NwFLELE WY

~ TTEY LB

BTN b B

ISSN 1035-7521

Australian UNIX systems User Group Newsletter

Volume 12, Number 1

Registered by Australia Post, Publication Mumber NBG8524

AUUG Inc. Newsletter

AUUGN

Volume 12 Number 1

CONTENTS

AUUG General Information « « « « « o « « « o . . 3
Editorial e e e e e e e e e e e e e 4
AUUG Book Club Book Reviews « « « « « « « « .« . . 6
AUUGBook ClubOrderForm « « « « « « «1
(Ex) President’s Lettero 12
Beyond SCCS.o e e e 14
Good Things Still Come In Small Packages 21
USENIX News For AUUG Members « . « « « « . . .23
From the ;login: Newsletter - Volume 15 Number4. 25
Monograph Series on Advanced Computing Systems 25
Book Review: UNIX System Administration Handbook 26
An Update on UNIX and C Standards Actvity 27
From the EUUG Newsletter - Volume 10 Number3. 65
Plan 9 from BellLabs « . « « « «65
Rc - A Shell for Plan 9 and UNIX Systems.15
The SSBA at AFUU: A ProgressReport 86
USL Column . . . « « « v v e e e e e e e 90
C++Column . . . « « v o e e e e e e 9S

1%@:: A Directory to Electronic Mail Addressing and Networks
Second Edition, 1990.9
Report on ISO/IEC JTC1/SC22/WG15(®POSIX) 98
Puzzle COMETr « o« e e e e e e e 105
CallDoc Strangeo e .o e e e 107
Book Review: Unix forUsers « . . « . « . . . 112

AUUGN 1 Vol 12No 1

AUUGNBackIssues .13
AUUG Membership Categories114
AUUGForms. .. .15

Copyright ©1991 AUUG Incorporated. All rights reserved.

AUUGN is the journal of AUUG Incorporated, an organisation with the aim of promoting
knowledge and understanding of Open Systems including but not restricted to the UNIX
system, networking, graphics, user interfaces and programming and development
environments, and related standards.

Copying without fee is permitted provided that copies are made without modification, and
are not made or distributed for commercial advantage. Credit to AUUGN and the author
must be given. Abstracting with credit is permitted. No other reproduction is permitted
without prior written consent of AUUG Incorporated.

UNIX is a trademark of UNIX System Laboratories, Incorporated.

Vol12No 1 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.
All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary Phone: (02) 361 5994
P.O. Box 366 Fax: (02) 332 4066
Kensington, N.S.W. 2033

AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary Phone: (02) 361 5994
P.O. Box 366 Fax: (02) 332 4066
Kensington, N.S.W. 2033 Email: auug@munnari.oz.au
AUSTRALIA

AUUG Executive

President Pat Duffy Vice President Chris Maltby
pzd30@juts.ccc.amdahl.com chris@softway.sw.oz.au
Amdahl Australia Pty Ltd Softway Pty Ltd
New South Wales New South Wales

Secretary Peter Barnes Treasurer Michael Tuke
pdb@ugcspe.cs.uq.oz.au mjt@anl.oz.au
Computer Science ANL Limited
University of Queensland Victoria

Committee Frank Crawford Andrew Gollan
[frank@teti.qhtours.oz.au adjg@softway.sw.oz.au
Q.H. Tours Pty Ltd Softway Pty Ltd
New South Wales New South Wales
Peter Karr Scott Merrilees

sm@bhpese.oz.au
BHP Information Technology

New South Wales New South Wales
Stephen Prince
sp@labtam.labtam.oz.au
Chancery Lane Computer Services Pty Ltd
Victoria

Next AUUG Meeting

The AUUG’91 Conference and Exhibition will be held from the 24th to the 27th of September, 1991, at Darling
Harbour, Sydney. The AGM of AUUG Inc. will be held during the conference.

The AUUG’92 Conference and Exhibition will be held from the 8th to the 11th of September, 1992, at the
World Congress Centre, Melbourne.

AUUGN 3 Vol 12No 1

Editorial

This rather belated issue of AUUGN will be my last as Editor. Due to pressure of work I have been unable to
devote as much time to the task of editing the newsletter as I would have liked. In addition, I am heading
overseas soon, and so, regretfuily, I am giving up the editorship.

The new editor shall be Jacinta Crawford. She can be reached by through the same post office boc and e-mail
address listed below.

I have enjoyed my time as editor, and I hope that when I return from OS I will be able to contribute further to
the running of AUUG Inc.

AUUGN Correspondence
All correspondence regarding the AUUGN should be addressed to:-
David Purdue
AUUGN Editor
PO Box 366
Kensington, NSW, 2033
AUSTRALIA
Email: auugn@munnari.oz.au
Phone: +61 3 353 3913 (w)
+61 3 813 1258 (h)
Fax: +61 3 353 2987
Contributions

This Newsletter is published approximately every two months.
Contributions should be sent to the Editor at the above address.

I prefer documents to be e-mailed to me, or mailed to me on a floppy disk (IBM-PC 5-1/4 inch or 720K 3-1/2
inch; or Macintosh 3-1/2 inch), and in plain text format. Hardcopy submissions should be on A4 with 30 mm
left at the top and bottom so that the AUUGN footers can be pasted on to the page. Small page numbers printed
in the footer area would help.

Advertising

Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. Advertising rates are $300 for the first A4 page, $250 for a second page, and
$750 for the back cover. There is a 20% discount for bulk ordering (i.e., when you pay for three issues or more
in advance). Contact the editor for details.

Mailing Lists

For the purchase of the AUUG mailing list, please contact the AUUG secretariat, phone (02) 361 5994, fax (02)
332 4066.

Back Issues

Various back issues of the AUUGN are available, details are printed at the end of this issue.

Acknowledgements

This Newsletter was produced with the kind assistance of and on equipment provided by the Advanced Imaging
Systems department of Kodak (Australasia) Pty Ltd. I would also like to thank Labtam Australia for providing
me with a network connection.

Vol 12No 1 4 AUUGN

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of AUUG Incorporated, its Newsletter
or its editorial committee.

AUUGN 5 Vol12No 1

AUUG Book Club Book Reviews

These books have been reviewed under the AUUG Book Club scheme. Review copies were kindly supplied by
Prentice Hall Australia Pty Ltd. These books can be ordered from Prentice Hall using the order form that appears on
page 11. Don’t forget - a 20% discount applies to AUUG members!

UNIX FOR VMS USERS
by Philip E. Bourne

ISBN 0-13-947433-1
368 pp, RRP $84.95, 1990

Review by Vicki Jordan
LaTrobe University Computer Centre
<ccvi@lure latrobe.edu.au>

This book is not designed as an introduction to UNIX
for first time computer users, it is specifically targeted at
experienced VMS users who are beginning with UNIX.
As such, its whole “tutorial” on UNIX is presented as a
comparison between VMS commands and their UNIX
equivalent. A side benefit is that it also serves to expose
the experienced UNIX user to VMS!

There are 13 chapters:
Introduction:

Fundamentals: System internals, command structure
and file naming, device, directory and file structure,
special characters, wildcards.

Getting Started: Terminal characteristics, user
environment, help, documentation, command line
editing.

File Management: Common file manipulation

commands.
Editing: Intro to vi, sed, ed, awk.
Communication: mail, talk, write.

System Resources: who, ps, du, vmstat, netstat, kill,
at, nice/renice.

Devices, Queues, Background Processing: /etc/
printcap, lIpr, Ipq, tar, dd, &, jobs.

Advanced File Management: 1s flags, more, C shell
extensions, chmod, chgrp, cmp, diff, find, grep sort, tr, In.

Programming: Compiling and linking, make, dbx,
prof, ar.

Shell Programming:

Text Processing:

Processor-Processor Communication: rlogin, rsh, rcp,
telnet, ftp, tip, uucp.

Each chapter consists of an introductory section
which attempts to place the topic into general
correspondence with a reference to the nearest equivalent
VMS command or set of commands. Then the

Vol 12No 1

corresponding UNIX command is examined. The
chapters end with a summary which usually consists of a
detailed examination of the output of a set of commands.
The entire text is interspersed with comparative tables.
For example, the section on debugging presents, side by
side, the output from invoking RUN on a VMS file
compiled with DEBUG and the output from dbx invoked
on the file compiled with f77 -g. “SET BREAK” is shown
against “stop”, “SHOW BREAK” against ‘“status”,
“EXAMINE” against “print”...efc.

There are 4 appendices plus a glossary:

Command Summaries: VMS Commands vs UNIX
Equivalents.

Editor Summaries: VMS EDT Line Mode vs UNIX
ex and vi.

Important UNIX files: ...and their purpose.

Additional Reading: ..categorised into beginners,
intermediate and advanced user, System Administration,
UNIX for Micros, System V, BSD, plus references for
individual chapters. This bibliography in itself is very
useful.

Summary:

I have no hesitation in recommending this book to
experienced, and perhaps even casual, VMS users who
are beginning with UNIX. It is well organised, very well
presented and excellently indexed. My only criticism is
its concentration on BSD and C shell, which is, I suppose,
to be expected since Ultrix is a Digital Equipment
Corporation product.

AUUGN

UNIX SYSTEM ARCHITECTURE
by Prabhat K. Andleigh

ISBN 0-13-949843-5
274 pp, RRP $57.95, 1990

Reviewed by Pauline Khoo

Advanced Imaging Systems

Kodak (Australasia) Pty Ltd
<khoo@Kodak.COM >

Andleigh’s book UNIX System Architecture presents a
fairly comprehensive description of, as its title suggests,
the architecture of the UNIX operating system.

The book starts of with a general introduction to
multi-user operating systems concepts in Chapter 1. This
chapter is useful for readers not already familiar with
these concepts, but may be skipped by more advanced
readers.

Chapter 2 proceeds to introduce the reader to the
UNIX kernel sub-systems. Here, the author first presents
a functional overview of UNIX, which describes the
capabilities of the kernel sub-systems. This is followed
by an architectural treatment, which describes the layout
of the modules of each sub-system and the inter-module
interactions.

Chapter 3 is the main chapter of the book. It starts
with a fairly detailed description of control structures and
tables used by the UNIX kernel in managing processes.
This is followed by an architectural treatment of the
kernel sub-systems including memory management,
process management, interprocess communication, file
system management, input/output management and
networking. The algorithms for some of the key routines
of these sub-systems are also provided.

The following chapters briefly cover related UNIX
issues relating to distributed and multi-processor
systems, system performance, UNIX system porting,
implementation differences and application portability.

Andleigh’s book would be informative to readers at a
variety of levels, particularly to novices in multi-user
operating systems and UNIX. It provides more than a
basic level of understanding of the UNIX operating
system, though not as detailed as the more established
book, The Design of the UNIX Operating System by
Maurice Bach. It is well written and extremely readable.

" AUUGN

UNIX DATABASE MANAGEMENT
SYSTEMS

by Ulka Rodgers

ISBN 0-13-945593-0
338 pp, RRP $39.95, 1990

Reviewed by David Newton
0.H Tours
<dave@teti.qhtours.oz.au>

Almost without exception, modern business
computing is irrevocably linked with the need to store,
process and retrieve large volumes of data. Once the
domain of mainframes, commercial database
applications have now penetrated all levels of computing
with a continuing need for increased productivity and
functionality. With the current interest in open systems
strategies and the greater acceptance of UNIX as a
commercial operating system it is surprising how little
practical literature has been written on the subject of
database management in the UNIX environment.

UNIX Database Management Systems is first and
foremost a practical book on commercial DBMS
applications for the UNIX world. It has the type of
practical information that everybody wants to know but
nobody is prepared to tell you. It is a useful book for those
who work with and develop these types of systems.

The book strives to achieve two main goals:

« To explain the influence a UNIX operating system has
on a DBMS application.

« To discuss the tradeoffs faced by database designers
in developing these applications.

There is no precursory discussion on UNIX in this
book, it assumes the reader has a prior knowledge of both
database theory and UNIX. The book is suitable for
database designers and administrators and those wishing
to gain a background in the subject, like MIS managers.

The book is divided into five sections containing
fifteen chapters in total, three appendices and a
bibliography.

Part 1 is an introduction to the book and sets out to
lay a theoretical foundation for the rest of the text. Its aim
is to provide a technical background for later discussions
on practical issues. The section begins with a historical
discussion of databases and leads into a description of
various theoretical DBMS models. Because of the
profusion of UNIX relational DBMS’s a chapter is given
to relational concepts which includes the always present
discussion on data normalization. The section concludes
with the benefits of a DBMS and the final chapter sings
the praises of the SQL query language.

Part 2 deals specifically with the relationship of a
DBMS to its UNIX environment and how the use and

Vol12No 1

abuse of that environment can effect the DBMS’s design
and behaviour. The section is divided into three parts.

o A brief description of UNIX facilities including such
things as system processes, physical memory, disk
storage, device drivers, concurrency control,
networking, kemel buoffers and assorted UNIX
utilities. For the seasoned UNIXer this chapter may
not reveal anything special.

= In contrast to the previous chapter the focus is on the
DBMS and its facilities and design considerations.
The chapter covers storage methods, access methods,
data integrity systems, concurrency controls,
application builders, host languages and fourth
generation languages.

e The final chapter in this section joins together the
previous two chapters raising assorted issues relating
to the running of a DBMS under UNIX. The practical
tip provided in this part of the book are numerous and
are worth thinking about, even by the best of us.

Part 3 reviews four of the most significant UNIX
RDBMS on the market. :

» Informix 3.3

e Ingress 5.3

* Oracle 5.1

e Accell/Unify 1.3/4.0

Each RDBM’s is appraised in a similar way and
begins with a discussion on the history of the company
and the product itself. Issues discussed are product
packaging, product modules, data control systems,
application builders, utilities, special feature and the
products ability to integrate with UNIX. The use of tables
of product features is prominent in this section and all
vendor specific terminology is translated for the readers.

This section gives an interesting comparison of the
products but is already dated and is no substitute for
information direct from the vendor.

Part 4 of the book is about selecting the appropriate
DBMS to meet the users needs and is contrasted with the
previous section. In the words of the author; this part of
the book attempts to arm you against the temptation of
succumbing to the best sales pitch.

The three chapters of this section describe the basic
selection process and cover:

* Determining application requirements
+ Assessing the tradeoffs
+ Benchmarking

Selecting a product can be a difficult task, particularly
if you have not done it before and one of the great assets
of this book is the simple rule of thumb approach used to
guide the readers.

Part 5 is the final section of the book and is entitled
Future Directions. It attempts to leave the reader with a

Vol 12No 1

warm friendly outlook on the future of database systems
but as the author says; take these flights of fancy with a
little grain of salt: They are based on what we know
today. Tomorrow will probably be different. Actually this
section is not as fanciful as made out and outlines the
future of distributed databases, expert systems, case tools
and natural languages. The discussion on distributed
databases is not detailed and considered to be outside the
scope of the book.

Conclusion:

Like a well constructed database application Unix
Database Management Systems is concise and well
constructed. The plentiful tips on tuning databases are
like nuggets of gold to those who are new to building and
maintaining these types of systems. It is disappointing
that SYBASE was not included in the product
comparison in chapter three but as time proceeds the
product information will become irrelevant anyway.

For those with an interest in commercial UNIX
databases, a book well worth reading!

AUUGN

AN INFORMIX 4GL TUTORIAL
by Paul Mahler

ISBN 0-13-464173-6
282 pp, RRP $43.95, 1990

I could not find a volunteer to review this book;

I may send a review myself for a future issue. -
Ed.

AUUGN

MULTIMEDIA APPLICATIONS
DEVELOPMENT WITH THE
ANDREW TOOLKIT

by Nathaniel S. Borenstein

ISBN 0-13-036633-1
310pp, RRP $72.95, 1990

Reviewed by Matthew Barry
Department of Computer Science
University of Melbourne
<meb@cs.mu.oz.au>

Multimedia applications are becoming very
fashionable in the early nineties. The idea is that
information should be presented in a form, or forms, most
accessible to humans. This may mean that the application
uses a graph to illustrate changes in temperature, or full
colour pictures from a CD ROM to show what a tiger
looks like. There is an enormous, and growing, variety of
computer-based media. The Andrew Toolkit is designed
to provide a flexible architecture for multimedia
applications development.

The author starts the book by giving a couple of
examples of multimedia applications. The reader is told
that Andrew makes it “relatively easy to create such
multimedia applications”. The section on multimedia
applications ends with the warning that “it is worth
remembering that the ultimate rationale for these
technicalities [the content of the rest of the book] is the
creation of fancy multimedia applications that fit
seamlessly together”. The warning is appropriate as this
is just about the last time that multimedia applications are
mentioned in the book. Apparently a secondary aim of
the book is to teach object-oriented programming.

The book consists of five chapters and five
appendices. Approximately half the pages are used in the
appendices. In each chapter and in two of the appendices
the author provides exercises and programming projects
for the reader. Solutions for a selection of the exercises
are provided in Appendix E. A few of the exercises are
not related to learning how to use the Andrew Toolkit, but
instead are trivial programming exercises. The book is
full of example programmes. Sometimes reading the
book is like reading a heavily commented code listing.
Source code for the examples in the book is distributed
along with the Andrew Toolkit. Unfortunately I have
been unable to get the Andrew Toolkit running on our
Sun 4 and so I am unable to test the examples.

The five chapters of the book introduce the
conventions and basic classes used to build applications
with the Andrew Toolkit. At the end of the tour the
diligent reader should be able to construct programmes
using the Andrew Toolkit. The author does not provide a
complete summary of the conventions used in
programming with the Andrew Toolkit, which is a pity as

Vol12No 1

there is a deal of convention to be followed. The primary
example throughout the book is the dreaded “Hello
World” programme. Indeed I have never seen a dead
horse flogged harder. The poor scope of the example
programme means that many Andrew Toolkit features are
introduced into the book without any motivation. The
author simply says lets add menus, or whatever, to the
“Hello World” programme. Anyway by the end of the
five chapters the usual user interface toolkit subjects
(menus, windows, mouse input, etc) are covered. Along
the way some pearls of wisdom about the philosophy of
using the Andrew Toolkit are imparted and some arcane
terminology is explained. The author provides no
pointers to other information either about Andrew or
multimedia applications development in general.

The book is liberally provisioned with sample code.
At times a couple of pages of sample code are inserted to
show that one or no lines of code are different. It is nice
not to have to take an author’s word for things. As the
“Hello World” programme is developed the author often
would be better off inserting the text of the new
procedure, or modified lines, rather than forcing the
reader to wade through a couple of pages of code to find
the piece of code under discussion.

Appendix A is simply an example programme
demonstrating how to use the Andrew Toolkit classes for
getting more complex answers from the user.

Appendix B is designed to show the “elegance and
power” of object-oriented programming. It is interesting
to see how the author goes about constructing a more
complex programme. Most of the text describes the code
rather than the design processes used by the author.
Things do turn out nicely using the Andrew-style of
object-oriented programming. In fact the contents of
Appendix B may have made a good primary example for
a lot of the book.

Appendix C is a fifty page “grand tour” of the Andrew
Toolkit. Basically this consists of a single sentence
description of the class and a list of the methods exported
from the class for some of the classes. I would find it
surprising if the Andrew Toolkit does not provide some
facility to interactively browse around the manual pages
for its large class hierarchy.

Appendix D gives some hints on debugging
applications running under the Andrew Toolkit. On the
face of it this is a pretty useful chapter as having to debug
dynamically loaded modules is not part of every day C
debugging experience. However I again would find it
surprising if the issues involved in debugging Andrew
Toolkit classes are not covered by the accompanying
documentation. The more general advice given is old hat,
e.g. using print statements. Borenstein also mentions four
commonly encountered errors and the symptoms
associated with them.

The typographical conventions in the book are
dreadful. The example code seems to have been

Vol12No 1

formatted to one page width and then restricted to a
smaller page width with the resulting line wrap being
ignored. Occasionally this makes the code hard to read.
There are several instances of the first line of an exercise
being tucked away underneath an example programme
and the rest of the exercise being over the page. There is
even one instance of a heading being the last line on a
page. In general 1 feel that very little care has been taken
with the production, or proof-reading, of the book.

If you are looking for an insight into the multimedia
applications development and the experiences other
people have had with them, definitely this is not the book
to buy. On the other hand if you want an introduction to
using the Andrew Toolkit then this book may be of some
use.

AUUGN

AUUG BOOK CLUB

& .
PRENTICE HALL AUSTRALIA

20% DISCOUNT TO AUUG MEMBERS

Please send me copy/copies of the following books —

Bourne/ Unix for VMS Users
RRP $84.95 ISBN: 1394-7433-1 Cloth 1990

Andleigh/ Unix System Architecture
RRP $57.95 ISBN: 1394-9843-5 Paper 1990

Rodgers/ Unix Database Management Systems
RRP $39.95 ISBN: 1395-0353-6 Paper 1990

Mahler/ Informix 4GL Tutorial
RRP $43.95 ISBN: 1346-4173-6 Paper 1990

Borenstein/ Multimedia and Application Development with the Andrew Toolkit
RRP $72.95 ISBN:1303-6633-1 Paper 1990

*Deduct 20% from listed retail price.

Name: Organisation:
Address:

(testsctess o Telephone:
D Please send my book/s on 30-day approval (tick box)
Enclosed cheque for § (Payable to ‘Prentice Hall Australia’)
Please charge my: [| Bankcard [] Visa [] MasterCard
CreditCardNo: [T T [I TTTI[LTTT LT TT]
Expiry Date: Signature:

Mail completed order form to Prentice Hall Australia, PO Box 151, Brookvale NSW 2100

OR Use our FAST PHONE SERVICE call Liz Guthrie.
Have your credit card ready (9am to 5pm)
SYDNEY (02) 939 1333

= 7 Grosvenor Place, Brookvale NSW 2100
Tel: (02) 939 1333 Fax: (02) 938 6826
A PARAMOUNT COMMUNICATIONS COMPANY

% Prentice Hall Australia Pty Ltd

(Ex) President’s Letter

This letter was sent by Greg Rose, who resigned the Presidency of AUUG Inc shorty after the

AUUG’90 conference.

It’s safe now for me to write a letter for the
AUUGN, since you only get to write one ex-
president’s letter; I can’t set a precedent!

It was with some amount of sadness that I
tendered my resignation at the last meeting of
the executive committee. AUUG has done a lot
for me over the past akem years, giving me
many new friends, interesting moments (such
as stand-up brawls over balloons), more
knowledge of the world of computers, and I
could go on for hours.

I’ve tried to repay some of that by taking the
group in directions which I felt should
simultaneously:

1. Increase benefits to members;
2. Increase the group’s membership;
3. Help the UNIX community at large to grow.

Properly implemented, these three goals
should become self reinforcing, feeding back to
enable clear growth and better services.

I don’t think that these goals have been
addressed as well as they could have been;
which doesn’t mean that anyone has failed,
either. It is in the nature of things, particularly
with a volunteer organisation like AUUG, that
people simply run out of energy, time or bluster.
With the UNIX marketplace growing steadily
(some would say slowly) at 45% per annum, we
are forced to the conclusion that AUUG has to
change significantly, and to keep changing, to
meet the requirements of its members. If only
we had had Lionel Singer’s crystal ball, we
could have set up an entirely different AUUG.

In case you hadn’t noticed, the previous
paragraph was an attempt to point out that we
need 45% more people willing to get in there
and do things for the group. We’re finally
sorting out and offloading some of the drudgery,
but innovations never come easily. We can (and
do) look to other UNIX user groups for ways to
meet our aims, but not all of their methods can
be made to work here. Australia is more

Vol12No 1

isolated; more centralised in two cities and yet
geographically far flung; still coherent (as
opposed to the U.S. where the user groups have
long since stopped talking to each other); and
small. We here in Australia have to address
these problems in our own ways.

Now a bit of maudlin retrospective. The
group started way back in about 1976, with
people mostly from the University of New
South Wales, although that didn’t last long.
These people got together to exchange
programs and bug fixes, and to talk about Unix
(it wasn’t capitalised then). Strangely enough,
the reason for talking about it usually came
back to the fact that for us, as programmers,
Unix was a lot of fun to use, and access to the
full source code was a great way to learn.
Almost every aspect of the preceding statement
is now inapplicable. UNIX is still fun for
programmers, but they are a decreasing
proportion of our membership (I’'m only
tenuously a programmer these days). You
generally don’t get the source code to look at,
the number of bugs is increasing in proportion
to the size of the system (which has recently
tripled), but the bug fixes are becoming rarer.

Through the years, we went through a
barrage of the same, standard questions:
e What’s a UNIX? (snicker)
e Will UNIX ever take over the world?
* I'm glad to see UNIX is finally doing
something...
* goto loop

There were always people ready to throw
tomatos at UNIX converts. Of course these
were usually in response to the watermelons
going the other way. I think that, like most new
technologies, UNIX needed to evolve softer
corners, while other (I almost said older, but of
course this isn’t really the case) systems needed

‘to realise that UNIX had a lot to offer, hidden

behind a sign saying ‘“You are not expected to

AUUGN

understand this.”

Gradually, Unix became Unix™, then the
UNIX™ Qperating System, then System VTM
(at least according to the owners). Other people
had other words, but it isn’t the name or the
version of source code which means survival
for UNIX. It is the simplification and
clarification which UNIX brought to bear on
something which had been (and is again)
considered to be a hard problem. I think it is
indicative of the subtlety of UNIX that it was
ten years after the paper announcing Unix in the
Communations of the A.C.M. that Dennis
Ritchie and Ken Thompson were given the
A.CM.’s Turing Award.

During all this time UNIX continued its
steady growth, until now people are astounded
that it is possible to have fifteen years
experience with this “new” operating system.
And obviously all operating systems have
hierarchical directory structures, but why did
UNIX use ““/” instead of “\e”’?

Enough of that. I'd like to take this
opportunity to thank all of the people (and
companies) who contributed to the success and
growth of AUUG over the past few years. They
all made my job easy. The new organisation has
Pat Duffy heading up an excellent and
expanded executive, with old hands and new
faces combining, I think, to really develop the
group. I wish them all the best, and hope you’ll
all support them.

What of me? I felt that I was stagnating to
some extent, that my style of (non-
)management might have inflicted itself on
Softway and AUUG long enough. So I’m off on
aresearch jaunt for a year to sharpen my cutting
edge. AT&T, in a brilliant strategic move, have
allowed me to go to IBM’s Thomas J. Watson
Research Center, about an hour’s drive north of
New York, where I'll be working on distributed
services for supercomputer applications. I'll be
more than happy to play host to my many
friends from AUUG (one at a time) if you
happen to be in the area.

Best regards,
Greg Rose.

AUUGN 13 Vol 12No 1

Beyond SCCS

“Beyond SCCS” was a talk given by Tim Roper at the AUUG Summer’91 Victoria conference held
at Monash University. After a number of requests, Tim has consented to having the slides from his
talk reproduced here.

dantd latd P —_—
91002/18 (1.0)

| | FOIL |
Introduction
Beyond SCCS _
Aim
or « Introduce techniques used with
standard UNIX tools to perform
Basic basic Software Configuration
Software Configuration Management Management functions in a multi-

programmer, multi-product hardware
and software development
environment.

Done Cheaply with UNIX Tools

Timothy Roper Background
Senior Systems Programmer - Transition from single product,
single platform, single source tree
Labtam Australia environment to a mult-product,

multi-platform, parallel development

timr@labtam.oz.au ,
environment.

1 . ’ t Copyright © 1991 Labtam Australia
Copyright © 1991 Labtam Australia

Vol12No 1 14 AUUGN

010218 (1.6) 010210 (1.6)
Beyond SCCS Beyond 5CCS
FoIL 3 FOlL 4

| t | |

Overview The Problems
State some problems Double Maintenance
Offer some principles - two (or more) “true” versions of the

“same” source code
Shared Data

Apply those principles

Mention some alternatives
- attempting to share a single version
causes instability during debugging

Simultaneous Update

- separate copies during debugging
can lead to old bugs reappearing

9102/18 (1.6) 9102/18 (1.6)
Beyond BCCS Bayond SCCS
FOIL 6 FOlL &

| | | |

The Problems The Problems
Identification Environment
« What version is this - What are <sys/param.h> and
— binary file? ~lc today?
— source file?
— document?

Reproducibility

. Can we reproduce a released
binary from source after subsequent
releases?

Variations
. Models of hardware

. Options

Copyright © 1991 Labtam Australia Copyright © 1991 Labtam Australia

AUUGN 15 Vol 12No 1

9102118 (16)

The Principles

Common Baseline

Prevent double maintenance
+ Keep a history of the project
Private Playpens

Avoid instability of shared data
Locking

Prevent simultaneous update

When to lock?

— at checkout time?

— just before checkin?

— Dbefore integration testing!

oY1 (1.8)
BCCS
FOL®

|

The Principles
Configuration Definition
« For reproducibility
- A configuration is defined by

— a list of every file used and its
revision

— the build procedure
— the definition of the environment
Boxes

Restrict build environment to that
intended

No unintended binding of
#include <sys/param.h>
-lc

Copyright © 1991 Labtam Australia

Vol12No 1 16

0218 (1 6)
Boyond SCCS
FoL 8

| 1

The Principles
Version Stamps
« Just a hint
On all possible objects
— executables
— documents
— arbitrary binaries can be difficult

Not a substitute for a Configuration
Definition

910218 (1.6)
Beyond SCCS

FOIL 10
|

The Principles
Stability vs Currency
Fundamental tradeoff
Want stability while debugging

Want currency while integration
testing

Equity

« All objects are subject to the rules
Wide interpretation of source file
— documentation
— memos

— PLD equations

Copyright © 1991 Labtam Australia

AUUGN

a'.l:)i’lll (1.8) 10218 (1.6)
rond SCC8 SCCS
FOIL 11 FOlL 12

.
| | | '

The Techniques The Techniques
SCCS supplies the primitives Baseline is SCCS Tree
- change control per file + 3D tree V
. revision naming — depth
+ locking — breadth
- change history — thickness?
« RCS would do just as well .+ name translation required
Build on SCCS ¥ encourage revisions
- Wrappers + revisions are frozen once entered

+ Conventions

91/02/18 {1.6)

’mﬁi . "";""msfﬁi
The Techniques . : The Techniques
SCCS Wrapper Projects
- sccs commard file ... « One per logical group of source
' files

+ SCCS primitives, macros
— of the same origin, eg. X11

— enter

c — comprising a common sub-
- ge system, eg. TCP/IP
- lock - project is not the same as product
- delta + exactly one baseline per project
— diffs
— sccsdiff

« Name translation
— $SRCDIR

— S$SCCSDIR

|
! Copyright © 1991 Labtam Australia Copyright © 1991 Labtam Australia

AUUGN 17 Vol12No 1

910218 (1.6) 910218 (1.6
Seyon 5608 oy 5068
FOIL 15 . FOIL 16

! | l !

The Techniques The Techniques
Playpens Parts Lists
+ Private to user? + Lists every file, its revision and its

» Private to purpose project (baseline)

— bug fix, release build + Defines a configuration

+ Directory tree paralleling baselines + First step in build procedure

* Configuration binding is a manual

+ Built by selecting required revision
process

of required files from one or more
projects — getparts

- Input to documentation
— diffparts
- cf. Bill of Materials

910218 (1.6) 910218 (1.6)
Bayond SCCS

s o
| | |
The Techniques The Techniques

Cross-environment Bugfiler
- originally for cross-compiling for - Central repository of reports

other CPUs — bugs

— ¥env 1360 make — enhancement requests
- isolates build process from vagaries — limitations, caveats, warnings

of default environment
- Cross reference bug reports with

— xenv svrd make SCCS revisions

) Tay h,e’ave multlple versions of - Advice to Support and Maintenance
same” environment

— Xenv x11r3 make

— xenv x11lr4 make

Copyright © 1991 Labtam Australia Copyright © 1991 Labtam Australia

Vol12No 1 18 AUUGN

910218 (1.6) Q10218 (1.6)
Beyond 8CCS. Beyond SCCS
FOIL 19 FolL 20

.
1 | | i

Alternatives Alternatives

Cloned trees Three Dimensional File System
- Yost, 1985 « Korn and Krell, 1989
- Successive configurations are - Revisions are incorporated into file
parallel trees 4 name space
— linked to previous files where ‘ - No need for special tools to access
unchanged revisions
— copied and edited where ‘ .+ file system has thickness as well as
different depth and breadth

Attributed File System
+ AFS, Mahler and Lampen, 1990

File are objects with attributes

910218 (1 6)

T | s
Alternatives Summary

Boxes In Favour

Glew, 1989 + Cheap
. Use chroot(2) to enforce restricted + Portable

environment Acceptable
Ada Language System - Flexible
. Babich, 1986 Against

. Formalises inter-module

dependencies (integrated make) Lacks integration

. An interesting example of the other Lacks enforcement

approach + Flexible

Copyright © 1991 Labtam Australia Copyright © 1991 Labtam Australia

AUUGN 19 Vol 12No 1

910218 (1.6)

FOL
1 . |

Bibliography

The Mythical Man-Month
F. P. Brooks, Jr, Addison-Wesley,
1975.

- Surprisingly relevant in 1991

Software Configuration Management
Wayne A. Babich, Addison-Wesley,
1986.

Entertaining description of the
problems and principles

SCCS, RCS, make
Ada Language System

910218 (1.6}
Bayond SCCS
FOIL 25

Bibliography

Integrating Configuration Management
into a Generic Environment

Axel Mahler and Andreas Lampen,
SIGSOFT '90.

Attributed File System, AtFS.

The 3-D File System
David G. Korn and Eduardo Krell,
Summer 1989 USENIX Conference.

The Cloned Tree Method of Revision
Control

David Yost, Summer 1985 USENIX
Conference.

Vol12No 1 20

9100218 (1 6}
Beyond SCCS
FOIL 24

Bibliography

Boxes, Links and Parallel Trees:
Elements of a Configuration Management
System

Andy Glew, USENIX Software
Management Workshop, April 3-4,
19889.

CVS II: Parallelizing Software
Development

Brian Berliner, Winter 1990 USENIX
Conference.

AUUGN

Good Things Still Come In Small Packages

Jack Dikian
Media-Lab Pacific
<jack@syd.sgi.oz.au>

ABSTRACT

It was ten years ago. It was yesterday. It was Version 7 from AT&T. It is Coherent from
Mark Williams Co. Unix was small, simple and cheap. Unix is still small, simple and very,

very cheap.

This paper takes a close look at the youngest and smallest kid on the block, and compares
it with its older and bigger brothers, as well as its opponents. This is a review of Coherent

Unix.

It was a long time ago, almost ten years ago in fact,
when John Lions published what was a complete,
annotated listing of AT&T’s Version 7 kernel in the form
of two booklets that together are no larger than this issue
of AUUGN. Those documents, along with the University
of New South Wales’ “1980 Unix Companion” [UNSW],
and “The C Programming Language” [R&K], more than
anything else provided us with an extraordinary insight
into Unix, the Unix philosophy, and its implementation
language. For many, including myself, those documents
were in a very real sense invaluable. Those documents,
however, also represented something else; they were
terse. The size of those notes made it possible to have
them on hand virtually everywhere we went.

It is significant, therefore, that Coherent Unix is
supplied with a single 1100 page manual that is on one
hand very reminiscent of those early works, yet on the
other borrows much from the more modem and
accessible styles such as that found in the Kemighan-Pike
“The Unix Programming Environment” [K&P]. The
Coherent manual contains all the information that the
user needs to install, use and, importantly, learn Unix.
The manual covers the traditional Unix sections, namely
the supported commands, system calls and subroutines,
as well as excellent chapters providing tutorial like
presentations, These include system administration,
UUCP, awk, the C language, ed, lex, the m4 macro
processor, make, MicroEMACS, text formatting, the
shell and yacc.

I am placing special emphasis on the quality of the
supplied manual for one very important reason; this
variant of Unix potentially has a very ready market niche
in the way of a low-end Unix training platform. Coherent
also comes into its own through its use as a cost effective
UUCP node or to provide the DOS user with an
alternative vista.

“Coherent, A Multi-user, Multi-tasking Operating
System For The IBM-PC/AT And Compatible 286 Or
386 Based Computers” [Coherent]. This brief product
sketch printed on the cover jacket of the manual provides

AUUGN

the PC enthusiast with enough flavour of Unix to
encourage further curiosity. Coherent Unix comes from
the 13-year-old compiler vendor Mark Williams
Company, based at 60 Revere Drive, Northbrook, Illinois
60062 (aunet!mwc!sales). For US$99.95 you receive a
60-day money back guarantee Unix look-alike, and
excellent user manual and free technical telephone
support. This system is shipped on four 3.5 inch high
density floppy disks and a single copy of the Coherent
system manual. A registration card contains a nine digit
serial number that the install program prompts for during
the installation process.

The hardware requirements for this system are very
modest when compared with even some DOS
applications such as Microsoft Windows. The system
requires an IBM AT or clone with 100% compatibility. It
does not work on any of the MicroChannel platforms.
One high density 3.5” or 5.25” floppy drive, a hard disk
with at least 10MB free space, and a minimum of 640K
RAM. The manual claims that the system will work with
RLL, MFM and most ESDI disk controllers. It should
also work with some SCSI host adapters. Coherent
includes device drivers for line printers, HP laser printers,
COM1 to COM4, RAM disks, tape drives, and the
Adaptec SCSI disk controller. ESDI controllers include
Ulirascope, Western Digital, and multiport from Amet,
Emulex and SEFCO. I suspect, however, that you need to
take a close look at exactly what is and isn’t supported.
The release notes list more than 100 compatible systems,
memory boards and disk controllers.

The preparation and installation took me
approximately two hours to complete. In theory the
actual Coherent install should only take about half an
hour, depending on your CPU, but if you, like me, decide
to partition the disk between DOS and Unix then you will
need to backup your whole disk before you commence
the installation. I carried out the installation on a very old
286 clone with 640K and a 40MB disk running DOS 4
with the Gemini EGA 2.4 BIOS. The provided install
program drives the user through the installation process

Vol12No 1

from start to finish. It is no more difficult to install
Coherent than it is to install any DOS application.
Absolutely no prior knowledge of Unix is required. By
far the trickiest section of the installation is when you are

asked to re-partition the hard disk. Here you can

nominate how much space you wish to allocate to
Coherent and DOS, as well as defining the active
partition. The operating system mounted on the active
partition is booted automatically on start-up. The install
program copes very well with the system it is being run
on, and tries very hard to prompt you with specific and
helpful messages as you go.

Once a partition has been allocated to Coherent, the
install process bad blocks the nominated partition and
makes the file system. You are now ready to reboot the
system. The operating system on the active partition
boots by default. If you load Coherent on the non-active
partition, then you will need to press the number
corresponding to the Coherent partition while the system
is booting. If Coherent comes up OK, then the remaining
three floppies are copied. This step takes a significant part
of the overall installation process time. Uncompressing
the man pages and the spell dictionary etc. is slow.
Coherent with man pages and dictionary takes up 7MB.
This leaves me 13MB of user file space on the Coherent
partition, and a further 20MB DOS space. 1 should
mention that the Norton Utilities [Norton] came in very
handy at this point because the data remaining on the
20MB DOS partition was almost unusable. It took only
minutes for Norton to make sense of the broken
directories and help repair them,

Coherent Unix comes up multi-user after carrying out
a rather slow (3 minutes for 7MB on 286) fsck and
prompts for a login with “Coherent login:” At first you
get the feeling that you are using a dumb terminal
connected to a large AT&T SYS V rel 2 site. /bin looks
quite comprehensive. But a closer inspection soon tells
you why this is the small kid on the block. No POSIX
compliancy, X-Windows or NFS. The C compiler is fast,
but does not support medium and large models on the
286. Source code is not included, csh is not available, nor
is off the shelf software.

Coherent does, however, fit into 640K of memory (it
can address up to 16MB) with the kernel using up a whole
77K. It does give you text formatting facilities through
nroff with ms. The manual also provides a 65 page
chapter introducing nroff with very relevant examples.
UUCP, as mentioned earlier, is supplied via uuinstall,
uucp, uucico, uuxqt, uulog, uuname and uutouch. Once
again, the large Remote Communications Utility chapter
takes away a lot of the black magic from establishing
uucp links. The public domain MicroEMACS is
included, as is kermit. The stream editor sed, ed and elvis
(vi) are well implemented. I especially found the yacc
presentation and program examples quick to implement
and easy to learn from. The C compiler, an assembler (for
subroutines only), awk and the shell provide a well

Vol 12No 1

rounded development suite for training if not for
developing real systems. No single platform supporting a
dual operating system is complete without a data
communication mechanism. Coherent provides a tar like
utility called dos which allows the Coherent user to
manipulate an MS-DOS file system. It can format or lable
an MS-DOS file system, list the files in it, transfer files
between it and Coherent or delete files from it. If you
wish you can also buy a device driver toolkit for
US$39.95.

Yes, there are other kids on the block. However
Coherent is by far the best dressed for the price. I am
going to take a quick look at three other products which
Coherent contends with. The first is not really an
operating system, but rather a suite of layered utilities
called the MKS (Mortice Kern Systems) Toolkit. MKS
sits on top of DOS and provides over 100 System V
commands including the Korn shell and vi. However
there are no development tools, and because of its
dependence on DOS there is no multi-user/multi-tasking
facilities. MKS costs $250.00. The second player is
Minix (Mini Unix) from Prentice Hall, which is based on
AT&T’s Version 7 and is supplied, with source, on 12
3.5” floppy disks. Minix sits on the host hardware and
requires at least a 10MB partition if source is to be
included. Although there is no UUCP support, Minix
does feature networking, rcp and Ethernet. The third,
SCO (Santa Cruz Operation) XENIX [SCO] is really a
heavy weight in features and price when compared
Coherent. SCO has a 198K kemnel and requires at least 1
to 2MB of memory and 30MB of disk. It costs $1495.00.

