9 illustrates the file system after
making the directory /usr/user2/da at Level
0, then creating the file z in that directory.
There was no directory appearing to the Level
0 processes by the Level 0 name before the
directory was created, although one existed at
a higher level. There will still appear to be
one /usr/user2/da directory to the Level 1
process, but there is now a read-only file
named z in the directory.

Figure I0 shows the results of the deletion
of the directory lust/user3 by a Level 0
process. To the Level 0 process, the directory
appeared to be empty, thus it was permissible
to unlink the directory. Without path
inheritance, trusted code would be required to
make sure that the file z created in the previ-
ous example was properly connected in the
directory structure when the Level 0 path was
deleted. With path inheritance, the file was
created on a valid directory path to begin with,
and the lower level process did not need to
perform any special processing to account for
files created at higher levels.

AUUGN 75 Vol 9 No 3

;login:

4.3. Integrity Considerations

The LOCK/ix kernel runs in the same
address space as user processes. LOCK does
not allow a single subject to execute in multi-
ple domains. A process within a given
LOCK/ix subject could gain access to any
kernel file structures at its level and modify
them. For this reason the file system update
operations are removed from the LOCK/ix
kernel and implemented as separate file system
server subjects per level. Independent of a file
system server, LOCK will provide protection
for files from an aberrant program if the
program does not have update (or write) access
to the file.

The file system inode table is broken out
into two parts: non critical components, such
as time modified, and critical components,
such as object UIDs. The non critical
components consist of fields that can be
updated by the LOCK/ix kernel and that would
not cause any problems if they were incorrect.
The critical component will be in a different
object type, which can be accessed by the
LOCK/ix kernel, but not modified by it. The
file system server subject will run in a domain
that is different than that of the LOCK/ix
kernel and user processes, and will have
update access to the critical inode table.

The file system server will only perform
file system update operations; it will not run
processes. No malicious programs that could
cause unexpected and undesirable conse-
quences will run. This particular instance
shows how Type Enforcement can be used to
support an integrity policy that will achieve
the desired end result.

5. Conclusion

The results of our study are encouraging.
We were surprised to find how much of the
UNIX kernel code can be retained unmodified.
However, our conceptual design has not been
put to the test; it is only a paper design. We
plan to begin implementation of LOCK/ix in
April 1988, with the first version of the system
running by April 1989.

The LOCK/ix system design is really in its
infancy. There are some issues that we did
not address in the study in much detail, such

as performance. Our future plans for enhance-
ments include refining the file system design,
solving the setuid problem, and extending the
standard interface to incorporate security-
relevant functionality provided by the underly-
ing TCB. The latter will provide the
capabilities necessary to develop Multi-Level
applications.

Acknowledgments

We would like to thank Bob Hartman,
Jim Papke, Glen Swonk (ComputerBase), and
Mike Carty (Sendona, formerly I.C.E.S. Ltd.)
who also participated in the study.

References

[BIBA75] K. J. Biba, "I0tegrity Considerations
for Secure Computer Systems," The
MITRE Corporation, Bedford MA, MTR-
3153, 30 June 1975.

[BOEB85] W. E. Boebert, "A Practical
Alternative to Hierarchical Integrity
Policies," Proceedings, 8th National Com-
puter Security Conference, 1985.

[CLARK87] D. D. Clark and D. R. Wilson, "A
Comparison of Commercial and Military
Security Policies," Proceedings, IEEE
Symposium on Security and Privacy, 1987.

[HONE83] Honeywell, SCTC, A-Specification,
Contract MDA 904-82-C-0444, April 1983.

[HONE86] Honeywell, SCTC, B-Specification,
Contract MDA 904-84-C-6011, March 1986.

[SVID86] AT&T, "System V Interface
Definition," 1986.

[SYAD87] O. Sami Saydjari, et al, "LOCKing
Computer Securely," Proceedings, 10th
National Computer Security Conference,
1987.

[TCSEC85] "Department of Defense Trusted
Computer System Evaluation Criteria,"
DoD 5200.28.STD, December 1985.

Vol 9 No 3 76 AUUGN

;login:

Security Independent
Support Functions ----4

Sollware

Hardware

User Command Shetl

Applications System
Utllttle~

C Lbrmy Functions

LOCK/Ix Operating
System

Kernel
Extension

Supervisor

Central
Processing

Unit
SIDEARM

Figure 1

Trusted
Computing Base
(TCB) Interfac~,,,.-~

Application-Specific
~ Security Functions

Generic Security
~ Functions

Reference Monitor Concept

Reference Monitor

A Reference Monitor Must Be
1. Always invoked
2. Verfied correct
3. Tamperproof

Figure 2

Reference Monitor in LOCK

Security
Processor

Component

Hardware Advantages

1. Always invoked o No way to bypass
2. Verified correct - Simpler; machine indpendent
3. Tamperproof - No way to attack security

processor component

Figure 3

Reference Monitor in LOCK

OP°se] .O eCPU H MMu

Hostile.~I .<~ ,n, eforence
Programs ~ Monitor

SIDEARM I
Processor i

I

I
Bus

i Merry]
I ,,,,

Data

Hardware Advantages

1. High Assurance
2. Reasonable Performance
3. Application Portability
4. Functionality

Figure 4

AUUGN 77 Vol 9 No 3

;login"

Typical LOCKAx Subject Sl-l

LOCK/ix Kernel Text Segment
LOCK/ix Kernel Data Se(~men
I,.OCKAx Kernel Stack Object

sh Text Segment
sh Data Segment
sh Stack Segment

emacsText Segment
emacs Data Segment

emacs Stack Segment
File 1
File 2

Figure 5

Initial Two Level File System Example

I
CAT

I
BIN/

I

INITIAL LEVEL 0 FILE SYSTEM

ETC/ TMP/
I

USR/

USER2/

F, 1 DI/ F1 FA

I
BIN/

MAGIC

INITIAL LEVEL 1 FILE SYSTEM

I
usw

USER~

1 k__

THE CORRESPONDING LEVEL 0 DIRECTORIES AP~:

I lYN/ USR/ USERt/ U~ER2/

, 2. 5 . 6 ,
.. | ,. 1 .. $.,
BIN 8 CAT 6 U~..’~ct 10 F1
ETC 9 I.~ 7 U~R2 11 DI
TMP 14 USER3
USR

12 FA
10 Ft

THE CORRESPONDING LEVEL t DIRECTORIES ARE:

/ B~N/ USR/ USER|I USEFt~/

. 2 . 3 . 4 . 6 .
.. 1 .. 1 ., 3 .. 3
BIN 14MAGIC 4 U~ER1 5 St 7 DA
USR 6 USER2

Figure 7

LOCK/ix Address Space Organization

._~ kernel
~LOCKAx SutaJect ["l eerie LOCK/Ix Subject

kernel
kernel --..J"

; _
¯

exeoJtable

I I~le ot~ect ~

!

