
ISSN 1035-7521

Australian UNIX systems UserGroup Newsletter

Volume 12, Number 6

December 1991

Registered by Australia Post, Publication Number N-13G6524

The AUUG Incorporated Newsletter

Volume 12 Number 6

December 1991

CONTENTS

AUUG General Information 3

Editorial 5

AUUG Institutional Members 7

President’s Report 9

AUUG 1992 Summer Conference Series 11

Open System Publications 12

SESSPOOLE 13

ACSnet Survey 14

AUUG Book Reviews 17

AUUG Book Club Reviews 20

AUUG Book Club Order Form 25

Multiprocessor Sia-eams for Plan 9 26

A Scientific Visualization Tool 36

Jeeves, the Butler 40

From ;login - Volume 16, Number 4 51

An Update on UNIX-Related Standards Activities51

Management Committee Minutes - 9th DECEMBER 199172

AUUG Membership Categories 76

AUUG Forms 77

AUUGN 1 Vol 12 No 6

Copyright © 1991 AUUG Incorporated. All rights reserved.

AUUGN is the journal of AUUG Incorporated, an organisation with the aim of promoting knowledge
and understanding of Open Systems including but not restricted to the UNIX* system, networking,
graphics, user interfaces and programming and development environments, and related standards.

Copying without fee is permitted provided that copies are made without modification, and are not made
or distributed for commercial advantage. Credit to AUUGN and the author must be given. Abstracting
with credit is permitted. No other reproduction is permitted without prior permission of AUUG
Incorporated.

* UNIX is a registered trademark of UNIX System Laboratories, Incorporated

Vol 12 No 6 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

Phone: (02) 361 5994
Fax: (02) 332 4066

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

Phone: (02) 361 5994
Fax: (02) 332 4066
Email: auug@munnari.oz.au

AUUG Executive

President Pat Duffy
pzd30@juts.ccc.amdahl.com
Amdahl Pacific Services Pty. Ltd.
1 Pacific Highway
North Sydney NSW 2000

Vice-President Chris Maltby
chris@ softway.sw.oz.au
Softway Pty. Ltd.
79 Myrtle Street
Chippendale NSW 2008

Secretary Rolf Jester
rolf .jester@ sno.mts, dec. corn
Digital Equipment Corporation

(Australia) Pty. Ltd.
P.O. Box 384
Concord West NSW 2138

Treasurer Frank Crawford
frank@ atom.ansto.gov.au
Australian Supercomputing Technology
Private Mail Bag 1
Menai NSW 2234

Committee
Members

Andrew Gollan
adjg@ softway.sw.oz.au
Softway Pry. Ltd.
79 Myrtle Street
Chippendale NSW 2008

Glenn Huxtable
glenn@cs.uwa.oz.au
University of Western Australia
Computer Science Department
Nedlands WA 6009

Peter Karr
Computer Magazine Publications
1/421 Cleveland Street
Redfern NSW 2016

Michael Tuke
rnjt@anl.oz.au
ANL Ltd.
432 St. Kilda Road
Melbourne VIC 3004

Scott Merrilees
Sm@ bhpese.oz.au
BHP Information Technology
P.O. Box 216
Hamilton NSW 2303

AUUGN 3 Vol 12 No 6

AUUG General Information

Next AUUG Meeting
The AUUG 1992 Summer Conference Series are to be held between February and April 1992 (see later
in this issue for more details).

The AUUG’92 Conference and Exhibition will be held from the 8th to the llth of September, 1992, at
the World Congress Centre, Melbourne.

Vol 12 No 6 4 AUUGN

AUUG Newsletter

Editorial
Finally the last issue of AUUGN for 1991 is out. Once again sorry for the delay, but as the previous
editors experienced, I find that I get a number of promises for articles but getting these articles is a slow
process and deadlines seem not to be observed. As I have mentioned in previous issues I need papers
from people working in the area of Open Systems. I am always willing to help get it in a suitable
format for printing.

In this issue I have another article on Plan 9 to follow those from AUUG’91 and previous AUUGNs. I
also have an article from Jack Dikian who tells us a bit about an important product he is working with
and one paper from Bernd Felsche which was presented at the Summer technical meeting last year.
Hopefully we will have lots more from this years Summer meeting in future issues.

Also in this issue we have restarted the book reviews. Thank you to the people that reviewed them.
Now that book reviews have been started again, anyone interested in reviewing books should contact
Dave Newton. As some people seem not to be aware, the book that you review is yours to keep.

Jagoda Crawford

AUUGN Correspondence
All correspondence regarding the AUUGN should be addressed to:-

AUUGN Editor
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

E-mail: auugn@munnari.oz.au

Phone: +61 2 543 3885
Fax: +61 2 543 5097

AUUGN Book Review Editor
The AUUGN Book Review Editor is Dave Newton (dave@teti.qhtours.oz.au).

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 21st of February, 1992.

Contributions should be sent to the Editor at the above address.

I prefer documents tobe e-mailed to me, and formatted with troff. I can process mm, me, ms and even
man macros, and have tbl, eqn, pic and grap preprocessors, but please note on your submission which
macros and preprocessors you are using. If you can’t use troff, then just plain text or postscript please.

Hardcopy submissions should be on A4 with 30 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. Advertising rates are $300 for the first A4 page, $250 for a second
page, and $750 for the back cover. There is a 20% discount for bulk ordering (ie, when you pay for
three issues or more in advance). Contact the editor for details.

AUUGN 5 Vol 12 No 6

Mailing Lists
For the purchase of the AUUGN mailing list, please contact the AUUG secretariat, phone (02) 361
5994, fax (02) 332 4066.

Back Issues

Various back issues of the AUUGN are available. For availability and prices please contact the AUUG
secretariat or write to:

AUUGN Inc.
Back Issues Department o
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

Also please note that the prices for back issues published in AUUGN Vol 12 No 1 are incorrect.

Acknowledgement
This Newsletter was produced with the kind assistance of and on equipment provided by the Australian
Nuclear Science and Technology Organisation.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of AUUG Incorporated, its
Newsletter or its editorial committee.

Vol 12 No 6 6 AUUGN

AUUG Institutional Members as at 13/01/1992

(NSW) Department of Minerals &
Energy

A.N.U. -
AAII
Adept Business Systems Pty Ltd
Adept Software
AIDC Ltd.
Alcatel Australia ’ ~
Amdahl Pacific Services Pty Ltd
Andersen Consulting
ANSTO
ANZ Banking Group/Global

Technical Services
Apple Computer Australia
Apscore International Pty Ltd
Ausonics Pty Ltd
Australia Eds Pty Ltd
Australian AMines Limited
Australian Bureau of Agricultural and

Resource Economics
Australian Eagle Insurance Co. Ltd
Australian Electoral Commission
Australian Information Processing

Centre Pry Ltd
Australian Taxation Office
Australian Technology Resources (ACT)
Australian Wool Corporation
Avid Systems Pry Ltd
BHP CPD Research & Technology Centre
BHP Minerals
BHP Research - Melbourne Laboratories
BICC Communications
Bond University
Bain & Company
Ballarat Base Hospital
Burdett, Buckeridge & Young Ltd.
Bureau of Meteorology
Byrne & Davidson Holdings Pty Ltd
C.I.S.R.A.
Capricorn Coal Management Pty Ltd
CITEC
Codex Software Development Pty. Ltd.
Colonial Mutual
Com Tech Communications
Commercial Dynamics

Communica Software Consultants
Computer Power Group
Computer Science of Australia Pty Ltd
Computer Software Packages
Corinthian Engineering Pry Ltd
CSIRO
Cyberscience Corporation Pry Ltd
DMP Software Pty Ltd
Data General Australia
Deakin University
Defence Service Homes
Department of Transport
Dept. of Agricultural & Rural Affairs
Dept. of Conservation & Environment
Dept. of Defence
Dept. of Foreign Affairs & Trade
Dept. Of The Premier & Cabinet
Dept. of Treasury
Duesburys Information Technology

Pry Ltd
ESRI Australia Pty Ltd
Eastek Pty Ltd
EDS (Australia) Pty Ltd
Emulex Australia Pty Ltd
Expert Solutions Australia
FGH Decision Support Systems Pty Ltd
Financial Network Services
First State Computing
Fremantle Port Authority
Fujitsu Australia Ltd
G. James Australia Pty Ltd
GEC Alsthom Australia
Genasys II Pty Ltd
General Automation Pty Ltd
George Moss Ltd
Hamersley Iron Pty. Limited
Harris & Sutherland Pry Ltd
Hermes Precisa Australia Pry Ltd
Highland Logic Pty Ltd
Honeywell Ltd
IBM Australia Ltd
Iconix Pty Ltd
Infonetics
Information Technology Consultants
Internode Systems Pty Ltd

AUUGN 7 Vol 12 No 6

AUUG Institutional Members as at 13/01/1992

Ipec Management Services
James Cook University of

North Queensland
Labtam Australia Pty Ltd
Land Information Centre
Leeds & Northrup Australia Pty. Ltd
Macquarie University
Mayne Nickless Courier Systems
McDonnell Douglas Information

Systems Pty Ltd
Mclntosh Hamson Hoare Govett Ltd
Metal Trades Industry Association
Mincom Pty Ltd
Ministry of Consumer Affairs
Ministry of Housing & Construction (VIC)
Mitsui Computer Limited
Motorola Computer Systems
Multibase Pty Ltd
NEC Information Systems Australia Pty Ltd
Nucleus Business Systems
Office of the Director of

Public Prosecutions
OPSM
Oracle Systems Australia Pty Ltd
Parliament House
Prime Computer
Public Works Department
Pulse Club Computers Pty Ltd
Q.H. Tours Limited
Queensland Department of Mines
Queensland University of Technology
Radio & Space Services

SBC Dominguez Barry
SEQEB Control Centre
Signum Software Pty Ltd
Silicon Graphics Computer Systems
Snowy Mountains Hydro-electric Authority
Software Development International Pty Ltd
Sony (Australia) Pty Ltd
South Australian Lands Dept.
Sphere Systems Pty Ltd
St Vincent’s Private Hospital
Stallion Technologies Pty Ltd
Stamp Duties Office

State Bank of NSW
Steedman Science and Engineering
Swinburne Institute of Technology
Sydney Ports Authority
Systems Union Pty Ltd
Tasmania Bank
Tattersall Sweep Consultation
Telecom Australia
Telecom Australia Corporate Customer
Telecom Network Engineering Computer

Support Service
Telectronics Pty Ltd
The Anti-Cancer Council of Victoria
The Fulcrum Consulting Group
The Opus Group
The Roads and Traffic Authority
The University of Western Australia
Toshiba International Corporation Pty Ltd
Tower Technology Pty Ltd
Turbosoft Pty Ltd
UCCQ
Unidata Australia
Unisys
University of New South Wales
University of Queensland
University of South Australia
University of Sydney
University of Tasmania
University of Technology
UNIX System Laboratories
Unixpac Pty Ltd
Vicomp
VME Systems Pty Ltd
Wacher Pty Ltd
Wang Australia Pty Ltd
Water Board
Westfield Limited
Wyse Technology Pty Ltd

Vol 12 No 6 8 AUUGN

AUUG President’s Report

Dear AUUG Member,

AUUG is at a crossroads. Having functioned successfully for a number of years as a small, but active,
group of Unix technocrats whose main purpose was to stay in touch with technical developments and
work in progress, today AUUG is trying to be all things to all people.

The last Executive Committee meeting agreed that we must change to reflect changing times, but
without alienating our loyal members. Further, we must not only not alienate these people, but must
deliver benefits to them even as we strive to deliver benefits to newer, more commercial (for lack of a
better word) members.

I’d like to indulge in a couple of quotations that sort of sum up where we are with all of this:

"...an enterprise can’t maintain itself today just by repeating what it did yesterday, if it doesn’t grow it
dries up, it is like something living, when it stops growing it starts dying..." (E.L. Doctorow, Billy
Bathgate)

"If you want to make enemies, try to change something." (Woodrow Wilson, 1916)

AUUG has long tricd to avoid a schism between the older and newer members, as happened in the US
when Usenix broke away from what is now UniForum. We’ve taken the view that the market is too
small to support two groups and, more to the point, as long as we focus correctly on the needs of all
types of members, we should be able to remain unified.

We do acknowledge that we are not meeting our responsibility to our members in terms of delivering
member benefits. We recognise that this is so, not due to lack of desire or good will, but because all the
business of AUUG (other than managing membership which is handled by ACMS, the AUUG
Secretariat) continues to be done by volunteers. It’s also impossible to deliver any single benefit that
meets the needs of all members, or that is consistently valuable to all members.

We are taking steps to rectify this. We’ve appointed our first actual AUUG staff member. Liz
Fraumann commences working for AUUG two days per week from the beginning of February. Liz,
who arrived in Australia from the US late last year with her husband, Roger, who is with UNIX
International, has a wealth of experience both in the UNIX market and with user groups, trade shows,
conferences, and the like. She will be responsible for the day to day business of AUUG, most
particularly for providing a fast response to member enquiries and other correspondence.

We have also reappointed Symmetry Design to handle the promotion of AUUG, specifically related to
the AUUG’92 conference and increased membership. There has been bitter debate among the
Committee regarding the value of promotion. I firmly believe that either we grow or we die, and that the
only way we can grow is if someone is actively promoting the organisation and working to attract new
members. That is Symmetry’s role.

I believe I was given the mandate to continue this activity at the Annual General Meeting last
September, when we clearly spelled out what we had been doing in terms of promotion, publicity,
membership drive, and so on. All members present seemed to concur that, while they personally might
not be sympathetic towards marketing, promotion and the like, they acknowledged that we had to grow
the organisation. They also seemed to acknowledge t:aat the profile of new members was likely to be
quite different than that of older members.

We need to know what you think, but we need specifics rather than vague criticism. I feel sometimes as

AUUGN 9 Vol 12 No 6

if there is a vocal minority that makes its views known, but that does not necessarily reflect the views of
the membership as a whole.

The Committee is here to serve the members. We make decisions on the basis of what we believe to be
right and best. We don’t want to split, and we do want to serve the needs of all members. We all have
to keep in mind that what may seem trivial or unnecessary to us may be of critical importance to others.

Please let us know what you want.

Vol 12 No 6 10 AUUGN

AUUG 1992 Summer Conference Series

This is a preliminary announcement and call for papers for the AUUG 1992 Summer Technical
Conference Series.

The AUUG Summer Conference is a series of one day technical meetings held in regional centers
around the country. The meetings not only attract local speakers, but also include invited interstate
speakers.

The aim of the Summer Technical Conference Series is to supplement the annual AUUG winter
conference by providing an informal, technical forum for the presentation and exchange of current work
in the area of the Unix operating system. It is expected that the content of these meetings will provide
technical issues which are relevant to programmers, systems administrators and experienced users.

1992 will be the third year that the Summer Technical Conference Series has been held. It will also be
the first time that these meetings will held in all states and mainland territories.

Papers in all areas of Unix-related research and development are solicited for the programmes. Intending
speakers should submit an abstract of their presentation. Papers selected for presentation will be
published in the AUUG newsletter. Speakers may also be invited to present their papers at interstate
meetings and at the 1992 Winter Conference in Melbourne.

Planning for the Conference Series has just begun. Dates of the regional meetings are not yet known,
however they are expected to be held between February and April 1992.

Further information will be posted the the newsgroup aus.auug as it becomes available. Please direct
any enquires to the Regional Organiser in your state:

City Organsier Company Email Phone
Perth Alan Main Functional Software atm@pyrmania.oz.au. (09) 4481204
Adelaide Michael Wagner Systems Services (08) 212 2800
Melbourne Ian Hoyle BHP Research ianh@resmel.bhp.com.au (03) 560 7066
Hobart Steve Bittinger University of Tasmania steveb@tasman.cc.utas.edu.au(002) 20 2811
Canberra Ross Hand NEC Information Systems rossh@spider.ento.csiro.au (06) 246 4071
Sydney Lucy Chubb Softway lucyc@softway.sw.oz.au (02) 698 2322
Brisbane Mark Addinall Stallion Technologies mark@stallion.oz.au (07) 870 4999
Darwin Phil Scott Computer Science, NTU. pscott@pandanus.ntu.edu.au (089) 46 6519

or to the coordinator of the conference series:

Glenn Huxtable
University of Western Australia
glenn@cs.uwa.oz.au
(09) 380 2878

AUUGN 11 Vol 12 No 6

Open System Publications

As a service to members, AUUG will source Open System Publications from around the world. This
includes various proceeding and other publications from such organisations as

AUUG,
Uniform,
USENIX,
EurOpen,

Sinix,
etc.

For example:

EurOpen Proceedings USENIX Proceedings
Dublin Autumn’83 C++ Conference Apr’91
Munich Spring’90 UNIX and Supercomputers Workshop Sept’88
Trosmo Spring’90 Graphics Workshop IV Oct’87

AUUG will provide these publications at cost (including freight), but with no handling charge. Delivery
times will depend on method of freight which is at the discretion of AUUG and will be based on both
freight times and cost.

To take advantage of this offer send, in writing, to the AUUG Secretariat, a list of the publications,
making sure that you specify the organisation, an indication of the priority and the delivery address as
well as the billing address (if different).

AUUG Inc.
Open System Publication Order
PO Box 366
Kensington, NSW, 2033
AUSTRALIA
(02) 332 4066

Vol 12 No 6 12 AUUGN

SESSPOOLE is the South Eastern Suburbs Society for Programmers Or Other Local
Enthusiasts. That’s the South Eastern Suburbs of Melbourne, by the way.
SESSPOOLE is a group of programmers and friends who meet every six weeks or so
for the purpose of discussing UNIX and open systems, drinking wines and ales (or
fruit juices if alcohol is not their thing), and generally relaxing and socialising over
dinner.
Anyone who subscribes to the aims of SESSPOOLE is welcome to attend
SESSPOOLE meetings, even if they don’t live or work in South Eastern Suburbs. The
aims of SESSPOOLE are:

To promote knowledge and understanding of Open System; and to promote
knowledge and understanding of Open Bottles.

