
ISSN 1035-7521

Australian UNIXsystemsUser GroupNewsletter

Volume 12, Number 4/5

October 1991

Registered by Australia Post, Publication Number NBG6524

The AUUG Incorporated Newsletter

Volume 12 Number 4/5

October 1991

CONTENTS

AUUG General Information . . . ~ 3

Editorial 5

AUUG Institutional Members ¯ : 7

President’s Report 9

Minutes of AGM 11

Financial Statement 15

AUUG 1992 Summer Conference Series 21

Open System Publications 22

ACSnet Survey 23

Plan 9, A Distributed System 26

Realtime UNIX: Fact or Fiction? 33

Making Real Use of a PC 41

The NeXT Computer - an Australian Perspective 44

The NeXT Developer Camp 46

On Semaphores for UNIX 47

An SNMP Stereo System 52

From ;login - Volume 16, Number 2 56

An Update on UNIX-Related Standards Activities56

From ;login - Volume 16, Number 3 61

Book Review 61

Programing in PERL 61

An Update on UNIX - Related Standards Activity63

From the EurOpen Newsletter - Volume 11 Number 378

X11 Releae 5 Now Available 78

USLE Column 80

Book Reviews 84

X Toolkit Intrinsics Programming Manual OSF/Motif Edition84

X Window System User’s Guide OSF/Motif Edition84
AUUGN 1 Vol 12 No 4/5

MH & xmh, E-mail for Users and Programmers85
Management Committee Minutes - 5th AUGUST 199186

SESSPOOLE 97
AUUG Membership Categories 98

AUUG Forms 99

Copyright © 1991 AUUG Incorporated. All rights reserved.

AUUGN is the journal of AUUG Incorporated, an organisation with the aim of promoting knowledge and
understanding of Open Systems including but not restricted to the UNIX system, networking, graphics,
user interfaces and programming and development environments, and related standards.

Copying without fee is permitted provided that copies are made without modification, and are not made or
distributed for commercial advantage. Credit to AUUGN and the author must be given. Abstracting with
credit is permitted. No other reproduction is permitted without prior permission of AUUG Incorporated.

* UNIX is a registered trademark of UNIX System Laboratories, Incorporated

Vol 12 No 4/5 2 AUUGN

The AUUG Incorporated Newsletter

Volume 12 Number 4/5

October 1991

CONTENTS

AUUG General Information 3

Editorial 5

AUUG Institutional Members 7

President’s Report 9

Minutes of AGM 11

Financial Statement 15

AUUG 1992 Summer Conference Series 21

Open System Publications 22

ACSnet Survey 23

Plan 9, A Distributed System 26

Realtime UNIX: Fact or Fiction? 33

Making Real Use of a PC 41

The NeXT Computer - an Australian Perspective 44

The NeXT Developer Camp 46

On Semaphores for UNIX 47

An SNMP Stereo System 52

From ;login - Volume 16, Number 2 56

An Update on UNIX-Related Standards Activities56

From ;login - Volume 16, Number 3 61

Book Review 61

Programing in PERL 61

An Update on UNIX - Related Standards Activity63

From the EurOpen Newsletter - Volume 11 Number 378

X11 Releae 5 Now Available 78

USLE Column 80

Book Reviews 84

X Toolkit Intrinsics Programming Manual OSF/Motif Edition84

X Window System User’s Guide OSF/Motif Edition84
AUUGN 1 Vol 12 No 4/5

MH & xmh, E-mail for Users and Programmers85

Management Committee Minutes - 5th AUGUST 199186

SESSPOOLE 97

AUUG Membership Categories 98

AUUG Forms 99

Copyright © 1991 AUUG Incorporated. All rights reserved.

AUUGN is the journal of AUUG Incorporated, an organisation with the aim of promoting knowledge and
understanding of Open Systems including but not restricted to the UNIX system, networking, graphics,
user interfaces and programming and development environments, and related standards.

Copying without fee is permitted provided that copies are made without modification, and are not made or
distributed for commercial advantage. Credit to AUUGN and the author must be given. Abstracting with
credit is permitted. No other reproduction is permitted without prior permission of AUUG Incorporated.

* UNIX is a registered trademark of UNIX System Laboratories, Incorporated

Vol 12 No 4/5 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

Phone: (02) 361 5994
Fax: (02) 332 4066

General Correspondence

All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

Phone: (02) 361 5994
Fax: (02) 332 4066
Email: auug@munnari.oz.au

AUUG Executive

President Pat Duffy
pzd30@juts.ccc.amdahl.com
Amdahl Pacific Services Pty. Ltd.
1 Pacific Highway
North Sydney NSW 2000

Rolf Jester
rolf .jester@ sno.mts.dec.com
Digital Equipment Corporation

(Australia) Pty. Ltd.
P.O. Box 384
Concord West NSW 2138

Vice-President

Treasurer

Chris Maltby
chris@softway.sw.oz.au
Softway Pty. Ltd.
79 Myrtle Street
Chippendale NSW 2008

Frank Crawford
frank@atom.lhrl.oz.au
Australian Supercomputing Technology
Private Mail Bag 1
Menai NSW 2234

Committee
Members

Andrew Gollan
adjg @ softway.sw.o z.au
Softway Pty. Ltd.
79 Myrtle Street
Chippendale NSW 2008

Peter Karr
Computer Magazine Publications
1/421 Cleveland Street
Redfern NSW 2016

Glenn Huxtable
glenn@cs.uwa.oz.au
University of Western Australia
Computer Science Department
Nedlands WA 6009

Michael Tuke
mjt@anl.oz.au
ANL Ltd.
432 St. Kilda Road
Melbourne VIC 3004

Scott Merrilees
Sm@bhpese.oz.au
BHP Information Technology
P.O. Box 216
Hamilton NSW 2303 -

AUUGN 3 Vol 12 No 4/5

AUUG General Information

Next AUUG Meeting
The AUUG 1992 Summer Conference Series are to be held between February and April 1992 (see later in
this issue for more details).

The AUUG’92 Conference and Exhibition will be held from the 8th to the 1 lth of September, 1992, at the
World Congress Centre, Melbourne.

Vol 12 No 4/5 4 AUUGN

AUUG Newsletter

Editorial
Firstly, I would like to apologise for the slight delay in publishing this issue (deadlines for contributions
seem not to be taken too seriously). Note the deadline for the next issue given below, also in that issue I
will publish the deadlines for 1992 issues of AUUGN.

Since the last issue we’ve had the AUUG’91 Conference, which I’ve been told was a great success,
unfortunately I was unable to attend due to family commitments. Pat Duffy’s comments on it in the
Presidents report. Also included in this issue are the minutes of the Annual General Meeting, which took
place at the conference, the financial statement and the Plan 9 paper as promised. A number of other local
papers are also included in this issue together with some inclusion from affiliate organisations which will
be of interest to AUUG members.

Book reviews have been started again, hopefully a number of reviews will appear in the next issue of
AUUGN. Dave Newton (dave@teti.qhtours.oz.au) is the new book review editor. Anyone interested in
reviewing books please contact Dave by e-mail or via the secretariat.

Finally, if you are working in the area of Open Systems, you surely come across interesting information for
others. Why not write it up and submit it? I am always willing to help get it in a suitable format for
pdnting.

Jagoda Crawford

AUUGN Correspondence
All correspondence regarding the AUUGN should be addressed to:-

AUUGN Editor
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

E-mail: auugn@munnari.oz.au

Phone: +61 2 543 2552
Fax: +61 2 543 5097

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the next
issue is Friday the 6th of December, 1991.

Contributions should be sent to the Editor at the above address.

I prefer documents to be e-mailed to me, and formatted with troff. I can process ram, me, ms and even
man macros, and have tbl, eqn, pic and grap preprocessors, but please note on your submission which
macros and preprocessors you are using. If you can’t use troff, then just plain text or postscript please.

Hardcopy submissions should be on A4 with 30 mm left at the top and bottom so that the AUUGN footers
can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. Advertising rates are $300 for the first A4 page, $250 for a second page,
and $750 for the back cover. There is a 20% discount for bulk ordering (ie, when you pay for three issues
or more in advance). Contact the editor for details.

AUUGN 5 Vol 12 No 4/5

Mailing Lists
For the purchase of the AUUGN mailing list, please contact the AUUG secretariat, phone (02) 361 5994,
fax (02) 332 4066.

Back Issues
Various back issues of the AUUGN are available. For availability and prices please contact the AUUG
secretariat or write to:

AUUGN Inc.
Back Issues Department
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

Also please note that the prices for back issues published in AUUGN Vol 12 No 1 are incorrect.

Acknowledgement
This Newsletter was produced with the kind assistance of and on equipment provided by the Australian
Nuclear Science and Technology Organisation.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of AUUG Incorporated, its
Newsletter or its editorial committee.

Vol 12 No 4/5 6 AUUGN

AUUG Institutional Members as at 03/10/1991

(NSW) Department of Minerals &
Energy

A.N.U.
AAII
Alcatel Australia
AIDC Ltd.
ANSTO
ANZ Banking Group/Global

Technical Services
Adept Business Systems Pty Ltd
Adept Software
Apple Computer Australia
Apscore International Pty Ltd
Ausonics Pty Ltd
Australia Eds Pty Ltd
Australian Airlines Limited
Australian Bureau of Agricultural and

Resource Economics
Australian Eagle Insurance Co. Ltd
Australian Electoral Commission
Australian Information Processing

Centre Pty Ltd
Australian Taxation Office
Australian Wool Corporation
Avid Systems Pty Ltd
BHP CPD Research & Technology Centre
BHP Research - Melbourne Laboratories
Bain & Company
Ballarat Base Hospital
Burdett, Buckeridge & Young Ltd.
Bureau of Meteorology
Byrne & Davidson Holdings Pty Ltd
C.I.S.R.A. ¯
CITEC
Codex Software Development Pty. Ltd.
Com Tech Communications
Commercial Dynamics
Communica Software Consultants
Computer Power Group
Computer Science of Australia.Pty Ltd
Computer Software Packages
Corinthian Engineering Pty Ltd
CSIRO
Cyberscience Corporation Pty Ltd
DMP Software Pry Ltd

Data General Australia
Deakin University
Department of Transport
Dept. of Agricultural & Rural Affairs
Dept. of Conservation & Environment
Dept. of Defence
Dept. of Foreign Affairs & Trade
Dept. Of The Premier & Cabinet
Dept. of Treasury
Duesburys Information Technology

Pty Ltd
ESRI Australia Pty Ltd
Eastek Pty Ltd
Emulex Australia Pty Ltd
Expert Solutions Australia
FGH Decision Support Systems Pty Ltd
Financial Network Services
First State Computing
Fremantle Port Authority
Fujitsu Australia Ltd
G. James Australia Pty Ltd
Genasys II Pty Ltd
General Automation Pty Ltd
George Moss Ltd
Hamersley Iron Pty. Limited
Harris & Sutherland Pty Ltd
IBM Australia Ltd
Iconix Pty Ltd
Infonetics
Internode Systems Pty Ltd
Ipec Management Services
Labtam Australia Pty Ltd
Leeds & Northrup Australia Pty. Ltd
Macquarie University
McDonnell Douglas Information

Systems Pty Ltd
McIntosh Hamson Hoare Govett Ltd
Metal Trades Industry Association
Ministry of Housing & Construction (VIC)
Mitsui Computer Limited
Motorola Computer Systems
Multibase Pty Ltd
NEC Information Systems Australia Pty Ltd
OPSM
Oracle Systems Australia Pty Ltd

AUUGN 7 Vol 12 No 4/5

AUUG Institutional Members as at 03/10/1991

Parliament House
Prime Computer
Pulse Club Computers Pty Ltd
Q.H. Tours Limited
Queensland Department of Mines
Radio & Space Services
RMIT
SBC Dominguez Barry
SEQEB Control Centre
Signum Software Pty Ltd
Silicon Graphics Computer Systems
Snowy Mountains Hydro-electric Authority
Software Development International Pty Ltd
Sony (Australia) Pty Ltd
South Australian Lands Dept.
Sphere Systems Pty Ltd
St Vincent’s Private Hospital
Stallion Technologies Pty Ltd
Stamp Duties Office
State Bank of NSW
Steedman Science and Engineering
Swinburne Institute of Technology
Tasmania Bank
Tattersall Sweep Consultation
Telecom Australia
Telecom Network Engineering Computer

Support Service
Telectronics Pty Ltd
The Anti-Cancer Council of Victoria
The Fulcrum Consulting Group
The Opus Group
The Roads and Traffic Authority
The University of Western Australia
Toshiba International Corporation Pty Ltd
Turbosoft Pty Ltd
UCCQ
Unisys
University of New South Wales
University of Queensland
University of South Australia
University of Tasmania
University of Technology
UNIX System Laboratories
Unixpac Pty Ltd
Vicomp

VME Systems Pty Ltd
Wacher Pty Ltd
Wang Australia Pty Ltd
Water Board
Westfield Limited
Wyse Technology Pty Ltd

Vol 12 No 4/5 8 AUUGN

AUUG President’s Report

Dear AUUG Member,

AUUG’91 has come and gone, and I guess none of you will be surprised if I devote a paragraph or two to
the event.

Let’s look at the exhibition first. By any standard, it was an overwhelming success, with more than 4500
people visiting the 65 exhibitors over the three days of the conference. We’ve received outstanding press
coverage - The Australian, Canberra Times, Financial Review, Computerwodd and Pacific Computer
Weekly have all written about AUUG’91 in highly complimentary terms. In addition, we’ve featured in
the first episode of the new ITVM - IT Video Magazine - which is out the week of Monday, October 14.

Sean Dent of PCW told me the other day that he’s never seen a tradeshow like it. While I wouldn’t go
quite that far, I must admit, it reminded me of the halcyon mid-80’s when a tradeshow such as the ACC
had a "buzz", when every exhibitor was there because they knew they HAD to be there.

Now, why is any of this important? As I’ve said on numerous other occasions, for the conference to be a
success - indeed, for it to have a future - the exhibition has to be a success. The exhibition underwrites all
the activities associated-with the conference and, most importantly, the two events are complementary,
each contributing to the success of the other.

If we turn to the conference itself, while we didn’t reach the 500 delegates hoped for, 411 was a pretty
good number given the restrictions on travel and expenses that ALL companies have in place.

I must take this opportunity to recognise Andrew Gollan for his extremely hard work as Program Chair,
and Piers Lauder for his outstanding contribution as a member of the Program Committee. There’s nothing
particularly glamourous about this job, which consists in large part of lots of administrative work, constant
follow up, many meetings, and a lot of other tasks that seem pretty thankless, at least until the conference
itself is underway. Clearly, we couldn’t have a conference without a Program Committee and Program
Chair, and I am mortified that I failed to emphasise this during the conference itself. I hope this mention in
some small part makes up for that.

We had an excellent selection of speakers, both local and international, and a welter of topics to choose
from. I also think we learned a lot of lessons this year, and I’d be interested in comments from any of you
about the following:

1. I think we tried to pack too much into three days. In future, we should look at finishing the conference
early on the third day, either at lunchtime, or with one final session after lunch, to allow interstate delegates
to get away early. For ALL delegates, I think we’re pretty well talked out by the end of two and a half
days anyway.

2. I think we need to stream more effectively. That’s easy to say from the vantage of hindsight, of course,
considering that this was the first year that we’ve streamed at all. There’s no doubt that streaming will be
continued, and I think the goal is to more clearly position the technical and commercial topics so that an
audience gets what it wants (and what it thinks it is going to get!).

3. I think there is scope to introduce a "management" stream - as opposed to general commercial - which
would address strategic issues relating to open systems and would attract senior management. No matter
how many improvements we’ve made, there’s still little in the conference content to attract a CIO or IT
Director or, for that matter, DP Manager from a large enterprise who needs to learn the benefits of open
systems, how other organisations in the same industry are implementing open systems, and so on. There’s

AUUGN 9 Vol 12 No 4/5

enormous pent up demand for this type of information in the market and who better than AUUG to provide
it? (And, if we don’t, someone else will.)

Further on that point, to be able to attract the high calibre of speakers we want, we must be assured that
we can deliver to the speakers the audiences they deserve - in both quantity and quality. It’s unfair to have
a speaker make the effort to prepare a talk and, in many cases, travel thousands of miles to get here, to
stand before 40 or 50 people who aren’t really interested in that particular speaker’s topic.

4. We must exercise more control over the content of presentations. Most of the presentations at
AUUG’91 were excellent, but there were two or three that were blatant product pitches - and, in at least
one example, not a particularly compelling product pitch at that. Obviously, we want to continue to have
speakers provided by the major vendors, and it’s legitimate for them to provide an update on their product
developments, strategies, etc., but there are ways to do this without crossing over the line.

I spent a good deal of time with some of our overseas speakers to AUUG’91, notably Peter Cunningham,
CEO of UI, Made Burch, Director of International Operations, OSF, and John Totman, Director of User
Council Relations, X/Open. They were fulsome in their praise of AUUG’91, both the conference and the
exhibition, and all expressed the desire to return for AUUG’92. John Totman was overwhelmed at the size
and professionalism of our event and felt that it outstripped anything he’s seen in Europe.

Well, I guess that’s enough on AUUG’91, although any comments, suggestions, recommendations, etc.
from members are welcome. It’s kind of a relief to be able to turn attention to something other than the
conference for a while.

The next big issue to be tackled - two issues, really - is that of member benefits and state branches.

There is a Committee Meeting on October 25, and we will devote a large part of the day to those two
issues. It’s time for us to consolidate the progress made during 1991, take advantage of the financial base
we’ve worked so hard to achieve, and serve our members in more creative and beneficial ways. I look
forward to reporting some of our progress in the next issue.

Vol 12 No 4/5 10 AUUGN

AUUG
Minutes of Annual General Meeting 1991

Held at Darling Harbour Convention Centre, Sydney, 26th September 1991.

Office Bearers present: Pat Duffy (President), Chris Maltby (Vice President), Rolf Jester (Secretary), Frank
Crawford (Treasurer).

Meeting commenced at 5:30 pm.

1. Minutes of previous Meeting.
Refer AUUGN December 1990. Moved byRichard Buckdale, seconded by Greg Kable, that the minutes
from the last Annual General Meeting be accepted as printed. Carried.

2. President’s Report
Pat Duffy reported that AUUG has begun a program of increased activity to serve the growing
membership. The function of the Secretariat now having been given to a professional organisation
(ACMS), the Committee has been able to start work on attracting new members for AUUG, to meet a real
need in the market for what we as an organisation can provide, such as information.

We now have a proper membership database, and now write to welcome new members rather than just
waiting to send them the next AUUGN. Renewals of membership have been streamlined to two renewal
dates per year to simplify things for the member and to make follow-up easier. A survey in the Asia-
Pacific Open Systems Review has been one of the sources of new membership applications.

AUUG now has formal links with X/Open, so that Australian users have a way of participating in the
X/Open process of furthering the standards process. Similarly, our affiliation with UniForum gives our
members access to the resources of that international user organisation.

Press activity through our PR agency has led to considerably increased visibility for AUUG, as part of our
drive to position this organisation as a credible body for information on open systems.

At the end of the second day of AUUG’91, it is already clear that this event is an outstanding success. The
continued vendor support will mean that we can look forward to continuing these popular conferences.

Pat concluded by saying that we shall also continue the PR campaign and general efforts to improve the
quality of AUUG activities and publications. Amongst other things, we shall try to foster the formation of
local user groups under the AUUG umbrella.

Moved by Stephen Prince, seconded by John Wright, that the President’s Report be accepted. Carried.

3. Secretary’s Report
Rolf Jester reported that the success of the increased activity mentioned by Pat Duffy was beginning to be
seen in the increases in membership numbers and in the enormous numbers attending the exhibition this
year. At the end of the second day, the numbers of visitors to AUUG’91 has already more than doubled
the total for the whole of the 1990 event. A large part of the credit for this success goes to Wael Foda and

AUUGN 11 Vol 12 No 4/5

ACMS. On a continuing basis, the professional Secretariat services being provided by ACMS mean that
AUUG can deliver a more responsive service to members.

The latest membership numbers, from August 1991, were 637, an increase of 45 over June 1991. There
were 227 institutional members, 379 individual members and 21 subscriptions. Recent recruiting activity,
not least at the AUUG stand at the exhibition, should see even more substantial growth.

Moved by Peter Chubb, seconded by Peter Alley, that the Secretary’s Report be accepted. Carded.

4. Treasurer’s Report
Frank Crawford submitted the following Income & Expense report and Balance Sheet.

attached

Frank reported that this year’s costs were down largely due to the fact that we unfortunately published
fewer AUUGNs.

Part of the cash balance will be transferred to a cash management or term deposit account to earn interest.
We shall examine alternatives to ensure the most favourable return. But a sufficient balance must be
maintained to underwrite activities like this AUUG’91 event and continuing and planned new services for
members like a library.

The contribution from AUUG’91 looks like being around $60,000.

Frank concluded by stating that our liabilities are quite small, being mainly accrued expenses and pre-paid
memberships.

Moved by Lawrence Brown, seconded by Peter Williams, that the Treasurer’s Report be accepted.
Carded.

5. Returning Officer’s Report
John O’Brien reported as follows.

The last election was conducted from late June to early July. There were several nominations for various
positions. Most of the nominations were withdrawn prior to the election so that most of those nominated
were elected unopposed. The results are as follows.

President, Pat Duffy. Vice President, Chris Maltby. Secretary, Rolf Jester. Treasurer, Frank Crawford.
Returning Officer, John O’Brien. No-one nominated for Assistant Returning Officer. The Committee has
an opportunity to make an appointment to fill this position.

The Committee was another matter. An election was required. 74 formal ballot papers were received.
There were 5 members to be elected. Nominees were Andrew Gollan, Peter Karr, Glenn Huxtable, Patrick
McGrory, Scott Merrilees, Stephen Prince and Michael Tuke. The results were as follows.

Andrew Gollan and Glenn Huxtable received enough primary votes for immediate election. The other
three positions were determined by preferences. They are Peter Karr, Scott Merrilees and Michel Tuke.

In addition to the election of office bearers there was a ballot about affiliating with UniForum. The
Constitution says on Affiliation or Amalgamation with other organisations that the management committee
may at any time seek or discuss the possibility of affiliation or amalgamation with any other organisation
whose aims are similar to or compatible with those of AUUG. No agreement for affiliation or
amalgamation may be finalised until the matter has received the assent of three quarters of the members
voting in a postal ballot.

The reason for bringing these provisions to your attention was that the committee had discussed the
benefits of affiliation with UniForum, the international association of UNIX system users. Key benefits

Vol 12 No 4/5 12 AUUGN

include:

¯ A 20 percent rebate of UniForum membership fees to AUUG for each member who joins or is
currently a UniForum member,

¯ Discounts on volume purchases of UniForum publications,

¯ Discounts on UniForum conference registration,

o Assistance in recruiting speakers for meetings.

The most significant benefit of affiliation, in the opinion of the Committee, was that it brings AUUG closer
to the international open systems community. The Committee recommended that the membership vote yes.
And you did. Moved by Richard Burridge, seconded by John Wright, that the Returning Officer’s Report
be accepted. Carried.

6. Other Business
6.1 Assistant Returning Officer
It was suggested that Prof John Lions be co-opted as Assistant Returning Officer, and he indicated that he
would accept that. The Committee agreed to put this on the agenda for the next Committee meeting for
formal approval.

6.2 AARNET
Chris Maltby reported the success of our program of accepting AARNET address registrations. This has
contributed nearly $10,000 to our net income.

However, it raises the issue of the need for advice as to how to actually connect to the network, which
seems to be a need in the market that is not being met at present. Discussion at the meeting indicates that
there is a need for a UUNET type of service.

Committee members expressed the opinion that AUUG itself is not really in a position to provide such a
service, partly due to the investment required. However other service providers who already operate in ¯
related areas may wish to expand into this service. There was widespread support among those at the
meeting for initiating a network service through an independent service provider.

The Committee agreed to discuss the idea with MHS and explore the possibility of encouraging and
assisting them or another company in setting up a network service. Chris Maltby will follow up.

6.3 Software Distribution
Andrew McRae raised a suggestion that there be a Software Distribution at AUUG Conferences, in the
form of a tape swap or CD mastering. General discussion indicated that this might be an additional
attraction to join AUUG. Other ideas were that it could be part of the proposed AWtJG library function
(although then it would require staffing), that it be done via AARNET, that a machine be provided to make
individual copies of tapes, or to encourage vendors to do that on their stands.

The idea will be pursued by the Committee for future Conferences.

6.4 Publications
Pat Duffy reported that AUUGN is now being published regularly again. The combined #4/5 issue will be
out within a month of this Conference, and the last one for this year in December. Next year there will be
six issue.

We also plan to publish a "glossy" magazine twice a year aimed at the present and potential commercial
membership.

AUUGN 13 Vol 12 No 4/5

7. Next Meeting
At AUUG’92 Conference, World Congress Centre, Melbourne, September 1992.
be advised through AUUGN and Conference invitation.

The Meeting closed at 6:35 pm.

Exact date and time will

Vol 12 No 4/5 14 AUUGN

A o U o U o G o INCORPORATED

PROFIT & LOSS STATEMENT

FOR THE PERIOD IST JUNE~ 1990 TO 31ST MAY~ 1991.

Conference AoUoU.G. 1990

1991 1990

Income 34991.58

LESS: Expenses

Advertising
Photocopying & Printing
Travel & Accommodation
Telephone

NET PROFIT (LOSS)

134.40
550.00

3.74

688o14

34303.44

737.92
626.80

1364.72

(1364.72)

AUUGN 15 Vol 12 No 4/5

A. U. U. G. INCORPORATED

PROFIT & LOSS STATEMENT

FOR THE PERIOD IST JUNE, 1990 TO 31ST MAY, 1991.

INCOME

Membership
Nutshell Handbooks

Usenix Proceedinqs

- Baltimore
- San Diego

A.U.U.G.N./Back issues
Subscriptions
Mailing List
Interest Received

Summer 90

- Melbourne
- Sydney
- Canberra

Security Video
Security Pacific National Bank
Other Books
Mugs
Tutorial Notes

Uniforum Rebate

Summer 91

- Melbourne
- Perth

AARNET Subscriptions

1991

40511.05

398.00

5757.00
1250.50
3203.00
7657.85

175.00
35.00

105.00

599.94

3884.20
2585.00

8858.00

75019.54

1990

53190.60
19930.15

330.00
492.00

4147.11
1461.00
5959.50
5431.13

3873.00
3149.95
250.00

360.00
509.24

99083.68

Vol 12 No 4/5 16 AUUGN

LESS: Expenses

Bank Charges
- Credit Card
- Government
- General

MANAGEMENT COMMITTEE/MEETING EXPENSES

- Airfares
- Accommodation/Meals
- Parking
- Taxis
- Registration
- Postage
- Fuel
- Business Cards
- Editors Float

MEMBERSHIP

- Freight/Postage
- Photocopying
- Printing
- Product Directory
- Secretarial Fees
- Leaflets

UNIFORUM DELEGATION

- Air Fares

NUTSHELL

- Freight/Postage
- Purchases Handbooks

USENIX PROCEEDINGS

- Baltimore

A.U.U.G.N.