In conclusion, Coherent Unix from Mark Williams
Co. is a truly high performance for value product. It
combines the power and flexibility of Unix with the
accessibility of PC based technologies. The manual is
excellent and it alone is comparable to many speciality
books costing many tens of dollars. The training sector is
by far the most suitable environment for this product. Not
only can this system be used to provide Unix concepts
and training, but other areas such as C, shell, systems
administration and text formatting can be mastered. The
systems also lends itself as an ideal UUCP node.

The Mark williams Company claims it already has
10,000 satisfied users... make that 10,001.

References

[UNSW] Unix Companion, 1980, University of NSW.

[R&K] Kernighan, B. & Ritchie, D. The C
Programming Language. Prentice Hall,
1978.

[K&P] Kernighan, B. & Pike, R. The Unix
Programming Environment. Prentice Hall,
1984,

[Coherent] Coherent Manual, 1990, Mark Williams Co.

[SCO] Tech Specialist Journal, January 1991.

[Norton] Norton Utilities, Advanced Edition 4.50,

1987-1988, Peter Norton.

AUUGN

USENIX News For AUUG Members

Donnalyn Frey is the USENIX Association Press Liaison. She provides members of the press, USENIX
Association members, and AUUG members with information on the activities of the USENIX Association.

1. Winter 1991 Dallas Conference

The Winter 1991 Dallas USENIX Conference was
held January 21 - 25, 1991 at the Grand Kempinski Hotel
in Dallas, Texas. The theme of this conference was
What's next: by the year 2010, evolution or revolution?
Unix derivative or Something Else?

1.1 The Keynote Presentation

The keynote speaker at the conference was Flip
Phillips, of the Pixar Animation Research and
Development Group. Marc Donner wrote this review of
the keynote presentation:

The keynote speaker at the Dallas conference was
Flip Phillips, filling in for Eban Ostby, who was unable to
attend due to illness. Phillips, an Animation Scientist
(Technical Director and Animator) at Pixar, spoke from
slides prepared by Ostby.

Phillips delivered a talk that was rich in technical
detail. The overall message was that the techniques and
skills required to produce and execute outstanding
computer animations at Pixar are much the same as those
required for good system programming. This was
illustrated by a tour through the design of a collection of
animation support tools developed at Pixar and used in
their productions.

Phillips started off by briefly describing the original
animation system developed at Pixar, a large and
monolithic program that proved hard to modify and
insufficiently general. Rather than continue to enhance
this system, the people at Pixar decided to build a
completely new system.

The new system was designed to be composed of
multiple processes, taking advantage of the UNIX
environment on which it was developed and run. In the
process of describing the components, Phillips sought to
demonstrate that the design and construction relied
heavily on conventional system programming skills.

The animation support system designed at Pixar is
built from seven subsystems. These subsystems include:
file I/O, database, events, interactive I/O, graphics tools,
animation tools, and modelling tools.

The 20 graphics tools are responsible for creating and
maintaining an image on a display. The animation tools
provide motion, and the modelling tools are used to
orchestrate complete behaviors in the process of
animation. The database system is the central repository
of information concerning an animation, from which all
of the tools receive parameters and into which they
deposit information. The event handling system deals
with the mouse, tablet, and other real-time activities.

AUUGN

Each of these components is required to run on all of
the hardware platforms used at Pixar, including Sun
Microsystems, CCI, and Silicon Graphics machines. This
requirement presented significant challenges, since both
BSD and System V interfaces were involved.

Some of the underlying system facilities that were
required to implement this design include shared
memory, interprocess communication, semaphores and
other synchronization primitives, and a number of
specialized languages with associated interpreters and
compilers. In addition, a C language binding for graphics
primitives, called RenderMan, was designed and
implemented as part of the Pixar system.

The Pixar modelling system is based on a modelling
language, designed by Ostby, that incorporates features
of C, APL, and even awk. This language, in addition to
vector operations based on APL primitives, includes
concurrency primitives and articulated variables. An
articulated variable is one that is varied externally to a
routine during the routine’s execution.

Shading and textures are produced with another
specialized language. This language, also C-like, is used
to generate surfaces procedurally. This technique has
performance advantages over texture mapping, since no
file operations are required when constructing a surface.

The quantity of data involved in animation and
rendering is quite large and efficient algorithms for
sorting are crucial to the task.

The talk ended with a showing of notable Pixar
animations including short films and commercials: Luxo,
jr, a Tropicana orange juice commercial, Red's Dream, an
advertisement for Trident mint flavored chewing gum,
Tin Toy, an advertisement for LifeSavers Holes candy,
Knick Knack, and an advertisement for Listerine
mouthwash. As Phillips noted, the films, such as Tin Toy
win the Oscar awards and the commercials, such as
LifeSavers Holes candy, pay the rent. All, however, are
technically excellent.

1.2 The Program and Invited Talks

The program of the conference included:
« Kemnels
« File system performance
« Threads and networks
« Interface tools
« Kernel panel
» File systems panel
* Programming tools File systems
« Objects in action
« Insecurity
« Distributed processing

Vol12No 1

and invited talks on:

« Toolkit Graphics by Doug Blewett of AT&T
Bell Laboratories

* Troff Macro Programming by Sharon Murrel of
AT&T Bell Laboratories and Jaap Akkerhuis of
mt Xinu

= UNIX Security Today and Tomorrow panel,
organized by Pat Bahn of GTE Government
Systems and moderated by Bill Cheswick of
AT&T Bell Laboratories

* System Administration by Rob Kolstad of Sun
Microsystems

 Using Distributed Objects by Vinny Cahill of
the University of Dublin

» Debugging X and X Toolkit Applications by Paul
Kimball of Digital Equipment Corp.

1.3 The Terminal Room at the Conference

The USENIX Association hosted a Terminal Room
with modems for a dialout connection and a T-1
connection to the Internet. Conference attendees could
log onto their home or work systems to read their mail
and contact other UNIX users directly from the
conference. The USENIX Association thanks UUNET
for the T-1 Internet connection, cisco, Digital Link,
Graphon, NCD, Sun Microsystems, Talaris, Telebit, and
Xylogics for the hardware that made the terminal room
possible.

1.4 Best Student Paper Winner Garners Second Win

Margo Seltzer again won the Best Student Paper
Award for her and Ozan Yigit’s A New Hash Package for
UNIX. Margo is a Ph.D. student at the University of
California at Berkeley and Ozan is a software engineer at
York University in Toronto.

2. Monograph Series on Advanced
Computing Systems

The USENIX monograph series, to be published
jointly with the MIT Press, is soliciting book length
manuscripts for publication. The editor of the series,
Marc Donner of IBM Research, and managing editor
Alain Henon, are looking for monographs on langunages,
hardware, software, theory, and history in advanced
computing. The editorial board is composed of Stuart
Faulk of the Software Productivity Consortium, James
Gosling of Sun Microsystems, Hank Levy of the
University of Washington, Michael O’Dell of Bellcore,
and Anne Rodgers of Princeton University.

To submit a manuscript or proposal for consideration
for the Monograph Series, send a copy to:

Monograph Editor
USENIX Association

2560 Ninth Street, Suite 215
Berkeley, CA 94710

or send electronic mail to monographs@ usenix.org

Vol12No 1

3. Further Information on Conferences
and Workshops
If you need further information regarding USENIX

conferences or workshops, contact the USENIX
Conference Office at

22672 Lambert Street
Suite 613
El Toro CA 92630 USA

Email to:

judy@ usenix.org or
{uunet,ucbvax}!usenix!judy

Tel: +1 714 588 8649
FAX: +1 714 588 9706

4. Further Information about the USENIX
Association

If you would like information on membership, or

would like information on ordering USENIX

publications (proceedings, manuals, Computing Systems,

the Monograph Series, or the Association’s newsletter,

Jogin:, please contact the USENIX Association
Executive Office at

2560 Ninth Street, Suite 215
Berkeley CA 94710 USA

Email to office@usenix.org
Tel: +1 415 528 8649
FAX: +1415 548 5738

AUUGN

;login: 15:4

Monograph Series on Advanced Computing Systems

The USENIX Association intends to pub-
lish books and monographs on the general
topic of computing systems. The intended au-
dience for these books is the community of
system designers, builders, users, and scholars.
Our intent is to publish material of lasting in-
terest and importance, with an emphasis on
actual systems. Subjects may include design,
implementation, history, and analysis of real
systems. While we are inspired by UNIX and
UNIX-like systems, we do not expect to limit
our attention to such systems in any way, as
we see ourselves responsible to the entire
systems community.

We see several specific needs that we
would like to satisfy and for which we solicit
manuscripts. The needs fall in two areas -
books in traditional styles and formats about
topics important to the systems community
and things new or unusual.

Among things new or unusual, we are in-
terested in exploring at least these ideas:

Significant systems — Many significant systems
are documented, if at all, only in reference
manuals or user guides. Journal publications
often concentrate on narrow specific details, as
is appropriate for focused technical audiences.
What is lost is the broad description of the
design and its evolution, with consideration of
the success and failure of specific features and
lessons learned.

Code — We are interested in exploring the pos-

sibilities of publishing code to read. A truism -

among the programming community is that
one learns to write good programs by reading
good and bad programs. Sadly, there is little
code available to read. The recent interest in
public-domain code and open systems has in-
creased the quantity of high-quality source
code available. Many open questions in the
publication of code remain to be explored.

AUUGN

25

The conventional codex form, long accepted as
appropriate for literary works and texts, may
not be the right one for programs. Very few
experiments have been made with this form,
something that we hope to encourage. The au-
dience. for published code includes serious
students of systems, including both the under-
graduate and advanced levels, and practition-
ers involved with development, modification,
and analysis of actual systems.

Important technical reports — Many important
technical reports, issued in small numbers by
industrial organizations, research labs, or
university departments, are not disseminated
as widely as they merit. This is often because
the originating organization doesn’t have the
resources or the will to publish them more
widely and because the material is deemed
inappropriate by commercial publishers
because of its narrow scope or limited size.
Many technical reports are too large for jour-
nal publication and too small for conventional
book publication. We hope to provide a
means of publication and distribution of the
best of these.

Authors will enter into a contractual
arrangement with USENIX. The Association is
in the process of selecting a publisher to han-
dle marketing and distribution. We hope that
you will consider this arrangement a viable op-
tion for your next manuscript.

To submit a manuscript or proposal for
consideration for the Monograph series, send a
copy to:

Monograph Editor

USENIX Association

2560 Ninth Street, Suite 215
Berkeley, CA 94710

or send electronic mail to

monographs@usenix.org.

Vol12No1

;login: 15:4

Book Review

UNIX System Administration
Handbook

Evi Nemeth, Garth Snyder, and
Scott Seebass
(Prentice-Hall, 1989, ISBN 0-13-933441-6)

Reviewed by Nichlos H. Cuccia

cuccia@Sybase.com

UNIX system administration is a topic
about which relatively little has been written,
especially when compared to topics such as
shell programming and document formatting.
Much of what has been written until recently
has been obsolete for many years, written with
a decided slant towards AT&T’s System V, or
focused on specific topics such as writing
termcap or terminfo entries, or managing
UUCP or netnews systems. While this may be
adequate for a system administrator responsi-
ble for a handful of machines running XENIX
or System V, it ignores the needs of system
administrators who have to manage networks
of machines running BSD or BSD-based UNIX.
It is into this gap that Evi Nemeth, Garth
Snyder, and Scott Seebass leap with the UNIX
System Administration Handbook.

The Handbook is written at a level suit-
able for beginning systems administrators. It
covers a wide range of system and network
administration issues, including: booting and
shutting down systems; the use of superuser
privileges; filesystem organization and file per-
missions; monitoring and controlling
processes; adding and deleting new users;
adding terminals and devices, installing device

drivers, and configuring system kernels;
managing AT&T- and BSD-based printing
systems; network hardware, software, and

management issues; electronic mail, UUCP,
netnews, and sendmail; backups and restora-
tions; system daemons and processes spawned
by cron; quotas and per-process limits; system
security concerns; and issues such as file revi-
sion control, local documentation, reporting
bugs, and disk cleanup. Its seventeen appen-
dices include C and cs# source code for several

Vol12No 1

26

useful utilities, in addition to a sample
sendmail.cf file, a makefile used for saving and
restoring system configuration files to or from
tape, and forms for domain, IP address, and
UUCEP site registration.

The Handbook is strongest when it
discusses, in detail, topics that may muystify
beginning systems administrators. Sections of
the book worthy of notice are: chapter two,
which takes the reader through a sample
letc/re file, as well as delineating strategies for
dealing with systems that won’t boot, bad boot
media, or corrupt filesystems; chapter fourteen,
which discusses network issues ranging from
the hardware required to set up a network and
the configuration of system. software to
administrative issues including network
security, licensing, and tools for monitoring
and debugging network software and hardware;
and chapter fifteen, which discusses sendmail
in great detail.

The Handbook does have its flaws, how-
ever. There is a tendency to list online sources
of information or source code as anonymous
Jtp repositories. This is reasonable for sites on
the Internet, but the omission of anonymous
uucp sites limits the ability of UUCP-only sites
to acquire such software as the latest Berkeley
sendmail or BIND. The omission of the semi-
colon after the closing bracket of the tests in
the sample /etc/rc file — an omission that does
not occur in the snippets from an /etc/rc.local
file in chapter fourteen ~ could have dire
consequences for any user who tries to use it
on a production system. These flaws, however,
are not serious enough to diminish the useful-
ness of the Handbook.

In short, the UNIX System Administration
Handbook is a must-have item for any user
who wants to learn how to administer UNIX
systems. Its occasional humorous touches,
cute but informative drawings (especially the
one that shows the difference between a bug
and' a feature), and its historical anecdotes
(such as the origins of the name of the biff
command) make it an interesting read.

AUUGN

:login: 15:4

An Update on UNIX and C Standards Activity

May and June, 1990
Jeffrey S. Haemer

Report Editor, USENIX Standards Watchdog Committee

Report on USENIX Standards
Watchdog Committee

Jeffrey S. Haemer <jsh@ico.isc.com> reports
on spring quarter standards activities:

What these reports are about

Reports are done quarterly, for the USENIX
Association, by volunteers from the individual
standards committees. The volunteers are
familiarly known as snitches and the reports as
snitch reports. The band of snitches and 1
make up the working committee of the
USENIX Standards Watchdog Committee.
Our job is to let you know about things going
on in the standards arena that might affect
your professional life — either now or down the
road a ways.

We don’t yet have active snitches for all
the committees and sometimes have to beat
the bushes for new snitches when old ones
retire or can’t make a meeting, but the number
of groups with active snitches continues to
grow (as, unfortunately, does the number of
groups).

We know we currently need snitches in
1003.6 (Security), 1003.11 (Transaction Pro-
cessing), 1003.13 (Real-time Profile), and
nearly all of the 1200-series POSIX groups,
There are probably X3 groups the USENIX
members would like to know about that we
don’t even know to look for watchdogs in. If
you’re active in any other standards-related ac-
tivity that you think you’d like to report on,
please drop me a line. Andrew Hume’s fine
report on X3B11.1 is an example of the kind
of submission I’d love to see.

If you have comments or suggestions, or
are interested in snitching for any group,
please contact me (jsh@usenix.org) or John
(jsq@usenix.org). If some of the reports make
you interested enough or indignant enough to
want to go to a POSIX meeting, or you just

AUUGN

27

want to talk to me in person, join me at the
next set, July 16-20, at the Sheraton Tara, in
Danvers, Massachusetts, just outside of Bos-
ton.

The USENIX Standards Watchdog Com-
mittee also has both a financial committee —
Ellie Young, Alan G. Nemeth, and Kirk
McKusick (chair); and a policy committee —
the financial committee plus John S. Quarter-
man (chair).

An official statement from John S. Quar-
terman, USENIX Standards Liaison:

The basic USENIX policy regarding standards is:

to attempt to prevent standards
from prohibiting innovation.

To do that, we

o Collect and publish contextual and technical
information such as the snitch reports that other-
wise would be lost in committee minutes or ra-
tionale appendices or would not be written down at
all.

« Encourage appropriate people to get involved
in the standards process.

« Hold forums such as Birds of a Feather (BOF)
meetings at conferences. We sponsored one
workshop on standards, and are cosponsoring
another in conjunction with IEEE, UniForum, and
EUUG. (Co-chairs are Shane P. McCarron,
ahby@uiunix.org, and Fritz Schulz.
fritz@osf.osf.org. Contact them for details.)

e Write and present proposals to standards
bodies in specific areas.

« Occasionally sponsor White Papers in particu-
larly problematical areas, such as IEEE 1003.7 (in
1989).

e Very occasionally lobby organizations that
oversee standards bodies regarding new committees,
dacuments, or balloting procedures.

o Starting in mid-1989, USENIX and EUUG (the
European UNIX systems Users Group) began

Vol 12No 1

sponsoring a joint representative to the ISO/IEC
JTC1 SC22 WG15 (ISO POSIX) standards committee.

There are some things we do not do:

e Form standards committees. It’s the USENIX
Standards Watchdog Committee, not the POSIX
Watchdog Committee, not part of POSIX, and not
limited to POSIX.

e Promote standards.
e Endorse standards.

Occasionally we may ask snitches to present
proposals or argue positions on behalf of USENIX.
They are not required to do so and cannot do so
unless asked by the USENIX Standards Watchdog
Policy Committee.

Snitches mostly report. We also encourage
them to recommend actions for USENIX to take.

Report on IEEE 1003.0: POSIX Guide

Kevin Lewis <klewis@gucci.dco.dec.com>
reports on the April 23-27 meeting in Salt
Lake City, UT:

Where we are

The Utah meeting of the IEEE 1003.0 working
group marks the beginning of its third year.
Let’s step back for a moment to review the
past two. We have gone from scratch to a
180-page document, the content of which
represents about 70% of the content goal that
we set for our work two years ago. (More on
this in a moment.)

This effort represents the contributions of
a core group of 15 to 18 people. In 1988, 14
vendor organizations and 16 user organiza-
tions were represented within the group. To-
day, we have nine vendor organizations and
16 user organizations represented. Of course,
the only official formal organizational
representatives allowed within 1EEE working
groups are accredited institutional representa-
tives (currently Usenix, UniForum, X/Open,
Unix International, and the Open Software
Foundation each supply one to the POSIX
effort), but that does not stop me from check-
ing the sign-up sheet whenever a new face
shows up, to see where he or she works. For
example, I think someone from the Univ. of

Vol 12No 1

28

;Jogin: [5:4

Berkeley involved in BSD UNIX development
has a vendor’s perspective, while I place atten-
dees from NIST and the Air Force in the user
category because I believe they focus on the in-
terests of their own end users. Our stable
steady user representation is essential; our ulti-
mate targets are users trying to walk through
the POSIX maze.

The 70% completion of our initial content
goal includes the introduction of the ‘“profile”
concept, which has led to increased activity
within the IEEE TCOS Standards Subcom-
mittee to create groups to define profiles
(which may be good or bad depending on your
own prism). The concept of profiles is also
part of the US’s contribution to the ISO com-
munity, made through its participation in the
JTC1 Technical Study Group on Application
Portability (JTAP), within which the “profiles”
concept has now garnered wide acceptance.

“What is a profile?” you ask. Users seek-
ing open system solutions need to know what
parts of the open system environment (OSE)
address their requirements. If a user could
reach into the full basket of OSE parts and pull
out only those he or she specifically needs,
those selected parts would be his or her appli-
cation environment profile. What should the
user do if he or she needs something not in the
basket? Come to our next meeting with a
recommendation. [Editor: Or drop Kevin a
line, or post something to comp.std.unix!]

Where we’re going

Dot Zero still faces hard decisions in two
areas:

1. the necessity or desirability of parts of our
guide. (Two parts that I very much think are
candidates for this discussion are User Inter-
face and Security.)

2. The final
concept/definition.

the profile

bounds of

The group’s arguments in these areas are
not frivolous, but if they continue much
longer, the resulting lack of movement will
hurt our overall effort.

[came out of this meeting feeling that
everyone is committed to getting over these
hurdles soon (i.e., by the July meeting). Our

AUUGN

;login: 15:4

chair, Al Hankinson, has also stated that we
should target December 1990 for a mock bal-
lot. I wholeheartedly agree. This will add the
impetus that we need. Let’s see if we have the
self-discipline to get there.

Report on IEEE 1003.1:
System services interface

Paul Rabin <rabin@osf.org> reports on the
April 23-27 meeting in Salt Lake City, UT:

Introduction

The POSIX 1003.1 working group is the oldest
POSIX group, responsible for specifying
general-purpose operating system interfaces for
portable applications. This group developed
the original 1988 POSIX standard, and is now
responsible for writing supplements and revi-
sions to that standard. This work includes

e corrections and clarifications to the 1988
POSIX standard

e material that was too controversial to han-
dle before

e new interfaces requested by other POSIX
working groups

Like other working groups developing
“base standards,” the 1003.1 working group is
responsible for writing both C language and
language-independent ~ versions of the
specifications that it develops. So far, the
group has concentrated on the C language ver-
sions, but there is increasing pressure to make
progress on the language-independent

specifications.

The working group recently completed a
revision of the 1988 POSIX standard, and is
currently working on a supplement to that
revision.

There has been a lot of turnover in the
group since the 1988 POSIX standard was
completed, but there are still a few old-timers
to provide continuity. About |5 people at-
tended the last two meetings. This seems to
be a good size for getting work done. This is
definitely a technical crowd; check your poli-
tics at the door.

AUUGN

29

For more information about the group
and how to participate, contact the chair,
Donn Terry, at donn@hpfcla.fc.hp.com or
hplabsthpfcla!donn. Send comments and
proposals to the secretary, Keith Stuck, at
keith@sp7040.uucp. I've made this report a
bit more detailed than usual in order to give
the technical details wider exposure. New
proposals and comments on any of the current
active proposals or issues are welcome.

1003.1a Status

1003.1a is the recently completed revision to
the 1988 POSIX standard. No new interfaces
or features were introduced, but the text was
revised in several ways. The main reason for
the revision was to prepare the text for ballot-
ing as an ISO standard, so the document had
to be made to look like an ISO standard. This
meant adding ISO boiler-plate, changing exter-
nal document references to pretend that only
standards exist, changing internal cross-
references so that chapters are renamed sec-
tions, and sections are renamed clauses and
subclauses, changing “will” to “shall,” etc., ad
nauseam. While the working group was hav-
ing fun with all that, they took the opportunity
to do some cleaning up. They corrected
errors, clarified unclear language, and changed
the function synopses to use ANSI C proto-
types. The group did make one normative
change, which was to specify reserved
namespaces. This will allow implementations
and revisions to the standard to define exten-
sions without breaking existing conforming ap-
plications. It’s messier than you might think.

After four recirculation ballots, IEEE bal-
loting was completed in April. Now it has to
get through the ISO balloting process. See the
recent snitch report on 1003.5 for a descrip-
tion of how IEEE and ISO balloting is syn-
chronized, and what all of the acronyms mean.

ISO has been balloting 1003.1a as ISO/IEC
DIS 9945-1. After the first ISO ballot, JTC!
approved 9945-1 for promotion to full IS
status. This approval was overruled by the
ISO Central Secretariat on the grounds that the
document format was still not satisfactory (still
haven’t caught all of those “will’s). Rather
than publish the current document and then
immediately revise, ballot, and publish it

Vol12No 1

again, it was decided to create a new DIS and
to start a second round of ISO balloting. This
will cause a delay in the publication of the
international POSIX standard (and hence also
the IEEE POSIX.l standard). The U.S. Techni-
cal Advisory Group (TAG) is responsible for
generating the U.S. ballot. Assuming that no
normative changes are introduced by the ISO
balloting process, the resulting document will
be published by IEEE as IEEE Std 1003.1-1990.

1003.1b Status

Since 1003.1a is now out of IEEE’s hands, the
working group spent the Utah meeting working
on 1003.1b, the first supplement to 1003.1a.
This will include some corrections and
clarifications that didn’t make it into 1003.1a,
but will mainly consist of new interfaces and
features.

1003.1b has been in the works for several
meetings, so the draft already contains a lot of
material. The first day was devoted to revi-
sion of the draft, the rest of the week to con-
sidering new proposals. The previously an-
nounced schedule for 1003.1b specified the
Utah meeting as the cutoff date for new
proposals. Unfortunately, some expected
proposals were not received, and some that
were received were not ready for incorpora-
tion, so the cutoff was deferred until the next
meeting, in Danvers, Massachusetts.

Draft 2 of 1003.1b was distributed just be-
fore the meeting in Utah. Draft 3 should be
available before the Danvers meeting. 1003.1b
is expected to be approved sometime in early
1991, and to be published by IEEE as a
separate supplement to the IEEE Std 1003.1-
1990,

New Features in the Current Draft of 1003.1b:
Draft 2 of P1003.1b includes a new data inter-
change format, and new interface
specifications for symbolic links, environment
list access, and file-tree walking. These had
been proposed and generally accepted at previ-
ous meetings. Many new issues were raised
and discussed.

Symbolic Links: P1003.1b adds BSD symbolic
links to the 1988 POSIX standard as a new re-
quired feature. New interfaces for symlink(),
readlink(), and Istat() are specified, and the

Vol 12No 1

30

;login: 15:4

definition of pathname resolution is amended
to include the handling of symbolic links. Im-
plementations may optionally enforce a limit
on the number of symbolic links that can be
tolerated during the resolution of a single path-
name, for instance to detect loops. The new
symbol {_POSIX_SYMLOOP) is defined to be
the minimum value of such a limit. A new
error, [ELOOP], is returned if such a limit is
exceeded. Symbolic links that are encountered
in pathname prefixes are always resolved.
Symbolic links named by the final component
of a pathname will be resolved or not, depend-
ing on the particular interface. By default,
such symbolic links will be resolved, unless
specified otherwise. The interfaces that will
not resolve symbolic links named by pathname
arguments are:

readlink() If the pathname argument names a
symbolic link, the contents of the link will be
returned.

Istat() If the pathname argum.at names a
symbolic link, a stat structure will be returned
for the link itself.

unlink() If the pathname argument names a
symbolic link, the link itself will be removed.

rmdir() If the pathname argument names a
symbolic link, the link will not be followed
and the call will fail.

open() Symbolic links are followed, unless
both O_CREAT and O_EXCL are set. If both
O_CREAT and O_EXCL are set, and the path-
name argument names an existing symbolic
link, the link will not be followed and the call
will fail.

link() If the new pathname names a symbolic
link, the link will not be followed and the call
will fail. If the old pathname names a sym-
bolic link, the link will be followed. This is
the BSD behavior. SVR4.0 does not follow the
link in this case, thus supporting hard links to
symbolic links. The working group felt that
the SVR4 behavior unnecessarily restricts im-
plementations (for instance, those that do not
implement symbolic links with inodes), and
has much more complex semantics.

rename() If the old pathname names a sym-
bolic link, the link will not be followed. In-
stead, the symbolic link itself will be renamed.

AUUGN

;login: 15:4

If the new pathname names a symbolic link, it
will not be followed. Instead, the symbolic
link will be removed, and a new hard link will
be created naming the file that was previously
named by the o/d pathname.

The 1988 POSIX standard specifies that if the
new pathname names an existing file, rename()
will fail if the new and old pathnames do not
either both name directories or both name
non-directory files. This rule needs to be ex-
panded to include the case of the new path-
name naming a symbolic link. Should the
rename() call fail depending on whether or not
the symbolic link named by the new pathname
itself names a directory or a non-directory file?
This will be resolved at the next meeting.

Symbolic links are not required to have
any attributes other than their file type and
their contents. This is intended to provide the
simplest semantics and to allow the greatest
latitude for implementations.

Other BSD Interfaces: P1003.1b also includes
specifications for the following interfaces:

Jehmod()
Jfchown()
Jsync()
ftruncate()

Environment List: The ANSI-C standard
defines the getenv() function to retrieve the
value corresponding to a given name in a
program’s environment list, but does not
specify the implementation or initialization of
that list. The 1988 POSIX standard specified
the traditional list implementation using the
external variable environ, and specified the ini-
tialization of the list by the exec functions. In
an attempt to extend the set of high-level in-
terfaces to the environment list, and to pave
the way for the possible eventual removal of
environ, the working group has included
putenv() and clearenv() interfaces in 1003.1b.
Three problems have been identified with
these high-level interfaces:

1. They cause static data to be shared
between the application and the implementa-
tion. Neither the application nor the imple-
mentation can easily manage the storage for
environment "name=value" strings.

AUUGN

31

2. They are not robust. The interactions
between the high-level interfaces and access
via environ are not specified.

3. They can’t be easily extended to handle
multiple lists. There is no way to copy a list,
or to build a new list for execle() or execve().

The putenv() and cleareny() interfaces may
be removed-from 1003.1b at the next meeting
if a revised proposal does not appear.

File Tree Walk: The 1003.1 working group
promised the 1003.2 group (Shell and Utilities)
that a mechanism would be provided for walk-
ing a directory tree of unbounded depth using
any given (non-zero) number of free file
descriptors. The Berkeley folks have imple-
mented a set of high-level interfaces defined by
David Korn of Bell Labs, and proposed them
for inclusion in 1003.1b. These interfaces sup-
port every option and search order required by
the 1003.2 commands. The 1003.1 group
wants a simpler interface suitable for typical
application programs, so Keith Bostic will put
the proposal on a “weight-reducing diet” and
resubmit it for the next draft.

The high-level file-tree walk interfaces can
be implemented using only the existing 1003.1
interfaces. Since 1003.1 does not define a
portable way to save and restore file position
for a directory and cannot hold a file descrip-
tor open for each directory level, the imple-
mentation must read and save all directory en-
tries each time a new directory is visited. This
requires only a single file descriptor (or what-
ever resource is used by by opendir()). If the
underlying system does provide a way to save
and restore file position for directories, the
file-tree walk implementation can use it to
reduce memory consumption.

There was a discussion about whether it is
possible (and preferable) to improve the low-
level directory interfaces instead of adding new
high-level interfaces. Do the high-level inter-
faces really add new functionality for portable
applications? Do they belong with the low-
level operating system interfaces specified in
1003.17

‘Walking an unbounded file tree requires
an unbounded number of directory file posi-
tions to be supported using a bounded number

Vol12No 1

of file descriptors. Either seekdir() and telldir()
are needed, or an unbounded number of
opendir()s must use a bounded number of file
descriptors. The working group has already re-
jected seekdir() and telldir() because they can-
not easily be supported on implementations
that use a non-linear directory format. A
prohibition of simple implementations of
opendir() using file descriptors is also likely to
be rejected.

The underlying problem is that the
orderedness of directory entries was implicit in
the traditional implementations, but was not
made fully explicit in 1003.1, partly out of a
desire to permit alternate implementations (for
instance, b-trees). As a result, orderedness
must now be imposed by the application. On
a non-linear directory implementation, if posi-
tioning is not supported, even opendir() must
read in the whole directory.

Data-Interchange Format: The 1988 POSIX
standard specified two data-interchange for-
mats based on existing utilities. These define
the data-stream encoding of a sequence of files,
together with their pathnames and other attri-
butes. The first format is based on far and
encodes files as a stream of 512-byte blocks.
The second format is based on cpio and
encodes files as an unblocked byte stream.

The 1SO POSIX group (JTC1/SC22/WG15)
pointed out that both of these formats are in-
compatible with accepted international and
U.S. standards. After some arm twisting, the
1003.1 working group agreed to devise a new
data interchange format based on IS 1001:
1986, which is more or less equivalent to ANS
X3.27-1987, the familiar ANSI labeled tape
format.

The current draft of 1003.1b includes the
framework for the new specification, but a lot
more work is needed. Previous meetings
discussed alternate proposals. The topic has
been strangely quiet lately, considering the
confusion that may be expected when it goes
to ballot. It wasn’t discussed at the Utah
meeting at all.

(-POSIX_PATH_MAX): A Clarification: The
1988 POSIX standard included two conflicting
statements regarding (_POSIX_PATH_MAX)
and (PATH_MAX): one said that the null was

Vol12No 1

32

;login: 15:4

included in the count; the other said that the
null was excluded. Traditional implementa-
tions have included the trailing null; some new
implementations have excluded the null.

One alternative or the other had to be en-
dorsed. The working group decided that
{_POSIX_PATH_MAX) should not include the
trailing null, since specifying this will not
break currently conforming applications.

Headers and Name-Space Control: Since
1003.1b is adding many new identifiers to the
standard, there was discussion about whether
new identifiers should be declared in new
headers, or whether existing headers could be
used, with new feature-test-macros to control
visibility of the additional identifiers. It was
agreed that although both headers and
feature-test macros control identifier visibility,
their functions are complementary. Headers
are appropriately used to divide name-spaces
horizontally, by functionality. Feature-test
macros are appropriately used to divide
name-spaces vertically, by specification level.

With this understanding, the group de-
cided that new identifiers will be declared in
the “right place.” A new header will be created
only if no existing header is functionally
appropriate.

A new feature-test macro will be specified
by 1003.1b and subsequent revisions;
_POSIX_1_SOURCE. This macro takes ordinal
values, starting with 2 for 1003.1b, and will be
incremented by 1 for every subsequent revi-
sion. If the value is 1, the effect will be the
same as if _POSIX_SOURCE were defined.

There are two changes here. The new
name was used to indicate that the macro only
controls the visibility of identifiers defined in
POSIX.1. The usage was changed to allow the
value to indicate the particular revision or sup-
plement to the standard, rather than having to
create a new macro each time. This should
simplify the construction and maintenance of
header files.

Requests: Two requesis were made by vendors
trying to support POSIX behavior on non-
UNIX file systems:

1. that {_POSIX_LINK_MAX) be
from 6 to 2

reduced

AUUGN

;login: 15:4

2. that {_POSIX_PATH_MAX) be reduced

from 255 to 252

Both requests were rejected. Either of
these changes could have made existing con-
forming applications non-conforming. Even
where the risk of breaking applications seemed
small, the working group was reluctant to set a
precedent without a pretty good rationale to
protect them against similar requests in the fu-
ture.

New Proposals: Five proposals for new inter-
faces were submitted for inclusion in 1003.1b,
many of which provoked lively discussion.
Some were accepted, some were rejected, and
others were deferred to allow a revised
proposal to be submitted or to allow more
time for consideration.

seteuid(), setegid(): Bob Lenk and Mike Karels
proposed a set of changes to the way the
effective user and group id’s are handled, in
order to provide better support for
setuid/setgid programs.

1. Require that all implementations support
the functionality of the saved user ID and
saved group ID. These process attributes are
set by the exec functions and by privileged
calls to setuid() and setgid().

2. Add seteuid() and setegid() as new func-
tions that change only the effective user ID and
effective group ID, respectively. A change is
allowed if the proposed new user/group ID is
the same as either the real user/group ID or the
saved user/group ID.

3. Redefine the (_POSIX_SAVED_IDS) option
to apply only to non-privileged calls to setuid()
and setgid().

This proposal has general support in the
working group, and will be included in the
next draft of 1003.1b.

The discussion of this proposal led to a
general lament about how unclear the group
model is in the 1988 POSIX standard, perhaps
the result of a hasty marriage between the
System V and BSD models. At the next meet-
ing, the working group intends to add new text
to P1003.1b to clarify the relation between the
effective group ID and the supplementary
group list.

AUUGN

33

Magnetic Tape Support: The 1003.10 working
group (Supercomputing Profiles) proposed new
interfaces to support basic controller functions
for magnetic tape drives, based on the ioctl()
commands supported in 4.3BSD. Although
support for these interfaces would be optional
in 1003.1b, the working group decided that the
functions should be further specified according
to whether they are:

1. required for all types of tape drives;

2. required only for 9-track tape drives;

3. required only for cartridge tape drives; or
4. optional on all types of tape drives.

The proposal needed further revision, but
was generally supported by the working group.

The submitted proposal also included in-
terfaces for mounting labeled tape volumes.
These were considered to be inappropriate for
inclusion at this time and will be deferred un-
til a later revision of the standard.

Checkpoint/Restart: The 1003.10 working
group also proposed new (optional) interfaces
for checkpointing and restarting processes.
This proposal is based on two existing imple-
mentations. The interfaces are intended to
protect very-long-running applications from
both scheduled shutdowns and unexpected
failures of the system.

The 1003.1 working group was not happy
to have to deal with this and had lots of ques-
tions. Were programming interfaces for port-
able applications really needed, or was a com-
mand interface sufficient? How much state
needed to be saved in the checkpoint? What if
the processes depended on additional state in-
formation that was not in the checkpoint, such
as file data or the states of other communicat-
ing processes or devices? In this case, the
restart would only be successful if this addi-
tional state had not changed since the check-
point. How could such changes be detected or
prevented? What is the set of interfaces that
an application can use and be sure that it can
be checkpointed and restarted successfully,
without dependencies on additional state?
Should applications have a mechanism for
checkpointing themselves, or for blocking an
external request that they be checkpointed?

Vol 12No 1

Because a checkpoint/restart mechanism
will have a major impact on implementations,
and the requirements are not yet clear, the
working group was unwilling to endorse the
current proposal. A task force made up of
representatives of the 1003.1 and 1003.10
working groups will be created to clarify the
requirements and revise the proposal.

This proposal is going to need a lot more
discussion, so checkpoint restart interfaces will
almost certainly not be included in P1003.1b,
but they may be adopted in a subsequent revi-
sion.

Messaging: The UniForum proposal for new
messaging interfaces has been before the
1003.1 working group for a couple of meetings
now. The proposed interfaces are intended as
replacements for the message catalog interfaces
specified in XPG3, and differ from those in
several ways (since the discussion was fairly
contentious, I’ll try to be objective):

1. The XPG3 interfaces identify a message by
the triple: <catalog name, set ID, msg ID>,
where catalog name is a file name, and set ID
and msg ID are integers. The UniForum inter-
faces identify a message by the triple: <locale
name, domain name, message name>, where
locale name, domain name, and message name
are all strings. The locale for messages 1is
specified by the new LC_MESSAGES category
of the locale. Advocates of the UniForum
proposal claim that string identifiers are easier
to use and are more robust against errors dur-
ing application development and mainte-
ance.

2. In the XPG3 scheme, each message catalog
is an ordinary file. Message catalogs must be
specified by filename and explicitly opened be-
fore messages can be retrieved. The NLSPATH
environment variable provides a search path
for message catalogs that can be parameterized
by (among other things) the language, territory,
and codeset fields of the LANG environment
variable. In the UniForum scheme, groups of
messages are specified by an abstract
“domain.” A default domain can be set to con-
trol message accesses, or the domain can be
explicitly specified for an individual message
access. Advocates of the UniForum proposal
claim that the binding of message catalogs to

Vol 12No 1

34

:login: 15:4

files unnecessarily restricts implementations
and imposes a more complex interface on ap-
plication developers.

3. The XPG3 interface includes an additional
string argument that is returned in case no
message specified by <set ID, msg ID> can be
retrieved from the message catalog. In the
UniForum proposal, the message name itself is
returned if the message cannot be found. Ad-
vocates of the UniForum proposal point out
that the message name string makes a separate,
“default” message string unnecessary.

In addition, the UniForum proposal in-
cludes a specification of the message source file
format that differs from the format specified in
XPG3.

I. In the XPG3 format, message strings are
implicitly delimited: at the beginning by the
preceding message ID followed by a single
space or tab character, and at the end by an
unescaped newline. In the UniForum format,
all strings, including domain names, message
ID’s, and message strings, are explicitly
delimited by double quotes ("). Adjacent
strings separated by white-space characters are
concatenated. Advocates of the UniForum
proposal claim that the new format provides
better support for multi-line strings and for
leading and trailing white-space characters in
strings.

2. In the XPG3 format, the message ID and
its corresponding message string are implicitly
determined by their position on a source line.
In the UniForum format, explicit directives
are provided for message ID’s and message
strings. Advocates of the UniForum proposal
claim that the new format is extensible. New
attributes may be added to message entries,
such as screen coordinates or font size.

3. The XPG3 format includes directives for
deleting individual messages and sets of
messages, and the associated gencat utility
takes no switches. In the UniForum proposal,
all deletion semantics are provided by switches
on the associated gentext utility.

There was much discussion of the inter-
faces; less about the source file format. The
most divisive issue was whether string message
IDs are preferable to numeric message IDs.

AUUGN

;login: 15:4

Among those who felt that the new interfaces
are better, there was disagreement about

whether the advantages outweighed the cost of ’

conversion for applications and implementa-
tions based on the XPG3 interfaces. The ra-
tionale accompanying the UniForum proposal
described several ways to convert applications
from the XPG3 interfaces to the proposed new
interfaces.

The working group asked X/Open to sub-
mit the XPG3 messaging interfaces as an alter-
nate proposal, since they represent existing
practice, and X/Open has agreed to do so.
X/Open has said that they will follow POSIX if
POSIX endorses a different interface. The
decision regarding which, if any, messaging
proposal to include in 1003.1b will be made at
the POSIX meeting in Danvers.

I's hard to predict the fate of this
proposal. The UniForum proposal represents
the consensus of one of the leading interna-
tionalization working groups and is reported to
have some support within X/Open. On the
other hand, the POSIX working groups are ob-
liged to respect existing practice. Watch this
space.

/dev/stdin, /dev/fdm, etc.: There was an
unofficial proposal from members of the
1003.2 working group that open() be extended
to recognize the special strings /dev/stdin,
/dev/stdout, /dev/stderr, and /dev/fd/N,
and return a new file descriptor dup(jed from
STDIN_FILENO, STDOUT _FILENO,
STDERR_FILENO, or file descriptor N, respec-
tively. This proposal was intended to allow
simplified command line parsing, by eliminat-
ing special casing for “-”” and “--”" arguments.
The proposal was rejected after a short ex-
ploration of the possible semantics of these
pathnames when used with link(), rename(),
etc.

Conclusion

As you can see, there’s a lot going on. Even
though most of the attention has shifted to
other working groups, the 1003.1 group is busy
revising and extending the 1988 standard.
The group is small now, by POSIX standards,
but their work is as important as ever.