SESSPOOLE is also the first Chapter of the AUUG to be formed, and its members
were involved in the staging of the AUUG Summer’90 and Summer’91 Melbourne
Meetings.
SESSPOOLE meetings are held in the Bistro of the Oakleigh Hotel, 1555 Dandenong
Road, Oakleigh, starting at 6:30pm. Dates for the next few meetings are:

Wednesday, 4 March 1992
Thursay, 16 April 1992
Tuesday, 26 May 1992

Wednesday, 8 July 1992
Thursay, 20 August 1992

Hope we’ll see you there!
To find out more about SESSPOOLE and SESSPOOLE activities, contact either
Stephen Prince (ph. (03) 608-0911, e-mail: sp@labtam.oz.au) or John Carey (ph.
(03) 587-1444, e-mail: john@labtam.oz.au), or look for announcements in the news-
group aus.auug.

AUUGN 13 Vol 12 No 6

ACSnet Survey Host Name:

ACSnet Survey

1.1 Introduction

ACSnet is a computer network linking many UNIX hosts in Australia. It provides connections over
various media and is linked to AARNet, Internet, USENET, CSnet and many other overseas networks.
Until the formation of AARNet it was the only such network available in Australia, and is still the only
network of its type available to commercial sites within Australia. The software used for these
connections is usually either SUN III or SUN IV (or MHSnet). For the purposes of this survey other
software such as UUCP or SLIP is also relevant.

At the AUUG Annual General Meeting held in Melbourne on September 27th, the members requested
that the AUUG Executive investigate ways of making connection to ACSnet easier, especially for sites
currently without connections. This survey is aimed at clearly defining what is available and what is
needed.

Replies are invited both from sites requiring connections and sites that are willing to accept connections
from new sites. Any other site that has relevant information is also welcome to reply (e.g. a site looking
at reducing its distance from the backbone).

Please send replies to:

Mail: Attn: Network Survey FAX: (02) 332 4066
AUUG Inc E-Mail: auug@atom.lhrl.au.oz
P.O. Box 366
Kensington N.S.W. 2033

Technical enquiries to:

Frank Crawford (frank@atom.lhrl.oz) (02) 543 9404
or

Scott Merrilees (Sm@bhpese.oz) (049) 40 2132

Thank you

1.2 Contact Details

Name:
Address:

Phone:
Fax:

E-Mail:

1.3 Site Details

Host Name:
Hardware Type:

Operating System Version:
Location:

Vol 12 No 6 14 AUUGN

ACSnet Survey Host Name:

New Connections

If you require a network connection please complete the following section.

Please circle your choice (circle more than one if appropriate).

A1. Do you currently have networking software?Yes No

A2. If no, do you require assistance in selectingYes
a package?

No

A3. Are you willing to pay for networkingYes
software?
If yes, approximately how much?

No

A4. Do you require assistance in setting up yourYes
network software?

No

A5. Type of software: SUNIII MHSnet
TCP/IP SLIP
Other (Please specify):

UUCP

A6. Type of connection: Direct Modem/Dialin
X.25/Dialin X.25/Dialout
Other (Please specify):

Modem/Dialout

A7. If modem, connection type: V21 (300 baud) V23 (1200175)
V22bis (2400) V32 (9600)
Other (please specify):

v22 (12oo)
Trailblazer

A8. Estimated traffic volume (in KB/day):
(not counting netnews)

< 1 1-10
> 100: estimated volume:

10-100

A9. Do you require a news feed? Yes No
Limited (please specify):

A10. Any time restrictions on connection? Please specify:

All. If the connection requires STD charges (or Yes
equivalent) is this acceptable?

No

A12. Are you willing to pay for a connectionYes
(other than Telecom charges)?
If yes, approximately how much (please
also specify units, e.g. $X/MB or flat fee)?

No

A13. Once connected, are you willing to provide Yes
additional connections?

No

A14. Additional Comments:

AUUGN 15 Vol 12 No 6

ACSnet Survey Host Name:

Existing Sites

If you are willing to accept a new network connection please complete the following section.

Please circle your choice (circle more than one if appropriate).

B 1. Type of software:

B2. Type of connection:

B3.

B4.

B5.

B6.

B7.

B8.

B9.

SUNIII MHSnet
TCP/IP SLIP
Other (Please specify):

uucP

B10.

Direct Modem/Dialin
X.25/Dialin X.25/Dialout
Other (Please specify):

Modem/Dialout

If modem, connection type: V21 (300 baud) V23 (1200/75)
V22bis (2400) V32 (9600)
Other (Please specify):

V22 (1200)
Trailblazer

Maximum traffic volume (in KB/day):
(not counting netnews)

< 1 1-10
> 100: acceptable volume:

10-100

Will you supply a news feed? Yes No
Limited (Please specify):

Any time restrictions on connection? Please specify:

If the connection requires STD charges (or Yes
equivalent) is this acceptable?

No

Do you charge for connection?
If yes, approximately how much (please
also specify units, e.g. SX/MB or fiat fee)?

Yes No

Any other restrictions (e.g. educational
connections only).?

Additional Comments:

Vol 12 No 6 16 AUUGN

AUUGN BOOK REVIEWS

Open Systems: a business strategy for the 1990s

by Pamela Gray,
McGraw-Hill, London, 1991

(ISBN 0-07707244-8, hard-cover, 263pp, rrp. $75.00)

reviewd by
Rolf Jester

Digital Equipment Corporation (Australia) Pty. Ltd.
(rolf .jester@ sno.mts.dec.com)

The field of Open Systems is plagued by a great deal of nonsense, hype and self-serving part-truths. We
are told by some that an Open System is any system that uses brand A of micro-processor, any system
that uses operating system B, brand C database, or a particular networking standard. In fact in my
twenty-odd years in this industry I have never seen greater confusion about fundamental and important
issues. Sad to say vendors of hardware and software are chief among those creating the confusion. But
few others, industry gurus, academics or writers of the media are doing much to help us get things
straight.

Yet, while the debate about the merits of competing products and technologies will and must go on, it is
in fact possible to achieve a high degree of clarity about Open Systems. In a free market there will
inevitably be commercial conflict. But it is possible to articulate some basic definitions and standards
that have consensus across the industry. And that is what users of information technology need - some
solid foundational standards on which open systems can be built in such a way that they do not have to
be torn down again at great cost later on.

The subject of Open Systems is about standards. That statement would be disputed by some people
who would prefer that the product they happen to be pushing today be accepted as the unique
manifestation of "Open Systems". If only all of us would do the right thing and buy their product then
we would not have the problem of open systems at all. The reality, however, is that all of us have to
live with multiple vendors’ systems whether we like it or not. In fact many people do like it: recent
AUUG-sponsored Australian research by DMR shows that the number of operating systems on the
desk-top in each organisation is going to increase, not decrease. There will be more diversity in furore.
And the only way to make all those different pieces of hardware and software work together is to have
agreed common standards. Those standards have to be at the interface level - between applications and
operating system, between various software components, and between different systems. Standards have
to be completely vendor-neutral and product-neutral.

And so Pamela Gray quite rightly devotes much of her book "Open Systems" to standards.

Although the topic of standards is complex, it can be made clear if taken a step at a time. Gray
succeeds admirably in doing that, and thus renders an extremely valuable service to our industry right
now. Many of the people I meet are understandably confused by the profusion of standards and would-
be standards. They are not helped by the press statements of vendors pushing their particular view of
life. But anyone who takes the time to read through Gray’s book and follow her factual description of
the standards environment will end up un-confused.

The book covers:
Why standards are needed in the computer industry.
What standards are needed.
How standards are made - the bodies and the processes.
The standards for the two major facets of open systems:

AUUGN 17 Vol 12 No 6

portability and scalability,

-- interoperability.
The key role of X/Open. Implications for users, with case studies.

Gray starts from a business perspective. She succeeds in presenting a clear view of the strategic
implications of open systems in terms that are relevant to Information Systems management. The book
is not aimed at general management, but it does achieve its aim of being readable by any interested
reader. The case studies help a lot here. At the same time the book is firmly based on a sound
understanding of the detail, and goes into enough detail to make a convincing case.

This is not a glib advertisement for any quick panacea. While Dr Gray backs her assertion that a
"strategy based on open systems is the only logical way forward", she also takes a thorough look at the
costs and the reasons why people have not yet implemented such systems. The case studies, for
example, show the negative as well as the positive experiences.

Both aspects of Open Systems

There are two main aspects to Open Systems - portability and interoperability. This book is one of the
few publications I have seen that manages to cover both aspects. Portability is important. Through
UNIX and product-neutral standards like POSIX we are beginning to achieve the benefits of portability.
But interoperability is equally important, because the newer standards-compliant UNIX systems must
still work together with the enormous installed base of proprietary systems. Open Systems
Interconnection (OSI) is one of the means of achieving that. One of the unfortunate facts of our
industry is that the OSI people don’t know much about UNIX, and the UNIX people don’t know much
about OSI. This book will but it will help both groups, and everyone else, see the total picture a bit
better.

Coverage of standards bodies and the standards process

The popular trade press inevitably focuses only on the high-profile conflicts between competing
consortia. The real standards are set by far less controversial bodies, the actual work being done by
conscientious and dedicated engineers. Gray shows clearly the importance of the IEEE, ANSI, ISO,
CCITT. She examines some key standards in a little detail, showing clearly for example, how IS 9945-1
(POSIX 1003.1) relates to vendor documents like AT&T’s System V Interface Definition (SVID).

The author does a marvellous job of clarifying the relationship of standards and products. This is one of
the most vexatious areas of this troublesome field, with particular software vendor’s products being often
equated to "standards". She describes some actual products, like AT&T USL’s System V, the Open
Software Foundation’s OSF/1, XENIX and SCO Open Desktop, explaining how they relate to the
standards.

X/Open

I agree with the author that "X/Open represents the greatest force for the eventual implementation of the
many standards that the computer users need." Gray’s coverage of X/Open is appropriately
comprehensive, having a whole chapter devoted to it. We have not seen enough exposure for this truly
international body in the Australian press, and it deserves far more attention from users in this country.

X/Open is a group that embraces all the largest computer manufacturers, the members of UNIX
International and the members of the Open Software Foundation as well as both of those organisations
themselves. The X/Open Portability Guide (XPG) set of standards are supported and adhered to by all
major hardware vendors and therefore represent a real and much needed unifying force in the industry.
These are not future standards yet to be created, but are published, readily available, mature and stable.
Users and application developers who insist on XPG compliance from their hardware vendors are today
able to achieve real vendor-independence and portability at the source level despite all the other
differences between competing hardware and syste~n software products.

Vol 12 No 6 18 AUUGN

X/Open is also useful because it does not add to the standards confusion, but adopts, publishes and
promotes formal standards where they exist - like ISO 9945-1 (POSIX 1003.1). X/Open is a practical
organisation and recognises that the current formal standards are not in themselves sufficient for creating
a complete open systems environment. So, where no formal standards exist, as in the user interface
area, it adopts a relevant de facto standard (the X Window System). If absolutely necessary it creates a
new de facto standard by specifying the interface to an existing actual product in product-neutral terms.
That was done with the ISAM specification for file management, for example, based on the Informix C-
ISAM product. Gray does the industry and users a valuable service by highlighting the unifying role that
X/Open plays.

Summary

"Open Systems: a business strategy for the 1990s" will have great value for IS Managers and other IS
Professionals responsible for ensuring the long-term viability and productivity of their organisations’ IS
investments.

One of the things I would have liked to see improved is the Glossary; it is useful but could be much
more comprehensive. There is a real need for a reference work giving a comprehensive explanation of
t.he terms and abbreviations in this field. Although Open Systems is my daily bread and butter, I still
find myself in need of such a work occasionally, and I would like to be able to refer enquirers to
something.

The "Sources for further information" is good. I hope that many readers follow up and seek further
information on standards promotion bodies like X/Open.

At $75.00 recommended Australian retail price, the cost will unfortunately discourage many individuals
and students, but this book is essential for all Information Systems professionals and managers. If you
are at all concerned with or interested in Open Systems, buy it.

Rolf Jester
Secretary
Australian Open Systems Users Group.

AT&T is a trademark of the American Telephone and Telegraph Company.
C-ISAM is a trademark of Informix Software, Inc.
OSF and OSF/1 are trademarks of the Open Software Foundation.
SCO and Open Desktop are trademarks of Santa Cruz Operation, Inc.
UNIX, System V and SVID are trademarks of UNIX System Laboratories.
XENIX is a trademark of Microsoft Corp.
X/Open is a trademark of X/Open Company Limited.
X Window System is a trademark of Massachusetts Institute of Technology.

AUUGN 19 Vol 12 No 6

AUUG Book Club

Book Reviews

AUUG Inc and Prentice Hall Australia have formed the AUUG Book Club to give AUUG members a
chance to obtain Prentice Hall books at a significant discount.

To obtain copies of the books reviewed here, fill in the order form that appears at the end of the book
reviews. Don’t forget to deduct 20% from the listed retail prices.

Review copies of these books were kindly provided by Prentice Hall.

If you would like to review books for further offers from the AUUG Book Club, please contact the
AUUGN Book Review Editor (see page 5).

THE STANDARD C LIBRARY

by P.J. Plauger
Prentice Hall, RRP $62.95

Reviewed by
David Newton

Q.H.Tours
<dave@ teti.q hto urs.oz.au>

Most experienced Unix programmers will have
read something by J.L. Plauger which they
would have found either useful or interesting.
THE STANDARD C LIBRARY is a book which C
programmers will find both useful and
interesting, and a valuable reference for their
library.

The most prominent aspect of the book is that it
is not about programming in the C language but
about the use and implementation of C libraries
which makes it quite unique. It is expected the
reader is already an experienced C programmers.

The stated purpose of the text is:

o To teach users and implementors how the
library was meant to be used and how it can
be used.

¯ To teach programmers how to design and
implement libraries in general.

The next most prominent aspect of THE
STANDARD C LIBRARY is that the ANSI/ISO
standards for C libraries are reviewed and
discussed in detail with the inclusion of 9000
lines of implemented code. In the words of the
author; seeing a realistic implementation of the
standard C library can help you better
understand how to use it.

The code examples are written:

¯ To be as readable and exemplary as possible.

¯ To be highly portable across diverse
computer architecture.

¯ To demonstrate a sensible tradeoff between
accuracy, performance and size.

The structure of the book is simple. There is an
introduction and a separate chapter for each of
the fifteen headers which declare or define the
entire standard C library. Each chapter includes
portions of the ISO C standard and a discussion
on background, customary usage,
implementation, testing and problem both
obvious and subtle.

P.J. Plauger played an important role in the
development of the ANSI C standards. His
insight into the standardization of C at the
committee level gives a good deal of depth to
the book. The other feature which makes it
interesting is its historical perspective. Because
C has been around for a while it has a heritage
of historical reasons for why the C libraries exist
as they now are in the standards. The Standard C
Library gives the history of many of the library
functions which is something you don’t often get
in language books. A good example is the
floating point library and the difficulties faced in
implementing hardware independent code in the
face of increasingly diverse hardware
architectures.

In conclusion the The Standard C Library is
clear and concise, defining technical terms well
and including good reference lists for further
reading. The book includes the sort of practical
information which comes from years of

Vol 12 No 6 20 AU-UGN

experience and makes it a valuable resource for
those interested in using or creating C libraries.

SOFTWARE ENGINEERING IN THE
UNIX/C ENVIRONMENT

by William B. Frakes, Christopher J. Fox and
Brian A. Nejmeh

Prentice Hall, RRP $39.95, 262 pages (paperback).

Reviewed by
David Carroll

Australian Nuclear Science and
Technology Organisation

<davidc@ ato m.ansto.g o v.au>

I went to a course at King’s Cross recently on
Application Development in UNIX, and was
rather disappointed by the whole thing. It was all
Unix, and no application development, and apart
from a small section on lex and yacc the most
interesting thing about the three days was my
naive wanderings through the Cross at lunch.

By one of those coincidences you’re never
supposed to write about I got this book to review
a couple of days later. Coincidental, because it
contains everything I was expecting from the
course and didn’t get.

That and the fact that it is one of the easiest
textbooks to read I’ve seen in a while has meant
it has given me a highly favourable impression.
But, as the book itself does, lets look at some
specifics.

It’s basically a manual on how to write large and
maintainable programs in C, and from within
UNIX. Starting with the prerequisite
introductions and definitions it then goes through
the Software Design Process, showing you all
the pretty diagrams and documents needed, and
how (and why) to go about making such
documents useful throughout the life of the
project.

Then come Chapters 4 to 6, my favourite bit.
This is the section which deals with C itself, and
is divided into Program Readability, Low-level
Programming and High-level Programming. As
these titles suggest it moves from the overall
perspectives of readability, functionality and
maintainability right down to specifics about
naming conventions, the use of macros, clear
indenting, DeMorgan’s law for Boolean

expressions and more. As an example of the
authors’ attitude, they maintain that clear code is
of the utmost importance and should always be
preferable over C’s little tricks. The first rule of
program optimisation, they say (though they
spell it differently) is to avoid optimisation if
possible. Then they show you where you should
optimise, and how.

Continuing through the book we come to a look
at the tools Unix provides for coding, making,
archiving, debugging and several miscellaneous
processes. Then they take a long look at
program testing, debugging and maintaining
(including a look at version control) and finally a
very short look at future trends.

That’s not quite it, because you also get (for no
extra cost) five appendices. The first two
concern the example used for application
development, a small program called ccount
which creates a useful metric for analysing C
code (funny that). Complete project documents
are given, from concept exploration to data
dictionaries and dataflow diagrams and
everything else (thirty two pages worth). Then
complete source code, including the shell-script
prototypes (another very useful feature) and the
final C modules.

The last three appendices are simply a template
for documents, a summarised list of good C
programming practice, and a check-list for code
inspection (not to mention a list of references
and an index, but you probably could have
guessed that).

The point about this sort of book is not,
however, about how many nice features it’s got,
but how it’s going to improve your own coding
or system design. That is more or less up to you
really, and as several people have pointed out,
UNIX and UNIX programmers are not the most
useful tools when it comes to the design and
readability of large programs.

I do like this book, and hope it will allow me to
circumvent some of my own bad habits. It’s hard
to imagine any improvements needed from the
text itself to make it an easier task - but it still
remains a significant challenge.

AUUGN 21 Vol 12 No 6

NETWORK COMPUTING SYSTEM TUTORIAL

by T. Lyons
Prentice Hall, RRP $60.95, 334 pages (Paperback)

Reviewed by
Frank Crawford

Australian Supercomputing Technology
<frank@atom.ansto.gov.au>

This book describes the Network Computing
System (NCS), which is a method of distributing
software applications across a network. It is one
of a series describing Apollo’s Network
Computing Architecture, the others being the
protocol specifications, a programmers reference
manual and a system administration manual.