Postage/Freight
Printing
Laser Toner
Labels

AUUGN 17

1991

535.63
31.20

252.92

819.75

4306.00
1497.35

26.00
175.36

64.76
175.97
490.80

6736.24

274.00

722.00
150.00

1146.00

2549.90

94.03
12191.61

220.00
57.87

12563.51

1990

440.76
127.26

88.39

656.41

4325.50
485.70

28.00
205.15

44.00

200.00

5288.35

856.96
16.80

2396.93
4117.34

7388.03

2043.68
6903.18

8946.86

734.63

734.63

3444.88
33348.88

36793.76

Vo112No4/5

SUMMER 90 1991 1990

Administration
Melbourne
Sydney.
Tasmania

SUMMER 91

Melbourne - Postage
- Printing
- Labels

Video Costs
Workshop Expenses
Perth - Seminar Costs

- Function Room

MAILING LIST

- Photocopying/Printing
- Labels

PROMOTION & PUBLICITY

OFFICE

615.00
192.74

49.98
835.00
294.00
560.00

1848.00

4394.72

2362.91
162.80

2525.71

5000.00

- Auditors Remuneration 1896.00
- Freight/Postage 495.37
- Petty Cash
- Printing/Stationery 855.95
- Trademark Registrations i00.00
- 89 & 90 Election Costs 1332.55
- Telephone 125.68
- Secretary Fees 800.00
- Business Cards 330.61
- Registration Fees (Corporate Affairs) 27.50
- Taxis 54.50

6018.16

2898.70
3576.62
3337.20

358.00

10170.52

667.20

667.20

1850.00
1284.51

101.20
2379.92

25.26

6108.89

TOTAL OPERATING COSTS

General A/C Net Profit
A.U.U.G. 89 Net Profit
A.U.U.G. 90 Net Prof.it

NET PROFIT

(Loss)
(Loss)
(Loss)

41753.99

33265.55

34303.44

67568.99

76754.65

22329.03
21389.77
(1364.72)

42354.08

Vol 12 No 4/5 18 AUUGN

ASSETS

CURRENT ASSETS

Cash
Receivables
Investments

A o U. U. G INCORPORATED

BALANCE SHEET

AS AT 31ST MAY, 1991

NOTE

(3)
(2) (4)

1991

121047.51
5350.00

35497.00

161894.51

1990

25151.48
6168.50

58552.93

89872.91

NON-CURRENTASSETS

Intangibles

Total Non-Current Assets

TOTAL ASSETS

LIABILITIES & CAPITAL
Current Liabilities

Trade Creditors

ASSOCIATION FUNDS

Accumulated Profits

TOTAL LIABILITIES & CAPITAL

988.10

988.10

162882.61

4452.61

158430.00

162882.61

988.10

988.10

90861.01

90861.01

90861.01

AUUGN 19 Vol 12 No 4/5

A. U. U. G. INCORPORATED

NOTES TO AND FORMING PART OF THE ACCOUNTS

FOR THE YEAR ENDED 31ST MAY, 1991.

.

.

ACCOUNTING POLICIES

The accounts are prepared in accordance with the historical cost
convention. The Accounting policies adopted are consistent with
those of the previous year.

INVESTMENTS

Investments are shown at Market Value, Capital Gains Tax is not
taken into account in determining the investments unless a
definite decision to sell has been taken and the related Capital
Gains Tax can be reliably estimated.

Dividends and other distributions from investments are taken to
income on receivable basis.

1991 1990

TRADE DEBTORS $

Membership
Mailing List
Video
Nut Shell Books
Newsletter

1300.00

4050.00

5350.00

1328.00
1133.50

160.00
3547.00

6168.50

. CURRENT INVESTMENTS

QUOTED INVESTMENT

Chase AMP
C.B.A

1991

6000.00
29497.00

35497.00

4452.61

1990

31000.00
27552.93

58552.93

5. Trade Creditors

Vol 12 No 4/5 2O AUUGN

AUUG 1992 Summer Conference Series

This is a preliminary announcement and call for papers for the AUUG 1992 Summer Technical Conference
Series.

The AUUG Summer Conference is a series of one day technical meetings held in regional centers around
the country. The meetings not only attract local speakers, but also include invited interstate speakers.

The aim of the Summer Technical Conference Series is to supplement the annual AUUG winter conference
by providing an informal, technical forum for the presentation and exchange of current work in the area of
the Unix operating system. It is expected that the content of these meetings will provide technical issues
which are relevant to programmers, systems administrators and experienced users.

1992 will be the third year that the Summer Technical Conference Series has been held. It will also be the
first time that these meetings will held in all states and mainland territories.

Papers in all areas of Unix-related research and development are solicited for the programmes. Intending
speakers should submit an abstract of their presentation. Papers selected for presentation will be published
in the AUUG newsletter. Speakers may alsobe invited to present their papers at interstate meetings and at
the 1992 Winter Conference in Melbourne.

Planning for the Conference Series has just begun. Dates of the regional meetings are not yet known,
however they are expected to be held between February and April 1992.

Further information will be posted the the newsgroup aus.auug as it becomes available. Please direct any
enquires to the Regional Organiser in your state:

City Organsier Company Email Phone

Perth Alan Main Functional Software atm@pyrmania.oz.au. (09) 4481204
Adelaide Michael Wagner Systems Services (08) 212 2800
Melbourne Ian Hoyle BI-IP Research ianh@resmel.bhp.com.au (03) 560 7066
Hobart Steve Bittinger University of Tasmania steveb@tasman.cc.utas.edu.au(002) 20 2811
Canberra Ross Hand NEC Information Systemsrossh@spider.ento.csii’o.au (06) 246 4071
Sydney Lucy Chubb Softway lucyc@softway.sw.oz.au (02) 698 2322
Brisbane Mark Addinall Stallion Technologies mark@stallion.oz.au (07) 870 4999
Darwin Phil Scott Computer Science, NTU. pscott@pandanus.ntu.edu.au(089) 46 6519

or to the coordinator of the conference series:

Glenn Huxtable
University of Western Australia
glenn@cs.uwa.oz.au
(09) 380 2878

AUUGN 21 Vol 12 No 4/5

Open System Publications

As a service to members, AUUG will source Open System Publications from around the world. This
includes various proceeding and other publications from such organisations as

AUUG,
Uniform,
USENIX,
EurOpen,

Sinix,
etc.

For example:

EurOpen Proceedings
Dublin Autumn’83
Munich Spring’90
Trosmo Spring’90

USENIX Proceedings
C++ Conference
UNIX and Supercomputers Workshop
Graphics Workshop IV

Apr’91
Sept’88
Oct’87

AUUG will provide these publications at cost (including freight), but with no handling charge. Delivery
times will depend on method of freight which is at the discretion of AUUG and will be based on both
freight times and cost.

To take advantage of this offer send, in writing, to the AUUG Secretariat, a list of the publications, making
sure that you specify the organisation, an indication of the priority and the delivery address as well as the
billing address (if different).

Fax:

AUUG Inc.
Open System Publication Order
PO Box 366
Kensington, NSW, 2033
AUSTRALIA
(02) 332 4066

Vol 12 No 4/5 22 AUUGN

ACSnet Survey Host Name:

ACSnet Survey

1.1 Introduction

ACSnet is a computer network linking many UNIX hosts in Australia. It provides connections over
various media and is linked to AARNet, Internet, USENET, CSnet and many other overseas networks.
Until the formation of AARNet it was the only such network available in Australia, and is still the only
network of its type available to commercial sites within Australia. The software used for these connections
is usually either SUN III or SUN IV (or MHSnet). For the purposes of this survey other software such as
UUCP or SLIP is also relevant.

At the AUUG Annual General Meeting held in Melbourne on September 27th, the members requested that
the AUUG Executive investigate ways of making connection to ACSnet easier, especially for sites
currently without connections. This survey is aimed at clearly defining what is available and what is
needed.

Replies are invited both from sites requiring connections and sites that are willing to accept connections
from new sites. Any other site that has relevant information is also welcome to reply (e.g. a site looking at
reducing its distance from the backbone).

Please send replies to:

Mail: Attn: Network Survey FAX: (02) 332 4066
AUUG Inc E-Mail: auug@atom.lhrl.au.oz
P.O. Box 366
Kensington N.S.W. 2033

Technical enquiries to:

Frank Crawford (frank@atom.lhrl.oz) (02) 543 9404
or
Scott Merrilees (Sm@bhpese.oz) (049) 40 2132

Thank you

1.2 Contact Details

Name:
Address:

Phone:
Fax:

E-Mail:

1.3 Site Details

Host Name:
Hardware Type:

Operating System Version:
Location:

AUUGN 23 Vol 12 No 4/5

ACSnet Survey Host Name:

New Connections

If you require a network connection please complete the following section.

Please circle your choice (circle more than one if appropriate).

A1. Do you currently have networking software? Yes No

A2. If no, do you require assistance in selectingYes
a package?

No

A3. Are you willing to pay for networkingYes
software?
If yes, approximately how much?

No

A4. Do you require assistance in setting up yourYes
network software?

No

A5. Type of software: SUNIII MHSnet
TCPflP SLIP
Other (Please specify):

UUCP

A6. Type of connection: Direct Modem/Dialin
X.25iDialin X.25/Dialout
Other (Please specify):

Modem/Dialout

A7.

A8.

If modem, connection type:

Estimated traffic volume (in KB/day):
(not counting netnews)

V21 (300 baud) V23 (1200/75)
V22bis (2400) V32 (9600)
Other (Please specify):

V22 (1200)
Trailblazer

< 1 1-10
> 100: estimated volume:

10-100

A9.

AIO.

All.

Do you require a news feed?

Any time restrictions on connection?

If the connection requires STD charges (or
equivalent) is this acceptable?

Yes No
Limited (Please specify):

Please specify:

Yes No

A12. Are you willing to pay for a connection
(other than Telecom charges)?
If yes, approximately how much (please also
specify units, e.g. $X/MB or fiat fee)?

Yes No

A13. Once connected, are you willing to provideYes
additional connections?

No

A14. Additional Comments:

Vol 12 No 4/5 24 AUUGN

ACSnet Survey Host Name:

Existing Sites

If you are willing to accept a new network connection please complete the following section.

Please circle your choice (circle more than one if appropriate).

B 1. Type of software: SUNIII MHSnet
TCP/IP SLIP
Other (Please specify):

UUCP

B2. Type of connection: Direct Modem/Dialin
X.25/Dialin X.25/Dialout
Other (Please specify):

Modem/Dialout

B3. If modem, connection type: V21 (300 baud) V23 (1200/75)
V22bis (2400) V32 (9600)
Other (Please specify):

V22 (1200)
Trailblazer

B4. Maximum traffic volume (in KB/day):
(not counting netnews)

< 1 1-10
> 100: acceptable volume:

10-100

B5. Will you supply a news feed? Yes No
Limited (Please specify):

B6. Any time restrictions on connection? Please specify:

B7. If the connection requires STD charges (or Yes
equivalent) is this acceptable?

No

B8. Do you charge for connection? Yes
If yes, approximately how much (please also
specify units, e.g. SX/MB or flat fee)?

No

B9. Any other restrictions (e.g. educational
connections only).?

B10. Additional Comments:

AUUGN 25 Vol 12 No 4/5

Plan 9, A Distributed System

Dave Presotto
Rob Pike

Ken Thompson
Howard Trickey

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Plan 9 is a computing environment physically distributed across many machines.
The distribution itself is transparent to most programs giving both users and administra-
tors wide latitude in configuring the topology of the environment. Two properties make
this possible: a per process group name space and uniform access to all resources by rep-
resenting them as files.

1. Introduction
Plan 9 is a general-purpose, multi-user, portable distributed system implemented on a variety of com-

puters and networks. Because commands, libraries, and system calls are similar to those of the Unix oper-
ating system, it is possible to port many Unix programs to Plan 9 with little or no changes. A casual user
would find little difference between the two systems.

What distinguishes Plan 9 is its organization. The goals of this organization were to reduce adminis-
tration and to promote resource sharing. Our programming style was minimalism. We believe that a small
number of well-chosen abstractions can, with much less code, provide most of the function of a larger sys-
tem. This is the approach that made the Unix operating system so much smaller than its contemporaries
such as Multics. In building Plan 9, we generalized proven ideas from the Unix operating system rather
than add new untried concepts.

Plan 9 is divided along lines of service function. Diskless CPU servers concentrate computing power
into large multiprocessors; file servers provide repositories for storage; and terminals give each user of the
system a dedicated computer with bitmap screen and mouse on which to run a window system. The sharing
of computing and file storage services provides a sense of community for a group of programmers, amor-
tizes costs, and centralizes and hence simplifies management and administration.

Since both CPU servers and terminals use the same kernel, users may choose whether to run pro°
grams locally on their terminals or remotely on CPU servers. Plan 9 provides this flexibility without con-
straining the choice. Therefore, both users and administrators can configure their environment to be as dis-
tributed or centralized as they wish. At work, users tend to use their terminals more like workstations run-
ning all interactive programs locally and reserving the CPU servers for data or compute intensive jobs such
as compiling and computing chess end games. At home, connected via a dedicated 9600 baud line to work,
users choose what they run locally and remotely to reduce communication cost. Some applications, such as
the editor [Pik87], are split into multip.le programs to make this choice even more flexible.

Figure 1 in any Plan 9 paper shows how we have configured our environment. Multiprocessor CPU
and file servers are clustered in a few computer rooms and connected via 7 megabyte/sec point-to-point
links [Pre88]. This permits the CPU servers to be used as high performance compute engines without
becoming starved for data. Terminals are connected to the servers via lower speed, lower cost distribution
networks such as the 10 megabit Ethernet [MetS0] and 2 megabit Incon [Kal, Res]. By emphasizing the
shared service clusters we can quickly and cheaply incorporate new technologies as they arise. At the same

Vol 12 No 4/5 26 AUUGN

time, users wishing more autonomy can incorporate as much computing power as they wish in their own
offices without losing the advantage of transparently sharing other resources.

distribution
network distribution

network

I Nationwide HaulLong

~~ ~~high speed

DMA high speed DMA

Figure 1 - Plan 9 Topology

The rest of this paper describes the features of Plan 9 that make possible such a flexible topology.
For more information on hardware and use of the system, see our previous paper [Pik90] . For de~ails of
the file server, see [Qui].

2. Minimalism

All resources that a process can access, aside from program memory, reside in one name space and
are accessed uniformly. Simply stated, all resources are implemented to look like file systems and, hence-
forth, we shall call them file systems. A file system is a strict tree with no links. File systems can be the
traditional type representing persistent storage on a disk as implemented by the shared file servers. They
can also represent physical devices such as terminals or complex abstractions such as processes. The file
systems can be implemented by kernel resident drivers, by user level processes, or by remote servers.

A file system representing a physical device normally contains one or two files. For example, an
RS232 line is represented as a directory containing a datza and a ct::l, file. The da~za file is the stream of
bytes transmitted/received on the line. The ct:]. file is a control channel used to change device parameters
such as baud rate.~"

Some file systems represent software concepts. Environment variables (as in Unix) are implemented
as files in a kernel resident file system. Even processes themselves are represented as directories with sepa-
rate files representing different aspects of the process such as memory, text file, and control. Many things
that require a system call in other operating systems are represented by I/O operations on files in Plan 9;

J" We neither need nor have an J.oct 1. system call.

AUUGN 27 Vol 12 No 4/5

reading the id of a process, the user id associated with a process, the time, etc.

A kernel data structure, called a channel, is used as a pointer to a file. A user level file descriptor is
just a handle for a kernel channel. All I/O system calls eventually translate into nine primitive operations
on channels. They are:
attach- point a channel to the root of a file system. The file system is told which user is attaching.

clone - make a copy of a channel. The new channel points to the same file as the old one.

walk - do a one level directory lookup on the channel and point it to the new file (or directory).

stat - get the attributes of the file pointed to.

wstat - change the auributes of the file pointed to.
open - check permissions prior to I/O on the channel.

read - read from the opened file.
write - write to the opened file.

close - close the opened file.

Each kernel resident file system is implemented by a device driver containing a procedure for each
primitive operation. The device drivers are accessed indirectly via a kernel array, devtzab, which con-
tains 9 pointers per driver, one to each primitive procedure. Each channel contains an offset into devt:ab
indicating the driver to be used in accessing the file it points to.

Accessing file systems not resident in th.e kernel is via a special device driver, the mount driver. All
channels pointing to this driver contain a pointer to a communication channel. The mount driver turns
operations on such channels into request messages written to the communication channel. The mount
driver is written as a multiplexor allowing multiple outstanding messages. Because the messages on the
communication channel are transmitted using read’ s and wr±t:e’ s, any type of channel can be used: a
pipe to a process, a network connection, even an RS232 line. The mount: system call, described below, is
used to create a new mount device channel and supply a communication channel for it.

All Plan 9 components are connected using this file system protocol. The code used to encapsulate
the primitives into request and reply messages is 580 lines long. The mount driver is 899 lines long. Com-
pared to the equivalent NFS code implementing vnodes and XDR this is tiny.

Of the 18000 lines of code that make up Plan 9, about 5000 lines perform memory management, pro-
cess management, hardware interface, and system calls. The rest are for the 17 different file systems imple-
menting devices, networks, process control, etc. Since most of the file systems are completely self con-
mined, the complexity of the kernel code is even lower than its 18000 lines would imply. A working, albeit
not very useful, kernel can be configured containing only the file systems implementing pipes, a local root,
and a console. This totals 5899 lines of commented C code (counted using wc * [ch]). As a compari-
son, Mach’s micro-kernel without device drivers has 25530 lines of C code (calculated, we’re told, by
counting semi-colons). By the same metric our minimal kernel is only 4622 lines long, less than 1/5 the
size. In fact, our kernel with every file system included is still less than half the size of their micro-kernel.

One might note the similarities between devt:ab and parts of the Unix operating system; the block
device switch, character device switch, file system switch and vnodes. One advantage of Plan 9 is that we
have recognized that these are all essentially the same mechanism and have implemented them as such.

3. Virtual Name Space

When a user boots a terminal or connects to a cpu server, a new process group is created for her pro-
cesses. This process group starts with an initial name space that provides at minimum a root (!), some
binaries for the processor the process is running on (/b±n/*), and some local devices (/dev/*). The
processes in the group can then either add to or rearrange their name space using two systems calls, mount:
and b±nd. The mount call is used to attach a new (not kernel resident) file system to a point in the name
space. Its syntax is

mount(int fd, char *old, int flags, ...)

wherefd is a f’de descriptor for a communication slxeam such as a pipe or a network connection and old is

Vol 12 No 4/5 28 AUIJGN

the name of an existing f’de in the current name space where the file system will be attached. The attach-
ment creates a new mount device channel whose communication channel is that referred to byfd. Subse-
quent accesses to old and any files below it in the hierarchy become request messages written to the com-
munication stream.

The bind call is used to attach a kernel resident f’de system to the name space and also to rearrange
pieces of the name space. Its syntax is

bind(char *new, char *old, int flags)

where new is a name in the current name space~- and old is the same as in mount.
How the attachment works depends on the flags specified in the call. One possibility is that the old

file is replaced by the new one. However, when both files are directories, Plan 9 allows another possibility.
The result can be the union of the two directories. The effect is that of putting one directory behind the
other. In the case of name conflicts for files contained in the directories, the one in front wins. Flags speci-
fies whether the new directory replaces, goes in front of, or goes behind the old one. This concept is essen-
tially the same as the search paths used in the Unix libraries and the various shells. In fact, Plan 9 has no
search paths and uses these union directories in their place. When a command is executed, Plan 9 uses the
directory/b±n the same way Unix uses an execution path.

The ability to specify the complete name space for a process that contains all resources the process
can access forms the basis for a true virtual machine. Any aspect of a process’ world can be rearranged.
Remote objects can be substituted for local ones. Processes can implement part or all of the name space of
other processes. This capability is the basis for a number of important services, three of which we present
here.

3.1. The Cpu Command

We consider the shared CPU servers as accelerators for our terminals, someplace where commands
can run while maintaining the same environment. It is important that as little as possible change when run-
ning on the CPU server. The virtual name space provides us with a means to make the CPU servers actu-
ally feel this way to our users. A command, cpu, calls a CPU server across a net~work. A daemon process
on the server answers the call, creates a new process group for the caller, sets up a name space, and starts a
shell process in the new process group. The name space set up is an analogue of the name space of the call-
ing process on the terminal. In particular, local resources on the terminal, such as the screen and the mouse,
become visible to the server processes at the same place in the name space as on the terminal. The standard
input, standard output, standard error, and current directory of the cpu command become those of the
remote shell. The directories mounted on /bin are changed to be those that contain executables for the
CPU server’s processor type (the terminal may be a 68020 while a CPU server could be a MIPS). In gen-
eral, a user typing the cpu command just notices that things such as compilations speed up while graphics
operations slow down.

After the initial handshake to pass information describing the caller’s environment, the cpu command
becomes a file server answering file system requests from the network connection. The server daemon
mounts the network connection to the terminal in a standard place, /treat/terra, and then binds the
resources it decides to keep into the same places in the new name space. For example, it binds
/mnt/term/dev/mouse onto /dev/mouse, /mnt/term/dev/bitblt onto /dev/bitblt,
etc. Subsequent accesses to those files are converted by the mount driver in the CPU server into file system
messages sent to the terminal.

~" Local kernel resources are referred to by a syntactic escape (hack) in the name space. Any name star~ng with a "#"
refers to a local resource. The fh’st character following the "#" specifies the type of resource and the remaining characters
are a parameter specifying the instance of the resource. Thus, to bind the local console to a standard place in the name
space, one world use bind ("#c", "/dev", FRONT) .

AUUGN 29 Vol 12 No 4/5

3.2. The Window System

The user interface is made up of three files:
/dev/bitblt - writes represent bitblt operations to the screen

/dev/mouse - reads return mouse events, i.e., button clicks and movement
/clev/cons - reads return keyboard input, writes put characters to the screen.
Between them, these devices represent all I/O to the user. The window system, 8.5 [Pik91], offers pro-
cesses a multiplexed view to these devices. When a window is opened, the window system starts a new
process group for a command (usually a shell) that will run in that window. In that process group’s name
space, the window system mounts a pipe to itself in front of/dev. Subsequent references by the new pro-
cess group to any of these devices are sent as file system messages to the window server. 8.5 interprets
those requests as accesses of the window instead of the whole screen. Similarly, 8.5 multiplexes the mouse
and the keyboard so that mouse and keyboard input is available to processes only when their window is
selected.

The result is that any program written to use the kernel resident user interface will also work inside a
window. Because this is also true of the window system itself, new versions of the window system can be
run and debugged in windows of the current window system.

3.3. Network Gateways

One, sometimes insurmountable, problem is accessing a network to which a system is not physically
attached. For example, a system may be connected to our Datakit [FraS0] network but not to the DoD
Internet. Many gateways exist that try to solve this problem by performing protocol to protocol translation.
Unfortunately, few transport protocols have completely equivalent concepts. In order to perform the best
translation, it is be necessary to know the semantics requested by the program. For example, TP4 has mes-
sage delimiters but TCP does not. A protocol translator going from TCP to TP4 would not know which
bytes correspond to a single write by the sender.

In Plan 9, every network interface is a file system. A gateway is a file server that serves its own net-
work interfaces to other machines. A process that wants to get at a remote network connects to the gateway
and mounts the gateway’s interface to the remote network into its name space. Whenever the process
accesses the interface, the mount driver will send the request to the gateway. Thus, the gateway sees
exactly what the process does.

4. File Caching
In building our environment, we’ve been reluctant to add local disk file systems to any of our termi-

nals or CPU servers. There are essentially two reasons for this choice. The first is administration. Anyone
with a local disk must administer it. Any disk that has unique long term state requires both knowledge and
time to administer. In fact, the Bell Labs computer center at Murray Hill is doing a lucrative business
maintaining other peoples’ disked Sun workstations because the owners have neither the time nor the expe-
rience necessary to do it themselves.

The second reason is sharing. Although most workstations can export access to their local file sys-
tems, when left up to individual users, this rarely happens. Terminals become personified and users
become tied to a particular room to do their work.

Plan 9 survives without local disk file systems thanks partially to hardware and partially to caching.
The CPU servers do so because their links to the file servers transfer at a substantial percentage of memory
speed. The file servers maintain large main memory caches for their disk file systems. These servers are
configured with 128 megabytes or more of main memory to ensure that there is plenty of room for cache.
Getting a file from a file server is generally faster than it would be to get it from a local disk.

Office terminals are connected to the file servers by shared 1 or 10 megabit/sec links. Home termi-
nals use 9600 or 19200 baud links. In both cases, the link is much slower than access to a local disk would
be. To avoid the obvious performance hit, we use caching. To keep the caches coherent, we use file identi-
fiers supplied by the file server. The identifiers are unique 64 bit quantities. 32 bits identify the file, the
other 32 bits identify the version of the file. The version number is incremented each time the f’de is

Vol 12 No 4/5 30 AUUGN

modified. Each time a file is opened the file server returns the identifier with the reply. Therefore, it is
possible to guarantee coherency at each opening of a file.

Office terminals only cache pages of executable files. Whenever a program terminates, its unmodi-
fied text and data pages are not immediately freed. Instead they are retained until the space is required by
other programs. When a program is rerun its executable file is reopened and the current version number
returned. If the version number has not changed and pages remain from the last run, they are reused. If the
version number has changed, any remaining pages of the stale version are discarded. Since most data inten-
sive work is done on the CPU servers, this simple cache saves most of the traffic between office terminals
and the file servers. Other caching could be helpful but would require much more complexity.

This cache might also have sufficed for home terminals if it were persistent, but it is not. Therefore,
we have added disks to our home terminals to be used as write through caches of the file server files. As a
write through cache, it contains no state that isn’t duplicated on the file servers. Therefore, it needs little
maintenance compared to a local file system. If the code discovers a disk problem, it reformats the disk
discarding the current contents. If the user should suspect that the cache is contaminated, she can request
that it be reformatted at the next boot. The system slows down until subsequent use refills the cache but no
information is lost. The user need not consciously update the disk because the cache uses file identifiers to
maintain coherency with the file servers. Each time a file is opened, the cache discards any stale data it
might have for that file. The user doesn’t have to copy what she needs to the disk because it is done as a
consequence of her using the data.

The disk based cache is implemented by a process that resides between the kernel and the file server
connection. For every read request, the process satisfies as much as it can with data cached on the disk. It
gets the rest from the file server. Any new data that passes through it is saved on the disk. When the cache
fills up the least recently used file is discarded. The amount of data cached for any one file is limited to
1.75 megabytes to prevent one file from displacing all others.

Because the disk based cache only checks for coherency when a file is opened, it provides slightly
different semantics than that seen on office terminals which do not cache data files. This looser coherency
constraint forces programs that communicate via files to ensure an open between each transaction. Thus far
we have not had to change any programs because of it.

5. Conclusion
We have presented a distributed system that is simple in structure and flexible in its use. Both the

flexibility and simplicity are the result of two properties, a per process group name space and a single
resource interface. Coupled with some minimal caching we provide a simple system that is as usable at
home as at work.

6. Acknowledgements

Many people helped build the system. We would like especially to thank Bart Locanthi, who built
our terminal, the Gnot, and encouraged us to program it; Tom Duff, who wrote the command interpreter
~’c; Tom Killian, who built and programmed the Gnot’s SCSI interface; Ted Kowalski, who cheerfully
endured early versions of the software; and Dennis Ritchie, who frequently provided us with much-needed
wisdom.

References

Fra80. A. G. Fraser, "Datakit-A Modular Network for Synchronous and Asynchronous Traffic," in Proc.
Int. Conf on Commun., Boston, MA (June 1980).

Kal. C. R. Kalmanek, "INCON: Network Maintenance and Privacy," Internal Memorandum 220106-
0450, AT&T Bell Laboratories.

Met80. R. Metcalfe, D. Boggs, C. Crane, E. Taft, J. Shoch, and J. Hupp, "The Ethernet Local Network:
Three Reports," CSL-80-2, XEROX Palo Alto Research Centers (February, 1980).

Pik91. Pike, R., "8.5, The Plan 9 Window System," 1991 USENIX Summer Conference Proceedings
(1991).

AUUGN 31 Vol 12 No 4/5

Pik87. Rob Pike, "The Text Editor sam," Software - Practice and Experience 17(11), pp. 813-845
(November 1987).

tlik90. R. Pike, D. Presotto, K. Thompson, and H. Trickey, "Plan 9 from Bell Labs," in UKUUG Proceed-
ings of the Summer 1990 Conference, London, England (July, 1990).

Pre88. D. Presotto, "Plan 9 from Bell Labs - The Network," in EUUG Proceedings of the Spring 1988
Conference, London, England (April, 1988).

Qui. S. Quinlan, "A Cached WORM File System," Software - Practice and Experience, p. To appear.
Res. R. C. Restrick, "INCON Wire Interface Integrated Circuit Design," Internal Memorandum 52413-

860314-01TM, AT&T Bell Laboratories.