AUUGN

35

Report on IEEE 1003.2:
Shell and tools

Randall Howard <rand@mks.com> reports on
the April 23-27 meeting in Salt Lake City, UT:

Background on POSIX.2

The POSIX.2 standard deals with the shell
programming language and utilities.
Currently, it is divided into two pieces:

e POSIX.2, the base standard, deals with the
basic shell programming language and a set of
utilities required for application portability.
Application portability essentially means por-
tability of shell scripts and thus excludes most
features that might be considered interactive.
In an analogy to the ANSI C standard, the
POSIX.2 shell command language is the coun-
terpart to the C programming language, while
the utilities play, roughly, the role of the C
library. POSIX.2 also standardizes command-
line and function interfaces related to certain
POSIX.2 utilities (e.g., popen, regular expres-
sions, etc.). This document is also known as
“Dot 2 Classic.”

e POSIX.2a, the User Portability Extension
or UPE, is a supplement to the base POSIX.2
standard; it will eventually be an optional
chapter of a future draft of the base document.
The UPE standardizes commands, such as
screen editors, that might not appear in shell
scripts but are important enough that users
must learn them on any real system. It is
essentially an interactive standard that
attempts to reduce retraining costs incurred by
system-to-system variation.

Some utilities have interactive as well as non-
interactive features. In such cases, the UPE
defines extensions from the base POSIX.2
utility. An example is the shell, for which the
UPE defines job control, history, and aliases.
Features used both interactively and in scripts
tend to be defined in the base standard.

Together Dot 2 Classic and the UPE will
make up the International Standards
Organization’s IS 9945/2 — the second volume
of the proposed ISO four-volume standard
related to POSIX.

Vol 12No 1

In addition to providing current informa-
tion about the activities of the Working and
Balloting Groups for POSIX.2, a special topic
of focus will be chosen for each report. There-
fore, the reader is referred to earlier reports for
information on such topics as the history of
the Shell Wars and the controversial scope of
the UPE. The next section talks about the
functions, rather than utilities that are found
with POSIX.2.

The POSIX.2 API Functions

Perhaps it will come as a surprise to many
readers that the POSIX Shell and Utilities stan-
dard also contains specifications for about
fourteen new or extended C function bindings
- in effect, its own API extending the POSIX.1
bindings - as follows:

confstr(), sysconf{) The first function was
created to provide string-valued configuration-
specific values such as the default setting of the
PATH environment variable. The second ex-
tends the POSIX.1 function of the same name
with numeric-valued configuration information
such as the largest scale value in the bc utility
and the implementation’s line length restric-
tion.

fnmatch() This functional interface imple-

ments the form of pattern matching used by .

file-name generation (glob) in the shell, case
statements in the shell, and the -name option
of the find utility.

getopt() This functional interface provides a
standard utility argument parser that enforces
the “standard utility syntax” guidelines and
might be used to implement the getopts utility
from POSIX.2.

glob(), globfree() This set of functions . does
shell-style file-name generation and presumably
calls the fnmatch() function.

popen(), pclose() This pair of functions, which
are a part of the standard I/O package on con-
ventional UNIX systems, provides the ability
to communicate through pipes to another pro-
cess by executing a string in the POSIX.2 shell
language.

regexec(), regcomp() This set of routines pro-
vides support for both the Basic and Extended

Vol12No 1

36

;login: 15:4

Regular Expressions defined in POSIX.2, in-
cluding full internationalization support.

wordexp(), wordfree() This set of routines pro-
vides a mechanism for an application to use
word expansion (parameter expansion) that is
compatible with the POSIX.2 shell language.
Although most implementations of this routine
will normally call the shell, it is (at least con-
ceptually) possible that the shell be imple-
mented to call these routines for word expan-
sion.

system() This “classical” function executes a
command written in shell language.

All of these functions form part of an op-
tional C binding to POSIX.2 and it i§ expected
that the soon-to-be-released, draft version of
the NIST FIPS will make this “optional” func-
tional interface mandatory for US government
procurements. Other language-binding work-
ing groups, such as those exploring Ada and
FORTRAN, are presumably encouraged to add
their own optional bindings if they so wish.

Although the inclusion of these functions
seems to be a little out of place in a shell-and-
tools standard, there is some rationale for this.
In fact, when POSIX consisted only of
POSIX.1, the early attempts to define systemy()
and popen() made apparent the need to com-
pletely specify the shell language in which the
argument string to these functions was written.
That, in turn, along with the desire to stand-
ardize the classical UNIX utility set, led to the
creation-of POSIX.2 as the first offshoot group
in the POSIX family of standards. From this
beginning, the POSIX.1 sysconf{) function was
extended and the confstr() function was created
to provide an underlying implementation for
the getconf utility, which allowed shell-level
applications to query configuration-specific
values such as maximum line length of text
files. Once the beachhead of having functional
interfaces in POSIX.2 was established, the
temptation to continually add to this list has
led to the current list as of Draft 9.

On the other hand, there are some very
strong arguments against the inclusion of these
functions. First, although the regular expres-
sion functions will almost certainly be required
to implement many POSIX.2 utilities such as
ed, grep, awk, sed, etc., these functions fall

AUUGN

;login: 15:4

short of the complete support needed to imple-
ment some utilities. For example, the han-
dling of error messages (as in a syntactically
incorrect regular expression) and the
mechanisms of doing substitutions (including
& and \n support) are not addressed. Because
of this most implementors will be required to
have ‘“non-portable” proprietary extensions to
their regular expression support to make a
“commercially viable” implementation. The
issue of where to draw the line between inclu-
sion and exclusion is a difficult one indeed.
Second, vendors and application writers may
find it difficult, both procedurally and from a
licensing perspective, to have part of the sub-
routine library come from a POSIX.1 developer
and the other part implemented by the
POSIX.2 implementor. For example, the im-
plementor of sysconf{), popen(), or system()
might do a much better job if common source
code and assumptions were possible between
the POSIX.1 and POSIX.2 APIs.

Status of POSIX.2 Balloting

“Dot 2 Classic” remains in its second round of
balloting on Draft 9 with a new draft going to
ballot in the June to July time frame, accord-
ing to Hal Jespersen, the POSIX.2 Technical
Editor.

During the Snowbird meeting, much of
Monday was devoted to a presentation on the
status of the Dot 2 Classic Balloting resolu-
tion. It is possible, and indeed likely, that Hal
Jespersen will limit balloting on Draft 10 to
unresolved objections and new material. If
this is the case, it most likely indicates
(although he didn’t specifically say) that Hal
has confidence that Draft 10 has a high proba-
bility of achieving the requisite 75%
affirmative vote. Personally, I am not con-
vinced that this is a likely event. While some
decisions will be reversed (perhaps several
times) before Draft 10, the following is a sum-
mary of issues and/or changes appearing in
Draft 10:

e The internationalization utilities /[ocale
and particularly localedef are still controver-
sial, particularly within AT&T. Because of the
strong rationale for their existence it appears
that they will remain in Draft 10, certainly
with considerable amendment as the

AUUGN

37

UniForum Technical Committee on Interna-
tionalization refines these newly developed
utilities. This is just one case where the
conflict between the role of standards to codify
existing practice and the obvious holes in ex-
isting practice creates controversy. Perhaps
this issue will be resolved by a balloting re-
ferendum such as was used for uucp.

"o The Draft 10 shell will almost certainly
strongly resemble that of Draft 9. Most of the
important controversies appear to be largely
settled and most changes appear to be correc-
tions and clarifications.

e Most complex utilities, such as awk, shell,
lex, yacc, etc., have undergone extensive re-
working in response to ballot objections.
Often a seemingly simple objection will cause
large parts of the description to be rewritten in
order to tighten it up with respect to complete-
ness and clarity. I believe that Hal Jespersen
believes that most of these changes are
uncontroversial and he has ensured this by cir-
culating draft sections via E-mail to various
“experts.” Certainly, many of these utilities
desperately needed this clarification.

e It appears that the newly-engineered hex-
dump utility is to be replaced by a (much
simpler) reversion to od. While od is the exist-
ing practice, the POSIX od will be a superset of
the original one with most useful functionality
in the new parts. It is not clear that hiding
new invention under the same name is any less
controversial than advertising its existence.

o Of course, there will be innumerable other
changes, obviously important to many, that
cannot for reasons of space be covered here.

A mock ballot on Draft 4 of the UPE was
sent to the working group during February
1990 to allow ballot resolution to be the main
focus of the Salt Lake meeting this April.

Status of the New Orleans Meeting

Monday, the working group reviewed the
current status of the balloting on “Dot 2
Classic.” This has already been discussed in
earlier in this report.

The other four days were spent reviewing
the 600 to 700 objections produced by the
mock balloting process for the UPE. While the

Vol 12No 1

number of objections seems low compared to
the rate of objections for the corresponding
number of pages in Dot 2 Classic, this may
simply be a symptom of a general shortage of
time and the lower number of people
(generally 15 to 20) in the UPE working group.
This lower number and general lack of time is
a reflection of the fragmentation of the entire
POSIX process caused by a proliferation of
working groups.

Most of the work during mock balloting
was of the nature of cleaning up incomplete or
poorly worded textual descriptions. Particu-
larly controversial issues were often left in the
rationale for Draft 5. Some controversial utili-
ties were moved to an appendix, based upon
the belief that they should be removed while
still allowing the balloting group one last
chance to save them. The /int89 was one such
utility whose raison d’etre was meager. At
best, the functionality probably should be an
option to ¢89 in the “Dot 2 Classic” docu-
ment., The sdiff utility, which was inad-
vertently omitted from Draft 4, is to be in-
cluded in Draft 5.

Altogether, it appears that Draft 5 is in a
relatively healthy state to survive the rigors of
the balloting process. Nonetheless, 1 expect
that there will be a greater number of objec-
tions in the balloting this summer than there
were in the mock ballot.

Report on IEEE 1003.3: Test Methods

Doris Lebovits <lebovits@attunix.att.com>
reports on the April 23-27 meeting in Salt
Lake City, UT:

Dot three’s job is to do test methods for
all of the other 1003 standards. The group’s
work, whose first parts are now in ballot,
specifies the requirements for OS conformance
testing for our industry and for NIST. This
makes what the balloting group and technical
reviewers are doing, and their schedules, worth
watching. Pay attention, also, to what comes
out of the Steering Committee on Confor-
mance Testing (SCCT). Their projects and
decisions will be interesting and important.

Vol12No 1

38

;login: 15:4

This was the working group’s sixteenth
meeting. As usual, we reviewed the ballot
status of P1003.1 test methods, worked on
P1003.2 test methods, and reviewed steering
committee activities. As before, each morning
we did technical reviews of parts I and II;
afternoons were spent writing assertions for
part III. Participants from the usual com-
panies attended (AT&T, NIST, OSF, Mindcraft,
IBM, DEC, HP, Data General, Cray Research,
Unisys, Perennial, and Unisoft Ltd.).

Document structure and some new PARs

Currently, our evolving document has two
parts: Part I is generic test methods; Part II is
test methods for measuring P1003.1 confor-
mance, including test assertions; and Part III
contains test methods and assertions for
measuring P1003.2 conformance. (As other
P1003 standards evolve, they will become
separate activities in the working group’s
schedule.)

After the ballot, each part will become a
separate standard. Part I will be published as
IEEE P1003.3; Part II as IEEE P1003.3.1; and
Part III as IEEE P1003.3.2. To this end, we
developed and submitted three new PARs to
the Standards Executive Committee (SEC).
The PAR for P1003.3 lets Part I apply to all
TCOS standards (i.e., POSIX). The PAR for
P1003.3.1 lets Part II include test methods for
P1003.1 and P1003.1a. The PAR for P1003.3.2
lets Part III include test methods for P1003.2.

Ballot status

Draft 11 of the current ballot, which was re-
circulated to the (approximately) ninety-
member balloting group late in February,
closed balloting March 23. Of the 65 respon-
dents, 29 approved, 17 disapproved, and 19
abstained. This meets the two-thirds response
requirement, but falls short of the needed
two-thirds approval. Another re-circulation
will probably take place in Fall, 1990.

P1003.2 verification

This :was our fourth meeting working on a
verification standard for the P1003.2 standard.
The assertion writing and review were done in
small groups. Some of the assertions were

AUUGN

;login: 15:4

based upon P1003.2 Draft 9. This group needs
help from the P1003.2 working group in writing
test assertions, but no formal arrangement is
in place yet to provide it.

Officers for the P1003.2 Test Methods ac-
tivities are: Ray Wilkes (Unisys), Chair; Lowell
Johnson (Unisys) Secretary; and Andrew
Twigger (Unisoft Ltd), Technical Editor.

Steering Committee on Conformance Testing (SCCT)

The test-methods steering committee is sup-
posed to alleviate the increasing dot-three
work load all the other proliferating groups are
creating. Their job is coordinating the activi-
ties of all test-methods groups, monitoring
their conformance to test methods, and writing
Project Authorization Requests (PARs).
Currently, its members are Roger Martin
(NIST, Steering Committee Chair), Anita
Mundkur (HP), Andrew Twigger (Unisoft Ltd),
Bruce Weiner (Mindcraft), and Lowell Johnson
(Unisys), but membership will be dynamic,
Right now, this committee is documenting
procedures. Roger Martin is also clarifying
which standards the working group will ad-
dress. The Technical Reviewers will review
this work sometime before the next meeting.

Report on IEEE 1003.4:
Real-time Extensions

Rick Greer <rick@ism.isc.com> reports on
the April 23-27 meeting in Salt Lake City, UT:

1003.4

The .4 ballots went out on schedule, and
most came back on schedule as well. We
(barely) got the required 75% response, of
which 43% approved of the draft as it stood.
The small-group leaders are currently working
to resolve the objections and will report back
at Danvers in July.

1003.4a

Most of the work at Snowbird centered around
threads (.4a). Two alternatives to the pthreads
proposal were presented at the meeting:
“strands,” from John Zolnowsky of Sun,
defined a minimal set of interfaces for

AUUGN

39

multi-threaded applications; “VP,” from Paul
Borman of Cray, added a “virtual processor”
layer to the pthreads specification, which made
some multiprocessor (MP) features visible to
applications.

The primary MP hardware feature that
Paul’'s VP proposal makes visible to the
pthreads environment is the ability to write
your own spin loops and expect them to work.
One could, for example, have one thread con-
tinuously reading an in-core data base while
another thread updates it. On an MP system,
it might be more efficient to code this without
using a mutex, although doing so on a uni-
processor with a co-routine threads package
would be an absolute disaster. The new mul-
tiprocessor group, 1003.16, is looking into this
and similar problems, and will probably sug-
gest that .4a include some sort of system-wide
attribute structure that one can check when
writing programs that depend heavily on con-
current execution of threads.

After a week’s discussion (often a euphem-
ism for argument), we settled into a
compromise position not that far from where
we started—pthreads. All this work without
much net change was frustrating, but probably
unavoidable. Until fairly recently most of the
committee was busy getting the .4 draft ready
for balloting. Lacking enough time to have
studied threads carefully, members were unwil-
ling to accept the small group’s conclusions be-
fore investigating some alternatives for them-
selves. Still, some progress was made. The
most important was a more comprehensive
definition of signal behavior in multi-threaded
programes.

10903.14

On the last day, a first attempt at a real-time
application environment profile (AEP) was
presented. This PAR will be an excellent,
practical test of AEPs. Real-time applications
are likely to vary wildly in the subsets of .4’s
rich features that they require. Some worry
that the real-time AEP will force embedded
systems that need only one or two .4 features
to incorporate others just to adhere to the
standard. The problem this poses is not just
storage space wasted by unused code, but the
expense of verifying that this extra code will

Vol12No 1

never get in the way of the application. The
group will be wrestling with these and. similar
problems in the months to come.

Report on IEEE 1003.4:
Real-time Extensions

John Gertwagen <jag@ism.isc.com> reports
on the April 23-27 meeting in Salt Lake City,
UT:

Administrivia

P1003 met in Salt Lake City this time. Actu-
ally, it was at Snowbird Lodge, south of and
well above the city. It was spring in Salt Lake
but still winter in the mountains. (Wish I
skied.) The real-time meetings drew 68 people
the first day, and averaged around 40 all week.
If some skiers hadn’t deserted each day, we
would have had more.

.4 Balloting

Over 200 people joined the balloting group for
P1003.4, Draft 9. The first ballot closed in
mid-March and 75% of balloters returned their
ballots within a day or two of the official dead-
line, setting a new record! 43% of these voted
“Yes” on the first round, about average for
POSIX ballots.

Lack of time and logistics problems meant
little ballot feedback by meeting-time (shame
on those who didn’t submit their ballots elec-
tronically!), but a few issues surfaced. Several
objected to having binary semaphores only in
the path namespace and not also in shared
memory, where they could use simple test-
and-set calls, and not time-consuming system
calls. There’s value in providing a common
interface for both of these and for other “syn-
chronization objects.”

There were also objections to having
“events” when there are ‘“fixed” signals in
System V, Release 4. The technical reviewer
for events will try to make SVR4 signals meet
real-time requirements. (Not too long ago,
there were strong objections to changing sig-
nals. There may still be protests over adding
real-time-required determinism.)

Vol 12No 1

40

;login: 15:4

Current Work

With .4 in limbo, the working group got on
with Threads (.4a), Language Independent
Bindings (.4b), and Real-time Application En-
vironment Profiles (.14). Threads got the most
attention. (Surprised?) Despite this, or
perhaps because of it, the other two drafts saw
significant progress.

Rick Greer has reviewed a lot of the
threads work, so I'll briefly mention what’s go-
ing on in .4b and .14, give you some personal
views on- threads, and then amplify on areas
where our editor, Jeff Haemer, was recently
raked over the coals.

AEP

At first, the real-time AEP small group had
some trouble focusing. They’ve identified two
fairly easy targets, essentially minimum and
maximum configurations, and now seek
proposals for intermediate specifications.

In Utah, the group came up with a fairly
complete specification for embedded systems,
and reviewed it with P1003.0 *(EM the POSIX
Guide group that is the driving force in
defining AEPs. One interesting issue surfaced
during the review: for embedded systems, the
AEP group wants to exclude interfaces of .4
and .l that aren’t needed! Dot zero hadn’t
thought of that before. Resolving this should
set an interesting precedent.

Language-Independent Bindings

The people doing this have it down to a sci-
ence, so the large group has largely left them
alone. Most of their work is converting things
to “normal” form, which is mostly tabular,
and throwing away the stuff that is language-
dependent. They made good use of their time,
cranking through a good bit of the .4 draft.

Threads (P1003.4a)

The meeting saw two new proposals. Both
suggested fruitful changes to the current
Pthreads work, but neither was accepted as a
new base for the current draft. ‘

John Zolnowsky of Sun Microsystems sub-
mitted one counter-proposal, called “strands”
because “‘threads” was already taken. It was

AUUGN

:login: 15:4

an attempt to limit the scope of the interfaces
and keep thread semantics closer to process se-
mantics. Thus, it would have done away with
mutexes and conditions, leaving synchroniza-
tion to be accomplished through .4 binary
semaphores, presumably modified to have
inter-thread, not just inter-process, semantics.
It also proposed more process-like exit seman-
tics and a version of per-thread signaling. The
consensus on the strands proposal seems to
have been that it was too minimal.

In contrast, the VP (Virtual Processor)
proposal, by Paul Borman of Cray Research,
proposed significant “incremental”
functionality in the form of a lower-level
virtual-processor interface for use by the
multi-processing and parallel processing com-
munities. (For those familiar with Mach, it i$
roughly to Pthreads as cthreads is to
Cthreads.) Features of the VP proposal in-
cluded:

e fork() and exec() semantics for VPs
e per-VP signal semantics
e locks and events for synchronization
e no ordering or scheduling constraints
The group had several concerns about VPO

e Could it support real-time requirements
without ordering and scheduling constraints?

e Could the Pthreads constraints be imple-
mented on top of a layer that didn’t support
them?

e Would the interfaces be used by applica-
tions or by system implementors?

e Would an application using both Pthreads
and VP interfaces encounter analogous
problems to those caused by read()s and
fread()s on the same file?

o Would standard interfaces for locks and
events, implemented in hardware on many
systems, constrain or encourage hardware
development?

¢ Would the standard benefit either the user
or vendor community?

e How soon could the proposal be com-
pleted and gain enough of the MP
community’s consensus to go to ballot?

AUUGN

41

Perhaps the deciding factor, though, was
that the multi-processing AEP group (P1003.16)
started meeting officially at Snowbird. [Editor:
Watch for the snitch report, coming soon.] A
majority of our group (including me) felt that
MP-specific standards should grow from re-
quirements identified by .16, not be created on
the fly by the real-time working group.

In areas that are still not pinned down, the
group made progress towards a better-defined
cancellation mechanism, towards a ‘signals
compromise’” that improves on one hurriedly
forged at the previous meeting, and towards
more process-like exit semantics. The con-
sensus was that we should try to accommodate
and specify per-thread signal state. Although
there are a few strong supporters, a majority
did not feel that specification of per-thread sig-
nals is essential to a standard.

Paul Borman of Cray Research will
present a proposal on this at the next meeting.
I'll be interested to see what Paul comes up
with. With three state elements (mask, pend-
ing signals, and action vector) and at least
three signal delivery types (one, some, all), I
can create many implementation models and
corresponding application architectures. It
may prove easy to construct a plausible model.
but hard to construct one that 40 engineers
can agree to live with for a long time! I
suspect a portable application can assume
nothing more than ‘“exactly one signal gets
delivered exactly once to exactly one handler.”
(Looks an awful lot likes signals to a process,
doesn’t it?)

The biggest progress in the meetings was
wide consensus achieved for the current
threads proposal. The working group resolved
many of the remaining threads issues, and we
let Bill Corwin tell IEEE/ISO that we expect to
ballot P1003.4a in July, after the next meeting.

OSF and Ul Cooperating?

Our editor’s recent editorial stirred up a
hornet’s nest. (It wasn’t so much what Jeff
said as what he implied.) In his follow-up post-
ing, he said I’d speak about the joint meetings
in more detail. I didn’t really want to but he
twisted my arm, so here goes.

Vol 12No 1

The UI MP Working Group and OSF have
been cooperating since the middle of last year.
I happen to work for a company that belongs
to both, INTERACTIVE Systems Corporation,
and though I haven’t been to all of the joint
meetings, I’ve attended them off and on since
last November (which is, I think, when they
started). Those I have attended focused on
finding solutions to interface/semantic
problems that both OSF and Ul can endorse
and that P1003.4 would probably endorse as
well. Although these meetings haven’t been
advertised I've seen at least one article about
OSF/UI/ATT negotiations that mentioned their
cooperation in the MP arena. And the meet-
ings have been open. At least one non-
member has shown up uninvited, and was not
asked to leave.

Now, it’s no secret that several Pthreads
proposal initiators (instigators?) work for OSF
sponsors. Since the Pthreads-proposal was ad-
vanced before OSF adopted Mach, it’s hard to
say whether OSF influenced the P1003.4 work
or the other way around. Also, in several in-
stances, OSF/UI members have voted personal
opinions contrary to the OSF/UI consensus
established at the joint meetings.

What’s the point? The joint meetings con-
tribute to the quality of the .4a work, but they
don’t drive it. I think the work in P1003.4 is
pushing vendors to find multi-threading solu-
tions faster than they would have on their
own. It’s an example of POSIX pushing emerg-
ing technologies, not just creating standards.
There’s even a chance that .4a will create a
standard multi-threading interface before mil-
lions of installed heterogeneous systems force
the standard to a lowest common denominator
or to incorporate a particular implementation’s
garbage.

And POSIX is playing another role - unit-
ing the industry. I believe Sun’s tooth-and-

nail fights with AT&T in P1003.1 led to their -

current cooperation. Maybe the collaboration
of OSF and Ul on threads will also bring more
unity to the industry.

Vol 12No 1

42

;login: 15:4

The relationship between .4 and .4a

Despite what some think, the threads small
group has never had any official status. In-
terest and participation in the threads effort
goes far beyond the small group, or even the .4
working group into other POSIX committees.
Some history may clear this up.

Lightweight processes (i.e., threads) have
been on P1003.4’s list of potential work items
since its formation. About 3 years ago, the
working group voted not to pursue them
because they were not clearly needed and the
technology was not sufficiently mature.

About a year and a half ago, threads resur-
faced as an item of interest to the reai-time
users, and also to Ada, Transaction Processing,
and RPC working groups. A small band of
“experts” went off to draft a proposal. Since
P1003.4 was an active system-interfaces com-
mittee and the real-time user community
wanted a threads proposal, a lot of hard work
culminated last summer in Minneapolis in a
threads proposal being accepted as an addi-
tional chapter for the .4 draft.

There are 12 other interface proposals in
the .4 draft. Some have been mature for
nearly two years, (some with broad consensus,
others without), others are still relatively wet
behind the ears. Still, all the interfaces are
relatively complete (sometimes too complete?),
and in November, when it seemed appropriate
to send .4 to ballot, .4a wasn’t as complete as
the rest. At the Milpitas meeting, the P1003.4
working group decided to include the threads
chapter in the ballot for comment only, and
sought and obtained authorization to turn the
threads work into a separate work item for the
P1003.4 working group.

After the Pthreads proposal was accepted
into .4, the small group of people whose
primary interest was threads spent all their
time on threads. Meanwhile many other .4
members time-shared all the other .4 activities.
Because the Pthreads supporters were so
focused, they sometimes seemed like a
separate group. (Some in the small group
might have been surprised to learn they
weren’t. It takes a while to understand the
POSIX bureaucracy.) Nevertheless, though they
may not always have appeared to represent the

AUUGN

;login: 15:4

entire working group, the Pthreads proposal
now enjoys wide consensus. Apparently, the
small group has listened well to the interests of
the working group and the POSIX community.

At Snowbird, there wasn’t a threads small
group, there were seven of them! These small
groups examined how the current and the al-
ternative proposals addressed:

e thread management
e synchronization
¢ signals/asynch events

cancellation

thread-specific data

re-entrant functions

e process control

After reviewing all the issues, we
discovered a consensus in most of these areas,
and fairly strong agreement on most issues in
the three or four groups that are still needed.
It looks like things are pretty well on target.

I’m partially responsible for pushing .4a in
before .4 was done, so I’'m also partially
responsible for the process not always appear-
ing fair or well organized. I’ll take my share of
the blame. But I’ll also take my share of the
credit for progress in a technology that I be-
lieve to be important for real-time and for the
entire POSIX community.

Report on IEEE 1003.5: Ada bindings

Jayne Baker <cgb@d74sun.mitre.org> reports
on the April 23-27 meeting in Salt Lake City,
UT:

Overview

The Utah meeting was the group’s first since
our October meeting in Brussels. In the in-
terim, we had completed a mock ballot of
Draft 4.0. Jim Lonjers of Unisys, one of our
two co-chairs, managed the effort. The docu-
ment was mailed out to reviewers on
December 1, 1989 and comments were due
January 19, 1990. Although only 16% of the
ballots were returned, the high quality of the
comments received made the mock ballot a

AUUGN

43

success. Ted Baker, of Florida State Univer-
sity, hosted a special meeting in Tallahassee,
March 19-23, to resolve issues and comments;
the result was draft 4.1. We did not attend the
January New Orleans meeting because bal-
loters lacked sufficient time to review and re-
turn comments prior to the meeting, though
some members came to attend other groups’
meetings.

Our main goal in Utah was to prepare the
Ada Language Binding Document for IEEE
and ISO Ballot. We addressed the few
unresolved technical issues from mock ballot;
read draft 4.1 cover to cover, for accuracy (of
text and Ada code), content, and consistency;
established a plan for addressing the ISO for-
matting issues; adopted an optimistic schedule
for IEEE and ISO ballots; and tried to establish
a position on threads.

Unresolved Technical Issues from Mock Ballot

Most unresolved technical issues from the
mock ballot were trivial, and quickly resolved.
They included the details of iterations (e.g.,
through a directory), string lower bounds with
respect to a string returned by a function, the
behavior of a file that is opened non-blocking
when the I/O operation cannot complete, static
initialization versus ‘“easy implementation” of
constants, and Text I/O page terminators.

The most detailed discussion involved
whether or not files should be closed on an
Exec. The Ada binding provides a
Start_Process function, which is a primitive
that safely creates a new process. In the face
of Ada tasking, Fork and Exec are unsafe and
cannot be used to accomplish the results of a
Start_Process call. Once one of these unsafe
primitives is issued, an application program is
no longer under the control of the Ada run
time system; the operating system is involved.
Therefore, the integrity of the child process is
jeopardized, and the state of the process’s I/O
(i.e., which files are open and closed) is not
guaranteed. Application programs that must
be safe with Ada tasking and must have files
closed and Dbuffers flushed should call
Start_Process 10 create a new process.

Vol12No 1

Global Issues Affecting the Document

We solved several global editorial issues. We
agreed to use a terse wording style except
where a more lengthy explanatory style is
needed for clarity. We accepted the current
packaging of the Ada code (multiple packages)
and the non-Ada-Language-Reference-Manual
coding style. Chapter authors were assigned
action items to complete their respective refer-
ences and rationale sections.

We spent a large portion of the meeting
going through the document chapter-by-
chapter, noting very specific changes. Changes
recorded in a “master red-lined” copy were
forwarded to appropriate chapter authors at
the close of the meeting. These changes will
be made before the June delivery of the docu-
ment to WG 15.

ISO Format Issues

We need to make several minor modifications,
additions, and deletions before the June WG
15 meeting, to put the document in ISO stan-
dard format. After the March Tallahassee
meeting, Jim Moore, of IBM, investigated the
possibility of hiring a consulting technical edi-
tor to do this work. IBM volunteered to fund
this effort at a level sufficient to translate the
document into ISO format, maintain that for-
mat, and make one major edit and two to
three minor editorial revisions. We accepted
IBM’s offer, and hired Hal Jespersen.

Threads Issues

As in New Orleans, several group members
met with P1003.4 for threads discussions.
Most group members feel we should establish
a position on threads, but we remain firmly di-
vided on what it should be. Several members
believe the currently defined primitives (i.e.,
the most basic system functions) are
insufficient, and think that any thread model
and primitives proposed should be sufficient to
support Ada tasking, and implement an Ada
Run-Time. In contrast, at least one group
member believes we are unrealistic to require
a threads proposal in C to meet Ada require-
ments - we should, instead, require that C and
Ada be able to play together in some reason-
able fashion, and have a fair understanding of

Vol 12No 1

;login: 15:4

how it will be accomplished. We decided to
admit our dissension to P1003.4. Interested
P1003.5 members are acting as liaisons to
represent their own views, but these liaisons
do not represent any consolidated P1003.5.
view.

The IEEE and ISO ballots

Steve Deller, our chair, asked the Sponsor’s
Executive Committee (SEC) to approve our en-
try into the IEEE ballot process. Jim Isaak,
SEC Chair, met with us early in the week to
discuss the IEEE and ISO ballot processes and
help us establish a schedule to reach IEEE and
ISO ballots simultaneously. Since the ballot
process seems to be of general interest, here is
a brief overview.

A hierarchy of organizations is responsible
for producing international operating system
standards and managing the ISO ballot process.
Two independent international standards or-
ganizations, the International Standards Or-
ganization (ISO) and the International Elec-
trotechnical Committee (IEC), sit on top.
Joint Technical Committee | (JTC 1), a com-
bined effort of these two organizations
designed to coordinate their efforts in areas of
overlap, is at the second level; Subcommittee
22 (SC 22), Languages, at the third; and Work-
ing Group 15 (WG 15), Portable Operating
Systems for Computer Environments, at the
fourth. National organizations, such as the
American National Standards Institute (ANSI),
manage ISO balloting within each country.
Each participating country has one or more
representatives in WG 15. The United States
has a Technical Advisory Group (TAG), which
meets with and advises the United States’ WG
15 representatives on the U.S.’s position on
important issues.

This bureaucracy requires quite a bit of
coordination and planning to coordinate IEEE
and ISO ballots. Most documents require
about one year to complete the IEEE ballot cy-
cle. Historically, POSIX documents have
begun with the IEEE ballot process; three to
four months later, either the original draft, or
a newer version incorporating IEEE ballot pro-
cess comments, enters the ISO process, and is
delivered to both WG 15 and SC 22 for appro-
val. Typically, the IEEE ballot is held open

AUUGN

:login: 15:4

until all comments from both IEEE and ISO
processes are received, reviewed, and incor-
porated. The result is returned to both the
IEEE and ISO ballot groups for their approval.
If the IEEE comments are substantive, they
enter into the ISO process by the submission of
a United States position. For example,
P1003.1a is the U.S. position on P1003.1..

Our group also initiated formation of a
formal ballot group - the group that will actu-
ally vote on the current draft. We will deliver
Draft 5.0, in ISO format, to WG 15 at the Ada
Europe meeting this June. Draft 6.0 will go to
IEEE ballot on August 6. If we receive the re-
quired 75% response by September 21, the bal-
lot will close immediately; if not, we must
reconsider the ballot group membership, and
revise our schedule. In early October, draft 6.0
will be delivered to SC22. At the October
meeting, in Seattle, we will resolve the IEEE
ballot comments and produce Draft 7.0, which
will enter the ISO Ballot process. At the Janu-
ary 1991, New Orleans Meeting, we will deter-
mine whether a second IEEE Ballot is needed.
Any changes to Draft 7.0 resulting from a
second IEEE Ballot will be entered into the ISO
process through a pro forma objection. There
are no guarantees, but P1003.5 could reach
Draft International Standard (DIS) status by
late second quarter of 1991.

Conclusion

The April '90 Salt Lake City Meeting was a
success. We addressed the issues we hoped to
address and attained our goal for the meeting.
We also established a schedule for reaching
IEEE and ISO ballot; although this schedule is
optimistic, we think we can meet it.

Report on IEEE 1003.6: Security

An anonymous source reports on the April
23-27 meeting in Salt Lake City, UT:

Apologia

This is my first and last review as a snitch.
[Editor: We thank you for doing it, and hope
your circumstances change to allow you to file
more.] In it, you’ll see no party line. My views
will sometimes be controversial, and [hope

AUUGN

45

they spark discussion and feedback. They
represent neither the views of my company
nor of its clients - I’m submitting this
anonymously so no one can misconstrue them
as being my company’s — and they’re certainly
not meant to represent the consensus of the
1003.6 Working Group.

I'll put my biases on the table. I'm a.com-
mercial user and commercial software pro-
vider, not a government user, government
software provider, or UNIX vendor. To some
degree, these biases have influenced the com-
mittee, since I’ve been active in the group
since its inception and attended every 1003.6
meeting. With that perspective, let’s begin.

Overview

The 1003.6 Working Group is putting together
a Department-of-Defense-inspired version of
UNIX. Our efforts will help vendors sell
systems to the U.S. Government and its con-
tractors. All our interfaces will make it easier
to evaluate conforming systems at one of the
DoD’s Trusted Computer Security Evaluation
Criteria (TCSEC) levels. This is not inherently
bad, but it does sell the commercial and inter-
national communities short. (More on this
later.)

The working group is considering four
areas: Discretionary Access Control (DAC),
Mandatory Access Control (MAC), Least
Privilege, and Audit.

Discretionary Access Control: The DAC group’s
job is hard. They are devising an Access Con-
trol List (ACL) mechanism that must co-exist
with the familiar wuser, group, other
mechanism. ACLs are discretionary because
the user, not the system, decides each object’s
access rights. The traditional user, group,
other mechanism is also discretionary: file
protections are specified by the user. ACLs ex-
tend this by allowing users to grant different
access permissions to arbitrary lists of named
users and groups. (In other words, the tradi-
tional mechanism is an ACL with exactly three
entries.) Designing an ACL is easy; maintaining
compatibility with chmod, stat, umask, and the
file creation mask of creat isn’t.

Mandatory Access Control: MAC is another
type of access control mechanism. All system

Vol 12No 1

objects get a security label and all system users
have a security classification set by the system
or the Security Administrator (Systems Ad-

ministrator). Users have no control over this’

mechanism’s application; objects created by a
user of classification X automatically receive a
security label of X. Only wusers with
appropriate classifications can access or
modify a system object. (As a useful, if inex-
act, analogy, think of the way UNIX automati-
cally assigns file ownerships.)

The TCSEC security criteria’s popularity
and widespread acceptance have given MAC
another connotation - that of a codification of
the familiar U.S. government, hierarchical
security classifications: Top Secret, Classified,
and Unclassified. Government policy prohibits
users of a lower classification from viewing
work of a higher classification. Conversely,
users at a high classification may not make
their work available to users at a lower
classification: one can neither “read up” nor
“write down.” There are also compartments
within each classification level, such as NATO,
nuclear, DOE, or project X. Access requires the
proper level and authorization for all compart-
ments associated with the resource. The MAC
group is defining interfaces for such a manda-
tory mechanism. It’s not as confusing as it
sounds, but outside of the DoD it is as useless
as it sounds. (Prove me wrong. Show me how
this DoD policy is useful in a commercial en-
vironment.)

Least Privilege: The Least Privilege group is
eliminating root. They’re creating both a list
of privileges to encompass all of root’s special
uses (e.g., set-uid to a different user-id, create a
directory, create a file system, override DAC
protection) and a mechanism to inherit, assign,
and enable those privileges.

Audit: The Audit group is preparing a standard
interface for a logging mechanism, a standard
format for logging records, and a list of system
calls and commands to log.

Standards

At the ISO level, there will be no separate
security standard. Our work will be merged
with the 1003.1 (System Interface), 1003.2
(Commands and Utilities), and 1003.7 (System

Vol12No 1

46

;login: 15:4

Administration) work in the ISO 9945-1, -2,
and -3 standards. This means every conform-
ing system will include security mechanisms. I
like this. Do you? '

Scope and motivation

All 1003.6 members feel we are making POSIX
secure, not merely helping sell systems to the
U.S. government. Our work is important and
necessary (except, of course, MAC), but I think
our focus has been too narrow. We included
mechanisms for the TCSEC criteria but
stopped there. We haven’t sought out the
work of other countries. We haven’t con-
sidered the work being done in international
standards bodies such as ISO and CCITT. We
haven’t explicitly considered commercial users.
We’ve limited ourselves to helping provide
TCSEC-conforming systems. Many of us be-
lieve that the TCSEC criteria are good for com-
mercial applications. Is that hopeful claim just
self-serving? We don’t know. I wish eminent
computer scientists and researchers had gotten
together to study the needs of commercial
users and drawn up an independent set of
commercial security requirements. But they
didn’t.

Kevin Murphy, of British Telecom, is the
ISO/IEC JTC1/SC22/WG15 security rapporteur —
he formally represents the international
community’s concerns and views. In January,
Kevin brought several of these to the working
group’s attention, including our TCSEC biases
and lack of attention to ISO activities. The
international set seems to consider the
document’s constant references to the TCSEC
work provincial and inconsiderate of other
countries’ requirements. They also feel we
should be more aware and accepting of ISO
terminology in the document. Kevin also says
our scope is too limited in the CCITT X.400
and X.500 areas.

Snowbird

Plenary: The meeting opened with a short
plenary session. This time, the first topic of
discussion was the progress of the 1003.6 draft
document. Mike Ressler, of Bellcore, accepted
the position of technical editor and brought a
new draft of 1003.6, which contained work of
all but the Audit subgroup. In addition, an

AUUGN

;login: 15:4

electronic copy of the document was available
for the subgroups to modify and update during
the meeting. The technical editor position had
been open since October. No draft was avail-
able during this time, which worried us since it
prevented us from setting any realistic comple-
tion date. With a draft in hand and a techni-
cal editor we now project completion in April,
1991.

Charlie Testa’s absence meant we lacked
our usual detailed report on TRUSIX.
(TRUSIX is a DoD-sponsored organization
made up of the National Computer Security
Center, AT&T, and several other companies.)
Rick Sibenaler and Shaun Rovansek, of the
NCSC, gave us a brief update, reporting that
the audit rationale will be available at the July
POSIX meeting and that select experts are now
reviewing the draft version of their formal
model, which is written in a formal
verification language, INA JO.

Some of the work of TRUSIX augments
the work of 1003.6 - pursuit of a formal
security model and descriptive top-level
specification, and a mapping between them,
for example — but some overlaps. I'm still
puzzled over why TRUSIX has pursued audit
and DAC mechanisms when 1003.6 is doing
the same work. (Another challenge: can any-
one out there tell me?) To their credit,
TRUSIX is accomplishing their goals much fas-
ter than 1003.6. For example, Charlie
reported in January that the TRUSIX DAC
work is already complete. This speed may be
at the expense of POSIX, since many very good
people in both organizations are forced to split
time between the two unnecessarily.

Mike Ressler reported on the networking
and administration and security liaison group,
which spends an afternoon at every POSIX
meeting discussing mutual concerns of these
three independent working groups. Here are
the liaison group’s goals, in areas of our com-
mon interest:

o identify areas of overlapping or missing
coverage,

e provide an interface to ISO, ECMA,
CCITT, and other international bodies, and

AUUGN

47

o exchange ideas and discuss related issues.

Peter Cordsen, of DataCentralen (Den-
mark), presented Danish security require-
ments. They define three levels of sensitivity,
with criminal data among the most sensitive.
There was no specific comparison to either the
U.S. TCSEC or the emerging European security
criteria. Peter suggested that the security
working group begin addressing authentica-
tion, a position that received much support
from other representatives.

Draft work: After the plenary, we worked on
the document in subgroups.

Discretionary Access Control (DAC): The group
put together a new outline for the general and
introductory sections of the draft and rewrote
those sections to follow the new outline. They
also resolved several issues:

e There will be only one type of default
ACL, not the previously planned separate types
for regular files and directories.

o A mask entry type has been added to pro-
vide a mechanism that temporarily overrides
all other entries without actually changing
their values or deleting them from the ACL.
The feature also fits nicely with the current
plan for ACL interaction with the old POSIX
permission bits.

e The user model for both default and ac-
tual ACLs will be the same. (The internal
representations are undefined.) System inter-
faces will be the same, too. A flag will be ad-
ded to any interfaces that need to be able to
distinguish the two.