L ~ no~mal I

Figure 6

kernel

¯

File System After File/usr/user3/z
Created by Level 1 Process

DN

USER3/

14 .
5

LEVEL 0 FILE SYSTEM
/
I

US R3/ BIN/ ETC/ TMP/

I
CAT

I
USW

USER2/

F1 DI/ F1 FA
1 J

I
BIN/

I

MAGIC

LEVEL 1 FILE SYSTEM

I

USLL[RI/

$1
THE CORRESPONDING LEVEL 0 DIRECTORIES ARE:

I B~N/ U~R/ USERII

I USER3/
USFU INHERITED

USJRw

!N ~

USER2J USER3/

1. 2. 5 . 6 .
1 .. 1 .. 1 .. 5 ..
2 BIN 8 CAT 6 USER1 10 FI
3 ETC 9 !.~ 7 USER2 11D1
4 TMP 14 USER3
5 USR

12 FA
10 FI

14 .

THE CORRESPONDING LEVEL ! DIRECTORIES ARE:
/ B~N/ USW USERI/ USER2/

1. 2 , 3 . 4 .
.. 1 .. 1 .. 3 ..
BIN 14 MAGIC 4 USERI 5 SI
U~R 6 U~R2

USER3/

Figure 8

Vol 9 No 3 78 AUUGN

;login:

File System After Direrctory/usr/user2/da and
File/usr/user2/da/z Created by Level 0 Process

I I
BIN/ ECT/

I
C!T L~

LEVEL 0 FILE SYSTEM

1

USJRI/

F1 DI/ F1
i

LEVEL 1 FILE SYSTEM
/
I

I
BIN/

MAGIC

s~
THE CORRESPONDING LEVI~L 0 DIRECTOFtES API~:

I BIN/ USR/ USERI/

I
USW

USER2./
I

FA D~/

I
USW

USJR~

1
USJR3/

z

USER2J USER3/ DA/

14 .. 2. 5 , 6 . 7 .
. I .. 1 . 5 . 5 ..
BIN 8 CAT 6 USERt 10FI 12 FA
ETC 9 LS 7 USER2 11 DI 10FI
TMP 14 USER3 13 DA
USR

THE CORRESPONDING LEVEL 1 DIRECTORIES AFIE:
I I~W USR/ USERI/ USER2/ USER3/

1. 2 . 3 . 4 . 6 .
1 .. I .. 1 .. :3 ., 3 ..
2 BIN 14MAGIC 4 USER1 5 S1 7 DA
3 USR 6 USER2

Figure 9

13 ,
7 .
16 Z

File System After Direrctory/usr/user3
Deleted by Level 0 Process

I
BIN/

, 1
¯ CAT

I
BIN/

I
MAGIC

I
ECT/

LEVEL 0 FILE SYSTEM

I
I

usw

USER2/

F,1 DI/ F1 FA

LEVEL 1 FILE SYSTEM

I

USER1/

$1

I
USR/

USJR~

THE CORRESPONDING LEVEL 0 DIRECTORIES ARI~:
/ BIN/ USPJ USERll USER2/

1. 2. 5 . 6 , 7 o
1 .. 1 .. 1 . 5 . 5 ..
2 BIN 8 CAT 6 U~RI 10 FI 12 FA
3 ETC 9 L~ 7 USEFI2 11 ~’.~ 10 FI
4 TMP 13 DA
5 USR

THE CORRESPONDING LEVEL I DIRECTORIES AFt:
I I~W USR/ USERt/ USER2/

I . 2 . 3 . 4 . 6 .
I .. 1 .. 1 .. 3 .. 3
2 BIN 14 MAGIC 4 USER1 5 81 7 DA
3 USR 6 USER2

Fig ure 10

USER3/

DA/

13 .
7 .
16 Z

AUUGN 79 Vol 9 No 3

;login:

An Update on UNIX Standards Activities

Shane P. McCarron, NAPS Inc.
April 17, 1988

Overview

This is the second in a series of reports on
the UNIX standards community. In this arti-
cle I will give you a summary of what
happened at the March meeting of the POSIX
committees. I will also explain what happened
during the IEEE PI003.1 balloting, and why
there is going to be another round of review
and comment during May. In addition I will
discuss what is going on with the National
Bureau of Standards (NBS) Federal Informa-
tion Processing Standards (FIPS), and how this
will affect both implementors and program-
mers in the short and long term. Those of you
who saw the first article in this series will
remember that the title was "An update on
UNIX and C Standards Activities." That
changed this time because the ANSI X3Jll
meeting isn’t until mid-April, and there hasn’t
been too much going on between meetings
(other than a public review). Next quarter I
will return to the C arena as well.

PI003.1 Final Ballot?

Those of you who saw the first issue of
this column may remember that I reported on
the status of the P I003.1 balloting. At that
time I stated that the standards would be fully
ratified in March... Well, I was wrong.
Although the IEEE review board gave the
standard conditional approval, it did not pass
in its first round of balloting, nor did it pass in
the first recirculation for review and comment.
Needless to say, I was a little surprised, but
there were many factors that figured into the
problem.

In the interest of clearing the air, below
you will find a chronological account of the
balloting procedure. I have also outlined the
IEEE requirements for balloting, and how
P1003.1 worked within these constraints. Even
though you may finish reading the summary
with an uneasy feeling about the process,
please keep in mind that until recently there
have been no large IEEE standards. The

procedures were designed for brief documents
describing the characteristics of three-phase
power, not for 400 page documents specifying
all the characteristics of an operating system.

On November 15th the Standard went out
to the balloting group. The balloting group
consists of IEEE or IEEE Computer Society
members who have indicated an interest in
voting on this standard. When balloters vote
no, they must return a document which states
their specific objections, and what can be done
to resolve them. Although specific wording is
not required, it is encouraged.