Vol 12 No 4/5 32 AUUGN

Steve Kues

Concurrent Computer Corporation
11-15 Waverley Road, East Malvern VIC, 3145

ABSTRACT

UNIX 1 has come a long way since its inception at AT&T Bell Laboratories in the early
1970’s. Today it is gaining great market acceptance by being able to provide an operating
system that is versatile, portable, scalable and most importantly, vendor independent.
UNIX also provides a rich set of development tools which makes it a favourite in both the
commercial an sdentific worlds alike.

One market still dominated by proprietary systems which UNIX has failed to penetrate in a
major fashion is realtime computing. But what is realtime computing? Put most simply, a
realtime system is one that can respond in a predictable and deterministic manner given
impetus from the real world. These events must usually be serviced in a limited amount of
time.

Just how close is UNIX to being seriously considered as a realtime operating system
contender? What additions or changes need to be incorporated?

The aim of this paper is to discuss the realm of UNIX realtime computing by comparing and
contrasting some of the realtime features available in various flavours of UNIX. Most of
these features must be implemented through the kernel. The impact of these changes will be
covered where appropriate. Defining a system which still permits normal operations of
UNIX is a prime consideration.

Realtime Computing

Just what is realtime computing anyway. Many people use the term to describe their
systems, while what they are really trying to say is: "I have a computer which really
runs quite fast". Realtime has nothing to do with processor speed (although it does
help implement good realtime systems), the amount of disk space you have, or
memory to run your programs in. The whole aim of a realtime system is to be able to
respond to a discrete event in a finite amount of time. This response interval must be
directly calculable and bounded. Other cornerstones of realtime are consistency and
reliability. A sequence of events must be reproducible, and data acquired quickly
without compromising integrity. Realfast is not reattime. If you have a 100 MIP machine
with a 1 M1P bottleneck, you have at best a I MIP machine.

In discussing the facets of realtime systems, I will draw upon the scenario of a fictional
conventional UNIX operating system running in a similarly fictional hospital. I would
have used a fictional nuclear power plant, although this analogy has become
hackneyed, and Victoria is a nuclear-free state. I will use the term normal and
conventional when discussing UNIX systems. This refers to an AT&T System V.3 or
BSD 4.2 type system, that is, one not built for realtime operation.

Realtime systems may be implemented solely in software, although in order to achieve
significant performance gains and reduce response intervals, it is usually necessary to
include some hardware changes in the overall design.

UNIX is a trademark of AT&T Bell Laboratories.

AUUGN 33 Vol 12 No 4/5

Hardware Considerations

In small realti.me scenarios, where the load is not excessive, it is possible to implement
a satisfactory system employing a single processor system. By "satisfactory’, I am
refering to the customer’s definition, not the manufacturer’s. If a patient connected to a
computer monitoring device suffers a cardiac arrest, the operating system must warn
medical staff of the arresting patient in a finite amount of time no matter how many
orderlies are currently running rogue on the system. (Remember, this hospital is
manned by fictional staff). On a normal UNIX system, there is no guarantee of how
long before the software can respond to the interrupt. This is due in part to the fact that
if only one processor is rtmning all tasks, it must finish whatever activities it is
currently doing (for instance, saving a highscore) before it can schedule a task to post a
warning, or ring an alarm bell. Having multiple processors may not necessarily
provide 100% guarantee, since there may be so many copies of rogue running that all
installed processors are saturated.

Multiple processors will help in the following manner. Firstly, they provide additional
computing resources. There are more CPU cycles available to application programs.
This increases the chance of a processor becoming available in a smaller amount of
time2. In general multiple processors give you the benefits of solving numerical
parallel solutions more quickly through vectorisafion, double buffering and pipelining
of data acquisition systems. Probably the most important reason for having additional
CPU’s in our example is if the operating system supports slave CPU’s. This is where a
processor can be dedicated to a single (or group) of tasks. No other tasks can be
scheduled on these CPU’s, other than those defined. By similar means, all external
interrupts can be fled to a single processor, offloading the housekeeping duties from
other processors. The action-reaction time can be severely reduced.

The rate a normal operating system will task switch is 60Hz. This means at worst, the
processor will be able to switch between 60 tasks per second. In most situations
however, tasks will voluntarily relinquish the CPU through kernel calls which require
resources (for example, waiting for disk I/O). If a computationally intensive
application is running (that is, one that does not make kernel calls), it will not get
preempted until the end of its quantum.

Time quantums are measured in multiples of system clock ticks, where a tick is usually
1000/60 = 16.7 milliseconds. This means that a task which does not relinquish CPU can
at worst run a full 16.7 milliseconds before preemption. Allowing timers to interrupt at
a faster rate will provide finer granularity in realfime applications. Rates of 120Hz or
higher could be implemented, but there is a point of diminishing return where the
processor can be interrupting tasks at such a rate they cannot get anything done.

2Tltis assumes the operating system used supports task migration between all processors. To provide
speed, global memory should also be implemented.

Vol 12 No 4/5 34 AUUGN

Software Considerations

Most of the proposals put forward here form part of the UNIX operating system on
various manufacturers’ implementations. Many of these are in addition being
discussed by the POSIX realtime committee3 which sets the standards. This committee
is chaired by representatives of the manufacturers who have implemented realtime
UNIX features. It should also be noted that almost all the following considerations
must be implemented at the kernel level. User code almost invariably remains the
same, for as mentioned earlier, a prime objective is for compatibility between standard
flavours of UNIX.

Scheduling

The first mechanism which needs to be changed is the UNIX scheduler. I will not delve
into the semantics of the System V.4 schedulers since I have not seen performance
benchmarks on the effectiveness of their realtime scheduling. Instead I will focus on
the standard UNIX scheduler found in System V.3 and BSD. This scheduler is
orientated towards a timeshare system. It has been designed as the fair scheduler,
providing a reasonable response to all users. The more CPU tasks use, the less
response they receive from the processor. This enables commands which execute
reasonably quickly to do just that. Tasks are said to degrade over time.

In a realtime emAronment however, this is dearly not acceptable. It is not acceptable
for a task controlling a medicine dispensing machine to delay patients receiving their
doses because the task has been running for an extended period.

In addtion, realtime priorities must be exactly that, prioritised. This means that if
higher priority realtime task becomes ready to run, a lower task is preempted. After
the higher level task completes, the lower level task is rescheduled. Critical care must
be administered prior to general care for instance.

Many vendors now offer realtime schedulers which provide non-degrading priorities.
It should be noted here that the nice(2) facility is not a satisfactory solution since
although it raises and lowers priorities, the nice value is only one of a number of
parameters consulted in the scheduling equation4.

Allowing tasks to run with non-degrading priorities is not sufficient. Further
enhancements need to be included, namely a choice of timeslice or quantum. This is the
period of time a task will be allowed to run before preemption. If the execution time of
a critical region can be measured exactly, interprocess throughput can be increased
since a task can guarantee a resource be made available for use by another (since it was
allowed to complete).

Another choice which may need to be made available is the run-to-completion scenario,
where a task will not be preempted until it voluntarily relinquishes the CPU. This is a
solution which may provide some satisfaction to the executing task, though may upset
the data entry staff. As such this system runs best on a multi processor system.

3The POSLX committee responsible for resolution of realtime issues is P1003.4A realtinte.

4Some vendors have implemented realtime priorities through special values passed to nice(2).

AUUGN 35 Vol 12 No 4/5

Simulation systems require a different strategy again. The general requirement here is
for a very precise scheduler, one that can switch in a task at a precise interval (usually
down to a resolution of a couple of milliseconds) on a regular and frequent basis. The
schedule of tasks to execute is given with respect to time. The schedule can be thought
of as a frequency graph with a fixed repeating period. Because of this strict sequencing,
these are known as frequency based or synthetic period schedulers.

The secret to any fast multitasking system is in its ability to context switch between
tasks. There are many variables associated with performing a context switch. These
include the possibility of having to swap out a process to make room for a new one,
swap in a process to make it runnable or preempting a runaway task. Obviously
optimising the methods mentioned here will improve context switch times and system
throughput.

Task locking

Tasks may be spared the heartache of costly swapping activities by being locked in
core using the plock(2) call provided under System V. Plock, for all its good, still does
not permit the caller to lock its stack in memory, leaving it subject to attack from the
pageda~mon under system load. This is an obvious oversight which must be fixed.

Kernel preemption

The most significant gains that maybe made are through kernel preemption. Initially
the kernel was a black box which having been given a job to do, only returns control
once finished. Of course, if a signal was pending, control may not be returned since
this is one of the times signals are delivered. The time taken to execute kernel calls is
extremely variable with I/O between slow devices typically being the worst, providing
delays of between a few milliseconds to in some cases many seconds.

If an event happens while an operator is retrieving medical history from mag tape, the
delay can be chronic, resulting in significant loss of response time. Moreover, if many
events happen during this interval, under current UNIX semantics, some of these
events, and patients causing these events, may even be lost resulting in turmoil and ’
lawsuits.

Vol 12 No 4/5 36 AUUGN

Kernel preemption provides a method of bypassing this carnage. By adding
preemption points in various slow parts of the kernel, and providing suffident locking
algorithms to protect kernel data structures, it is possible to have a task switched
partway through a kernel call, and have that call complete when the task gets
rescheduled. The time savings are enormous. A typical system with pr~emptio_n may
be able to guarantee the longest unserviceable period being, say, 10 milliseconds. The
actual time is not significant (although of course the smaller, the better), but the ability
to know the worst case response time is.

Interrupt
latency

Interrupt
service

Kernel
delay

Context switch
Process schedule
Context restore

Event
notify

User Task

Interrupt!;

Figure~l. Interrupt with unknown service time.

Interrupt
latency,

Interrupt
service

Kernel
preempt

Context switch
Process schedule
Context restore

Event
notify

User Task I

Interrupt!

Figure 2. Interrupt with known service time through kernel preemption

AUUGN 37 Vol 12 No 4/5

Asynchronaus interrupts

One of the most problematic calls ever devised under UNIX is the signat(2) interface.
As Dennis Ritchie once wrote in a communication, the purpose of signals was to
signify errors, they were not designed to be handled. This has become apparent w~th
the amount of work that has gone into producing a reliable signal interface. Berkeley
initially came up with the first reliable signal using sigvec(2). This provided a
mechanism to restart system calls interrupted by signals. The problem still remained
that multiple occurrences of the same signal could be lost by not having anywhere to
go, and finally, in a fit of depression, throwing themselves into the bit bucket.

To preempt discussion on modification to signal(2), the following is an extract of a
system call implemented on Concurrent’s Real Time UNIX. The device is called an
A~nchronous System Trap (AST). AST’s are never lost, are queued, carry an associated
priority for delivery, and allow one integer of data to be transferred. In all other ways
they are identical to signals.

This allows a task to be interrupt driven and respond to events in a timely an
prioritised manner. A priority threshhold may be defined which prevents AST’s of
priorities less than the defined maximum from being seen. Once the level is lowered
however, they are seen and acted upon. By this means, a task monitoring the nurse-call
buttons can produce a prioritised schedule of patients to visit during the busiest times.

Threading

Multiprocessors can readily make use of threaded applications. Threads5, or lightweight
processes, are tasks sharing a common address and (usually) data space. In this way the
threads occupy no virtual or core memory, other than basic housekeeping space, but
allow software implementation of various methods described in the earlier hardware
section such as vectorisation, double buffering and pipelining.

Disk performance

Disks are typically the slowest link in a system. Realtime systems will be won and lost
on the performance of their secondary storage media. When data acquisition rates
exceed the capacity of available memory, throughput to disk is required.

All standard implementations of UNIX provide a tree structure in their file allocation
algorithms. The first 10 or so data blocks are mapped directly within the inode. Pointer
11 points to a block which points to 128 more data blocks (first level indirection).
Pointer 12 points to a block which points to 128 blocks which each point to 128 data
blocks (second level indirection). Third level indirection is beyond the scope of the
English language. A diagram is more useful.

5The working committee here is IEEE P1003.4A pthreads and P1003.14 multiprocessing.

Vol 12 No 4/5 38 AUUGN

inode "
__~MT~ 10 ~ 128

-Z_~ ~ bloc~

Figure 3. Layout of a typical UNIX file

Accessing a byte in blocks 1 to 10 require 2 disk reads. Any byte in the next 128 blocks
requires 3 disk reads. After about 8 megabytes, the number of accesses required to
read a single byte grows to 5. Although UNIX buffering usually does a good job of
caching the information, the maximum delay is sometimes just too large an
unpredictable to work with. The McKusickfastf!te system, found on most modem
UNIX systems, is of no significant help here since dereferencing of index blocks still
needs to take place at all indirection levels.

A solution is through contiguous files. This is where a file is preallocated as a
consecutive number of blocks on disk. Accessing bytes in this type of file becomes a
trivial exercise. By phasing reads and writes with the appropriate disk interleaves, it
becomes possible to stream data to and from disk6. Furthermore, if data is transferred
in multiples of disk block sizes, it is possible to perform direct I/0 and bypass copying
data to/from the system buffers. The flags argument to open(2) provides the obvious
place to insert the new options of contiguous and direct I/O.

The implementation of contiguous files provides another interesting side effect. UNIX
swap space is usually integrally tied into a disk at format time. This is required
because the swap space must occupy contiguous space, previously not available under
UNIX. By allowing UNIX to use contiguous files as swap, the need of preallocating
swap space is alleviated. Adding swap space is as easy as creating a contiguous file.

6By streamin~ I mean data can be continuously written without rotational delay.

AUUGN 39 Vol 12.No 4/5

A final point on UNIX I/O is the inability to either confirm or deny the existence of
your precious data on disk. UNIX provides asynchronous writes which means that
when a task writes h~formation to disk, UNIX copies the write buffer and hands back
control. At some later stage when there is less activity, this data is flushed to disk.
While this allows tasks to continue quicker, it does not provide any guarantee of disk
coherency should a power failure occur. Write(2) can best be summarised as follows?

"I’ve taken note of your request, and rest assured that your file descriptor is OK. I’ve copied
your data successfully and there is enough disk space. Later, when it’s convenient for me,
and if I am still alive, I’ll try to put your data on the disk where it belongs. If I discover an
error then I’ll try to print something on the console, but I won’t tell you about it (indeed,
you may have terminated by then). If you, or any other process, tries to read this data
before I’ve written it out, I’ll give it to you from the buffer cache, so, if all goes well, you’ll
never be able to find out when and if I’ve completed your request. You may ask no further
questions. Trust me. And thank me for my speedy reply."

The concept of a synchronous write must be implemented which does not return until
data is secured to disk. Once again this can be implemented through the open(2)
interface.

Summary

Most of the above mentioned strategies for dealing with realtime systems have been
implemented in one or more systems, particularly Concurrent’s Real Time UNIX. The
bottom line still remains the same however, that until the POSIX committee ratify
realtime guidelines, vendors will be unable to write truly portable applications.

It should be noted also, that although the aforementioned changes provide excellent
solutions for realtime systems, they are trusted resources and as such can compromise
the smooth running of a system if left in unskilled or malicious hands. Access to
certain system resources must be controlled.

Acknowledgements

I would like to thank Peter Sneesby and John Hanna for their support without which I
would not have got this paper together. Thank you also to staff at the fictional hospital
for allowing me not to mention their names.

Bibliography

Bach, M.J.
Rochkind, M.J.
Henize, J.

The Design of the UNIXTM Operating System
Advanced UNIX Programming
Understanding Real-Time UNIX®

7Extract is taken from Advanced UNIX Programming, by Marc Rochkind.

Vol 12 No 4/5 40 AUUGN

Making Real Use of a PC.
Frank Crawford

Australian Supercomputing Technology
(frank@ atom.lhrl.oz, au)

1. Once Upon a Time ...

in a place far away (at least from Australia)
some people wanted to play a computer
game. Unfortunately there was nothing
suitable so they found an unused machine and
develolged the ultimate games system called
UNIXTra (:-)). The equivalent system today
would be an IBM PC (of whatever brand), but
there are very few versions of UNY~ available
for low end systems, such as PC/XT’s. On
the other hand there is an operating system
which does work on these systems, it is MS-
DOS.

2. MKS Toolkit

Looking at it another way one of the major
advantages of UNIX is the utilities that are
available. As most people would agree, the
basic utilities supplied with MS-DOS leave
something to be desired. But all is not lost,
there are a number of packages available that
can make you PC almost into a UNg~ look-a-
like. A number that will do this well are
available from MKS. One of these packages
is~ the MKS Toolkit which supplies over 150
different UN~ functions, from asa to who and
xargs. The numbers are a bit misleading
because the advertising people have counted
a number of functions built into the Kom
Shell (see more later).
2.1 Supported Functions

In terms of what is supported by MKS it
seems to be a fairly complete set of System V
(actually POSIX compliant) functions.
Looking at the major functional groups, the
Toolkit supports the editors vi/ex, ed and sed,
the grep family, awk, sort and spell. There
are also the standard file compression and
archiving functions such as compress, pack,
tar, cpio and uuencode/uudecode. As well as

ur,ax is registered trademark of AT&T in the USA
and other countries.

these, there is the Kom shell (ksh) and all its
built in functions (things like cd, alias and set
which area counted separately).

Aside from the programs, all the supporting
files are also supplied, such as a spelling
dictionary of nearly 100,000 words (for use
by spell and look). In addition, they supply a
number of manuals, which include a
discription of all the functions (in traditional
man style) and tutorials on awk, Korn shell
and vi.

Finally, to give the look and feel of UNIX
there are such programs as init (complete
with inittab), login and passwd.

How is this done, you may ask? MKS have
created an interface emulating UNJX system
calls such as star(2). They have further
written such programs as glob to provide
consistent UN~ argument handling under
MS-DOS’s command.com. Obviously not all
functions are compatible, so in these cases,
they have implemented a logically equivalent
function. For example, ps displays MS-DOS
process and memory blocks and the process
id is the MS-DOS PSP (program segment
prefix).

2.2 Features

To the more interesting side of the MKS
Toolkit, what sort of environment have they
implemented. Personally, it is an excellent.
There are many UN~ features that I wouldn’t
have imagined possible, but which are very
useful. One of these is a simple job control,
by this I mean that ^Z stops most MKS
functions and fg allows it to be restarted.
Obviously, this reduces the memory available
for other jobs (as, like a TSR, the process
remains in memory until recalled), but it is a
vast improvement on starting another
command.com.

One of the most sort after features (at least by
UN~ users) is the ability to change option
and path delimiters from ’/’ and ’V to ’-’ and
’/’. This is accomplished by a program call
switch, and works for most functions,

AUUGN 41 Vol 12 No 4/5

including many MS-DOS internal functions
(such as dir). Unfortunately, it doesn’t work
for all, e.g. MS-Windows expected to find a
’V in the path.

Another option to make the system more
UNIX-like is the ability to replace the normal
MS-DOS shell (command.com) by MKS’s
init which acts similar to the normal UNIX
init, finally invoking login to handle the users
login. Init is controlled by/etc/inittab which
can include TSR’s and any other initialisation
required, for example see Figure 1.

Default /etc/inittab
Put TSRs here as follows:
tl;2;wait;c:/tsr/foo.com
fast;2;wait;dos/fastopen.exe c: d: e:
scsv;2;wait;ibin\setcge.com scrnsav on
tmpk;2;wait;ibin\timpark.com 5
sk;2;wait;dos/command.com /c c:\sk\skstart.bat
fr_c;2;wait;norton/fr.exe c:/save
fr_d;2;wait;norton/fr.exe d:/save
fr_e;2;wait;norton/froexe e:/save
rc;2;wait;bin/sh.exe etc/rc #Run commands
co;2;respawn;/bin/login.exe

Figure 1o Example/etc/inittab

2.3 Differences from UNIX

Because of limitations with MS-DOS there
are some things that the MKS Toolkit cannot
emulate. There are two areas that this affects,
process control/memory management and the
filesystem.

2.3.1 Process Control/Memory Management
As all MS-DOS users know it is not possible
to run background jobs (the concept was not
even known until MS-Windows). Because of
this the bg function and & operator are not
supported. Further, as all processes must fit
in 640K of memory, there are many
restrictions on job sizes (however, this is
normal for any MS-DOS program). With the
MKS Toolkit and its ability to stop jobs,
which still occupy memory, this is sometimes
a bit more of a problem.

2.3.2 Filesystem The biggest restrictions
come from the MS-DOS filesystem and its
restricted filenames (eight character plus
three character extension). This means that
such programs as compress cannot sensibly
modify filenames, and so often they are
restricted to writing to standard output and

allow the user to redirect the output to a new
filename.

Because of the directory structure, links are
not supports and it is not possible to rearrange
the directory structure, i.e. mv on a directory
only allows renaming.

Also the information kept about files is not as
extensive as UNIX, so programs such as ls are
restricted in what they can report, e.g. all files
are owned uid 0 (generally dos in MKS’s
password file). Finally, because of the use of
’:’ as a device designator, most of the system
files use ’;’ as a separator.

2.4 Future Extensions

For the last two years MKS have been
promising a upgrade which is yet to
eventuate. One reason I suggest for the
failure to deliver is that there is little they can
improve on. The current version (3.1) seems
to be both complete and reliable, I am yet to
find any bugs in the implementation.

The only area that is lacking is
communications. MKS would do well to
include something like UUCP, or at least
kermit.

One other possibility would be work on the
memory usage, possibly make use of an
Expanded or Extended Memory Manager.
There is probably a need to do some
reworking of init with MS-DOS 5.0, and the
loadhigh command (devicehigh will still
work from config.sys).

3. Other Products

Aside from the basic utilities there are many
other products that make a UNIX system.
Most of these are available for MS-DOS.
Some of these are covered below.

3.1 Text Processing

One area that has long been well handled by
UNiX systems is text processing, with troff
and related packages. These facilities are
readily available on PC, with such packages
as Eroff (by Elan) and SQPS (by MKS). Both
of these packages support AT&T’s

Vol 12 No 4/5 42 AUUGN

Documenter’ s Workbench
include drivers for HP
Postscript printers.

(DWB) and
LaserJets and

There is very little to say about these
products, except that they work. This paper
was produced using the eroff package and
then transfered to a tJN~ system with a laser
printer for a final proof.

3.2 Development

One of UN~’s strongest areas is in software
development. Obviously in the area of C
compilers there is a lot to choose from (most
of which are similar to those available on
UN~ systems), generally they are ANSI
conformant, and so support the equivalent of
many UN~ system calls, as well as other
functions.

Products to support development such as
make and rcs are widely avaiable (e.g. from
MKS) all of which are derived from the UNiX
originals. If there is any product you are
currently using then there is probably a
version available for MS-DOS.

4. Conclusion

In conclusion the MKS Toolkit and other
MS-DOS packages can be used to make a PC
look and feel like a UND~ system. But what is
more, they allow you to still have access to
all the other MS-DOS packages and they
work with PC networks.

As an example of what you can do, this entire
paper was written using vi, checked with spell
and proofs generated with troff, all on a IBM
PC/AT under MS-DOS 3.3, in effect no
different programs to what I would use at on
the UNIX system at work, and thus no new

functions or procedures to learn.

5. Contact Details

MKS Toolkit, MKS RCS & MKS Make:

Phone:
FAX:
E-Mail:

Mortice Kern Systems Inc
35 King Street North
Waterloo
Ontario
Canada N2J 2W9
+1 519 8844 2251
+1 519 884 8861
inquiry@mks.com

Australian contact:
Microway
P.O. Box 84
Mordialloc
Victoria 3195

Phone: +61 3 580 1333
FAX: +61 3 580 8995

AUUGN 43 Vol 12 No 4/5

The NeXT Computer- an Australian Perspective
Cameron Bromley

Codex Software Development Pry. Ltd.
(cdb@codex.oz.au)

The NeXT computer is now available in Australia. NeXT is running a developer camp in Melbourne on
November 15th. The Australian pricing is good - a touch more than the US price converted to Australian
dollars plus a bit more for shipping. More on the developer camp later.

Most AUUGN readers would know something about the NEXT. The original machine was announced
some years ago now, and until recently was dormant. Things changed when NeXT announced the
NeXTStation model in October last year. The NeXTStation is powered by a 68040 at 25Mhz, running
Mach 2.1 and NeXTStep 2.0. Mach provides a 4.3BSD compatible operating system, with a few
extensions - a faster, more consistent system of interprocess communication (ports), a larger virtual address
space, memory mapped files and threads. NeXT have extensively used Free Software Foundation tools
such as gcc and gdb (the excellent ’Gnu’ C compiler and debugger), which are provided standard on
machines with 400MB+ disks.

The 1.0 release was essentially a beta version of the product as it stands today. The 2.0 release is what I
would consider the first commercial product. The interface itself is much more elegant, and all machines
have at least 15MIPS and 8MB to power them. The philosophy of the machines has changed subtly from a
rather esoteric workstation to a high-class personal computer. The slow optical drives are optional, rather
than standard. The documentation is more user-oriented (although excellent technical documentation
exists).

NeXTStep is a combination of the Workspace Manager, Interface Builder, the Application Kit and the
Window Server. The Workspace Manager provides the user interface to the file system and Mach. The
Window Server is essentially an implementation of Display PostScript - PostScript is sent to the server to
draw images on the screen, and the Window Server will despatch events such as mouse clicks and
keystrokes to your application. All drawing is done via PostScript routines; PostScript operators can be
accessed as C functions. In addition, NeXT supplies a program named pswrap which will translate
arbitrary PostScript into a C-callable function. The Display PostScript kernel is surprisingly fast, even
without the NeXTDimension card, which provides an Intel i860 co-processor and 8MB of RAM to support
full 32-bit colour and real-time displays. Included in the documentation is a chapter entitled ’Making Your
Applications Fly’, which deals with optimisation techniques and frankly discusses bottlenecks such as the
window server and how to maximise the throughput.

Interface Builder is a very powerful application that has a two-fold purpose: It lets you graphically design
a user interface for an application, and creates a programming environment for each project. To design an
interface, you simply drag interface objects into the prototype application window. Interface Builder will
create a ’.nib’ file, which contains the archived objects which make up your interface. This ’nib’ file is
loaded automatically at run-time, the objects de-archived and instatiated without the programmer having to
worry about the details. Also created by Interface Builder is the primary Makefile (which contains targets
for debugging, final builds and installation, among others). Interface Builder provides project management
facilities, and will take care of the discrete components of an application. You can subclass any of the
classes provided, Interface Builder will generate ’stub’ source code for you and adds to the dependency
list.

Interface Builder is extensible - example ’palettes’ are provided which are loaded at runtime and provide
interface objects such as simple bitmap ’paint’ programs and ’smart’ text fields which will validate their
contents. Third parties are beginning to provide class libraries to add to the standard AppKit classes.
Some of these are distributed via anonymous ftp, others commercially.

All NeXTStep appliCations use the Application Kit regardless of their purpose and complexity. The

Vol 12 No 4/5 44 AUUGN

buttons, sliders and and windows that are manipulated via Interface Builder are defined as Objective-C
classes in the Application Kit. Application Kit classes include Button, Slider and Cell, as well as the more
interesting LiveVideoView, Text and Application classes. The richness of the AppKit classes combined
with the power of Objective-C and Interface Builder is, to me, the greatest attraction of the NEXT.

All the documentation is online and is accessed via the Digital Librarian application. The difference
between the Librarian and every other online documentation facility I have seen is that it is useable, so
much so that it is, to me, preferable to the printed documentation. The text is formatted, and the 92 dot-
per-inch screen make it very readable. The Digital Librarian provides can index arbitrary directories.
Simply dragging the graphical representation of the/usr/include directory (a folder) onto the Librarian
application will provide text retrieval facilities for that branch of the file system. If an index is created, text
expressions are matched virtually instantaneously and the results displayed.

The ’drag’ facility provides some idea of the integration of the environment. Almost all application which
have a representation of documents as part of the user interface provide dragging facilities, it is extremely
easy to code the functionality required. The Workspace Manager will inform your application that the user
has dragged documents over your window, and will also provide basic information such as the filenames,
the document type, what applications recognise the document, etc.