Audit: Olin Sibert, of Sun, presented a new
compromise audit proposal, based on an ear-
lier one by Kevin Brady, of AT&T, and Doug
Steves, of IBM, which he thought resolved
some of the earlier work’s problems. The
working group accepted Olin’s proposal with
minor changes and incorporated it into Draft
6, which was distributed in the IEEE May
mailing.

Mandatory Access Control (MAC): Since Kevin
Brady, the MAC chair, was participating in the
Audit discussion, and Chris Hughes, of ICL,
the acting chair, was also absent, Joe Bulger, of

Vol 12No 1

NCSC, ran the meeting. It is still unclear who
will chair the MAC subgroup.

Through the joint efforts of Bellcore and
AT&T, the MAC draft had been translated
from a proprietary word-processor format into
the [n|tjroff + POSIX-macro format required
for inclusion in the draft standard. The MAC
draft’s contents had been stable for several
meetings, so the group spent the entire week
changing the document.

This group seems to be having the most
difficulty getting its job done. There doesn’t
seem to be as much discussion and active par-
ticipation in the MAC group as the others.

Privileges: No functional changes were made
to the privileges material at this meeting, but
significant changes were made to the rationale.
The group also firmed up concepts and disam-
biguated functional ambiguities.

Networking, Administration, and Security
Liaison: The networking, administration, and
security liaison group held its second meeting
Wednesday afternoon. The meeting, chaired
by Mike Ressler, started by reviewing the
group’s scope and goals.

Since there had been no ISO meeting since
the January POSIX meeting, Yvon Klein, of
Group Bull (France), didn’t have anything new
to say about ISO’s security activities.

As part of the group’s continuing efforts to
identify problem areas, the system administra-
tion group and two networking groups gave
presentations on their work. Steve Carter, of
Bellcore, presented the scope and charter of
the system administration group, 1003.7, and
explained their use of an object-oriented
paradigm. Jim Oldroyd, of the Instruction
Set, followed this by presenting the work of
1003.7’s interoperability subgroup.

Kester Fong, of General Motors, gave an
overview of the FTAM group. He left us with
the impression that there wasn’t much room
for collaboration, but we’ll surely need to
review the relationship between the file-
system’s security semantics and those of
FTAM.

Jason Zions, of HP, gave one of the most
interesting and aggressive presentations of the

Vol12No 1

48

;login: 15:4

day, on the work of the Transparent File Ac-
cess Group, which included a preliminary list
of issues that 1003.8 feels need to be reviewed.

Finally, David Rogers, of ICL (Britain),
gave a presentation on the European security
criteria. He predicted harmonization by June
1990 of the work of Britain, France, Germany,
and Holland. The European criteria will
define separate levels of functionality and as-
surance. There will be ten classes of
functionality. The first five are hierarchical
and are similar to the U.S. Orange-Book
criteria; the remaining five address particular
security needs, such as integrity, availability,
and networks. There are seven classes of as-
surance. A product evaluated under these
criteria is likely to receive a rating from the
first five functional classes, one or more of the
next five functional classes, and an assurance
rating.

Final Comments: With the short plenary ses-
sion, the availability of the draft document in
electronic form, and the presence of many
lap-top systems to work on, this meeting was
one of our most productive. The group seems
to have picked up enthusiasm from the
knowledge that our work is coming together
and the end is in sight.

Report on IEEE 1003.7:
System Administration,
Interoperability Subgroup

Jim R. Oldroyd <jr@inset.com> reports on
the April 23-27 meeting in Salt Lake City, UT:

POSIX has given P1003.7 a charter to
define both command-line and applications-
programming interfaces for administering mul-
tiple networked machines from a central point.
Most reports on this group seem to focus on
the group’s object-oriented approach: the ad-
ministerable classes the group is defining, their
attributes (properties) and their operators.
[Editor: Martin Kirk has promised us a report
on this. Watch for it soon.]

:Sometimes overlooked in this object-
oriented frenzy is another, equally important,

AUUGN

;login: 15:4

and perhaps more difficult goal of the group:
interoperability.

Imagine, for example, an administrator
who wishes to execute an operation on some
fraction of nodes in a large, heterogeneous net-
work of POSIX systems. The administrator
wants to be able to issue the request once -
and at his or her own terminal. The system
should take care of determining which actual
objects are affected and of communicating the
request to them.

How should this be done? The fact that
today’s networks are heterogeneous means that
it is not sufficient for vendors simply to supply
systems with a consistent set of administerable
object classes. Nor is it enough for vendors to
define a consistent set of commands and API
names that operate on these classes. On top of
this, there has to be a consistent language for
systems from different vendors to communi-
cate with each other in order to tell each other
that changes have to be made to some of the
objects they are supporting.

The P1003.7 Interoperability subgroup is
defining a standard protocol for communica-
tion with remote objects.

Currently, we are trying to work out the
protocol’s requirements. The protocol will
have to support varied system-management
philosophies. Some operations, such as re-
enabling all PostScript’ printers, should be
queued and ekecuted independently for each
target. Failure to enable one printer does not
mean that the other printers should remain
disabled. Others operations must be atomic
over the domain, for example, when adding a
user to a set of machines, it is necessary to
confirm that a UID is available on all target
machines before adding the user to any
machine.

Each of these problems saddles the pro-
tocol with a different requirement. The former
case could be handled by broadcasting an in-
struction and collecting success or failure
reports later; the latter requires a two-phase
commit, requesting confirmation that

t PostScript is a trademark of Adobe Systems, Inc.

AUUGN

49

successful completion is possible throughout
the domain before actually mandating the
change.

Do we have to invent a new protocol from
scratch? P1003.7 is actively studying existing
protocols, such as ISO’s CMIP/CMIS and the
Internet SNMP. Both of these are existing
protocols designed to manage objects across
multiple systems - exactly as per P1003.7’s
needs. However, both of these are actually
designed to manage the network itself, and it
is not clear that they lend themselves to
management of things like users, printers, and
filesystems (etc.) properly. We hope to dis-
cover whether some existing protocol will fill
the bill in the next few meetings.

The Interoperability subgroup of P1003.7
will continue work in this area at our next
meeting (Danvers, MA, July 16-20). If you are
an interested party, we want to hear from you.

Report on IEEE 1003.9:
FORTRAN bindings

Michael Hannah <mjhanna@sandia.gov>
reports on the April 23-27 meeting in Salt
Lake City, UT:

FORTRAN bindings committee prepares to go to
ballot

The FORTRAN bindings committee is prepar-
ing the official call for a ballot group. Because
the POSIX work is all done under the auspices
of the IEEE Technical Committee on Operating
Systems Standards Subcommittee (TCOS-SS),
all members of the ballot group must be both
regular IEEE or Computer Society members.
and members of the TCOS-SS (no extra charge
to join). Non-members may submit infor-
mative ballots, but such ballots cannot count
towards the required response percentage
(75%), or percentage of affirmative responses
(also 75%) required for passage of the stan-
dard. [Editor: Institutional Representatives
are exceptions to this ruie. See IEEE 1003.1-
1988, p. 177 for a detailed explanation of the
rules.]

For more information, the appropriate
membership forms, and instructions for

Vol 12No 1

returning the forms to the proper IEEE offices,
contact the committee chair, John McGrory, at
the address listed at the end of this article.
This information and sign-up packet will be
available by the end of June, but you may con-
tact the chair as soon as you want your name
added to the distribution list.

The formal sign-up period is expected to
be August 15 through October 19, 1990. The
ballot period is expected to last from
November 9, 1990 through January 4, 1991.
We are especially eager to attract a large
representative balloting group, and encourage
interested individuals to sign up. While the
views represented on the P1003.9 working
group have been appropriate and varied, the
number of active members has been small
(typically, around a dozen).

Some history

As the committee prepares to go to ballot, it
might be of value to review some of the more
sticky issues that the working group has ad-
dressed. The formal adopted charter of the
committee is to provide access to the POSIX-
defined standard operating system interface
and environment, directly from the FORTRAN
language. There are two major issues of scope
that bear comment: ‘““Access to how much of
POSIX?” and “Which FORTRAN?”’

Some POSIX features are easily imagined
as useful to a FORTRAN application {(e.g.,
chmod, exec, etc.); some are less easily
imagined (pick your favorite obscure system
call). It was unclear where to draw the line, so
the committee took the approach of ensuring
access to all features defined in 1003.1 (IEEE
1003.1-1988, or ISO/IEC 9945-1:1990). It
seemed clear that full functional access would
be provided by most vendors, so full standard-
ization seemed called for. Some diehard C
language addicts continue to ask, “Why have
any FORTRAN bindings?”’ Although most ven-
dors provide a method of calling C functions
from FORTRAN, they vary from vendor to
vendor. Further, any library of C routines
provided by a vendor to map FORTRAN
constructs to the POSIX defined procedures is
bound to differ among vendors. The P1003.9
bindings are silent on implementation, so the
FORTRAN subprograms defined in the

Vol 12No 1

50

;login: 15:4

bindings could be implemented as just such a
library. The bindings just standardize the in-
terface. Keeping in mind the POSIX goal of
application portability, only a truly complete
FORTRAN binding would provide portability
of any FORTRAN application.

A harder issue was, “Which FORTRAN?”
Our choices were:

1. FORTRAN 77 [ANSI X3.9-1978, ISO 1539-
1980 (E)],

2. a codification of common extensions &
enhancements to FORTRAN 77, or

3. the revised FORTRAN standard emerging
from the ANSI X3J3 committee *(EM previ-
ously referred to as FORTRAN 8X but now
called Fortran 90. (The working group has
been delighted to have an officially appointed
representative of X3J3 as an active member.)
[Editor: Note that Fortran 90 will finally let us
type the name of the language without using
the caps-lock key. “And gain is gain, however
small.” — Robert Browning]

We chose the first.

For FORTRAN 77 vs. Fortran 90, we were
swayed by the fact that FORTRAN 77 is
currently the only adopted standard. (Fortran
90 is scheduled to be adopted as an ANSI stan-
dard after P1003.9 goes to ballot.) Further,
FORTRAN-77-based applications are expected
to exist for some years. Thus, the working
group felt that FORTRAN-77-based bindings
would be of value to the user community. The
working group expects to develop a new set of
bindings, based solely on Fortran 90, after
completion of the FORTRAN 77 bindings (and
after the Fortran 90 standard is adopted). One
result of this decision is a subprogram-naming
scheme that reflects the version of the language
(e.g., CALL F77MKDIR(...)). This will ensure
that there will be no name-space conflict with
similar-purpose subprograms in a future
Fortran 90 binding.

An even harder issue, once we decided to
base the bindings on FORTRAN 77, was
whether to define the bindings as extensions
and/or enhancements to the language itself, or
simply as a library of callable FORTRAN
subprograms. While the latter was finally
chosen, there was considerable argument for

AUUGN

;Jlogin: 15:4

the former. In fact, one extension to
FORTRAN 77 was considered minimally essen-
tial. The current document requires the
language to differentiate external names
unique to 31 characters, even though the
FORTRAN 77 standard limits them to six.
The extension seems harmless. Fortran 90
specifies uniqueness to 31 characters and all
current FORTRAN 77 compilers researched
provide this extension. Further, since the list
of P1003.9 subprogram names is finite, if
necessary, a vendor could provide a preproces-
sor to convert these names into unique strings
of six characters.

If the P1003.9 bindings had defined
changes to the language itself, then major miss-
ing constructs in the FORTRAN 77 language
needed for easy POSIX access (most notably,
structures and pointers) could have been pro-
vided by choosing either the emerging Fortran
90 constructs or an existing vendor solution.
At first the working group felt that this might
be required for some access features. How-
ever, as we struggled with each issue, working
papers and proposals were introduced that
resolved every one with callable FORTRAN
subprograms (though some might argue about
elegance or ease of use). While we mostly
steered clear of ‘“‘ease-of-implementation” ar-
guments, since we viewed the FORTRAN 77
bindings as an interim, we felt that vendors
would be quicker to implement a library of
subprograms than modifications to compilers.

A final hard question of standard scope
concerned whether to restrict the standard to
1003.1, or expand it to general FORTRAN-
application portability issues, both within and
outside the POSIX arena. Both a lack of
resources and a desire to provide timely bind-
ings on the heels of 1003.1 made us decide to
limit the scope to 1003.1 functionality.

As other base standards are produced
(e.g., 1003.2, 1003.4, etc.), we expect to
construct and ballot bindings for those stan-
dards. For example, we have worked with
P1003.2 in defining a standardized command
to invoke the FORTRAN compiler (after a
number of iterations, now named fort77) which
is part of their current draft. Actual P1003.9
bindings to 1003.2 might include definitions of
additional utilities of use to FORTRAN

AUUGN

51

applications not mentioned in the base 1003.2
standard (e.g., f77split, f77lint, etc.).

Another argument against adding features
was that many, if not most, of the problems
we saw in portability are solved by new
constructs in Fortran 90. Many of us felt that
as a standards group we should only provide a
minimum set of features for “perhaps-soon-
to-be-obsolete” FORTRAN 77, and thereby
speed up the date for providing full bindings
to the new Fortran 90, which provides more
features for application portability.

How to get involved

If you have strong feelings about these issues,
the most effective avenue to express them at
this point is to join the balloting group being
formed. Nevertheless, if you wish to discuss
them before this you can also directly contact
the chair (John McGrory) or me (vice-chair,
Michael Hannah), or join the e-mail discussion
group. Addresses follow:

P1003.9 Chair:

John McGrory

Hewlett Packard Co.

Division 2615

19046 Pruneridge Avenue
Cupertino, Ca 95014
mcgrory%hpda@HPLABS. HP.COM

P1003.9 ViceChair:
Michael Hannah

Sandia National Labs
Albuquerque, NM 87185
mjhanna@SANDIA.GOV

Un-moderated mailing list:
posix-fortran@SANDIA.GOV

To join the list, send request to:
posix-fortran-request@SANDIA.GOV

Report on 1003.12:
Protocol-Independent Interfaces

Andy Nicholson <droid@earth.cray.com>
reports on the April 23-27 meeting in Salt
Lake City, UT:

Vol 12No 1

Introduction

For starters, we’ve had some significant turn-
over. [Editor: Including, you’ll note, Steve
Head, our former fine dot 12 snitch. Thanks
for diving in, Andy.] We are now down to five
participants who were present a year ago, are
on our third AT&T representative, and an HP
representative has permanently left the work-
ing group. Despite all this, the group is begin-
ning to make rapid advances on both the
Simplified (SNI) and Detailed (DNI) network
interfaces. This meeting’s progress is sketched
below.

Overview of the Work We’re Doing

The dot 12 committee is working on three pro-
jects: Simplified Network Interface (SNI),
Detailed Network Interface (DNI), and Data
Representation Interface (DRI). Work on DRI
is being delayed until SNI and DNI are well
along. DNI is a protocol-independent inter-
face to network services that allows access to
protocol-dependent features in a protocol-
independent manner. DNI is meant to pro-
vide a complete interface to everything you
might expect to be able to do with networking
services. DNI is comparable to Berkeley Sock-
ets or AT&T’s TLI, and we plan that anything
that can be accomplished with those interfaces
will be subsumed by DNI.

The idea behind SNI is that many applica-
tions will not require “detailed” access to net-
working services. SNI gives a “stdio” type of
interface for networking that combines com-
mon groupings of procedures, eliminates ac-
cess protocol-dependent features, and is just
plain easier to use. Applications that use SNI
aren’t necessarily simple, they just don’t need
DNTI’s detailed access to networking services.

Simplified Network Interface

We started the week discussing the SNI inter-
face. Norm Smith, from Unisys, had intended
to bring an alternate SNI proposal to this meet-
ing, but his group at Unisys decided to work
with the current one. Irene Hu, from DEC,
says she may yet offer an alternate proposal.

I presented a paper, prepared from previ-
ous minutes, which gathered up some deferred
issues relating to SNI and we resolved some of

Vol12No 1

52

;login: 15:4

them. For example, we added some explicit
goals for SNI that everyone seemed to have ac-
cepted implicitly, but were never made official.

We also considered creating a formal
definition of SNI functionality, to help us
determine whether any particular function
should be included, but decided it would be
more efficient to keep deliberating each case
individually. We’ll record the rationale for
each as part of the standard document to help
us avoid and respond to ballot objections.

e SNI functionality

A paper by Tim Kirby (who works with me at
Cray Research) prompted the group to redefine
a function call. Sni_recv(), was defined to
discard excess data in a datagram when the
buffer offered by an application isn’t large
enough. The new version of Sni_recv(), allows
an application either to discard excess data or
to perform multiple sni_recv() calls to read it
all. It also allows applications to discard
datagrams without reading them at all. Here, I
think the group has noticeably extended the
power of the interface without sacrificing
efficiency.

¢ Kernel objects

Because SNI endpoints may not be kernel ob-
jects, we need to define semantics and inter-
faces that will allow SNI endpoints to survive
exec(). Unfortunately, we disagree on the se-
mantics of the endpoint-preservation pro-
cedures. Should multiple copies of the same
endpoint exist in different processes’ address
spaces, as happens with fork() and exec()? Im-
plementing the protocol stack in a user library
creates multiple copies of state information for
the same endpoint, and it may be impossible
to keep them synchronized.

Some of us (Keith Sklower, from Berkeley,
the author of the SNI document, and I) want
to restrict endpoint semantics so that only one
process may have a copy of an SNI endpoint;
others (Irene and Norm) disagree and wish to
allow multiple copies of SNI endpoints where
the programmer wishes.

AUUGN

;login: 15:4

Detailed Network Interface

We discussed DNI procedures in detail for the
first time and found tentative agreement on
most of the many issues raised. Mike Karels,
from Berkeley’s Computer Science Research
Group, presented an outline of required
functionality. After discussing it, we agreed to
make DNI endpoints POSIX file descriptors (as
returned by open()) until we see a compelling
counter-argument. I’ll challenge you to offer
one.

On Wednesday, Irene gave an overview of
XTI. During the presentation, Torez Hiley,
our new attendee from ATT, told us that XTI
is being revised: input from vendors using the
Berkeley socket interface is prompting the ad-
dition of many features. Torez will report on
the upcoming revision at the July meeting.
Where sockets and XTI/TLI differ, the best
solution is not clear. Moreover, some features
are absent or inadequately supported in both
interfaces. Here, we have a lot of work to do
and are just getting started. We’re eager to
hear whether the new XTI solves any of our
problems.

Report on IEEE 1003.14:
Multiprocessing

Bill Cox <bill@attunix.att.com> reports on
the April 23-27 meeting in Salt Lake City, UT:

The POSIX Multiprocessing Study Group
had its first official meeting as P1003.14 in
Utah, where the SEC approved its Project
Authorization Request (PAR) for a Multipro-
cessing Execution Environment Profile. Mul-
tiprocessing systems have become cost-
effective means for providing computing
power, but with the advantages come some
specific concerns that need to be addressed at
the interface level. The goal of this work is to
try to make POSIX safe for multiprocessing; a
secondary goal is to try to make POSIX
hospitable for multiprocessing. POSIX work-
ing groups do not necessarily share the con-
cerns of the implementors and users of mul-
tiprocessing systems. '

Bob Knighten (Encore) is the Chair, Bill
Cox (AT&T UNIX Software Operation) is

AUUGN

53

Secretary, and Dave Plauger (Alliant) is the
Technical Editor. Officers must have a com-
mitment of support from their employers, to
ensure that they can attend working group
meetings and devote necessary time to the pur-
poses of the working group. 16 people at-
tended the group meetings.

_ People interested in .4A (threads) have
tended to be interested in .14 and vice versa.
Many .14 members that have been meeting
with P1003.4/.4A see substantial problems with
pthreads in a multiprocessor environment, and
I know at least eight people working on .4A
that want to come work in .14,

The working group designated one official
liaison to .4A, who was joined by two other
tentative volunteers. We will also establish
liaisons with .1, .6, .7, .8, .10, and .12.

During the week, we spent time in three
areas.

1. We clarified the group’s work items, and
started work on the most important, the Appli-
cation Environment Profile. (An AEP may
specify relevant portions of other POSIX
working groups’ work, make choices where op-
tions are permitted, and specify behavior that
a [draft] standard may have left undefined or
unspecified.)

2. We discussed current conventional wis-
dom on multiprocessing. The discussions cen-
tered around presentations by BBN, Cray,
Encore, AT&T USO, and Alliant on lessons
they’ve learned.

3. We created two small groups.

The first began work on high-level require-
ments placed on pthreads by multiprocessing.
Attendees included Rick Greer (Interactive),
Mary Weeks (Sun), and Bill Cox (AT&T USO).
Here are some requirements we feel strongly
about:

¢ A library implementation of “user-level
threads” is vitally important. User-level
threads often must be multiplexed onto
kernel-supported objects/processes/threads,
largely for performance reasons. These
kernel-supported objects, etc, are sometimes
called ““virtual processors,” because they sup-
port an abstraction closer to that of a physical

Vol 12No 1

processor, with interrupts/signals, and a
significant amount of state. .4A should not
deal with threads at this virtual processor
level.

e The formal memory model of P1003.4/D9
section 13.1 must apply to .4A. This model
defines the semantics of memory interaction
that should be preserved in a multithreaded or
multiprocessing environment.

e Global threads scheduling makes little
sense in a multiprocessor, though such
scheduling could be useful as a hint (like C’s
register declarations if you don’t have
enough registers). Global policy is difficult to
implement in a multiplexed thread environ-
ment.

e use of attribute structures for mutual ex-
clusion variables (in particular, for scheduling
hints)

e Locks shouldn’t be opaque, and program-
mers should be able to statically initialize
them. The latter is important so that locks
can be part of data structures, and not require
time-consuming dynamic allocation and ini-
tialization.

e There must be only one set of libraries.
There are performance reasons to have single-
threaded libraries, i.e., libraries that are not
thread-aware, for a uniprocessor or single-
threaded applications. The group believes that
the cost of maintaining such libraries is
sufficiently high that a non-reentrant library or
set of libraries should not be required.

The other group began work on the AEP
itself.

Members of this small group, and their
responsibilities, included

Dave Plauger (Alliant) — skeleton for the
document,

Frank Lawlor (IBM) — checkpoint restart,
review, and liaison with .10 and .7,

James Gibson (BBN) — review and liason with
.2,

Bob Knighten (Encore) — review and liason
with .4, and

Vol12No 1

54

;login: 15:4

Tom Weaver (IBM) — review and liason with
.1 and .6.

This group identified several areas of con-
cern:

e microtasking models

¢ checkpoint, snapshots, and core dump
format/synchronization

¢ a general programming model

e dividing the “reading list” (other P1003
standards and drafts)

e determining focus (are we dealing with
portability for application writers, users,
and/or administrators?)

¢ standardizing system services

A sketch of the planned document in-
cludes:

o reference to TIMS
o multithreaded applications (.4A)

e HLL parallel applications (PCF FORTRAN,
parallel C)

e IPC .

Report on ANSI X3B11.1:
WORM File Systems

Andrew Hume <andrew@research.att.com>
reports on the April 17-19 meeting in Tucson,
AZ:

Introduction

X3B11.1 is working on a standard for file inter-
change on write-once, non-sequential (random
access) media: a portable file system for
WORMSs. This was our fourth meeting. With
many major issues somewhat settled, our main
remaining decisions are how to implement
directory hierarchies and how to manage free
space.

Multi-Volume Sets

WORM file systems store a fair amount of in-
formation per file (such as most of the fields in
struct stat), per directory, per partition, and
per volume. A volume is a logical address

AUUGN

;login: 15:4

space associated with a piece of physical
media. For example, a WORM disk that can
only be accessed one side at a time would be
two volumes. Each volume has a label block
describing its size, partitions, directory hierar-
chies, free space management, and so on.
(Free space management is discussed below;
for now, this could mean a pointer to the next
free block.)

Informally, multi-volume sets means files
and directories can be spread over several
volumes. Here are some requirements for this
feature:

o A file can be bigger than a volume (file
sizes are limited to 2**64 bytes).

e You can append to a file.
¢ You can update any part of a file.

e All volumes need not be simultaneously
accessible. (That is, if you have a three
volume set, you don’t need three drives.)

e Each volume, and the whole volume set,
must be consistent after an update.

¢ Usable, although perhaps not fast, on a
single drive. The idea is that you can’t man-
date that the control structures for the volume
set be distributed over the set, because that
would mean that on single-drive systems, users
might have to mount every volume to recover
even a single file. We would like to require
only that the user mount the volume the file is
on and perhaps one other (the master volume).

¢ Each volume must be self-contained (for
disaster recovery),

e Security control is per volume, directory,
and file.

After convincing ourselves that we all
spoke roughly the same language, we came to
consensus decisions for the following ques-
tions:

e Can a file description point to extents
(files are spread across a list of extents) on
later volumes? (Yes)

e Can a directory entry point to a file
description on a later volume? (Yes)

e Must a directory be completely contained
on a single volume? (No) Why? There’s no

AUUGN

55

reason to require it. All implementations are
likely to use the same primitives to manage
files and directories (that is, they’ll implement
directories as files); if you can handle multi-
volume files correctly, directories should be
easy too. Some people were concerned about
being able to get the directory in one (more or
less) /O or block (especially for MS-DOS) but
that can’t happen in general; directories and
files are likely to be spread all over the
volume.

o must all the file descriptions for a single
directory hierarchy fit on a single volume? (no)

e should each volume of a volume set point
to the volume describing the root of the main
directory hierarchy for that set? (yes)

The above involve subtleties not readily
apparent; details available on request.

Directory Hierarchies

Much discussion centered on how to imple-
ment directory hierarchies - at least, after our
initial surprise discovery that we are commit-
ted to support multiple directory hierarchies.
This commitment comes from the CD-ROM
standard, ISO 9660, where the intent was to
have an ASCII directory tree and one or more
national-character-set trees.

[Editor: CD-ROMs, like WORMSs, are on
write-only media, but solve different problems.
Both provide tremendous storage capacity, but
CD-ROMs appear to the user to be read-only,
while WORMs appear to provide read and
write access. Nevertheless, on WORMS, writ-
ing to a file means either appending characters
to a preallocated chunk of disk, or rewriting a
new version of the file in a new place. Once a
file, or file version, is discarded, the piece of
the physical medium it’s stored on is forever
lost, not released for reuse. CD-ROMs are for
storing the Encyclopedia Britannica; WORMS
are for storing backups.]

Our basic choice is between what I call the
scattered directory tree, which is much like the
standard, UNIX file system, and path tables
(linearized encodings of the tree structure).
ISO 9660 supports both. Scattered directories
are simpler to deal with and somewhat easier
to update, but probably slow to access because

Vol 12No 1

they require too much seeking. Path tables
seem faster at first glance (large contiguous
reads, etc.), but their simplicity and speed
seem to evaporate when the tables are
modified. There is no consensus on which
method to use. [originally held out for two
methods, a flexible one and a really fast one,
but have come to the conclusion, reinforced by
conversations with Ken Thompson, that it is
better to have one flexible method in the stan-
dard - scattered directories — and handle ac-
celerators, such as directory trees cached on
magnetic disk, as system-dependent structures
outside the standard.

Suppose you update a file; doesn’t that
mean you also have to rewrite the directory,
and, therefore, its parent directory, and, there-
fore, its parent directory, and so on all the way
up to the root directory? And the volume
header? How do you find the root directory,
the volume header, and so on? This stuff is
not yet decided but we envision that the file
description stuff will have preallocated spare
space so that a few updates can be done
without changing anything outside the file
description. Once this space is full, the system
will have to get free space elsewhere, which
implies updating some other area describing
the free space. The volume header is in a
fixed location (probably 8KB in from the start
of media) and will point to any later volume
headers and other stuff (such as where the root
of the various directory trees are).

Requirements for the directory hierarchy
include space and time efficiency, robustness
(e.g., to minimize damage from a single I/O
error), a single fast structure (unlike ISO 9660’s
two), and that a directory entry for a file must
be complete (that is, point to all the extents for
that file).

Space Allocation and Management

We must support preallocation of space (e.g.,
“Reserve 40MB of contiguous space for file
‘xyz’.”’) both for speed and to support systems
like the MaclIntosh. Because of the latter, we
also need to support giving back unused
reserved space for later use.

These two requirements appear to force
the standard to address describing the free

Vol 12No 1

56

;login: 15:4

space in a volume set, which will also be im-
portant if the standard is extended to cover
R/W optical disks, where freed blocks need to
be cleared before reuse. The two choices ap-
pear to be run-length encodings of the free
space or bitmap techniques. The former can
degrade to being quite large, while the latter
have a fixed, but high, overhead (current
media hold up to 8.2GB/side!).

Finale

We hope to conduct a letter ballot soon after
the October 1990 meeting. If we can approve
a proposal by January 1991 then it may be an
ANSI standard by January 1992. Our next
meeting is in Murray Hill, New Jersey, on July
17-19, where we expect to adopt the proposal
being edited by Howard Kaikow as our work-
ing proposal. Anyone interested in attending
should contact either the chairman, Ed
Beshore (edb@hpgrla.hp.com), or me
(andrew(@research.att.com).

While this standard may seem of limited
interest, because it deals only with WORMs,
X3BI11.1 expects approval shortly to develop a
similar standard for R/W optical media. It
doesn’t take much imagination to see that
standard being extended to apply to all rewrit-
able direct-access media. (Unlike the CD-ROM
standards committee, which ignored UNIX,
this committee has a significant number of
UNIX users, including representatives from
AT&T Bell Labs, Sun, Hewlett-Packard. That,
at least, ensures filenames won’t be required to
have a compulsory three-character suffix and a
version number.) Once we have a working pa-
per, anyone who cares about portable, multi-
volume, multiple-character-set file systems
should take a look. [Editor: Pay attention.
He’s giving you fair warning.]

Report on Recent Standards Activities

Jeffrey S. Haemer <jsh@ico.isc.com> reports
on spring-quarter standards activities:

.This editorial is an overview of some of
the spring quarter standards activities covered
by the USENIX Standards Watchdog Com-
mittee. A companion article provides a
general overview of the committee itself.

AUUGN

:login: 15:4

In this article, I've emphasized non-
technical issues, which are unlikely to appear
in official minutes and mailings of the stan-
dards committees. Previously published arti-
cles give more detailed, more technical views
on most of these groups’ activities. If my
comments move you to read one of those ear-
lier reports that you wouldn’t have read other-
wise, I’'ve served my purpose. Of course, on
reading that report you may discover the
watchdog’s opinion differs completely from
mine.

SEC: Standard/Sponsor Executive Committee

The biggest hullabaloo in the POSIX world
this quarter came out of the SEC, the group
that approves creation of new committees. At
the April meeting, in a move to slow the
uncontrolled proliferation of POSIX standards,
the institutional representatives (IRs) (one
each from Usenix, UniForum, X/Open, OSF,
and UI) recommended two changes in the Pro-
ject Authorization Request (PAR) approval
process: (1) firm criteria for PAR approval and
group persistence and (2) a PAR approval
group that had no working-group chairs or co-
chairs. Dale Harris, of IBM Austin, presented
the proposal and immediately took a lot of
heat from the attendees, most of whom are
working-group chairs and co-chairs. (Dale
isn’t an IR, but shared the concerns that
motivated the recommendations and asked to
make the presentation.)

The chair, Jim Isaak, created an ad hoc
committee to talk over the proposal in a less
emotional atmosphere. Consensus when the
committee met was that the problem of proli-
ferating PARs was real, and the only question
was how to fix it. The group put together a
formal set of criteria for PAR approval (which
John Quarterman has posted to
comp.std.unix), which seems to have satisfied
everyone on the SEC, and passed without
issue. The criteria seem to have teeth: at least
one of the Project Authorization Requests
presented later (1201.3, UIMS) flunked the
criteria and was rejected. Two others (1201.1
and 1201.4 toolkits and Xlib) were deferred. I
suspect (though doubt that any would admit it)
that the proposals would have been submitted
and passed in the absence of the criteria. In

AUUGN

57

another related up-note, Tim Baker and Jim
Isaak drafted a letter to one group (1224,
X.400 API), warning them that they must ei-
ther prove they’re working or dissolve.

The second of the two suggestions, the
creation of a PAR approval subcommittee,
sank quietly. The issue will stay submerged so
long as it looks like the SEC is actually using
the approved criteria to fix the problem.

Shane McCarron’s column in the July
Unix Review covers this area in more detail.

1003.0: POSIX Guide

Those of you who have read my last two
columns will know that I’ve taken the position
that dot zero is valuable, even if it doesn’t get
a lot of measurable work done. This time, I
have to say it looks like it’s also making
measurable progress, and may go to mock bal-
lot by its target of fourth quarter of this year.
To me, the most interesting dot-zero-related
items this quarter are the growing prominence
of profiles, and the mention of dot zero’s work
in the PAR approval criteria passed by the
SEC.

Al Hankinson, the chair, tells me that he
thinks dot zero’s biggest contribution has been
popularizing profiles —
basically, application-area-specific lists of
pointers to other standards. This organizing
principle has been adopted not only by the
SEC (several of the POSIX groups are writing
profiles), but by NIST (Al’s from NIST) and
ISO. I suspect a lot of other important organi-
zations will fall in line here.

Nestled among the other criteria for PAR
approval, is a requirement that PAR proposers
write a sample description of their group for
the POSIX guide. Someone questioned why
proposers should have to do dot zero’s job for
them. The explanation comes in two pieces.
First, dot zero doesn’t have the resources to be
an expert on everything, it has its hands full
just trying to create an overall architecture.
Second, the proposers aren’'t supplying what
will ultimately go into the POSIX guide,
they’re supplying a sample. The act of draft-
ing that sample will force each proposer to
think hard about where the new group would
fit in the grand scheme, right from the start.

Vol12No 1

;login: 15:4

This should help ensure that the guide’s ar- may replace its current scheme with another.
chitecture really does reflect the rest of the So, what to do? Changing to a new scheme ig-
POSIX effort, and will increase the interest of nores existing internationalized applications
the other groups in the details of the guide. and codifies an untried approach. Blessing the
current X/Open scheme freezes evolution at

1003.1: System services interface this early stage and kills any motivation to
develop an easy-to-use alternative. Not pro-

g:ltl d(:fi’, ﬂi]se ?xfl);hirogfr ;::toﬂascgg]nsg 1;:16:2 vidix}g any stfmdard makes intematiopalizqd
second. Not only has the IEEE updated the applications (in a couple of years this will
existing standard-the new version will be IEEE mean any ;on-thx:ow-av;ay program) non-
1003.1-1990-ISO appears on the verge of portable, and requires that we con.tmue' to
. : have to make heavy source-code modifications
approving the new version as IS 9945-1. The on every port — just what POSIX is supposed

major sticking points currently seem limited to

things like format and layout - important in to help us get around.

the bureaucratic world of international stan- To help you think about the problem,
dards, but inconsequential to the average user. here’s the way you’ll have to write the “hello,
Speaking of layout, one wonders whether the world” koan using the X/OPEN interfaces:
new edition and ISO versions will retain the #include <stdio.h>
yellow-greep cover that has given the current #include <nl_types.h>
document its common name-—thg ugly'gret?n #include <locale h>
book. (I’ve thought about soaking mine in main()
Aqua Velva so it can smell like Green Char- L
treuse, too.) nl_catd catd;

The interesting issues in the group are (void)setlocale(LC_ALL, ""):
raiseq by jche dot-one-b work, whiqh adds new /% error checking omitted for brevity */
functionality. (Read Paul Rabin’s snitch “catd = catopen("hello", 0);
report fqr the gory d.etails.) The thorniest printf(catgets(catd, 1, 1, "hello, world\n")
problem is the messaging work. Messaging, }
here, means a mechanism for access to exter-
nal text and is unrelated to msgget(), MSgop 0, and using the alternative, proposed UniForum
msgctl(), or any other message-passing) :
schemes. The problem being addressed is how interfaces:
to move all printable strings out of our #include <stdio.h>
programs and into external “message” files so #include <locale.h>
that we can change program output from, say, main()
English to German by changing an environ- {
mental variable. Other dot-one-b topics, like (void)setlocale(LC_ALL, "");
symbolic links, are interesting, but less per- (void)textdomain("hello");
vasive. This one will change the way you printf (gettext ("hello, world\n"));
write any commercial product that outputs }

text — anything that has printf{) statements.
. I suppose if I had my druthers, I’d like to
The group is in a quandary. X/Open has see a standard interface that goes even farther

a schemp that has gotten a little use. We're than the UniForum proposal: one that adds a
not talking three or four years of shake-out, default message catalogue/group (perhaps
here, but enough use to lay a claim to the “ex- based on the name of the program) and a stan-
isting practice” label. On the other hand, it . . Drogr . .

’ dard, print/-family messaging function to hide

isn't a very plea§ant schqme, and you d hav_e the -explicit gettext() call, so the program could
no problem coming up with alternative candi- look like this:

dates. The UniForum Internationalization 00k frke this:

Technical Committee presented one at the #include <stdio.h>

April meeting. It’s rumored that X/Open itself #include <locale.h>

Vol 12No 1 58 AUUGN

;login: 15:4

#define printf printmsg
main()

{

/* inescapable, required by ANSI C =/

(void) setlocale(LC_ALL, "");
printf ("hello, world\n");
} ‘

but that would still be untested innovation.

The weather conditions in Colorado have
made this a bonus year for moths. Every
morning, our bathroom has about forty moths
in it. Stuck in our house, wanting desperately
to get out, they fly toward the only light that
they can see and beat themselves to death on
the bathroom window. I don’t know what to
tell them, either.

1003.2: Shell and utilities

Someone surprised me at the April meeting by
asserting that 1003.2 might be an important
next target for the FORTRAN binding group.
(“What does that mean?” I asked stupidly. “A
standard for a FORTRAN-shell?”’) Perhaps
you, like I, just think of dot two as language-
independent utilities. Yes and no.

First, 1003.2 has over a dozen function
calls (e.g., getopt()). 1 believe that most of
these should be moved into 1003.1. System()
and popen(), which assume a shell, might be
exceptions, but having sections of standards
documents point at things outside their scope
is not without precedent. Section 8 of
P1003.1-1988 is a section of C-language exten-
sions, and P1003.5 will depend on the Ada
standard. Why shouldn’t an optional section
of dot one depend on dot two? Perhaps ISO,
already committed to regrouping and
renumbering the standards, will fix this.
Perhaps not. In the meantime, there are func-
tions in dot two that need FORTRAN and
Ada bindings.

Second, the current dot two standard
specifies a C compiler. Dot nine has already
helped dot two name the FORTRAN com-
piler, and may want to help dot two add a
FORTRAN equivalent of /int (which I've
heard called “flint”). Dot five may want to
provide analogous sorts of help (though Ada
compilers probably already subsume much of
lint’s functionality).

AUUGN

59

Third, more subtle issues arise in provid-
ing a portable utilities environment for
programmers in other languages. Numerical
libraries, like IMSL, are often kept as single
large source files with hundreds, or even
thousands, of routines in a single -/ file that
compiles into a single .o file. Traditional
FORTRAN environments provide tools that
allow updating or extraction of single subrou-
tines or functions from such objects, analogous
to the way ar can add or replace single objects
in libraries. Dot nine may want to provide
such a facility in a FORTRAN binding to dot
two.

Anyway, back to the working group.
They’re preparing to go to ballot on the UPE
(1003.2a, User Portability Extensions). The
mock ballot had pretty minimal return, with
only ten balloters providing approximately 500
objections. Ten isn’t very many, but mock
ballot for dot two classic only had twenty-
three. It seems that people won’t vote until
they’re forced to.

The collection of utilities in 1003.2a is
fairly reasonable, with only a few diversions
from historic practice. A big exception is
ps(1), where historic practice is so heterogene-
ous that a complete redesign is possible. Un-
fortunately, no strong logical thread links the
1003.2a commands together, so read the ballot
with an eye toward commands that should be
added or discarded.

A few utilities have already disappeared
since the last draft. Pshar, an implementation
of shar with a lot of bells and whistles, is gone.

compress/uncompress poses an interesting
problem. Though the utility is based on clear-
cut existing practice, the existing implementa-
tion uses an algorithm that is copyrighted.
Unless the author chooses to give the algo-
rithm away (as Ritchie dedicated his set-uid
patent to public use), the committee is faced
with a hard choice:

¢ They can specify only the user interface.
But the purpose of these utilities is to ease the
cost, of file interchange. What good are they
without a standard data-interchange format?

e They can invent a new algorithm. Does it
make sense to use something that isn’t field

Vol 12No 1

tested or consistent with the versions already
out there? (One assumes that the existing ver-
sion has real advantages, otherwise, why would
so many people use a copyrighted version?)

Expect both the first real ballot of 1003.2a
and recirculation of 1003.2 around July. Note
that the recirculation will only let you object
to items changed since the last draft, for all the
usual bad reasons.

1003.3: Test methods

The first part of dot three’s work is coming to
real closure. The last ballot failed, but my
guess is that one will pass soon, perhaps as
soon as the end of the year, and we will have a
standard for testing conformance to IEEE
1003.1-1988.

That isn’t to say that all is rosy in dot-one
testing. NIST’s POSIX Conformance Test
Suite (PCTS) still has plenty of problems:
misinterpretations of dot one, simple timing
test problems that cause tests to run well on
3b2’s, but produce bad results on a 30 mips
machine and even real bugs (attempts to read
from a tty without first opening it). POSIX
dot one is far more complex than anything for
which standard test suites have been
developed to date. The PCTS, with around
2600 tests and 150,000 lines of code, just
reflects that complexity. An update will be
sent to the National Technical Information
Service (NTIS-also part of the Department of
Commerce, but not to be confused with NIST)
around the end of September which fixes all
known problems, but with a suite this large,
others are likely to surface later.