On December 15th (actually, a little after)
balloting on the standard closed. The official
IEEE length of a balloting period is 30 days, or
until 75% of the balloting group members have
returned a ballot, whichever is later. When
75% of the ballots had been returned, the
standard did not have the necessary percentage
of yes votes (75%) for approval. At this point
the standard and the ballots were turned over
to the Technical Reviewers for resolution.

On January 15th (or so) the committee
chair started to assemble the ballot resolution
documents for recirculation to the balloting
group. The resulting document was a
summary of all the changes made to the
standard to resolve balloting objections or
comments. In all there were 140 pages of
changes, and (unfortunately) they were poorly
organized and formatted. In my own defense¯

(as a Technical Reviewer) I can only say that
the process was rushed, and I procrastinated a
little. Also, communication among the Techn-
ical Reviewers was lacking, and the guidelines
for reviewing and acting on ballots were
unclear. This is all kind of tragic, but it was
certainly an educational experience.

On February 5th the resolution document
was resubmitted to the balloting group for a 10
day review period that was to start on the
15th. Unfortunately the mail was held up
until the 15th (or in some cases the 17th) and
many balloting group members did not receive
the recirculation document until the 20th or

Vol 9 No 3 80 AUUGN

;login:

later, for return to the IEEE Standards office by
the 25th. Worse yet, the IEEE balloting
procedures state that if the technical reviewers
have resolved all objections in a ballot, that
ballot automatically becomes a yes. The
balloter must specifically indicate that his/her
ballot is still negative. This was not made
very clear to the balloting group, and many
people did not resubmit a ballot.

Fortunately many people did complain
about the short review period and the
problems with-the recirculation document.
Eventually it was discovered that the 10 day
period that IEEE stipulates for reviews is a
minimum, not a maximum. There was a lot
of finger pointing and complaining on all sides,
and in the end it was decided that even though
the standard had the necessary 75% approval,
there would be another recirculation.

During the week of March 7th, the IEEE
Standards Board met. In spite of all the
problems with the standard, and all of the
letters of protest that they received (including
one from each of the Institutional
Representatives, if I am not mistaken), the
board conditionally approved the standard.
[You’re not mistaken: the Institutional
Representatives of USENIX, /usr/group and
X/OPEN all sent letters of protest to the
Standards Board; I also spoke to the Standards
Activities Group directly about the time limit
problem. -jsq] This conditional approval is
an unprecedented event (as far as I can tell)
~and means that the standard can become fully
ratified before the next meeting of the
standards board once the second recirculation
has been completed and it has sufficient
positive ballots. There was a lot of screaming
about this as well.

During the week of March 14th the POSIX
committees met in Washington D.C.
Throughout the meetings the co-chair of
P1003.1 met with each of the Technical
Reviewers and very carefully went through
their sections of the document, making sure
that all objections and comments had been
considered, processed, and responded to. This
was an incredibly time consuming and painful
process, but I believe that it resulted in a
much better standard. During the last few
weeks the Technical Reviewers have continued
to work closely with the co-chair to get the
second recirculation document put together. It

should be completed and sent to the Technical
Reviewers (as a safety check) in mid-April.
Once the Reviewers think that it is clean
enough, it will be sent out to the balloting
group for a second review and comment
period.

The second recirculation will be handled
quite a bit differently than the first. All
members of the balloting group will receive a
new copy of the standard (Draft 12.3) that will
have change bars only in those places where
changes have been made as a result of ballot-
ing objections or comments. In addition, each
balloter will receive a document detailing all of
the unresolved objections, their nature, and
why they were not resolved. The balloting
group will have a longer period to respond to
this document (> 10 days), but they shouldn’t
need much more time, as most of the changes
in the document were already detailed in the
first recirculation document (although they
were not made in context - that is to say they
were not in a new draft, but rather listed as
changes to draft 12). At the end of this
recirculation and balloting period it is believed
by most members of the committee that the
standard will be complete.

The time frame for all of this is late
April/early May.

I apologize for the length of this summary,
but I think it is important that everyone know
just what happened. Of course, this is just one
man’s perspective, but I think that it is a fair
one. I believe that the completed standard
will be one which was carefully considered and
designed, even if it won’t make everyone
happy.

NBS POSIX FIPS

As I reported last quarter, the National
Bureau of Standards has specified a Federal
Information Processing Standard for POSIX.
This FIPS has nosy been called an Interim
FIPS, and is based on Draft 12 of the POSIX
standard (the draft that went to the balloting
group). This is unfortunate, since the post
balloting draft is significantly different in a
number of areas. Also, the NBS has made
some changes in their requirements for the
FIPS since I last reported them. As of this
writing the POSIX Interim FIPS for the System
Services Interface is not official. It is going

AUUGN 81 Vol 9 No 3

;login:

through the government signature maze within
the Department of Commerce, and is expected
to emerge sometime in April.

This Interim FIPS will remain the
standard until the P1003.1 standard is
completed. Sometime after that the NBS will
put together a final FIPS based on .1.
Unfortunately, this may not be for several
months after.l is completed. In the meantime
government agencies will be generating
Requests for Procurement (RFPs) which
stipulate the Interim FIPS.

What this means for systems implemen-
tors is not entirely clear. The government will
be requiring (at least for a little while) a
standard that is in many ways incompatible
with the final P1003.1 document. Obviously
implementors have two options: 1) put
together POSIX conforming systems and wait
until the final FIPS is complete before selling
any systems, or 2) put together a FIPS
conforming system and be able to start selling
immediately. Fortunately implementors~ have
an out here - many of them have release
cycles lasting anywhere from 6 to 18 months.
By the time there is a POSIX standard and
they get their implementation ready to be
released, the FIPS will have changed to reflect
the final standard.., maybe.

What it means to application developers is
a little more obvious. Software that is in
development today is probably too far along to
consider making it POSIX conformant - or
worse yet, ANSI C conformant. Software that
is not yet in programming is going to take
quite a while to get to market, so it can be
made POSIX conformant without having to
worry about the Interim FIPS.

In addition to this first FIPS, the NBS has
stated that it is going to be releasing several
more Interim FIPS based on some of the other
POSIX work in progress, as well as the work of
other groups (like AT&T and the SVID). Dur-
ing the POSIX meetings in Washington, Roger
Martin from the NBS (and also chair of
P1003.3 - Testing and Verification) made
presentations to the various committees,
explaining what the NBS intends to do in the
next year with Interim FIPS.