Although the system described was originally
based on the Apollo system, Hewlett Packard
have now made it available for Domain/OS,
HP-UX, SunOS, VAX]VMS and VAX/Ultrix.
In its simplest form it provides a Remote
Procedure Call (rpc) interface similar to that
from Sun Microsystems (i.e. Sun RPC) and now
available on most systems (and the basis of
NFS). However, at least as described in this
book, it provides a number of other features such
as network registries, network exception handling
and facilities for object oriented programming.

The aim of this book, as the name implies, is to
provide a tutorial for programmers using NCS.
It makes no assumptions about any knowledge of
networks or rpcs or of any particular operating
system. Although NCS supplies versions both
for C and Pascal and for various operating
systems, the examples are based on the C
version and UNIX.

The first chapter introduces the concepts behind
Remote Procedure Calls, concentrating on the
similarities between local (or normal) and remote
procedure calls. It then goes into some of the
basics of both the Network Computing
Architecture and Network Computing System
(which is an implementation of NCA).

The following chapter then goes on to give a
simple example of rpcs, a program to query the
network registries, or location brokers, to return
the statistics that they maintain. This introduces
some of the basic calls used by all rpc clients
and the tools, such as the Network Interface
Definition Language Compiler (NIDL Compiler)
which converts the interface definition script into

a number of C header files. An example, a
network messaging utility similar to write, is
introduced which is then built upon throughout
the rest of the book. This example is a
client/server application, which ultimately
includes a database to register server (i.e. user)
information, administration utilities and multiple
version support.

While building this application, topics such as
how to catalogue programs with both the local
and global location broker, the various data type
and structures that are handled and error
recovery techniques. It also serves as a
reasonable example of how to build and maintain
distributed applications.

The final chapter describes a number of features
that implement some object oriented distributed
computing features. Primarily this is based on
the fact that the location brokers have the facility
to register and retrieve information related to
types, including the selection of appropriate rpcs.

This book is well written and easy to read and,
as a tutorial, could be a very valuable addition.
My only reservation is that it is really only
relevant to Hewlett Packard’s NCA. If you have
an interest in such a system then this book is a
must otherwise it is only of academic interest.

THE C PROGRAMMER’S COMPANION
ANSI C Library Functions

by R.S. Jones
Prentice Hall, RRP $49.95, 157 pages (Paperback).

Reviewed by
John Pollard

Australian Supercomputing Technology
<jpp@ atom. ansto.gov, au>

From the back cover ... "This book is
aimed at the C programmer who wants to know
more about C library functions and understand
their exact semantics.
Features include: *A discussion of the

constants and types defined in the header files. *
A chapter devoted to discussing each major
category of library functions. * A number of
examples illustrating how the library functions
are used."

Vol 12 No 6 22 AUUGN

The functions described in each chapter
are presented in alphabetic order to aid easy
location and are given briefly like: " #include
<ctype.h> int toupper(int c); toupper converts a
lower-case character to an upper-case character
..." In all, the presentation is satisfactory with
the main lack being the absence of an example
for each function.

The book, considering it is meant for
reference, reads well except for the annoying
habit of the author of over using personalisation
like, "I will now show you ...". Further, some
examples do not function correctly. For
example, a <math.h> example giv es wrong
answers because #define PI 3.1416 should be
at least #define PI 3.1415927 to give answers
correct in all figures printed and several
examples give a compiler error because of the
omission of #include <stdlib.h>

From the Introduction ... "Most C
books focus on the ’language’ aspects of C ... C
library functions are discussed only in passing
and in an incidental way ..."

The previous claim is an important
consideration in the purchase of a ’companion’
book. Inspection of ten recent books on C
programming showed that the claim was true for
seven of them. The other three contained as
much as this ’companion’ or more. One
contained half as much again, mainly due to the
numerous examples. An eleventh book inspected
was entirely devoted to the run time library (for
a particular PC C). It too was bigger than this
’companion’ (and almost a quarter the price).

So where does the present book find a
niche? Most probably for the experienced C
programmer (as examples are rather few) who is
intent on using strictly ANSI C (rather than a PC
variant). If this is you, then the book is a handy
size to keep in your brief case and is a
reasonable ’companion’ although somewhat over
priced.

A BOOK OF OBJECT-ORIENTED
KNOWLEDGE

by Brian Henderson-Sellers
Prentice Hall, RRP $44.95, 297 pages (Paperback).

Reviewed by
Jagoda Crawford

Australian Nuclear Science and
Technology Organisation
<jc@atom.ansto.gov.au>

As the title suggests, this book does present the
Object-Oriented Knowledge possessed by the
author. The author is an Associate Professor in
the School of Information Systems at the
University of New South Wales. On reading the
book it quickly becomes obvious that the author
possesses a large deal of knowledge and
information on the topic (10 pages of references
are included together with a four page annotated
bibliography). In fact the book can be seen as a
survey on the topic. Looking at the references a
number of papers have been published by the
author himself; also aside from teaching at the
University he has been involved in workshops.
This knowledge and experience is seen in the
text.

The book concentrates on the object-oriented
approach to software engineering. It talks about
analysis, design and implementation in general
terms without presenting a particular
programming language, together with a large
number of references for further study.

The material is presented in five chapters, with a
glossary of object-oriented terms provided and
the references mention eralier.

In the first two chapters a historical perspective
and an introduction to the object-oriented
philosophy and terminology is given. Chapter
three talks about software engineering,
reusability, extendibility, reliability, etc. Views
on object-oriented analysis and design are
presented in chapter 4.

Chapter 5 is on implementation concepts:
objects, classes, etc. What constitutes an object-
oriented programming language is described
together with a short survey of languages
available at the writing of the book. A number
of easy to follow examples are given when
needed, to illustrate certain concepts or
techniques.

AUUGN 23 Vol 12 No 6

The book is intended to be used as an
introductory text to the object-oriented approach
as well as providing course material for those
involved in running training courses on the
subject. This is achieved by providing the
information in text form together with the course
material, i.e. a summary of the text in point form
as one will use on slides for courses. Each foil,
or exhibit, occupies a full page which can easily
be photocopied. This was the intention of the
author, however, one problem is that the
copyright statement is the usual one, stating that
no parts of the book may be reproduced without
written permission of the publisher.

I enjoyed reading the book, however I found that
at times I would have liked more worked
examples. The author wanted to introduce the
concepts underlying the object-oriented paradigm
without focusing on a particular programming
language too early, as:

"..you may miss part of the overall
paradigm by focusing too early on
present-day language support."

My feeling was that I would have grasped the
ideas quicker had I been studying a language
concurrently with reading this book. On the
other hand, I found the exhibits very useful in
refreshing previously read information and they
will not only be of use to course presenters but
also students using the book as text.

In conclusion I think anyone that has just started
or is about to start looking into object-oriented
approach will benefit from obtaining this book in
conjunction with some of the references it gives.
An introduction on the object-oriented approach
is given together with a vast number of
references for further study.

Vol 12 No 6 24 AUUGN

20% DISCOUNT TO AUUG MEMBERS

Please send me a copy/copies of the following books

Lyons/Network Computing System Tutorial
RRP $60.95* ISBN: 1361-7242-3 Paper 1991

~ JoneslThe C Programmer’s Companion
RRP $49.95* ISBN" 1311-6948-3 Paper 1991

Plauger/The Standard C Library
RRP $62.95* ISBN: 1313-1509-9 Paper 1991

Frakes/Software Engineering in the UNIX/C Environment
RRP $39.95* ISBN: 1382-6496-1 Paper 1991

Henderson-Sellers/A Book of Object-Oriented Knowledge
RRP $44.95* ISBN: 1305-9445-8 Paper 1991

*Deduct 20% from listed retail price (20% discount offer available until 28 February 1992).

Name: Organisation:
Address: (Street address only)

Telephone:
[~ Please send my book/s on 30-day approval (tick box)

Enclosed cheque for $ (Payable to ’Prentice Hall Australia’)
Please charge my: I--] Bankcard ~--] Visa ~ MasterCard
Credit Card No: I I I I II I I I I.I I I I II I I I I

Expiry Date: Signature:

Mail or fax completed order form to Prentice Hall Australia, PO Box 151, Brookvale NSW 2100

OR (~ Use our FAST PHONE SERVICE by calling Jacqui Long.
"rE../ SYDNEY (02) 9391333

A.C.N. 000 383 406

Prentice Hall Pty. Ltd.
7 Grosvenor Place, Brookvale NSW 2100.
Tel: (02) 939 1333 Fax: (02) 905 7934

Multiprocessor Streams for Plan 9 *

David Leo Presotto

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

research!presotto
presotto@research.att.com

ABSTRACT

This paper describes an implementation of Streams for the Plan 9 kernel, a multi-
threaded, multiprocessor kernel with a system call interface reminiscent of UNIX. Rather
than port Dennis Ritchie’s Streams to Plan 9, we changed the abstraction to fit more natu-
rally into the new environment. The result is a mechanism that has similar performance
and is internally easier to program.

1. Introduction
Plan 9 is a new computing environment being built and used by the Computing Science Research

Center at AT&T Bell Laboratories. Plan 9 consists of terminals, CPU servers and file servers connected by
various networks. These components run specialized operating systems based on a common multi-threaded
kernel. The kernel runs on both uniprocessors and shared memory multiprocessors.

Plan 9 communicates via a number of different networks. Therefore we decided to base all our net-
work code on a single structure. This allowed us to solve at once a number of problems such as flow con-
trol, memory allocation, and user interface. Given our past experience with it, we chose Dennis Ritchie’s
Stream I/O System [Rit84] to provide the structure for Plan 9. This coroutine-based design, introduced in
the Eighth Edition, provides a clean, flexible mechanism for handling asynchronous I/O. Although Plan 9’s
kernel is unrelated to that of the Eighth Edition [McI85], the concept of Streams remained directly applica-
ble. We have, however, made two major alterations.

Plan 9 runs on multiprocessor systems so we wanted to exploit their concurrency. In the Plan 9 ker-
nel, the basic unit of concurrency is the process. We therefore converted Ritchie’s coroutine-based design
to a process-based one. As we shall see later, this change has both advantages and disadvantages.

Associated with the change to a process-based structure, we also had to reduce the number of threads.
If we had made the most obvious change to convert each of Ritchie’s coroutines into a process, we would
have incurred very high CPU penalties. No matter how cheap we make our kernel processes they would
never be as cheap as coroutines. Instead, we chose a structure that performs in one process what Streams
does in many coroutines.

The result is a structure very similar to Streams but, we believe, easier to program. The interfaces,
flow control, and memory allocation are the same. However, the freedom to allow processing modules to
block and to use any resources available to a user process has made many pieces much easier to program.
A process is a familiar programming construct.

In the rest of this paper we will refer to Ritchie’s Streams simply as Streams and to Plan 9 Streams as
Plan 9.

This paper was originally published in Proc. of the Summer 1990 UKUUG Conf., London, July, 1990, pp. 11-19
Editor: Sunil K Das, City University London.

Vol 12No 6 26 AUUGN

2. Data Structures
Plan 9, aside from minor changes, uses the same data structures as Streams. Our description here is

very brief and is intended to highlight the differences. We refer the reader to Dennis’s excellent BLTJ
paper [Rit84] for a more comprehensive treatment.

The appendix contains the C definitions of our data structures.

2.1. Stream

A St:~:eam is a full duplex channel connecting a device or pseudo-device to a user process. User
processes insert and remove data at one end of the stream. Kernel processes acting on behalf of a device
insert data at the other.

A stream is made up of a linear list of processing modules. Each module has both an upstream
(toward the user) and a downstream (toward the device)put procedure. Data is inserted into a stream by
calling the put procedure of the module at either end of the stream. Each module calls the succeeding one
to send data up or down the stream.

2.2. Queue
An instance of a processing module is described by a pair of Queues, one for each direction. Each

queue contains:

a pointer to the put procedur~

a pointer to the next queue
a linked list of queued data blocks

- the number of bytes queued

- the number of blocks queued
- a spin lock to control access to the data structure

Unlike a Stream queue ours has no service procedure. Also, since on a multiprocessor setting prior-
ity levels is not a valid synchronization mechanism, we require a spin lock from the operating system to
control access to the queue.

2.3. Block

The objects passed through the stream are described by a data structure called a Block. Our blocks
are identical to Streams and contain a base pointer, a limit pointer, a read pointer, and a write pointer.
Each pointer refers to memory mapped into kernel space. The base and limit are never changed and are
used to describe the data allocated to the block. The read and write pointers point to the start and end of
usable data within the block.

There are two block types, data and control. Data blocks are used to pass information from process
to process. Control blocks are used to control the action of the modules. They both have the same format.
Data blocks are often queued in a processing module until some condition is met for passing them along or
freeing them. Control blocks are never queued but are passed from module to module until one accepts and
frees them.

Streams also have data and control blocks. However, their control blocks come in multiple flavors,
all queuable; some with the same priority as data and some higher. Higher priority blocks are moved to the
front of the queue. At a result, the routines used to manipulate these control blocks tend to be complex.

When a module’s put is called it is passed a pointer to a block. If one desires to pass many blocks
atomically, the blocks may be chained together and a pointer to the f’trst is passed to the procedure. This is
similar to the way mbufs are passed in the BSD kernel [Lef89]. Streams need no such concept since no two
threads run simultaneously in a Streams procedure. UNIX System V STREAMS [Bac86] have a much
more complicated construct to pass a multi-block message along with a single put. The System V construct
is used both for atomicity (they originally had no other block delimiters) and for performance.

AUUGN 27 Vol 12 No 6

3. Algorithms

3.1. Memory Allocation

Stream memory is allocated at system start time. A list is kept for each of several fixed block sizes.
A process that requests a size receives the smallest block that can hold the request. Synchronizing access of
the free lists is performed using a spin lock per free list.

Since all stream code runs in the context of processes, whenever an allocation cannot be immediately
processed the caller blocks until a block of the right size is freed. The result is that momentary surges in
used blocks do not panic the kernel as they sometimes did in the Eight Edition.

The number of lists, the specific block sizes and the number allocated of each size depends on the
kernel. Terminals tend to use more small blocks, the servers more large ones. The allocated blocks reflect
this.

3.2. User Interface
A stream is represented at user level as a directory containing at least two f’des, ct:3. and ctat:a. The

first process to open either file creates the stream automatically. The last process to close destroys the
stream. Writing to the ctat:a file causes a switch to kernel mode. The process then copies the data into
kernel data blocks and calls the put procedure of the first downstream processing module for each block.
The last block of a write is flagged with a delimiter in the event that the downstream module cares about
write boundaries. In most cases the first put procedure calls the second, the second calls the third, and so
on until the data is output. Thus, data may often be sent without taking a context switch. A write lock at
the top of the stream assures that no two processes can simultaneously insert data into the top of the same
stream, which insures that all writes are atomic.

Our system has no ±oct:3. system call. The syntax and semantics of ±oct:3. in UNIX are so uncon-
trolled that we left it out. Writing to the ct::l, f’tle takes the place of ±oct:3.. Writing to the control file is
the same as writing to a data f’de except that the blocks created are of type control. A processing module
parses each control block put to it. The commands in the control blocks are simple ASCII strings. There-
fore, there is no problem with byte ordering when one system is controlling streams in a name space imple-
mented on another processor. The time to parse the control blocks is not important since the control opera-
tion is a rare one, usually used only when starting operation on a stream.

The stream system intercepts the control blocks that control configuration of the stream. These con-
trol blocks are:
push name

pop

hangup

to add an instance of the processing module name to the top of the stream.
to remove the top module of the stream.

to send a control message containing the string "hangup" up the stream from the device
end.

Other control blocks are read by each module they pass through.

Reading from the ctat:a f’~le returns data queued at the top of the stream. The read terminates either
when the read count is reached or when the end of a delimited block is read. There is a per stream read lock
that ensures that only one process can read from the stream at a time. This ensures that the bytes read were
contiguous bytes from the stream. Reading the ct:3. file is described in the section on multiplexing.

3.3. Device Input
When input exists at a device, the driver’s interrupt routine wakes up a kernel process to carry the

data upstream. A kernel process is an ordinary process with no user level segments allocated to it and is
scheduled just like any other process. Message-based devices like Ethemet [Met80] may have many pro-
cesses ready to carry the next message upstream so that many messages can be processed simultaneously.

The kernel process carries the message upstream through protocol modules. Eventually, the message
is delivered to the most upstream queue. The kernel process leaves it there and wakes any user process
blocked in a read on that stream. Thus, the only difference between input and output is that the user process
must perform the copy of the data from kernel blocks to user space. This can be a benefit in our

Vol 12 No 6 28 AUUGN

multiprocessors in which each processor has a separate cache. If the kernel process were to copy the data
into the user process it would most likely do it on the wrong processor and hence into the wrong cache.
This would force the user process to fault it into its own cache, increasing the load on the shared memory
bus.

3.4. Multiplexing
Most protocols need to multiplex several conversations onto a single physical device. This is added

to our scheme using pseudo-devices, one for each multiplexed conversation. This is very similar to the way
Eighth Edition handles TCP/IP. A group of pseudo-devices are coupled with a multiplexing processing
module that is pushed onto a physical device stream. The device end modules on the pseudo-devices add
the necessary header onto downstream messages and then put them to the module downstream of the multi-
plexor. The multiplexing module looks at each message moving up its stream and puts it to the correct
pseudo-device stream after stripping whatever header it used to do the demultiplexing.

The user interface to a multiplexed protocol is a directory. The directory contains a clone file and a
stream directory for each conversation. The stream directories are numbered I to n (see Figure 1). Open-
ing the clone file is a macro for finding a free stream directory and opening its ct 1 file. Reading the con-
trol file returns the ASCII number of the conversation chosen. This allows the user process to fred the cor-
responding data t-de.

clone 1 2 ¯ ¯ ¯ n

ctl data ctl data ctl data

Figure 1

3.5. Pipes
Pipes, as in Eighth Edition, are just two streams joined at the device end. The p±pe system call

returns f’le descriptors for the data files of the two streams. The control files are inaccessible.

3.6. Helper Processes
Transport protocols need to retransmit lost data. However, to achieve true pipelining, the user pro-

cess will want to queue data at the protocol module and return. Another process has to retransmit the data
when needed since all put procedures must be called in the context of a process. For this purpose, process-
ing modules can create kernel processes to perform such actions when needed. The processes are awakened
on need by the processing module’s put procedure or whenever a timer expires.