By the way, NIST’s dot one suite is a
driver based on the System V Verification
Suite (SVVS), plus individual tests developed
at NIST. Work has begun on a suite of tests
for 1003.2, based, for convenience, on a suite
done originally for IBM by Mindcraft. It isn’t
clear how quickly this work will go. (For ex-
ample, the suite can’t gel until dot two does.)
For the dot one work, NIST made good use of
Research Associates-people whose services
were donated by their corporations during the
test suite development. Corporations gain an
opportunity to collaborate with NIST and in-
side knowledge of the test suite. I suspect

Vol 12 No 1

;login: 15:4

Roger Martin may now be seeking Research
Associates for dot two test suite development.
If you’re interested in doing this kind of work,
want to spend some time working in the
Washington, D.C. area, and think your com-
pany would sponsor you, his email address is
rmartin@swe.ncsl.nist.gov.

By the way, there are a variety of organi-
zational and numbering changes happening in
dot three. See Doris Lebovits’s snitch report
for details.

The Steering Committee on Conformance
Testing (SCCT) is the group to watch. Though
they’ve evolved out of the dot three effort,
they operate at the TCOS level, and are about
to change the way POSIX standards look. In
response to the ever-increasing burden placed
on the testing committee, the SCCT is going to
recommend that groups producing new stan-
dards include in those standards a list of test
assertions to be used in testing them.

Groups that are almost done, like 1003.2,
will be grandfathered in. But what should be
done with a group like dot four-not far enough
along that it has something likely to pass soon,
but far enough to make the addition of major
components to its ballot a real problem.
Should this case be treated like language in-
dependence? If so, perhaps dot four will also
be first in providing test assertions.

1003.4: Real-time extensions

The base dot-four document has gone to bal-
lot, and the ensuing process looks like it may
be pretty bloody. Fifty-seven percent of the
group voted against the current version. (One
member speculated privately that this meant
forty-three * percent of the balloting group
didn’t read it.) Twenty-two percent of the
group (nearly half of those voting against)
subscribed to all or part of a common refer-
ence ballot, which would require that entire
chapters of the document be completely
reworked, replaced, or discarded. Subscribers
to this common reference ballot included em-
ployees of Unix International and the Open
Software Foundation, of Carnegie-Mellon
University and the University of California at
Berkeley, and of Sun Microsystems and
Hewlett-Packard. (USENIX did not ballot

AUUGN

:login: 15:4

similarly, but only because of lack of time.)
Some of these organizations have never before
agreed on the day of the week, let alone the se-
mantics of system calls. But then, isn’t bring-
ing the industry together one goal of POSIX?

Still, the document has not been returned
to the working group by the technical editors,
so we can assume they feel hopeful about
resolving all the objections. Some of this hope
may come from the miracle of formality. I've
heard that over half of the common reference
ballot could be declared non-responsive, which
means that there’s no obligation to address
over half the concerns.

The threads work appears to enjoy a more
positive consensus. At least two interesting al-
ternatives to the current proposal surfaced at
the April meeting, but following a lot of
discussion, the existing proposal stood largely
unchanged. 1 predict that the threads work,
which will go to ballot after the base dot four
document, will be approved before it. John
Gertwagen, dot four snitch and chair of
UniForum’s real-time technical committee, has
bet me a beer that I'm wrong.

1003.5: Ada bindings &
1003.9: FORTRAN-77 bindings

These groups are coming to the same place at
the same time. Both are going to ballot and
seem likely to pass quickly. In each case, the
major focus is shifting from technical issues to
the standards process and its rules: forming
balloting groups, relations with ISO, future
directions, and so on.

Here’s your chance to do a good deed
without much work. Stop reading, call some-
one you know who would be interested in
these standards, and give them the name of
someone on the committee who can put them
into the balloting group. (If nothing else, point
them at our snitches for this quarter: Jayne
Baker, cgb@d74sun.mitre.org, for dot five, and
Michael Hannah, mjhanna@sandia.gov, for
dot nine.) They’ll get both a chance to see the
standard that’s about to land on top of their
work and a chance to object to anything that’s
slipped into the standard that doesn’t make
sense. The more the merrier on this one, and
they don’t have to go to any committee

AUUGN

61

meetings. I've already called a couple of
friends of mine at FORTRAN-oriented com-
panies; both were pleased to hear about
1003.9, and eager to read and comment on the
proposed standard.

Next up for both groups, after these stan-
dards pass, is negotiating the IEEE standard
through the shoals of ISO, both getting and
staying in sync with the various versions and
updates of the base standard (1003.1a,
1003.1b, and 9945-1), and language bindings
to other standards, like 1003.2 and 1003.4.
(See my earlier discussion of dot two.) Notice
that they also have the burden of tracking their
own language standards. At least in the case
of 1003.9, this probably means eventually hav-
ing to think about a binding to X3J3 (Fortran
90).

1003.6: Security

This group has filled the long-vacant post of
technical editor, and so is finally back in the
standards business. In any organization whose
ultimate product is to be a document, the tech-
nical editor is a key person. [We pause here to
allow readers to make some obligatory cheap
shot about editors.] This is certainly the case

- in the POSIX groups, where the technical edi-

tors sometimes actually write large fractions of
the final document, albeit under the direction
of the working group.

I’m about to post the dot six snitch report,
and don’t want to give any of it away, but will
note that it’s strongly opinionated and chal-
lenges readers to find any non-DoD use for
Mandatory Access Control, one of the half-
dozen areas that they’re standardizing.

1003.7: System administration

This group has to solve two problems at
different levels at the same time. On the one
hand, it’s creating an object-oriented definition
of system administration. This high-level
approach encapsulates the detailed implemen-
tation of objects interesting to the system ad-
ministrator (user, file system, etc.), so that
everyone can see them in the same way on a
heterogeneous environment. On the other
hand, the protocol for sending messages to
these objects must be specified in detail. If it

Vol 12No 1

isn’t, manufacturers won’t be able to create in-
teroperable systems.

The group as a whole continues to get
complaints about its doing research-by-
committee. It’s not even pretending to stand-
ardize existing practice. I have mixed feelings
about this, but am unreservedly nervous that
some of the solutions being contemplated
aren’t even UNIX-like. For example, the
group has tentatively proposed the unusual
syntax object action. Command names will be
names of objects, and the things to be done to
them will be arguments. This bothers me (and
others) for two reasons. First, this confuses
syntax with semantics. You can have the
message name first and still be object-oriented;
look at C++. Second, it reverses the tradi-
tional, UNIX verb-noun arrangement: mount
Jfilesystem becomes filesystem mount. This flies
in the face of the few existing practices every-
one agrees on. I worry that these problems,
and the resulting inconsistencies between
system administration commands and other
utilities, will confuse users. I have a recurring
nightmare of a long line of new employees out-
side my door, all come to complain that I’ve
forgotten to mark one of my device objects,
/dev/null, executable.

With no existing practice to provide a
reality check, the group faces an uphill strug-
gle. If you’re an object-oriented maven with a
yen to do something useful, take a look at
what this group is doing, then implement some
of it and see if it makes sense. Look at it this
way: by the time the standard becomes reality,
youw’ll have a product, ready to ship.

1003.10: Supercomputing

This group is working on things many of us us
old-timers thought we had seen the last of:
batch processing and checkpointing. The
supercomputing community, condemned for-
ever to live on the edge of what computers can
accomplish, is forced into the same approaches
we used back when computer cycles were
harder to come by than programmer cycles,
and machines were less reliable than software.

Supercomputers run programs that can’t
be run on less powerful computers because of
their massive resource requirements

Vol 12No 1

62

;login: 15:4

(cpu/memory/io). They need batch processing
and checkpointing because many of them are
so resource-intensive that they even run for a
long time on supercomputers. Nevertheless,
the supercomputing community is not the only
group that would benefit from standardization
in these areas. (See, for example, my com-
ments on dot fourteen.) Even people who have
(or wish to have) long-running jobs on work-
stations, share some of the same needs for
batch processing and checkpointing.

Karen Sheaffer, the chair of dot ten, had
no trouble quickly recasting the group’s
proposal for a batch PAR into a proposal that
passed the SEC’s PAR approval criteria. The
group is modeling a batch proposal after exist-
ing practice, and things seem to be going
smoothly.

Checkpointing, on the other hand, isn’t
faring as well. People who program supercom-
puters need to have a way to snapshot jobs in
a way that lets them restart the jobs at that
point later. Think, for example, of a job that
needs to run for longer than a machine’s
mean-time-to-failure. Or a job that runs for
just a little longer than your grant money lasts.
There are existing proprietary schemes in the
supercomputing world, but none that’s port-
able. The consensus is that a portable
mechanism would be useful and that support
for checkpointing should be added to the dot
one standard. The group brought a proposal
to dot one b, but it was rejected for reasons
detailed in Paul Rabin’s dot one report.
Indeed, the last I heard, dot-one folks were
suggesting that dot ten propose interfaces that
would be called from within the program to be
checkpointed. While this may seem to the
dot-one folks like the most practical approach,
it seems to me to be searching under the
lamp-post for your keys because that’s where
the light’s brightest. Users need to be able to
point to a job that’s run longer than an-
ticipated and say, “Checkpoint this, please.”
Requiring source-code modification to accom-
plish this is not only unrealistic, it’s un-
UNIX-like. (A helpful person looking over my
shoulder has just pointed out that the lawyers
have declared “UNIX” an adjective, and I
should say something like ‘“‘un-UNIX-system-
like” instead. He is, of course, correct.)

AUUGN

;login: 15:4

Whatever the interface is, it simply must pro-
vide a way to let a user point at another pro-
cess and say, “Snapshot it,” just as we can
stop a running job with job control.

1003.12: Protocol-independent interfaces

This group is still working on two separate in-
terfaces to the network: Simplified Network In-
terface (SNI) and Detailed Network Interface
(DNI). The January meeting raised the possi-
bility that the group would coalesce these into
a single scheme, but that scheme seems not to
have materialized. DNI will provide a
familiar socket- or XTI/TLI-like interface to
networks, while SNI will provide a simpler,
stdio-like interface for programs that don’t
need the level of control that DNI will pro-
vide. The challenge of SNI is to make some-
thing that’s simple but not so crippled that it’s
useless. The challenge of DNI is to negotiate
the fine line between the two competing exist-
ing practices. The group has already decided
not to use either sockets or XTI, and is look-
ing at requirements for the replacement. Our
snitch, Andy Nicholson, challenged readers to
find a reason not to make DNI endpoints
POSIX file descriptors, but has seen no takers.

1003.14: Multiprocessing

The multiprocessing group, which had been
meeting as sort of an ad hoc spinoff of the
real-time group, was given PAR approval at
the April meeting as 1003.16 but quickly
renamed 1003.14 for administrative reasons.
They’re currently going through the standard
set of jobs that new groups have to accom-
plish, including figuring out what tasks need to
be accomplished, whom to delegate them to,
and how to attract enough working-group
members to get everything done. If you want
to get in on the ground floor of the multipro-
cessing standard, come to Danvers and
volunteer to do something.

One thing that needs to be done is liaison
work with other committees, many of which
are attacking problems that bear on multipro-
cessors as well. One example is dot ten’s
checkpointing work, which I tatked about ear-
lier. Checkpointing is both of direct interest
to dot fourteen, and is analogous to several
other problems the group would like to

AUUGN

63

address. (A side effect of the PAR prolifera-
tion problem mentioned earlier is that inter-
group coordination efforts go up as the square
of the number of groups.) '

1201: Windows, sort of

Okay, as a review, we went into the Utah
meeting with one official group, 1201, and four
unofficial groups preparing PARs:

1. 1201.1: Application toolkit

2. 1201.2: Recommended Practice for
Driveability/User Portability

3. 1201.3: User Interface Management
Systems

4. 1201.4: Xlib

By the end of the week, one PAR had
been shot down (1201.3), one approved
(1201.2), and two remained unsubmitted.

The 1201.4 par was deferred because the
X consortium says Xlib is about to change
enough that we don’t want to standardize the
existing version. Il ask, “If it’s still changing
this fast, do we want to even standardize on
the next -version?” The 1201.1 PAR was
deferred because the group hasn’t agreed on
what it wants to do. At the beginning of the
week, the two major camps (OSF/Motif and
OPEN LOOK)' had agreed to try to merge the
two interfaces. By mid-week, they wouldn’t
even sit at the same table. That they’d struck
off in an alternative compromise direction by
the end of the week speaks extremely highly of
all involved. What the group’s looking at now
is a toolkit at the level of XVT:# a layer over
all of the current competing technologies that
would provide portability without invalidating
any existing applications. This seems like just
the right approach. (I have to say this because
I suggested it in an editorial about six months

ago.)
The 1201.3 PAR was rejected. Actually,

1201 as a whole voted not to submit it, but the
people working on it felt strongly enough that

+ OSF/Motif is a Registered Trademark of the Open
Software Foundation.
OPEN LOOK is a Registered Trademark of AT&T.

$ XVT is a trademark of XVT Software Inc.

Vol 12No 1

they submitted it anyway. The SEC’s con-
sensus was that the field wasn’t mature enough
to warrant even a recommended practice, but
the work should continue, perhaps as a Uni-
Forum Technical Committee. The study
group countered that it was important to set a
standard before there were competing
technologies, and that none of the attendees
sponsoring companies would be willing to foot
the bill for their work within anything but a
standards body. The arguments weren’t per-
suasive.

The 1201.2 PAR, in contrast, sailed
through. What’s interesting about this work is
that it won’t be an API standard. A fair frac-
tion of the committee members are human-
factors people, and the person presenting the
PAR convinced the SEC that there is now
enough consensus in this area that a standard
is appropriate. I’'m willing to believe this, but
I think that stretching the net of the IEEE’s
Technical Committee on Operating Systems so
wide that it takes in a human-factors standard
for windowing systems is overreaching.

Vol 12No 1

;login: 15:4

X3

There are other ANSI-accredited standards-
sponsoring bodies in the U.S. besides the
IEEE. The best known in our field is the
Computer Business Equipment Manufacturers’
Association (CBEMA), which sponsors the X3
efforts, recently including X3J11, the ANSI-C
standards committee. X3J11’s job has wound
down; Doug Gwyn tells me that there’s so lit-
tle happening of general interest that it isn’t
worth a report. Still, there’s plenty going on in
the X3 world. One example is X3B11, which
is developing a standard for file systems on
optical disks. Though this seems specialized,
Andrew Hume suggests in his report that this
work may eventually evolve into a standards
effort for file systems on any read-write mass
storage device. See the dot-four common
reference ballot for the kind of feelings new
file-system standards bring out.

I encourage anyone out there on an X3
committee who thinks the committee could
use more user exposure and input to file a
report. For example, Doug Gwyn suggests that
there is enough activity in the C++ standards
world to merit a look. If anyone out there
wants to volunteer a report, I'd love to see it.

AUUGN

PLANY FROM BELL LABS

[EUUG

PIKE ET AL

Plan 9 from Bell Labs

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey
rob@research.att.com

Bell Labs

Plan 9 is a distributed computing environment. It is assembled from separate
machines acting as CPU servers, file servers, and terminals. The pieces are
connected by a single file-oriented protocol and local name space operations.
By building the system from distinct, specialised components rather than
from similar general-purpose components, Plan9 achieves levels of
efficiency, security, simplicity, and reliability seldom realised in other

distributed systems. This paper

Introduction1

Plan9 is a general-purpose, multi-user, portable
distributed system implemented on a variety of
computers and networks. It lacks a number of
features often found in other distributed systems,
including

i. A uniform distributed name space,

ii. Process migration,

iii. Lightweight processes,

iv. Distributed file caching,

v. Personalised workstations,

vi. Support for X windows.

Unhappy with the trends in commercial systems,
we began a few years ago to design a system that
could adapt well to changes in computing
hardware. In particular, we wanted to build a
system that could profit from continuing
improvements in personal machines with bitmap

1. This paper is reprinted with kind permission of the
UKUUG and was delivered at the UKUUQG conference in
London in July 1990. See the end of this ncwsletter for
abstracts of this conference.

AUUGN 65

discusses the
interconnections, and conventions of Plan 9.

building blocks,

graphics, in medium- and high-speed networks,
and in high-performance microprocessors. A
common approach is to connect a group of small
personal timesharing systems — workstations — by
a medium-speed network, but this has a number of
failings. Because each workstation has private
data, each must be administered separately;
maintenance is difficult to centralise. The
machines are replaced every couple of years to
take advantage of technological improvements,
rendering the hardware obsolete often before it
has been paid for. Most telling, a workstation is a
largely self-contained system, not specialised to
any particular task, too slow and I/O-bound for
fast compilation, too expensive to be used just to
run a window system. For our purposes, primarily
software development, it seemed that an approach
based on distributed specialisation rather than
compromise could better address issues of cost-
effectiveness, maintenance, performance,
reliability, and security. We decided to build a
completely new system, including compiler,
operating system, networking software, command
interpreter, window system, and (on the hardware

" side) terminal. This construction would also offer

an occasion to rethink, revisit, and perhaps even
replace most of the utilities we had accumulated
over the years.

Voll12No 1

Vol 12No 1

PLAN9 FROM BELL LABS

Plan9 is divided along lines of service function.
CPU servers concentrate computing power into
large (not overloaded) multiprocessors; file
servers provide repositories for storage; and
terminals give each user of the system a dedicated
computer with bitmap screen and mouse on which
to run a window system. The sharing of
computing and file storage services provides a
sense of community for a group of programmers,
amortises costs, and centralises and hence
simplifies management and administration.

The pieces communicate by a single protocol,
built above a reliable data transport layer offered
by an appropriate network, that defines each
service as a rooted tree of files. Even for services
not usually considered as files, the unified design
permits some noteworthy and profitable
simplification. Each process has a local file name
space that contains attachments to all services the
process is using and thereby to the files in those
services. One of the most important jobs of a
terminal is to support its user’s customised view
of the entire system as represented by the services
visible in the name space.

To be used effectively, the system requires a CPU
server, a file server, and a terminal; it is intended
to provide service at the level of a departmental
computer centre or larger. The CPU server and
file server are large machines best housed in an air
conditioned machine room with conditioned
power. The system’s strengths stem in part from
economies of scale, and the scale we have in mind
is large. One of our goals, perhaps unrealisable, is
to unite the computing environment for all of
AT&T Bell Laboratories (about 30,000 people)
into a single Plan9 system comprising thousands
of CPU and file servers spread throughout, and
clustered in, the company’s various departments.
That is clearly beyond the administrative capacity
of workstations on Ethernets.

The following sections describe the basic
components of Plan 9, explain the name space and
how it is used, and offer some examples of
unusual services that illustrate how the ideas of
Plan 9 can be applied to a variety of problems.

CPU Servers

Several computers provide CPU service for Plan 9.
The production CPU server is a Silicon Graphics
Power Series machine with four 25MHz MIPS
processors, 128 megabytes of memory, no disk,
and a 20 megabyte-per-second back-to-back DMA

PIKE ET AL

connection to the file server. It also has Datakit
and Ethemnet controllers to connect to terminals
and non-Plan9 systems [Fra80a, Met80a]. The
operating system provides a conventional view of
processes, based on fork and exec system calls
[Ker84a], and of files, mostly determined by the
remote file server. Once a connection to the CPU
server is established, the user may begin typing
commands to a command interpreter in a
conventional looking environment
[Duf90a, Rit74a].

A multiprocessor CPU server has several
advantages. The most important is its ability to
absorb load. If the machine is not saturated
(which can be economically feasible for a
multiprocessor) there is usually a free processor
ready to run a new process. This is similar to the
notion of free disk blocks in which to store new
files on a file system. The comparison extends
farther: just as one might buy a new disk when a
file system gets full, one may add processors to a
multiprocessor when the system gets busy,
without peeding to replace or duplicate the entire
system. Of course, one may also add new CPU
servers and share the file servers.

The CPU server performs compilation, text
processing, and other applications. It has no local
storage; all the permanent files it accesses are
provided by remote servers. Transient parts of the
name space, such as the collected images of active
processes [Kil84a] or services provided by user
processes, may reside locally but these disappear
when the CPU server is rebooted. Plan9 CPU
servers are as interchangeable for their task —
computation — as are ordinary terminals for theirs.

File Servers

The Plan9 file servers hold all permanent files.
The current server is another Silicon Graphics
computer with two processors, 64 megabytes of
memory, 600 megabytes of magnetic disk, and a
300 gigabyte jukebox of write-once optical disk
(WORM). (This machine is to be replaced by a
MIPS 6280, a single processor with much greater
I/O bandwidth.) It connects to Plan 9 CPU servers
through 20 megabyte-per-second DMA links, and
to terminals and other machines through
conventional networks.

The file server presents to its clients a file system
rather than, say, an array of disks or blocks or
files. The files are named by slash-separated
components that label branches of a tree, and may

AUUGN

PIKE ET AL

be addressed for /O at the byte level. The
location of a file in the server is invisible to the
client. The true file system resides on the WORM,
and is accessed through a two-level cache of
magnetic disk and RAM. The contents of
recently-used files reside in RAM and are sent to
the CPU server rapidly by DMA over a high-speed
link, which is much faster than regular disk
although not as fast as local memory. The
magnetic disk acts as a cache for the WORM and
simultaneously as a backup medium for the RAM.
With the high-speed links, it is unnecessary for
clients to cache data; instead the file server
centralises the caching for all its clients, avoiding
the problems of distributed caches.

The file server actually presents several file
systems. One, the “main” system, is used as the
file system for most clients. Other systems
provide less generally-used data for private
applications. One service is unusual: the backup
system. Once a day, the file server freezes
activity on the main file system and flushes the
data in that system to the WORM. Normal file
service continues unaffected, but changes to files
are applied to a fresh hierarchy, fabricated on
demand, using a copy-on-write scheme [Qui90a].
Thus, the file tree is split into two: a read-only
version representing the system at the time of the
dump, and an ordinary system that continues to
provide normal service. The roots of these old file
trees are available as directories in a file system
that may be accessed exactly as any other (read-
only) system. For example, the file
/usr/rob/doc/plan9.ms as it existed on
April 1, 1990, can be accessed through the backup
file system by the name
/1990/0401/usr/rob/doc/plan9.ms.
This scheme permits recovery or comparison of
lost files by traditional commands such as file
copy and comparison routines rather than by
special utilities in a backup subsystem. Moreover,
the backup system is provided by the same file
server and the same mechanism as the original
files so permissions in the backup system are
identical to those in the main system; one cannot
use the backup data to subvert security.

Terminals
The standard terminal for Plan9 is a Gnot (with

AUUGN

[EUUG

67

PLAN9 FROM BELL LABS

silent “G”), a locally-designed machine of which
several hundred have been manufactured. The
terminal’s hardware is reminiscent of a diskless
workstation: 4 or 8 megabytes of memory, a
25MHz 68020 processor, a 1024x1024 pixel
display with two bits per pixel, a keyboard, and a
mouse. It has no extemal storage and no
expansion bus; it is a terminal, not a workstation.
A 2 megabit per second packet-switched
distribution network connects the terminals to the
CPU and file servers. Although the bandwidth is
low for applications such as compilation, it is
more than adequate for the terminal’s intended
purpose: to provide a window system, that is, a
multiplexed interface to the rest of Plan9.

Unlike a workstation, the Gnot does not handle
compilation; that is done by the CPU server. The
terminal runs a version of the CPU server's
operating system, configured for a single, smaller
processor with support for bitmap graphics, and
uses that to run programs such as a window
system and a text editor. Files are provided by the
standard file server over the terminal’s network
connection.

Just like old character terminals, all Gnots are
equivalent, as they have no private storage either
locally or on the file server. They are inexpensive
enough that every member of our research centre
can have two: one at work and one at home. A
person working on a Gnot at home sees exactly
the same system as at work, as all the files and
computing resources remain at work where they
can be shared and maintained effectively.

Networks

Plan 9 has a variety of networks that connect the
components. CPU servers and file servers
communicate over back-to-back DMA controllers.
That is only practical for the scale of, say, a
computer centre or departmental computing
resource. More distant machines are connected
by traditional networks such as Ethemet or
Datakit. A terminal or CPU server may use a
remote file server completely transparently except
for performance considerations. As our Datakit
network spans the country, Plan9 systems could
be assembled on a large scale, although this has
not been tried in practice. (See Figure 1.)

Voll2No 1

PLAN9 FROM BELL LABS

[
) O
] o~ [] —

distribution
network

(EUUG] PIKEET AL

distribution
network

)

Nationwide Long Haul

[P [P [Py

| highspeed DMA

i

To keep their cost down, Gnots employ an
inexpensive network that uses standard telephone
wire and a single-chip interface. (The throughput
is respectable, about 120 kilobytes per second.)

To get even that bandwidth to home is of course
problematic. Some of us have DS-1 lines at 1,54
megabits per second; others are experimenting
with more modest communications equipment.
Since the terminal only mediates communication
— it instructs the CPU server to connect to the file
server but does not participate in the resulting
communication — the relatively low bandwidth to
the terminal does not affect the overall
performance of the system.

Name Spaces

There are two kinds of name space in Plan9: the
global space of the names of the various servers
on the network and the local space of files and
servers visible to a process. Names of machines
and services connected to Datakit are hierarchical,
for example nj/mh/astro/helix, defining
(roughly) the area, building, department, and
machine in a department [Fra80a]. Because the
network provides naming for its machines, global
naming issues need not be handled directly by

Vol 12 No 1 68

[P [P [P

high speed DMA l

Plan9. However one of Plan9's fundamental
operations is to attach network services to the
local name space on a per-process basis. This
fine-grained control of the local name space is
used to address issues of customisability,,
transparency, and heterogeneity. ‘

The protocol for communicating with Plan9
services is file-oriented; all services must
implement a file system, That is, each service,
local or remote, is arranged into a set of file-like .
objects collected into a hierarchy called the name
space of the server. For a file server, this is a
trivial requirement. Other services must
sometimes be more imaginative. For instance, a
printing service might be implemented as a
directory in which processes create files to be
printed. Other examples are described in the
following sections; for the moment, consider just
a set of ordinary file servers distributed around the
network.

When a program calls a Plan9 service (using
mechanisms inherent in the network and outside
Plan 9 itself) the program is connected to the root
of the name space of the service. Using the
protocol, usually as mediated by the local
operating system into a set of file-oriented system

AUUGN

PIKEET AL

calls, the program accesses the service by
opening, creating, removing, reading, and writing
files in the name space.

From the set of services available on the network,
a user of Plan 9 selects those desired: a file server
where personal files reside, perhaps other file
servers where data is kept, or a departmental file
server where the software for a group project is
being written. The name spaces of these various
services are collected and joined to the user’s own
private name space by a fundamental Plan9
operator, called attach, that joins a service’s name
space to a user’s. The user's name space is
formed by the union of the spaces of the services
being used. The local name space is assembled by
the local operating system for each user, typically
by the terminal. The name space is modifiable on
a per-process level, although in practice the name
space is assembled at log-in time and shared by all
that user’s processes.

To log in to the system, a user sits at a terminal
and instructs it which file server to connect to.
The terminal calls the server, authenticates the
user (see below), and loads the cperating system
from the server. It then reads a file, called the
profile, in the user’s personal directory. The
profile contains commands that define what
services are to be used by default and where in the
local name space they are to be attached. For
example, the main file server to be used is
attached to the root of the local name space, /,
and the process file system is attached to the
directory /proc. The profile then typically starts
the window system.

Within each window in the window system runs a
command interpreter that may be used to execute
commands locally, using file names interpreted in
the name space assembled by the profile. For
computation-intensive applications such as
compilation, the user runs a command cpu that
selects (automatically or by name) a CPU server to
run commands. After typing cpu, the user sees a
regular prompt from the command interpreter.
But that command interpreter is running on the
CPU server in the same name space — even the
same current directory — as the cpu command
itself. The terminal exports a description of the
name space to the CPU server, which then
assembles an identical name space, so the
customised view of the system assembled by the
terminal is the same as that seen on the CPU
server. (A description of the name space is used

AUUGN

(EUUG

PLANY9 FROM BELL LABS

rather than the name space itself so the CPU server
may use high-speed links when possible rather
than requiring intervention by the terminal.) The
cpu command affects only the performance of
subsequent commands; it has nothing to do with
the services available or how they are accessed.

Although there is a large catalogue of services
available in Plan 9, including the service that finds
services, a few suffice to illustrate the usage and
possibilities of this design.

The Process File System

An example of a local service is the “process file
system”, which permits examination and
debugging of executing processes through a file-
oriented interface. It is related to Killian’s
process file system [Kil84a] but its differences
exemplify the way that Plan9 services are
constructed.

The rtoot of the process file system is
conventionally attached to the directory /proc.
(Convention is important in Plan9; although the
name space may be assembled willy-nilly, many
programs have conventional names built in that
require the name space to have a certain form. It
doesn’t matter which server the program
/bin/rc (the command interpreter) comes from
but it must have that name to be accessible by the
commands that call on it.) After attachment, the
directory /proc itself contains one subdirectory
for each local process in the system, with name
equal to the numerical unique identifier of that
process. (Processes running on the remote CPU
server may also be made visible; this will be
discussed below.) Each subdirectory contains a
set of files that implement the view of that
process. For example, /proc/77/mem contains
an image of the virtual memory of process number
77. That file is closely related to the files in
Killian’s process file system, but unlike Killian’s,
Plan9’s /proc implements other functions
through other files rather than through peculiar
operations applied to a single file, Here is a list of
the files provided for each process.

mem
The virtual memory of the process image.
Offsets in the file correspond to virtual
addresses in the process.

ctl
Control behaviour of the processes. Messages
sent (by a write system call) to this file

69 Voll12No 1

PLANY9 FROM BELL LABS

cause the process to stop, terminate, resume
execution, etc.

text

The file from which the program originated.
This is typically used by a debugger to
examine the symbol table of the target
process, but is in all respects except name the
original file; thus one may type
“/proc/77/text” to the command
interpreter to instantiate the program afresh.

note
Any process with suitable permissions may
write the note file of another process to send
it an asynchronous message for interprocess
communication. The system also uses this file
to send (poisoned) messages when a process
misbehaves, for example divides by zero.

status
A fixed-format ASCII representation of the
status of the process. It includes the name of
the file the process was executed from, the
CPU time it has consumed, its current state,
etc.

The status file illustrates how heterogeneity
and portability can be handled by a file server
model for system functions. The command cat
/proc/*/status presents (readably but
somewhat clumsily) the status of all processes in
the system; in fact the process status command
ps is just a reformatting of the ASCH text so
gathered. The source for ps is a page long and is
completely portable across machines. Even when
/proc contains files for processes on several
heterogeneous machines, the same
implementation works.

Whether the functions provided by the ct1l file
should instead be accessed through further files —
stop, terminate, etc. — is a matter of taste.
We chose to fold all the true control operations
into the ctl file and provide the more data-
intensive functions through separate files.

It is worth noting that the services /proc
provides, although varied, do not strain the notion
of a process as a file. For example, it is not
possible to terminate a process by attempting to
remove its process file nor is it possible to start a
new process by creating a process file. The files
give an active view of the processes, but they do
not literally represent them. This distinction is
important when designing services as file systems.

Vol 12No 1

70

PIKEET AL

The Window System

In Plan9, user programs, as well as specialised
stand-alone servers, may provide file service. The
window system is an example of such a program;
one of Plan9’s most unusual aspects is that the
window system is implemented as a user-level file
server.

The window system is a server that presents a file
/dev/cons, similar to the /dev/tty or CON:
of other systems, to the client processes running in
its windows. Because it controls all I/O activities
on that file, it can arrange that each window’s
group of processes sees a private /dev/cons.
When a new window is made, the window system
allocates a new /dev/cons file, puts it in a new
name space (otherwise the same as its own) for
the new client, and begins a client process in that
window. That process connects the standard input
and output channels to /dev/cons using the
normal file opening system call and executes a
command interpreter. 'When the command
interpreter prints a prompt, it will therefore be
written to /dev/cons and appear in the
appropriate window.

It is instructive to compare this structure to other
operating systems. Most operating systems
provide a file like /dev/cons that is an alias for
the terminal connected to a process. A process
that opens the special file accesses the terminal it
is running on without knowing the terminal’s
precise name. Since the alias is usually provided
by special arrangement in the operating system, it
can be difficult for a window system to guarantee
that its client processes can access their window
through this file. This issue is handled easily in
Plan9 by inverting the problem. A set of
processes in a window shares a name space and in
particular /dev/cons, so by multiplexing
/dev/cons and forcing all textual input and
output to go through that file the window system
can simulate the expected properties of the file.

The window system serves several files, all
conventionally attached to the directory of I/O
devices, /dev. These include cons, the port for
ASCTI [/O; mouse, a file that reports the position
of the mouse; and bitblt, which may be
written messages to execute bitmap graphics
primitives. Much as the different cons files keep
separate clients’ output in separate windows, the
mouse and bitblt files are implemented by
the window system in a way that keeps the
various clients independent. For example, when a

AUUGN

PIKE ET AL

client process in a window writes a message (to
the bitblt file) to clear the screen, the window
system clears only that window. All graphics sent
to partially or totally obscured windows is
maintained as a bitmap layer, in memory private
to the window system [Pik83a]. The clients are
oblivious of one another.

Since the window system is implemented entirely
at user level with file and name space operations,
it can be run recursively: it may be a client of
itself. The window system functions by opening
the files /dev/cons, /dev/bitblt, etc., as
provided by the operating system, and reproduces
- multiplexes — their functiopality among its
clients. Therefore, if a fresh instantiation of the
window system is run in a window, it will behave
normally, multiplexing its /dev/cons and other
files for its clients, This recursion can be used
profitably to debug a new window system in a
window or to multiplex the connection to a CPU
server [Pik89a]. Since the window system has no
bitmap graphics code — all its graphics operations
are executed by writing standard messages to a
file — the window system may be run on any
machine that has /dev/bitblt in its name
space, including the CPU server.

cpu Command

The cpu command connects from a terminal to a
CPU server using a full-duplex network
connection and runs a setup process there. The
terminal and CPU processes exchange information
about the user and name space, and then the
terminal-resident process becomes a user-level file
server that makes the terminal’s private files
visible from the CPU server. (At the time of
writing, the CPU server builds the name space by
re-executing the user’s profile; a version being
designed will export the name space using a
special terminal-resident server that can be
queried to recover the terminal’s name space.)
The CPU process makes a few adjustments to the
name space, such as making the file /dev/cons
on the CPU server be the same file as on the
terminal, perhaps making both the local and
remote process file system visible in /proc, and
begins a command interpreter. The command
interpreter then reads commands from, and prints
resufts on, its file /dev/cons, which is
connected through the terminal process to the
appropriate window (for example) on the
terminal. Graphics programs such as bitmap
editors also may be executed on the CPU server

AUUGN

(EUUG

PLAN 9 FROM BELL LABS

since their definition is entirely based on I/O to
files “served” by the terminal for the CPU server.
The connection to the CPU server and back again
is utterly transparent.

This connection raises the issue of heterogeneity:
the CPU server and the terminal may be, and in the
current system are, different types of processors.
There are two distinct problems: binary data and
executable code. Binary data can be handled two
ways: by making it not binary or by strictly
defining the format of the data at the byte level.
The former is exemplified by the status file in
/proc, which enables programs to examine,
transparently and portably, the status of remote
processes. Another example is the file, provided
by the terminal’s operating system, /dev/time.
This is a fixed-format ASCII representation of the
number of seconds since the epoch that serves as a
time base for make and other programs [Ker84a].
Processes on the CPU server get their time base
from the terminal, thereby obviating problems of
distributed clocks.

For files that are I/O intensive, such as
/dev/bitblt, the overhead of an ASCH
interface can be prohibitive. In Plan9, such files
therefore accept a binary format in which the byte
order is predefined, and programs that access the
files use portable libraries that make no
assumptions about the order. Thus
/dev/bitblt is usable from any machine, not
just the terminal. This principle is used
throughout Plan 9. For instance, the format of the
compilers’ object files and libraries is similarly
defined, which means that object files are
independent of the type of the CPU that compiled
them.

Having different formats of executable binaries is
a thornier problem, and Plan 9 solves it adequately
if not gracefully. Directories of executable
binaries are named appropriately: /mips/bin,
/68020/bin, etc, and a program may
ascertain, through a special server, what CPU type
it is running on. A program, in particular the cpu
command, may therefore attach the appropriate
directory to the conventional name /bin so that
when a program runs, say, /bin/rc, the
‘appropriate file is found. Although this is a fairly
clumsy solution, it works well in practice. The
various object files and compilers use distinct
formats and naming conventions, which makes
cross-compilation painless, at least once
automated by make or a similar program

71 Voll12No 1

PLANY9 FROM BELL LABS
[Ker84a).

Security

Plan9 does not address security issues directly,
but some of its aspects are relevant to the topic,
Breaking the file server away from the CPU server
enhances the possibilities for security, As the file
server is a separate machine that can only be
accessed over the network by the standard
protocol, and therefore can only serve files, it
cannot run programs. Many security issues are
resolved by the simple observation that the CPU
server and file server communicate using a
rigorously controlled interface through which it is
impossible to gain special privileges.

Of course, certain administrative functions must
be performed on the file server, but these are
available only through a special command
interface accessible only on the console and hence
subject to physical security. Moreover, that
interface is for administration only. For example,
it permits making backups and creating and
removing files, but it does not permit reading files
or changing their permissions. The contents of a
file with read permission for only its owner will
not be divulged by the file server to any other
user, even the administrator.

Of course, this begs th¢ question of how a user
proves who he or she is. At the moment, we use a
simple authentication manager on the Datakit
network itself, so that when a user logs in from a
terminal, the network assures the authenticity of
the maker of calls from the associated terminal,
In order to remove the need for trust in our local
network, we plan to replace the authentication
manager by a Kerberos-like system [Mil87a].

Discussion

A fairly complete version of Plan9 was built in
1987 and 1988, and then its development was
abandoned for a number of aesthetic and technical
reasons. In May of 1989 work was begun on a
completely new system, based on the SGI MIPS-
based multiprocessors, using the first version as a
bootstrap environment. By October, the CPU
server could compile all its own software, using
the first-draft file server. The SGI file server came
on line in February 1990; the true operating
system kemel at its core was taken from the CPU
server’s system, but the file server is otherwise a
completely separate program (and computer).
The CPU server’s system was ported to the 68020

Vol 12No 1

(EUUG]

72

PIKE ET AL

in 13 hours elapsed time on November 12-13,
1989. One portability bug was found; the fix
affected two lines of code. At the time of writing
(April 1990), work has just begun on the new
window system; it should be running well before
this paper appears (July 1990). (Until it is
complete, we will continue to use the terminal
software from the 1987-1988 implementation.)

All the authors use Plan 9 almost exclusively; only
the lack of an electronic mail facility, which is
being addressed, prevents us from moving over
permanently. Plan9 is up and running and
comfortable to use, although it is certainly too
early to pass final judgement.

The multiprocessor operating system for the
MIPS-based CPU server has 454 lines of assembly
language, more than half of which saves and
restores registers on interrupts. The kernel proper
contains 3647 lines of C plus 774 lines of header
files, which includes all process control, virtual
memory support, trap handling, and so on. There
are 1020 lines of code to interface to the 29
system calls. Much of the functionality of the
system is contained in the “drivers” that
implement built-in servers such as /proc; these
and the network software add another 9511 lines
of code. Most of this code is identical on the
68020 version; for instance, all the code to
implement processes, including the process
swilcher and the fork and exec system calls, is
identical in the two versions; the peculiar
properties of each processor are encapsulated in
two five-line assembler routines. (The code for
the respective MMU’s is quite different, although
the page fault handler is substantially the same.)
It is only fair to admit, however, that the
compilers for the two machines are closely
related, and the operating system may depend on
properties of the compiler in unknown ways.

The system is efficient. On the four-processor
machine connected to the MIPS file server, the 45
source files of the operating system compile in
about ten seconds of real time and load in another
ten. (The loader runs single-threaded.) Partly due
to the register-saving convention of the compiler,
the null system call takes only 7 microseconds on
the MIPS, about half of which is attributed to
relatively slow memory on the multiprocessor. A
process fork takes 700 microseconds irrespective
of the process’s size.

Plan9 does not implement lightweight processes
explicitly. We are uneasy about deciding where

AUUGN

PIKE ET AL

on the continnum from fine-grained hardware-
supported parallelism to the usual timesharing
notion of a process we should provide support for
user multiprocessing. Existing definitions of
threads and lightweight processes seem arbitrary
and raise more questions than they resolve
[Acc86a). We prefer to have a single kind of
process and to permit multiple processes to share
their address space. With the ability to share local
memory and with efficient process creation and
switching, both of which are in Plan9, we can
match the functionality of threads without taking a
stand on how users should multiprocess.

Process migration is also deliberately absent from
Plan9. Although Plan9 makes it easy to
instantiate processes where they can most
effectively run, it does nothing explicit to make
this happen. The compiler, for instance, does not
arrange that it run on the CPU server. We prefer
to do coarse-grained allocation of computing
resources simply by running each new command
interpreter on a lightly-loaded CPU server.
Reasonable management of computing resources
renders process migration unnecessary.

Other aspects of the system lead to other
efficiencies. A large single-threaded chess
database problem runs about four times as fast on
Plan9 as on the same machine running
commercial software because the remote cache on
the file server is so large. In general, most file /O
is done by direct DMA from the file server’s
cache; the file server rarely needs to read from
disk at all.

Much of Plan 9 is straightforward. The individual
pieces that make it up are relatively ordinary; its
unusual aspects are in how the pieces are put
together. As a case in point, the recent interest in
using X terminals connected to timeshared hosts
might seem to be similar in spirit to how Plan9
terminals are used, but that is a mistaken
impression. The Gnot, although similar in
hardware power to a typical X terminal, serves a
much higher-level function in the computing
environment, It is a fully programmable computer
running a virtual memory operating system that
maintains its user’s view of the entire Plan9
system. It offloads from the CPU server all the
bookkeeping and I/O intensive chores that a
window system must perform. It is not really a
workstation either; for example one would rarely
bother to compile on the Gnot, although one
would certainly run a text editor there, Like the

AUUGN

anr

73

PLAN9 FROM BELL LABS

other pieces of Plan9, the Gnot’s strength derives
from careful specialisation in concert with other
specialised components.