Sometimes, the richness of the machine is it’s biggest drawback - users and, especially, programmers of the
machine are bewitched by the sheer volume of functionality and become NeXT propagandists. The
drawback is that fanatics are viewed with a certain suspicion by everybody else. But it’s very difficult not
to become enthusiastic about this machine; so much functionality is provided with mostly no coding effort
at all.

A good example is the Text class. You might need a text entry object as part of your interface. It’s natural
to drag a Text object from the Interface Builder application onto your window. That’s the end of the story.
From here, users can click on the text window, and start entering text via the keyboard. Or they can drag
an existing document into the windows. Or the can paste via the system clipboard. TIFF and PostScript
images can be embedded in the text. Sound objects which know how to play and record sound. Rulers with
tab stops and margins. As many different fonts (of any size) that are on disk. If they are unsure of the
spelling of a word, the users of your application can highlight the word and with a singe keystroke or menu
selection define the word in the online Webster dictionary and thesaurus, which will suggest spelling
alternatives if necessary - or provide a TIFF image if appropriate, which can be pasted back into the
original text field. The entire contents of the text field, including sound and images, can be mailed to
anybody via the same process. Or printed.

The really good part? - None of the actions above require any explicit coding.

If you, as a programmer, want to do something useful with the text, you ask the text field for, say, it’s text.
This is achieved via an Objective-C message:

[textThing getSubstring:buffer start:0 length: 100];

This sends a ’getSubstring’ message to the ’textThing’ object, requesting it to place the first 100 bytes of
the text it has into the memory location pointed to by ’buffer’.

The message syntax of Objective-C is reminiscent of Smalltalk. Objective-C is an extension of the C
language; the Gnu compiler provided with the NeXT works with Objective-C, C and C++. Objective-C
adds little to the syntax of the C language - a couple of new keywords and the [receiver message]
expression. The language

The major difference between Objective-C and C++ is the dynamic typing - arbitrary messages can be sent
to arbitrary objects at run-time. This feature is the underpinning of the ease of use and flexibility of

AUUGN 45 Vol 12 No 4/5

NeXTStep and the user interface. Static typing is available when needed, but is rarely used in practice.

As well as providing excellent programming facilities, the NeXT also provides front-end tools for user and
network management, mail, printing, word-processing and faxing. All applications which print can also
fax - the fax software is built into the standard ’print’ dialog box. Unix can be ’hidden’ via a Preferences
switch; only /usr/bin in their Workspace Managers. Networking really is transparent, once the local
domain server has been set up (a painless process). Newly attached NeXT computers will recognise the
network, be assigned an Internet address (which can be overridden if necessary, and automatically mount
public NFS volumes, gain access to printers, etc. After coming from a mixed Sun/Ms-Dos/Mac
environment, I was very impressed by the ease of managing the entire setup.

It’s difficult to convey the essence of the machine in writing - you really have to sit down in front of one
for about half an hour to appreciate just how well built they are. Everything from the external casing to the
icon design, the programmer API, the class libraries and the tools are well designed and elegant.

So, what does it all mean, in the end? The NeXT machines are neither the fastest nor the cheapest
workstations to be found. Interface Builder is not the only product of its type. Other machines have
Display PostScript and front-ends to Unix. But no other machine combines all this functionality and more
into a package as economical, elegant and fun to use. Highly recommended.

The NeXT Developer Camp

Currently, the only way to purchase a NeXT machine and receive registered developer status is to attend
the Developer Camp in Melbourne on November 18th. Those with registered developer status receive a
30% discount on NeXT hardware and receive excellent technical and developer support.

The idea is to ’seed’ developers in Australia; developers will decide which machine they want before
attending the camp, and take the machine home after the camp has finished.

Codex Software Development Pty. Ltd. are registered NeXT Developers and have no other affiliation with
NeXT Inc. The camp itself and the training staff will be supplied by NeXT Inc.

This is a great chance for interested people to easily purchase a machine and gain developer status. The
camp is limited to twenty people; bookings are on a first come, first served basis.

Codex Software Development Pty. Ltd., based in Melbourne, is acting as co-ordinator for the camp. Any
queries, applications, etc should be directed to cdb@ codex.oz.au or by phoning Cameron Bromley, Codex
Software Development Pty. Ltd, voice (03) 696-2490; fax (03) 696-6757

Vol 12 No 4/5 46 AUUGN

On Semaphores for UNIX

Neil Dunstan

University of New England

Abstract

UNIX System V offers semaphores with significant enhancements compared
to traditional Dijkstra semaphores. However, it is not always clear in what
ways these additional features may be used. In fact, some writers on this topic
are not in favour of their use at all. In this paper UNIX semaphores are
described and compared to Dijkstra semaphores. Additional features are
identified and practical uses are outlined. The discussion also identifies some
inadequacies and suggests slight modifications to UNIX semaphore operations
intended to overcome these difficulties.

1. Introduction

The semaphore [Dijkstra, 1968] is a commonly used synchronization mechanism. A
semaphore is a non-negative integer with an associated queue of processes, which may be
empty. The two indivisible operations which may be invoked on a semaphore are

P(s) wait on the queue until s can be decremented by I

V(s) increase s by 1

Because of their simplicity and versatility semaphores have been included in a number of
operating systems, including UNIX System V and 0S/2.

2. UNIX Semaphores

The UNIX System V system calls semget and semop deal with arrays of semaphores rather
than single semaphores. An array of a specified number of semaphores is created using
semget. The returned identifier may then be used in calls to semop to perform operations on
one or more semaphores in the array. Each operation is specified in a data structure of the
form

struct sembuf{
ushort sem_num;
short sem_op;
short sem_flg;

}

where sem_num identifiers the semaphore within the array, sem_op indicates the type of
operation and sere_fig is used to qualify the operation to be performed.

AUUGN 47 Vol 12 No 4/5

The types of operations to be performed include

sem_op > 0 increase the semaphore value by sem_op

sem_op < 0 wait until the semaphore value is at least
equal to I sem_op ~ then decrease it by]sem_opl

The operating system maintains a number of values for each semaphore. Among these are

semval
semncnt

current semaphore value
number of processes suspended due to an
operation where sem_op < 0

3. Other Studies

Tutorial descriptions of UNIX semaphores are given in a number of books [Rochkind,1985;
Bach,1986; Haviland and Salama,1987; Stevens,1990]. Rochkind and Haviland et al. suggest
that there are too many features, creating a complexity that is not conducive to reliable
concurrent programming. Rochkind in particular advocates a simplified interface to the U’NIX
system calls that reduce their features to that of Dijkstra’s P and V operations. While this
provides a useful implementation of the common notion of semaphores it seems unnecessarily
cautious to avoid all the additional capabilities of UNIX semaphores. Stevens does make use
of some of these additional features but shows that the inability to provide an initial value
to a semaphore at the time of its creation can cause problems that require a complicated and
not altogether adequate solution. In another paper [Dunstan and Fris,1991] UNIX
semaphores are evaluated with respect to their ability to support different process scheduling
strategies.

4. Making use of UNE~ Semaphores

Several ways in which UNIX semaphores provide capabilities that are not provided by
Dijkstra semaphores are discussed in this section. In each case, practical applications are
given.

4.1. Arrays of Operations

It is possible to build an array of operations to be performed indivisibly on a semaphore
array. A process invoking an array of operations is suspended until all can be achieved. If one
operation, for example decreasing a semaphore value, cannot be done, then none are done.
When all operations can be done, they are done indivisibly.

Semaphore solutions to the Dining Philosophers problem [Dijkstra, 1968] typically use
serially acquired forks (represented by semaphores with initial values of 1) and require extra
code to avoid the possibility of deadlock. That is, each philosopher acquires exactly one fork
and is left waiting for the other. The problem solution using UNIX semaphores has each
philosopher acquire (or wait for) both appropriate forks indivisibly using an array of
operations.

Vol 12 No 4/5 48 AUUGN

4.2. SEM_UNDO flag

Setting sem_flg equal to SEM_UNDO qualifies an operation so that the semaphore value is
adjusted appropriately if the calling process exits.

This facility has obvious use in critical section problems, that is, when a number of processes
must execute a code section in a mutually exclusive fashion. Dijkstra semaphore operations
can be used to surround the section. For example ...

P(mutex)

/* critical section */

V(mutex)

where mutex is initially 1, allowing one process at a time into the critical section. Should a
process exit within the critical section before calling V(mutex), the semaphore value is not
restored and all other processes are deadlocked. A UNIX semaphore solution, using sem_op
= -1 with sem_flg = SEM_UNDO as the P(mutex) operation, would again avoid deadlock with
minimal additional code. The V(mutex) operation must be replaced by sem_op = 1 and
sem_flg = SEM_UNDO.

4.3. IPC_NOWAIT flag

Setting sem_flg equal to NO_WAIT qualifies an operation that may result in a process being
suspended. The effect is that, if possible, the operation is done immediately. If it cannot be
done immediately then the operation is aborted and the process is not suspended.

When sem_op = -1 and sem_flg = IPC_NOWAIT, the operation is the equivalent of the tryP
operation included in the set of synchronization mechanisms for the MONADS-PC system
[Dunstan, 1989]. It allows a process to secure a resource (protected by a semaphore) if it is
immediately available, or carry out some other useful work if not.

4.4. I sem_opl > 1

Operations with the absolute value of sem_op > 1 shows a marked departure from Dijkstra
semaphores. A practical use is given in [Dunstan, 1991] for a semaphore implementation of
monitor priority conditions.

The semaphore implementation of monitors and conditions is reasonably straightforward
[Hoare, 1974; Peterson and Silberschatz, 1985] but prioritized queuing of conditions greatly
complicates the algorithms where Dijkstra semaphores are used. However, a priority
condition queue can be conveniently represented using a single UNIX semaphore upon which
processes are suspended using sem_op as their priority level. Signalling a condition is done
by progressively incrementing the semaphore until a process is released (the one with the
lowest priority level).

Another application (discussed in greater detail in [Dunstan and Fris, 1991]) is an

AUUGN 49 Vol 12 No 4/5

implementation of the eventcount operations Advance and Await [Reed and Kanodia, 1979].
Advance(event) increases the value of an event by 1 and Await(event, level) causes the
calling process to remain suspended at least until the value of the event has reach the stated
level. An eventcount can be represented by a UNIX semaphore where the Advance operation
simply uses sem_op = 1. The Await operation uses sem_op = -level and then immediately
restores the eventcount value by a corresponding operation, that is, sem_op = level. In this
way, the net effect is that the eventcount continues to rise, allowing processes waiting for
higher levels to be released appropriately.

5. Recommendations

While the features of UNIX semaphores provide convenient solutions to some problems they
might easily be more efficient.

The implementation of monitor priority condition queues involves potentially many system
calls if there are many priority levels. This could be avoided by employing a new flag
SEM_RELEASE (to be assigned to sem_flg) whose meaning is to qualify an operation where
sem_op > 0 so that the value of the semaphore is directly raised to’ the minimum required
to release a process. With this flag, only a single system call is required to release a process
suspended on a semaphore used for prioritized queuing.

The implementation of the eventcount operation Await uses two system calls. The first waits
until the semaphore reaches a given level and then decrements it to 0. The second system
call then restores the value. Clearly, the second system call is not necessary if a process could
wait for a given value to be reached without changing it. Another new flag
SEM_NOCHANGE is proposed which qualifies an operation where sem_op < 0 so that the
process waits as usual, but does not change the value of the semaphore.

The meaning of the proposed flags are summarized below

SEM_NOCHANGEif sem_op < 0 then
wait until semval >= I sem_opl

else
no additional effect

SEM_RE LEASE if (sem_op > 0) and (semncnt > 0) then
semval is assigned the minimum of n

else
no additional effect

(where n is the set of values by which processes are
waiting to decrement semval)

6. Conclusions

UNIX System V semaphores offer many more features than traditional Dijkstra semaphores.
Rather than being unwanted and irrelevant, these additional features have real and practical
applications. Despite the substantial code and data structures associated with the semaphore

Vo112 No 4/5 50 AUUGN

system calls, there are some inadequacies that might easily be remedied. Additional flags
have been proposed for this purpose which would not significantly add to the code and data
structures involved.

REFERENCES

M. J. Bach, Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, N. J.,
1986

E. W. Dijkstra, "Cooperating Sequential Processes", in F. Genuys (ed.), Programming
Languages, Academic Press, New York, 1968

N. Dunstan, Concurrent Programming in LEIBNIZ on the MONADS-PC System, M. Comp.
Sci. Thesis, University of Newcastle, 1989

N. Dunstan, "Building Monitors with UNIX and C", University of New England, Dept. of
Maths., Stats. and Comp. Sci., Technical Report 91-36, 1991, To be published in ACM
SIGCSE Bulletin

N. Dunstan and I. Fris, "Process Scheduling and UNIX Semaphores", University of New
England, Dept. of Maths., Stats. and Comp. Sci., Technical Report 91-37, 1991

K. Haviland and B. Salama, UNIX System Programming, Addison-Wesley, Great Britain,
1987

C. A. R. Hoare, "Monitors: An Operating System Structuring Concept", Communications of
the ACM, Vol. 17, No. 10, Oct. 1974.

J. L. Peterson and A. Silberschatz, Operating System Concepts, 2nd Edition, Addison-Wesley,
USA, 1985

D. P. Reed and R. K. Kanodia, "Synchronization with Eventcounts and Sequencers",
Communications of the ACM, Vol. 22, No. 2, Feb. 1979

M. J. Rochkind, Advanced UNIX Programming, Prentice-Hall, Englewood Cliffs, N. J., 1985

R. Stevens, UNIX Network Programming, Prentice-Hall, Englewood Cliffs, N. J., 1990

AUUGN 51 Vol 12 No 4/5

co o s

An unusual application

Hardware

Software

An SNMP Stereo System:
Musical Networks, Australian Style

by Simon Hackett

At INTEROP 90, I had the pleasure of demonstrating a device which
brings something of a new twist to the use of the Simple Network
Management Protocol (SNMP) on a TCP/IP network.

SNMP is designed to allow vendor-independent monitoring and
management of objects on a TCP/IP network. It is conventionally used
to monitor and manage devices such as IP routers and bridges, and
compute hosts on an IP network. It is in essence a protocol which
allows an IP node to provide access, over the network, to a tree-
structure of variables. Variables can be read-only or read/write. The
ability to write values into variables is controlled by a fairly rudi-
mentary scheme of "community" strings--essentially a plain-text
password.

There is a standard tree of variables, a so-called Management Infor-
mation Base (MIB), which each vendor of SNMP products should
support. These allow the retrieval of information about the IP nodem
information such as IP network numbers, routing tables, and packet
input, output and error counts.

New tree structures (MIBs) can be defined to suit other applications.
To prove the point, I demonstrated an unusual applicationma
networked stereo system, using SNMP protocols to provide full moni-
toring and control of the system. The stereo system we demonstrated
was a Pioneer Tuner/Amp (with a cute motor-driven volume knob), a
Pioneer PD-M910 six-disc CD player, and a set of Klipsch speakers.
We operated the stereo system for the interest of visitors to the TGV
booth, using X-windows front end software plus some simple
command-line based SNMP tools.

Connecting this system to the network was a little "magic box." Based
on a Motorola 68000 processor, this device performs real-time moni-
toring and control of the stereo ~system, and also runs an IP kernel,
with ICMP, UDP, and an SNMP agent which implements our audio-
visual MIB. It talks IP protocols to the world using serial line IP
(SLIP). Interfacing the to stereo system is achieved using two con-
nections. The device listens to the signal coming from the the "Digital
Output" jack on the CD player, and generates a control signal which
connects to the Pioneer-standard "remote control input" jack on the
CD player. The "remote control output" on the CD player is daisy-
chained to "remote control input" on the tuner/amplifier, so the device
can control both units. (See Figure 1).

The software in the box was written almost entirely in C, using Sun
workstations. Much of it was written during a period of intense
activity at TGV Inc in Santa Cruz, California during August of 1990,
when I worked with several others to finish the software in the device,
adding the IP and SNMP support to the control software I had
previously written.

The control software uses some careful timing to imitate the remote
control signals used by Pioneer’s stereo components. Thus, by being
plugged into the "remote control in" jack on the CD player, any CD
player or .Tuner/Amp function can be initiated by the controller. The
digital output signal from the CD player contains both the digital
audio samples for the music being played, and a stream of status
information.

Vol 12 No 4/5 52 AUUGN

The Interop~rability Report
--

Using the system

This information is decoded in real-time using interrupt driven
routines to provide the system with continuous monitoring of the
position of the CD player in any music selection played. The "table of
contents~ information from each CD is also read using this interface.

The device implements a 100 entry play queue for the CD player,
much like a jukebox. It processes this queue, playing selections, and
allows any connected network node to monitor this queue, add
selections to it, and do other monitoring and control of the stereo
system (tuner/CD selection, amplifier volume adjustmenL fade down,
fade up, etc). SNMP operations allow full management of the queue,
including retrieval of queue elements and insertion, deletion and
replacement of entries anywhere in the queue.

For INTEROP, we wrote some demonstration applications to show off
the unit. A set of Xll tools show the status of the system (including
the currently playing disc number, the playing time of the current
selection in minutes and seconds, the amplifier volume, tuner status,
etc). Recognizable buttons are provided in the window to provide the
play, pause, stop, eject and other required functions. (See Figure 2).

Another window displays a set of disc titles from a database of
available discs. Clicking on a disc title pops up a window listing all
the tracks on that disc, and also all the tracks on the other discs in
that "six pack." Clicking on track titles in the window causes the
appropriate SNMP requests over the network to the controller, which
appends the selection to the play queue.

SNMP control issues

F--I , ,~ ~ il-’l

68000 CPU ~ CD Controller

64K ~M
~[]

SLIP Pa~er
~2SK EPROM ~ ~GIC BOX ~ IP
2 RS-232s ~P

Custom CD In~fface S~IP

INTEROP 90 ShowNet

Figure 1: Hardware configuration

With Marshall Rose of PSI Inc and Stuart Vance of TGV Inc, I
developed an "audio-visual" MIB, providing a tree structure which
describes the functions and information available from a range of
stereo components. This MIB is quite substantial, since it describes
all the functions of the six disc CD player, and most functions of the
Tuner/amp unit. It contains sections for most other sorts of audio/
visual components, which we will "fill out" as needed.

Because the SNMP protocol is general, any software capable of
issuing. SNMP set and get requests is capable of accessing the stereo
system, by using our custom MIB to find the identity of the required
variables. This includes line-based SNMP libraries available from
several sources, and SNM:P network management station software.

AUUGN 53 Vol 12 No 4/5

co LXm s

An SNMP Stereo System (continued)

Control and monitoring of the stereo is effected with sub-trees of
SNMP variables describing each function. For instance, one sub-tree
contains current status information for the CD player (current disc,
current track, time into track, time into disc etc). This sub-tree can be
"walked" using SNMP’s powerful get-next operator, to display the
player’s status. The values returned are real-time information from
the CD player.

Another sub-tree contains information describing each disc in the six
pack. If less than six discs are loaded, the sub-tree simply shrinks as
appropriate. For each disc, a further sub-tree gives an identity num-
ber for that disc, the number of tracks on the disc, and the duration of
each track.

2 3.38

Frequency: FM 107.10 [0.00]

Figure 2: The X Tools CD player control window

Yet another sub-tree is responsible for the queue of tracks waiting to
be played. For each entry in the queue, a part of this tree describes
the attributes of that selection. These are: disc ID, track number ("0"
implies the whole disc), starting and ending times, plus track repeat
and requeue counts. Each entry in the queue is assigned a unique 32
bit ID by the software for later reference, and this ID also appears as
an SNMP variable in each queue entry. Walking this sub-tree pro-
vides a list of the tracks waiting to be played.

To instruct the system to queue a selection, a set of SNMP variables is
written in as a "request block," and then a function code is written
into a variable to tell the system to queue the entry. Functions have
been implemented to allow queue entry insertion, deletion, replace-
ment, etc. Other system settings are accessible via SNMP. For
instance, one variable is the amplifier volume setting. This can be
changed with an SNMP set request to change the volume, and read
using an SNMP get to check the current volume level.

Vol 12 No 4/5 54 AUUGN

....

Wide area access

Conclusion and futures

Acknowledgements

Since the controller is a functional IP node, it can be accessed any-
where on the internet it is connected to. Indeed, I have gained some
amusement from altering the volume setting on a system at TGV in
Santa Cruz, CA, from Adelaide, South Australia over the Internet.
This is quite a good computer-hackers’ party trick.

At INTEROP 90, we demonstrated that SNMP can control anything
you want to control. Indeed, the backup controller device was used to
operate the second Internet Toaster to make an appearance at
INTEROP 90; the first Internet Toaster was demonstrated at INTER:
OP by John Romkey. We also found out that the majority of
networking people at INTEROP 90 seemed to prefer listening to Pink
Floyd and Monty Python (almost to the exclusion of anything else, it
seemed...)

I hope to demonstrate the next generation of this device at INTEROP
91. It will be using Ethernet instead of a serial line for the IP con-
nection, and instead of just monitoring the stereo system, I intend to
push the digital audio data from the CD player down the network and
pop it out of another black box somewhere else on the show floo!! I
should also have some other interesting applications of this techno-
logy ready to demonstrate at the show.

This enterprise would not have happened without the generosity and
encouragement of TGV, Inc in Santa Cruz, California. I need to thank
Ken Adelman and David Kashtan of TGV for their support (including
flying me over to make this happen), John McMahon of TGV for
writing the X-windows code. John Romkey and Karl Auerbach of Epi-
logue Technology assisted us and kindly allowed us to use their
SNMP agent code as the core of our SNMP implementation. Most
importantly, I am very grateful to Stuart Vance of TGV for his friend-
ship and encouragement, and for his contribution of a great deal of his
time and effort to help make this happen.

This paper has been reprinted with permission from ConneXions, Volume 5, No. 4, April 1991.

ConneXions--The Interoperability Report is published monthly by:
Interop, Inc.
480 San Antonio Road, Suite 100
Mountain View, CA 94040
USA
Phone: (415) 941-3399 FAX: (415) 949-1779
Toll-free (in USA): 1-800-INTEROP

Free sample issue and complete list of back issues available upon request.

AUUGN 55 Vol 12 No 4/5

;login: 16:2

An Update on UNIX-Related Standards Activities
Jeffrey S. Haemer
Report Editor, USENIX Standards Watchdog Committee

1003.14: Multiprocessing

Bill Cox <bill@attunix.att.com> reports on
October 15-19, 1990 meeting in Seattle, Wash-
ington:

P1003.14 (Multiprocessing) Summary -- Seattle

Dot14 is working toward a first draft of its
document, a multiprocessing Platform Environ-
ment Profile (r’El,). (The terminology has
changed; this is more or less what used to be
called an Application Environment Profile.)

Bob Knighten (Chair) and Bill Cox (I’m the
Secretary) are going to edit the most final uI
Multiprocessing Working Group (MPWG) report
and replace the copy apparently sent in error by
uI. The working group adopted the to-be-
delivered version as a base document for the stan-
dard.

The UI MPWG document does not address
coherence, sequentiality, or the management of a
multiprocessor, all of which are important areas
to the Dot14 working group. Non-Uniform Mem-
ory Architecture (NUMA) issues are also a con-
sideration; the uI MPWG report deals primarily
with Uniform Memory Architectures.

The group is starting to produce a coordi-
nation ballot for P1003.4A Pthreads, which was
released for ballot by the Seattle meeting. Since
the Pthreads work has now wound down (the
draft standard is now in the hands of the technical
reviewers, not the working group), many of the
partisans that were attending Pthreads will start
attending Dotl4, and therefore will have a role in
shaping the coordination ballot on their own
handiwork. There will be a separate effort to
create a Common Reference Ballot, similar to the
one produced on Dot4, but due to the changing
composition of Dotl4 that work will take place
informally and outside of Dotl4.

Note that a coordination ballot from another
FosIx group can only be a "NO" ballot, and pre-

sumably draws significant attention (as do all of
the institutional ballots).

The work items for the New Orleans meeting
are:

1. Prepare coordination ballot for Pthreads.
2. Review draft 2 of Dot14 PEP.
3. Review state of the "TIMS" PEP.
4. Coordinate with the Dot13 AEP.
5. Continue working on modifications to and is-
sues with Base Standards.
6. Continue to coordinate with other working
groups.

The current list of coordination issues with
other POSIX working groups is:

Dot2
Parallel utilities, including make, fsck, grep,
and find.
File system directory tree walk.
How to specify parallelism (command line
flags, environment variables).
Specification of the effects of parallelism.
Does a "parallel" version have to be faster
if Processors are added?
To what extent can parallelism change the
effect, e.g., output order?

Dot1

®

@

and Dot4

Resource reservation.
Processor binding and scheduling.
The plock function.
Shared memory interfaces.

Dot4A (Pthreads)

Microtasking models (finer than Pthreads).
Resource query and brokering.
NUMA configuration and control.
Synchronization primitives, e.g., barriers,
that are not in the Pthreads draft.
Re-entrant interfaces and functions.
Memory model (the Pthreads model is
overly restrictive in a multiprocessor).
Scheduling (this seems to have cleared up
with recent changes in Pthreads).

Vol 12 No 4/5 56 AUUGN

:login: 16:2

Dot7
- Resource query (see also Dot4A list).
¯Statistics gathering and display.

Dot8
¯ Resource brokering (again).

X3J16: C++

Mike Vilot <mjv~objects.mv.com> reports
on the November, 1990 meeting in Cupertino,
California:

Current Status

The ANSI x3J16 committee closed out their
first year of discussions by completing the defi-
nition of the C++ language. At the November
meeting, they agreed to incorporate the termi-
nating exception proposal (the text from Chapter
15 of The Annotated Reference Manual, minus the
annotations, plus some minor clarifications). C++
vendors can now regard templates and exceptions
as officially part of the language, and provide their
users an opportunity to work with this feature.

We saw some progress on the review of lan-
guage ambiguities and inconsistencies, and are
beginning to get some idea of how difficult it will
be to ANSI-fy the document. We also saw some
specific proposals on library contents (the most
substantial suggestion to date has been a simpli-
fied version of the iostreams library).

November meeting

Hewlett-Packard hosted the Cupertino meet-
ing. The week’s major activities focused on set-
.fling the debate surrounding the design of the
exception-handling facilities in C++. There was
also a rather long discussion of internationalizing
the development of the C++ standard.-

x3Jl6’s sub-groups focus on the key topics
listed in the goals statement developed at the
March meeting. They worked by electronic mail
between meetings, and reported their progress.

International Concerns

Steve Carter of Bellcore presented the major
international concerns.

Steve explained the differences between
"’Type D’" (domestic first) and "’Type I’" (inter-

national) procedures in preparing an international
standard. His group suggests conv.erting to a
"Type I" process, which results in simultaneous
review and standardization at the national and
international levels.

One aspect of this conversion that caused the
most discussion was the ISO requirement to pro-
vide a detailed explanation of the "incompatibil-
ities" between C and C++. As Bjarne Stroustrup
observed, that term is loaded and causes a shift
in the group’s emphasis to defining the "not C"
elements of C++ and defending why they are
there. He also pointed out that X3JI I was not
required to go through this sort of exercise.

The committee formally moved and tabled a
decision to make the conversion. This puts the
group on record as having considered the idea,
but expresses their reservations about the various
implications of such a decision.

We also discussed the alternative to trigraphs
proposed by Keld Simonsen and Bjarne Strous-
trup. There is some confusion among x3J 16 mem-
bers regarding the extent of systems supporting
ISO 646 and the Latin-1 character set. X3J16 will
investigate the issue in more detail at the March
meeting.

There was also some discussion of the nor-
mative addendum to ISO C proposed by the Jap-
anese. Since this will affect the goal of maintain-
ing compatibility between C++ and C, this issue
will bear watching.

Editorial

Jonathan Shopiro of AT&T presented the Ed-
itorial group’s work.

The most significant change since the July
meeting was a clarification in Chapter 11 regard-
ing protected derivation. The language described
as of the 2.1 release of cfront slightly generalized
the language to allow all three access specifiers for
derived classes. Jon described the changes to the
language specification as clarifying this point and
simply explaining the semantics involved.