3.7. Flow Control

In any system that queues data one needs a mechanism to keep a queue with a slow reader from
absorbing all of memory. We use a flow control mechanism similar to Streams. Each queue keeps a count
of bytes and a count of blocks queued there. Whenever either exceeds a predetermined limit, the high water
flag is set for that queue. Each caller of a processing module checks the high water flag for the next queue
before calling its put procedure. If the next queue is past its high water mark, the would-be caller goes to
sleep, leaving a pointer to itself in its queue (the rendezvous structure in Queue). When a process empties
a queue past half its high water mark it wakes up any process waiting at the previous queue.

Modules implementing transport protocols with window schemes implement flow control a little

AUUGN 29 Vol 12 No 6

differently. Rather than go to sleep, they always pass data upstream. However, when the upstream queue is
full, the transport module stops sending acknowledgements back to the remote system. Hence, the remote
side will eventually stop sending. To open the window again, a helper process sleeps in the queue instead
of the device process. When the next queue empties, the helper is awakened and it does whatever is needed
to open the remote system’s transmit window.

4. Performance

A different flavor of Streams cannot be evaluated without comparing it against earlier ones. Our
results give a general idea of where the advantages and disadvantages of Plan 9 Streams lie. However, the
systems compared are in many ways incomparable. The compilers, operating systems, and Streams code
all have a considerable effect on the results.

For Plan 9 numbers we use 4different configurations. Three are SGI Power Series machines with 1,
2, and 4 processors. We compare these against another 4 processor SGI Power Series running System V
Release 3 and against a single processor MIPS M2000 system also running SVR3. The M2000 has the
same CPU running at the same speed as the SGI machines. However, it has a considerably faster memory
system. Outside of tight loops, this has a major impact on processing speed.

The other Plan 9 system is the Gnot terminal [Pik90]. This is a system developed in our center and
now manufactured for us by AT&T. It uses a 25 MHz Motorola 68020. We compare it against a DEC
MicroVAX 3. The machines on average are about the same speed. The Gnot CPU is about 4/3 the speed
of the microVAX with a memory system that is about 2/3 the speed of the microVAX.

All tests measure both throughput and latency. The throughput is tested using the following pro-

int i;
char buf[64*1024];
int p[2];

makeconnection (p) ;
switch (fork ()) {
case 0 :

close (p[1]) ;
while (read(p[0], buf, sizeof bur) > 0)

;
break;

default :
close(p[0]) ;
for(i = 0; i<ITER; i++){

if (write (p [l] , buf, sizeof buf)
perror ("write") ;
exit (i) ;

}
}
break;

!= sizeof bur) {

The block size is chosen to be large to minimize the difference in system call speeds. The latency is tested
using:

Vol 12 No 6 30 AUUGN

int p[2] ;
int i ;
char c;

makeconnection (p) ;
switch (fork ()) {
case 0 :

close (p [l]) ;
while(read(p[0], &c, i) == I)

write(p[0], &c, i);
break;

default :
close(p[0]) ;
for(i = 0; i<ITER; i++){

if (write (p [l] , &c, I) != i) (
perror ("write") ;
exit (1) ;

}
if (read (p [l] , &c, i) != i) {

perror ("read") ;
exit (1) ;

}
}
break;

In both cases, we perform each operation for a large number of iterations to get an average time.
The f’trst test (Table 1) compares Plan 9 pipes against SVR3 normal pipes, SVR3 stream pipes, a

BSD sockets implementation running under SVR3, and Tenth Edition Streams. Since only two processes
are involved in all configurations and no processing is being performed by processing modules, we are
comparing the speed of the basic plumbing in the systems.

Table 1 - Pipes
system throughput latency

MBytes/sec ms

SGI/1 CPU
Plan 9 6.0 .29
SGI/2 CPUs
Plan 9 8.4 .21
SGI/4 CPUs
Plan 9 8.4 .28
SGI/4 CPUs
sVr3
old pipes 4.5 .51
M2000
sVr3 stream 8.0 .51
M2000
sVr3 sockets 8.0 .36
68020 Gnot
Plan 9 1.79 1.67
uVAX 3
10th Edition spipe 1.69

From Table 1 we can see that for the large machines, Plan 9 has lower latency. This was the expected
result since the straight call structure requires many fewer instructions than traditional Streams which must

AUUGN 31 Vol 12 No 6

schedule each service procedure in addition to calling its put procedure. The dip of .08 ms when going
from 1 processor to 2 is the result of concurrency. The second process is starting up before the first has
returned from queuing its block.

The unexpected result is the rise from .21 ms to .28 when going from 2 processors to 4. We believe
that this is contention over the process queue. We hope to verify this assumption before this paper is pre-
sented.

The low single processor SGI throughput for Plan 9 compared to the M2000 reflects the slower mem-
ory on the SGI box. When we use multiple processors, we take advantage of the concurrency and our
throughput passes all the others.

Plan 9 on the Gnot compared to the Tenth Edition on the MicroVAX is less impressive. We still
have a definite advantage in throughput. However, given the ratio of machine speeds, we should be much
better in latency. Profiling the kernel showed that the disappointing latency time was due entirely to the
MMU. The MMU on the Gnot only retains one process state. Whenever we switch context we do a lot of
faulting to refill the MMU. The reason the throughput doesn’t suffer from this problem is that the pipelin-
ing causes a lot of data to be moved per context switch.

To compare the performance of kernel driver processors to performing puts at interrupt level, we
used our most prevalent network, Datakit [CheS0]. It is both a local and wide area network spanning all of
AT&T. The MicroVAX, SGI, and M2000 each have 8 megabit/sec links to Datakit. However, due to con-
straints in the Dataldt the highest throughput is 2.6 megabits. The Gnots have a slower 2 megabit link
[Pre88]. Table 2 presents performance of various systems through the Datakit. In all cases the remote sys-
tem is a Plan 9 SGI processor. Once again, Plan 9 throughput matches or exceeds the throughput of the
other systems. However, latency is worse. This is the price paid for using kernel processes to send device
data upstream rather than doing it in the interrupt routine. The degradation is especially evident in the Gnot
since it is the worst at process switching.

Table 2 - URP/Datakit
system throughput latency

KBytes/sec ms

SGI/2 CPUs
Plan 9 235 1.4
SGI/4 CPUs
Plan 9 235 1.4
M2000
sVr3 235 1.2
68020 Gnot
Plan 9 100 5.8
uVAX 3
10th Edition 85 3.2

Finally, we present some Ethernet performance results. We don’t compare these against other sys-
tems since the protocol we use, Nonet, currently runs only on Plan 9. It was designed as a low weight
transport protocol. It should be noted that the throughput figures are higher than any we’ve seen published
to date for an Ethemet. This is as much a function the protocol as it is of Plan 9.

Vol 12 No 6~ 32 AUUGN

Table 3 - Nonet/Ethernet
system throughput latency

KBytes/sec ms

SGI/2 CPUs
Plan 9 950 1.4
SGI/4 CPUs
Plan 9 950 1.4

Related Work
We must mention Larry Peterson’s x-Kemel work [Pet89]. The x-Kernel is very similar to Plan 9

Streams. It is used primarily to study the decomposition of network protocols. The process structure, mul-
tiplexing, and data structures are virtually identical to Plan 9 Steams.

The greatest differences between our systems are:

1) The x-Kernel uses very light weight kernel processes. They are just a PC and a stack. Our kernel
processes carry all the baggage of user processes.

2) Rather than queue data at the user process and wait for the user process to read it, x-Kernel kernel
processes call a put procedure in the user’s address space which moves the data directly into user
memory.

3) The message in the x-Kernel is in the form of a tree of blocks. A pointer to the top of the tree is
passed through the processing modules. We use a linear structure.
Published performance of the x-Kernel is similar to ours with lower latency times. We hope to bor-

row some of the ideas of the x-Kernel to improve our own performance.

Conclusions
We have presented another variation of streams. The main advantage to Plan 9 Streams is making

use of concurrency in multiprocessors. We have a very subjective belief that the process based model is
easier to program than the coroutine based one.

The performance results show that the Plan 9 model has high throughput. However, the contexts
switches caused by the kernel processes increase latency. Further research and tuning is required to reduce
these costs.

5. References

Bac86. M. Bach, The Design of the UNIX Operating System, Prentice-Hall (1986).
Che80. G. L. Chesson and A. G. Fraser, "Datakit Network Architecture," in IEEE Compcon ’80 (January,

1980).

Lef89. S. Leffler, M. K. McKusick, M. Karels, and J. Quarterman, 4.3BSD UNIX Operating System, Addi-
son Wesley (1989).

Mci85. M. D. Mcllroy, Unix Programmer’s Manual, Eighth Edition, Bell Laboratories, Murray Hill, NJ,
USA (February, 1985).

Met80. R. Metcalfe, D. Boggs, C. Crane, E. Taft, J. Shoch, and J. Hupp, "The Ethernet Local Network:
Three Reports," CSL-80-2, XEROX Palo Alto Research Centers (February, 1980).

Pet89. L. Peterson, "RPC in the X-Kernel: Evaluating New Design Techniques," in Proceedings Twelfth
Symposium on Operating Systems Principles, Litchfield Park, AZ (December, 1989).

Pik90. R. Pike, D. Presotto, K. Thompson, and H. Trickey, "Plan 9 from Bell Labs," in UKUUG Proceed-
ings of the Summer 1990 Conference, London, England (July, 1990).

Pre88. D. Presotto, "Plan 9 from Bell Labs - The Network," in EUUG Proceedings of the Spring 1988

AUUGN 33 Vol 12 No 6

Conference, London, England (April, 1988).
Rit84. D. M. Ritchie, "A Stream Input-Output System," AT&TBell Laboratories Technical Journal 63(8)

(October, 1984).

UNIX is a registered trademark of AT&T Bell Laboratories
Datakit is a registered trademark of AT&T

Appendix

/*
* operations available to a queue
*/

typedef struct Qinfo Qinfo;
struct Qinfo
{

void (*iput) (Queue*, Block*);
void (*oput)(Queue*, Block*);
void (*open) (Queue*, Stream*);
void (*close) (Queue*) ;
char *name;

};

/* input routine */
/* output routine */

/*

* We reference kernel memory via descriptors kept in host memory
*/

typedef struct Block Block;
struct Block
{

Block *next;
uchar *rptr;
uchar *wptr;
uchar *lim;
uchar *base;
uchar flags;
uchar type;

};

/* first not consumed byte */
/* first empty byte */
/* 1 past the end of the buffer */
/* start of the buffer */

/* flag bits */
#define S DELIM 0x80
#define S CLASS 0x07

/* type values */
#define M DATA 0
#define M CTL 1

/*

* a list of blocks
*/

typedef struct Blist
struct Blist {

Lock;
Block *first;
Block *last;
long len;

};

/* this block is the end of a higher level message */

Blist;

/* first data block */
/* last data block */
/* length of list in bytes */

Vol 12 No 6 34 AUUGN

/*

* a queue of blocks
*/

typedef struct Queue
struct Queue {

Blist;
int
int
Qinfo
Queue
Queue
void
Rendez r;
void *ptr;

);
#define QHUNGUP 0xl
#define QINUSE 0x2
#define QHIWAT 0x4

Queue;

nb; /* number of blocks in queue */
flag;
¯ info; /* line discipline definition */
~other; /* opposite direction, same line discipline */
¯ next; /* next queue in the stream */
(*put) (Queue*, Block*);

/* flow control rendezvous point */
/* private info for the queue */

/* flag bit meaning the stream has been hung up */

/* queue has gone past the high water mark */

/*

* a stream head
*/

struct stream {
Lock;
int inuse;
int hread;
int type;
int dev;
int id;
QLock rdlock;
QLock wrlock;
Queue *procq;
Queue *devq;

};
#define RD (q)
#define WR (q)
#define PUTNEXT (q, b)
#define BLEN(b)
#define QFULL(q)
#define FLOWCTL(q)

/* structure lock */
/* use count */
/* number of reads after hangup */
/* correlation with Chan */
/* ... */
/* ... */
/* read lock */
/* write lock */
/* write queue at process end */
/* read queue at device end */

((q)->other < (q) ? (q->other) : q)
((q)->other > (q) ? (q->other) : q)
(* (q)->next->put) ((q)->next, b)
((b)->wptr - (b)->rptr)
((q)->flag & QHIWAT)
{ if(QFULL(q)) flowctl(q) ; }

AUUGN 35 Vol 12 No 6

A Scientific Visualization Tool

Jack Dikian

Silicon Graphics Computer Systems
446 Victoria Road,

Gladesville NSW, 2111

(+61 2 879-9500)

jack@ syd.sgi.oz.au

ABSTRACT
Scientific visualization is a technique for representing raw numerical
data in visual images that model the interactions of objects and forces
in the real system from which the data originally came.

One of the main purposes of scientific visualization is to aid scientists
in understanding vast amounts of data generated by computers and
other equipment. These images can be manipulated on screen as if
they were actual physical systems. An image can show on the screen,
in a few minutes, the effect of a new or changed variable on a
system. To analyze the same effect from several thousand numbers
covering reams of computer paper takes considerably longer, and
lacks the completeness and immediacy of the visual model. Scientific
visualization, however, also requires the use of very specialized
software and in some cases the collaboration of specialist computer
engineers.

Many large workstation vendors such as Silicon Graphics Inc,
Stardent Computer Inc1 and IBM are now making available, genetic
interactive visualization environments that give users access to
graphics, visualization and imaging modules without the associated
programming effort. This article takes a look at the Silicon Graphics
solution, an application development environment for end-users and
software developers called IRIS Explorer.

1. INTRODUCTION

Visual processing gives us the ability to produce realistic, three-dimensional, colour images and interact
with them in real-time; just as we might manipulate an object held in our hand. We can absorb
information and explore ideas in ways previously thought impossible. Visual processing has already
transformed the way we work and interact with information. Future developments promise to make
information analysis and synthesis even more intuitive and immediate.

Once a visual representation is generated; a bone fragment for example. An anthropologist working in
the field can photograph the bone, scan the image, reconstruct a virtual model and begin to test

1. Stardent Computer Inc announced it would form a new corporation - AVS Inc. The new company, comprised of 25 former
Stardent employees will operate as a separate entity.

Vol 12 No 6 36 AUUGN

hypotheses, extrapolate an effect over a period of time, apply new conditions or variables, or invent a
new system all together. Today, scientific visualization is heavily used in astrophysics, meteorology,
mathematics, molecular modeling, particle research, and medical imaging amongst many others.

Transforming data from the initial raw form to a display point, however, requires significant processing.
Images are processed by the use of a number of operations including, correction and reduction of noise
and distortion, polynomial wrapping, contrast enhancement by light-source shading, use of colour to
show contours or group data in a given range2.

Scientists in many of the fields mentioned above often do not wish to take on the difficult task of coding
these operations. Also, many scientists use commercial software packages and wish to extend the
systems with their own algorithms and techniques. Up to now, specialist scientists have relied on the
services of computing professionals, and/or the use of purpose built commercial packages to facilitate
the generation of computer models. There is a growing need therefore for systems that provide rich
visualization development environments designed to be used by both programmers and non-programmers
alike.

Systems such as Stardent Computer Inc’s AVS3 (Application Visualizer System), IBM’s newly
announced Visualization Data Explorer/6000 and Silicon Graphics Inc’s IRIS Explorer are here to fill
that gap. Both the Stardent and the Silicon Graphics systems are quickly becoming industry standard
environments.

IRIS Explorer

The IRIS Explorer which is bundled wi.~ the: latest, release of the Silicon Graphics IRIX operating
system is a scientific visualization package that lets you read in, analyze, manipulate, and render
complex data sets without the need for programming. Each step of the data input and output, analysis,
and rendering is performed by a module that you place into a "network". The network is configurable on
the fly using a simple point and click interface. A connect-the-modules approach invites users to
integrate data and applications by visually connecting software modules into flow-chart maps or
networks.

The strength of the system, besides its ease of use, X-window and Motif compliance, lies in its rich set
of supplied modules. An Explorer module performs a specific action on the data that passes through it.
Each module accepts data, acts on it in some way, and outputs the result to the next module
downstream. Explorer modules are in essence made up of two parts. The first is the visible portion or
control panel that contains the input/output ports as well as parameters, the values of which can be set
and altered by widgets. The internal portion of a module contains the actual computational algorithm (C,
C++, Fortran) and the module wrapper or module interface. Modules may be turned off, or disabled; and
can be "fired" (executed) on a machine other than the one where the network is running. A large number
of modules provide a wide variety of functions including file I/O, data analysis and off course
visualization. Modules such as "BlendImg" which computes a blended image, "Blurlmg" to blur an
image, "Contour", "ForwardFFTthng", "FourierCrossCorrlmg", "Renderer" and many many (over 150)
others are held in what Explorer calls the Module Librarian. The non-programmer can develop a specific
visualization environment in order to analyze, and render his or her data by wiring together these pre-

2. Newman & Sproull Principles of Interactive Computer Graphics McGraw-Hill, Second Edition. 1979

3. North Carolina Supercomputing Center officially become the international AVS Center. This center will gather, standarize,
catalog and maintain a collection of AVS modules currently available, along with modules created by users for the public
domain.

AUUGN 37 Vol 12 No 6

defined modules. A programmer can modify, or add to the library of modules by writing C, C++, or
Fortran code using Explorer’s Module Builder.

The Explorer network is created by the Explorer Map Editor. The map editor is the work area in which
modules are assembled and organized into an operational network. The whole thing is really very much
like designing an application flow chart graphically, but with the one very large difference in that you
can place real data at one end, and real resulLs will appear at the other. The map editor allows the user
to create, open, edit, save, and delete networks, create, disable, enable and destroy modules, run the
network, and incorporate the network into an application.

When one draws a flow chart of an application, however, one would normally depict the flow of control
rather than the flow of data. To say that developing applications in Explorer is as easy as drawing flow
charts, therefore, needs further explanation. When drawing flow charts, we sometimes include process
blocks or modules that have the task of converting data from one module to the next. In general
however, flow charts do not describe data conversion, and an assumption is made that data conversion
will be handled in the physical model viz the development phase. Explorer networks on the other hand
are alive, and there is no such thing as a distinct development phase. IRIS Explorer is a strongly typed
system. Two modules can only be connected if they share the same data types. The IRIS Explorer
Module Builder helps the user define the external attributes of a module such as which data types the
module will accept on its input port and the data produced on its output port. The Module Builder can
also generate the code needed to interface from the outermost layer of the module (the visible portion),
to the computational function, where the module’s algorithm resides.