In May or June an Interim FIPS for the
Shell and Tools interface (POSIX P1003.2) will
be proposed. It will be based on Draft 6 of

the .2 document, and will contain (at least) the
command set from that document. It may
also contain text from that document, or in
cases where the text is felt to be immature, will
contain text from the SVID or some other
source. This Interim FIPS will be based on
Draft 6 until the final standard is completed
sometime in later 1989.

In addition, the NBS will be releasing
several other FIPS. These will be in the areas
of Terminal Interface Extensions, System
Administration, and Advanced Utilities.
These are all terms from the SVID, and relate
to just the things that you think they do. The
Advanced Utilities FIPS may be rolled into the
PI003.2 FIPS, since .2 encompasses most of
those items that they wanted in there. The
others will be based directly on the SVID (as
far as I know). These are all to be in place by
the end of 1988. This is an ambitious
schedule, even for NBS. However if they meet
it, it will mean that by the end of this year the
government will have standards on most
aspects of the UNIX operation ~system, and
system implementors and application develop-
ers will have to conform.

IEEE P1003 Activities

As I mentioned above, the POSIX
committees met in Washington D.C. in March.
For the first time, all 7 of the committees met.
As you can imagine, it was pretty difficult to
catch all of what went on, but here are the
highlights.

P1003.0 - POSIX Guide Project

This group met for the first time in Wash-
ington. Although they didn’t get a lot of tangi-
ble work done, they did establish what their
goals were, as well as starting to put together a
timetable for production of their guide docu-
ment. I don’t have the details of this yet, but I
will next quarter.

PlO03.1 - System Services Interface

This group met to decide what we are
going to be working on in the future. We have
a few items that must be handled by the .1
group, and some that could be. Currently
there are three projects being worked on by
members of the committee:

Vol 9 No 3 82 AUUGN

;login:

Language Independent Description The ISO
POSIX Working Group has requested that a
language independent version of the .1
standard be produced as soon as possible after
completion of the standard. Language bind-
ings (like the current descriptions that are in
the standard and the work being done by the
.5 group) would be placed in supplements to
the main standard, or in chapters within the
standard itself.

Improved Archive Format Although the ISO
community agrees that cpio and ustar" are
fine for the first cut of the standard, they have
requested that .1 work on a more robust
archive format that doesn’t have the technical
drawbacks of either, as well as one that takes
into accot~nt the security features needed for
trusted systems.

Terminal Interface Extensions Yes - we mean
curses/Terminfo. Well, not really, but some-
thing very much like that. It will have to be
something that resembles current practice (I
imagine), but it could be improved in little
ways. There was a lot of sentiment in the
group for throwing out all of the Terminfo
stuff and starting from scratch, but I don’t
think it will happen. We will probably get
some proposals that are wildly different from
existing practice, but it is outside the group’s
charter to totally supplant existing practice.

P1003.2 - Shell and Tools Interface

The .2 Group got a lot of work done in
Washington. They went in with a 400 page
draft 5, and by end of May a 450+ page draft
6 should be completed. This draft 6 will be

’ used as the basis of the interim FIPS that the
NBS will be using for their Interim FIPS on
POSIX (see above).

The most significant developments in .2
were:

Source Code Control The committee felt that
source code control was outside the scope of
the standard, and it was removed (it had been
added at the last meeting). A number of peo-
ple still feel that some form of source code
control should be in there, so the committee
left a place in the document where it could be
put back in later. The real danger here is that
the rcs people and the sees people will get
into a religious war similar to the one that

erupted between the tar and cpio factions in
the. 1 group.

Basic Shell Changes There were many
features of the Bourne shell that had been
included in .2 for historic reasons. At this
meeting the shell subcommittee agreed to
remove some of those anachronisms. This will
make way for (possibly) more enhancements to
the basic shell mechanism in the future (e.g.,
substring manipulation).

Software Installation Two drafts past there
was a very complex system in the standard
that allowed software installation in a portable
way. This was removed in the December
meeting, and replaced at the March meeting by
a very simple interface that should be accept-
able to everyone. Although the details are not
all clear, it looks like this will consist of an
implementation defined command that will
read the first file off of a POSIX conforming
archive (tape) and execute it. Anyway, some-
thing about that difficult.

Electronic Mail Interface mai t x was added in
Draft 5 as a proposed way to portably transmit
mail. Some committee members felt that the
way in which it was described was too
restrictive, while others felt that it was too
liberal. In a compromise move, another
interface was defined that allows very simple
mail transmission in a portable manner. It
also has a name that doesn’t conflict with
existing utilities.

P1003.3 - Testing and Verification

At the March meeting the chair
announced that they were on target for
completing the assertion lists for P1003.1, and
that the .3 standard for .l would be ready to
ballot just as soon as the .1 standard was
ratified. He also stated pretty clearly that
P1003.3 didn’t want to work as hard when
generating verification standards for the other
POSIX committees. He asked that in the
future the standards be written in a way that
makes it easier to develop assertion lists. The
.3 committee will be working closely with the
.2 effort (which is a little too far along to fix
now), but the other committees will be chang-
ing their documents to reflect what assertion
tests can be made about each function or
command being defined. This should make it

AUUGN 83 Vol 9 No 3

;login"

easier to produce verification documents for
those standards.

P1003.4 - Real Time

This committee made a lot of progress in
the March meeting. However, they have a
long road ahead of them, and I don’t know
that anything earth shattering happened - cer-
tainly nothing that I heard about. However,
they have stated a target of 1990 for comple-
tion, and at this point it is a little early to
draw any sort of conclusions.

P1003.5 - Ada Binding for the System
Services Interface

The AdaTM group is still a very young
committee, but they are moving right along.
At the very least they are generating a lot of
paper, but it has some excellent stuff on it.
Although they haven’t been a working group
long, I expect to see a draft from them in the
next six months, and a standard being balloted
in a year. Although this may seem like a long
time, it is really short work for a standards

committee. Unfortunately, their work is very
dependent on .1 getting a language
independent description of the System Services
Interface put together as quickly as possible.
They have already looked into ways of describ-
ing POSIX independent of any language, and
they will be helping. 1 get this firmed up.