An important development was the lack of
progress on the Rationale document. John Dlu-
gosz had volunteered to edit this document, and
has not been heard from since the Julv meeting.
He was not present at the November meeting.

AUUGN 57 Vol 12 No 4/5

;login: 16:2

Formal Syntax

James Roskind, an independent consultant,
presented the work of the Formal Syntax group.

He continued to lobby x3JI6 to accept his
copyrighted yacc grammar for C++ as the formal
definition of the language. He produced little ev-
idence that the group worked on reviewing either
relevant formal methods or the applicability of
those methods to the development of the stan-
dard.

Mark Langley of Microsoft presented ten ex-
amples that illustrated what he considered prob-
lems in the language. Bjarne Stroustrup and oth-
ers pointed out that most of the issues are
answered by the text of the language specification.
The committee expressed a general dissatisfaction
with the group’s process of random fault-finding,
and strongly urged the group to present specific
proposals for language changes and/or clarifica-
tions in the language specification.

Tom Penello of MetaWare presented an
analysis of the impact of the template syntax on
the LR(1) properties of the grammar, using a
grammar analysis tool of his own design. While
the committee appreciated the value of auto-
mated tools to pinpoint problems in the grammar,
the consensus of the committee was that an en-
tirely grammar-based specification of the lan-
guage was unrealistic -- even if the grammar
could precisely and unambiguously specify the
language, the result would likely be too complex
to be useful to either implementors or users.

Core Language

Andy Koenig of AT&T presented the Core
Language group’s work.

The group came up with a list of almost 80
issues that need further clarification. They also
adopted a policy of not considering purely aes-
thetic changes.

An example of the kind of issue they are
discussing is a clarification of the rules concerning
creation and destruction of compiler-generated
temporaries. These rules need to be clarified, be-
cause construction and destruction of temporary
objects of user-defined types can be potentially
expensive. It is also important to avoid placing too
many limits on an implementation, precisely be-

cause vendors would like to be able to optimize
away unneeded temporaries.

Environment

John Vasta of HP presented the work of the
Environment group.

Much of their discussion revolved around
precisely specifying the interaction with the en-
vironment during linking and execution. They de-
voted considerable effort to the "one definition
rule," which requires exactly one copy of each
function and object. There was also some discus-
sion of the semantics of static initialization, es-
pecially in a mixed C++/non-C++ program.

The emerging consensus of the committee
seems to be against requiring all implementations
to provide "hooks" to underlying details of im-
plementation. These include non-C++ access to
static constructors and destructors, a standard
"de-mangling" function, and a required type-safe
linkage encoding scheme.

Jerry Schwarz of Kubota Pacific (formerly
called Stardent), presented some of the group’s
discussion on the topic of mixed C and C++
environments. Some of the issues include type
equivalence between C and C++, name aliases
between the languages, and details of function
invocation in a mixed-language program. This
topic overlaps both the C compatibility issues and
the C library topics.

C Compatibility

Tom Plum of Plum-Hall presented the work
of the C Compatibility group.

He presented a list of definitions from the C
standard that should be incorporated in the C++
standard, as document x3J I6/90-0088. The com-
mittee accepted his suggestion that Jon Shopiro
incorporate the definitions in the next revision.
The challenge will be to review the document to
ensure consistent and appropriate use of terms
throughout.

Libraries

I presented the Library. group’s work.

The main results so far are proposals for
standard definitions of three library areas: lan-

Vol 12 No 4/5 58 AUUGN

;10gin: 16:2

guage support, iostreams, and strings. Documents
x3J 16/90-0077, -0078, and -0079 contain the de-
tails of the proposals.

Alan Beale of SAS provided many comments
on the streams proposal. Some aspects of these
classes contained UNIX dependencies, and were
difficult or impossible to implement in other en-
vironments. Jerry Schwarz also suggested incor-
porating exceptions in a way that preserves cur-
rent practice -- the choice of whether to throw
exceptions or set a state variable could be under
programmer control.

,

Steve Clamage of TauMetric presented a
summary of the issues surrounding support for the
ANSI C library within the C++ standard (docu-
ment x3JI6/90-0105). Progress on this issue has
been slow, because each person who has volun-
teered to address the issue at one meeting has left
x3~6 by the next meeting.

Aron Insinga of DEC presented his proposal
for a standard string class. There are many mem-
bers of the committee who have implemented
successful string classes, so there was much useful
comment on Aron’s proposal. Many of the sug-
gestions exploited advanced features of C++,
such as templates. Bruce Eckel of Revolution2
suggested that at least one of the standard string
classes be kept simple enough to be useful as a
tutorial example for new C+÷ programmers.

Jim Howard of Mentor Graphics provided a
string class he developed. Notable aspects of Jim’s
library included support for Japanese characters
and the success the library has enjoyed with cli-
ents around the Pacific Rim. This library could
provide valuable input for addressing the inter-
national concerns about multinational character
handling. It may be possible to avoid a language
extension by providing the necessary support in
the library.

Language Extensions

Bjarne Stroustrup of AT&T presented the
work of the Extensions group, which was by far
the most active.

The kev discussion of the week was of course¯

the design of exceptions for C++. Since the
March meeting, the issue had been whether to
incorporate just the terminating model, or also
incorporate resumable exceptions. At the July

meeting, Martin O’Riordan of Microsoft had
asked for time to do further research on the topic.
He proposed adding constructs to allow program-
mers to specify resuming and non-resuming ex-
ceptions and handlers.

The key point in the discussion came during
a discussion of exceptions by Jim Mitchell of Sun
Microsystems. His long experience designing lan-
guages with exceptions, using such languages to
build large systems, and efforts to document and
teach the use of resumable exceptions, all helped
to clarify the discussion. The final vote was 30-4
in favor of accepting the text of Chapter 15.

The next substantial language extension will
be consideration of a standard way to provide
run-time access to type information. Mark Linton
of Silicon Graphics outlined one proposal in his
Dossier concept (see: "Runtime Access to Type
Information in C++" at the 1990 USENIX C++
Conference, San Francisco, April 1990).

Next events
Now that the major design decisions are com-

pleted, the task of standardizing C++ will get
down to details. We can expect that any changes
to C++ will be relatively minor -- certainly less
than, say, the introduction of function prototypes
in ANSI C.

The target date for delivering a draft C+-4-
standard will be affected by the involvement in
ISO. One informal estimate is an additional year
to complete the standardization process (which
would mean a simultaneous national and inter-
national review in 1993). The next three x3JI6
1991 meetings (and their hosts) will be:

March 11-15, Nashua, NH (Digital)
June 17-21, Lund, Sweden (Lund Institute
of Technology)
November 11-15, Toronto, Canada (IBM)

Texas Instruments will host the March 1992
meeting in Austin, TX. Zortech announced plans
to host one of the other two 1992 meetings, in
London.

Membership on an x3 committee is open to
any individual or organization with expertise and
material interest in the topic addressed by the
committee. The cost for membership is $250.
Contact the chair or vice chair for details.

AUUGN 59 Vol 12 No 4/5

:login: 16:2

Chair: Dmitr3’ Lenkov
~, California Language Lab
19447 Pruneridge Avenue MS 47 LE

Cupertino, CA 95014
(408)447-5279
FAX (408)447-4924
email dmitry%hpda~hda~’, hplabs.hp.com

Vice Chair: William M. Miller
Glockenspiel, Ltd P.O. Box 366
Sudbury, MA 01776-0003
(508)443-5779
email wmmiller~’cup.portal.com

Vol 12 No 4/5 60 AUUGN

;Iogin: 16:3

Book Review
PROGRAMMING IN PERL
by Larry Wall and Randal Schwartz
(O’Reilly & Associates, 1990, ISBN 0-937175-64-1. $24.95, 454 pages)
Reviewed by Tom Christiansen and Rob Kolstad

The O’Reilly folks have released another
Nutshell Handbook, this time on the perl pro-
gramming language. Per! is the most significant
general-purpose tool to hit the UNIX world in
years, filling a niche between shell programming
and C programming. We hope and believe it will
soon become a standard utility (like awk and sed).

If you haven’t used perl, it’s a lot like C with
awk, sed, grep, shell programming, and just about
everything else included. The magnitude and
quality of the synergy is surprising. Problems dif-
ficult or impractical to code in shell script.s are
often much easier to write and faster to run when
transcribed into perl. The language has been de-
scribed as a shell for C programmers, a ~3ASIC for
UNIX, and even an APL on LSD. Because perl is
interpreted, incremental development and testing
is simple. Its powerful constructs combine with
efficient execution to yield a pleasant program-
ming environment.

Another brainchild of Larry Wall (who gave
the world patch and rn), perl has enjoyed ever
increasing popularity in the UNIX community
since its initial public release about four years ago.
In particular, system administrators have found it
handy, since they’re the ones most often tasked
with writing or maintaining convoluted shell
scripts. Some test and manufacturing groups at
computer vendors are now considering using perl
as their one-and-only language for test engineers.

The perl language is available without cost
from various FTP sites on the Internet. It’s also on
the GNU tape distributed by the Free Software
Foundation, although it isn’t GNUware per se.
Friends of per! distribute it on request to their
less-connected neighbors. While few formal cor-
porate entities yet back perl, its quality is typical
of Larry Wall productions. Support comes quickly
from the comp.lang.perl newsgroup (or electronic
mail to any of the USENET perl gurus). Most ques-

tions regarding perl resemble "how do I do this"
rather than "this appears to be a bug".

Until now, perl programmers have had to
make do with the meandering, 75-page man
’page’, a bit intimidating for people just trying to
get a handle on the language. For this reason, if
no other, this book by Larry Wall and Randal
Schwartz is welcome.

The book is hefty (1.1 inches thick; 6x9 inch
format) with 450 pages of densely packed mate-
rial. It is organized into seven chapters, starting
with ’An Overview of Perl,’ which explains the
basic concepts of perl in a fairly informal fashion.
The phrase ’informal’ is probably an understate-
ment; this is definitely not a dry and stuffy tech-
nical book. Like the man page (once described as
more of an editorial than a reference guide), the
book tries to entertain you as it teaches. Whether
it actually succeeds at this depends on your par-
ticular sense of humor.

The second chapter, ’Practical Program-
ming,’ is also easy to read. The authors show the
kinds of problems perl is good at solving and ways
to use perl to solve them. It begins with a typo-
laden excerpt from the Book of Job and then uses
the theme of text manipulation and repair
throughout the chapter. This is probably the best
chapter in the book for two reasons: it gives you
the material at a nice even.pace and because the
humor seems to work well here.

Chapter 3, ’The Gory Details,’ gives just
that. This is for the language lawyers in your shop,
the ones who want to know all the ins and outs
of a language (of which there are quite a few in
perl) before they start programming in it. It in-
cludes sections on data types, operators, control
structures, subroutines, regular expressions, for-
mats (remember Cobol pictures?), special vari-
ables, and packages.

AUUGN 61 Vol 12 No 4/5

;login: 1.6:3

Chapter 4, ’Functions,’ describes all the
built-in functions in perl (over 125 of them). This
includes quite a lot of the C library, which makes
it somewhat lengthy (over 75 pages). Reading this
section can improve your fluency in UNIX as well
as in perl.

Chapter 5, ’Common Tasks in Perl,’ is some-
thing of an odd chapter. It is like a cookbook full
of recipes for things the authors think readers will
want to do. It is a tutorial by example that dem-
onstrates the power and style that perl can
achieve. Some examples include: computing the
difference or intersection of two arrays, squeezing
out multiple blank lines, exception handling, and
putting commas into numbers. These tasks vary
quite bit; some seem a bit too specific to be useful.
They are uniformly interesting, however, for their
brevity.

Chapter 6, ’Real Perl Programs,’ consists of
program listings for an assortment of different
kinds of full-blown programs. Subheadings in-
clude database manipulation, grep programs, pro-
gramming aids, text manipulation tools, interpro-
cess communication (perl includes access to
sockets), and system administration programs.
The programs are pretty readable (as perl pro-
grams go), but one of them extends for three
pages of code with nary a comment.

The longest of the Chapter 6 programs is a
rewrite of the passwd program in perl. The new
version performs much more extensive checking
than the one that is delivered with your system is
likely to do.

Chapter 7, ’Other Oddments,’ seems to be all
the miscellany that didn’t fit in one of the other
major chapters. The command line flags are ex-
plained, commons goofs for novices are pointed
out, the perl debugger and libraries are over-
viewed, tips for optimization are given, the
security-analyzing features of taintperl are ex-
plained, and there’s even a section on perl poetry.

Appendix A contains a BNF-like syntax
grammar for perl. Appendix B outlines the perl
library, which includes a number of’useful func-
tions.

The glossary at the end defines a lot of tech-
nical terms pertaining to perl, programming lan-
guages, and UNIX in general. The Three Principal
Virtues of a programmer (according to Wall) are
laid out: laziness, impatience, and hubris. Most of
the entries are funny; some of them perhaps a
little too much so, but it’s still fun to read.

The 20-page index works well if you know the
precise name of the topic you are seeking. How-
ever, if you’re looking for help and hints, it is not
quite as useful (e.g., if you want to convert from
the UNIX system’s seconds-since-1970 date to a
human readable one, you must know ctime is the
answer before you can find it).

Whether you can actually learn perl from this
book is unclear. It depends upon your back-
ground: if you know UNIX shell programming al-
ready, perl will probably be easy. If you know C
in a UNIX environment, it’ll be even easier, but
the differences between perl and C may annoy
you. On the other hand, if you are neither a sed
nor awk wizard and C programming is a black art
to you, then this book probably isn’t going to help
you much. The more you know about UNIX tO
start with, the faster perl will make sense to you,
and vice versa. Unfortunately, if you’re still a
UNIX novice, it’ll be a lot harder for you, because
the book assumes that you know about block
structure (i.e., C’s and awk’s braces), regular ex-
pressions, and the style of UNIX system calls.

Nonetheless, as the only book on perl avail-
able, and because it was co-written by the lan-
guage’s author, it is the definitive reference on the
language and essential reading for anyone want-
ing to program in perl.

Tom Christiansen is a software development engi-
neer at Convex Computer Corp. Tom also teaches a
USENIX tutorial on programming in perl. Rob Kolstad
is software manager at Sun Microsystems in Colorado
Springs. gives numerous tutorials on systems adminis-
tration, and serves as Secretary of the USENIX Board of
Directors.

Vol 12 No 4/5 62 AUUGN

:login’ 16:3

An Update on UNIX-Related Standards Activities
Jeffrey S. Haemer
Report Editor. USENIX Standards Watchdog Committee

ANSI X3BII.I" WORM File Systems
Andrew Hume <andrew~t research.att.com>

reports on the January 22-24, 1991 meeting in
Murray Hill. N J"

Introduction

X3BII.I is working on a standard for file in-
terchange on write-once media (both sequential
and non-sequential, i.e., random access): a por-
table file system for WORMs. First let me apologize
for laggardly snitching; we have had an extra
meeting (in December) to accelerate our progress
with the draft proposal, and I have been busy
writing a programmer’s guide to the draft pro-
posal. I shall describe the results of the last three
meetings. October (Nashua, NH), December
(Murray Hill, N J). and January (San Jose, CA),
not in chronological order, but rather as a sum-
mary of where we are now. Although many de-
tails remain to be ironed out, we have broad
agreement on the current proposal.

Multi-volume file systems

The draft proposal supports multi-volume file
systems. To avoid the confusion that reigned at
our meetings, I will define what this means. A
volume is a logical address space (on some me-
dium). Thus, a typical WORM disk is two volumes,
as each side is addressed separately. A volume
partition is simply a contiguous subset of a vol-
ume’s address space. A logical volume is simply
a set of (volume) partitions upon which a file
system is recorded. Finally, a logical volume set is
a set of volumes with a single volume set iden-
tifier. (That is, it is simply a publishing concept.)
Note, however, that when I say file system, I
mean a set of files and directories described by
possibly multiple directory hierarchies (typically
each would be in a different character set). The
(logical) block size, not the physical sector size,
is 2i bytes, 9-<i<65536, and implementations
would have to support at least a block size of
64KB. The various size limits are generous: in-

ternal block addresses allow 64K volumes, 64K
partitions per volume, and 232 blocks per parti-
tion.

Volume Headers

The location of the volume header (the an-
alog of the superblock) is a tricky issue because
of the requirement that systems be able to boot
off a disk in our format and there is simply no
consensus on the size or location of the boot area.
Accordingly, pointers to the volume header (ac-
tually a sequence of various descriptor records)
are recorded at one or more of 0, 16, 64,128,192,
256, N - 16, N- 4 (where N is the size of the disk).
The seek speed (or rather the lack of seek speed)
of WORM disks encouraged us to put these at both
ends of the disk. The volume header record, like
all the other major control structures, has a 16-bit
CRC and a unique 8-byte tag, which should pre-
vent misrecognition.

Volume/Partition Structure

The volume layer handles space allocation
for the volume, definitions of partitions, and bad-
block mapping. The partition layer does its own
space allocation, supports the file system, and
does partition-access logging. Partitions have file-
system-type tags: the intent is to allow partition
w to be an X3B11.1 file system, partition x to be
a CDROM file system, partition y to be an MS-DOS
floppy file system, and partition z to be of un-
known type. There should be a registry for this
type field: vendors may want to register their
file-system formats.

Bad-Block Handling

A simple defect-management scheme has
been adopted: it is similar to the bad-block
remapping scheme used for most SMD disks.
There was considerable resistance to such a
scheme, particularly from the representatives of
the hardware vendors, as the (scsI) WORN disks
already do as much error detection/correction as
is possible. However, defect management (above

AUUGN 63 Vol 12 No 4/5

;login: 16:3

the disk driver level) is still necessary because: 1.
error correction/detection in the drive can be, and
for performance reasons often is, turned off, 2.
errors can easily occur between the disk and the
host’s main memory (have you ever heard of DMA
or bus errors?), and 3. even though scsl disks
present an "error free" interface, most drives
have a limited number of errors they can cope
with, and many early drives did little or no error
correction.

FCB Format

As you may recall, multiple versions of the
direct entry (the equivalent of the inode) are
stored in a data structure called the file control
block (FEB). The original proposal involved var-
ious levels of indirect blocks exactly like classic
UNIX file systems. We adopted my proposal
(adapted from an observation by Dennis Ritchie)
for a simpler, more general format that allows
arbitrary structures, which can be specialized for
different applications.

Partition Access Records

This is more like logging changes to the file
system than a security thing like access control
lists. The idea is to have periods of writing to the
partition bracketed by specific control records so
that it will be possible to tell if a system closed out
that partition gracefully. (More bluntly, did we
unmount the partition gracefully or did the system
crash in the middle of a session?) These records
are kept on a per-file-system basis and are re-
corded as variants of direct entries in a structure
identical to F’CBs. Another side issue is support for
a so called "’stable" record, which is analogous to
the proposed stable sync feature of BSD UNIX.
(The control structures such as inodes and indirect
blocks are written to disk, but the user’s data mav
not be, yet.) This peculiar state avoids the need!
to run fsck (or its equivalent) on the disk but you
still have to get the user’s data from somewhere.
[Ed: does anyone really need this "stable" state?]

Recording Directories

For performance reasons, it is proposed that
directories, or rather the records (F’IDS) identify-
ing the files (and subdirectories) in that directorv,
be kept in optionally sorted order. This.would I~e
in binary and not lexicographic order (thus evad-

ing nettlesome character-set-collating-order is-
sues). It is not trivial to support this but is prob-
ably worth it. Related to this is the issue of system
areas in directories and F~Ds. It is expected that
these areas will contain accelerator structures,
such as B-tree indices and so on. Here and else-
where in the standard, the governing principle is
to allow systems to use such structures, but to
neither mandate nor standardize their use.

Anonymous Files

There are numerous FCBs, or file-like objects,
that have no FID. An example might be a Ma-
cintosh resource fork. The question is whether to
make these visible to the user. This is a serious
issue, and one not confined to this standard. It is
an issue for the system supporting access to the
file system on the disk. Do we rely on this system
to do the right thing or should we mandate a
mechanism? For example, take the example of a
Macintosh file (with its resource fork) on a system
(say UNIX) that doesn’t have that concept. We can
either trust that the vendor supplying your UNIX
has implemented an fcntl (or ioctl) to access the
resource fork, or we can evade the issue com-
pletely by mandating that the resource fork be
available for normal access by a reserved name
such as foo.RFORK. The general feeling is that
users will not allow a standard to reserve parts of
the file name space for its own use. Thus, it seems
likely that access would have to be via standard-
ized fcntl calls, but these are outside the scope of
our standard.

Byte Order

I have pressed the issue of the byte order for
numeric fields. The previous notion was to allow
the recording system to choose the byte order.
The issue is not technical (everyone seems happy
to pick just one and stick with it) but political. We
picked LSB order: the order used by the low-end
(and slowest) systems. We measured the perfor-
mance degradation for low-end ,~sa systems (the
slowest Macintosh we could find), and the cr’u
cost of straightforward C code. Interpreting the
byte order for the worst case (a block of integer
block numbers) was about 10ms -- comparable to
doing a single disk i/o and one or two orders of
magnitude less than the cost of doing a disk seek.
(Careful assembly code would be much faster
than this.)

Vol 12 No 4/5 AUUGN

;login: 16:3

Extended Attributes

The direct entry for a file has many attributes
or fields. Some of these will be faster to access and
be stored directly in the direct entry. The rest will
be stored in an extended attribute record area
much like resources in a Macintosh resource fork.
There are two issues: which attributes get faster
access and how do \’ou access the other attributes?
The former is something the standard specifies:
our guiding principle was to include the fields
needed for a UNIX star or an MS-DOS (or VMS) dir
command. Unfortunatel\,. the issue of access is
beyond the domain of our standard and needs to
be addressed bv POSlX. probably best by 1003.8.
Internally within our standard, the extended at-
tributes are identified bv a 32-bit number, some
of which are set in the standard and the rest by
a registry maintained by some authority (like
ANSI). The current list of extended attributes is
given below. Treat it as very preliminary and
subject to change.

information creation
information

modification
information expiration
information effective
file creation
file access

file modification
file backup

file expiration
file attribute
file effective

file abstract
file type

associated file
data compression
protection
application-specific data

segment
implementation segment
escape sequences

segment
action history
icon
environment type

Character Sets

We have adopted a somewhat simpler way of
dealing with character sets than the CD-ROM stan-
dard (Iso 9660). The current schemes available
are

0
1

2

2551

0-9A-Z_. from Latin-1 (ISO 8859-1),
portable filename character set 0-9A-Za-
z__.- (POSIX 1003.1),
Go set from Latin-l,
all graphic characters from Latin-l, and

defined via escape sequences -- the full
scale mechanisms of ISO 2022,’which are
only rarelv implemented.

International Activity

The appropriate lso committee (sets) has
been reconstituted with Japan supplying secre-
tariat duties. A meeting is expected in July or
September and it is hoped that there will be close
cooperation between X3Bll.1 and scls. There is
some concern that ANSI might awaken the long-
dormant file structure committee and that this
might delay acceptance of X3B11. l’s work. Also,
because of a request by a working group involved
in the Philips CD-WO device (a combination me-
dium that is a 5.25in WORM with a CD-ROM por-
tion), ECMA might also reconstitute its file struc-
ture committee (TClS).

Finale

What can, or should, you do? As always, I
welcome any feedback, specific or general, on the
work our committee does. (I must express my
appreciation to USENIX for publishing these re-
ports; nearly all the mail I have received about
X3B 11. l’s work starts off like, "I read your report
in the so-and-so issue of ;login:. ")In particular, I
invite comments on any fields or attributes you
would like standardized and -- perhaps more im-
portant to the UNIX community, -- how to access
auxiliary information about a file in "a standard
way." Plenty of ad hoc solutions already exist for
the cases of versioned files: VMS file systems on
Ultrix systems, Macintosh files mounted as NFS
file systems, and CD-ROM file systems. The num-
ber of these problems will certainly increase over
time; we need to address the solutions now before
we standardize on file system interfaces (such as
1003.8) that omit such mechanisms.

If you would like more details on X3B11.1’s
work, you should contact either me
<andrew@research.att.com>, (908) 582-6262 or
the committee chair, Ed Beshore
<edb@hpgrla.hp.com>. I think the two most
useful documents are the current draft of the
working paper (about 80 pages) and a program-
mer’s guide to the draft (about 12 pages written
by me). I will send you copies of the latter doc-
ument; requests for other documents or more
general inquiries about X3Bll.I’s work would
best be sent to Ed Beshore.

AUUGN 65 Vol 12 No 4/5

;login: 1.0:3

P1003.17 - Name Space/Directory Ser-
vices (plus 1224/1224.1 Object Manage-
ment)

[Editor’s note: "Object" and "objection"
have the same root word. What follows are three
distinct viewpoints on TCOS’s object-management
activities. The first is Mark Hazzard’s overview of
1003.17. The second is Scott Guthery’s critique of
the object management work, currently being
jointly done by 1003.17 and 1224. The third is
Enzo Signore’s rebuttal of Scott’s position. After
you read them, you might want to let the com-
mittees know how you feel, either directly, or
through Peter Collinson, the new USENIX Insti-
tutional Representative.]

Mark Hazzard <markh@rsvl.unisys.com>
reports on the January 7-11, 1991 meeting in New
Orleans, LA:

Introduction

New Orleans was busy for the P1003.17 --
Name Space/Directory Services group. It was our
first meeting as an "’official" poslx "dot" working
group, and seemed to build on the momentum
gained in the previous meeting. A good turnout
from the old "core" group, coupled with infusion
of "’new blood" from the X/OPEN base-document
development team, seemed to provide the right
chemistry for some dynamic interchange and good
solid progress.

As I stated last time, our group is currently
in the process of "postxizing" XDS. This means
reworking XDS to conform to POSIX style, content,
and format requirements. Much of this is busy-
work that falls largely on the shoulders of our
(overworked) Technical Editor. A first cut at the
new format will be included with the first mail-
ings. It can be best characterized as a "very pre-
liminary pre-draft," and is intended to be a base-
line from which a working draft can be built.

Language Independent Specification

A good deal of time was spent on LIS issues,
both in our working sessions and in the joint
working sessions with P1224 on common Object
Management .~,Pt issues. We were able to produce
complete LtSs for several functions andtheir data
types, by building on the homework done by
group members between meeting cycles. Readers

may want to review the complicated discussion
from last time on how and why two specifications,
XOM (Object Management) and XDS (Directory
Services), are required to form a single arq to
directory services. XOM is also used by the ar, l to
X.400.

Test Assertions

Several group members had fun finding out
how to write test assertions for the C-language
binding of our At:q. We even got together with
some P1224 folks and worked on TAS for OM. We
managed to write a few assertions and uncover
some issues along the way. We also agreed to use
identical conventions in .17 and P1224. During
the process, we discovered that writing Tas is not
a well-understood art, and what everyone seems
to be doing is looking at what everyone else is
doing.

Where do Tas go? They could be included
with the function specification (possibly less work)
or lumped together into a separate chapter or
annex (possibly more work). We’ve opted for the
lump. The rationale for this seemingly irrational
decision is documentation page count ($$$). We
figured that the only people who really care about
test assertions (besides us standards types) are
vendors, test suite writers, certification labs, and
a few LARGE customers, like the u.s. Govern-
ment. Everyone else (users) just wants to buy
documentation on a certified ap~. We wanted to
make it really easy for the IEEE to print "with" and
"without" versions of the standard.

Object Management

"Object" and "management" are two in-
tensely overloaded words. Used together, the two
can instill fear in even the most seasoned hack.
While conjuring up a name to put on the Project
Authorization Request (PAR) for our common OM
APt, the combined talent of the .17 and 1224
groups decided that the best defense was a good
offense and selected what mav be the most of-
fensive project title in the history of IEEE PARdom:
"’Standard for Common ASN. 1 Object Manage-
ment API for X.400 and Directory Services
APIs." If approved, it should get a number like
P1224.1 or something like that.