Acknowledgements

Many people helped build the system. We would
like especially to thank Bart Locanthi, who built
the Gnot and encouraged us to program it; Tom
Duff, who wrote the command interpreter rc,
Tom Killian and Ted Kowalski, who cheerfully
endured early versions of the software; and
Dennis Ritchie, who frequently provided us with
much-needed wisdom.

Authors’ Note

Since this paper was first written almost all the ‘to
be done’ work mentioned in the paper, in
particular the window system, has been done.

References

[Acc86a] M. J. Accetta, Robert Baron, William
Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael
Young, ‘‘Mach: A New Kemel
Foundation for UNIX Development’’ ,
USENIX Conference Proceedings,
Atlanta, GA (July, 1986).

[Duf90a] A T. Duff, “‘Rc — A Shell for Plan 9
and UNIX", UNIX Programmer’s
Manual, Tenth Edition, Murray Hill,
NJ, AT&T Bell Laboratories, (1990).

A. G. Fraser, ‘‘Datakit — A Modular
Network for Synchronous and
Asynchronous Traffic”’, Proc. Int.
Conf. on Commun., Boston, MA, (June
1980).

Brian W. Kemighan, and Rob Pike,
The UNIX Programming Environment,
Prentice-Hall, Englewood Cliffs, NJ,
(1984).

T. J. Killian, ‘‘Processes as Files’’,
USENIX Summnier Conference
Proceedings, Salt Lake City, UT,
USA, (June 1984).

R. M Metcalfe, and D. R. Boggs, The
Ethernet Local Network: Three
Reports, XEROX Palo Alto Research
Center, (February 1980).

[Fra80a]

[Ker84a]

[Kil84a]

[Met80a)

Voll2No 1

PLAN 9 FROM BELL LABS (EVUUG] o PIKE ET AL

[Mil87a] A S. P. Miller, C. Neumann, J. L [Qui%0a] S. Quinlan, ‘‘A Cached WORM File
Schiller, and J. H. Saltzer, Kerberos System’’, Software - Practice and
Authentication and Authorization Experience, p. To appear (1990).
System, MIT, (1987). [Rit74a] D. M. Ritchie, and K. Thompson,

[Pik83a] R. Pike, ‘‘Graphics in Overlapping ~ ““The UNIX Time-Sharing System’’,
Bitmap Layers’’, Transactions on Comm. Assoc. Comp. Mach. 17(7),
Graphics 2(2), pp. 135-160 (1983). (July 1974).

[Pik89a] R. Pike, ‘‘A Concurrent Window
System’’, Computing Systems 2(2), pp.
133-153 (1989).

* * * | The European X User Group
* * X WINDOW SYSTEM
E)(UG CONFERENCE
* 24-26 September 1990
* * The University of Surrey, Guildford, England.
Tutorials: There will be three Tutorials ranging from Introductory to Advanced

Paul Asente (author of the X Toolkit) will lead the tutorial on tookit programming.

Speakers include several of the leading international figures in X, some of the
original developers of X, and users who will present case-studies of their work.

Costs to EXUG members : £250 residential
£220 non-residential
Cost to non-members: £300 residential
£280 non-residential
Exhibition stands (available only to corporate members) : £500

There are some en suite rooms available at a premium of £15 per night booked.
A Delegate pack including car parking permits will be sent upon receipt of fees.
All bills incur a VAT charge of 15%.

Bookings to: The Secretary, EXUG, 185 High Street, Cottenham, Cambridge CB4 4RX. ENGLAND.

Vol 12No 1 74 AUUGN

RC — A SHELL FOR PLAN 9 AND UNIX SYSTEMS

EUUG

TOM DUFF

Rc — A Shell for Plan 9 and UNIX Systems

Tom Duff
td@research.att.com

AT&T Bell Laboratories

Re is a command interpreter for Plan9. It also runs on a variety of traditional
systems, including SunOS and the Tenth Edition. It provides similar
facilities to Bourne’s /bin/sh, with some small additions and mostly less
idiosyncratic syntax. This paper introduces rc’s highlights with numerous
examples, and discusses its design and why it varies from Bourmne'’s.

Introduction}

Plan 9 needs a command-programming language.
As porting the Bourne shell to an incompatible
new environment seemed a daunting task, I chose
to write a new command interpreter, called rc
because it runs commands. Although tinkering
with perfection is a dangerous business, I could
hardly resist trying to “improve” on Bourne’s
design. Thus rc is similar in spirit but different in
detail from Bourne’s shell.

The bulk of this paper describes rc’s principal
features with many small examples and a few
larger ones. We close with a discussion of the
principles guiding rc’s design and why it differs
from Boume's design. The descriptive sections
include little discussion of the rationale for
particular features, as individual details are hard
to justify in isolation. The impatient reader may
wish to skip to the discussion at the end before
skimming the expository parts of the paper.

Simple commands

For the simplest uses rc¢ has syntax familiar to
Bourne-shell users. Thus all of the following
behave as expected:

1. This paper is reprinted with kind permission of the
UKUUG and was delivered at the UKUUG conference in
London in July 1990. Scc the end of this newsletter for
abstracts of this conference.

AUUGN

date

con alice

who >user.names

who >>user.names

we <file

echo [a-fl*.c

who | wc

who; date

cec *.c &

cyntax *.c && cc -g -o cmd *.c
rm -r junk || echo rm failed!

Quotation

An argument that contains a space or one of rc’s
other syntax characters must be enclosed in
apostrophes (*).

rm ‘odd file name’

An apostrophe in a quoted argument must be
doubled:

echo "How’’s your father?’

Variables

Rc provides variables whose values are lists of
arguments. Variables may be given values by
typing, for example:

path=(. /bin /usr/bin)
user=td

tty=/dev/tty8

The parentheses indicate that the value assigned to
path is a list of three strings. The variables

75 Voll2No 1

RC - A SHELL FOR PLAN 9 AND UNIX SYSTEMS

user and tty are assigned lists containing a
single string.

The value of a variable can be substituted into a
command by preceding its name with a $, like

this:
echo $path

If path had been set as above, this would be

equivalent to
echo /bin /usr/bin

Variables may be subscripted by numbers or lists
of numbers, like this:

echo $path(2)
echo $path(3 2 1)

These are equivalent to

echo /bin
echo /usr/bin /bin

There can be no space separating the variable’s
name from the left parenthesis. Otherwise, the
subscript would be considered a separate
parenthesized list.

The number of strings in a variable can be
determined by the $# operator. For example,

echo $#path
would print the number of entries in $path.

The following two assignments are subtly
different;

empty=()
null=""’

The first sets empty to a list containing no
strings. The second sets null to a list containing
a single string, but the string contains no
characters.

Although these may seem like more or less the
same thing (in Boume’s shell, they are
indistinguishable), they behave differently in
almost all circumstances. Among other things

echo $#empty
prints 0, whereas
echo $#null

prints 1.

All variables that have never been set have the
value ().

Vol 12No 1

(EUUG

76

TOM DUFF

Arguments

When rc is reading its input from a file, the file
has access to the arguments supplied on rc’s
command line. The variable $* initially has the
list of arguments assigned to it. The names $1,
$2, etc. are synonyms for $* (1), $*(2), etc.
In addition, $0 is the name of the file from which
rc¢’s input is being read.

Concatenation

Rc has a string concatenation operator, the caret
~, to build arguments out of pieces.

echo hully“gully
is exactly equivalent to
echo hullygully

Suppose variable i contains the name of a
command. Then

cec -o $i $i”.c

might compile the command’s source code,
leaving the result in the appropriate file.

Concatenation distributes over lists. The
following
echo (a b ¢) " (1 2 3)

src=(main subr io)
cc $src”.c

are equivalent to

echo al b2 c3
cc main.c subr.c io.c

In detail, the rule is: if both operands of ~ are
lists of the same non-zero number of strings, they
are concatenated pairwise. Otherwise, if one of
the operands is a single string, it is concatenated
with each member of the other operand in tum.
Any other combination of operands is an error.

Free carets

User demand has dictated that rc¢ insert carets in
certain places, to make the syntax look more like
the Boumne shell. For example, this:

cc -$flags $stems.c
is equivalent to
cc -"$flags $stems”.c

In general, rc will insert ~ between two
arguments that are not separated by white space.
Specifically, whenever one of $’‘ follows a

AUUGN

TOM DUFF

quoted or unquoted word, or an unquoted word
follows a quoted word with no intervening blanks
or tabs, a ~ is inserted between the two. If an
unquoted word immediately following a $
contains a character other than an alphanumeric,
underscore or *, a ~ is inserted before the first
such character.

Command substitution

It is often useful to build an argument list from the
output of a command. Rc allows a command,
enclosed in braces and preceded by a left quote,
‘{...}, anywhere that an argument is required.
The command is executed and its standard output
captured. The characters stored in the variable
ifs are used to split the output into arguments.
For example,

cat ‘{ls -trised 10qg}

will catenate the ten oldest files in the current
directory in temporal order.

Pipeline branching

The normal pipeline notation is general enough
for almost all cases. Very occasionally it is useful
to have pipelines that are not linear. Pipeline
topologies more general than trees can require
arbitrarily large pipe buffers, or worse, can cause
deadlock. Rc has syntax for some kinds of non-
linear but treelike pipelines. For example,

cmp <{old} <{new}

will regression test a new version of a command.
< or > followed by a command in braces causes
the command to be run with its standard output or
input attached to a pipe. The parent command
(cmp in the example) is started with the other end
of the pipe attached to some file descriptor or
other, and with an argument that will connect to
the pipe when opened (e.g. /dev/£fd/6.) On
systems without /dev/fd or something similar
(SunOS for example) this feature does not work.

Exit status

When a command exits it returns status to the
program that executed it. On Plan9 status is a
character string describing an error condition. On
normal termination it is empty.

Rc captures commands’ exit statuses in the
variable $status. For a simple command the
value of $status is just as described above.
For a pipeline $status is set to the

AUUGN

77

RC -~ A SHELL FOR PLAN 9 AND UNIX SYSTEMS

concatenation of the statuses of the pipeline -
components with | characters for separators.

Rc has a several kinds of control flow, many of
them conditioned by the status returned from
previously executed commands. Any $status
containing only 0’s and |’s has boolean value
true. Any other status is false.

Command grouping

A sequence of commands enclosed in {} may be
used anywhere a command is required. For
example:

{sleep 3600;echo 'Time’’s up!’}&

will wait an hour in the background, then print a
message. Without the braces:

sleep 3600;echo 'Time’’s up!’&

this would lock up the terminal for an hour, then
print the message in the background!

Control low - for

A command may be executed once for each
member of a list by typing, for example:

for (i in printf scanf putchar)
look $i /usr/td/lib/dw.dat

This looks for each of the words printf,
scanf and putchar in the given file. The
general form is

for (name in list) command
or
for (name) command

In the first case command is executed once for
each member of /ist with that member assigned to
variable name. If in list is not given, $* is used.

Conditional execution—- if

Rc also provides a general if-statement. For
example:
if (cyntax *.c) cc -g -o cmd *.c

runs the C compiler whenever cyntax finds no
problems with *.c. An “if not” statement
provides a two-tailed conditional. For example:

Voll2 No 1

RC - A SHELL FOR PLAN 9 AND UNIX SYSTEMS

for (i) {

TOM DUFF

if (test -f /tmp/$i) echo $i already in /tmp

if not cp $i /tmp
}

This loops over each file in $*, copying to /tmp
those that do not already appear there, and
printing a message for those that do.

Control flow - while
Rc’s while statement looks like this:
while (newer subr.c subr.o) sleep 5

This waits until subr .o is newer than subr.c
(presumably because the C compiler finished with
it).

Control flow — switch

Rc provides a switch statement to do pattem-
matching on arbitrary strings. Its general form is

switch (word) {

case paittern ...
commands

case pattern ...
commands

}

Rc attempts to match the word against the patterns
in each case statement in turn. Patterns are the
same as for filename matching, except that / and
the first characters of . and .. need not be
matched explicitly.

If any pattern matches, the commands following
that case up to the next case (or the end of the
switch) are executed, and execution of the switch
is complete. For example,

switch ($#*) {
case 1
cat >>$1
case 2
cat >>$2 <$1
case *
echo ’'Usage: append [from] to’

}

is an append command. Called with one file
argument, it tacks standard input to its end. With
two, the first is appended to the second. Any
other number elicits a usage message.

The built-in ‘~’ command also matches patterns,
and is often more concise than a switch. Its

Vol 12No 1

78

arguments are a string and a list of patterns. It
sets $status to true if and only if any of the
patterns matches the string. The following
example processes option arguments for the
man(1l) command:

opt=()
while (™ $1 -* [1-9] 10){
switch ($1) {
case [1-9] 10
sec=$1 secn=$1

case —-f
c=f g=f
case -[qwnt]
cmd=$1
case —-T*
T=$1
case -—-*

opt=($opt $1)
}
shift

}

Functions
Functions may be defined by typing
fn name { commands)}

Subsequently, whenever a command named name
is encountered, the remainder of the command’s
argument list will assigned to $* and rc will
execute the commands. The value of $* will be
restored on completion. For example:

fn g {
gre -e $1 *.[hcyl]
}

defines g pattern to look for occurrences of
pattern in all program source files in the current

directory.
Function definitions are deleted by writing
fn name

with no function body.

Command execution

Up to now we've said very little about what rc
does to execute a simple command. If the
command name is the name of a function defined

AUUGN

TOM DUFF

using £n, the function is executed. Otherwise, if
it is the name of a built-in command, the built-in
is executed directly by rc. Otherwise, if the name
contains a /, it is taken to be the name of a binary
program and is executed using exec(2). If the
name contains no /, then directories mentioned in
the variable $path are searched until an
executable file is found.

Built-in commands

Several commands are executed intemally by rc
because they are difficult or impossible to
implement otherwise.

. [-]fle ...
Execute commands from file. $* is set for
the duration to the reminder of the argument
list following file. $path is used to search
for file. Option —-i indicates interactive
input — a prompt (found in $prompt) is
printed before each command is read.

builtin command ...
Execute command as usual except that any
function named command is ignored. For

example,

fn cd{ .
builtin cd $* && pwd
}

defines a replacement for the cd built-in
(see below) that announces the full name of
the new directory.

cd [dir]
Change the current directory to dir. The
default argument is $home. $cdpath is
a list of places in which to search for dir.

eval [arg ...]
The arguments are catenated separated by
spaces into a string, read as input to rc, and
executed. For example,

=’ $yl
y=Doody
eval echo Howdy, $x

would echo

Howdy, Doody

since the arguments of eval would be
echo Howdy, Sy

after substituting for $x.

AUUGN

RC - A SHELL FOR PLAN 9 AND UNIX SYSTEMS

shift [n]
Delete the first n (default 1) elements of
§*.

wait [pid]
Wait for the process with the given pid to
exit. If no pid is given, all outstanding
processes are waited for.

whatis name ...
Print the value of each name in a form

suitable for input to rc. The output is an
assignment to a variable, the definition of a
function, a call to builtin for a built-in
command, or the path name of a binary
program. For example,

whatis path g cd who
might print

path=(. /bin /usr/bin)

fn g {gre -e $1 *,[hycl]}
builtin cd

/bin/who

~ subject pattern ...

The subject is matched against each pattern
in tum. On a match, $status is set to
true. Otherwise, it is set to ' no match’.
Patterns are the same as for filename
matching. The patterns are not subjected to
filename replacement before the ‘=’
command is executed, so they need not be
enclosed in quotation marks, unless of
course, a literal match for * [or ? is
required. For example

T 812

matches any single character, whereas
T o$1 ref

only matches a literal question mark.

Advanced I/O Redirection

Rc allows redirection of file descriptors other than
0 and 1 (standard input and output) by specifying
the file descriptor in square brackets [] after the
< or >. For example,

cc junk.c >[2]Jjunk.diag
saves the compiler’s diagnostics in junk.diag.

File descriptors may be replaced by a copy, in the
sense of dup(2), of an already-open file by typing,
for example

79 Voll2No 1

RC - A SHELL FOR PLAN 9 AND UNIX SYSTEMS

cc Junk.c >[2=1]

This replaces file descriptor 2 with a copy of file
descriptor 1. It is more useful in conjunction with
other redirections, like this

cc junk.c >junk.out >[2=1]

Redirections are evaluated from left to right, so
this redirects file descriptor 1 to junk.out, then
points file descriptor 2 at the same file. By
contrast,

cc junk.c >([2=1] >junk.out

Redirects file descriptor 2 to a copy of file
descriptor | (presumably the terminal), and then
directs file descriptor 1 at a file. In the first case,
standard and diagnostic output will be intermixed
in junk.out. In the second, diagnostic output
will appear on the terminal, and standard output
will be sent to the file. :

File descriptors may be closed by using the
duplication notation with an empty right-hand
side. For example,

cc junk.c >[2=]

will discard diagriostic‘s from the compilation,
Arbitrary file descriptors may be sent through a
pipe by typing, for example

cc juﬁk.c | [2] gfep -v '"§/

This deletes those ever-so-annoying blank lines
from the C compiler’s output. Note that the
output of grep still appears on file descriptor 1.

Very occasionally you mbay wish to connect the
input side of a pipe to some file descriptor other
than zero. The notation

cmdl | [5=19] cmd2

creates a pipeline with cmd1l’s file descriptor 5
connected through a pipe to cmd2’s file
descriptor 19.

Here documents

Rc procedures may include data, called “here
documents”, to be provided as input to commands,
as in this version of the te/ command

Vol12No 1

80

TOM DUFF
for (i) grep $i <<!

nls 2T-402 2912
norman 2C-514 2842
pjw 2T-502 7214

!

A here document is introduced by the redirection
symbol <<, followed by an arbitrary eof marker
(! in the example). Lines following the
command, up to a line containing only the eof
marker are saved in a temporary file that it

connected to the command’s standard input when
it is run.

Rc does variable substitution in here documents.
The following subst command:

ed $3 <<EOF
g/81/s8//5%2/g

w
EOF

changes all occurrences of $1 to $2 in file $3.
To include a literal $ in a here document, type
$$. If the nmame of a variable is followed
immediately by -, the caret is deleted.

Variable substitution can be entirely suppressed
by enclosing the eof marker following << in
quotation marks.

Here documents may be provided on file
descriptors other than 0 by typing, for example

cmd <<[4]End
End
Signals

Rc scripts normally terminate when an interrupt is
received from the terminal. A function with the
name of a signal, in lower case, is defined in the
usual way, but called when rc receives the signal.
Signals of interest are:

sighup
Hangup. The controlling
disconnected from rc.

teletype has

AUUGN

TOM DUFF QT RC- A SHELL FOR PLAN 9 AND UNIX SYSTEMS
sigint a command has this effect. For example
The interrupt character (.usually fASCII del) a=global
was typed on the controlling terminal. amlocal echo $a
sigquit echo $a
The quit character (usually ASCII fs, ctrl-\) i1l pri
was typed on the controlling terminal. will print
. local
sigterm global

This signal is normally sent by kil/(1).
sigexit

An artificial signal sent when rc is about to

exit.

As an example,

fn sigint{
rm /tmp/Jjunk
exit

}

sets a trap for the keyboard interrupt that removes
a temporary file before exiting.

Signals will be ignored if the signal routine is set
to (). Signals revert to their default behavior
when their handlers’ definitions are deleted.

Environment

The environment is a list of name-value pairs
made available to executing binaries. On Plan9,
the environment is stored in a file system named
#e, normally mounted on /env. The value of
each variable is stored in a separate file, with
components terminated by ASCII nulls. (This is
not quite as horrendous as it sounds, the file
system is maintained entirely in core, so no disk
or network access is involved.) The contents of
/env are shared on a per-process group basis —
when a new process group is created it effectively
attaches /env to a nmew file system initialized
with a copy of the old one. A consequence of this
organization is that commands can change
environment entries and see the changes reflected
inrc.

There is not currently a way on Plan9 to place
functions in the environment, although this could
easily done by mounting another instance of #e
on another directory. The problem is that
currently there can be only one instance of #e per
process group.

Local Variables

1t is often useful to set a variable for the duration
of a single command. An assignment followed by

AUUGN

This works even for compound commands, like

f=/fairly/long/file/name {

{ we $f; spell $f; diff $f.o0ld $£ } |
pr -h ’Facts about r$f | lp -ddp

)
Examples - cd, pwd

Program 1 shows a pair of functions that provide
enhanced versions of the standard cd and pwd
commands. (Thanks to Rob Pike for these.)

psl='% ' # default prompt
tab=’ ' # a tab character
fn pbd{

/bin/pwd|sed "s;.*/;;'
}
fn cd{
builtin cd $1 &&
switch ($#7*) {
case 0
dir=$home
prompt=($psl $tab)
case *
switch ($1)
case /*
dir=$1
prompt=(‘{pbd} ~$psl S$tab)
case */* . %
dir=()
prompt=(‘{pbd) " $psl S$tab)
case *
dir={()
prompt=($1-$psl S$tab)
}
}
}
fn pwd({
if (- $#dir 0)
dir=‘{/bin/pwd}
echo $dir

Programe 1: cd, pwd

81 Voll2No 1

RC - A SHELL FOR PLAN 9 AND UNIX SYSTEMS

Function pwd is a version of the standard pwd
that caches its value in variable $dir, because
the genuine pwd can be quite slow to execute.

Function pbd is a helper that prints the last
component of a directory name. Function cd
calls the cd built-in, and checks that it was
successful. If so, it sets $dir and $prompt.
The prompt will include the last component of the
current directory (except in the home directory,
where it will be null), and $dir will be reset
either to the correct value or to (), so that the
pwd function will work correctly.

cd /n/bowell/usr/man || {
echo $0: Manual not on line!
exit 1

}
NT=n
g="' %1

default nroff
section, default try all
for (i) switch($i) {
case -t
NT=t
case -n
NT=n
cage -—-%*
echo Usage:
exit 1
case [1-9] 10
=51
case *
eval !pages=man’$s/$if . */
for (page in Spages) {
if (test -f $page)
SNT"roff -man $page
if not
echo $0:

$0 7 [-nt]

$i not found >[1=2]

Program 2: The man command

Note the use of eval to make a list of candidate
manual pages. Without eval, the * stored in
$s3 would not trigger filename matching — it’s
enclosed in quotation marks, and even if it

Vol 12No 1 82

>[1=2]

[section] page

TOM DUFF

Examples — man

The man command prints pages from of the
Programmer’s Manual. It is called, for example,
as

man 3 isatty
man rc
man -t cat

In the first case, the page for isatty in section 3 is
printed. In the second case, the manual page for
rc is printed. Since no manual section is specified,
all sections are searched for the page, and it is
found in section 1. In the third case, the page for
cat is typeset (the -t option). Program 2 shows
the man command.

. >[1=2]

weren’t, it would be expanded when assigned to
$s. Eval causes its arguments to be re-processed
by re’s parser and interpreter, effectively delaying
evaluation of the * until the assignment to
$pages.

AUUGN

TOM DUFF

Examples — holmdel

Program 3 is an rc script that plays the
deceptively simple game holmdel, in which the
players alternately name Bell Labs locations, the
winner being the first to mention Holmdel.

t=/tmp/holmdel$pid
fn read{
$1=‘{awk ' {print;exit}’}

}

ifs='

’ # just a newline

fn sigexit sigint siggquit sighup({
rm -f $t
exit

}
cat <<’ >5t
Allentown
Atlanta
Cedar Crest
Chester
Columbus
Elmhurst
Fullerton
Holmdel
Indian Hill
Merrimack Valley
Morristown
Piscataway
Reading
Short Hills
South Plainfield
Summit
Whippany
West Long Branch
]
while (true) {
lab="‘{/usr/games/fortune $t}
echo $lab
if (T $lab Holmdel) {
echo You lose.
exit
}
while (read lab;
! grep ~i -s $lab $t)
echo No such location.
if (- $lab [hH]olmdel) {
echo You win.
exit

Program 3: holmdel

AUUGN

(EUUG]

RC — A SHELL FOR PLAN 9 AND UNIX SYSTEMS

This script is worth describing in detail (rather, it
would be if it weren’t so silly.)

Variable $t is an abbreviation for the name of a
temporary file. Including $pid, initialized by rc
to its process-id, in the names of temporary files
insures that their names won't collide, in case
more than one instance of the script is running at a
time.

Function read’s argument is the name of a
variable into which a line gathered from standard
input is read. $ifs is set to just a newline. Thus
read’s input is not split apart at spaces, but the
terminating newline is deleted.

A handler is set to catch sigint, sigquit,
and sighup, and the artificial sigexit signal
It just removes the temporary file and exits.

The temporary file is initialized from a here
document containing a list of Bell Labs locations,
and the main loop starts.

First, the program guesses a location (in $lab)
using the fortune program to pick a random
line from the location list. It prints the location,
and if it guessed Holmdel, prints a message and
exits.

Then it uses the read function to get lines from
standard input and validity-check them until it
gets a legal name. Note that the condition part of
a while can be a compound command. Only the
exit status of the last command in the sequence is
checked.

Again, if the result is Holmdel, it prints a message
and exits. Otherwise it goes back to the top of the
loop.

Discussion

Steve Boume’s /bin/sh is extremely well-
designed; any successor is bound to suffer in
comparison. 1 have tried to fix its best-
acknowledged shortcomings and to simplify
things wherever possible, usually by omitting
unessential features. Only when irresistibly
tempted have I introduced novel ideas. Obviously
I have tinkered extensively with Bourne’s syntax,
that being where his work was most open to
criticism.

The most important principle in rc’s design is that
it’s not a macro processor. Input is never scanned
more than once by the lexical and syntactic
analysis code (except, of course, by the eval

83 Voll2No 1

RC - A SHELL FOR PLAN9 AND UNIX SYSTEMs GVIVESD

command, whose raison d’etre is to break the
rule).

Boume shell scripts can often be made to run wild
by passing them arguments containing spaces.
These will be split into multiple arguments using
IFS, often at inopportune times. In rc, values of
variables, including command line arguments, are
not re-read when substituted into a command.
Arguments have presumably been scanned in the
parent process, and ought not to be re-read.

Why does Boumne re-scan commands after
variable substitution? He needs to be able to store
lists of arguments in variables whose values are
character strings. If we eliminate re-scanning, we
must change the type of variables, so that they can
explicitly carry lists of strings.

This introduces some conceptual complications.
We need a notation for lists of words. There are
two different kinds of concatenation, for strings —
$a~$b, and lists — ($a $b). The difference
between () and ’’ is confusing to novices,
although the distinction is arguably sensible — a
null argument is not the same as no argument,

Boume also rescans input when doing command
substitution. This is because the text enclosed in
back-quotes is not properly a string, but a
command. Properly, it ought to be parsed when
the enclosing command is, but this makes it
difficult to handle nested command substitutions,
like this:

size=‘wc -1 \‘ls ~t|sed 1g\ ™

The inner back-quotes must be escaped to avoid
terminating the outer command. This can get
much worse than the above example; the number
of \’s required is exponential in the nesting
depth. Rc fixes this by making the backquote a
unary operator whose argument is a command,
like this:

size='‘{wec -1 ‘{ls -t|sed 1g}}

No escapes are ever required, and the whole thing
is parsed in one pass.

For similar reasons rc defines signal handlers as
though they were functions, instead of associating
a string with each signal, as Bourne does, with the
attendant possibility of getting a syntax error
message in response to typing the interrupt
character. Since rc parses input when typed, it
reports errors when you make them.

TOM DUFF

For all this trouble, we gain substantial semantic
simplifications. There is no need for the
distinction between $* and $Q@. There is no need
for four types of quotation, nor the extremely
complicated rules that govern them. In rc you use
quotation marks exactly when you want a syntax
character to appear in an argument. IFS is no
longer used, except in the one case where it was
indispensable: converting command output into
argument lists during command substitution.

This also avoids an important security hole
[Ree88a]. System(3) and popen(3) call
/bin/sh to execute a command. It is
impossible to use either of these routines with any
assurance that the specified command will be
executed, even if the caller of system or popen
specifies a full path name for the command. This
can be devastating if it occurs in a set-userid
program, The problem is that IFS is used to split
the command into words, so an attacker can just
set IFS=/ in his environment and leave a Trojan
horse named usr or bin in the current working
directory before running the privileged program.
Rc fixes this by not ever rescanning input for any
reason.

Most of the other differences between rc and the
Boume shell are not so serious. I eliminated
Boume’s peculiar forms of variable substitution,
like

echo ${a=b} ${c~-d} ${e?error}

because they are little used, redundant and easily
expressed in less abstruse terms. I deleted the
builtins ~ export, readonly, break,
continue, read, return, set, times and
unset because they seem redundant or only
marginally useful.

Where Boume’s syntax draws from Algol 68, rc¢’s
is based on C or Awk. This is harder to defend. I
believe that, for example

if(test -f junk) rm junk

is better syntax than

if test -f Jjunk; then rm junk; fi

because it is less cluttered with keywords, it
avoids the semicolons that Bourne requires in odd
places, and the syntax characters better set off the
active parts of the command.

Vol 12No 1 84 AUUGN

TOM DUFF

The one bit of large-scale syntax that Boume
unquestionably does better than rc is the if
statement with else clause. Rc’s if has no
terminating f£i-like bracket. As a result, the
parser cannot tell whether or not to expect an
else clause without looking ahead in its input.
The problem is that after reading, for example

if (test ~f junk) echo junk found

in interactive mode, rc cannot decide whether to
execute it immediately and print $prompt (1),
or to print $prompt (2) and wait for the else
to be typed. In the Boume shell, this is not a
problem, because the i f command must end with
£i, regardless of whether it contains an else or
not.

Rc’s admittedly feeble solution is to declare that
the else clause is a separate statement, with the
semantic proviso that it must immediately follow
an if, and to call it if not rather than else,
as a reminder that something odd is going on. The
only noticeable consequence of this is that the
braces are required in the construction

for (i) {
if(test ~f $i) echo $i found
if not echo $i not found

}

and that rc¢ resolves the “dangling else” ambiguity
in opposition to most people’s expectations.

It is remarkable that in the four most recent
editions of the UNIX system programmer’s
manual the Boumne shell grammar described in the
manual page does not admit the command
who|wec. This is surely am oversight, but it
suggests something darker: nobody really knows
what the Bourne shell’s grammar is. Even

AUUGN

RC ~ A SHELL FOR PLAN 9 AND UNIX SYSTEMS

examination of the source code is little help. The
parser is implemented by recursive descent, but
the routines corresponding to the syntactic
categories all have a flag argument that subtly
changes their operation depending on the context.
Rc’s parser is implemented using yacc, so 1 can
say precisely what the grammar is. '

Its lexical structure is harder to describe. 1 would
simplify it considerably except for two things.
There is a lexical kludge to distinguish between
parentheses that immediately follow a word with
no intervening spaces and those that don’t that I
would eliminate if there were a reasonable pair of
characters to use for subscript brackets. I could
also eliminate the insertion of free carets if users
were not adamant about it.

Acknowledgements

Rob Pike, Howard Trickey and other Plan 9 users
have been insistent, incessant sources of good
ideas and criticism. Some examples in this
document are plagiarized from [Bou78a], as are
most of rc’s good features.

References

{Bou78a] S. R. Boume, ‘‘UNIX Time-Sharing
System: The UNIX Shell’’, Bell System
Technical Journal 57(6), pp. 1971-1990
(July-August 1978).

[Ree88a] J. Reeds, ‘‘/bin/sh: the biggest
UNIX security loophole’’, 11217-
840302-04TM, AT&T Bell Laboratories
(1988).

85 Voli2No 1

THE SSBA AT AFUU

BINOT ET AL

The SSBA at AFUU: A Progress Report

C.Binot, P.Dax, N.Doduc, M.Gaudet
binot@afuu.fr, dax@enst fr, ndoduc @framentec fr

AFUU

The SSBA by the AFUU Benchmark group is 3 years old and yet very active and flourishing.
Here is a progress report focusing on the 1989-1990 time frame as well as on the planned

evolution toward a next release,

The SSBA: the background

The popularisation of the UNIX(tm) workstation
and the recognition of UNIX(tm) as the most
important operating system in the supercomputer
arena as well as the feeling that it is potentially
important in the conservative business-processing
market, all proved to be a most appropriate
ground for Benchmarking activities.

Created circa March 87, the Association Francaise
des Utlisateurs d’UNIX(tm) et des Systemes
Ouverts (AFUU) Benchmark group of reflects
users’ needs in this domain. The group wanted to
provide users and consumers with a valuable and
practical tool in evaluating basic characteristics
of, initially, UNIX-running on personal
workstations. This very clearly set goal was met
quite enthusiastically by many people from
different horizons, mainly users from big accounts
or academia, but strangely enough, also support-
staff people from French subsidiaries of American
computer manufacturers for whom the group is an
opportunity to understand what their mother
companies are cooking and have them eat.

The work progressed the usual way thanks to the
very dynamic atmosphere surrounding AFUU, and
then by June '88, the very first version, 1.0, of the
SSBA was fielded for tests.

With respect to EUUG, and in due time, the
Benchmark group announced its creation and its
activity in this Newsletter (Benchmarking in the
AFUU, Vol. 7, no. 4, Winter 1987) and then made
its first status report at the 1989 Spring (Bruxelles)
EUUG Conference. Here, we are putting a kind of
progress report concemning not only the SSBA but
also the Benchmark group, and regarding the last
12 months.

La SSBA en France!

Within France, the SSBA has established itself as a
mandatory item in many request-for-tender (*);

many important accounts routinely request its
inclusion amongst other tests or its certification
(by AFUU) results, leading to a very widespread
use. One vendor from a big manufacturer has even
confided to us that, in 1989 alone, he has got more
than 30 requests (for SSBA results) from his
clients and prospects! Our statistical data for the
Jan-Oct 1989 period showed that, out of 383 PD-
software tapes purchased from AFUU, 89, ie 23%,
are SSBA tapes. We even believe that most
computer manufacturers do have a copy of the
SSBA, usually and openly supplied by their French
offices.

Thus the SSBA may get the credit for a strong
surge of interest in the French professional media
in general and magazines particularly, for this
very delicate and sensitive subject. There are
many points of merit to be told.

As early as the summer of 1988, Le Centre
d’Experimentation du Logiciel made a survey
about then existing workstations: the SSBA is used
as the tool for this survey, Since then, at least two
other similar studies have occurred and of course
the SSBA has also proven its appropriateness there
as well.

The display in Tribunix, AFUU’s Newsletter, of
the approved results began with the issue #27,
Vol. 5, Jui-Aou/89 and from then on, became a
regular column in Tribunix. At the beginning of
1990, we released the first special Benchmark
issue of Tribunix, issue #30, Jan-Feb/90, with
many contributions from people interested in this
subject. Then at the conjunction of the UNIX
Convention, March 1990, and the third
anniversary of the Benchmark group, we built out
a Dossier Benchmark Tribunix (**), that

(*) tllz;x)ks to the wise and efficient lobbying of some of us ...

(**) available from AFUU secretariat.

Vol12No 1 86 AUUGN

BINOT ET AL

contained selected articles from the previous
issues, and most notably, all the SSBA results
(about 60) collected to date. All these printed
items get such a favourable welcome from many
quarters that, right now, we’re considering
keeping them as regular items within Tribunix.

Furthermore, along with internal informational
activities and beside the regular meetings (once
every 6 or 7 weeks), a regular and permanent
column is maintained in our Tribunix, whose
name is La Chronique des Benchmarks, starting
with issue #28, Sep-Oct/89. We keep ourselves
fully informed of the happenings of different
benchmarking activities (eg. when known of
course, we're no newsmen and do not have their
resources, although we’re helped frequently by
those newsmen) such as: SPEC, the Perfect Club,
Utrecht’s SSB as well as, say, InfoPC
evaluation of numeric coprocessors (for i386) ...

The Benchmark group also has a r6le of a
librarian regarding Benchmark software: we
collect and distribute public-domain Benchmark
source. Very recently, this role has been extended
to articles and papers although this latter part is
even more amateurish, at least at the moment,
then the previous one.

The SSBA elsewhere ...

On the external front, the group and the SSBA are
understandably very active too: many of its
members has close contacts with corresponding
entities either within or outside Europe.

The Benchmark group as is does have contacts
with similar organisations like SPEC, the
Performance Measurement group of Ul ... and of
course many of us have links witb peoples
working in internal Performance groups of many
manufacturers.

We succeeded in having a member of the SPEC
Steering Committee come and give a talk at our
UNIX Convention (March '90).

The SSBA is used in product evaluation articles by
IX Multiuser-Multitasking-Magazine (Hannover,
Germany) and the Mai-Jun/90 issue dealt with,
among many machines, the IBM RS/6000.

The SSBA is public-domain software: just ask for
the EUUGD20 tape from EUUG Software
Distribution. It’s use is of course completely free
but the publication of the results in Tribunix needs
agreement {rom the Benchmark group.

AUUGN

[EUUG

THE SSBA AT AFUU

Lastly, many copies have been sent to many
educational institutions throughout Europe
(Dortmund, Karlsruhe, Louvain, Liege, Valencia,
.. or even to America: Worcester ...) to be used
either as one of many benchmark sets to be
examined within many Computer Performance
courses or simply as a tool for purchase
evaluation. Lately, the SSBA has also made
contacts with Eastern European countries (***)
and also has taken seed across the Mediterranean:
Algeria, the later case within the framework of
AFUU helping creating a local UNIX user group.
The next release(s)

The SSBA version 1.21 has remained unchanged
since Feb. 89 and in fact is the SSBA everybody
mentioned. Having been proven in many enduring
circumstances, resulting in many comments and
much feed-back (****) the SSBA is now ripe for
timely evolution. A Road-Map is being circulated
among members for consultation and toward
convergence for changes. It is most likely that
before Christmas, a revised version will be
released, while the other new suite of the SSBA
family, although well on track, will not be ready
before Spring 1991.

The actual version, 1.21, deals mainly with basic,
eg. systems-level, performance will be revised
and may get or include the following items:
Dhrystone version 2 replacing version 1, an
officially maintained version Whetstone (7), new
disk throughput component(s), modifications of
the SSBA’s vemion of the Musbus .. and
probably a small amount of multiprocessing
measurement as well ...

The SSBA has ambitions to be a family of many
suites: the version 1.x as told previously deals
with generic and raw systems performance. The
next suite(s) will be application-oriented, and
while many domains being of immense and
immediate interests, such as Real time, Graphics,
Network are considered, we are very
conservative in looking at the content of our next
suite. However, it is not imprudent to state that
we are quite interested, and more or less advanced
in our evaluation, in items such as IOBench

_(***) thanks to the perestroika | Long live the glasnost |

‘(****) as well as bug reports, heated discussions and email
traffic congestion.

87 Voll12No 1

THE SSBA AT AFUU

(Wolman & Olson, Prime), Xbench (Gittinger,
Siemens) ...

Another very interesting point is the analysis and
use of these raw data obtained. Up to now, we
have strived not to succumb to the temptation of
giving a single value of merit to each machine.
Recently, we have enrolled the Laboratoire de
Statistiques et Probabilities de I'Universite de
Toulouse to help us in processing our data. Initial
results are very encouraging and we think that a
new dimension of utility can and will be added to
our valuable results.

The very last item in early discussion is the
moving toward an EUUG-working group as
suggested to and by the EC: may we wish this a
real success so that the next progress report will
be the first of a series of the (Euro-)Benchmark
(Super-)group? Benchmarkeurs de tous pays,
unissons-nous !

About the authors:

Christophe Binot started his commitment in UNIX
when he worked at Universite de Valenciennes on
MMI, and having to choose his first workstations,
decided to invest in the hazardous ground of
Workstation, Benchmarking, UNIX Culture ... all
these are the names of the AFUU working groups
that he chairs. When times and his AFUU vice-
chairman’s job permit, he also is a full-paid
support engineer for HP-France. In the old times,
when still at Valenciennes, Christophe many times
visited his Sun 3/260 at 2 AM without proper
authorisation from his young wife. (tel: +33-
145916854, email: binot@afuu.fr).

Philippe Dax is an antique figure of a very old
nevertheless prestigious engineering school (Sup.
Telecom., the Paris establishment! please) where
he used to take care of, among many things,
schoene fraulein and gentilles jeunes etudiantes
querying about make, yacc ... and a not-so-small
set of Sun workstations. Another not-so-small
activity of him is the AFUU’s newsletter Tribunix
that keeps growing in its scope, its thickness and
the times it takes from its editor-in-chief. Philippe
has put altogether, consciously, most of the SSBA
script and, unintentionally, some of the yet-to-be-
discovered bugs. (tel: +33-145817687; email:
dax@enst. fr).

Nhuan Doduc makes his living by working in DP
since his leaving theoretical physics, and makes
his pleasure by benchmarking a not-too-unknown

Vol 12No 1

(EUUG

88

BINOT ET AL

FORTRAN program since very long time ago.
Nhuan is a strong driving force within many
AFUU’s groups (Calculateurs Scientifiques ...),
spends much of his time in contributing to
Philippe’s Tribunix, participates actively in the
G.U.S, (aka. the French S.U.G.) and the
Workstation group of the CUBE, (the French Bull
user group) ... and, for what is left of his time, also
officially works for Framentec and Cognitech, two
expert-system software houses. Nhuan is the
keeper of the benchmark library of the group. (tel:
+33-147964633; email: ndoduc@ framentec.fr).

Michel Gaudet stills work in Laboratoire de
Biorheologie Hydrodynamique PhysicoChimique
of Universite Paris VII, where he reigns supreme
on many PCs openly connected (eg. cables
disconnected most of the times) to a 4Mb Sun
3/140. Beyond UNIX, Michel’s many expertises
include the PC hardware, Ms/Dos, the
nonfunctioning of the SSBA’s Musbus, the 1/O
rates from the Saxer as well as from many other
I[/O benchs, but then he is still hesitant on deciding
to move his Sun to OS 4.1, that is with as many as
4 (four) Mb of Ram. While waiting for 4.1 to
arrive, he makes lots of travels to take care of
most of the SSBA results. (tel: +33-143362525 ext

4333),

Request for Test

The AFUU has decided to make an open way in
which the UNIX users’ community can access the
computer performance information printed in
Tribunix.