P1003.6 - Security

This was the first meeting of .6 as a real
IEEE committee. They defined their scope and
objectives, set a tentative production schedule,
and defined the format of their document. As
a /usr/group technical committee they pro-
duced a number 0f white papers, and I expect
to see drafts coming out of the group based on
those papers shortly. The only shag here is
that the transition from a /usr/group technical
committee to an IEEE working group wasn’t as
smooth as others have been. To help alleviate
some of the tension this caused, the next .6
meeting will be held in conjunction with
USENIX in San Francisco in June, instead of
with the POSIX committees in July. After that
they will follow the regular POSIX meeting
schedule.

Vol 9 No 3 84 AUUGN

;login:

Local User Groups

The USENIX Association will support local user groups by doing an initial mailing to assist the
formation of a new group and publishing information on local groups in ;login:. At least one member
of the group must be a current member of the Association.

CA- Fresno: the Central California UNIX Users
Group consists of a uucp-based electronic mailing
list to which members may post questions or infor-
mation. For connection information:

Educational and governmental institutions:

Brent Auernheimer (209) 294-4373

CSNET: brent@CSUFresno.edu
uucp: csufres!brent

Commercial institutions or individuals:

Gordon Crumal (209) 435-6062

uucp: csufres!tower!gordon

CA- Los Angeles: the Los Angeles UNIX Group
meets on the 3rd Thursday of each month in
Redondo Beach.

Drew Bullard
(ucbvax,ihnp4) !trwrb!bullard

Marc Ries’
(decvax,sdcrdcf}!trwrb!ries

(213) 535-1980

(213) 535-1980

CO - Boulder: meets monthly at different sites.

Front Range UNIX Users Group
USENIX Association Exhibit Office
5398 Manhattan Circle
Boulder, CO 80303

John L. Donnelly
(boulder,usenix) !johnd

(303) 499-2600

FL - Coral Springs:

S. Shaw McQuinn
8557 W. Sample Road
Coral Springs, FL 33065

(305) 344-8686

FL- Orlando: the Central Florida UNiX Users
Group meets the 3fd Thursday of each month.

Mike Geldner (305) 862-0949

codas!sunfla!mike

Ben Goldfarb (305) 275-2790

goldfarb@hcx9.ucf.edu

Mikel Manitius (305) 869-2462

(codas,attmail) ! mikel

GA- Atlanta: meets on the Ist Monday of each
month in White Hall, Emory University.

Atlanta UNIX Users Group
P.O. Box 12241
Atlanta, GA 30355-2241

Marc Merlin (404) 442-4772

Mark Landry (404) 365-8108

MI - Detroit/Ann Arbor:
of each month in Ann Arbor.

William Bulley
web@applga.uucp

Rich McGill
rich@oxtrap.uucp

Steve Simmons
scs@lokkur.uucp

meets the 2nd Thursday

(313) 995-6211

(313) 971-5950

(313) 426-8981

MI - Detroit/Ann Arbor: dinner meetings the 1st

Wednesday of each month.

Linda Mason (313) 855-4220

michigan!/usr/group
P.O. Box 189602
Farmington Hills, MI 48018-9602

FL-Melbourne: the Space Coast UNIX Users
Group meets at 8pm on the 3rd Wednesday of each
.month at the Florida Institute of Technology.

Alex Stover (305) 724-3962
codas!lola!als
Bill Davis (305) 242-4449
bill@ccd.harris.com

MN - Minnetonka:
each month.
UNIX Users of Minnesota
4732 Spring Circle
Minnetonka, MN 55343
Mark Colburn
mark@ems.mn.org
ihnp4!meccts!ems!mark

meets the Ist Wednesday of

(612) 935-2688

Vol 9 No 3
AUUGN 85

;login"

MO - St. Louis:

St. Louis UNIX Users Group
Plus Five Computer Services
765 Westwood, 10A
Clayton, MO 63105-

Eric Kicblcr
ihnp4!plus5!sluug

(314) 725-9492

NE - Omaha: meets on the 2nd Thursday of each
month.

/usr/group nebraska
P.O. Box 44112
Omaha, NE 68144

Sukan Makmuri
ihnp4!ugn!root

(402) 422-8367

New England - Northern:
different sites.

meets

Emily Bryant
Kiewit Computation Center
Dartmouth College
Hanover, NH 03755

David Marston
Daniel Webster College
University Drive
Nashua, NH 03063

decvax!dartvax!nneuug-contact

monthly at

(603) 646-2999

(603) 883-3556

NJ- Princeton: the Princeton UNIX Users Group
meets monthly.

Pat Parseghian
Dept. of Computer Science
Princeton University
Princeton, NJ 08544

(609) 452-6261

,pep@Princeton.EDU

NY - New York City:

Unigroup of New York
G.P.O. Box 1931
New York, NY 10116

Ed Taylor
(attu n ix,philabs) !pen com ! taylor

(212) 513-7777

New Zealand:

New Zealand UNIX Systems User Group
P.O. Box 13056
University of Waikato
Hamilton, New Zealand

OK - Tulsa:

Pete Rourke
$USR
7340 East 25~ Place
Tulsa, OK 74129

PA - Philadelphia: the UNIX SIG of the
Philadelphia Area Computer Society (PACS) meets
the morning of the 3rd Saturday of each month at
the Holroyd Science Building, LaSalle University.

G. Baun, UNIX SIG
c/o PACS
Box 312
La Salle University
Philadelphia, PA 19141

(inh p4,cbosgd,rutgers) ! (bpa,cbmvax) !
temvax!pacsbb! (gbaun,whutchi)

TX - Dallas/Fort Worth:

Dallas/Fort Worth UNIX Users Group
Seny Systems, Inc.
5327 N. Central, #320
Dallas, TX 75205

Jim Hummel (214) 522-2324

TX- San Antonio: the San Antonio UNIX Users
(SATUU) meets the 3rd Wednesday of each month.