Flushed with success, the group decided to
tackle the Scope section of the ~,.~,g, which prob-

Vol 12 No 4/5 66 AUUGN

;login: 16:3

ably constitutes its only real "’meat." After con-
siderable debate the group came up with this
statement:

The standard will define an ASN.1 Object Man-
agement (OM) Application Program Interface
(API) for use with. but otherwise independent
of, the X.400 and Director3., Service (DS) APIs,
which are currently being standardized. An ap-
plication must be able to link and use multiple
implementations of this API. This standard will
provide language independent specification and
"C" language bindings.

The words did not come without a little pain.
The base document (XOM) was produced with
specific targets in mind, namely the ASN.1-
encoded objects and attributes defined in the XDS
and X.400 specifications. It defines an API for
manipulation of those objects across the API, but
doesn’t define the objects themselves. The object
definitions are provided in the "primary" standard
(either XDS or X.400) in a set of ASb~.I constructs
called a "package."

In an accompanying article, Scott Guthery. a
group member from the user community, ex-
presses concern that there is no mechanism in the
base document for extending existing objects or
adding new ones. This is because the object def-
initions are well-defined within the context of
their API (package) and have been hard-wired into
the object manager.

Vendors can provide value added to exten-
sions of their products, but users cannot. Further,
a user who purchases a product from one vendor
that uses a (non-standard) extended package will
have no guarantee that it will work with an object
manager from another vendor. With the ability to
modify or create new packages in a standardized
way, these problems could be avoided.

Counter arguments primarily addressed prac-
tical limitations to the scope, and the technical
infeasibility of dynamically altering packages
(which are really protocols). See Enzo Signore’s
accompanying article for a brief summary. The
ability to extend an object package is not required
for basic interoperability or portability for XDS or
X.400 APeS as currently specified. A general-
purpose user-extensible object management fa-
cility may be useful, but might be technically in-
feasible (or at least very, difficult). It would almost
certainly delay acceptance of APIS that depended
on it.

Getting back to the PAR. the group agreed
that the words in the scope addressed the imme-
diate issue of getting an OM specification out so
that P1003.17 and P1224 could continue. At the
same time, the scope doesn’t shut the door on a
more general-purpose object manager, if it’s
deemed necessary and do-able.

I expect this will get sorted out after our next
meeting in Chicago, but if this continues to be an
area of high controversy, you’ll see the topic re-
surface in my future reports.

In any case, the OM PAR was blessed by the
Distributed Services Steering Committee and was
forwarded to the T¢OS SEe for further scrutiny.

Summary

So, that’s a peek at what’s going on in
PIOO3.17. We can expect more of the same next
time. We’ll review our progress on L~S, probably
do more test assertions, and generally begin to
add some flesh to the document skeleton. We plan
to meet with P1224 for a day to continue our
co-development effort on common API to object
management.

Scott Guthery <guthery~asc.slb.com> re-
ports on the January 7-11, 1991 meeting in New
Orleans, LA:

Here Come the Objects

X.400 (P1224) and Directory Services
(P1003.17) have as their base documents x/open
documents, which in turn share an x/open Object
Management specification. At the just-concluded
New Orleans vosIx meeting a Project Authori-
zation Request (PAR) for a POSIX Object Man-
agement standard was formulated. Here is the
scope of the PAR:

The standard will define an ASN.1 Object
Management (OM) Application Program Interface
(AP0 for use in conjunction with but otherwise
independent of the X.400 and Directory Service
(DS) APIS, which are currently being standardized.
An application must be able to link and use mul-
tiple implementations of this API. This standard
will provide language independent specification
and "C" language bindings.

"What does that mean?" you may ask your-
self. Based on discussions during the formation of
this PAR the following is mv understanding.

AUUGN 67 Vol 12 No 4/5

;login: 16:3

The first sentence says that object classes will
be hard-wired into the oM and that the object
managers being considered will only instantiate
X.400 and DS classes. Further, only vendors of
standard-conforming software will be able to add
classes to the OM; there will be no provision on
the standard interface for doing so. Finally, an oM
will manage only instances of classes (objects)
that are hard-wired into itself. Not surprisingly,
this requires the second sentence.

The second sentence says that while the ven-
dors are willing to agree on the interface, they are
not prepared to agree on standards for objects
themselves (even though they are all ASN.1-
based). That is, vendor A’s objects cannot be
managed by vendor B’s object manager and vice-
versa. Objects themselves, as manipulated by the
object manager, are to be proprietary. This is
primarily because many of the vendors have al-
ready written object management software and
the software that uses it, and are primarily inter-
ested in formulating a standard to which they can,
after-the-fact, claim conformance.

The third sentence is boilerplate.
A couple of things bother me about this

agenda. First, I don’t like to see classes of users
-- privileged vendors who can define new classes
vs. unwashed end-users who can only use what
they’re given (or, more properly, what they buy)
-- institutionalized in a standard.

Second, and really more bothersome (be-
cause I suspect the first one will work itself out
naturally), is the "requirement" for multiple con-
currently executing but not interoperating
standard-conforming subsystems. My belief is that
we should talk this one out carefully, make darn
sure we all know exactly what we are talking
about, ensure we are talking about the same
thing, and convince ourselves it’s something we
want to enshrine in a standard.

Isn’t this one purpose of a standard interop-
eration? If interoperation is left as an impedance-
matching exercise for the user, is there really a
useful standard in play even if the user can use a
single interface on which to do .the required
impedance-matching? Might the jaundiced eve
view this as a truck-sized hole through which ven-
dors can drive claims to standard-compliance
while exhibiting little-to-no effective standard-
conformance behavior?

"Link and use multiple implementations"
isn’t good enough. Indeed, it’s a bad idea. To me,
it’s analogous to a hardware standard (like RS232)
specifying little more than implementations "use
blue wires." I have to string a different set of blue
wire for each vendor whose devices I purchase.
And, what’s worse, it’s up to me to somehow get
the information off one vendor’s wires and onto
another vendor’s wires if I want the two vendors’
devices to cooperate. The standard says some-
thing like "You get the information out at the
end, which shall have 1/2 inch of bare wire."
Frankly, being able to buy blue wire in bulk is
little consolation for the trouble that I have to go
to to make the whole mess work.

Of course, what I’m being invited to do is buy
devices from only one vendor, which is, I suspect,
exactly what the vendors had in mind when they
put that "requirement" in the PAR. As an histor-
ical note, the second sentence originally started
off "Users require that ..." until one of the few
users around the table pointed out that single-
source and vendor lock-in was not high on his list
of requirements at all and expressed surprise that
the standards process was or could be used to
encourage it.

As they say in Norway, there’s owls in the
bushes.

Enzo Signore <enzo~retix.retix.com> re-
ports on the January 7-11, 1991 meeting in New
Orleans, LA:

Scott Guthery doesn’t like the proposed
1003.17/1224 approach to Object Management. I
do. Here’s a summary of why I think Scott’s ob-
jections miss the mark.

Since a package is another way of represent-
ing a protocol (a set of .~,sN.1 productions) the
addition of another package to the API or the
addition of new classes to the provided .~,PI implies
defining extensions to the protocol. Aside from
the feasibility of doing so. it would require the
underlying service to be able to interpret the. ad-
ditional .,,SN. 1 properly and to be able to encode
and decode it. Unfortunately. it is not possible to
do so in an implementation-independent way,
since the oM representation ot" an object, even
though it follows the .as:,,’.l skeleton, does not
allow the service to generate a unique .~,SN. 1 pro-
duction. Said in different words, even if the client

Vol 12 No 4/5 68 AUUGN

:login: 16:3

application defines a new object class with some
attributes (let’s say of primitive types -- booleans,
integers, etc.) the sole object table does not allow
the service to generate ASN.1, since all the
context-specific tags and the notion of SEQ vs. SET
are missing.

Therefore, designing such a new interface
will:

1. prove wrong when the protocol cannot be
extended;

2. be excessively complex to define because
of OM design;

3. require overlv sophisticated machinery in
the service to be able to deal with generic and
extensible object definitions.

1003.9: FORTRAN Bindings

Joseph J. King. Ph.D.<JKing@GCG.Com>
reports on the January, 7-11, 1991 meeting in New
Orleans, LA:

POSlX is a set of portability standards that will
span a diverse set of architectures such as VMS,
UNIX, and os/2. The FORTRAN binding to POSlX
system services is nearing approval. In this report
I’ll discuss the current state, including the rela-
tionship of language-independent POSlX standards
to the FORTRAN language binding, and the pos-
sibility that the POSIX/FORTRAN binding will be
rejected by the International Standards Organi-
zation (ISO).

Portable Operating System Interface: POSIX

A POSIX standard is one of a group of stan-
dards being developed by the Institute of Electric
and Electronic Engineers (IEEE), in cooperation
with the International Standards Organization
(ISO). The primary mission of these standards is
to define a portable user and application envi-
ronment. The POSIX development effort is cur-
rently subdivided into 19 separate numbered ef-
forts -- 1003.0 (POSlX Guide) through 1003.18
(PEP). Taken together, these groups are forming
operating system standards in areas that range
from networking to real-time. Half a dozen ad-
ditional groups, also supervised by the IEEE’s
Technical Committee on Operating Systems, are
creating related standards in areas lik’e windowing
toolkits. While POSlX started with UNIX as a

model, POSlX standards are not limited to UNIX.
For example, DIGITAL has announced a pro-
gram that will incorporate some of the POSlX stan-
dards into VMS. Once adopted and implemented,
PosIx standards will define a broad range of com-
patibility both within the UNIX family of operating
systems and between other operating systems.

POSIX and FORTRAN

What follows is the January 1991 report on
the progress of one of the POSIX working groups,
~:~stx.9. POSlX.9 is responsible for defining FOR-
TRAN interfaces to the POSlX functionality defined
by the other working groups. As a member of this
committee I need to keep track of the progress of
other committees to anticipate the next set of
interfaces we will have to develop. At the moment
there is only one published POSIX standard, which
is referred to as l~SlX.1.1 POSlX.1 defines the
functionality and C interface to POSIX operating
system services. POSlX.9 is currently in public re-
view with a standard that defines FORTRAN inter-
faces to the POSIX.1 system services. In addition
to providing interfaces to system services such as
process creation and interrupt handling, the draft
also defines interfaces that will improve FORTRAN
application portability and interoperability. For
example, the draft contains procedures for read-
ing the command line arguments, performing
stream I/O, inheriting open files, getting the time
of day, access to system constants, access to sys-
tem structures, and performing bit operations.

"Thick" versus "thin"

The FORTRAN binding to POSIX is referred to
as a "thin" binding. That means that it defines the
FORTRAN interfaces to access the POSIX system
services, but does not define the functionality of
those services. Instead, the FORTRAN binding ref-
erences the POSlX.1 standard for the functional
definitions. The Aria binding to POSlX is also near-
ing completion. It is a "thick" binding, in that it
defines both the Ada interfaces and functionality.

There are advantages and disadvantages to
each approach. Thick bindings are easier to read,
since all the information required is contained in
one document. Also by using the thick approach

1. First published as IEEE 1003.1-1988, this standard
has now been revised and updated, and achieved in-
ternational status as ISO/IEC 9945-1 : 1990(E).

AUUGN 69 Vol 12 No 4/5

;login: 16:3

it is easier to map the functionality into native-
language constructs. The Ada-bindings group has
done just this and has been praised for producing
a binding that is very Ada-like (as opposed to
C-like).

Thin bindings constitute a more conservative
approach. Since functionality is not defined in the
thin binding, there is no opportunity for errors or
inconsistencies to be introduced. Also, thin bind-
ings are easier to adapt to changes in the base
document. For example, the FORTRAN binding
currently references the 1988 version of POSlX.1.
Recently, however, POSIX.1 has been updated
(1990) with several changes to functionality. After
careful analysis at the January meeting, we de-
termined that the FORTRAN binding requires only
one substantive change to reference the 1990 stan-
dard as the base document.

ISO Requires Language Independence

The International Standards Organization
0so) at one time required all POSIX functionality
to be specified by language-independent stan-
dards. These are standards that specify function-
ality without specifying interfaces or syntax. Thin
binding standards are then produced for each lan-
guage to provide access to the functionality. In the
last year Iso has relaxed this restriction to allow
thick C bindings that define new functionality, but
has excluded all other language bindings that do
not reference a language-independent standard.
Even though the FOR’rR.a,N binding is a thin bind-
ing, it is based on the thick C binding and not a
language-independent specification as Iso re-
quires. This is because there is no language-
independent specification and such a specification
could be a year or more away.

As a consequence, our working group will
forward our draft for IEEE and aNSI processing
when our work is complete. We will also ask ISO
if thev wish to adopt the IEEE standard at that
time. This will give Iso another chance to sav yes
or no. We hope that thev will adopt our binding
at that time. If not, it may be several years before
a language-independent standard is developed
and we can produce a binding to it. We feel that
our binding has usefulness in the FORTRAN com-
munitv today, so that an ANSI standard, even in
the absence of an lso standard, would be useful.

Other issues

Other issues discussed at the January meeting
included Fortran 90, the ballot process, and test-
ing. There was some discussion of whether the
r, oslx.9 draft standard was Fortran-90-
compatible. Since the r:ORTRAN binding to tmslx
only-requires FORTRAN 77 features it was agreed
that our binding should be compatible with For-
tran 90 compilers. We will look into this more
carefully; however, after reviewing the areas in
which Fortran 90 defines aspects for FORTRAN 77
that were previously undefined, I am confident
that there are no conflicts that would prevent our
binding from executing properly in a Fortran 90
environment.

I presented a short summary of Fortran 90
features to the working group. There was a dis-
cussion of which Fortran 90 features might be
used to increase the usability and portability of
the Fortran binding. There was interest in using
derived types and user-defined operators to create
an unsigned data type for Fortran -- complete
with the necessary mathematical operations.
There was also an opinion that we should limit the
Fortran 90 features we use to those already in
existence in common practice (e.g., structures and
Include). This would have the advantage that our
Fortran 90 binding would not require a full For-
tran 90 implementation and the disadvantage of
not making the most of Fortran 90 features.

When this is printed we will be processing
public ballot comments. The IEEE procedures for
processing these comments was explained to us at
this meeting. In order for our balloting to be
successful, the following criteria must be met:

1. We must receive at least 75% of the ballots
sent out, and

2. 75% of the yes-plus-no total must be yes.

Ballots received will be of one of three types,
yes, no, and abstain. If there are any "’no" votes,
we are required to send out the objections to all
those in the ballot group. They will then have the
opportunity to change their vote. We will make
changes to the draft and repeat this process until
the necessary 75% is met and there are no new
objections.

We discussed writing test assertions for our
current draft. These assertions are used by an

Vol 12 No 4/5 70 AUUGN

;login: 16:3

implementor to prove conformance to the stan-
dard. It was agreed that since the FORTRAN bind-
ings is a thin standard, our test assertions would
be a thin document.

Work to be done

There is still much more to be done. At our
next meeting we will be processing the public
ballot. We hope to have a diverse range of opin-
ions, and that an active balloting group will im-
prove the quality of the standard. In this way,
problems can be detected and fixed before they
become part of the standard. If all goes well, that
could be as soon as December 1991.

Our next meeting will be in Santa Clara, CA
in July, and you are welcome to attend. Please
contact either John, Loren, or me for details.

John McGrory (Chair).
Hewlett-Packard
19447 Pruneridge Ave
Cupertino, CA 95014
mcgrory%hpda@hplabs.hp.com
(408) 447-0265

E. Loren Buhle, Jr., Ph.D.
University of Pennsylvania School of Medicine
Rm 440A
3401 Walnut Street
Philadelphia, PA 19104
buhle@xrt.upenn.edu
(215) 622-3084

Joseph J. King, Ph.D.
Genetics Computer Group
575 Science Drive, Suite B
Madison, WI 52711
JKing@GCG.Com
(608) 231-5200

1003.5: Ada Bindings
Jayne Baker <cgb@d74sun.mitre.org> re-

ports on the January 7-11, 1991 meeting in New
Orleans, LA:

Introduction

The Ada Language Binding to the POSIX
1003.1 Base Specification (P1003.5) is moving
through the IEEE ballot process.

Now that ballot resolution has begun, the
P1003.5 working group no longer exists; we are

now the P1003.5 Ballot Resolution Group. We
spent this meeting doing just that -- ballot res-
olution -- addressing issues from our first ballot,
chapter by chapter. This is no small task, so we
also held an interim meeting in February.

This report outlines some issues from the first
round of balloting, and touches on both potential
future Ada work and our attempts to spread the
P1003.5 word.

Ballot Resolution Issues

The following is a list of those who are re-
sponsible for specific sections of the P1003.5 bind-
ing:

Mitch Gart/ Section 1
Alsys

Steve Schwarm/ Section 2
DEC

Ted Baker/ Section 3
Florida State

Steve Deller/ Section 4
Verdix

Jim Lonjers/ Section 5
Unisys

Mitch Gart/ Section 6
Alsys

Steve Schwarm/Section 7
DEC

Jim Moore/raM Section 8

Dave Emery/ Chapter 9
MITRE ¯

General

Terminology and
General Require-
ments
Process Primitives

Process Environ-
ment
Files and Directories

Input and Output
Primitives
Device- and Class-
Specific Functions
Language-Specific
Services for Ada
System Databases

Below are some things I found particularly
interesting in the discussions they led.

Naming Convention Issues

One global issue, more editorial than tech-
nical, but one that drew many ballot comments
and objections, was our lack of a procedure-and-
function-naming convention. We left names to the
individual chapter authors, promising ourselves
that we would address this issue later in document
development. We never really did, but Bevin
Brett/DEC proposed a naming convention before
New Orleans via electronic mail, with these guide-
lines:

Eliminate multiple names with same meaning
by picking one (e.g., change "bad," "invalid,"
etc. to "bad");

AUUGN 71 Vol 12 No 4/5

;login: 16:3

Eliminate lengthy prefixes (e.g., change
"POSIX_ Process_ Primitives_ Process_ Tem-
plate’" to "Template");
Make the parameter and subtype names the
same.

Unfortunately, he also restructured packages
liberally. We worried about making such sweep-
ing changes after balloting had begun, but
adopted several of his recommendations. Bevin
agreed to revise his proposal, incorporating the
changes accepted by the group. Chapter authors
will evaluate the revised proposal. Accepted nam-
ing changes, supported by official ballot com-
ments, will be incorporated into the document.

UO Units

At least one balloter requests we use "byte"
instead of "I/O unit," since an fro unit is both
"large enough to hold any member of the basic
execution character set" and "> = 7 bits." An-
other goes farther, arguing that if "I/O unit" is
exactly same as C’s "char" we should eliminate
confusion by saying so. A third balloter requests
that POSIX, C, and Ada character sets be somehow
unified.

Signals Discussion

Many balloters objected to signal semantics.

In the current, balloted draft (Draft 6) signals
are interrupt entries and include semantics for
interrupt delivery.

P1003.4a uses a SIGWAIT model with a single
procedure equivalent to the Ada delay statement.
Our current model may only support per-process
signals, not per-thread signals, i.e., a subset of
P1003.4a. Should we try to develop an approach
to signals that does not break P1003.4a and
P1003.4a/Ada?

We also need to review P1003.4’s new signal
proposal carefully to decide how much to change
the PI003.5 binding to accommodate it. We do
not know how balloters will react to such changes.
Some balloters do not want signals tied to Ada
tasks, because they want to use signals without
using tasks. We could provide this, but others
think signals without tasks is absurd. We will
continue to work on this.

File Descriptor Types

File descriptor types are controversial. Bal-
loters are divided on alternatives. Should file de-
scriptors be private types? limited private types?
integers? Each has its advocates. Here are sample
arguments for making file descriptors private:

Arithmetic operations are available for integer
types. Does it make sense to perform additions
on file descriptors?
Sockets and P1003.4 memory-mapped files are
used like file descriptors but may not be imple-
mented as small integers, even in C;.
In V.4 the file descriptor limit has gone from 20
to some high number (4K?), making arrays of
file descriptors less practical. (Array indexing
with file descriptors is arguably bad C program-
ming style anyway.)

Despite such arguments, we left file descrip-
tors integer types because of the P1003.1 standard
(note the definition of dup(2)). We noted in the
rationale that we could have made file descriptors
a private Ada type, required that they look like
integers, and included special operations to dis-
allow arithmetic functions on them, but the group
thought that this would be too cluttered. File
descriptors are acceptably close to integers.

Blocking Behavior

Tasks are a major source of complaints for
UNIX Ada users. No one wants a whole process
to block when one task within that process per-
forms I/o or waits for a file lock. Unfortunately,
P1003.1 doesn’t support threads; blocking blocks
an entire process, so our document provides sup-
port for per-process blocking. Should it also pro-
vide per-task blocking? Making implementors
provide both behaviors could prove to be the
wrong decision once POSIX supports threads.

After some discussion, two models for block-
ing were proposed:

the knife-switch model, and
the file model.

A knife-switch-model implementation elects
either program blocking on t/o or task-level
blocking on ~/o for all files. Only one is supported.
A file-model implementation selects either task-
or program-level blocking for I/o on a per-file
basis.

Vol 12 No 4/5 72 AUUGN

;Iogin: 16:3

Mitch Gart suggested we relax our text in
s~veral places to allow alternative behaviors. He
argued that separate predicates for blocking or
non-blocking behavior are unnecessary because
users will specify one or the other when files are
opened; on the other hand, each system should
provide an inquiry function that returns the block-
ing behaviors it supports.

We will add a statement to the normative
conformance definition section (got all that?) say-
ing that a strictly conforming application shall not
depend on either task blocking or program block-
ing.

Future Work

Test Assertions for Current Work

To become an IEEE standard, the P1003.5
document must include test assertions. Jim Leath-
rum of. Clemson University and his graduate stu-
dents have volunteered to develop a set. We like
this approach because the assertion writers will
lack the working group’s preconceptions and bi-
ases. Also, we won’t have to do the work, and it
frees the working group to press forward to other
important POSlX/Ada tasks. We are well into the
ballot process and will probably defer the test
assertions to a separate document.

Ada Binding to Shells and Utilities (P1003.2)

Dave Emery continues to develop the Ada
binding to P1003.2.

Ada Binding to Real-Time Extensions to POSIX
(P1003.4)

Mars Gralia of Johns Hopkins University of-
fered to put together an Ada/P1003.4 Project Au-
thorization Request (PAR) broad enough to cover
both the P1003.4 and .4a work. Ted Baker
(former .5 snitch) generously provided the paper
"Realtime Extension for Portable Operating Sys-
tems Ada Binding," some months back, which we
will use as a starting point. We are currently
refining a schedule to include in the PAR.

Spreading the P1003.5 Word in Europe

In my last report, I said that our group is
making a real effort to educate people about the
coming POSlX Ada Language Binding Standard.

Dave Emery of MITRE submitted a team proposal
for a tutorial at Ada Europe in Athens, Greece.
It was accepted and scheduled as a half-day ses-
sion for May 17, 1991. Unfortunately, we will
probably cancel it because travel to Greece is
currently discouraged.

POSIX Profiles
Jim Isaak <isaak@decvax.dec.com> reports

on the January 7-11, 1991 meeting in New Or-
leans, LA:

The POSXX profile standards projects differ
radically from the other POSIX activities. Most
POSIX projects focus on specific interface specifi-
cations and, for the most part, on operating sys-
tem services. The profile documents will neither
define new interfaces nor be limited to operat-
ing system considerations.

What’s a Profile?

The starting point on profiles is the grand
experiment of osx. By 1978, the osI world had
created a "complete" seven-layer model of com-
munications and were ready to start developing
standards that would populate that model. By
1988, over 140 standards had been accepted to fit
into the seven layers. Any specific os~ implemen-
tation would pick some seven of these 140 stan-
dards, and specify any further options and pa-
rameters reqiaired by any of the standards.

The probability of two arbitrary, different osI
systems interoperating was nil. The solution ad-
vanced by osI to this dilemma was to define a new
kind of document -- a profile -- that specified the
suite of standards, options, and parameters
needed to meet a specific functional objective:
indeed, profiles are also called "functional stan-
dards" (which says something about other stan-
dards).

The idea of profiles transcends osI. For ex-
ample, de facto profiles are commonplace. If you
go into your local computer store and ask for "’a
PC with MS/DOS, Windows 3, a C compiler, and
Lotus 1-2-3," that’s a profile for your functional
needs. Even the X/OPEN "’Common Application
Environment," which consists of several compo-
nents described in their seven-volume X/OPEN
Portability Guide. might be considered a profile.

AUUGN 73 ’ Vol 12 No 4/5

:login: t6:3

although it is not clear that it would satisfy a
specific functional objective.

The U.S. Government National Institute for
Standards and Technology (NIST) introduced an
"’Applications Portability Profile" with their FIr’s-
151 in 1988t, which has the same problem: the
NISr "profile" is a collection of Standards and
other interface specifications with no focused
functional objective.

POSIX and Profiles

P1003.10 is the first IEEE POSIX profile
project, and its functional objective is more ex-
plicit: Supercomputing. The question this group is
asking is, "what set of standard interfaces pro-
vides the complete environment supercomputing
users need for applications portability, interop-
erability, and consistency of user interface?"
Some standards identified so far are FORTRAN

(F77), POSIX.1, GKS, and PHIGS.

The nasty word is "’complete." It does not
take much insight to see that even combinations
of standards won’t be complete enough for some
sophisticated applications. Application environ-
ment profile groups also must identify areas where
additional standards are needed. This is a second
value of profiles: supplementing the "roadmap
though the maze" goal of osI profiles. At a min-
imum, profile groups should document require-
ments not addressed bv the standards, to help
vendors and users ensure missing capabilities are
provided, even if they’re not standardized.

For supercomputing, for example, perfor-
mance requirements fall into this category. Some-
times, profile groups can do more than just doc-
ument, though. What happens, for example, if the
profile work reveals the need for an interface that
isn’t yet standardized? There are two possibilities.
First, the profile group can tell an existing stan-
dards group working in a related area they need
the new interfaces (and offer expert aid, if nec-
essary). If that doesn’t work. the profile group can
try to spin off a new group or at least a new
project. For example, the supercomputing profile
work has already spun off two projects: the
P1003.9 working group, which is providing

1.. They have recently published an expanded view of
this for public comment.

TRAN interfaces to r’oslx.1, and the P1003.15
project for batch services.2

Other t~os~x profile projects already under-
way are transaction processing (.11), real time
(.13), and multiprocessing (.14).

PEP: a prototype standard

Right now, profiles are being generated
bottom-up, starting from real-world problems, le-
veraging existing standards, and exposing gaps.
There is no formal model for applications port-
ability, and few users are willing to wait for one.
In an ideal world, with some well-understood for-
mal model of a complete computing environment,
standards might be generated top-down, much
like the osI approach. How do we grope our way
to such a model?

At the international level, Technical Study
Group 1 (TSGI), is just finishing recommendations
to Iso on "interfaces for applications portability,"
which will include some modeling concepts for a
top-down approach. The most solid recommen-
dations coming out of this work will advocate the
extension of ~so profiling work beyond osI to
address applications portability and to help iden-
tify requirements for standards work.

Industrial groups, like the Petrotechnical
Open Software Company (POSC), are also inter-
ested in profiles (for "upstream" petroleum en-
gineering applications). The European Workshop
on Open Systems (EWOS) is also expanding their
charter from ost profiles to application portabil-
ity. Much early groundwork for os~ profiles was
developed by folks now in EWOS, and much of
Ewos’s current work is to establish a framework
and a set of procedures for this larger problem
space.

The IEEE’S TCOS is taking a different ap-
proach: sort of rapid prototyping for standards.
The most recentlv approved [EEE POSIX project is
P1003.18, the POS~X Platform Environment Pro-

2. The "’batch services" work isn’t just batch processing.
In the world of supercomputing, jobs can run beyond
either the system’s MTBF -- mean time between faiiures
-- or its MTBSHPJTYOFAW -- mean time before some
higher priority job throws you out for a week. To
handle this with some grace, applications "’checkpoint"
their state and can restart from that state. Extended
services t’or checkpoint and restart are part of the .15
task.

Vol 12 No 4/5 74 AUUGN

;login: 16:3

file O’Er’). A simplistic statement of its goal is, "to
define the standards which together describe what
folks have traditionally called UNIX": -- PosIx.1
plus l, OSIX.2 plus the C standard)

Its real goal, though, is to address three
closely related needs.