With this in mind the AFUU has offere those
producing and distributing UNIX based systems to
publish in Tribunix, under their own name and
with the AFUU certificate of testing, the output
obtained from running the SSBA [.21F, with the
aim of informing the membership of the AFUU. A
request to print this in Tribunix must be supported
by a certificate of having run the benchmark in the
presence of a person approved by AFUU for this
purpose (Nhuan Doduc, Philippe Dax, Michel
Gaudet), Also needed is the location of the test,
electronic evidence, and the output of the test.

Dominique Maisonneuve, Christophe Binot,
Nhuan Doduc, Philippe Dax.
An example of test output follows:

AUUGN

[EUUG] THE SSBA AT AFUU

BINOT ET AL
SYNTHESE DES RESULTATS DE LA SSBA 1.21F (27/02/89)
Identification : BULL DPX/2 340 Moto 68030/68882 B.O.S. 1.1 33 Mhz 16 Mbytes 2*300 Mbytes

ENVIRONEMENT

Type of Unix SVR3

Command C cc -FO -DTERMIO -DSysV

Command F f77 -FO -DTERMIO -DSysV

Name of site B.O.S.

Name of login of benchmarker root

Value of HZ 100

Number of processors before start 6

Number of processors staying for the execution 251

Available virtual memory space 0 Mb

) RESULTS

Date of start Thu May 10 11:56:03 EET 1990

Mips/Joy 5.63636

Dhrystone (without registers, without optimisation) 11483 Dhry/s

Dhrystone (with registers,without optimisation) 11483 Dhry/s

Dhrystone (without registers,with optimisation) 12860 Dhry/s

Dhrystone (with registers,with optimisation) 12879 Dhry/s

Whetstone (single precision) 2867 KWhet/s

Whetstone (double precision) 2637 KWhet/s

Linpack (single precision, rolled) 330 Kflops

Linpack (single precision, unrolled) 341 Kflops

Linpack (double precision, rolled) 274 Kflops

Linpack (double precision, unrolled) 280 Kflops

Utah (execution time) user=12.22s, sys=2.8s, u+s=15.02s

Outils (execution time) user=52.84s, sys=7.9s, u+s=60.74s

Byte (execution time) user=2.28s, sys=11.96s, u+s=14.24s

Saxer (thoughput W/S disc) 548.24 Kb/s

Testc (execution time) user=66,30s, sys=1.72s, u+s=68.02s

Doduc (double precision) iterations=5491, temps=946.18s, ratio=51

Bsd memory (execution time) user=82.74s, sys¥1.723. u+s=84.46s

Bsd syscalls (execution time) user=0.64s, sys=16.98s, u+s=17.62s

Bsd pipes (execution time) user=0.84s, sys=43.12s, u+s=43.96s

Bsd forks/execs (execution time) user=3.2s, sys=214.74s, u+s=217.94s

Musbus (thoughput W/S disc for 62 blocks) write=1033.3 Kb/s read=1550.0 Kb/s copy=620.0 Kb/s

Musbus (thoughput W/S disc for 125 blocks) write=446.4 Kb/s read=2083.3 Kb/s copy=420.2 Kb/s

Musbus (thoughput W/S disc for 250 blocks) write=740.7 Kb/s read=1785.7 Kb/s copy=554.5 Kb/s

Musbus (thoughput W/S disc for 500 blocks) write=979.6 Kb/s read=1785.7 Kb/s copy=306.1 Kb/s

Musbus (thoughput W/S disc for 1000 blocks) write=1173.7 Kb/s read=503.4 Kb/s copy=139.8 Kb/s

Musbus real time 794.00s

Musbus cpu time + system 665.37s

Average size of an executable 39.8967 Kb

Total Time 5977s

Number of cycles 78

Average number of users 1

Average number of processors 17

Date of end Thu May 10 13:35:40 EET 1990
COMMENTAIRES

Passage chez : BULL MTS - 1 rue of Provence - Parc Surieux BP208 - 38432 Echirolles Ceofx
Marie-Hine Marc et Michel Gauoft

AUUGN 89 Voll2No 1

USL COLUMN

(EUUG CHRIS SCHOETTLE

USL Column
Chris Schoettle

UNIX System Laboratories Europe

For further information on this column please contact Gill Mogg on
gill@uel.uucp. Gill is Market Communications Manager at USLE. The
guest writer this issue is Chris Schoettle. :

Chris Schoettle is a Senior Consultant with UNIX System Laboratories based
in London, England. Mr. Schoettle has BA and MSc degrees in Computer
Science and has worked extensively in the international UNIX systems
market. He has presented the technical contents of UNIX System V Release
4,0 and of the OPEN LOOK Graphical User Interface thoughout Europe,
including the EUUG, UNIForum, and USL’s Software Developer
Conferences. He represents USL on the X/Open User Interface Working

Group.

OPEN LOOK - A Consistent Approach to a GUI Architecture

Much has been written, discussed and even hyped
on Graphical User Interfaces (GUIs) to the UNIX
Operating System. It is becoming increasingly
more difficult to grasp the underlying principles
on which the products are based. Here, we will
address the rationale that UNIX System
Laboratories (USL) has followed in developing
and licensing the software that implements the
OPEN LOOK® GUI.

A GUI comprises three functional areas:
 a platform
e a programming interface
© a user perspective

Before attempting to define the above terms, it is
worth drawing an analogy (albeit over-simplified).
Consider a GUI as an automobile. The platform is
the entire interworkings provided in the base
vehicle. There might also be an optional extra
such as an on-board computer. The programming
interface of the computer can be thought of as that
part which interoperates with the interworkings of
the automobile.

The user perspective of the computer is what the :

driver sees on the face of the computer and how
the driver operates it. In general terms, the
programming interface of the automobile is how
the base car and all the optional extras
interoperate. The user perspective is everything

Vol 12No 1 90

that the driver sees and operates in the car,
including the base and optional extras.

Now let’s replace the world of automobiles with
that of GUIs. The platform is the software which
manages the window system (the base car),
including the display and input device. Other
software, such as a toolkit, can be provided on top
of the platform (an optional extra), and is usually
dependent on the platform on which it is
implemented.

The programming interface is the syntax and
semantics defined for use by applications
interfacing with a platform and possibly a toolkit.
A toolkit can provide functionality in addition to
that provided by the platform; this can include
components such as buttons, scrollbars and
menus. For example, a toolkit may provide
software to implement a scrollbar in an
application. The programming interface for this
scrollbar would most likely be a combination of
the semantics defined by the platform and the
syntax defined for the scrollbar in the toolkit.

The user perspective is what the end user will see
and operate with on the terminal, irrespective of
the underlying software; this is widely termed as
the Look and Feel. In our example of the
scrollbar, the user perspective of the scrollbar is
what it actually looks like when seen on the
terminal and how the user uses the mouse to

AUUGN

USL COLUMN

operate the scrollbar within an application.

In early GUIs, such as SunView* or the
Macintosh*, the GUI is inherently part of the
platform, operating system, and even hardware;
these are kemel-based window systems. As the
industry has moved towards the Open Systems
marketplace, client-server based window systems
have evolved as platforms. These provide an
environment for networking and portability,
across different operating systems and hardware,
and as a base for different GUI architectures. Two
client-server based window systems of note are
the X Window System* and NeWS*, the network
extensible Window System.

The X Window System, or X, is a defacto (and
now X/Open official) standard, developed by the
Massachusetts Institute of Technology. NeWS is a
PostScript* based architecture developed by Sun
Microsystems. The programming interface,
unlike the user perspective, of a GUI for a
platform can be dependent on that platform, in
this case X or NeWS. Specifically with the OPEN
LOOK GUI, while there is one user perspective,
there are three different programming interfaces,
different by both design and objective,

The OPEN LOOK X Toolkit (code named Xt+) is a
widget set built at the Xt Intrinsics layer of X (this
is just X terminology for saying that it is a set of
components built on the top layer of the X
platform). The programming interface for the
OPEN LOOK X Toolkit is a combination of the
syntax provided in the widgets of the OPEN LOOK
X Toolkit and the semantics of X. It is the one
which is most commonly compared to the
OSF/Motif* Toolkit.

The OPEN LOOK XView* Toolkit has a
programming interface very close to that of
SunView, a kemel-based window system. It has
been designed with the purpose of migrating
existing SunView applications to X (and the Open
Systems marketplace). To maintain the SunView
programming interface, the OPEN LOOK XView
Toolkit has been developed at the Xlib layer of X,
a lower layer than the Xt Intrinsics.

The OPEN LOOK tNt (the NeWS Toolkit) has
been developed in PostScript to provide a
programming interface for software developers
wanting to develop OPEN LOOK applications on
NeWS.

Thus, for a software developer there are three
different programming interfaces for the OPEN

AUUGN

[EUUG)

91

CHRIS SCHOETTLE

LOOK GUL For the end user though, there is just
one user perspective, OPEN LOOK. The Look and
Feel for OPEN LOOK is strictly defined in a set of
published books known as the OPEN LOOK
Specification and Style Guides. This Look and
Feel has gone through an extensive industry
review process. It is published so that software
developers have the opportunity of developing
new toolkits which implement the Look and Feel
of OPEN LOOK. Thus, there is the possibility of
having additional programming interfaces (in
addition to the three already mentioned) that have
been designed to meet a market requirement for
implementing the Look and Feel of OPEN LOOK.
One such additional interface is the OI Library
from Solbourne which has been designed for the
C++ market and is discussed further below.

What a user reads in the OPEN LOOK
Specification is exactly what the user will see on
the terminal. The user will not be able to
distinguish (and will probably not care) which
platform and OPEN LOOK toolkit programming
interface was used to develop the application. For
the user it is all the same, OPEN LOOK.

Let’s return now to OPEN LOOK product issues.
OPEN LOOK GUI Release 2.0 is the most recent
release of the OPEN LOOK X Toolkit. It builds on
the capabilities provided in OPEN LOOK GUI
Release 1.0, first released in March 1989. Without
changing the programming interface, it provides
the final Look and Feel defiped in the OPEN LOOK
Specification. It has reduced memory
requirements and performance improvements with
gadgets and flat widgets (more object-oriented by
not forcing each component to be window). It is
based on X Window System Version 11 Release 3
(X11R3); a later release will be based on X11R4.
It has an end user environment which includes the
applications Window Manager, Workspace
Manager, Terminal Emulator, Pixmap Editor,
Print Screen, and File Manager. The File Manager
provides a graphical user interface to the UNIX
System V file system and is the beginning of a
desktop metaphor.

The X Window System has been productised by
USL into XWIN. XWIN Release 3.0 is based on
X11R3 (a later release will be based on X11R4)
and contains many improvements over the public
domain X from MIT. XWIN Release 3.0 has
reduced memory requirements, many bug fixes, is
implemented on STREAMS, uses shared libraries,
provides a colour Terminal Emulator, and has

Voll2No 1

CHRIS SCHOETTLE

much improved performance.

NeWS has been released by USL in a merged
window system architecture with X, called
X11/NeWS*, Recognising that both X and NeWS
are client-server based window systems with
commonalities at the server level, X11/NeWS
contains a single merged server for both X and
NeWS. It can be thought of as a single room
containing such items as a common window tree
and event queue, but with two doors for entering,
one for the X Protocol and one for the NeWS
PostScript protocol.

The graphics products we have discussed are all
available now. All are included in either the
source code of UNIX System V Release 4, as a
separate bundled graphics product called Graphics
Services Version 2, or as separate individual
products.

The OPEN LOOK software has a consistent
approach to a GUI architecture. This is pictorially
represented in Figure 1. Here we have a platform
of UNIX System V Release 4 with XWIN and
X11/NeWS. At the level of the programming
interface, there are three OPEN LOOK toolkits. In
developing an application, a software developer
chooses the OPEN LOOK toolkit with the most
suitable programming interface,

OPEN LOOK End User
A}]’p. App. AI;P- Applications
2
OPEN LOOK | OPEN LOOK | OPEN LOOK Programming
X XView Nt Interface
Toolkit Toolkit Toolkit
XWIN and X11/NeWS
Platform
UNIX System V Release 4

Figure 1: OPEN LOOK GUI Architecture

Application 1 is most likely a new application
built at the Xt Intrinsics layer of X and so uses the
OPEN LOOK X Toolkit. Application 2 has
probably been recently converted from SunView
and so uses the OPEN LOOK XView Toolkit.
Application 3 could be a PostScript application on
NeWS and so uses the OPEN LOOK tNt Toolkit. A
different programming interface has been
designed to meet the design objectives for each of

Vol 12No 1

(EUUG

92

USL COLUMN

the applications. From the end user perspective it
is all the same, OPEN LOOK, just as it has been
defined in the OPEN LOOK Specification. Two
platforms, three toolkits, one Look and Feel - this
is the consistent approach of OPEN LOOK.

Before leaving, it is worth looking at the future of
OPEN LOOK. One of the most commonly asked
questions is in comparison to the Motif Toolkit as
to why USL doesnUt cancel OPEN LOOK and use
Motif. This is a question we asked both ourselves
and our customers in Autumn 1989. The internal
USL answer is clear; we feel OPEN LOOK is a
technically superior product with much to offer
the Open Systems marketplace. We could go
through a list of reasons here, but it would soon
become clear that there are not many major
differences to highlight. There are many smaller
differences, but even these are becoming less
obvious in ensuing releases of OPEN LOOK and
Motif.

OPEN LOOK Motif™ End User

Applications

Programming
Interface

X Window System

Platform

Figure 2

There are two primary differences that are worth
looking at between OPEN LOOK and Motif. One is
the different Look and Feel, but this is becoming
less of an issue as the market is recognising that
there are different market areas for different Look
and Feels and that this is even desirable. The other
difference is the programming interface. The three
OPEN LOOK toolkits have three different
programming interfaces by both design and
objective. The OPEN LOOK X Toolkit and the
Motif Toolkit are both widget sets at the Xt
Intrinsics layer of X, and there is no need for them
to have different programming interfaces. The
OPEN LOOK X Toolkit and the Motif Toolkit do
not have different programming interfaces by
design and objective, they have different
programming interfaces by accident.

AUUGN

USL COLUMN

The result is shown in Figure 2, where
Applications 1 and 2 have been developed with
the OPEN LOOK X Toolkit to use the OPEN LOOK
Look and Feel. If there is a need for Applications
1 and 2 to use the Motif Look and Feel, they have
to be ported to use the Motif programming
interface. This is unacceptable to software
developers and was agreed as the most significant
problem facing the X/Open Desktop Computing
Workgroup.

OPEN LOOK or Motif or ... ’ End User
App. App. Applications
i 2
.
Coumon AF1 Programming

oPENLOOK [777 ' - Interface
X Motif
Toolkit Toolkit

Platform

X Window System

Figure 3

To help resolve this situation, the IEEE P1201
standards group is working on defining a Common
API (Application Programming Interface) to OPEN
LOOK and Motif. Pictorially, the result should be
similar to Figure 3, where Application 1 and
Application 2 have been written to a single
Common API and can effectively toggle between
the OPEN LOOK and Motif Look and Feels,
without having to be ported. USL and UNIX
International fully support a Common API and are
helping to define a standard through the IEEE
P1201 forum. We would welcome support from all
interested parties.

While a Common API standard is being defined,
several companies have already made the strategic
decision of developing their own single
programming interfaces incorporating both OPEN
LOOK and Motif Look and Feels. One such
company is Solbourne which has developed the
OI Library, a single C++ interface which provides
the Look and Feel of both OPEN LOOK and Motif.
We consider software such as the OI Library from
Solboumne as proof of existence that a Common
APl is definitely feasible.

AUUGN

(EUUG

93

CHRIS SCHOETTLE

Going back to the original question: why is USL
continuing with the OPEN LOOK strategy? We
have already said that from an intemal USL
perspective we feel it is a better product, but what
do our customers think? After all, if our customers
do not want a product, then it takes little market
awareness to realise that we should not sell it. In
Autumn 1989 we asked our customers what they

thought about OPEN LOOK.
¢ Shipping Product:
AT&T CSB Quest Systems Corp. (S/ware)
AT&T USL (Software) Soibourne Computer, Inc.

Harris Corporation Sun Microsystems, Inc.

Quantum Software Systems Ltd

e Commitment;

Altos India Labtam

Amdahl Motorola

ARIX Olivetti

Commodore Pyramid

Fujitsu Sequoia

HCL L. SONY

ICL Tolerant Software (Software)
Intel TOSHIBA

INTERACTIVE (Software) Wipro

KonsultHusetData (Software)

Figure 4: OPEN LOOK GUI OEM Commitment

The answer has been a resounding response in
favour of OPEN LOOK. USL is keeping OPEN
LOOK because our customers asked us to. In
Figure 4 is a list of OEMs who have committed to
ship OPEN LOOK. In Figure 5 is a list of ISVs who
have committed to develop OPEN LOOK

applications.

With the future of OPEN LOOK decided, USL is
now working on that future. OPEN LOOK will
follow the path determined in UNIX International
and in standards organisations such as X/Open
and IEEE P1201.

USL is now developing intemationalisation
capabilities in OPEN LOOK. We are doing this in
conjunction with UNIX International companies,
such as Fujitsu. A prototype of a future OPEN
LOOK internationalisation product is now being
made available to UNIX Intemnational companies.

It is straightforward to realise that Graphical User
Interfaces will be an imprtant part of the future of
the UNIX Operating System. OPEN LOOK is very
much a part of that future with UNIX System V.

Voll2No 1

Figure 5: OPEN LOOK GUI ISV Commitment

CHRIS SCHOETTLE [EUUGJ USL COLUMN

¢ Existing Applications: Lanson-Davis

Bristol Group (Fax Software) Ingres (DEMS Interface) Lotus (Spreadsheet)

Elan (Text Processing) VersaSoft (1BASE Workalike) Memex Information (E-pub)

EXOC (Prototyping Tools) Visual Edge (UIMS) Metcet Research (CIM)

Ficor (Business Graphics) MicroFocus (Dev Environment)
Micronim (Database)

[Developing Product: Mihalism Associates (Visualisation)

Advanced Software Automation (CASE) Natural Language (CASE)

ADAPTI (Financial) Natural Language (Database)

Answer Computer (CASE) Netlabs Inc. (Networking/Comm)

Arbor Text (E-pubs) Numerical Design (Visulisation)

Ashton-Tate {Database) Oracle Corp (Database)

Auto-Desk (Arch/Engr) P-Stat (Data Analysis)

BBN (Data Analysis) | Quintus (A)

Bristol Group (Visualisation) Reasoning Systems (CASE)

Conceptual Structures (E-pubs) Research Systems Inc. (Visulisation)

Control Data (Education) Saber Software (CASE)

Convergent Solution (Database) SAS (Data Analysis

Crosswind Systems (Office Auto) SCO Inc. (Visualisation)

Cullinet/CA (Database) Sherrill Lubinski (Visualisation)

Digital Solutions Inc. (Financial Svsc) SoftQuad (E-pubs)

Entropic speech (Signal Processing) Softscience (CASE)

Expert Object Corp (CASE) Sybase (Database)

Gateway Design (Electronic Design) Systemn Strategics Ltd (Interface)

Georgetown University (Medical) UNICAD (CASE)

Graphic Software Systems Inc. Unify Corp. (Database)

H.T. Graphics (Financial Services) University of Pennsylvania (Medical)

IDE (CASE) V-Systems Inc. (Fax Software)

Information Builders (Focus - DBMS) Wolfram Research (Data Analysis)

Informix (Database) WordPerfect (Text Processing)

IXI (Desktop)

Name Change

UNIX System Laboratories Europe Ltd, formerly
AT&T UNIX Software Operation Europe, has
responsibility for the sale and marketing of UNIX
System V and associated products throughout
Europe. The company is a subsiduary of UNIX
System Laboratories Inc, a wholly owned
subsiduary of AT&T.

Vol 12No 1

94

All the UNIX trademarks that were formerly
owned by AT&T have been transferred to USL
Inc. These include UNIX, TUXEDO, OPEN LOOK,
XWIN, Writers Workbench, Instructional
Workbench and Documenters Workbench.

They are registered trademarks of the UNIX
System Laboratories Inc in the USA and other
countries.

AUUGN

(EUUG] MARK RAFTER

C++ COLUMN

C++ Column

Mark Rafter
rafter@warwick.uucp

Warwick University

Mark Rafter is a lecturer in Computer Science at Warwick University. He
has been using C++ in research and teaching since Jan 1985. At present his
research interests involve the use of parameterised classes and multiple

inheritance to build a class library for use in hyperbolic geometry.

The Annotated C++ Reference Manual,
Margaret A. Ellis and Bjame Stroustrup,
Addison-Wesley,

ISBN 0-201-51459-1,

(UK) Hard cover Price £31.45,

UK publication date: late August 1990

The book starts:

. ““This book provides a complete language
reference manual for the expert C++ user.’’

This is accurate!

It is a comprehensive statement of what C++ is,
why it is the way it is, why it isn’t the way itisn’t,
how its parts relate to each other, how the
language relates to its cousins, how aspects of the
language can be implemented, and where the
language is heading.

The book is not introductory or tutorial in nature —
it contains no complete programs and no
explanation of how the various language
constructs should be used in producing well
structured software. It is not aimed at the novice
or the casual C++ programmer. It is a reference
manual for language specialists, C++ experts and
for serious users of C++ that wish (or need) to
obtain a complete grasp of the language.

The book contains the current definition of the
C++ language and is the document that ANSI
have taken as the starting point for the C++
standardisation work. It has 18 chapters in 408
pages, a 39 page index and is extensively cross-
referenced. It is organised as an expanded form
of the C++ Language Reference Manual that was
distributed with release 2.1 of C++ from AT&T.

AUUGN

(This, in turn, is a corrected form of the Draft C++
Reference Manual that was distributed with
release 2.0 — which in its turn started life as the
Reference Manual chapter (pages 245-311) of
Stroustrup’s previous book "The C++
Programming Language").

Each section of the AT&T 2.1 C++ Reference
Manual expands to become a chapter in the book.
These chapters combine three types of material:
the r1eference manual proper, commentary
interwoven with this reference material, and major
discussions which are placed at the ends of
chapters. The typesetting clearly distinguishes
commentary from the reference material upon
which it is commenting.

The reference material proper is almost exactly
the same as the material in the AT&T 2.1 C++
Reference Manual (the differences are discussed
below). Taken by itself this material is dry and
leaves the interested reader asking many questions
of the form "Why does the language allow this
rather than that?",

The interwoven commentary answers many of
these questions where they naturally occur,
sometimes including examples of the
consequences of alternative design choices. This
will often cause readers to react: "Oh! I hadn’t
thought of that."

The commentary often presents examples of
languages constructs in the form of program
fragments together with explanatory text. Among
many other things, the commentary is used to
emphasise important points, to highlight fine
distinctions, to draw the reader’s attention to

95 Voll12No 1

Vol12No 1

MARK RAFTER

implications that may be easy to overlook, to
clarify points in the reference material that may be
thought to be ambiguous or vague, to give
examples of things that are not in the language, to
discuss the relationship to ANSI C, Classic C and
earlier variants of C++, to discuss implementation
issues, and occasionally to orient the the less-
experienced reader.

Major discussions are placed at the end of thirteen
of the chapters. These include discussions of the
history of the language, its design philosophy,
portability considerations and future languages
features. Also covered are implementation
techniques for overloaded functions, pointers-to-
members and multiple inheritance. Much of this
material has been published elsewhere, some of it
is of independent interest — almost all of it is
necessary for a deep understanding of the
language and its spirit.

Templates and Exception Handling are the future
language features. They are neither part of the
language definition nor of any widely available
implementation. Two chapters composed entirely
of commentary describe the current proposals in
these areas.

Earlier this year I had gone through the 2.0 Draft
Reference Manual with a fine tooth comb, so I
was familiar with a previous version of the
unannotated material. That had been done in a
“‘random access’’ fashion and had been hard
work,

When I picked the up the book I was a bit daunted
by its size, but in fact about 50% of it is
explanatory commentary. The interweaving of
commentary and reference material seems to have
kept my attention far better that the raw reference
material had done previously. I found that I could
quite happily read from the front to back without a
lot of page thrashing for forward and backward
references. I attribute this in part to the careful
location of the commentary which is full of
interesting items and relevant examples.

The language itself has been cleaned up in places.
For example, initialisers for references must not
introduce temporaries so a reference-to-int can no
longer be initialised with the constant 1 you must
use a reference-to-const-int here instead. This is
an important change and it naturally provokes the
question: "How does my C++ system relate to the
language defined by the book?". Of course this is
not a question that the book should answer — each

96

C++ COLUMN

implementation must answer it, preferably by
relating it to the language definition reference
material in the book.

For AT&T C++ 2.0, the major differences from
the book are:

« the introduction of true nested classes,
o deleted arrays no longer specify their length,
e typedefs and enumerations nest within classes,

o initialisers for references must not introduce
temporaries,

e a pointer to constant may not be deleted,

e protected base classes are allowed,

e default constructors may have default

arguments,

o the increment and decrement operators may
have distinct prefix and postfix definitions.

At present there is no implementation of C++ that
fully implements the language defined by the book
— AT&T C++ 2.1 comes close but does not
implement the last three changes. However, the
Release Notes that accompany AT&T C++ 2.1 are
recommended reading. These give an extremely
clear statement of the relationships between
AT&T's 1.2, 20 & 2.1 Ilanguages and
implementations, and how migration from 2.0 to
2.1 will be managed.

Unfortunately, the AT&T C++ 2.1 Language
Reference Manual is not quite identical to the
reference material contained in the book — for
example see 8.2.2 (arrays of references). In all
cases where I checked it was the book that was
correct.

I finished the book with a better understanding of
the language than I bad started with, This is due
in part to the cleanup the language has undergone,
but it is mainly due to the strengths of the book
itself. It is well organised, contains very few
typos, and is well produced. The major
commentaries gather together important material
that has been scattered through the literature and
the interwoven commentary transforms the
important, but dry, reference material into a hard,
but interesting, read. Almost all the target
readership will learn something from this book —
most will leamn a lot.

AUUGN

C++ COLUMN

STOP PRESS

News has just reached me that the ANSI C++
standardisation committee has voted to accept the
changes to C++ enshrined in the "Annotated C++

[EUUG]

MARK RAFTER

Reference Manual" into the draft standard. In
addition the chapter on templates has also been
accepted.

1% @:: A Directory to Electronic Mail Addressing and Networks Second

Edition, 1990

The new 1990 edition of !%A:: A Directory of
Electronic Mail Addressing and Networks, by
Donnalyn Frey and Rick Adams is now available.
This new edition provides readers with a directory
and usage guide to approximately 130 of the
world’s research and educational networks, as
well as commercial networks. The network
information has been updated for 1990, with many
new networks added. The directory makes it easy
for readers to find networks they can use to reach
other people around the world and guides readers
in how to use them. It also assists readers in
finding someone’s email address and sending
mail. The book is in an easy-to-use short
reference format.

The directory is of use to system administrators
who field electronic mail questions, network
administrators who work with networks in other
countries, researchers who want to get in touch
with other researchers, conference attendees with
many contacts, and others who routinely send
email. Each network section contains general
information about the network, as well as address
structure and format, connections to other sites or
networks, facilities available to users, contact
name and address, cross references to other
networks, network architecture, future plans, date
of the last update, and a map showing the network
location. Also included is a three-way index to
network name, network type, and country, as well
as a list of many of the world’s second and third
level domains.

This new edition contains:

» information on new networks such as
AlterNet, CANET, CA*net, EASInet,
InterEUnet, IXI, MFENET-II, TUVAKA,

XLINK, and YNET
» updated information on networks that are
reorganising or have reorganised, such as
BIONET, ESNET, MFENET, NYSERnet, and
OnTyme

AUUGN

97

o information on networks in the Soviet Union,
Eastern European countries, and the People’s
Republic of China

 networks not in the first edition, such as ATT
Mail, KREOnet, and SCIENCEnet

o updates of most of the existing networks
described in the first edition which was
published in 1989.

Many networks have had significant service or
architecture changes, as well as new network
connections or connections to new computers
since publication of the first edition. For example,
AARNet, the new major Australian network, was
in the planning stages when the first edition of the
book was published. AARNet is now a functioning
network with connections both within Australia
and to other countries. As another example, the
Canadian national TCP/IP network, CA*net did
not exist in 1989. CA*net is beginning operations
in 1990 and soon will be the major network in
Canada.

Small, but significant changes occurred in many
other networks, changes such as new higher-speed
lines, new connections in the country, and more,
For example, mcvax, the major central networking
computer for EUnet in Europe, was renamed
mcsun. In many cases, network administrators
had changed, so the authors provide new contacts.
The authors include the new connections to the
Soviet Union, Eastern Europe, and the People’s
Republic of China. Many of the connections
existed before for private use. Now, the
connections are open and people are encouraged
to contact colleagues in these countries.

This new edition is the most up-to-date guide for
directing your electronic mail; it is a real time
saver. The book will continue to be updated every
ten to twelve months. Readers who fill out the
response card in the book have the option of either
receiving notification of updates or receiving the
updated edition automatically at a 25% discount.

Voll2No 1

{EUUG] DOMINIC DUNLOP

REPORT ON ISO/IEC JTC1/5C22/WG15 (POSIX)

Report on ISO/IEC JTC1/SC22/WG15 (POSIX)

Dominic Dunlop
domo@tsa.co.uk

The Standard Answer Ltd

Dominic Dunlop, an inveterate busy-body who likes to see order in all things
— except on his desk-top — has been making a nuisiance of himself in UNIX
“standardization forums since the early nineteen-eighties, when he got tired of
the needless differences between the many systems that were targets for his
software porting activities. He would have gone to the recent UKUUG
conference in London, and to the POSIX meeting in Danvers, but was busy
getting married at the time...

Report on ISO/IEC JTC1/SC22/WG15 (POSIX) Meeting of 11th — 15th June,

Vol 12No 1

1990, Paris, France

Introduction

Working Group 15 of Subcommittee 22 of Joint
Technical Committee 1 of the International
Organization for Standardization and the
Intemational ~ Electrotechnical ~ Commission
(ISO/IEC JTC1/SC22/WG1S5), or, more briefly, the
ISO POSIX working group, met in Paris, France,
from the 12th to the 15th of June. The meeting
was hosted by AFNOR, (Association frangaise de
normalisation), the French national standards
body, at its offices in La Déefense, a high-rise
business district a brsk train-ride away from the
city centre, and was preceded on 11th June and
the moming of the [2th by meetings of the
rapporteur groups on conformance testing,
intermationalization and security. Attendance was
good, with thirty ‘‘experts’’ (as the ISO Directives
style us) representing nine countries, plus the
European Community.

I was present at the main meeting and at the
internationalization rapporteur group as an
observer with the brief of reporting back to you.
This report is the fourth jointly commissioned by
the European UNIX systems User Group (EUUG)
and USENIX. As usual, it’s a little imprecise in its

98

references to ISO. Strictly, most of these should
be to JTCI1, or to some part of JTCl. Where
precision is needed, I use it and give an
explanation, but for the most part I refer simply to
ISO, so as to avoid getting bogged down in
unnecessary detail. If you have any comments, or
need clarification or further information, please
contact me at the mail address above.

First, a summary of the most important aspects of
the meeting:

Summary

o POSIX.1, the operating system interface
standard, should be published as international
standard 9945-1 Real Soon Now. As I write,
the ballot on the document has yet to close,
but it seems unlikely that any of the twenty
countries voting will oppose acceptance. The
meeting identified a number of trivial editorial
changes to the current draft international

. standard, and these, taken together with
continuing nit-picking comments from ISO’s
central secretariat, should result in a document
which ISO will print. Its technical content will
be very close to that of

AUUGN

DOMINIC DUNLOP

ANSI/IEEE Std. 1003.1:1988, so implementors
following the U.S. standard can be assured of
ISO compliance when 9945-1 finaily sees the
light of day.

« POSIX.2, the shell and tools standard, faces a
bumpier ride before becoming international
standard 9945-2. In an ISO ballot on
acceptance of draft 9 of IEEE 1003.2 as a draft
international standard, six countries voted
against, with just five in favour. This is more
of an embarrassment than a set-back:
hindsight suggests that it was just too early to
hold a ballot.

Showing its increasing concern and frustration
at the lack of apparent progress within the
IEEE on a (programming) language-
independent version of the POSIX operating
system interface standard, WG15 has refused
to ‘‘register’’ the current, largely language-
independent, draft of the 1003.4 realtime
extensions standard on the grounds that it
makes little sense to have language-
independent extensions to a base standard
which is specified in terms of the C language.
Similarly, the group failed to register 1003.5
(Ada binding) and 1003.9 (FORTRAN-77
binding) because POSIX.1 lacks an explicit
service definition to which they can bind.

« The failure to register these documents causes
a hiccup — albeit a discreet one — in the
synchronization between IEEE and ISO POSIX
standardization schedules. In the hope of
avoiding such situations in the future, an
informal ‘‘speak now, or forever hold your
peace’’ mechanism has been put in place,
allowing the international community to
comment on the subject area, format,
presentation and approach of IEEE documents
at an early stage in their preparation.

Had it not been for this upset, the working
group would have adopted a firm
synchronization plan so as to ensure that the
work of IEEE and of ISO is closely coordinated
in the future. As it is, the ‘‘U.S. member
body’’ —— ANSI — has been asked to provide a
revised plan for the working group’s October
meeting in Seattle.

« The Open Software Foundation, UNIX
International and X/Open are cooperating on a
common approach to conformance testing,
known as Pheenix. Govemmental

AUUGN

[EUUG

REPORT ON ISO/IEC JTC1/SC22/WG15 (POSIX)

organizations with a strong interest in ‘the
field, such as the National Institute for Science
and Technology (NIST) and the Commission
of European Communities (CEC), seem
broadly to welcome this move — even if the
unaccustomed show of tripartite unity is, as
one security rapporteur put it, ‘‘a bit spooky’’.

» At an evening reception hosted by AFUU
(Association frangaise des utilizateurs
d’UNIX), the French UNIX users’ group, Mike
Lambert of X/Open said that ‘“‘our hand is
extended’’ to the intemational standardization
community, with which his organization hopes
to work in finding some more timely and
responsive way of delivering formal
consensus standards for open systems. The
definition of this mechanism is left as an
exercise for the reader — or for the
international standards community. Perhaps
Mike has come to realize that standardisers
too are prone to the Not Invented Here
syndrome, and so must believe that they
thought of something themselves before they
can accept it.

Just to keep us all on our toes, ISO has updated
its Directives, with the result that the
procedure for turning a base document —
such as one of the IEEE drafts — into an
international standard is subtly changed. We
now have to forget about Draft Proposals, and
turn our minds instead to Working Drafts and
Committee Drafts. Sigh...

The rest of this report gives more detail most of
these topics.

9945-1 — Operating System
Interface

You may recall from my report of WGI1S5’s last
meeting in October, 1989, that the group had in
effect told ISO’s central secretariat that, while the
then-current draft of IS 9945-1 was not perfect, it
was, in the group’s opinion, good enough to
publish, particularly since we’d undertake to fix
things up on short order, allowing an improved
version to be published within a year of the first
edition.

. This proposal did not fly. Firstly, the central

secretariat (now dynamically known as ITTF, the
Information Technology Task Force), refused to
publish a document that looked much more like an
IEEE standard than an ISO standard; secondly,

99 Voll2No 1

Vol12No 1

REPORT ON ISO/IEC ncx/sczzlwms (POSIX)

they deemed the changes needed to polish up the
draft to be sufficiently great that it should go out
to ballot again in order to provide a formal check
that it was still acceptable to the group. This was
duly done; the ballot closed on 29th June, and is
expected to pass very comfortably.

Nevertheless, the ballot gave people the
opportunity to comment formally on the document
again, with the result that a number of small bug-
fixes and clarifications were suggested, and were
accepted for incorporation into the draft. We
judge — and we hope that ITTF agrees — the
changes are strictly editorial, and so will not merit
yet another ballot. ITTF, which, in discussion with
the IEEE, had slightly bent its drafting and
presentation rules so as to come up with a
compromise satisfactory to both parties, also
suggested further changes, some in areas that we
thought had already been addressed. This is a
cause for concem: the prospect of the standard
never being published because its layout and
language do not meet some ill-defined guidelines
does not appeal. Consequently, we are seeking
““written harmonised editorial requirements’’
from the IEEE and ITTF.

The ballot also produced a number of suggestions
in the area of internationalization, such as how to
handle (and indeed, how to refer to) wide, or
multi-byte, characters. To have acted on these
comments would have changed the technical
content of the draft standard — the equivalent of
sliding down a snake in the game that leads to
eventual publication. Happily, those who
suggested the changes were content to leave these
issues for the second edition of the standard,
rather than further delay the first edition.

The single exception that we could get away with
was to replace Annex E’s’ example international
profile for the hypothetical (and extremely odd)
land of Poz with a real example for the (only
slightly odd) country of Denmark. Although this
is a large change, it can be made because the
annex (ISO-speak for appendix) is ‘‘non-
normative’’; that is, it-is an explanatory example
rather than a part of the official standard.

Messaging, an issue which is currently exercising
the minds of those concemed with the next edition

I. This material is not in the published IEEE std. 1003.1:1988.

100

DOMINIC DUNLOP

 of the 1003.1 standard!"), was also passed over by
~WGI15: nobody had a strong preference for either
‘the X/Open proposal or the UniForum proposal,

so 1003.1 will have to handle the issue without
guidance from from the ISO working group.

Where all does this leave us? With no published
international standard as yet, but with a very good
prospect of having one this year. Until it arrives,
keep using the bilious green book, IEEE
std. 1003.1:19882, as its technical content is very
close to that of the eventual ISO standard®.

9945-2 — Shell and Tools

Earlier in the year, there had been a ballot on
moving forward draft proposal (DP) 9945-2, Shell
and utility application interface for computer
operating system environments, to become a draft
international standard (DIS). Basically, while a
DPis allowed — even expected — to differ
considerably from the international standard
which ultimately results, a DIS is expected to be in
a format and to have contents which are very
close to those of the ultimate standard®. That the
ballot was six against to just five for (with nine
countries not voting) indicates that the consensus
is that 9945-2 has to go through quite a few more
changes before it can be acceptable as an
international standard.

Many of these changes concern
internationalization, as this topic affects POSIX.2
considerably more than POSIX.1. For example,
the example Danish national profile to be
incorporated into 9945-1 is just a part of the work
that DS (Dansk Standardiseringr&d) has done on
the topic; the rest affects 9945-2. There is also an
unresolved issue conceming the definition of
collation sequences (sorting orders) for

2. You can buy a copy by calling IEEE customer service on
+1908 981 1393 (1 800 678 IEEE inside the U.S.) and
giving them a credit card number, The cost is $37, plus $4
for overseas surface mail, plus another $15 for airmail.
Alternatively, your national standards body may be able to
sell you a copy. For example, BSI in the UK. has them for
sale at £24,

3. A new edition of ANSI/IEEE 1003.1, to be published this
year, will be identical in technical content to the ISO
standard.

4. DP9945-2 is the last that we will see: under the new
directives, DPs are no more; they are replaced by working
drafts (WDs), which become committee drafts (CDs) before
becoming DISs. This is not a big deal.

AUUGN

DOMINIC DUNLOP

international character sets. Utilities such as sort
clearly need to know about collation sequence,
and so do the regular expression-handling utilities
and functions defined by POSIX.2. The problem is
that nobody in ISO seems to want to handle the
matter, In particular, JTC1/SC2, which
standardises coded character sets, sees its job as
assigning codes to characters, not as saying
anything about how those codes should sort>,
This is a reasonable attitude: collation is a
surprisingly complex field, and to attempt to cover
it in coded character set standards would break the
ISO rule of one topic, one standard. This is all

very well, but 9945-2 needs somebody to do the
work, and WG15 may end up doing it itself if
pleas for help from elsewhere in ISO fail.

More work is on the way: 1003.2a, the User
Portability Extension to POSIX.2, was registered
for ballot as a Proposed Draft Amendment
(PDAM) to DP 9945-2, giving the international
community a chance to say what it thinks of the
idea of standardizing interactive commands such
as v and language processors like cc — or rather
¢89.

Coordination

The coordination arrangements which will make
[EEE and ISO work on POSIX march forward in
lock-step were almost complete before the small
international rebellion on the matter of language
independence made us stumble. (See below.)
Because WGI15 failed to register 1003.4, 1003.5
and 1003.9 at this meeting, the plan must be
adjusted, although little slippage should result.
We'll try to jump on board the revised plan at the
next meeting.

Internationalization

In the one and a half days before the main
meeting of WGILS5, its three rapporteur groups
met. [attended the internationalization meeting,
which had a hectic time of it: as the only
rapporteur group directly concemned with the
current content of 9945-1 and -2, we had a lot of
comments to sift through pror to the main
meeting. This we did, by the skin of our teeth.

5. For oblique confimation from ‘‘the father of ASCI"", see
21

AUUGN

[EUUG

REPORT ON ISO/IEC JTC1/8C22/WGI5 (POSIX)

Our conclusions are largely reflected in the
actions on the two drafts, reported above.

Security
The security rapporteur group is just getting off
the ground. As with intemationalization,

activities scattered throughout JTC1 have to do
with security. But in contrast to the current
situation for internationalization, for security there
is a (very new) subcommittee, SC27.
Conceivably, SC27 could define some all-
encompassing 1SO security model® which would
not suit POSIX and the work of 1003.6, which is
eventually to be integrated into the 9945
standards. The rapporteur group is doing all that
it can to prevent this from happening. Happily,
ISO is already aware of the issue, and has formed
a special working group on security, to which
WG 15 will be sending a representative.