William T. Blessum, M.D. ~t’512) 692-0977
7950 Floyd Curl Dr. #102
San Antonio, TX 78229-3955
(gatech,ihnp4) !petro!bles!wtb

The local uucp network "postmaster" is:
Bruce Andreen (512) 656-3053
{ gatech,ihnp4 } !petro!bruce

WA - Seattle: meets monthly.
Bill Campbell (206) 232-4164
Seattle UNIX Group Membership Information
6641 East Mercer Way
Mercer Island, WA 98040
uw-beaver!tikal!camco!bill

Washington, D.C.: meets the Ist Tuesday of each
month.
Washington Area UNIX Users Group
2070 Chain Bridge Road, Suite 333
Vienna, VA 22180

Samuel Samalin (703) 448-1908

Vol 9 No 3 86 AUUGN

;login:

Future Events

USENIX 1988 Summer Conference and
Exhibition San Francisco, June 20-24, 1988

UNIX Security Workshop
Portland, OR, Aug. 29-30, 1988

The Program Chair is Matt Bishop of
Dartmouth College. See page 6.

AUUG Winter Conference
Melbourne, Sept. 13-15, 1988

For information write
uunet!munnari!labtam.oz!timr

Tim Roper:

UNIX and Supercomputers Workshop
Pittsburgh, PA, Sept. 26-27, 1988

Program Chairs are Melinda Shore of the
Pittsburgh Supercomputer Center and Lori
Grob of New York University. See page 7.

EUUG Autumn Conference
Portugal, Oct. 3-7, 1988

See page 10.

C+ + Miniconference
Denver, CO, Oct. 17-21, 1988

The Program Chair is Andy Koenig of
AT&T. See page 8.

Large Installation
System Administration II
Monterey, CA, Nov. 17-18, 1988

The Program Chair is Alix Vasilatos of
MIT’s Project Athena. See page 9.

EUUG Spring Conference
Brussels, Apr. 10-14, 1989

Long-term USENIX Conference Schedule

Jan 31-Feb 3 ’89 Town & Country Inn, San Diego
Jun 12-16 ’89 Hyatt Regency, Baltimore
Jan 22-26 ’90 Washington, DC, Omni Shoreham
Jun I 1-15 ’90 Marriott Hotel, Anaheim
Jan 22-25 ’91 Dallas
Jun l 0-14 ’91 Opryland, Nashville

Publications Available
The following publications are available

from the Association Office. Prices and
overseas postage charges are per copy.
California residents please add applicable sales
tax. Payment must be enclosed with the order
and must be in US dollars payable on a US
bank.

The EUUG Newsletter, which is published
four times a year, is available for $4 per copy
or $16 for a full-year subscription.

The July 1983 edition of the EUUG
Micros Catalog is available for $8 per copy.

Conference and Workshop Proceedings

Meeting Location

USENIX Dallas
C++ Workshop Santa Fe
Graphics Workshop IV Cambridge
USENIX Phoenix
USENIX Wash. DC
Graphics Workshop III Monterey
USENIX Atlanta
Graphics Workshop I Monterey

Overseas Mail
Date Price Air Surface

Winter ’88 $20 $25 $5
November ’87 20 25 5
October ’87 10 15 5
Summer ’87 10 25 5
Winter ’87 10 25 5
December ’86 10 15 5
Summer ’86 10 25 5
December ’84 3 7 5

Vol 9 No 3
AUUGN 87

Minutes of the AUUG Management Committee Meeting
February 29, 1988

Q

2,

The meeting opened at 10:11. Present were Chris Campbell (CC), Piers Dick-
Lauder (PL), Robert Elz (KRE), John Lions (JL) in the chair, Chris Maltby
(CM) (arrived late, as noted below), and Tim Roper (TR). Also present was
John Carey (JC), the AUUGN editor. Wael Foda (WF), Steve Jenkin (SJ) and
Greg Webb (GW) each attended for a short while (as indicated).

The minutes of the previous meeting (December 1987), which had been
circulated earlier, were tabled.

3. Moved (TR, seconded CC) That the minutes be accepted. Motion postponed.

4. Business arising from the minutes

Items carried forward from previous meetings
-- Usenix 4.3BSD Manuals: These have mostly been distributed

to those who placed orders, though a few copies still remain
available. No action has yet been taken towards re-advertising
their availability and determining if another order should be
placed with USENIX.

-- Database location: The secretary had been unable to get the
database sent to him.

-- Redirection of the AUUG P.O. Box: Has not been done yet.
-- Secretarial Assistance: Discussion deferred.

Item 9

Item 12

Item 15

Treasurer’s Report: JL is still chasing NSWIT. JC remarked that
he had the impression that none of the members who had joined at the
NSWIT conference had been entered into the database yet.

ACSnet SIG legal assistance: Nothing notable done yet.

Name registration problem: The solicitor had been contacted, and,
after consulting with the Corporate Affairs Department, confirmed that
a name change to AUUG Inc would solve the problem. AT&T have
not been contacted.

Item 30

Item 32

Item 33

Item 38

President’s letter on meeting policy change: Done.

Replacement Committee Member: In accordance with the short list
drawn up at the previous meeting, the secretary contacted Peter
Wishart, who agreed to join the committee.

Meeting Guidelines Documents: PL reported that they were half
done. He is still working on them.

Usenix Journal" We may have missed our opportunity here, the
secretary wasn’t able to obtain the number of journals needed when

Vol 9 No 3 88 AUUGN

.

10.

requested by Usenix. The number was sent eventually, no reply has
been received.

Item 41

Item 44

Item 45

Newsletter printing and distribution from Melbourne: Done, first
issue printed that way should be in the mail now.

Badge competition: Nothing done yet, PL volunteered to handle this.

Next Meeting: It was noted that the year indicated was incorrect, it
should be 1988, not 1987.

Moved (JL, seconded PL) That the minutes be amended to correct the
typographical error, and substitute "1988" for ~’1987" in item 45. Carried
(5/0).
Original motion (item 3) Carried (5/0).

The president gave a brief report. He indicated that Ken Thompson has
accepted an invitation to attend the September AUUG meeting, though he might
not be able to attend all 3 days.

The meeting adjourned at 10:41 and resumed at 10:43.

The newsletter editor (JC) presented a report. He indicated that his report of the
proceedings of the last committee meeting appear in the issue of AUUGN
currently being printed. Minutes of committee meetings will not be published
until they have been confirmed at the next meeting.

Newsletter printing has been moved to Melbourne. The editor investigated using
the Monash print shop, but determined that service would not be good enough.
He had decided to continue using Pink Panther, who had indicated that he cost
would not be any greater than it had been in Sydney.

The December newsletter should be out this week, it cost $2950, plus %20 tax
(the reason for which is unclear), and not including postage. Pink Panther will
handle printing, envelope stuffing, and mailing. 320 copies were printed, 288
are to be mailed, the issue contains 124 pages.