1. PEP will provide a common foundation
(platform!) for the more focused application en-
vironment profile projects (.10, .11, ...).

2. It will help all users of the FosIx standards
to understand the line between the traditional
"UNIX" space and any new work of the FOSlX
groups. This does not mean that PEP will not
include some new work over time, but it will
identify a useful stable ground (platform!) in the
rapid evolution of POSIX standards.

3. Profiles are new to IEEE, ANSI, and ISO, and
a simple example will help folks to get a handle
on what profiles are all about. PEP provides a
simple case, building on ~,osIx.1 (system inter-
faces), posIx.2 (and .2a) (com .mands), the C lan-
guage, and potentially Ada and POSIX.5, and/or
FORTRAN and POSIX.9.

In effect, PEP will blaze the trail for other
more complex profile tasks, like supercomputing
or transaction processing, and will be a stepping
stone (platform!) for those efforts, providing
them a clearer path into ISO.

Profiles as Configuration Management Tools

The second point above may need explain-
ing. Profiles take a snapshot of the standards at
a point in time. Supercomputing is specifically
selecting FORTRAN 77 because it matches today’s
needs. Fortran4 will evolve. A future version of
POSIX.10 may include a future version of Fortran.
The array of standards is moving forward asyn-
chronously, and often chaotically; profiles group
together standards to provide a form of "release
control" or "configuration management." An ap-
plication and a system can refer to a specific ver-
sion of a specific profile.

3. Of course, many readers will argue that this is hope-
lessly incomplete ("How can you have a UNIX system
without emacs?"), but bear with me.
4. The next generation Fortran is properly presented in
mixed case, by committee decree, whereas historically
FORTRAN has been an acronym and all upper case.

Benefits Profiles Will Bring

Profiles provide an easy way for users, ap-
plication developers, and vendors to describe en-
vironments. Application developers and ISV’S will
finally have a clear target,space for development.
Profiles will tell customers what facilities the tar-
get systems for their software supply. Eventually,
we will see conformance testing of integrated pro-
files, providing a higher level of confidence in the
environment.

1003.6: Security Extensions

Ana Marfa de Alvar~ <anamaria@sgi.com>
reports on the January 7-11, 1991 meeting in New
Orleans, LA:

Overview

The P1003.6 group met for the entire week.
Our main task was preparing draft 8 for mock
ballot. We also planned for P1003.6 test assertions
and discussed file locking, manipulating or dupli-
cating the information in opaque data objects,
and allowing ps to show privileges and MAC labels
of processes.

We also heard two proposals at the meeting,
one on Privileges and one on Discretionary Ac-
cess Control, which I discuss in the relevant sub-
group sections below.

Mock Ballot

P1003.6 plans to go to mock ballot after our
April meeting. We will review comments at the
July meeting, and try to ballot the document soon
afterwards. The October meeting will be used for
ballot resolution and clean-up.

To prepare for mock ballot, the working
group submitted written comments on the current
draft, and subgroups spent the week addressing
them. Commenters included Chris Hughes (ICE),
Roland Clouse (Unisys), Dan Ujihara (SUN),
and me (SGI).

Test Assertion Plans

The group decided to create a separate test-
assertions document that parallels the current
document. Each subgroup will be responsible for
its own test assertions, and will ensure that the
assertions document and the main document re-

AUUGN 75 Vol 12 No 4/5

;login: t6:3

main consistent (i.e., any updates to the P1003.
6 document will trigger changes to the assertions
document). Dave Rogers of Data Logic and I are
co-chairing this effort. If you are interested in
helping to write test assertions, please let us
know.

Opaque Security Data Object Duplication

Duplicating the information in opaque secu-
rity data objects -- ACEs, labels, and privileges --
presents three distinct kinds of problems:

1. duplicating the information within a pro-
cess,

2. passing the information between processes
in a single system, and

3. exporting the information out of a system.

Copying the information within a process is
simple. What’s hard is copying it out of the pro-
cess’s context -- for example, for backups. We
decided that such exporting will require passing
out both object addresses and sizes, as well as
data characteristics, such as binary, text, or func-
tion.

Privileges

John Griffith (HP/APOLLO) presented a new
privileges proposal that simplified determining
whether a process has, lacks, or inherits a priv-
ilege.

In draft 8, a process could only inherit a
privilege if the "allowed" file-privilege attribute
was set: inheritance, through the inheritable
group, depended on restrictions provided by the
"allowed" file privilege attribute.

The subgroup agreed that this needed sim-
plifying. The newly agreed-on substitute is that a
privilege can be inheritable if it exists in the in-
heritable group or if the file’s "forced" privilege
attribute is on. In other words, after an exec
occurs, a privilege that is on in the inheritable
privilege group can turn itself on in the permitted
privilege group.

The subgroup spent much of the remaining
time editing its part of the document. Two issues
I hope will be resolved next meeting are:

I. accommodating privileged shell scripts in
the current proposal, and

2. determining how to store privilege infor-
mation for later use.

Discretionary Access Control

The new DAC proposal consisted of two doc-
uments representing a collaborative effort by Paul
Karger (osF), Rand Hoven (HP/APOLLO), and Jon
Spencer (Data General). It tried to simplify the
way default ACES and MASK_OBJS work, and it
removed any requirement for MASK_ OBJ entries
when no additional ACE entries existed. In the
end, we decided to retain the old scheme but will
try to shore up areas that the new proposal
pointed out were particularly weak. The propos-
al’s sponsors agreed to this, providing the new
draft offers a satisfactory alternative simplifica-
tion.

The subgroup also attacked the opaque ob-
ject issue described earlier, defining an interface
to interconvert DAC opaque objects and text
strings, and a relocatable ACE format that can be
stored in an audit record.

The DAC subgroup will pass their draft to the
full group after the next meeting.

Mandatory Access Control

The MAC subgroup discussed the written
comments to their section and feel they will be
ready for ballot after the next meeting.

Two major issues arose:

1. whether our document should address spe-
cial (block and character device) files, and

2. whether we needed a dup()-like function
to copy internal formats.

The subgroup decided the current version of
P1003.6 shouldn’t address terminals or other spe-
cial files, but the second issue will be passed on
to the entire group.

Audit

The Audit subgroup discussed all the written
comments and will onlv need one more meeting
to be ready for ballot. Their work, including man-
datorv record types, will be based on x/open’s.
They will not address Portable Data Record For-
mat, and optional record types will be
implementation-defined.

Vol 12 No 4/5 76 AUUGN

;login: 16:3

Clearly, audit functions will need both point-
ers to objects and their sizes to operate on MAC,
DAC, and Privilege opaque data. Because of this,
I predict all three subgroups will have to provide
interfaces to provide the information.

Liaison .6/.7/.8

The liaison group met again to discuss areas
of compatibility and overlap between our respec-
tive documents. (The October P1003.6 snitch re-

port sketches our ongoing agenda.) We identified
areas that P1003.6 (Security), P1003.7 (System
Administration), and P1003.8 (T~:A) already han-
dle, areas we might handle, and areas that are
falling through the cracks. After we finish iden-
tifying areas of concern, we may write PARS for
anything we cannot farm out to existing groups.
In April, we will discuss how to report our find-
ings back to the three groups.

AUUGN 77 Vol 12 No 4/5

Gary Henderson
IXI Umited
Cambridge
United Kingdom

Gary is an experienced software consultant with over 4 years knowledge
of working with the X Window System. Gary ha’s hands-on experience
of porting X and Motif to a variety of platforms and is also a seasoned
toolkit programmer. His role at IXI involves lecturing in X and Motif
programming as well as heading up the Motif Development Team with
responsibility for IXl’s Motif Development Kit for Sun product.

On 9 August, the MIT X Consortium issued to its members a new
release of the X Window System, X I I Release 5. As these
releases are only made every 18 months or so and contain
significant new technologies, this is an important event for agyone
working with X.

X I I Release 5 includes scalable fonts technology, support of
internationalisation and the PHIGS international 3-D graphics
standard. The latter is particularly important as the inclusion of the
PHIGS Extension to X or PEX provides a standardised way of
supporting 3-dimensional graphics. It has been possible to
generate 3-D graphics on X as vendors have added their own
extensions to the X server but this has been in a stand-alone form.
This release marks the first time that there is networked support
for 3-D graphics.

PHIGS or Programmer’s Hierarchical Interactive Graphics
Systems has been criticised in the past for its complexity and the
demands on processing power to draw the 3-D graphics.
However, as an established international standard, it was natural
for the X Consortium to select PHIGS for the basis of the 3-D
version. There are proprietary graphics libraries such ~s Silicon
Graphics’s GL which has achieve wide recognition to the extent
that Network Computing Devices (NCD), the leading X terminal
supplier, may be supporting GL alongside PEX.

The new PEX files take 10.5Mb memory and take the form of a
server extension and client side library. The client uses two
processes, one to handle X events and the other the user
application.

The new font server technology widens the font repertoire for X
users. A single font server sitting on a network node can provide
a large selection of fonts in a variety of styles in all point sizes. Each
point size of the different fonts are not stored in a separate file as
in earlier X releases but as a single copy which can be scaled up or
down as required. This considerably reduces font storage space
and increases the range of point sizes available.

There are two sample font scaling implementations; one using
bitmap fonts which allows existing X fonts to be scaled and the
other using font outlines contributed by Bitstream Inc of
Cambridge, Mass. The latter is said to produce better quality
images but needs special outline font files. Bitstream supply a
Charter outline font in normal, bold, italic and bold-italic.

Colour has now been standardised so that you will no longer get
any colour variation when you move from one terminal to
another. Originally, colour was represented as RGB values but in
X II Release 5, this system has been improved by a device-
independent colour system at the Xlib level. Developed by a
European standards body, the Commission Internationale De
L’Eclairage, the CIE technology provides a standardised
representation of colours from one display to another. Several
methods of describing colours are implemented including CIE
u’v’Y, CIE XYZ and Tektronix’s TeKHVC systems.

A good deal of work has been invested into providing adequate
support for Internationalisation. This is obviously key to the
success of X worldwide and will no doubt lead to the Open
Software Foundation and Unix International providing further
internationalisation support for their GUI products - Motif and
Open Look. In fact, the next release of Motif, v l.2, will be based
on X II Release 5.

The work takes into account the ANSI and ISO standards for
internationalisation. The previous releases of X I I could only
effectively deal with 8-bit character sets such as error messages

Vol 12 No 4/5 78 AUUGN

and the resource database and had no way of inputing the larger
character sets. X II Release 5 now supports characters used in
Japan, China and other parts of the Far East.

Apart from these major new technologies, Xlib has been
optimised - routines that the toolkit calls frequently have been
improved some by a factor of 300. The server now supports true
Save Unders, rather than saving the contents of the entire
window, only the obscured section is now remembered. There is
now support for hardware cursors for systems that have this
feature.

The initial release of X II Release 5 only includes the-tore
technology (about 74Mb in size). However, the full release on I0
October will also contain user contributed software but be
warned it will be rather large!

If you would like to receive your copy ofXI I Release 5, then tapes
are available from the X Consortium in Cambridge, Mass (price
had not been decided as we went to press). Alternatively, IXI are
supplying the MIT tape here in Europe at 295 pounds, for further
information call IXI on +44 223 462131.

NOTE

Xll Release 5 is available from numerous sites across Australia, by anonymous ftp and ACSNet fetchfile. For details
consult the newsgroup aus.archives.

AUUGN 79 Vol 12 No 4/5

Dr. Alan Brown
Principal Consultant, specialising in TUXEDO
USLE
London
United Kingdom

There has been much discussion about USL’s Transaction Processing
System, TUXEDO. Alan Brown joins us in this edition to talk about the
product.

Alan Brown is Principal consultant at UNIX System Laboratories Europe
based in London. He has responsibility for TUXEDO in Europe - this
includes the provision of pre- and post-sales technical support, training
and consultancy.

For further information on this column, please contact Gill Mogg on
gill@eul.uucp. Gill is Marketing Manager at USLE.

The TUXEDO Transaction Processing System Release
4.1

Introduction

The trend today is towards using networks of high powered mini/
workstation style machines as part of the Open Systems
movement. To explain today’s definition of distributed, open
online transaction processing (OLTP) computing, I will begin with
a short look at the major evolutionary steps that preceded it. (See
Figure I)

Starting with a batch transaction processing environment,
demands for data integrity and availability became more and more
pressing, leading to the need for online transaction processing.
Businesses in which data that once was sufficient on a weekly basis
now need it available every day; international companies need
consolidated reports for world-wide regions to be drawn up from
reports for separate offices; many businesses need to know
instantaneously about their transactions. A transaction processing
system can provide the framework for meeting these demands as
it provides realtime data access and updates while combining
multiple business systems into one coherent applicationl

The last few years have seen an ever intensifying move towards
Open OLTP The benefits of Open Systems in general apply as
Vol 12 No 4/5 8O

well to a transaction processing environment. Open OLTP has the
benefit of being portable and interoperable. Constrained MIS
budgets leave many MIS executives seeking to level current
investments with increasing demands for IT solutions and
processing power. Looking toward OLTP, they might realise that
their preferred solution consists of a mixture of hardware
platforms, databases, networks, LANs, presentation managers and
the like. Using open OLTP not only allows the interconnection of
current products but also protects the investment through
compatibility with future developments

This article will discuss the different components of the TUXEDO
Transaction Processing System Release 4. I developed by UNIX
System Laboratories. The TUXEDO System is a mature, available
OLTP product supported on more than twenty hardware
platforms, by nine operating systems and currently deployed in
over fifty applications. As the roots of TUXEDO lie in the UNIX
operating system, it is an open OLTP system, supporting unlimited
front-end interfaces, network protocols and resource managers.
TUXEDO has been evolving since 1978 and is fast becoming
recognised a the standard for open OLTP solutions. In particular,
it offers the following key capabilities:

TUXEDO provides application designers and programmers
with a state-of- the-art framework for building OLTP
applications.

Openness at all levels of the TUXEDO System architecture
with true heterogeneity across all layers of an OLTP
application in combination with product components that
adhere to standards giving the customer upward compatibility
with future hardware and software investments, to take
advantage of price/performance and yet still protecting past
investment.

Control over distributed data and functionality gives the user a
unified view of a distributed application.

TUXEDO is an internationalised product that allows the user to
be presented with diagnostic and system messages in their
language of choice, reflecting national date, time and currency

AUUGN

conventions. This is as specified by the X/Open Portability Guide
Issue 3.

name of a service to the physical address of the server that can
perform that service. (See Figure 2)

TIME

Open Online Transaction Processin~
Open Environment
Many Users
Data Integrity
Multiple Vendor Reliance
Increased Price/Performance
Mission Critical Applications
Realtime Data Access
E)istributed Open Online I ransact~on Processing:
Open Environment
Implementation Flexibility
Corporate-Wide Application Integration
Corporate-Wide Decision Support
Many Users

~Data Integrity
Multiple Vendor Reliance
Optimised Price/Performance
Mission Critical Applications
Realtime Data Access

Figure I: The move towards Open Online Transaction Processing

TUXEDO also gives an application writer a common software
platform across a multitude of systems both UNIX-based and
proprietary systems (e.g. VMS(TM), AIX., HP-UX, Sun Os(TM)
and ULTRIX(TM)). This is achieved by using highly portable code
based on industry standards including SVID, POSIX and XPG.

A modular approach allows the product components of TUXEDO
to be networked and integrated into other OLTP products. The
System comprises two basic parts, which can be licensed and
deployed separately: the transaction manager TUXEDO System/
T, and a high performance database management system,
TUXEDO System/D, Two additional components will shortly be
available: TUXEDO/WS, workstation extensions to System/T,
and TUXEDO/HOST, enabling System/T to use mainframe
services.

The following discussion will now look at the four TUXEDO
components.

TUXEDO System/T

The Client/Server Model

The cliendserver model is the basic structure of the TUXEDO
System, providing location transparency by mapping the logical

Client Modules TUXEDO Server Modules
System / T

Begin
Call "X" ..~

End

Begin
Call "Y"

End¯Begin
Call "X" ~
Call "Z"

End
Begin

Call "Z"
End

Process
Requests

"X", "Y"

Process
Requests

Fig : 2 The ClientJServer model

Figure 2: The Client/Server Model

A client process collects input, makes service requests, receives
replies to requests and puts out results. A server process accepts
a service request, performs the work (which may include
additional service requests for the original request), and, when it
has finished, either returns results to the requester or forwards
the results obtained so far to a new service. Server processes are
stateless: several servers may offer the same service and repeated
requests for the same service may go to different servers. The
requesdresponse model supports asynchronous and synchronous
communications.

System/T provides a number of features that enhance the client/
server model, These are described below, An application client
will use a well defined interface called the ATMI (Application to
Transaction Management Interface) to pass requests to a server
process. Similarly the server will respond using the same ATMI.
Th~s ATMI heightens the underlying cliendserver configuration
and transparently controls transactions on behalf of the client,

The Name Server: Bulletin Board

The Bulletin Board (BB) is the heart of System/T, One of its main
functions is to map the service name a client uses to an internally "
maintained physical address to which a request can be sent. In that
way, the BB allows clients to request services by name rather than
sending requests to a specific address, Clients do not have to
know which server handles their request.

The BB also keeps statistics to aid in load balancing when deciding
where a client’s request should be sent. This enables System/T to
keep track of how many outstanding requests exist and to which
servers they are destined. It then routes the request to the server
most likely to process it first. The BB is implemented as a piece of
shared memory to which all client and server processes attach.
Consistency is guaranteed by a combination of user- and system-
level locking.

Operations, Administration and Maintenance (OA&M)

System/T allows an application designer to centrally define the
hardware, software and networking resources chat make up an
OLTP application. It can be stated where servers and services are
supposed co run and where they should be migrated to in the
event of a processor failure. In addition, various characteristics can
be assigned to the application’s software resources, including
processor placement and scheduling information, process
recovery criteria and time-out periods. System/T also provides

AUUGN 81 Vol 12 No 4/5

for central configurauon management and dynamic tools for
starting, stopping or administrate a distributed OLTP application.

Servers can be dynamically started or stopped making only
selected services available. Various parameters such as time-out
interval, priorities and load factors may also be changed
dynamically. If a processor fails or needs maintenance, the server
and services on the out-of-service processor can be migrated to
another processor without interruption to the running
application.

To enhance application availability, robustness features are built
into System fT, including process viability checks, time-out checks,
automatic server re-start and recovery procedures. In distributed
and muldprocessing environments, System/T can increase the
availability of an application by replicating servers and services
across several processors. Application data can be partitioned
across processors participating in the application and accessed by
data-dependent routing of service requests. This enhances the
distribution of services and the application’s resiliency to select
processor failures.

To ensure maximum throughput, System/T automatically
performs load balancing and scheduling throughout the system. It
uses per-service load factors and keeps totals on outstanding
work to deliver a particular request to the server that can process
it most quickly.

System/T applications can naturally extend over a set of machines
on a LAN without special attention in the application.
Communications are handled by System/T using the network
independent library (’I’Ll) or the sockets interface.

Transaction Control

Ideally, an open distributed transaction processing system imposes
no restrictions on the application?s choice of RMs. Employing the
XA interface defined by X/Open, TUXEDO System/T
communicates with all resource managers that are XA compliant.

The distributed transaction comprises two general elements: the
transaction manager handles the global part, it keeps track of local
transactions participating in the global transaction and handles all
commit and recovery decisions. The resource manager/server
process controls the individual pieces, associates them with the
identifier for the global part and carries out the decisions of the
TM as they affect the local transaction. To participate in a two-
phase commit, the resource manager (RM) must be able to start,
precommit, commit and abort a local transaction.

The RMs that participate in a distributed transaction provide
support for a two-phase commit presumed-abort protocol:

° They have to offer subroutines that begin, precommit, commit
and abort a local transaction.

They must not make independent commit or failure handling
decisions as part of recovery for precommi~ted local
transactions associated with a GTRID without informing the
TM.

Each global transaction must have a Global TRansaction IDentifier
(GTRID) which is unique across the OLTP system. The use of
GTRID is required for recovery as well as a unique identification
of distributed units of work. In a two phase co.mmit protocol, a
commit coordinator requests participants to precommit. When
all participants have reported successful precommit, the GTRID,
the coordinator id and a list of ids for RM participants must be
logged. The GTRID includes the coordinator id and the RM must
put it into stable storage. This allows the transaction manager to
obtain a list of GTRIDS in case of a failure and request the status
of the global transaction for the GTRID.

The function of the commit coordinator is the management of a
two-phase commit protocol. TUXEDO System/T maintains
internal information about the participants in a server process, and

Vol 12 No 4/5 82

when an application requests the transaction to be committed, the
coordinator of the transaction uses the internal information to
begin the commit process by sending precommit re_quests to
participants. The TUXEDO System/T code for commit services is
written using common transaction manager/resource manager
interface subroutines; different implementations of these
subroutines, included in the respective RM libraries, are used to
build commit servers.

TUXEDO System/D

TUXEDO System/D is a high performance database management
system specifically designed to support the needs of an OLTP
application running under UNIX System V. (See Figure 3,
TUXEDO System/D architecture)It provides a set of tools to build
and administer such applications by implementing an independent
user level file system which stores database and transaction log
information on a privately managed set of raw disk partitions.
Since all the I/O is synchronous and bypasses the UNIX buffer
pool, data from committed transactions is written to stable
storage providing database consistency and recoverability.

Tuxedo System / D Arcmlecture

Application
Programs

System ,,’ D
Administration
Tools

UNIX
File System

Field Mampulahon
Language

Record Manager

F~le Syslem

Buffer Pool

UNIX System

System .’ D
Dlreclones

Figure 3: Tuxedo SysterrVD Architecture

TUXEDO System/D is compliant to X/Open’s XA interface
definition. System/D uses a redo/no-undo strategy with updates
logged to separate devices before being applied to the database.
TUXEDO System/D also supports the use of embedded ANSI
SQL. In case of a system failure, the system only has to redo the
updates of committed transactions that are not in the database.
High performance database access in System/D has been achieved
through the extensive use of caching (using shared memory)
optimised for DBMS access, extent-based disk allocation, support
of multiple transaction consistency levels and by allowing
programmers to navigate through the database with the use of a
record at a time interface.

Enterprise Transaction Processing (ETP)

The product direction for the TUXEDO Transaction Manager
beyond Release 4. II will expand System/T to embrace
proprietary, non-UNIX System V systems to provide for a truly
heterogeneous environment. Enhancements will extend System/T
client support to include the interaction of workstations and PCs

TUXEDO/WS and TUXEDO/HOST will be generally
available from USL i’ourth quarter 1991

AUUGN

with System/T servers, and the addition of gateways to embrace
servers within external OLTP systems. (See Figure 4)

Requests

System / T i B.’ldge

..............
UNIX MINI

HOST Serwces and Dala

Fig : 4 TUXEDO Release 4.1 Enterpnse Transacllon model

Figure 4: TUXEDO Release 4. I Enterprise Transaction Model

Workstation Support -/~NS

The workstation interface (/WS) will allow an application to use
its existing base of workstations and PCs to develop and run
System/T client programs. These client programs have access to
System/T application servers throughout the network. This facility
will provide the advantage of removing terminal character
processing overhead from server processors and places the
overhead on intelligent processors. It also allows application
developers to use the presentation facilities and screen managers
available for workstations and PCs. In addition to a full client
programming interface, further security measures will be
implemented to control access to application servers. Gateway
software will provide all necessary functionality to establish the
LAN connection between the client and server, manage
communications and perform the necessary encoding and
decoding of messages.

/WS can be utilised on both disk-based and diskless desktop
computers that run either the UNIX System or MS-DOS. Full
access from diskless systems will be dependent on properties of
the network such as remote file access. The MS-DOS version of/
WS will support the NETBios interface to the available network
provider. The UNIX System version of/WS will support both TLI
(Transport Layer Interface) and BSD (Berkeley Software
Distribution) Sockets networking interfaces.

/WS will provide maintenance of investment in current systems
and will allow the user to take better advantage of desktop power
and hardware trends.

Host Support

Major corporate computing resources such as services and data
reside on machines that currently run proprietary OLTP software.
TUXEDO System/T’s new/HOST feature extends the client/
server model into the surrounding host environment and allows a
System/T application to provide transparent access to remote,
external services and data. System/T resident gateway servers
represent host resident servers and services on the local System/
T node and manage communications with the host computer¯
Through the gateway servers, host resident servers and services
are viewed as being part of a single System/T application.
Consequently, the availability of host resident services can be
accessed through the standard System/T ATMI programming
interface.

With/HOST, USL will provide a System/T gateway for the IBM
MVS/CICS environment. The LU 6.2 protocol will be used to
perform peer-to-peer communications between the UNIX-
resident and the CICS-resident gateways. Software will be
provided that will allow a UNIX System/T node to be linked via an
LU 6.2 communications library to a CICS application programming
interface and CICS administrative utilities. Data conversion will be
performed by System/T for the ATMI supported data structures;
user defined encode/decode functions will also be supported.

Summary

TUXEDO is a mature, open, on-line transaction processing
system, developed to meet widespread market needs. Where
applications writers are concerned, client applications can be
written not only in C or Cobol but also using CASE tools and
some 4GLs (e.g. Ally), resulting in increasing ease of application
development.

The TUXEDO system is continually evolving as is demonstrated
by the forthcoming release of/WS and/HOST, and with the
increasing demand for OLTP in all sectors, TUXEDO will underly
most of the TP systems in the Open Systems arena.

The system gives applications developers a great deal of freedom
as it allows client applications to be written not only in C or Cobol
but also in CASE and some 4GLs (e.g. Ally).

¯ TUXEDO and UNIX are registered trademarks of UNIX System
Laboratories, Inc., in the USA and other countries.. IBM and AIX
are registered trademarks of International Business Machines.
TM SunOS is a trademark of Sun Microsystems.

rM Ultrix and VMS are trademarks of Digital Equipment

Corporation.

AUUGN 83 Vol 12 No 4/5

Reviewed by Simon Kenyon of ICL - Information Technology Centre,
Dublin, IRELAND <simon@itc.icl.ie>

X Toolkit Intrinsics Programming i~anual OSF/l~otif
Edition

Adrian Nye and Tim O’Reilly
O’Reilly and Associates Inc., December 1990
ISBN 0-937175-62-5.
(US) Price $30, Soft Back, 632 pp,

This is a book for the programmer who wishes to program with
widgets0 and Motif in particular. It is for someone who needs to
know, as there is effort required. This effort is a lot less than
wading through the MIT supplied documentation.

Recommended.

This is volume 4 in the X Window System series published by
O’Reilly and Associates.

The blurb for this book says that it is a "complete programmer’s
guide to the X Toolkit (Xt)" and that the book "uses the Motif
widgets to demonstrate how to use existing widgets, but is equally
applicable to and provides a good introduction to programming
with any other widget set based on Xt, such as the MIT Athena
widgets, or AT&T’s OPEN LOOK widget set".

This aside, what is this book? It is a rehash of an earlier edition
which described the Intrinsics using the Athena Widgets as
examples. It starts off with a chapter describing what the X
Window System is all about and then swiftly moves on to discuss
the X Toolkit (Xt), which is described as "providing a simplified
approach to graphical user-interface programming".

The book is structured as a tutorial. An example application is
developed, becominging increasingly more complex as new
features are added to it. The culmination of this is the recoding of
the example using a new widget, the BitmapEdit widget.

The intention of the book is that the reader should become a
proficient Xt programmer, and for my money this objective is

achieved. The book arrived just as we in the ITC were about to
port a large application from XView to Xt. We already had the
previous edition of this book; but it was my copy that kept
disappearing off my desk. This is perhaps more relevant than my
subjective opinion.

I do have a number of gripes about this book however. The first
is that the typography is awful. It really gets in the way of the
learning process. For a book about constructing graphical user-
interfaces, faking the screen images makes the images worse than
useless. They give the reader no clue as to what the screen should
actually look like.

The second point is that the running example leaves a few
"exercises for the reader". It is like a lecture in mathematics,
where some intermediate steps are left to the student. This
caused me some grief.