The need for data typing arises in several stages of development and execution. For example, when
trying to wire two modules together, the map editor ensures that the two ports have compatible data
types. Also, when a data object crosses a machine boundary, some component of the system needs to
know the details of its internal structure so that the correct data representation conversion can be
performed. IRIS Explorer has five major data types which are aggregates of other more primitive types
such as ints, strings, floats etc. The five main types are:- Lattice, Parameter, Pyramid, Geometry, and
Unknown. This data abstraction allows any one of the above data types to represent an entire class of
data, on one hand, and a specific instantiation, on the other. For example, in its most general form, the
lattice (essentially a multidimensional ,array) data type can represent any multidimensional array, whether
byte structured, floating point, integer, short, or double precision. A specific instance, however, can
represent only a two-dimensional lattice in byte format.

Two major Explorer utilities are intimately tied to the above data types. These are the Explorer Module
Builder, and DataScribe, the data conversion utility.

The Explorer Module Builder is a graphical user interface tool that lets the user modify existing
modules, and build new ones. The module builder automates the module building process so that the
typical module requires no programming beyond that needed to write the computational function. The
supplied port and parameter information is used by the module builder to automatically generate code, in
the form of the Module Data Wrapper, to provide an interface between the outermost layer of the
module, to the computational function. The data wrapper decomposes Explorer’s data structures into a
form usable by the user written function. For example, it can be arranged such that there is a
relationship between the calling sequence of the computational functions, the function arguments and the
port data types.

IRIS Explorer also comes complete with a data converter (DataScribe) which allows explorer to read a
multitude of new data-set file formats. DataScribe can be used to convert data from an external source,
such as an application or disk file, into explorer datatypes. It can also be used to convert explorer
datatypes into data that can be used by other applications.

Internal data conversion also helps make this system suitable in a heterogeneous environment. Any

Vol 12 No 6 38 AUUGN

number of modules can be setup such that they execute on remote hosts, including the Cray. Data
between these machines is transferred seemlessly. The distributed execution architecture allows a
scientist working in computational fluid dynamics for example, run his mesh generation and post
processing on an IRIS workstation while running his tlow solver on a Cray.

As a very simple example of how you might use Explorer, let’s say you have an image file created by
saving a part of the screen. You may wish to enhance the contrast of the image, before displaying it
again. A traditional method may be to write an application that reads the image file, applies a histogram
equalization technique which rescales the data values of the image such that the cumulative histogram of
the output image is approximately linear, before writing more code to display the image in the correct
aspect and size. As simple as this application may seem, a large amount of knowledge is assumed. The
format of the image file for example, contrast enhancing methods, the availability of underlaying
graphics libraries, as well as a working knowledge of some programming language. To perform this
using Explorer takes just a few minutes. The steps are:

¯ Retrieve the Read Image module, the Histogram Equalization module, and the Display Image module
from the Explorer library. Place these into the Explorer Map Editor.

¯ Wire the output of the Read hnage module into the input of the Histogram Equalization Module.

¯ Wire the output of the Histogram Equalization module into the input of the Display Image module.

Now you have created an Explorer network. To run this network, all that is left to do is use the widget-
based input parameter in the Read Image module to nominate the name of the image file you wish to
read. The Display Image module also provides extra functionality. For example, it allows the user to pan
around the image by using the mouse, as well as providing a zoom dial. This is a very simple Explorer
network. There is no limit to the number and ways modules can be wired together.

3. Conclusion
IRIS Explorer is therefore a complete application creation system and user environment that provides
visualization and analysis features for computational scientists and engineers. It is useful for those whose
needs are not met by commercial software packages, and or, those who wish to extend existing systems
with their own functions. IRIS Explorer runs across the entire Silicon Graphics product range. This
product gives us a whole new paradigm for using machines in a hetergeneous environment. Modules
within a map can be executed on connected machines. Modules and maps are availabe to cover
functions as diverse as computational fluid dynamcis, Earth Sciences, Molecular Modeling, and Medical
imaging. And all this for free...?

AUUGN 39 Vol 12 No 6

Jeeves, the Butler

by Bernd Felsche
Coernie@ DIALix.oz.au)
Copyright 1990,1991

MetaPro Systems Pry Ltd
Victoria Park, Western Australia

The butler is a daemon which acts as a general service agent for users. Initially intended to work
around a ’feature’ of an application package, the buffer is also capable of other tasks, the scope of which
may be extended by adding cbmmands to its library. One attraction to the use of the butler, is the
syntax of the command which instructs the butler as to what to do.

Buffer architecture lends itself to privileged tasks, and in fact, several buffers, addressed by different
names, could be used. Implementation, limitations, extensions and source code will be discussed in
detail.

1. DEALING WITH FRANKENSTEIN

The buffer was developed to provide a workaround for a database server which would hold a tty open,
after launching the server as a daemon in background. This presented a problem because the terminal
windowing environment refuses to close the window if it is open by any process, thereby preventing the
user from logging out, having started a server.

Prior to the butler, all servers were started on system restarts, and after backups. This imposed a heavy
load on system resources, consuming process table slots, shared memory segments, physical RAM and
swap space. Furthermore, there was difficulty in starting a server manually, if a new one was required,
as it required special tricks to prevent it hanging windows, or indeed terminals. It was decided that a
service agent should be provided, to allow users to remote-start servers on demand, and to shut them
down subsequently.

Rather than dive in and solve the specific problem, an abstraction, allowing for the service agent to
perform a variety of predetermined tasks was adopted. The term "butler" was coined, providing a useful,
everyday (?) concept which could be associated with its place in the system.

2. FRANKENSTEIN MEETS JEEVES

A simple, natural command syntax was required as all users do not share our ideals of UNIX terseness.

To further exploit the pun on a buffer, and to enforce a simple command syntax, the command is called
jeeves,.

The trailing comma is important, as it enforces the concept of having somebody else cope with a
problem, and is more natural in english syntax. In fact, some commands appear almost like plain
english, probably leading to accusations of heresy. It would not be unusual to see commands like
"jeeves, start: golf w±t:h holes=19" (a contrived example).

For the curious, a user entering jeeves, by itself is greeted with an interrogatory Yes? prompt.

Jeeves, the user interface, is a minimal program for reasons which will be explained later.

3. JEEVES TALKS TO DAEMONS

A method of isolating the user interface from the application was required, and the named pipe, aka
FIFO, was selected.

Vol 12 No 6 40 AUUGN

FIFOs already serve similar tasks in System V ip spoolers and in cron tasks. The main advantage
over other System V inter-process communications (IPC) is in the almost total isolation between the
communicating processes. Only the information in the pipe, and the open/close state are known to the
process at the other end of the pipe. Of course, the FIFO is also the most elegant way to perform IPC at
shell script level.

Jeeves, channels user requests via a known FIFO, to the butler, which is actually the daemon, reads
instructions from the FIFO, and then attempts to execute them in a limited environment.

Here is a code fragment to implement jeeves, :

trap ’echo "no butler in residence"; exit I’ 15

(sleep $PAUSE ; kill -15 $$)
echo "$request" >$BFIFO
kill $!

2>/dev/null &

Note the mechanism employed to ensure that jeeves, doesn’t block indefinitely if there is no reader
at the other end of the FIFO.

Although the butler has only three built-in commands (it could be as few as one, but the other two are
trivial to implement anyway), its vocabulary is extended by adding commands to a special library. Only
built-ins, and those commands in the library will ever be executed.

Due to the butler operating in a sterile environment, there is no way of spoofing it by users setting
strange PATH or IFS environment variables. Other means of attack are still possible, but will require
special privileges.

To execute non-built-in commands, the butler employs a background process, as there must be no
assumption about how long external commands might take. This leads to a minor complication to
prevent "zombies".

All the "real work" done by the butler is in a single while loop, which follows.

read commands from the pipe and process them in subshells.
wtail < $BFIFO I while read cmd args ; do

command=’echo $cmd I tr "[A-Z] [a-z]"’
case $command in

the butler did it)
break ;;

silent)
¯ ;;

hello)
echo "$name: HELLO ’date~ $BSPOOL/$BFIFO" ;;

*)
(but.servant $command Sargs)& ;;

esac
trap ’trap 15’ 15 # wait for zombies
(sleep 1 ; kill -15 $$ 2>/dev/null) &

wait
kill $! 2>/dev/null

done

AUUGN 41 Vol 12 No 6

Note the three built-in commands defined in the case statement. The first, causes the butler to exit. It
is a deliberate attempt to discourage users from shutting it down too often.

Again, a shell trapR is used, this time to stop the butler waiting too long
for background processes to finish.

4. YOU JUST CAN’T GET GOOD HELP THESE DAYS

The but.servantR you may have noticed in
reveals a further allusion to the butler
other than being there.

the
not

previous code fragment
actually doing anything

but. servant is the servant employed to run each external command asynchronously. A clear
advantage to this is that the butler will always initiate commands in a reasonably predictable way, no
matter how much the commands library is extended.

The background task figures out if the command even exists, and does various checks along the way.

command=~basename $I~

shift
args=,,$*,,

cd $BLIB

if [! -f $command] ; then
echo "$usage0ommand $command not found" l>&2
exit 3

fi
if [! -x $command] ; then

echo "$usage0ommand $command not executeable" l>&2
exit 3

fi
exec ./$command $args

The use of exec saves a process fork and preserves the child-parent relationship between the butler
and the command which the user wants.

5. COPING WITH THE END OF THE WORLD

Not surprisingly, we like to have a butler around all the time, so we have one kicked off by init, set
to a user id of butler. This helps to manage the workload on the buffer, and stops it from running too
many processes.

A side effect of running a daemon from init is that if there is some condition causing the daemon to
exit prematurely, init will refuse to respawn it if it has to do so several times a minute.

In the situation of the butler, this could happen for example if the working, spool directory doesn’t exist,
or if it can’t find a FIFO to listen to. Under these circumstances, instead of exiting, the butler simply
goes to sleep, or to be more precise, becomes comatose, awaiting a kill signal.

This allows the system administrator to re-establish system sanity, without having to fight init’s inane
messages.

Vol 12 No 6 42 AUUGN

6. ABBERATIONS AND DISCOVERIES

While developing buffer, several discoveries were made about some System V features which haven’t
been documented anywhere.

The round-robin UNIX scheduler exhibits unexpected behaviour when multiple tasks are waiting on the
same event. This was discovered during early development, when the feasibility was being explored.

Ten asynchronous processes were instructed to write to the same FIFO, which had not been opened for
reading by any other process. When all ten had blocked, waiting for a reader, a reader was started,
revealing that the ten waiting .processes were run in reverse order, i.e. the last ran first, etc. It took some
research, and some Usenet news traffic to resolve why this happens.

In effect, processes waiting for the same event get placed into a queue, which is then traversed in the
last to first direction, when the event occurs. In effect, it’s a stack.

It results in the FIFO apparently becoming a LIFO. The butler has no way of dealing with this
situation.

Some manufacturers have tampered with the scheduler, so it may not exhibit this behaviour on your
machine. A quick test is to execute the following shell commands and watch the results.

$ cd; mknod FIFO p
$ for i in 1 2 3 4 5 6 7 8 9 0 ; do echo $$ >FIFO & ; done

[... background process id’s not shown ...]
$ while read pid ; do echo Spid ; done < FIFO

[... process list ...]

The process list will be in random order on a loaded system, and will probably be in reverse order
otherwise.

The second abberation is that a shell script’s $0 is null if it is kicked off by init. This may be a
shell bug, and I haven’t yet received a satisfactory explanation. It appears that the shell cannot resolve
its name when standard input is closed.

The buffer copes with the situation by having default names built into scripts. It’s by no means a
satisfactory solution because the software has to be modified if more than one butler is required per
system.

Finally, FIFOs are slightly strange creatures if you expect them to behave like files. The more observant
reader will have noticed the wtail command in the butler, which feeds the while loop.

All standard UNIX commands will exit if the FIFO from which they are reading is closed by all
processes writing to it. This is also true of shell loops and the tail (’t) command.

An initial work-around was to place the while loop within another, which looped infinitely. This
solution was shown to be unsatisfactory, as a subshell is created for each inner loop. The cost, in
computing load, of starting a process is quite large. Jeeves, believed too often, that there was no
buffer present, because there was no FIFO reader for a few seconds.

Wtail is a simple C program that keeps trying to read its standard input, and then places what it gets,
on standard output. End-of-file is effectively ignored. Reading from a FIFO, with no writers, does not

AUUGN 43 Vol 12 No 6

block. Only an open(2) blocks.

7. LOCK UP YOUR BUTLERS

The most obvious enhancement to the butler it to implement a privileged one. To do this, the only
major changes would be to make the front-end setuid, and to restrict access to the FIFO.

By prepending the user name to the command sent via the FIFO, the butler can ascertain if it should
execute a particular command.

Built-in commands like the do-nothing silent require no restrictions, whereas
the_butler__did_it should be restricted to a few responsible users. An access control list could be
either hard-coded, and/or provided externally.

Access control lists for each external command provide a large degree of control over who should be
able to access a particular external command. As the butler already gets a servant to run each external
command, there will be little impact on the rate at which the butler handles requests.

Security violation attempts could be selectively mailed to prevent further attempts.

Several butlers can be run with different userids, performing a variety of functions for "ordinary" users,
without necessitating the sharing of privileged account passwords.

8. BUGS WHICH HAVEN’T BITTEN

As long as commands remain short, the mechanism of submitting an entire request via a FIFO is fairlly
safe. However, it is only a matter of time before jeeves, falls in the buffered UO pit.

Most UNIX commands buffer their I/O and try to read/write fairly large chunks at a time. If you were to
try to submit a large request via jeeves, it may be split over two write system calls. This can lead to
disaster, if another process writes to the FIFO between your request’s writes, then the command will at
best, be garbled.

There are two basic ways in which this problem could be averted. Keep the amount written to the FIFO
small, or create some external lock. Unfortunately, both of these solutions eventually require jeeves,
to be setuid, or for the butler to have publically writeable control areas.

To keep amount of data written to the FIFO small, an external file, containing the command and other
control information is created, and the butler is advised of the file request via the FIFO. System V lp
spooling uses a similar mechanism.

An "advisory" lock could be created, indicating that the FIFO is in use. If the lock exists, then other
writers wait for it to disappear. The most "secure" lock which can be easily manipulated via the shell is
a directory. Even root: cannot rnkd±r if it already exists. Such a directory usually contains a file
holding the process id of the locker, so that other processes can find out if the locker is still alive,
adopting the lock if it isn’t.

Such a scheme is in fact used by the butler to ensure that there is only one reader for each FIFO. It is
still remotely possible for the lock not to work. Creating a directory, where the locker’s process id is
part of the name is probably a better solution as the lock and id would be created as a single atomic
system event.

Vol 12 No 6 44 AUUGN

9. CONCLUSIONS

The butler is a typical software project. It’s never finished. There are numerous desirable extensions and
enhancements, especially in the area of secure privileged service agents.

Implementation of the butler has been mainly via shell scripts, illustrating the power of the shell as a
programming and development tool. Where certain functions could not be effectively implemented by
the shell, a minimal C program was written to take over only that function, in keeping with the UNIX
paradigm.

Sources are shown in full in APPENDIX A.

10. ACKNOWLEDGEMENTS

Thanks to all the people at MetaPro Systems for their patience during debugging, to AUUG for
providing a forum to present this material, and to Chris McDonald (chris@budgie.cs.uwa.oz.au) for
doing such a great job on making this paper look so good.

AUUGN 45 Vol 12 No 6

11. APPENDIX A - SOURCES

wtail.c

/*

* wtail - waits on the standard input to grow
* and puts it on stdout.
*/ main () {

char buf[l] ;

while (i) {
while (read(0,buf, l) <= 0) sleep(l);
if (write(l,buf,l) == -i) exit (i) ;

} }

jeeves,

: ## #
Copyright (c) 1989,90 # All Rights Reserved by # Metapro
Systems, Perth, Western Australia. #
#
Send a message to the butler

name=’basename $0’ name=${name:-jeeves, }

get defaults from the environment BSPOOL=${BSPOOL:-/usr/spool/butler}
BFIFO=${BFIFO:-’expr Shame : ’),’’} PAUSE=3

set standard error message usage="usage: Shame <instructions>"

if [! -d SBSPOOL] ; then
echo "${usage}10pool directory SBSPOOL does not exist" l>&2
exit 3 fi if [! -x $BSPOOL] ; then
echo "${usage}10pool directory SBSPOOL is not searchable" l>&2
exit 3 fi

if [-z "$*"] ; then
echo "Yes? request= ’line’
[-z "$request"] && exit 0 else
request=" $*" fi

cd $BSPOOL # Hurray!

got a pipe? if [! -p SBFIFO] ; then
echo "${usage}46ipe SBFIFO does not exist" l>&2
exit 4 fi if [! -w $BFIFO] ; then
echo "${usage}46ipe SBFIFO is not writeable" l>&2
exit 4 fi

trap ’echo "no butler in residence"; exit i’ 15

parent=$$ export parent exec 2>/dev/null (sleep $PAUSE ; kill -15 Sparent) &
echo "$request" >$BFIFO kill $!

surprise! the butler speaks [’date +%S’ -eq 23] && echo "very good"

exit 0

Vol 12 No 6 46 AUUGN

butler

: ## #
Copyright (c) 1989,90 # All Rights Reserved by # Metapro
Systems, Perth, Western. Australia. #
#
It services requests read from a fifo in the specified # spool
directory.