The Post Office registered publication number has been moved from Strawberry
Hills, NSW, to South Melbourne, Vic, without any additional charge, as it
happened to be due for renewal.

The current schedule for coming newsletters is for the next issue, Volume 9
number 1, to appear in March, about 1 month late, and then for volume 9
number 2 to appear in April, which will be back on schedule.

JL asked for publication dates to. be printed on the cover. It was pointed out
that the dates do appear on the first page. JC indicated that he could arrange for
the publication date to appear on the cover if desired.

AUUGN 89 Vol 9 No 3

11.

12.

13.

18.

19.

20.

21.

Problems: It is unclear what the 20% tax is about, it is probably sales tax, but it
is unclear that we are buying anything. It was remarked that we should not pay
without justification. JC indicated that he didn’t want to distribute extra copies
of the newsletter. He said that he has 12 boxes of old newsletters, and asked
what we wanted done with them (except for one box, which IPEC had
apparently lost). It was agreed that we should attempt to sell back issues at the
next meeting, and then discard superfluous copies.

JC also noted that the December issue (the issue being printed) had 288 copies,
whereas the January issue will have only 230 copies. He indicated that some
better renewal scheme was needed, irregularities in the newsletter delivery
schedule meant that people tended not to notice that AUUGN was no longer
arriving, and were not renewing, he suggested a switch to a fixed renewal date.
This was not considered possible.

PL considered that the problem could be alleviated if the database was moved to
Melbourne, and moved that CM be asked to expedite shipping it to Melbourne,
in whatever form appropriate. The motion was not seconded, and was
postponed.

Moved (PL, seconded TR) That the editor’s report be accepted, Carried (5/0).

’CC indicated that there was no ACSnet SIG report to give, as there had not been
a meeting since the last committee meeting. The next meeting should happen
sometime soon. PL asked about legal advice for the company, it was pointed
out that this had been mentioned in business arising from the minutes, and that
no action had yet been taken.

\

The meeting adjoumed at 11:08 and resumed at 11:14, with CM in attendance.

CM indicated, when asked, that we have always paid the 20% tax, which is sales
tax. He was also not sure what it is exactly that we were being taxed for.

CM also indicated that he had not yet forwarded the database, or the computer
on loan to AUUG from Sigma Data, as he was waiting for the secretarial
assistance issue to be resolved.

The secretary gave his report, in which he indicated that he had no idea of the
current state of the association, as he didn’t have the membership database. CM
indicated that he didn’t have it either, it is at UNSW.

The secretary also tabled copies of correspondence received and sent. The
solicitors are currently in hold mode, waiting for action from us. Mike Lesk and
Mike Karels have indicated their willingness to attend the winter meeting, John
Mashey has not yet made a firm commitment.

SJ arrived.

Vol. 9 No 3 90 AUUGN

22.

23.

24.

25.

26.

27.

28.

29.

32.

The treasurer presented a current balance sheet for the organisation, and
indicated that that did not include $12000 currently on term deposit. No
progress has yet been made towards moving more funds from the cheque
account to a higher interest bearing account. He indicated that AIDC currently
have 12% at call rates available, CC questioned the wiseness of such a move. It
was generally agreed that a bank account, similar to that already in use, was the
right approach.

Moved (PL, seconded TR) That the treasurer’s report be accepted Carried
(6/0).
The treasurer then indicated that he would not be seeking re-election at the end
of his current term, and sought authority to spend money to get extra advice, and
for the accounts to be audited. JL asked whether we could not seek the services
of our original auditor.

JL also remarked on the state of the membership database, CM indicated that it
might be possible to gain some assistance from Elaine (from Softway).

It was noted that Ken McDonell had been unable to locate anyone willing to
undertake the type of secretarial work we are seeking to have done. TR
undertook to continue this search, including writing a job specification, etc.

The database is to be moved to Melbourne, the Post Office box is to be
redirected, and the labels (physical things with sticky backs) are to also be sent
to the secretary in Melbourne.

The meeting adjourned at 12:19 and resumed at 14:05, without SJ, but with WF
and GW.

WF presented plans of the meeting rooms at the Southern Cross, and some
alternatives for layouts, including his recommendations. The conference
facilities are to be available at no cost, provided that a minimum of 100 people
attend each catered function, viz: morning and afternoon tea breaks at $3 per
person twice each day, lunches at $20 per person, each day, cocktails at $14.50
per person, once, and dinner, at $45 per person, once.

The dinner is to be held on the Wednesday night.

There was some discussion of the tentative budget that had been presented and
agreed to at the previous meeting. WF indicated that he didn’t believe that we
could do other than lose with the attendance fees set at the levels suggested.

After some discussion, the committee agreed on a new rate structure, being $200
for members (including lunches, and cocktails), $250 for non members, with an
additional $50 late fee. The dinner cost would be $30. WF suggested single
day attendance rates be provided, which was agreed to, and set at $100 per day,
with no member’s discount. It was agreed that $80 (early) and $130 (late) were

AUUGN 91 Vol 9 No 3

33.

reasonable rates for student registrations (excluding lunches, etc).

Meeting timing: It was agreed that June 30 be the early registration deadline.
A brochure would need to be prepared by mid May.

34. Conference advertising was discussed next. It was noted that a mass mailing
would cost approximately $1000, and advertisements in 3 Australia wide
publications (The Age, the Australian, and Computing Australia), which should
be placed in mid May would cost about $3000.

35. PL suggested that perhaps Ken Thompson might be persuaded to give one or
two newspaper interviews, which might assist with publicity.

36. A brochure is likely to cost $2000, plus about $1500 for assistance with its
preparation. It was agreed that the brochure should be 3 A4 pages, folded.

37. WF departed at 15:25.

38. GW indicated that he expected to have final information from the September 87
NSWIT conference withing 3 weeks. He anticipated a net profit of
approximately $8500, meaning a net return to AUUG of approximately $12000
including the initial float.

39. A Call for papers for the coming meeting should appear in the coming AUUGN,
its deadline is March 11.

40. CC is to arrange badges for attendees at the conference, and is suggested he
order approximately 250 at anything up to $3.50 each.