The description of OPEN LOOK and Athena are sketchy and in
the case of OPEN LOOK, out of date.

The final point is that why are all the interesting bits "beyond the
scope of this book".

There are no glaringly obvious errors that I could see, apart from
some problems with the resource entries accompanying the
examples.

X Window System User’s Guide OSF/f4otif Edition

Valerie Quercia and Tim O’Reilly
O’Reilly and Associatesinc.
December 1990,
ISBN 0-937175-61-7.
(US) Price $30, Soft Back, 709 pp

This is volume 3 in the X Window System series published by
O’Reilly and Associates.

This book is an introduction to the X Window System. It
describes the basic concepts of X and gives details of all the MIT
supplied X clients. It describes the mwm window manager and
brief overviews of the various features of a Motif application and
is only superficially different from the previous edition. As Such
does not deserve the title of an OSF/Motif Edition.

Unlike Volume 4 in this series, there is no incentive to overcome
the poor typography, as the information that this book contains is
not too hard to find elsewhere. This means that this book is not
going to serve its intended audience, which is the novice X user.

The other volumes in this series are indispensable to the X
Window System user. A much sharper presentation and a much
more thorough treatment of Motif is required, if this book is to
achieve the same status.

Not recommended.

Vol 12 No 4/5 84 AUUGN

~IH & xmh, E-mail for Users and Programmers

Jerry Peek
O’Reilly & Associates, Jan 1991, ISBN 0-937175-63-3. (UK) Price
Not yet Available, Soft Back, 555 pp,

"The Octopus Book"

Reviewed by Andrew Macpherson.

Email A.Macpherson@sakura.uucp

This is a book about electronic mail, or rather about MH which is
an extremely rich an interface to electronic mail, and its partner
XMH which gives a graphic front end to that functionality. How
does one separate the book about the program from the program
itself? When I started with the Octopus Book I had not used MH
at all before, and the distinction was blurred, I could claim to be a
serious user of electronic mail systems, but that was about it. !
even had to compile up the latest release of MH to be in sync with
the text.

Some months on (yes this review is late) the split is much easier
to make. MH is a complex system, and the book sets out to
present two ways of using it, the style is a friendly, informal tutorial
and very readable. The sheer volume of the book is daunting but
one swiftly realises that there are really two books and a fairly
extensive manual set between the covers. Chapters 4 through 7
describe the command line interface, while 13 to 15 have XMH
covered in 88 pages. Much relieved one can move on to read the
half of immediate interest.

The book’s practical approach gets one up out of the armchair
immediately. It may be possible to read, and believe ’this is what
happens’ in the text, it is more satisfying by far to work through
the examples on ones’ own system.

Starting with the basic interface one reads, creates, sends and files
messages. Then comes the fun of customisation \(em how do you
like to list the contents of a mailbox? Do you want to include the
original message automaticly in a reply? All the features needed to
function as a mail user are well covered. In XMH adding
accelerator buttons to print the displayed message is easily done.

And yet.., at the end of the section one has had a good tutorial on
using mail but one has read a lot of pages withou’t ever touching
on auto-filing, ’Tm on holiday" messages, bulletin boards or
anything else of what one would term the ’power-features’ of MH.
That first time through one was disappointed by the carefully
crafted focus.

A week laterl was rude enough to send an automatic "Thanks I’ll
get round to your message" note to Byron Rakitzis when he
replied to a question I had asked about his ’rc’ shell. Properly taken
AUUGN

to task I turned back to the Octopus Book to see how to do
something about it. The information was there, and that is a
mistake I will not be making again. My view was changed, and I now
appreciate that I had built up the wrong expectations while
installing the programs. Read the book first, and borrow someone
else’s system to work through the examples.

So who should buy this book? A pre-requisite is of course that one
will be using or maintaining MH. That in turn begs the question of
whether one should be.

Since ucbmail / mailx are rather fundamentally flawed in address
handling, something else is needed, and MH is one of the few mail
systems that really does obey the standards in every detail. For the
mailtool user XMH is a wonderful alternative, and the various
emacs modes are great. On the command line though MH is
ultimately so rich and flexible that anyone trying to cope with it
probably needs this book to get going. I have now learned MH, and
I shall continue using it, even running it on my Xenix PC, but did I
really want to go that far?

85 Vol 12 No 4/5

MANAGEMENT COMMITTEE

MINUTES OF MEETING, 5 AUGUST 1991

Present: Pat Duffy, Michael Tuke, Chris Maltby (part of meeting), Frank
Crawford, Andrew Gollan, Peter Karr (part of meeting), Scott Merrilees, Rolf
Jester.

Meeting commenced at 10:15am.

Also present at the relevant times were ACMS principal Wael Foda and Ellen
Gubbin of Symmetry Design.

1 APOLOGIES

Glenn Huxtable.

MINUTES OF LAST MEETING (28 JUNE 1991)

Correction" 14.1 Robert Elz - name misspelled.
Moved (PD/MT) that the minutes be accepted. Carried.

3.1

3.2

BUSINESS ARISING FROM THE MINUTES

Re 3.1: Glenn Huxtable will write a letter thanking the Summer
organisers.

Action: GH

Re 10.2" Peter Karr will submit the AARNET article for/osr to Chris
Maltby for review and editing.

Action: PK
and: CM

Vol 12 No 4/5 86 AUUGN

3.3

3.4

Re 10.3: Chris Maltby and Frank Crawford will prepare an information
sheet - "How to get on the network."

Action: CM
and: FC

Re 10.4: We will sponsor an AARNET connection for the Sun User Group
in Melbourne.

Action: MT

3.5 Re 14.1" Rolf Jester will follow up with Robert Elz the registration
of new business name and the lodgement of the Constitutional changes
with Corporate Affairs.

Action: RJ

4 PRESIDENT’S REPORT

Pat Duffy reported:

4.1 The agreed membership renewal changes have been implemented by ACMS.
A letter from Pat Duffy describing the changes has gone out to all
members and the first billing cycle (1 July) will start within a few
days. All unfinancial members will be included in this current
billing cycle

4.2 Publicity for AUUG has led to numerous enquiries by phone and mail.
Pat has also been invited to speak on "How Open is Open" at a
meeting of the Institute of Systems Analysts.

4.3 We should indicate in AUUGN the fact that members can order
publications from UniForum, UseNIX and EUUG through. AUUG. Chris
Maltby and Frank Crawford will contribute a page on this t’or AUUGN.

Action: CM
and: FC

4.4 We should also order some stocks of likely popular publications for
sale at the Cenference. Rolf Jester will request ACMS to order 30
each of UseNIX Winter proceedings, UseNIX Summer proceedings and
UniForum Products Directory, plus a supply of UniForum membership
application forms.

Action: RJ

4.5 Moved (PD/SM) that we record our thanks to Stephen Prince for his
substantial contribution to the work of the Committee. Carried
unanimously.

Moved (AG/FC) that the President’s report be accepted. Carried.

AUUGN 87 Vol 12 No 4/5

5 SECRETARY’S REPORT

Roll Jester reported:

5.1 Membership has grown-by 45 since the end of June. Membership report
and breakdown by State are attached.

5.2 Rolf Jester will ask Ellen Gubbin of Symmetry to quote on new
business cards for all Committee Members and the AUUGN Editor, using
the new logo style and colour.

Action: RJ

Moved (FC/MT) that the Secretary’s Report be accepted.

6 TREASURER’S REPORT

Carried.

Frank Crawford reported:

6.1 Balance sheet as at 30/7/91 and Income & Expense accounts for the
year to 30/7/91 are attached. There are some final entries required
before we have f’mal accounts for the year. Michael Tuke is
obtaining the f’mal reports from the accountants.

6.2 Cheque signatories have now been finalised.

6.3 We shall maintain sufficient funds in our cheque account to cover
planned expenses and transfer the balance to a cash management
account. The Chase AMP term deposit will be re-invested in another
interest-beating deposit.

Action: FC

6.4 Michael Tuke will ask our accountants, Nicol & Nicol for advice on
what steps we have to take to ensure that we are tax-exempt.

Action: MT

Moved (RJ/PK) that the Treasurer’s Report,be accepted. Carried.

7.1

AUUGN EDITOR’S REPORT

Frank Crawford reported on behalf of Jagoda Crawford.

Vol. 12 issue 1 is now out. The next issue is almost ready and will
be distributed before the end of the month. We still lack:

President’s report
Minutes
Returning Officer’s report - attached.

Action: PD
Action: RJ

Vol 12 No 415 88 AUUGN

7.2

7°3

7.4

7.5

The third issue for this year will be around the Conference, and the
final one in December.

We shall no longer print the price of back issues in AUUGN so that
the back-issue price is not treated by Australia Post as the retail
price of AUUGN, which could otherwise result in a higher postage
fee.

Action: JC

Frank Crawford will follow up reduced postage fees with Australia
Post.

Action: FC

We shall continue to print 20 spare copies of each issue for
back-issue requests.

Action: JC

7.6 We shall continue to print the list of Institutional members, but
try to fit them on to two pages by using smaller type. After the
reminders have gone out, we shall drop the names of any unfmancial
Institutional members.

Action: JC

7.7 The next ;,~sue of AUUG.r’.r w’ill be sent to unfmanc~ai members o_,s part
of the :,nducemeet t,~ renew.

Actir~a: JC

Moved (AG/SM) that the AUUGN Editor’s report be accepted. Carried.

RETURNING OFFICER’S REPORT

Attached.

9.1

9.2

AU~.IG’91 Conference

,-’--’adrew .qollan suggested that as part of the post-Conference meeti~g,
we review the process and work-load associated with organising the
Conference program.

Wael Foda will send out the Speakers kits tomorrow (3/8/91), after
receiving mailing labels from Andrew Gollan and final contents from
Ellen Gubbin.

Action: WF

9.3 Rolf Jester indicated that Conference speaker Mark Shand has not yet
been able to obtain funding for his trip from Digital. Rolf will

AUUGN 89 Vol 12 No 4/5

9.4

9.5

try to arrange that for him. However it was decided that AUUG would
be prepared to pay economy fare if necessary [Roll Jester did not
take part in that decision to avoid conflict of interest.]

Action: RJ
Action: AG

It was decided that we would pay economy fare for Conference speaker
Steve Ruegnitz if necessary. Pat Duffy will negotiate this.

Action: PD

Peter Karr expressed an interest in publishing selected papers from
the Conference in Open Systems Review. Since the copyright for
individual papers remains with the author, CMP can agree it directly
with the authors.

10

10.1

10.2

10.3

10.4

10.5

PUBLICITY

The quote from Symmetry of $8135 for the AUUG exhibition stand at
AUUG’91 was accepted. The signs and fittings are re-usable and will
thus be paid by AUUG (not by ACMS from the AUUG’.91 account). Ellen
Gubbin will proceed to have the stand built:

Action" EG

Ellen Gubbin will quote on member c:~d, certificate and membership
brochure. The quote will go to Pat Duffy and be circulated to the
Committee as quickly as possible so that we can have all three items
in time for the Conference. The design will be faxed for approval
by all Committee members.

Action: EG

The membership card is to identify members. It could be a laminated
card with the member details printed on an adhesive label that is
affixed to the card before b~.~ng laminated. Wael Foda will enquire
as to cost of a laminating machine. As a ~impler alternative, we
could use an inexpensive flexible plastic card on which the member
details can be printed directly.

The card will be issued to personal members and to the two nominated
representatives of Institutional members. It will carry the AUUG
logo and the word "Member". It will show member number (personal or
institutional), personal name or (Institutional) organisation name,
plus the expiry date.

The certificate is for Institutional members, intended for framing.

The membership brochure is designed to aid recruiting. It will
state AUUG objectives and membership benefits. It will not include

Vol 12 No 4/5 90 AUUGN

10.6

10.7

fee amounts or names of officers so as to remain useful beyond the
current year. An application form with the fee amount will
accompany the brochure. Qty: 5000.

It was decided that all fifteen invited Conference speakers will be
awarded a gift of a high-quality crock of distinctive Australian
fortified wine. If possible the crock or the box will be
appropriately labelled. The forty other speakers could be awarded
the same wine in a normal bottle. Andrew Gollan will make the
selection.

Action: AG
and: EG

The gift for Conference delegates will be a T-shirt. The design, to
be chosen by Andrew Gollan with Ellen Gubbin, should highlight AUUG,
the event and (most importantly) something to do with UNIX and/or
open systems. A Patrick Cook cartoon was suggested.

Action: AG
and: EG

11 OTHER BUSINESS

11.1

11.2

11.3

It was decided that we would purchase at. appropriate modem for ACM-3
so that we can exchange electronic mail with the Secretariat.
Andrew Gollan will select the modem.

Action: AG

ACSnet enquiries coming to ACMS will be referred to Frank Crawford.

Rolf Jester will obtain current copy of the Constitution, and will
provide a copy to Ellen Gubbin, or at least provide her with a
statement of objectives and membership benefits for the brochure.

Actior:: RJ

12 NEXT MEETING

Tuesday, 24 September 1991, 2:00 pm, in one of the conference rooms
upstairs above the exhibition hall.

Action: RJ

Meeting closed at l:30pm

AUUGN 91 Vol 12 No 4/5

Membership report as at 01/081199"1

Category Financial Unfinancial Total

Institutional 165 62 227

New
¯.

Members 227 151 378

Students 6 4 1 0

Life Member

Subscriptions 7 1 4 ~_ 1

TOTAL 406 231 637

Vol 12 No 4/5 92 AUUGN

Membership report as at 01/08/1991

Category Financial Unfinancial

Institutional

ACT 5 3
NSW 74 25
NT
QLD 11 11
SA 6 4

TAS 3 2
VIC 61 11
WA 5 6

TOTAL INST. 1 65 6 2

Total

227

Merrlbers

ACT 1 2 7
NSW 85 43
NT 1 2
QLD 19 17
SA 13 7
TAS 4 5
VIC 80 59
WA 13 9
O/Seas 2
Total MEMB. 227 151 378

Students 6 4 1 0

Life Member

Subscriptions 7 1 4 21

GRAND TOTAL 633 382 1015

AUUGN 93 Vol 12 No 4/5

B®gi~nning ~=nding
Accounts Balance Balance ~c~~1 ~.~...~

Commonwealth Bank 118,421.19 133,523.99 -Chase AMP 6,000.00 6,000.00
CBA- Int. Term 0.001 -

31~141.59 31~141.59 0.001 -
Total Assets 1 55,_562.78 170,665.58 15_1n9 Rn

Liability Accounts

Liability Beginning Ending Annual Change
Accounts Balance Balance Decrease J Increase

Net Worth] 155,562.78 I 170,665 58 " ! 15,102.80

Vol 12 No 4/5 94 AUUGN

~ncom,e

income
Statement

Accounts
forAUUG inc. 1991/1992

Date Last Entry° 30/7/91
Jncon’le

Accounts

Subs-Memb~~’s
Subs-Institutional
Subs-Newletter
Subs-Students
Subs-AARNET
Sale-Mail List
Sale-Video
AUUG 91 Conf & Exh

" Annual Total
Budgets Actuals

0.00 1,482.00
10,820.00

135.00
45.00

5,095.O0
582.50
55.00
0.00

..... Budget Com.p~rison
Above "Below

1,4B2.oo ---
10,820.00 -

135.00 -
45.0O -

5,095.00
582.5O -
55.00 -
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

Uniforum - Rebate 0.00 0 00 _ 0 00 -
"’l~’niforum - Refund ~"0.00 ~1,654.48:’1,654.48:"
Check Interest 0.00 0.00 0.00 -
Other Income 0.00 14.00 1 4.00! -

Total Income 0.00 19,882.98 19,882.98

Expense Accounts
I

Expense

I

Annual Total
Accuunts Budgets I Actuals

Check Charges 0.00 15.37 1 5.37
Secretariat fees 400.00 200.00 -
...A..c...c...o...u..n..!.~.n...+. Z,..L%s.o..:..o...o..o..:...o.,.o.o..:.,o...o...
Advertising 0.00 0.00 0.00
Filing fees 0.00 0.00 0.00
Freight & Cartage 0.00 0.00 0.00
General expenses 0.00 0.00 0.00
Hire of equipment 0.00 0.(,’0 0.00
..[.n,..s...u..r..a...n...c..~ ...o..:..o..,.o.,0..:..o...,.? ..,. o,oo -
Printing & Stat. 0.00 1,760.00 1,760.00 -
Postage 0.00 79.58 79.58
.,,S,,,u,..b,,s,,,c,,r,!p t i o n s 0.00 0.00 0.00 -
Committee Expenses 0.00’~,’~’:’~"(~""~"~’."~’~’ .
Telephone 0.00 0.00 0.00
.,T..r..a...v.~.’:!!..n.9....E...x.E~..n..s..~0..:.,0..,o..o.:...0...0.0..:..o...o..:
Refund - Memb fees 0.00 325.00 325.00
AARNET Expenses
..,M,.,,e,,.m,,..b..e..,r,,s...h,.! ,p,,..~ d m i n is
Marketing

Total Expense
[Net Income]

0.00
0.00
0.00

400.00
400.00)

125.00
73O.23

1 ~500.00
4,780.18

15,102.80

~udget Co~~
Above I Below j

200.00
.

o

125.00
73O.23

1,500.00
4,380.18i

15,502.80

AUUGN 95 Vol 12 No 4/5

John OrBrien, the AUUG Returning Officerr has asked me to
post this article announcing the result of the Elections
for the positions of General Committee member and also
the approval of Affiliation with UniForumo

Positions previously filled (unopposed):

President: Pat Duffy
Vice-President: Chris Maltby
Secretary: Rolf Jester
Treasurer: Frank Crawford

(pat.duffy@amail.amdahl.com)
(chris@softway.swooz.au)
(rolf.jester@sno.mts.dec.com)
(frank@photon.lhrl.oz.au)

The successful cadidates were:
General Andrew Gollan
Committee Glenn Huxtable
Members: Peter Karr

Micheal Tuke
Scott Merilees

(adjg@softway. sw0 oz. au)
(glenn@cs.uwa.ozo au)
(??)
(mjt@anl. oz .au)
(Sm@bhpeseo oz. au)

The new AUUGN editor is:
Jagoda Crawford (jc@atom.lhrl.ozoau)

Public Officer:
Returning Officer:

Robert Elz
John O’Brien

(kre@munnari. cs .mu. oz o au)
(john@wsa.oz.au)

AUUG Secretariat: (02) 361 5994

Affiliation with UniForum: Carried Yes: 72 No: 2

I would like to take this opportunity to thank Peter Barnes for
his efforts as Secretary, during which time AUUG finally adopted
a professional membership service. As a result of this work members
can expect a much higher level of membership service.

Thanks are also due to David Purdue the retiring AUUGN editor, who
did a great job for 18 months until pressures of work produced the
recent hiatus. The editor’s job is always made difficult by a low
rate of contributions from the membership, and is now being made
even more so by Australia Post’s silly rules for registered publications.

Michael Tuke has retired from the Treasurer’s post but has been returned
to the Committee. Thanks are due to Michael for bringing a new standard
of financial professionalism to AUUG. We look forward to his continued
participation on the Committee.

Finally (but not least) to Stephen Prince for his service as a Committee
member. Stephen certainly did more than his fair share of the Committee’s
work.

AUUG is aiming for continued improvement in the standard of all our
activities, especially for AUUG91 at Darling Harbour, 25-27th September.
Members and others on our mailing list will receive details soon,
or call the secretariat for more information.

Chris Maltby
Vice President

Vol 12 No 415 96 AUUGN

SESSPOOLE is the South Eastern Suburbs Society for Programmers Or Other Local
Enthusiasts. That’s the South Eastern Suburbs of Melbourne, by the way.
SESSPOOLE is a group of programmers and friends who meet every six weeks or so for
the purpose of discussing UNIX and open systems, drinking wines and ales (or fruit
juices if alcohol is not their thing), and generally relaxing and socialising over dinner.
Anyone who subscribes to the aims of SESSPOOLE is welcome to attend SESSPOOLE
meetings, even if they don’t live or work in South Eastern Suburbs. The aims of
SESSPOOLE are:

To promote knowledge and understanding of Open System; and to promote
knowledge and understanding of Open Bottles.

SESSPOOLE is also the first Chapter of the AUUG to be formed, and its members were
involved in the staging of the AUUG Summer’90 and Summer’91 Melbourne Meetings.

SESSPOOLE meetings ar~ held in the Bistro of the Oakleigh Hotel, 1555 Dandenong
Road, Oaldeigh, starting at 6:30pm. Dates for the next few meetings are:

Tuesday, 1 October 1991
Wednesday, 13 November 1991

Thursay, 12 December 1991
Tuesday, 21 January 1992
Wednesday, 4 March 1992

Thursay, 16 April 1992
Tuesday, 26 May 1992

Wednesday, 8 July 1992
Thursay, 20 August 1992 ¯

Hope we’ll see you there!
To find out more about SESSPOOLE and SESSPOOLE activities, contact either Stephen
Prince (ph. (03) 608-0911, e-mail: sp@labtam.oz.au) or John Carey (ph. (03) 587-1444,
e-mail: john@Iabtam.oz.au), or look for announcements in the newsgroup aus.auug.

AUUGN 97 Vol 12 No 4/5

AUUG Membership Categories
Once again a reminder for all "members" of

AUUG to check that you are, in fact, a member,
and that you still will be for the next two months.

There are 4 membership types, plus a
newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member

Honorary Life Member

Institutional memberships are primarily
intended for university departments, companies,
etc. This is a voting membership (one vote),
which receives two copies of the newsletter.
Institutional members can also delegate 2
representatives to attend AUUG meetings at
members rates. AUUG is also keeping track of
the licence status of institutional members. If, at
some future date, we are able to offer a software
tape distribution service, this would be available
only to institutional members, whose relevant
licences can be verified.

If your institution is not an institutional
member, isn’t it about time it became one?

Ordinary memberships are for individuals.
This is also a voting membership (one vote),
which receives a single copy of the newsletter. A
primary difference from Institutional Membership
is that the benefits of Ordinary Membership apply
to the named member only. That is, only the
member can obtain discounts an attendance at
AUUG meetings, etc. Sending a representative
isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time
students at recognised academic institutions. This
is a non voting membership which receives a
single copy of the newsletter. Otherwise the
benefits are as for Ordinary Members.

Honorary Life Membership" is not a
membership you can apply for, you must be
elected to it. What’s more, you must have been a
member for at least 5 years before being elected.

It’s also possible to subscribe to the newsletter
without being an AUUG member. This saves you
nothing financially, that is, the subscription price.
is greater than the membership dues. However, it
might be appropriate for libraries, etc, which
simply want copies of AUUGN to help fill their
shelves, and have no actual interest in the
contents, or the association.

Subscriptions are also available to members
who have a need for more copies of AUUGN than
their membership provides,

To find out if you are currently really an
AUUG member, examine the mailing label of this
AUUGN. In the lower right corner you will find
information about your current membership
status. The first letter is your membership type
code, N for regular members, S for students, and I
for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The
remaining information is for internal use.

Check that your membership isn’t about to
expire (or worse, hasn’t expired already). Ask
your colleagues if they received this issue of
AUUGN, tell them that if not, it probably means
that their membership has lapsed, or perhaps, they
were never a member at all! Feel free to copy the
membership forms, give one to everyone that you
know.

If you want to join AUUG, or renew your
membership, you will find forms in this issue of
AUUGN. Send the appropriate form (with
remittance) to the address indicated on it, and
your membership will (re-)commence.

As a service to members, AUUG has arranged
to accept payments via credit card. You can use
your Bankcard (within Australia only), or your
Visa or Mastercard by simply completing the
authorisation on the application form.

Vol 12 No 4/5 98 AUUGN

AUUG Incorpora ed
Application for Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX Is a registered trademark of UNIX System Laboratories, Incorporated

Non members who wish to apply for a subscription to the Australian UN/X systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders m perhaps yo.ur
purchasing department will consider this form to be an
invoice.
¯ Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember to
select either surface or air mail.
® Use multiple copies of this form if copies of AUUGN are to
be dispatched to differing addresses.

This form is valid only until 31st May, 1992

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows"

Name: ... Phone: .. (bh)

Address: (ah)

Net Address: ..

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

E! Subscription to AUUGN

I-1 International Surface Mail

F1 International Air Mail

Copies requested (to above address)

Total remitted

$ 90.00

$ 20.00
$ 60.00

AUD$
(cheque, money order, credit card)

I-1 Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

bsb - a/c #

$ CC type ~ V#

Please charge $.~ to my ~ Bankcard ~ Visa [] Mastercard.
Account number: . Expiry date: / .

Name on card: Signed:

Office use only:

Chq: bank

Date: / /

Subscr#Who:

AUUGN 99 Vol 12 No 4/5

A G
Notification of Change of Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of UNIX System Laboratories, Incorporated

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

~ddress: ..

Phone: ...(bh)

... (ah)

Net Address: ...

,ffice use only:

ate: / /

"ho:

ol 12 No 415 100

Memb#

AUUGN

AUtJG incorporated

Australian UNIX* systems Users’ Group.
*UNIX is a r~istered trademark of UNIX System ~boratorles, Incorporated

To apply for institutional membership of the A~G, comptct¢ this fo~, and rct~ it with
payment in Aus~alian Dollars, or credit card autho~sation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

o Forei.gn applicants please send a bank draft drawn on
an Australian bank, or credit card authorisation, and
remember to select either surface or air mail.

This form is valid only until 31st May, 1992

.. does hereby apply for
I-1 New/Renewal* Institutional Membership of AUUG

I--I International Surface Mail

I--1 International Air Mail
Total remitted

Delete one.

$325.00

$ 4o.oo
$120.00

AUD$
(cheque, money order, credit card)

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two representatives
to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG elections, and other
ballots as required.

Date: / / Signed:

Title:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database -please type or print clearly:

Administrative contact, and formal representative:

Name: ...

Address: ...

Phone: ..(bh)

.. (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

to my/our V] Bankcard ~ Visa ~ Mastercard.
¯ Expiry date: /

Name on card:

Office use only:
Chq: bank
Date: / /

Who:

bsb a/c

Signed:

Please complete the other side.
#

CC type ~ V#
Member#

AUUGN 101 Vol 12 No 4/5

Please send newsletters to the following addresses:

Name: ...
Address: ...

Phone" (bh)
.. (ah)

Net Address: ..

Name: ...
Address: ...

Phone" (bh)
.. (ah)

Net Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence, even
if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD binary

licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

[] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

Other (Indicate which) ...

Vol 12 No 4/5 102 AUUGN

Australian UNIX* systems Users’ Group.
*UNIX is a r~istered trademark o~ UNIX System ~boratorles, Incorporated

To apply for membership of the AUUG, complete this form, and return it with
payment in Australian Dollars, or credit card authorisation, to"

® Please don’t send purchase orders -- perhapsAUUG Membership Secretary your purchasing department will consider this form
P O Box 366 to be an invoice.
Kensington NSW 2033 ¯ Foreign applicants please send a bank draft drawn
Australia on an Australian bank, or credit card authorisation,

and remember to select either surface or air mail.

This form is valid only until 31st May, 1992

I, ... do hereby apply for

I-I Renewal/New* Membership of the AUUG $78.00

I-1 Renewal/New* Student Membership $45.00 (note certification on other side)

I-1 International Surface Mail $20.00

I-1 International Air Mail $60.00 (note local zone rate available)

Total remitted
(cheque, money order, credit card)

Delete one.
I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to time,
and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.

Date: / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database -please type or print clearly:

Name: ... Phone: ..(bh)

Address: ...(ah)

Net Address: ..

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

Name on card:
Office use only:

Chq: bank

Date: / /

Who:

to my [3 Bankcard Vq Visa ~] Mastercard.
¯

Signed:

Expiry date: /

bsb a/c #
cc type

Member#

AUUGN 103 Vol 12 No 4/5

Student Member Certification (to be. completed by a member of the academic staff)

I, ..certify that

... (name)

is a full time student at (institution)

and is expected to graduate approximately / / .

Title: Signature:

Vol 12 No 4/5 104 AUUGN