PATH=/bin:/usr/bin:/usr/local/bbin:/usr/local/bin export PATH

get defaults from the environment name=’basename $0’ # startup command is
called "butler" default name=${name:-butler}

BSPOOL=${~BSPOOL:-/usr/spool/$name} # spool dir for this butler BFIFO=${BFIFO:-
jeeves} # the named pipe BLIB=${BLIB:-Iib} # directory for extended
commands NOTIFY=${NOTIFY:-root} # user to notify when in trouble

set standard error message usage="usage: Sname [-n name] [-s spooldir] [-f
fifo name]"--

if [-t 0] ; then
echo "$usage0utler must not be run from a terminal"
exit 1 fi

redirect input and ourput to meaningful places exec i> /dev/console exec 2>
/dev/console

process command line options set -- ’getopt n:s:f: $*~

if [$? != 0] ; then
echo Susage l>&2
¯ but.exit 1 fi

for i in $* ; do
case $i in
-n) NOTIFY=S2 ; shift 2 ;;
-s) BSPOOL=$2 ; shift 2 ;;
-f) BFIFO=$2 ; shift 2 ;;
--) shift ; break ;;
esac done

check that the universe exists as promised

user=’grep ${NOTIFY}: /etc/passwd I wc -I’ if [$user -ne 1] ; then
echo "${usage}0otify requires local user name" l>&2
¯ but.exit 2 fi

if [! -d $BSPOOL] ; then
echo "${usage}10pool directory SBSPOOL does not exist" l>&2
¯ but.exit 3 fi if [! -x SBSPOOL] ; then
echo "${usage}10pool directory SBSPOOL is not searchable" l>&2
¯ but.exit 3 fi if [! -w $BSPOOL] ; then
echo "${usage}10pool directory $BSPOOL is not writeable" l>&2
¯ but.exit 3 fi

cd $BSPOOL # Hurray!

got a pipe? if [! -p $BFIFO] ; then

AUUGN 47 Vol 12 No 6

echo "${usage}48ipe $BFIFO does not exist" l>&2
¯ but.exit 4 fi if [! -r SBFIFO] ; then
echo "${usage}48ipe $BFIFO is not readable" l>&2
¯ but.exit 4 fi

export BSPOOL BFIFO BLIB NOTIFY

Check for an existing butler, or for a "concurrent" butler startup.

if mkdir lock 2>/dev/null >/dev/null ; then
echo $$ > lock/parent else
a **hack**, but enough time for another lock to be created
in the lock dir, in case of overlapping starts.
sleep 3
if butler.on 2>&l >/dev/null; then

echo "${usage}907verstaffed: Another butler is serving" l>&2
¯ but.exit 5

fi
if [-f lock/parent] ; then

pid=~cat lock/parent’
if kill -0 $pid 2>/dev/null ; then

echo "${usage}0nother butler is starting" l>&2
¯ but.exit 6

fi
else

echo $$ > lock/parent # adopt lock
fi fi

echo "$name: EMPLOYED ’date’ at $BSPOOL/$BFIFO"

read commands from the pipe and process them in subshells, wtail < $BFIFO I
while read cmd args ; do

command=’echo $cmd I tr "[A-Z] [a-z]"’
case $command in

the_butler_did_it) break ;;
silent) : ;;
hello) echo "$name: HELLO ’date’ at SBSPOOL/$BFIFO0command $args" ;;
*) (but.servant $command $args)& ;;

esac
trap ’trap 15’ 15 # wait for zombies
(sleep 1 ; kill -15 $$) 2>/dev/null &
wait
kill $! 2>/dev/null done

finishing off:

echo "$name: FIRED ’date’ at SBSPOOL/$BFIFO"

while butler.on ; do sleep 3 ; done 2>&l l>/dev/null

sleep 5 rm -rf lock # get rid of my stuff exit 0 # normal exit - honest!

Vol 12 No 6 48 AUUGN

but.servant

#
Copyright (c) 1989,90 # All Rights Reserved by # Metapro
Systems, Perth, Western Australia. #
#
Called by butler to support commands which # are not butler
built-in.

get defaults from the environment BSPOOL=${BSPOOL:-/usr/spool/butler}
BFIFO=${BFIFO:-jeeves} BLIB=${BLIB:-Iib} exec < /dev/null # disconnect
pipe

set standard error message usage="usage: $0 <command> [<arguments>]"

case $# in
0) echo "$usage" l>&2 ; exit 1 ;; esac

command=~basename $I~

shift args="$*’’
only execute commands in the BLIB directory

if [! -d $BLIB] ; then
echo "$usagelxecuteables directory $BLIB missing" l>&2
exit 2 fi if [! -x SBLIB] ; then
echo "$usagelxecuteables directory not searchable" l>&2
exit 2 fi

cd $BLIB

PATH=~pwd~:$PATH export PATH

check for an executeable command

if [! -f $command] ; then
echo "$usage0ormmand $command not found" l>&2
exit 3 fi if [! -x $command] ; then
echo "$usage0ommand $command not executeable" l>&2
exit 3 fi exec ./$command $args exit 1

AUUGN 49 Vol 12 No 6

but.exit

#
Copyright (c) 1989,90 # All Rights Reserved by # Metapro
Systems, Perth, Western Australia. #
#
Waits to be killed and returns with nominal exit code in
interrupt, after closing open file descriptors.

trap ’exit $*’ 1 2 3 14 15

exec <&- >&- # close standard input & standard ouput

while : ; do sleep 3600 ; done

butler.on

#
Copyright (c) 1989,90 # All Rights Reserved by # Metapro
Systems, Perth, Western Australia. #
#
This checks to see if we have a butler working # The only
argument required, if not set in the # environment, is the name of
the FIFO.

get defaults from the environment BFIFO=${BFIFO:-jeeves}

set standard error message usage="usage: $0 [fifo_name]"

case $# in
0) ;;
i) BFIFO=$1 ;;
*) echo "$usage" l>&2 ; exit 1 ;; esac

exec ${BFIFO}, silent >/dev/null

Vol 12 No 6 50 AUUGN

;login: 16r4

An Update on UNiX-Related Standards Activities
Stephen R. Walli
Report Editor, USENIX Standards Watchdog Committee

April in Chicago
The April IEEE POSIX working group meeting

was significant. The newly formed Project Man-
agement Committee enjoyed its first full working
meeting. A new steering committee was formed
to manage the thornier issues surrounding POSIX
profiles. The long awaited first draft of a Lan-
guage Independent Specification of IEEE
1003.1-1990 was delivered for review and com-
ment by interested working group members. And
of course the week was dominated with Sun Mi-
crosystems’s and UNIX Systems Labs’ (USE) Open
Look project request being put up against the
Open Software Foundation OsF/Motif project re-
quest.

Project Management Committee

Chicago was the first working meeting of the
newly formed Project Management Committee
(PMC). The PMC monitors existing TCOS-SS
projects and reviews new PARS (Project Autho-
rization Requests). They use a mentoring process,
whereby a member of the committee is assigned
to each new PAR and each current working group.
Each PMC member has several to track, because
of the current number of projects.

Once a mentor is assigned a new PAR, they
aid the PAR presenter in making sure it is properly
formatted, and that all supporting documentation
is present and complete. The point is to ensure
that no PAR fails to be accepted by the TCOS-SS
Sponsor Executive Committee (SEC) for docu-
mentation problems.

If the PAR is accepted, the mentor continues
to monitor the project to ensure that it is on track.
A project that loses focus on the current scope
would receive help to bring it back in line with its
stated purpose. The PMC has no direct authority
to mandate anything, however they can recom-
mend that the SEC take certain actions.

Members of the PMC include: Jason Zions,
Shane McCarron, Lorraine Kevra, Roger Martin,

Derek Kaufman, Robert Bismuth, Don Cragun,
and Tim Baker.

The PMC covered a lot of ground in its first
week, starting on Sunday afternoon. The com-
peting project authorization requests (PARs) to
create standards for the two major x interfaces
were discussed. (Discussion of the competing
PARs follows.)

The POSIX.2 (Shell and Utilities) working
group had a new PAR proposed, POSlX.2b, which
covered the reformatting of the POSIX.2 and
POSlX.2a (User Portability Extension) docu-
ments, and the incorporation of new utilities. The
new POSIx.2b PAR was changed so that only new
extensions would be part of the PAR, and the
document reformatting was left out. This means
we won’t have a two thousand page document
arriving for ballot as POSIX.2b! POSIX.7 (System
Administration) was reviewed and recommenda-
tions made to separate it into several PARS under
the same working group. An additional PAR for
1224 to cover the Object Management API for
X.400 and X.500 was recommended. The
PosIx.4, POSlX.6, and POSIX.11 projects were also
reviewed during the first week.

This committee will likely begin to have more
and more effect on the building of POSIX as it
becomes comfortable with its role. Its members
are long-time POSIX people with considerable ex-
perience and I look forward to what they bring to
the overall process with all of its current problems
of coordination and synchronization.

PAR Wars

Competing x Window PARS dominated the
Chicago meeting. A month before the Chicago
meeting, the Open Software Foundation (OSF)
submitted a PAR to the TCOS-SS SEC proposing a
direct ballot of the OSF/Motif API Document and
Style Guide.

These documents would be reformatted ac-
cording to TCOS style guides if the PAR was ac-
cepted. Test assertions and language independent

AUUGN 51 Vol 12 No 6

;login: 16:4

specifications would be written at OSF’s expense if
required. The legal copyright issues were ar-
ranged with the IEEE Standards Office. Sufficient
industry acceptance and experience to make Mo-
tif a standard was claimed.

This forced the backers of Open Look to rush
forward with a similar PAR, championed by Sun
Microsystems and UNIX Systems Labs. Similar
claims of industry acceptance and experience
were made, and similar reformatting, test asser-
tions, and LIS were promised. So the battle was
joined once again.

There is significance to a direct ballot. POSlX
standards are usually drafted by a working group
who take base documents and create a new re-
vised document. This revised document is bal-
loted, reviewed, and made into a standard. With
a direct ballot, there is no working group formed
to build a document through a consensus process,
but a balloting group is formed directly. In theory,
the document is ready to be shipped to balloters,
which was not the case for either of these PARS.
TCOS-SS has rules for creating standards this way,
but no one has ever done it before. The stage was
set for a week of theatrics.

The first group to have to deal with the duel
was the PMC. They stuck to the letter of their
mandate, and reviewed these PARS to ensure they
were correctly formatted. They also recom-
mended that certain steering committees review
them. The Steering Committee on Windowing
User Interfaces (scwuI) was an obvious reviewer.
(Yes, it’s pronounced "scwewy", you wascally
wabbit.) scwuI stated that it did not want these
PARS accepted because of the overlap with the
current P1201.1 (Windowing Toolkit API) work.

The Steering Committee on Conformance
Testing (SCCT) was also asked for comment, and
reported they had no concerns with either of them
as stated.

One sc that was missed was the Distributed
Services Steering Committee (DSSC) which came
to light in the SEC discussions of the PARs. The
Sun/usE PAR characterizes Open Look as a dis-
tributed desktop paradigm, so DSSC should have
an opportunity to comment on it.

The P1201.2 working group is building a Rec-
ommended Practice document for driving
window-based applications. The chair of this

working group raised concerns that if either of
these documents became a standard before
P1201.2 completes its work, there may be some
conflict.

People discussed and debated all week in the
hallways as to what would and should happen.
Many felt that both PARS should be accepted,
pointing to the IEEE 802 LAN standards as an
example. Fortunately, many of the Europeans
present were able to point out the problems with
this, since they are currently living in a situation
where many conforming implementations of OSI
protocols cannot talk to one another because of
such differences. This destroys any hope of build-
ing very portable applications which have win-
dowed interfaces, unless one is willing to only be
portable within windowing environment "A."

Others felt that neither PAR should be ac-
cepted, pointing out that if P1201.1 (Windowing
Toolkit API) has been deadlocked over this type
of API for so long, perhaps there isn’t sufficient
industry consensus to create a standard. On a few
occasions during the week I heard different peo-
ple refer to the original POSIX work to build
POSIX.1. These references came about during
completely separate discussions on conformance
for language independent specifications and pro-
files. People talked about the way that the work-
ing group members laid aside their preferences for
their particular flavours of UNIX in favour of
building the standard. This does not appear to be
happening in this arena.

Neither PAR could be accepted alone, since
this would have disastrous commercial effects on
the "loser." This points out some of the problems
of allowing vendors and vendor consortia to pro-
duce such documents for standardization. It has
been successfully done in the past in other areas
of technology, but it needs to be done with great
care, and not in an environment of direct and
blatant commercial competition.

The membership of the balloting groups for
these PARS would be interesting to see. The IEEE
has rules about the percentage of balloting group
content that is vendor related, user related or
"general interest." This has never been contested
in the past. Likewise, ballot resolution of com-
ments and objections would also be interesting, as
the PAR presenters would be responsible for ad-
ministering their own ballot resolution according

Vol 12 No 6 52 AUUGN

__

;login: 16:4

to the PAR’s scope. Somewhat like handing a pit
bull terrier its own leash and telling it to walk itself
without getting into a fight.

The SEC was forced into a painful discussion
for a few hours on these PARS. During part of the
discussion, PAR presenters pointed out that if the
T¢OS-SS SEC refused the issue, there was still a
court of final appeal, being the IEEE Standards
Board itself.

Fortunately, Paul Borrill was present. Paul is
the vice-president for standards in the IEEE Com-
puter Society, and a member of the IEEE Stan-
dards Board. Paul didn’t have a lot to say, but his
points were clearly made. First, he encouraged
the groups to fix their own problems. Second, he
reminded them who sets the rules, if people chose
to bend or abuse them. (The IEEE Standards
Board!) Points taken.

In the end, the discussion was halted with a
flurry of Robert’s Rules procedural magic. The
Rules are used as a way to ensure that work is
accomplished in a committee forum and that all
participants have fair opportunity to be heard.
The SEC resolved that it "does not feel at this time
that it should sponsor either the Modular Toolkit
Environment PAR (Motif) or the Open Toolkit
Environment PAR (Open Look). The PARS are in
procedural limbo. By that hour, the SEC was only
too happy to kill discussion of the PARS. The PARS
have not been tabled, withdrawn, or postponed.
They are still very real and I fear that the Santa
Clara meeting will have these PAR presenters
haunting the hallways, singing "weee’re
baaaack "

Profile!! Get Your Profile!!

For quite some time now, profiles have been
a great source of confusion in the POSIX world.
Ask ten different people from ten different areas
what a POSIX profile is, and you will indeed re-
ceive ten different answers. There is a list of
serious outstanding issues on defining, co-
ordinating, and standardizing POSlX profiles,
which has been built up by the working group on
the POSlX Guide (P1003.0) and current profile
writing groups.

They have long felt that some form of man-
aging group needed to take charge of these issues.
After much (circular) discussion as to the nature

of this committee (is it a rapporteur group, an ad
hoc group, or a steering committee?) it was finally
decided that a steering committee was required to
deal with the management issues of profiles. The
SEC ratified this decision and the Profiles Steering
Committee was born.

Bob Gambrel is the chair of the Profiles
Steering Committee, and each working group
with a profile project also has representation. The
group held its first organizational meeting the next
day and by the time Santa Clara rolls around, the
committee’s work will be well under way.

LIS POSIX.1

A first draft Language Independent Specifi-
cation of POSIX.1 (System Application Program
Interface) was delivered this week. Language in-
dependence is an issue raised by ISO who wish
standards to be unrelated to a particular pro-
gramming language.

In January, the SEC formed a subcommittee
to solicit and evaluate submissions to produce a
complete POSlX.1 language independent specifi-
cation (LIS). Monies were put forward by the
IEEE Computer Society, the contract was
awarded, and the Work was done.

The completed first draft language indepen-
dent specification of POSlX. 1 (to IEEE

1003.1-1990) and a near complete draft c lan-
guage binding (POSlX.16) were presented at the
LIS BOF on Monday afternoon. BOF attendees
raised concerns that input on certain language
indendence issues raised over the last few working
group meetings may not be completely reflected
in the drafts, but the drafts were generally well
received. Copies were in such high demand that
the rules for making document copies at meetings
had to be changed to prevent further drafts from
being produced.

A concrete example of a near complete LIS
of POSIX.1 now exists. Other working groups can
use it as an example in much the same way that
POSlX.3.1 (Test Methods for POSIX.0 is an ex-
ample of how to construct and structure test as-
sertions. Many working groups point to the func-
tionality described in POSIX.1, and it was unclear
how their LIS would need to be structured to point
to an LIS version of POSIX. 1. These issues can now
be addressed and the language indendence re-

AUUGN 53 Vol 12 No 6

;login: 16:4

quirements on the POStX standards process can
move forward with more confidence.

Iso’s working group 15 (WGI5) on t~OSlX re-
quested that language bindings to the Pos~x stan-
dards come forward as "thin" bindings to the LIS
documents. Thin bindings indicate that there is no
significant duplication of semantic content be-
tween the L~S and the language binding. Because
of this request, the t~os~x.5 (Ada Binding) and
POStX.9 (FORTRANo77 Binding) working groups
are not proceeding at the international level at
this time.

Both of these groups are balloting their doc-
uments at the IEEE level and are busy resolving
ballot objections. Both of these groups have lan-
guage standards groups reviewing their respective
programming languages, with a view to signifi-
cantly changing them. The groups feel they can
better serve the industry by waiting until the
POSIX.1 LIS and the changing language standards
stabilize, and then produce the documents which
will be forwarded to the international level for
standardization. In the meantime, IEEE standard
bindings will exist for Ada and FORTRAN-77 to the
c-based POSIX.1 standard.

Report on 1003,0: POSIX Guide

Kevin Lewis <klewis@gucci.enet.dec.com> re-
ports on the April 15-19, 1991 meeting in Chi-
cago, IL:

Summary

POStX.0, more familiarly referred to as ’the
Guide’ is best summed up by the first sentence of
Draft 11. "This guide identifies parameters for an
open system environment using the POSIX op-
erating system/application interface as the plat-
form.

The working group spent the week reviewing
the document, addressing omissions and readabil-
ity issues. Careful attention was paid to the
guide’s readiness for mock ballot for eventual
submission to Iso in October, as a technical re-
port.

Report

Believe it or not, this group made its best
forward progress by reviewing the guide docuo

ment backwards. I’m still trying to figure out what
this says about our group. [ed - And so are we
all!] This forced us to deal with issues that were
latent because we simply had not made it all the
way to the end of the document before. On the
occasions we did, we were too exhausted to do
anything substantive. There were times during the
review when I felt we were writing a very succinct
and precise "ballad." Other times we seemed to
be writing the sequel to "War and Peace." Over-
all we made significant progress. Many key issues
were addressed in Chicago.

First was the errant and unintentional (I
think) omission of the balloting P1003.2 (Shell
and Utilities) standard from the guide. Wendy
Rauch agreed to draft a write-up on how this
standard fits into the context of the guide for its
next release.

Another issue was that of how to address
character-based terminals in the user interface
section. Pertinent contributions are being written
for inclusion in the next draft.

The use of the guide as an Iso Technical
Report was also discussed this week. Factors af-
fecting this are the guide’s readiness and whether
or not this readiness coincides with an acceptable
time frame for ISO. There is a document synchro-
nization plan between the IEEE and ~so, which will
allow POSIX documents to be published concur-
rently as both ISO and IEEE standards. POSIX.O
plans to use a mock ballot as a way to judge its
readiness. The group agreed that this ballot could
not commence before the October ’91 meeting.
The group may, however, submit the guide to ~so
prior to the completion of the mock ballot.