Conformance Testing

The proceedings of the rapporteur group on
conformance testing were rather overshadowed by
the announcement of Project Pheenix. Quite from
what ashes this has risen we did not leamn;
however, as it involves cooperation between the
Open Software Foundation (OSF), UNIX
International and X/Open, it is difficult to resist
the temptation to speculate. But resist I shall...

The goal of Pheenix is to develop a common
conformance testing suite and methodology for
the three organizations, or, to put it another way,
to harmonize their activities in this area.
Harmonization of standards for open systems is an
important issue for WGI15 in general. The issue
affects the rapporteur group on conformance
testing in particular because the European
Community and NIST are giving a high priority to
accrediting test houses which can check
conformance to open systems standards. This
means that they need to ensure that uniform test
methods are being consistently applied. The
rapporteur group will address this issue at its next
meeting. In the mean time, WG15 has registered
the current draft of the first part of 1003.3, which
describes general test procedures, and we will

6. 1SO likes models, and they're not without their uses. Work
on a useful model for open systems is under way in several
forums.

101 Voll2 No 1

Vol 12No 1

REPORT ON ISO/IEC JTCI/sC22/WG15 (POSIX) — CGIIED

review it before our next meeting — despite the
fact that there is as yet no well-defined route by
which POSIX.3 can become an intemational
standard.

Language Independence

The issue of a making the POSIX standards
independent of any particular computer language
came to the fore at this meeting. What’s all the
fuss about? Well, ISO has firm — and, in my
view, sensible — ideas about how to write
standards which define the services available from
information processing systems. Building on the
doctrine that one standard should address just one
topic, there should be, says ISO, one document
defining the service, and one or more documents
describing ways of accessing that service. For
example, a browse through the open systems
interconnection standards reveals several
groupings such as IS 8072, Transport Service
Definition and IS 8073, Connection oriented
transport protocol specification; and 1S 8649,
Service definition for the Association Control
Service Element, and 1S 8650, Protocol
specification for the Association Control Service
Element’. Similarly, in text communication, there
is IS 9066-1, Reliable transfer — model and
service definition and IS 9066-2, Reliable transfer
— protocol specification, and in graphics,
IS 7942, Graphical Kernel System functional
description and IS 8651-1 through -3 giving GKS
language bindings for FORTRAN, Pascal and Ada.
(8651-4, giving bindings for C, is in the works.)

POSIX, ISO has ordained, must eventually go
along with this model, with the result that
IS 9945-1, -2, and -3 (Operating system interface,
shell and utilities, and administration respectively)
will be’ concemed simply with defining services,
and will not be bound to any particular
programming language. The key word here is
‘‘eventually’’: because of the pressing need for an
intermational standard for POSIX, a waiver has
been granted, allowing the first version of the
9945-1 and -2 standards to be a combination of
(purists might say ‘‘a collision between’') a
service definition and a C language binding to

7. Browsing through OSI standards may be a cure for
insomnia. On the other hand, it may aggravate
hypertension...

102

DOMINIC DUNLOP

those services, The expectation is that a future
revised new edition of each standard will be
language-independent, and that bindings for the C
language will be published as a separate standard
at the same time®,

So far, so good. But this is where the problems
start. While this mandated future appears a long
way off if one looks at the IEEE’s work on
POSIX.1, it seems very close when POSIX.4
(realtime extensions), POSIX.5 (Ada bindings) and
POSIX.9 (FORTRAN-77 bindings) are considered.
In the case of POSIX.4, language-independent
extensions are being proposed for a standard
which is not itself (yet) language-independent.
And POSIX.5 and POSIX.9 define bindings to a set
of services which is not explicitly defined, but
rather is defined implicitly in terms of the binding
to the C language given in POSIX.l. In the
absence of a clear service definition, it is no
surprise that, for good reasons which have to do
with their respective languages, the Ada, C and
FORTRAN versions of the operating system
interface appear currently to be binding to slightly
different sets of services.

To some, the whole issue of language
independence seems like an unnecessary and
irksome imposition by ISO. In a recent posting to
comp.std.unix®, Doug Gwyn wrote:

[Those of us who worked on
1003.1] did NOT set out to create a
language-independent standard; C
was specifically chosen for the
obvious reason that it was the
SOLE appropriate language for
systems-level programming on
UNIX, for a variety of reasons,
including the fact that the UNIX
kemel has a marked preference for
being fed C data types.

It is certainly true that, because, back in 1985, all
the base documents for the IEEE POSIX work were
written in terms of a C language interface, the
working group made a good pragmatic decision to

8. Under ISO’s procedures, the bindings standards for POSIX
will be allocated an ISO standard number just as soon as we
register a base document for one of them. Until that
thappens, I shall have to refer to ‘‘future bindings
standards’’, rather than having a convenient number to use
as a handle.

AUUGN

DOMINIC DUNLOP

produce a standard centered on C. A different
decision would have resulted in the standard
which took longer to get out of the door, and
which would not have been any more useful to its
primary audience — committed UNIX users
concemmed with the divergence among
implementations of their chosen operating system.
But the success of UNIX and of its offspring,
POSIX, has greatly widened the audience for the
standard, Whether we like it or not, ISO has
revisited the original decision s0 as to ensure that
the international standards for POSIX meet the
needs of this new audience. As a result (to
continue quoting from [3]):

This ‘‘language binding’’ nonsense
was foisted off on P1003 in an
attempt to meet ISO guidelines. I
think it must have been adopted by
ISO as the result of Pascal types
insisting that they never have to
use any other language.

Countering this, I would contend that, while the
number of ‘‘Pascal types’’ is too small for their
opinion to be of prime concemn, the number of
FORTRAN types, COBOL types and perhaps even
of Ada types is large enough that it would be at
least polite to provide some well-defined means
whereby these communities can create bindings
which allow them to hook into POSIX services
without having to leam a new programming
language. In the future, the growing G+
community may decide to define the interface to
POSIX services in an object-oriented manner,
Steve Carter paid us a flying visit with news from
the ANST X3J16 G+ committee in order to open
up channels of communication.

Consider another topic which has come to the fore
as POSIX has moved into the international arena:
internationalization — mechanisms which will
allow non-English speakers to use POSIX-
compliant systems without having to leamn a new
patural language. Like the current movement
towards separating service definitions from
bindings, this involves a considerable amount of
work, yet does not appear to provide much that is
of use to UNIX’ original community of technical
users. Accommodating the preferences
(prejudices?) of ever greater numbers of people is,
it seems to me, part of the price of success for the
UNIX operating system. And it may well pay
dividends. For example, intemationalization work
on regular expressions and collating has resulted

AUUGN

ams

REPORT ON ISO/IEC ITC1/SC22/WG15 (POSIX)

in facilities which will be of use even to English
speakers.

Returning to the matter of the programming
language used for bindings, it is true that AT&T-
derived UNIX implementations prefer a diet of C
data types. However, it certainly was an aim of
1003.1 to allow hosted POSIX implementations,
which might well be riding on underlying
operating systems with entirely different tastes.
As a topical example, lightweight kemels such as
Chorus and Mach live on messages, suggesting
that their services could be bound to a data stream
encoding’. 1 suspect that anybody who has tried
to make ioctl() work across a network wishes that
UNIX had anticipated their needs by following
such a model from the start. But it didn’t, and to
redefine it in these terms would be a large piece of
work which (thankfully) is a long way beyond the
scope of WGI35.

There is no way in which all such requirements
could have been anticipated, and accommodating
the most important of them as the need arises

inevitably = causes pain. Both language
independence and internationalization are
unanticipated requirements which the

international community wants retrofitted to
POSIX on short order. And it’s ANSI, as provider
of the base documents to ISO, and the IEEE, as the
body accredited by ANSI to produce the
documents, that get beat on to do the real work,
and to suffer the pain.

In the view of WGIS5, the real work needed to
make POSIX.! a logical base for extensions such
as POSIX.4, POSIX.5 and POSIX.9 is not being
done fast enough. Trouble is, all standards are
produced by volunteers — often volunteers who
have had to make a case to their managements
that there’s some percentage in their company
being involved in standards work. There is
clearly an eventual percentage in language
independence for suppliers of POSIX-conformant
systems if it encourages users of languages not
traditionally found on UNIX systems to migrate to
POSIX. But sadly, while not in any way

9. More ISO-speak: broadly, if you have a protocol that lives
above layer five (session) of the OSI stack, you'd better call
it a data stream encoding. For example, the protocol for the
X Window System™ is a data stream encoding by this
definition.

103 Vol12No 1

Vol 12No 1

REPORT ON ISO/IEC JTC1/5C22/WG15 (POSIX)

criticizing the quality of the work done to date,
there aren’t enough IEEE volunteers interested in
recasting POSIX.1 into language-independent
form,

Maybe, just maybe, if the international
community is more interested than the U.S. in
getting this work done, WGL5 should encourage
more people from outside the U.S. to participate
actively and directly in the work of the IEEE. (Os,
to put it another way, encourage more
organizations outside the U.S. to put their hands
more deeply into their pockets in order to pay for
people to attend IEEE POSIX working group
meetings.) The alternative is that WG15 does the
work itself — an alternative I'd rather not
contemplate.

For now, two action items on ANSI from WGIS5
sum up the situation:

Pursue with vigour the production
of a language-independent version
of both 9945-1 and P1003.4 in
conjunction with a C language
binding for each in order that they
are eligible as replacements for
9945-1:1990.

Request the IEEE to expedite the
completion of the language

10. In two meetings, WG 15 has managed to clash both with
summer USENIX and with autumn EUUG. It almost looks
as if we do it on purpose! But we don’t, and will try to do
better next year...

(EUUG]

104

DOMINIC DUNLOP

independent specification of 9945-
1 that is precisely functionally
equivalent to the existing 9945-
1:1990 and provide a C language
binding that is syntactically and
semantically identical; and request
that a detailed proposal status
report on this issue including a

synchronization = proposal be
presented at the next meeting of
WGIS.

Next Meeting

The next meeting of WG15 is in Seattle from 23rd
to 26th October — the week after the IEEE POSIX
working group meeting in the same city (and the
same week as the EUUG meeting in Nice,
France'®). Should be interesting!

References

1. June, 1990 Standards Update, Jeffrey S.
Haemer, comp.stdunix Volume 20,
Number 66, USENIX, 30 June 1990

2. Letter from R. W. Bremer, pp 34-35, Byte,
volume 15, number 6, June 1990

3. Doug Gwyn, comp.std.unix Volume 20,
Number 51, USENET, 27 June 1990

AUUGN

PUZZLE CORNER (EUUG] MICK FARMER

Puzzle Corner

Mick Farmer
mick@cs.bbk.ac.uk

Birkbeck College

Mick is a lecturer at Birkbeck College (University of London) and the
Secretary of the UKUUG. His interest is in all aspects of Distance Leaming
and he is the Senior Consultant (Software) for LIVE-NET, an interactive
video network connecting London’s colleges. He is also a member of the
University's VLSI Consortium, mainly because the design tools draw such

pretty pictures.
Hello peeps, expansion, tending to hold the tile in place. The
centre of expansion is 1.361" (0.12785 /0.9397 x
Solution to Puzzle Number 12 10) below the top of the tile. On expansion the
The force pressing the tile against the roof is 2 x centre of the ule»6m0ves down 0'00109. @ -
o : . N 1.361) x 6 x 107 x 50). On contraction, the
cos 20° and, as the coefficient of friction is 0.5, L "
. . . centre of contraction is 1.361" from the lower end
the total frictional force at incipient motion is 0.5 .
o . of the tile and the centre creeps down an
x 2 % cos 20°, or 0.9397 lbs. The force causing " " . s
S X o additional 0.00109" making the daily movement
sliding is 2 x sin 20°, or 0.6840 Ibs. 0.00218"

10in
Solution to Puzzle Number 13

To fully utilise the toaster, both sides must do an
0° equal share of the work. Three sides of the bread
slices must be toasted on each side of the toaster:

Figure 1 — The Creeping Roof Tile
0.00-0.05 Put A slice in left

When thermal expansion causes motion with 0.05-0.10 PutB slice in right

respect to the roof, the total frictional resistance of 0.55-0.57 Tumslice A

0.9397 lbs. must be developed, yet in general the 0.60-0.65 Remove slice B

tile will not move so that the overall force is 0.65-0.70 Putslice C in right

0:6840 Ibs. These conditions are met if the 1.07-1.12 Remove slice A to plate (done)
difference (02557 le) occurs half in one 1.12-1.17 Put slice B (SCCOHd Side) in left
direction and half in the other. Thus a frictional 1.20-1.22 Tum slice C

resistance tending to shove the tile down the roof 1.67-1.72 Remove slice B (done)

of 0.12785 1bs. is developed on the heating cycle 1.72-1.77 Remove slice C (done)

by the part of the tile above the centre of
expansion. This is opposed by a frictional force
of 0.81185 1bs. (0.6840 + 0.12785), developed on
heating, by the part of the tile below the centre of

AUUGN 105 Voll2No 1

MICK FARMER

Challenging Quickies

For this issue, a slight change in format for the
puzzles. You're invited to keep track of the time
taken to reach the solution of these three quickies.
This should not exceed five minutes each, since
they are chiefly a test of mental agility in finding
the best short-cut to the answer,

Puzzle Number 14

A 1" cube has its outline constructed out of wire
whose resistance is one ohm per inch. What is the
resistance between opposite comers of the cube?

Puzzle Number 15

Vol 12No 1

(EUUG J

PUZZLE CORNER

Suppose I think of a number whch you are to
determine by asking me not more than twenty
questions, each of which can be answered by only
"yes" or "no". What is the largest number I
should be pemitted to choose so that you may
determine it in twenty questions?

Puzzle Number 16

Why must a house whose rooms each have an
even number of doors also have an even number
of outside entrance doors?

* Loads-a-puzzles,

106

Mick

AUUGN

COLSTON SANGER

(EUUG

CALL DOC STRANGE

Call Doc Strange

Colston Sanger
doc.strange@gid.co.uk

GID Ltd

Three months have passed and Colston Sanger is still 2 senior consultant/tea
boy with GID. He’s also still a visiting lecturer in the Faculty of Engineering,
Science and Mathematics at Middlesex Polytechnic. So what’s new?
Nothing really, except that he’s been editing a book with Tony Elliman of
Brunel: Open Systems for Europe: towards 1992 (Chapman & Hall,

forthcoming).

We Are Under Attack!

Err..yes, well. Following an incident at a
gateway machine near me, it seemed like a good
idea to discuss system security. Not at the usual
Jevel of ‘Here are a thousand Berkeley bugs that a
bored undergraduate cracker might be ingenious
enough to use to break your system’, but at the
much more mundane level of the thousand and
one silly things that system administrators
themselves do that compromise the security of

Ahkkhkhkkhkkh*k qwerty AhkAhkkkhkhkkkhkkk

uucp gwerty
uucp gwerty

fred gwerty
uucp gwerty

(6/16-15:36:44,10868,0)
(6/16-15:36:57,10868,0)
-—> qwerty!/usrl/bloggs/rje/.sixnine.
(6/16-15:36:57,10868,0)
(6/16-15:37:41,10868,0)

their systems. What I have to say is likely to be
no more than plain common sense, and is aimed
primarily at people who are relatively new to
UNIX running a standalone System V machine
with, at most, a dial-up connection to the outside
world: people who administer large networks of
Sun workstations are likely to find this stuff ‘old
hat’, but not irrelevant.

Let me start at the beginning, with an extract from
Captain’s Log for Saturday, 16 June: !

OK (startup)

REMOTE REQUESTED
pw
PERMISSION
REMOTE REQUESTED (sixnine!/usr/lib/

(fred))
(DENIED)

uucp/Systems —-> qwerty!/usrl/bloggs/rje/.sixnine.sys (fred))

fred gwerty
uucp gwerty

I picked this up in the evening when mail
messages generated by the standard System V
yucCp admin daemons (specifically,
/usr/lib/uucp/uudemon.admin and
/usr/lib/uucp/uudemon.cleanu un
from root’s crontab file) showed up in my
mailbox.; Parenthetically, I also noticed that the

1. In what follows, all names have been changed to protect
guilty parties.

AUUGN

(6/16-15:37:41,10868,0)
(6/16~-15:37:56,10868,0) OK (conversation complete ttyll 76)

107

PERMISSION (DENIED)

gateway’s modems were rather busy that evening.

Now, I know who ‘fred’ really is and, as it
happens, 1 had asked him the day before to send
me a couple of files from his machine, which is
hidden behind the gateway. So my first response,
in all innocence, was to send him a somewhat
laconic mail message:

Voll12No 1

(sixnine!/etc/passwd

COLSTON SANGER

PELUG)

CALL DOC STRANGE

From colston Sat Jun 16 23:24:10 1990

Subject: You don’t *honestly* think...

fred@gwerty
Sat,

To:
Date:

Fred,

16 Jun 90 23:24:10 BST

297

Why do you want sixnine’s passwd and /usr/lib/uucp/Systems files?
Haven’t you updated uipido since the great 071/081 changes?

Colston

Minutes later, on second thoughts, I cancelled it.

Next moming, Sunday, I called him at home. No,
he hadn’t requested any such thing ... At that
point, I rang the gateway’s system administrator
and, to cut a long long story short, he spent most
of a sunny Sunday afternoon in the office. As for
fred, regardless of whether he had a password
before, he certainly had one on Monday morming,.

The incident is trivial in itself. The cracker wasn't
able to get anything from my system, first because
of normal UUCP permissions (in
/usr/lib/uucp/Permissions) let alone
file access permissions and, secondly, because I
run AT&T System V Release 3.2 which
implements a shadow password scheme.
However, what happened to me also happened to
all the other systems with which the gateway has
links — with, I hasten to add, the same null result.
That’s not to say no result. Over the next several
weeks, but mainly at weekends, the cracker tried
repeatedly to gain access (all logged in
/usr/adm/loginlog), disrupted dial-up
communications and generally behaved like a sort
of electronic lager lout — not so much your
ordinary ‘breaking and entering’ style of cracking,
more like malicious vandalism. Much more
important, the incident caused a lot of irritation
and embarrassment for the system administrator
and the organisation concemned.

So, apart from the fact that at least one cracker out
there has also been reading Clifford Stoll’s The
Cuckoo's Egg,” what are the lessons to be leamed
from the incident?

2. London (The Bodiey Head), 1989, ISBN: 0 370 31433 6.
Strongly recommended and a good read too.

Vol 12No 1

108

Using And Choosing Passwords

First, it’s not really a good idea to have user logins
on a gateway machine. If you can, regard your
gateway as a sort of ‘fire-door’ between the
outside world and your operational systems. If
you must have user logins for mail-stops or mail
forwarding, then make sure they are blocked (with
a ‘*’ or some other uncryptable string in the
password field in /etc/passwd) or have
reasonable passwords.

What is a reasonable password? It’s certainly not
‘fred’, ‘wumpus’, ‘sh*thead’ (without the
asterisk), ‘susan’, ‘jennifer’ or any of the other
common choices.® These are all Berkeley
passwords, but the System V-mandated ‘fred01’ is
hardly any better.

There are lots of DON'T’s in the literature for
choosing passwords:

e don’t use your login name or your first or last
name in any form (reversed, capitalised,
doubled, etc)

e don’t use your significant other’s or child’s
name

3. See Danicl V Klein, ‘Foiling the Cracker: A Survey of, and
Improvements to, Password Security’, UKUUG Summer
1990 Conference Proceedings, London, 9-13 July 1990, pp
147-54. Klein reports the results of a password cracking
exercise on a sample database of 15,000 accounts: ‘21%
(nearly 3000 passwords) were guessed in the first week,
and ...in the first 15 minutes of testing 368 (or 2.7%) had
been cracked...On an average system with 50 accounts in
the /etc/passwd file, one could expect the first account
to be cracked in under 2 minutes, with 5-15 accounts being
cracked by the end of the first day.’ He adds: ‘Even though
the root account may not be cracked, all it takes is one
account being compromised for a cracker to establish a
tochold in a system.’

AUUGN

CALL DOC STRANGE

o don't use easily obtainable information about
yourself, such as your telephone, car
registration or social security number or the
name of the street where you live.

DO’s, on the other hand, are a little harder to come
by. Some good choices for passwords are:

o the first letter of each word from a line of a
phrase, song or poem. For example, ‘Ten
green bottles standing on the wall’ becomes
‘10gbsotw’; and ‘You think I'm stupid?’
becomes ‘Utlams?’; ‘On the first day of
Christmas’ becomes ‘OtidoC’ — but you can
make them up just as well as I can.

e two short words concatenated with one or
more punctuation marks. For example,
‘mad-+beef’ or ‘Me?Mug?’.

« alternate between one or two consonants and
vowels plus punctuation marks or numbers to
make pronouncable, nonsense words. For
example, ‘ekapitog++’ or ‘zatoich!’.

Note that just because a password must have at
Jeast six characters, that doesn’t mean it can only
have six characters. Although only the first eight
characters are significant, the longer a good
password is, the harder it is to crack.

Whether you use password aging is up to you (in
UNIX/386 it is on by default). Personally, I would
encourage people to change their passwords from
time to time, but not actually enforce it with
password aging. Being faced with ‘Your
password has expired. Chcose a
new one.’ while still only half awake doesn’t
strike me as being conducive to choosing a good
password.

Ore final point: in a commercial environment, the
object of attack is as likely to be the financial
director as it is root.

Physical Security

In System V, machines come up to the
initdefault state, defined in
/etc/inittab as either 2 (mult-user) or 3
(Remote File Sharing) so there is never that
window of opportunity of single-user mode on the
system console.

Then again, intermal crackers can only login
directly as root, should they discover the
password, on the system console: on all other
attached terminals they must login as themselves

AUUGN

[EvuG

109

COLSTON SANGER

and then suto root — which means that there
will be a record in the /usr/adm/sulog file.
Even if they are unsuccessful, a record is still
written to the file. If they try to su to another
ordinary user, a record is written to the file. So
you can investigate, can’t you?

People who leave their terminals logged in while
they go off to the pub at lunchtime or, even worse,
leave their terminals logged in ovemight or over

- the weekend are a menace: they deserve all they

get by way of idle or time-out daemons.

As for the external cracker, take care with modem
setup: misconfigured modems can fail to logout a
user when the line drops — hence the next person
dialling in, whoever they may be, can continue
with the previous user’s login session. (Be
especially careful if you are logging in from home
and su-ing to root to do remote system
administration!)

Know Your System

I've talked in a previous column about a system
administrator’s basic toolkit:* half a dozen
commands — who -u, /etc/whodo,
ps -ef or ps -efl, df and sar — that if
you get into the habit of running periodically
throughout the day you can use to anticipate and
head off problems before they become serious.
Even a simple 1s -al is useful for discovering
all sorts of anomalies in the filesystem.

System accounting, sometimes used for charging
people extortionate amounts of money, can
equally well be employed for getting a feel for
what is the ‘normal’ state of affairs on your
machine, as well as for load balancing and
detecting minor breaches of company policy such
as playing rogue or wanderer during office
hours. More on system accounting later.

One of the irritating things about System V is that
there’s no one place where log files are kept: you
have to look in /usr/adm for some,

4. ‘UNIX Clinic: No space on integral hard disk drive 0,
partition 0', EUUGN, Vol.9 No.1 (Spring 1989); pp 63-68.

Voll12No 1

COLSTON SANGER (EUUG CALL DOC STRANGE

/usr/lib/cron for others,
/usr/spool/uucp/.Admin for yet others
and so on. I'm not sure if it’s any better in System
V Release 4.0 or in Berkeley UNIX, but at least
there you’ve got syslogd. However, it’s quite
easy to make a simple-minded shell script to keep
track of these things, such as the following:

check_log

Checks various log files for incursions/exceptions
ADMIN=colston

tail /usr/adm/loginlog | mailx -s "Loginlog Check" S$ADMIN
tail /usr/adm/sulog | mailx ~-s "Sulog Check" $ADMIN

Some of these will be reported by the UUCP daemons anyway
cat /usr/spool/UUCP/.Admin/Foreign | mailx -s "Who this?" S$ADMIN
cat /usr/spool/UUCP/.Admin/errors | mailx -s "Trouble with UUCP" $ADMIN
cat /usr/spool/uucp/.01d/0Old-Log-1 | mailx =-s "UUCP Log" S$ADMIN

For smail - if you’re that concerned
tail /usr/spool/uucp/mail.log | mailx -s "Mail.log Check" S$ADMIN

Who’s printing what
tail /usr/spool/lp/logs/requests | mailx -3 "Print jobs" $ADMIN

You’ll need to run it out of the root crontab logins that get status or error messages by mail) to
at a suitable time each night. be forwarded to yourself.

It is also a good idea to arrange for mail to root, As for the really basic things, you should be aware
adm, lp, uucp (and any of the other system of the setuid and setgid executables that are

intended to be there. You can find them with:

find / -type £ \(-perm -4000 -o -perm -2000 \) -print

Similarly, you can find files and directories that If the cracker has succeeded in breaking and

are writable by others (some shouldn’t be) with: entering, acctcom (part of the system
accounting sub-system) invoked without any

find - -2 -pri . ; .
ind / -perm print options can give you a complete action replay of

I guess that it would be as well to check the all commands issued on your machine. With
permissions on devices too — both in /dev and, options, you can narrow down the search and the
if there are any, elsewhere. sheer bulk of output, as in:

And If You Are Attacked? acctcom -S 22:00 -u fred

Don’t fool about pretending to be Europe’s where the -S option selects processes starting at
answer to Dick Tracy. Enforce user password or after 22:00 hours and the -u option is the
changes immediately and change your UUCP user.’

passwords. Very likely, your UUCP neighbours

will also want to change the password that you

use when calling them. If you are faced with

persistent denial of service attacks — like the . -)
malicious vandalism I spoke of earlier — you may 5. l(:::::rr‘s;,t;cncl:f sophisticated cracker than fred might not
want to consider having the telephone numbers of

your modems changed as well.

Vol12No 1 110 AUUGN

CALL DOC STRANGE

Here is some sample output:

START AFT:

COMMAND START
NAME USER TTYNAME TIME

who fred tty2l 22:06:01
who fred tty2l 22:06:04
df fred tty2l 22:06:06
ps fred tty2l 22:06:10
date fred tty21 22:06:16
su fred tty21 22:06:22
who fred tty2l 22:08:10
sar fred tty2l 22:08:15
1s fred tty2l 22:08:21
cat fred tty2l 22:08:34
sh fred tty2l 22:08:50
#uucp fred tty2l 22:08:50
uustat fred tty2l 22:09:00

At the same time, if the damage is at all serious,
you might as well brace yourself for a talk with
‘the management’. (I know, nobody enjoys the
sight of headless chickens running about, but they
are going to find out sooner or later anyway.)
Better find your distribution set and latest backup
too, in case you have to do a complete reload.

What Do You Do If root Leaves?

What do you do if root leaves and you have to
un the system yourself until you can find a
successor?

First, don’t start treating him or her as a potential
criminal. After all, you are going to need help to
understand how your system works. Before he or
she leaves:

e go through /etc/passwd together so that
you know who each login is

e similarly, go through
/usr/lib/uucp/Systems so that you
know and understand why you need dial-up
links with each of the systems listed there

« have him or her explain how any customised,
locally developed or third-party bits and
pieces work from a system administration
point of view.

After he or she leaves:
» change the root and other system passwords

e arrange to change UUCP passwords.

AUUGN

Fri Jul 20 22:00:00 1990

(EUUGJ

COLSTON SANGER
END REAL CPU MEAN
TIME (SECS) (SECS) SIZE (K)
22:06:01 0.36 0.19 3.26
22:06:04 0.25 0.16 3.88
22:06:06 0.33 0.22 4.43
22:06:12 2.52 0.59 1.59
22:06:16 0.22 0.11 5.82
22:06:24 2.88 1.28 0.77
22:08:10 0.33 0.20 4.20
22:08:17 2.82 0.72 1.69
22:08:21 0.67 0.37 4.32
22:08:36 2.95 0.26 2.46
22:08:50 0.16 0.11 22.00
22:08:51 1.39 0.62 2.29
22:09:01 1.30 0.50 2.88

111

Security Is Your Responsibility

Let me end with a quotation from Computer
Weekly, a UK trade paper, reporting on the first
reading of the Computer Misuse Bill currently
before the UK Parliament:

Computer owners with unreliable or insecure
systems could face compensation claims for
damage caused to individuals and an investigation
by the Data Protection Registrar.

It goes on to quote the Labour Member of
Parliament, Mr Harry Cohen:

“If we accept the premise implicit in the ...
Computer Misuse Bill that computers have a
special role in the running of our society and it is
an offence to misuse a computer, we should also
accept that a computer owner must have an
obligation to take proper computer security
precautions.’’

Bedtime Reading

The classic papers by Dennis Ritchie, ‘On the
Security of UNIX’ and Robert Morris and Ken
Thompson, ‘Password Security: A Case History’,
often reprinted as part of the supplementary UNIX
System documentation, are still well worth
reading; as is F.T.Grampp and R.H.Morris,
‘UNIX Operating System Security’, AT&T Bell
Laboratories Technical Journal, Vol.63 No.8 Part
2 (October 1984), pp 1649-1672. Most of the
books on system administration have a chapter on
security: Rebecca Thomas and Rik Farrow, UNIX
Administration Guide for System V, Englewood
Cliffs, NJ (Prentice Hall), 1989, ISBN 0-13-

Voll2No 1

COLSTON SANGER

942889-5 is as good as any and also has a useful
chapter on system accounting; and Evi Nemeth,
Garth Snyder and Scott Seebass, UNIX System
Administration Handbook, Englewood Cliffs, NJ
(Prentice Hall), 1989, ISBN 0-13-933441-6 covers

[EUUG

CALL DOC STRANGE

Berkeley variants as well, The book on security is
Patrick Wood and Stephen Kochan, UNIX System
Security, Hasbrouck Heights, NJ (Hayden), 1985,
ISBN 0-8104-6267-2 only available in
hardback and expensive, but worth it.

Unix for Users,
C D F Miller, R D Boyle, A J Stewart, Blackwell
Scientific Publications, ISBN 0-632-02416 (UK)
Price 12.95 UK Pounds, Soft Back, 250 pages
including index,

Reviewed by Kelly Dunlop of Parliament Hill
Computers Limited kelly@phcomp.co.uk

The blurb on the back of this book says it is
intended "chiefly for readers who have not
encountered Unix before" and as such it is a
reasonably good book.

it starts off with a simple explanation of what is
an operating system and what is Unix for users
who are not familiar with computers. It then has a
short section which basically says there are lots of
systems out there that are called *IX and for the
purpose of the book most of them can be classed
as Unix. They explain they will try and point out
where differences occur in the different varieties
of Unix but this is not an easy thing to do and they
do fall down in a few places. I like the comment
"There are also several claimants to the title of
Unix-like system which are, frankly, too far
removed from Unix to deserve the name."

There is a section which describes 'special
characters” and this includes the delete character.
It is a common mistake among new users to
assume because the delete character is backspace
on one machine it will be the same on every other
one. It is nice to see a book explain that it is
simply a setup feature and it may be different on
each machine. The book then progresses to
logging into Unix.

It then describes some simple commands to get
started using Unix. These include cat, Is, rm, cp
and mv. It also tells you how to help yourseif on a
Unix system (if someone has installed the on-line
manual pages of course) by using the man
command.

Vol 12 No 1

I would have thought pwd and cd belonged here
but they are saved until the chapter describing
files and directories. This is where they belong
but maybe the order of chapters should have been
such that the files and directories were explained
first.

Now we move on to editing files and a chapter

~ explaining the difference between ex and vi. It

describes quite well how to go about creating a
file using vi and how to edit it using example files.
The command summaries are laid out in tables
which makes them easy to find at a later date.

Next comes the chapter about Files, Directories
and Users which describes directories, the tree
structure of the Unix file system, protection modes
and the super-user. This is well laid out and goes
through things in an ordered manner.

There are a couple of fairly lengthy chapters
describing the use of the Bourne Shell and C Shell
as command and programming languages
followed by a chapter on more advanced
commands. The information contained in then
could be found in the Unix manual set but is much
easier to digest in this form

The rest of the book describes topics which I feel
are more advanced and would be better tackled
after the user has gained some experience with the
commands he has already learnt.

Included here are C and the Unix Interface,

Administration and Maintenance, Text
Processing, Other Software, and
Communincations and Networking. = What

concerns me is that a new user will pick up this
book, race through it and assume he knows all
there is to know about Unix.

Having said that it is one of the better books I

have seen. The only criticism is that maybe it

112

goes too far, too fast. It would be useful in an
organisation where the "real" users have no time
to train new users (common in many places), as a
first step onto the Unix ladder.

AUUGN

AUUGN Back Issues

Here are the details of back issues of which we still hold copies. All prices are in Australian
dollars and include surface mail within Australia. For overseas surface mail add $2 per copy and
for overseas airmail add $10 per copy.

Back issues are available only to current members or subscribers.

pre 1984

1984

1985

1986

1987

1988

1989

1990

(Note 2-3 and 4-5 are combined issues)

Vol 1-4 various

Vol 5 Nos. 2,3,5,6
Nos. 1,4

Vol 6 Nos. 2,3,4,5,6

’ No. 1

VYol 7 Nos. 1,4-5,6
Nos. 2-3

Vol 8 Nos. 1-4
Nos. 5,6

Vol 9 Nos. 1,2, 3
Nos. 4,5, 6

Vol 10 Nos. 1-6

Vol 11 Nos. 1-4

$5 per copy

$5 per copy
unavailable

$5 per copy
unavailable

$5 per copy
unavailable

unavailable
$5 per copy

$5 per copy
$5 per copy

$5 per copy

$5 per copy

Please note that we do not accept purchase orders for back issues except from Institutional
members. Orders enclosing payment in Australian dollars should be sent to:

AUUGN

AUUG Inc.

Back Issues Department
PO Box 366
Kensington NSW
Australia 2033

113

Vol 12No 1

Vol 12No 1

AUUG Membership Categories

Once again a reminder for all “members” of AUUG
to check that you are, in fact, a member, and that you still
will be for the next two months.

There are 4 membership types, plus a newsletter
subscription, any of which might be just right for you.

The membership categories are:
Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for
university departments, companies, etc. This is a voting
membership (one vote), which receives two copies of the
newsletter. Institutional members can also delegate 2
representatives to attend AUUG meetings at members
rates. AUUG is also keeping track of the licence status of
institutional members. If, at some future date, we are able
to offer a software tape distribution service, this would be
available only to institutional members, whose relevant
licences can be verified.

If your institution is not an institutional member, isn’t
it about time it became one? Ordinary memberships are
for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A
primary difference from Institutional Membership is that
the benefits of Ordinary Membership apply to the named
member only. That is, only the member can obtain
discounts an attendance at AUUG meetings, etc. Sending
a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at
recognised academic institutions. This is a non voting
membership which receives a single copy of the
newsletter. Otherwise the benefits are as for Ordinary
Members.

Honorary Life Membership is not a membership you
can apply for, you must be elected to it. What’s more, you
must have been a member for at least 5 years before being

114

elected.

It’s also possible to subscribe to the newsletter
without being an AUUG member. This saves you nothing
financially, that is, the subscription price is greater than
the membership dues. However, it might be appropriate
for libraries, etc, which simply want copies of AUUGN
to help fill their shelves, and have no actual interest in the
contents, or the association.

Subscriptions are also available to members who have
a need for more copies of AUUGN than their
membership provides,

To find out if you are currently really an AUUG
member, examine the mailing label of this AUUGN. In
the lower right comer you will find information about
your current membership status, The first letter is your
membership type code, N for regular members, S for
students, and I for institutions. Then follows your
membership expiration date, in the format exp=MM/YY.
The remaining information is for internal use.

Check that your membership isn’t about to expire (or
worse, hasn’t expired already). Ask your colleagues if
they received this issue of AUUGN, tell them that if not,
it probably means that their membership has lapsed, or
perhaps, they were never a member at all! Feel free to
copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your
membership, you will find forms in this issue of
AUUGN. Send the appropriate form (with remittance) to
the address indicated on it, and your membership will
(re)}commence,

As a service to members, AUUG has arranged to
accept payments via credit card. You can use your
Bankcard (within Australia only), or your Visa or
Mastercard by simply completing the anthorisation on
the application form.

AUUGN

AUUG Incorporated
Application for Institutional Membership
Australian UNIX" systems Users’ Group.

*UNIX Is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary « Foreign applicants please send a bank draft drawn
PO Box 366 on an Australian bank, or credit card authorisation,
Kensington NSW 2033 and remember to select either surface or air mail.
Australia

This form is valid only until 31st May, 1991

.. does hereby apply for
O New/Renewal” Institutional Membership of AUUG $325.00

[] International Surface Mail $ 40.00
[] International Air Mail $120.00
Total remitted AUD$

. (cheque, money order, credit card)
Delete one.

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time

to time, and that this membership will run for 12 consecutive months commencing on the first day of the

month following that during which this application is processed.

I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: [/ / Signed:
Title:

0O Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

NEt ADAIESS: .ovevreie i eeeeerr e s reseanans

Write “‘Unchanged’’ if details have not

altered and this is a renewal.

Please charge $ to my/our [] Bankcard [] Visa [J Mastercard.

Account number: . Expiry date: __/
Name on card: Signed:

Office use only: Please complete the other side.
Chq: bank bsb - alc #

Date: | |/ $ CCoype _ V#

Who: Memberit

AUUGN 115 Vol 12 No 1

Please send newsletters to the following addresses:

Name: ..., Phone: ... (bh)

AQArESS: ..o e (ah)
""""""""""""""""""""""""""""" Net Address:ccoeeeeevvceecceec e,

Name: ..., - Phone: ..., (bh)

AAIESS: ..o e (ah)

..
..

Write “‘unchanged’’ if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate

any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

J System V.3 source O System V.3 binary
[J System V.2 source O System V.2 binary
[0 System V source O System V binary
[System III source O System III binary

0O 4.2 or 4.3 BSD source
O 4.1 BSD source
O V7 source

[0 OthEr (IAGICALE WHICH) .oovevevveneeeeeeverrnrineresesssesssessssssssessssesesesssessssssssseans

Vol 12 No 1 116

..

AUUGN

AUUG Incorporated
Application for Ordinary, or Student, Membership
Australian UNIX" systems Users’ Group.

‘UNIX is a registered trademark of AT&T In the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

. o Please don’t send purchase orders — perhaps your
AUUG Membership Secretary purchasing department will consider this form to be an
PO Box 366 invoice.
Kensington NSW 2033 « Foreign applicants please send a bank draft drawn on an
Australia Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
This form is valid only until 31st May, 1991
PP P PP PP do hereby apply for
O Renewal/New Membership of the AUUG $78.00
* .
1 Renewal/New Student Membership $45.00 (note certification on other side)
[] International Surface Mail $20.00
[] International Air Mail $60.00 (note local zone rate available)
Total remitted AUD$
. (cheque, money order, credit card)
Delete one.

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.

Date: [/ [/ Signed:

0 Tick this box if you wish your name & address withheld from bmailing lists made available to vendors.

For our mailing database - please type or print clearly:

NEt ADAreSS: ovvveirieieieiiii e evrr e eeese s eeaaiia s

Write “‘Unchanged’’ if details have not

altered and this is a renewal.

..

Please charge $ tomy [] Bankcard [J Visa [J Mastercard.
Account number: . Expiry date: _ /.
Name on card: Signed:

Office use only:

Chq: bank bsb - alc #
Date: | | $ CCtype __ V# _
Who: Memberi

AUUGN 117 Vol 12 No 1

Student Member Certification (to be completed by a member of the academic staff)

L e et e e e bbb e b sb e be st et s eabentenbetonaen certify that
.. (name)
1S @ TUll tME STUAEIIL AL uviivvieiieieeie it cecteeceeceeeeeereeeseeeesaeeesseessseensssesassessssessssssessees (institution)

and is expected to graduate approximately /[[.

Title: Signature:

Vol 12 No 1 118 AUUGN

AUUG Incorporated
Application for Newsletter Subscription
Australian UNIX" systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this

form and return it to:

) « Please don’t send purchase orders — perhaps your
AUUG Membershlp Secretary purchasing department will consider this form to be an
PO Box 366 invoice. 1 4 s bank deaf
. « Foreign applicants please send a draft drawn on an
Kensmgton NSW 2033 Australian barnk, or credit card authorisation, and remember
Australia to select either surface or air mail.

o Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

This form is valid only until 31st May, 1991

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

NEt AdAreSS: .oeveeiieeeeeieei e eereee e ee e

Write “‘Unchanged’’ if address has

not altered and this is a renewal.

For each copy requested, | enclose:

[] Subscription to AUUGN $ 90.00
[] International Surface Mail $ 20.00
[] International Air Mail $ 60.00

Copies requested (to above address)

Total remitted AUD$
(cheque, money order, credit card)
0O Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $ to my [] Bankcard [] Visa [] Mastercard.
Account number: . Expiry date: __/
Name on card: Signed:

Office use only:

Chgq: bank bsb - alc #
Date: | | $ CCtype _ V#
Who: Subscr#

AUUGN 119 Vol 12 No 1

AUUG

Notification Qf Change of Address
Australian UNIX systems Users’ Group.

tUNI)(Is a registered trademark of AT&T in the USA and other countries.
If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
PO Box 366

Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)
NAIME! ..ottt seesesesesrssens o s o 1107 1 OO (bh)
AQAIESS: c.vviiveeeeeerrrsieerererersrsrssesesesessesssossnsssssssessie ereesesesreseseresesesssesasnsnsesesesseossenesesaens (ah)

..
..
..

..

New address (leave unaltered details blank)

NAME: ..ottt esesese s serssssnsesesenenens PhODNE:oceveereerieeeeeeecetcrce et (bh)
AQAIESS:cvviirirenercernrirneennnesesesssssssssesnssesssnsnsssnsss ereeeeesesretss s s eseensesesens (ah)
Net AJAIESS: .ovvvveevereenreerenenreieereereserereseesnenens
Office use only:
Date: [

Who: Memb#

Vol 12 No 1 120 AUUGN