41. Moved (PL, seconded JL) That CC order 450 badges, marked "AUUG 88"
at a cost of less than $5 each. Carded (6/0).

42. The programme committee should handle the best student paper competition.

43. The issue for a student travel subsidy was canvassed, no real decision was
reached, general consensus was to continue with the status quo, which allows
such a subsidy to be granted upon application from a student whose paper has
been accepted.

44. It was noted that the conference still needs a conference organiser, the job needs
to be specified.

45. The secretary is to write to ACMS, and obtain details of exactly what they will
be doing, so the committee can determine what is left to be done.

The meeting adjourned at 16:22 and resumed at 16:36.

GW agreed to write a job description for AUUG conference organiser, and
transmit it to JL.

Vol 9 No 3 92 AUUGN

60.

61.

62.

63.

48. It was noted that during the adjournment, Greg Rose had volunteered himself as
conference chairman! It was suggested that he should be asked to prepare a
draft brochure.

49. GW departed at 16:44.

50. Incorporation has smiled waiting for action on the name issue.

51. Moved (PL, seconded KRE) That a ballot be held in conjunction with the
May election to change the name to "AUUG Inc". Carded (6/0).

52. Because of this, no letter to AT&T is required.

53. The secretary is to talk to the solicitor again, with regard to trade marks, etc.

54. Moved (TR, seconded CM) That the ballot be held as soon as possible, in the
next AUUGN (llth March) Carded (6/0).

55. CM and KRE are to prepare a budget for FY 1988/1989.

56. Moved (CM, seconded PL), That the membership and subscription rates for
88/89 be set at $65 for Members and Newsletter Subscriptions, $40 for
students, and $300 for institutions. Carded (6/0). It was noted that the
Member rate was still too low, but that increasing it to a sensible value would
be too large a jump in one year.

57. Discussion of benefits for institutional members was deferred.

58. Discussion of potential constitutional changes was deferred until after
incorporation.

59. The next meeting is to be in Sydney, Thursday May 5, in the Bevington Room
in Softway’s building if that can be arranged.

The treasurer is to get an accountant to prepare the books before the next
meeting.

The smaller, state wide, February meetings are to go on as planned at the last
meeting in February 89.

The next AUUGN should hold a call for nominations for the next AUUG
elections. We want to obtain the best possible committee for the coming year.

The meeting closed at 17:28.

AUUGN 93 Vol 9 No 3

THIS PAGE INTENTIONALLY LEFT BLANK

Vol 9 No 3 94 AUUGN

AUUG

Membership Categories

Once again a reminder for all "members" of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future, date, we are able to offer a software, tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member; isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the

AUUGN 95 Vol 9 No 3

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right corner you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Robert Elz

AUUG Secretary.

Vol 9 No 3 96 AUUGN

AUUG
Application for Ordinary, or Student, Membership

Australian UNIX* systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary ¯ Please don’t send purchase orders -- perhaps yourpurchasing department will consider this form to be an
P O Box 366 invoice.
Kensington NSW 2033 = Foreign applicants please send a bank draft drawn on an

Australia Australian bank, or credit card authorisatiort, and remember
to select either surface or air mail.

I, ... do hereby apply for

I--I Renewal/New Membership of the AUUG $55.00

I--I Renewal/New* Student Membership $30.00 (note certification on other side)

r--1 International Surface Mail $10.00

r--] International Air Mail

Total remitted

Delete one.

$50.00

AUD$
(cheque, money order, credit card)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date: / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: ..Phone: ...(bh)

Address: ...(ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $~

Account number:

to my ~-] Bankcard [-q Mastercard rr-q visa.
. Expiry date:

Name on card:

Office use only:

Chq: bank

Date: I /

Who:

bsb

$
a/c CC typem

Signed:

Member#

AUUGN 97 Vol 9 No 3

Student Member Certification (to be completed by a member of the academic staff)

I, ..2certify that

... (name)

is a full time student at ...(institution)

and is expected to graduate approximately [[.

Title: Signature:

Vol 9 No 3 98 AUUGN

A G
Application for institutional Membership
Australian UNIX* systems Users’ Group.

*UNIX Is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P 0 Box 366
Kensington NSW 2033
Australia

¯ Foreign applicants please send a bank draft drawn
on an Australian bank, or ci’edit card authorisation,
and remember to select either surface or air mail.

.. does hereby apply for

r--I New/Renewal* Institutional Membership of AUUG $250.00

I---I International Surface Mail $ 20.00

r--] International Air Mail $100.00

Total remitted AUD$
(cheque, money order, credit card)

Delete one.
I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from dme
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I!we will have only one vote in AUUG
elections, and other ballots as required.

Date" / / Signed:

Title:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: .. Phone: ...(bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

to my [--1 Bankcard D Mastercard r--] visa.
¯ Expiry date: / .

Name on card:
Office use only:
Chq : bank
Date: / /
Who:

bsb - a/c #

Signed:
Please complete the other side.

CC type ~ V#
Member#

AUUGN 99 Vol 9 No 3

Please send newsletters to the following addresses:

Name"
Address’

Name: ..
Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Phone" (bh)
.. (ah)

Net Address"

Phone: .. (bh)
.. (ah)

Net Address: ..

Please indicate which Unix licences you hold, and include copies of the tide and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate

any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source [] System V.3 binary

[] System V.2 source [] System V.2 binary

[] System V source [] System V binary

[] System III source [] System III binary

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

[] Other (Indicate which)

Vol 9 No 3 100 AUUGN

AUUG
Application for Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX Is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Please don’t send purchase orders m perhaps your
purchasing department will consider this form to be an
invoice.
e Foreign applicants please send a bank draft drawn on an
Auslzalian bank, or credit card authorisation, and remember
to select either surface or air mail.
e Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: ... (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

I---I Subscription to AUUGN

I---I International Surface Mail

I----I International Air Mail

Copies requested (to above address)

Total remitted

$ 55.00

$ lO.OO

$ 50.00

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $

Account number:

Name on card:
Office use only:

Chq: bank

Date: / / $

Who:

to my F--] Bankcard [~ Mastercard [:-] Visa.

.m. Expiry date:

Signed:

bsb - a/c

CC type

Subscr#

AUUGN 101 Vol 9 No 3

Notification of Change of Address
Australian UNIX systems Users’ Group.

*UNIX Is a registered trademark of AT&T in the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (an)

Net Address: ...

New address (leave unaltered details blank)

Name: ...

Address: ..

Phone: ...(bh)

... (an)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 9 No 3 102 AUUGN