As you might imagine, the decision to submit
the guide to ~so is very subjective and discussion
of this will probably eat up considerable time at
the October meeting. (This reminds me. I better
get Mr. Isaak to provide me with a large gavel.)

Lastly, POSIX.0 strongly focused its attention
on the overall readabilitv of the guide in such a
manner that I felt we were finally able to see the
proverbial "forest for the trees." This will be the
primary focus in the July meeting, strongly cou-
pled with a review of those sections that should
be either dropped (e.g. the graphics section) or
postponed (e.g. the languages section) until after
the mock ballot. (The languages section is likely

Vol 12 No 6 54 AUUGN

__

;login: 16:4

to be postponed due to lack of help and not
because it is any less significant.)

In summary, ~:)sIx.0 is on track, heading in
the right direction, BUT with some medium-to-
high hurdles remaining.

Report on IEEE 1003.2: Shell and Utili-
ties

David Rowley <david@mks.com> reports
on the April 15-19 meeting in Chicago, IL:

Background

A brief POSIX.2 project description:
POSIX.2 is the base standard and deals with the
basic shell programming language and a set of
utilities required for the portability of shell
scripts. It excludes most features that might be
considered interactive. POSIX.2 also standardizes
command-line and function interfaces related to
certain POSIX.2 utilities (e.g., popenO, regular
expressions, etc.). This part of POSIX. 2, which was
developed first, is sometimes known as "Dot 2
Classic."
POSIX.2a, the User Portability Extension or UPE,
is a supplement to the base POSIX.2 standard and
standardizes commands, such as vi, that might not
appear in shell scripts but are important enough
that users must learn them on any real system. It
is essentially an interactive standard, and it will
eventually be an optional chapter to a future draft
of the base document. This approach allows the
adoption of the UPE to trail Dot 2 Classic without
delaying it.

Some utilities have both interactive and non-
interactive features. In such cases, the UPE defines
extensions from the base POSIX.2 utility. Features
used both interactively and in scripts tend to be
defined in the base standard.
POSIX.2b is a newly approved project which will
cover extensions and new requests from other
groups, such as utilities for the POSlX.4 (Realtime)
and l,OSlX.6 (Security) documents.

Together, Dot 2 Classic and the ur,E will
make up the International Standards Organiza-
tion’s ~so 9945-2--the second volume of the pro-
posed ISO three-volume POSlX standard.

1,os~x.2 (Shell and Utilities) closed its recir-
culation ballot on March 29. The Chair feels there
will only be a small number of changes to the
current draft, probably circulated as change
pages. There were some ballot concerns over the
internationalization areas, but these will likely
remain intact due to current support. There was
also a concern raised over the ballot period for a
900+ page document. POSIX.2A closed its recir-
culation ballot on April 24.

POSlX.2b has been approved after a number
of scope change recommendations from the PMC.
The POS~X.2 group requests technology for both
a new archive format, and also a new family of
compression utilities. Much of the Chicago meet-
ing was spent with POSlX.3.2 (Test Methods for
POSIX.2) creating test assertions for the docu-
ment.

Status of POSIX.2 Balloting

The Draft 11 Recirculation Ballot for r, os~x. 2
closed March 29. Some balloters seemed to forget
that it was a recirculation ballot, as there were a
large number of objections on items other than
changes. These were ruled unresponsive.

Hal Jespersen, the POSIX.2 Chair and Tech-
nical Editor, believes that there will only be a
small number of actual modifications to the draft.
Draft 12 (which may possibly be called Draft 11.1)
will likely be distributed as a set of changed pages,
which he estimates to number about 200. (More
recent estimates suggest the number of pages to
be as low as 50.) Expect it sometime around July.

There were a number of objections to the
internationalization part of POSIX.2, but since Hal
has support from X/Open, WG15, etc., he thinks
the current specification will remain largely intact.

There was a problem with the Draft 11 dis-
tribution. Pos~x.2 is now over 900 pages. Its bal-
loting period was 30 days, although with a mailing
lead it was about 6 weeks. Due to postal services,
some members of the balloting group received
their ballot copies only two weeks prior to the
closing deadline. Hal Jespersen was as accommo-
dating as he could be on the deadline, but the
extent of these submissions was definitely af-
fected. The question rears its head again. Should

AUUGN 55 Vol 12 No 6

;login: 16:4

we be balloting POSIX standards the same as we
ballot smaller hardware standards?

The lSO standards process sees a document
move through three phases on its way to stan-
dardization -- Committee Document, Draft In-
ternational Standard, and finally International
Standard. Draft 9 of r~sIx.2 is currently being
used as a committee document. The ISO has re-
quested the U.S. Member Body to forward to
them another draft once it has become more sta-
ble. The next draft (Draft 12 or Draft 11.1) will
be a likely candidate. The ISO has delegated re-
sponsibility for producing the POSlX draft stan-
dards documents to the U.S. Member Body,
ANSI, which in turn delegated the responsibility to
the IEEE.

Status of POSIX.2a Balloting

The Draft 6 Recirculation Ballot of POSlX.2a
(UPE) closed April 24. Unfortunately the dead-
line for comments came a mere three days after
the end of the April meeting. There were quite a
few comments on the unfortunate timing of the
ballot close. Work on ballot resolution is ongoing.

New PARs

The Project Management Committee (PMC)
has recommended that the proposed PAR
(Project Authorization Request) for 1003.2b be
split into two parts. One part will cover extensions
and new requests from other groups, such as the
tar, cplo, and new pax file formats from
PosIx.t (Kernel) and utilities from POSlX.4 (Re-
altime) and POSlX.6 (Security). The timing and
alignment issues with the ISO 9945-2 balloting
process will be covered by the other part.

The scope of this second PAR is restricted to
standardization of existing industry practice. The
group does not want to get into designing new
utilities.

There is also concern over draft stability
when discussing the commands to access the fea-
tures from the POSlX.4 and POSlX.6 standards.
How mature does the feature have to be before
the PosIx.2 group goes to the effort of defining a
command interface to it?

Discussion

Donn Terry, the chair of I~:)sIx.L officially
handed off responsibility of the pax file formats,

including the new format currently being de-
signed, to the POSIX.2 group.

A proposal was examined to reserve the util-
ity status return code 126 to indicate that a utility
was found but could not be successfully invoked.
This would be especially useful in systems with
limited resources, where execution can not be
¯ assured even though the utility has been found.
The group generally agreed that this was reason-
able.

There was a question as to whether the warn-
ing message for getopts should be specified in the
standard or not, so that filters could parse it. It
was decided to not specify the error format, since
there is no precedent for stating the format of
something written to standard error.

There was discussion on removing -e from
pax, since charmaps were not really intended to
be used in this manner. The -e option was in-
tended to allow filenames to be written out using
only characters from the portable character set.
OSF had already implemented this in their pax,
and agreed that it didn’t work out too well.

The "$((notation in the Korn Shell currently
can have two widely different meanings: either
spawning a subshell or expressing an arithmetic
operation. The working group agreed that dis-
ambiguating by placing a space between the two
parentheses, though inelegant, was the best ap-
proach.

There was some discussion on a proposal on
User Controllable Limits, and whether or not it
had relevance to POSIX.2. The group felt that
there should be a command interface to these
services, with the functional interface to be pro-
vided by POSIX.I. A proposal for the POSIX.2 in-
terface is now being solicited.

We also discussed the test command.
David Korn proposed fixing the functionality of
test based on the number of arguments given
(1, 2 or 3). Invocations with greater than 3 ar-
guments would not be portable. We generally
agreed on this approach.

Richard Hart from PosIx.7 (System Admin-
istration) presented the syntax for a new printing
command based on the MIT/Athena Palladium
network printing services. Everyone in the

Vol 12 No 6 56 AUUGN

__

;login: 16:4

POSIX.2 group agreed that the proposed syntax
was awkward:

prpr-prlnt-quality draft

means use draft if you can

prpr print-quality draft

means you must use draft

prpr p-q draft

means the same thing, but "print-quality"
has been abbreviated.

The abbreviation mechanism is particularly
poor, since it is likely that new extensions will
cause namespace conflicts.

Requests for technology

There is an opportunity now to propose a
new archive format. The only prerequisites are
that it is ISO 1001 tape format compatible, and
uses the ISO 646 character set. This consists of the
invariant codeset from a variety of character set
standards, largely 7-Bit ASCII minus about 10 con-
tentious characters. Here’s a list of requirements:

Should be textual (mailable) if members are
all textual
Should support filename and file contents
mapping (eg. for dynamic encryption or
compression)
Should be extensible

Personally, I don’t understand why the
1001 tape format needs to be a restriction. Ar-
chive formats have many other uses besides tape
backup and transfer. To embed the tape format
in what could otherwise be a general-use archive
format seems overly complex and restrictive.

The group is also looking for a new family of
compression utilities, now that the Lempel-Ziv-
Welch family of commands have been removed
from the standard. The main requirements for a
substitute are:

¯ The algorithm should be expressed (ex-
pressible) in a language independent form

¯ The algorithm should be free of patent is-
sues

Test Plans and Assertions

A test plan for POSIX.2 and POSlX.2a has
been written, and has been passed to POSIX.3.2

(Test Assertions for POSIX.2) for comment and
approval.

Tuesday to Thursday were spent writing test
assertions in a joint meeting between POSIX.2 and
POSlX.3.2. Commands tackled included r~ake,
regular expressions, in, cp, r~, mv, pax,
pathconf, echo, and read.

Some members volunteered test assertions
written by their companies, usually to a previous
draft. They were almost always unusable, either
because they were out of date (based on previous
drafts), or of poor quality. Writing good test as-
sertions is very difficult, and quickly points out
(the many) ambiguous wordings in the draft.

The PosIx.3.2 group would like to go to a
mock ballot after the October meeting in Parsip-
pany, New Jersey.

Report on 1003.3: POSIX Test Methods
and Conformance

Andrew Twigger <att@root.co.uk> reports
on the April 15-19, 1991 meeting in Chicago, IL:

Summary

The PosIx.2 (Shell and Utilities) working
group made good progress writing test assertions
this week, with POSlX. 3’s (Test Methods and Con-
formance) help. Many working groups, however,
are discovering that writing test assertions re-
quires a non-trivial effort. This week also saw the
delivery of the newly published ’qEEE
1003.3-1991 - Test Methods for Measuring Con-
formance to POSIX." Concerns are still being
raised over NIST’s certification policies.

Report

Chicago will probably go down in history as
the meeting where test methods invaded the POS~X
working groups with a vengeance. After years of
mild abuse and jesting (mostly aimed at N~ST), the
SCCT (Steering Committee on Conformance Test-
ing) seems to be succeeding in the goal of ensuring
that ~:)SlX standards are balloted with test method
specifications. Despite rumours during the week
that a wake had been arranged for the SCCT Chair,

AUUGN 57 Vol 12 No 6

;login: 16:4

most of the screams were heard from working
groups, who having been previously informed that
test methods would be easy to write and would
only take a couple of meetings, were finding that
this was a far from straightforward task.

While most of the remaining members of the
original r’OSlX.3 working group continued work
with the remaining members of POSIX.2 in gen-
erating assertions for the POSIX.2 standard, a few
of the POSlX.3 elders started helping other work-
ing groups to develop test methods for their stan-
dards. The r’OSlX.3.2 group (i.e POSIX.3 +
r,oslx.2) met for three days during the week and
spent all of that time writing assertions in small
groups of three or four people.

Some of the more difficult aspects of POSIX.2
were tackled, specifically Basic Regular Expres-
sions and the Make utility. Most of the smaller
utilities have assertions written already although
most of these need to be updated to align with the
current draft. It is hoped that enough of the work
will have been completed after the October ’91
meeting to start internal ballot of the draft doc-
ument with IEEE balloting commencing in the first
half of 1992.

Other working groups that have started pro-
ducing test methods include poslx.4, POSlX.6,
Poslx.8, PosIx.15, POSlX.17, and P1224.1,
P1224.2. Most of these groups are at an early
stage in their test method development and are
producing a wide variety of problems for the "ex-
perts" to address. Several of these groups have
noted that the formal process of producing test
assertions has uncovered a variety of deficiencies
in their drafts; so perhaps there is some benefit in
test methods after all[

The highlight of the week was the arrival of
the latest of the series of POSIX standards, IEEE
1003.3-1991. This document was made available
at the extraordinarily discounted price of $15.00
per copy, which works out to 30 cents a page! Still
I suppose that considering the number of com-
mittee hours that went into the document, it’s a
real bargain. (One working group member cal-
culated an industry, cost in excess of $5,000 per
page.)

Other concerns which arose during the week
relate to NIST’s adopted certification policies and
procedures. Many working groups continue to be

concerned about these. This has been a long run-
ning battle involving both accredited testing cen-
tres and implementation suppliers in assisting
NIST in the refining of their policies.

The current major cause for concern is
whether there would be equality in the certifica-
tion process or whether a particular implementor
would gain advantage from receiving the first con-
formance certificate. NIST was not explicit as to
the procedures that they would employ to deal
with the initial surge of certification requests, but
made assurances that everybody would be satis-
fied when the process was completed. This
seemed to satisfy nobody! We’ll have to wait until
Santa Clara to see whether NIST is really here to
help us.

Report on POSIX.4, .4a, .4b, .13:
POSIX Realtime Extensions

Bill O. Gallmeister <uunet!lynx!bog> re-
ports on the April 15-19, 1991 meeting in Chi-
cago, IL:

Summary

This week, the working group advised the
technical reviewer for Ipc Message Passing to ei-
ther delete or severely prune back the IPC chapter.
The large group also agreed to work closely with
the POSlX.12 sockets group on their interface to
ensure that a "Real-Time Protocol" could be im-
plemented on top of sockets to meet real-time
message passing requirements.

Work was done to harmonize POSIX.4 binary
semaphores and r’oslx.4a (Threads) mutexes and
condition variables. A mutex is a lock semaphore,
so that only one person has access to a resource
at a time - MUTually EXclusive access.

We also began to explore work for POSlX.4b
(the Yet More Real-Time proposal). Work here
possibly includes the Ada Catalogue of Interface
Features and Options (cwo).

Work continued on the Application Profiles,
Test Assertions, and the Language Independent
Specification.

There will probably be a new recirculation of
POSlX.4 before the Santa Clara meeting. POSlX.4a
will probably not be recirculated before then.

Vol 12 No 6 58 AUUGN

__

;login: 16:4

Report

IPC

The ir,c chapter in POSlX.4 is a bone of con-
tention. In my estimation, it retains the largest
number of unresolved negative ballots in all of
~OSlX.4. Most objections center on the fact that
the interface doesn’t look much like anything seen
in UNIX before, and on doubts that the interface
can be implemented efficiently.

A small group spent this week looking at IPC

and ways to deal with it. They came up with some
startling recommendations. First, they noted that
the sockets interface, which most of us are fa-
miliar with from BSD, is currently undergoing
standardization by r~sIx.12 (Protocol Indepen-
dent Interfaces). They noted that all the needs of
real-time and transaction-processing IPC could be
met by a new sockets protocol, perhaps with a few
extensions to the sockets interface itself. There
are generally two socket protocols on a UNIX
system: the UNIX domain protocol, which com-
municates with other processes on the same ma-
chine, and the Internet protocol, which does the
network thing. A real-time protocol would be
akin to these. The small group recommended that
we work with POSlX. 12 to ensure that such a real-
time protocol could be defined.

In addition, they made specific suggestions
for trimming back the current 1Pc chapter, if it is
not removed altogether. These suggestions in-
cluded removing non-copy Ir,C modes and some of
the more baroque asynchronous modes of the
interface. Another option would be to delete the
~osIx.4 Ir,C chapter entirely and await POSIX.~2
sockets and a real-time extension on top of that--
probably a three-year wait.

The votes, when taken, were 17-5 in favor of
deleting the chapter, and 29-2 in favor of trim-
ming the chapter severely. However, when given
the choice of deleting POSIX.4 ir,c or pruning it,
the vote was 21 to 15 in favor of deleting, and only
two working group members admitted that they
would ballot against the draft if ~PC was removed.

Synchronization

vosIx.4 specifies a binary semaphores inter-
face; eosIx.4a (Threads) specifies mutexes and
condition variables. These two facilities, while

rather similar in the abstract, are quite different
in the current drafts. A group attempted this week
to bring the two closer together.

Mutexes and condition variables are based in
the memory of the process, while binary sema-
.phores are accessed via an opaque object that
might be a memory address, but might not. It had
been noted in New Orleans that ~’OSlX.4 binary
semaphores worked between threads in a process,
but that thread mutexes and condition variables
did not work between separate processes. This
lack of parity has been the source of many ballot
objections to both POSIX.4 and POSIX.4A.

The small group came up with a model of
how synchronization was expected to work in the
vast majority of cases. Mutexes, condition vari-
ables, and binary semaphores are all implemented
in user memory, much like how thread mutexes
are currently implemented. In addition, an ex-
tension to this implementation allows the
memory-based implementation to operate in
shared memory between processes.

Because some machines (such as Crays) do
not possess the hardware for memory sharing, a
more abstract interface to process synchronization
is required. (Those machines will not implement
binary semaphores like most other people, but
will do something different.)

The working group approved a number of
small changes to harmonize POSlX.4 and POSlX.4a

with regards to process and thread synchroniza-
tion based on this model. The working group also
demanded some documentation explaining the
different models and requirements motivating the
different facilities and interfaces. Hopefully, such
documentation will clear up the confusion cur-
rently surrounding the two interfaces.

POSIX.4b

POSIX.4b has as its goal the standardization of
some of the less mainstream features of real=time
systems. These are basically areas that the POS~X.4
group decided to defer until "later." During this
meeting, small groups worked on interfaces for
timeouts on all blocking system calls, for en-
hanced memory allocation, and for direct appli-
cation use of interrupts. The documents for all
three of these areas are quite immature, and the
small groups spent their time trying to identify

AUUGN 59 Vol 12 No 6

;login: 16:4

models and requirements. I believe the first draft
of POSIX.4b will be generated in Santa Clara.
Other possible work items for this proposal in-
clude extensions to the existing synchronization
primitives, and the Ada Catalogue of Interface
Features and Options (¢n:o).

The timeouts group received some conflicting
advice. Many people do not want this interface at
all. Of those who did, there was strong consensus
for new function calls for each blocking call, i.e.,
we’d have timeoutread0, which could time out
after a certain interval of time, since read() is a
blocking call.

The memory allocation group is concerned
with being able to allocate from specific pools of
memory--memory presumably having some spe-
cial characteristic. They were directed to see
whether mmap0, from the Shared Memory and
Mapped Files chapter, would suit the require-
ments.

The interrupt access group came up with a
model of something like signal handlers for at-
taching a process directly to an interrupt. Addi-
tional semantics of the interface still need to be
defined, (e.g. can system calls be made from a
user "interrupt handler").

Application Profiles

The real-time applications profiles group is
well on its way to producing a draft which defines
multiple profiles: an embedded profile, a profile
one up from that, a mid-size profile, and a kitchen
sink profile.

The kitchen sink profile is easy: it includes
everything. At the lower layer is an embedded
profile which will hopefully be very small. It spec-
ifies the threads interface, but would like to not
include the process interface, i.e. no fork or exec.
It has read, write, and open, but no other file
interface. The target for such a system would be
an embedded system, perhaps without an MMU.
Much of POSIX.1, and in fact much of posIx.4, is
irrelevant to such a system. The largest area to be
addressed now is the ability to remove pieces from
l~3slx.l (i.e., fork() and exec()) and still have a
"POSlX" system, pOSlX. I is not set up to allow such
selective removal of interfaces.

Test Assertions and Language Independent
Specifications

Small groups (of one each) continued to work
on the test assertions and the language indepen-
dent interfaces for Poslx.4. Not much progress
was made, due to the pressing requirements of
other issues and the fact that much of this work
is best done late at night hunched over one’s
terminal. This work will continue and should be
more advanced at the Santa Clara meeting.

Report on POSIX.6: Security Exten-
sions
Aria Maria De Alvare <anamaria@sgi.COM>
reports on the April 15-19, 1991 meeting in Chi-
cago, IL:

Summary

The r~s~x.6 group spent the week preparing
draft 11 of their document for internal mock bal-
lot. They began work on their test assertions doc-
ument. The IEEE balloting group formation pro-
cess is now officially closed.

The Privilege subgroup discussed a proposal
to remove the global constant POSIX_ PRIV_EF-
FECTIVE from the draft. The Audit subgroup will
not be able to address the portable audit format
before balloting begins, but they will define the
audit trail header. The liaison group between
postx.6, Pos~x.7 (System Administration), and
the Distributed Services groups will report back
to the TCOS-SS Sponsor Executive Committee
(SEC) at the July meeting, recommending that a
new coordination group be formed.

Report

The POSlX.6 group met for the entire week in
Chicago. The group concentrated their efforts on
cleaning up draft 10 of the document. The bal-
loting solicitation process has been closed. If you
requested to be in the balloting group, please
confirm you are on the list by calling the IEEE,
Anna Kacznarek (908-562-3811).

A major action item was the creation of the
test assertions document for VOSlX.6. This will be
a separate parallel document. The definitions and
overview sections of r’osIx.6 were addressed this
week. Each subgroup will be responsible for cre-
ating the test assertions for the document sections

Vol 12 No 6 60 AUUGN

;login: 16:4

they are working on. The subgroups will maintain
consistency between the test assertions and the
POSlX.6 document. Modifications to the POSlX.6
document will signal modifications to the test as-
sertion document.

In the next meeting we are planning to in-
tegrate test assertion sections from POSlX.3.1
(Test Assertions for POSlX.l) into our document.
Dave Rogers (Data Logic) and I are co-chairing
this effort. If you are interested in participating in
the test assertion work, please let me know
(anamaria@sgi.com or 415-335-7309).

PosIx.6 will mock ballot draft 11 within the
working group before July. We plan to review
written comments to this mock ballot at the July
meeting. If all the written comments are ad-
dressed, we will try to ship the document for IEEE
ballot after July. We could then start resolving the
ballot objections at the October meeting.

Secureware’s vP of Marketing proposed elim-
inating from the standard the system global con-
stant, POSIX_ PRIV_ EFFECTIVE, which turns on/off
all the privileges already set by the process or set
by the file privileges in effect. The system global
constant can increase or decrease the effective
privilege set.

The argument against the system global con-
stant was that when POSIX_PRIV_EFFECTIVE is
on, a privilege aware program (i.e. a trusted ap-
plication) will have effective privileges on before
it uses them. This violates the concept of least
privilege, since the process contains more privi-
leges than it needs. It is the responsibility of that
trusted application to turn off all effective priv-
ileges and then turn them on one by one as it
needs them.

Another argument against the global con-
stant is that it gives the system manager a central
point to turn on/off privileges. With the new
scheme, programs that turn "priv_ effective" on
are consciously given permission to do so, a point
that brings higher granularity.

A vote was taken and the group decided to
eliminate the system global constant, POSlX_ PRIV-
_ EFFECTIVE and use "priv_effective" as an ad-
ditional file privilege. The standard now contains
three privilege sets associated with a process (in-

heritable, permitted, effective) and two privilege
flags ("allowed" and "forced") associated with
each privilege on a file. The two file privilege flags
are:

--Allowed - a flag associated with a file priv-
ilege that will authorize it to be on during the

.execution of that program, if the process pos-
sesses that privilege.

--Forced - a flag associated with a file priv-
ilege that will be on during the execution of that
program even if the process does not possess that
privilege. This allows for old setuid programs to
continue to work under POSlX.6 without source
code modifications.

The new file privilege "priv_effective" will
turn on the process’s effective privilege set. If
your file has "priv_effective," your file makes
effective all of the privileges that are on after
calculating "allowed" and "forced" flags against
the process’s inheritable flags.

A process possesses three sets of privilege
flags: inheritable, permitted, and effective. For a
process to access a file, the process’s effective
privilege set (built from its inherited and permit-
ted sets) is tested against the file’s privilege set.
To be able to pass a privilege from the inheritable
set (from its parent process) to the permitted set,
the system will test the process’s inheritable priv-
ilege against the file’s "allowed" and "forced"
flags for that privilege. If the file privilege’s "al-
lowed" flag is set, then the privilege is turned on
in the process’s permitted set. If the file privilege’s
"forced" flag is set, then the privilege is turned on
in the process’s permitted set even if the privilege
was not inherited.

To be on in the process’s effective set, the
system compares the inheritable privilege against
the file’s "allowed" and "forced" flags. If the
process’s inherited privilege is in the file’s "al-
lowed" set and the file’s "priv_ effective" privi-
lege is set, then the privilege becomes effective.
If the process’s inherited privilege is in the file’s
"forced" set and the file’s "priv_ effective" priv-
ilege is set, then the privilege becomes effective.
In other words, to be set effective the file’s "priv-
_ effective" flag must be on.

Some of you might think that this scheme still
gives me a trusted application with effective priv-
ileges turned on. The list of programs with

AUUGN 61 Vol 12 No 6

;login: 16:4

privileges turned on, however, is smaller than
using the system global constant. In addition the
effective privilege set is not on for all processes.

All of this can become very confusing. Some-
times I have trouble understanding all of the ben-
efits. Every time I read the document new ques-
tions come to mind. Sometimes I agree and other
times I don’t. Hopefully the mock ballot will call
attention to any ambiguous areas left in the draft
document.

Access Controls

Both the discretionary and mandatory access
control subgroups (DAC and MAC) are ready for
our internal mock ballot. The primary DAC related
changes for draft 10 concerned default access con-
trol list (ACE) behavior and the command ehae].
which changes the ACE. The MAC group had no
hot issues to discuss.

Audit

The Audit group finished modifying the draft
and writing the rationale for integrity protection,
header flexibility, and cross references. The group
felt they cannot address the portable audit format
before balloting; however, they are planning to
define the audit trail header containing:

--POSIX audit indicator field,

--version ID,

--data format indicator (type XDR, little en-
dian, big endian),

--time zone offset,

--machine id, and

--audit style.

The audit file format remains up in the air.

POSIX.6/POSIX.7/Distributed Services Liaison

The liaison group met on Wednesday. Mike
Ressler stepped down and I became the chair of
the group. We discussed the status of the group
and what we should bring forward to the TCOS-SS
Sponsor Executive Committee (SEC). Everyone
agreed that we have enough information to create
a report to the SEC discussing the problems we
discovered and to make recommendations.

include an overview of each subgroup’s objec-
tives, a list of problem areas discovered during
our meetings, and recommendations to solve
these problems. I hope that sEc acts upon our
recommendations.

One recommendation we want immediate ac-
tion on is the lack of a mechanism to ensure that
one POSlX extension can interoperate with an-
other posIx extension. An example of this in-
teroperability issue is having msIx.6 and l’OSIX.8
(Transparent File Access) on the same system.
We are proposing a new group be formed which
will check that posIx standards interoperate with
each other or to at least document where different
r~slx extensions cannot interoperate.

1003.7: System Administration
Martin Kirk <m.kirk@xopen.co.uk> re-

ports on the April 15-19, 1991 meeting in Chi-
cago, IL:

~Summary

PosIx.7 is getting back on its feet again, hav-
ing come through a rocky period in its history.
The Project Management Committee (PMC) has
reviewed the project and recommended that it be
split into a number of sub-projects, organized by
POSIX.7. Likely candidates are print management,
software management, and user environment
management.

Report

The April 1991 POSIX meeting in Chicago
may turn out to be the final step in the rehabil-
itation of the PosIx.7 Systems Administration
working group.

Probably as a result of its occasionally con-
troversial past, POSlX.7 was among the first batch
of working groups to be reviewed by the newly
created Project Management Committee (r’NC).

It is possible to speculate on whether PosIx.7
would have met the r’NC’s project approval cri-
teria had it been in existence two years ago. One
of the most pertinent criteria would probably have
been the existence of a suitable base document.
A likely candidate would have been the NXST-
proposed draft System Administration document,
though it might have been difficult to demonstrate
the right kind of consensus around it!

Vol 12 No 6 62 AUUGN

__

;login: 16:4

Anyway, the PMC was not in existence then
and POSIX.7 was duly created. The first couple of
meetings were spent investigating the possibility
of standardising the existing systems administra-
tion commands that we all know and love. The
working group decided that there was little benefit
to be gained from solving the single machine
problem in a world that was rapidly moving to-
wards a norm of heterogeneous networks, and set
off on its trek into the rather more esoteric realms
of object-oriented systems management for net-
works of heterogeneous machines.

Inevitably this change oI~ direction led to
charges that the group was inventing hand-over-
fist, rather than following the "traditional" stan-
dards model of codifying existing practice. (No-
one ever argued that the group had gone beyond
its scope, which was cunningly worded to allow
the group to do almost anything.)

Moving into the world of distributed systems
management opened up various cans of wriggling
things with labels like "interoperability" and
"frameworks." (This was when I discovered that
rat holes were full of worms.) It was at this point
that an over-enthusiastic embracing of object-
oriented concepts led to the promulgation of a
command line interface that was tremendously
orthogonal, but completely different to all known
existing practice.

Interoperability proved to be a particularly
thorny problem. Everybody could agree that it
was essential, but there was no emerging consen-
sus as to how it would be achieved.

In hindsight, this was the lowest point of
POSIX.7’s fortunes. From this point the rehabili-
tation commenced. The first stage was an agree-
ment among the group to limit the scope of its
activities (but not its objectives). The group de-
cided to concentrate on two particular aspects, the
definition of the managed objects required for
systems management, and the definition of man-
agement tasks -- the administrator’s view of the
job in hand. This decision allowed the group to
close the door on the rat holes and concentrate on
areas where it was able to make progress.

Part of the motivation for this decision was
recognition that the problem space is vast and that
trying to attack it over too large a front was a
suicidal maneuver. There was also an increased

awareness of the related work of other organiza-
tions, such as the OSl Network Management Fo-
rum, the OSI Implementer’s Workshop Network
Management SIG, and x/open. As this other work
comes to fruition, it will be available for use by
POSiX.7 and will likely solve some of the thornier
problems, such as interoperability.

So what happened in Chicago to raise hopes
that the rehabilitation is almost complete? For
some time the group had been aware that some
functional areas were much closer to reaching a
consensus than others, and it had been consid-
ering how it might better organize the work in
order to "get something out of the door." The
result of the PMC review of POSIX.7 was a rec-
ommendation that the existing project should be
split into a series of sub-projects, each represent-
ing a functional area within the overall problem
space, and each leading to a separately balloted
document. The existing project would be retained
as an "umbrella" to handle the coordination is-
sues arising from the split. This is necessary if the
parts are to form a coherent whole. New projects
would be raised to cover a first set of functional
areas. No more than two or three of these func-
tional sub-projects would be active at any time.
This would keep the group focussed on a set of
limited and achievable goals. New projects would
be instantiated as existing ones move into the
balloting phase.

One of the benefits of this approach is that
each of the new sub-projects must pass the PMC’s
project approval criteria before it is recom-
mended. The proposal will be properly scruti-
nized to ensure that the project is likely to succeed
within reasonable timeframes. A result of the
earlier decision to concentrate on managed ob-
jects and management tasks will be to relate the
new projects much more closely to existing in-
terfaces, thus removing one of the rods which the
group had fashioned for others to beat it with. An
obvious source of candidate management tasks
can be found in the existing administrative com-
mand set on the systems around us, and it would
be a perverse decision indeed to introduce gra-
tuitous changes to the style of that interface.

The first set of sub-projects are likely to be
Print Management, Software Management, and
User Environment Management. These three

AUUGN 63 Vol 12 No 6

;login: 16:4

represent areas where the work of the group is
well advanced and where there is strong commit-
ment of energies.

The Print Management work is based on the
MIT Palladium printing system, which has the ben-
efit of being well-aligned with the emerging ISO
distributed printing standard, DIS 10164. The Print
Management sub-group within POSlX.7 has been
working with the Palladium documents for over a
year and this work is probably the closest to being
complete.

Software Management has enjoyed a resur-
gence of interest within POSlX.7 over the last 6
months, with source material being drawn from
DEC, HP, AT&T, and Siemens-Nixdorf. The small
group that has been working in this area has been
comparing the various technologies and (not sur-
prisingly?) finding a great deal of commonality
between then in terms of their underlying con-
cepts and functionality. The task of identifying a
common model and a common set of functions is
well advanced and bodes well for the future. (In-
deed, the rate of progress is positively alarming!)

The third area, User Environment Manage-
ment is a logical candidate for inclusion in the
initial set of sub-projects. Much of systems man-
agement is concerned with the management of
users and their interactions with other compo-
nents of the system. Many management tasks
need to be able to refer to users and it seems to
be appropriate to tackle this area at an early
stage. (For some inexplicable reason, the "add
user" operation seems to be the universal exam-
ple always brought up when talking about some
aspect of systems administration - another moti-
vating factor.)

Looking beyond the confines of POSIX.7 into
the wider world, the original decision to adopt an
object-oriented approach to the problem of sys-
tems administration is at last being vindicated.
Object-oriented concepts lie at the heart of the
osF Distributed Management Environment re-
quest for technology (RFT), the uI Systems Man-
agement SIG, and the x/open Systems Manage-
ment working group. It looks as if history will
show POSIX.7’s decision to have been a far-sighted
move rather than turning up a blind alley.

Report on 1003.9: POSIX Fortran-77
Bindings
E. Loren Buhle, Jr., Ph.D.
<buhle@xrt.upenn.edu> reports on the April
15-19, 1991 meeting in Chicago, IL:

PosIx.9 met to resolve objections and com-
ments raised to the first ballot of the FORTRAN
binding to ISO/IEC 9945-1 Standard (also known
as POSIX.1). The ballot began in late December
1990 and ended on February 20, 1991. This first
proposal did not obtain the necessary 75% ac-
ceptance of the balloters. There were 73 people
in the total balloting group, of which 56 were
eligible to vote on the standard. The others were
parties of interest. Of the official balloting group,
there were 23 affirmative votes, 15 negative votes,
and 8 abstentions. This 82% response was only
60% affirmative. Thus the first ballot failed to
make the existing draft a standard.

At the Chicago meeting, objections and com-
ments from all voters (both official and unofficial)
were reviewed and acted upon. Many valid points
were made by the voters, resulting in changes to
the draft. Some revisions included changing the
F77 prefixes to PXF (e.g. F77WAIT became PXF-
WAIT). Joseph King’s request for a "fast exit" was
also added.

Fast exit was added back to the draft to gain
the _ exit() functionality contained in POSIX.1. It
is required to allow proper recovery from failed
calls to any of the PXFEX~:C0 functions within a
child process. It seems that recovery means that
the child process must be able to exit without
flushing buffers. The file buffers of a child process
are copies of the parent’s. The current draft says
that on failure when PXFEXIT0, STOP, and END
are executed, the data in the buffers will be writ-
ten to the file and the child will terminate. So
when the parent writes or closes the file, the
output buffers will be flushed and data will be
duplicated (once from the failed child and once
from the parent) in the file.

Most of the objections and comments were
resolved in a positive fashion, providing for the
possibility of a successful second ballot. With
some fast work from the 8 attendees to the
Poslx.9 meeting, the revised draft may be recir-
culated in June for a 30 day period. If all goes

Vol 12 No 6 64 AUUGN

__

;login: 16:4

well, the results of the recirculation ballot can be
ready for resolution during the July meeting.

The next meeting of the pOSlX.9 working
group will be July 8-12, 1991 at the Doubletree
in Santa Clara, California. The subsequent meet-
ing will be October 21-25, 1991 in Parsippany, ~J.

Report on 1003.12: Protocol Indepen-
dent Interfaces

Mike Karels <karels@cs.berkeley.edu> re-
ports on the April 15-19, 1991 meeting in Chi-
cago, IL:

Summary

The POSIX.12 (Protocol Independent Inter-
faces, Pn) working group spent the April meeting
planning strategy for its new direction and coor-
dinating with other groups. The group will pro-
duce a standard encompassing both the BSD sock-
ets and x/open Transport Interface (XTI). Liaison
meetings were held with x/open representatives,
the Name Space/Directory Services group
(POSIX.17) and the Real-Time group (Poslx.4).
The group discussed language independent spec-
ification issues with Paul Rabin.

Report

POSIX.12 (Protocol Independent Interfaces,
HI) spent the April meeting adjusting to its new
direction and coordinating with other groups. At
the last meeting, the group decided to abandon its
previous strategy of producing a new Detailed
Network Interface (DNI) with the best features of
both the socket and x/open Transport interfaces
(XTI). XTI is derived from AT&T’S Transport Level
Interface (TEl). After reviewing input from users
and vendors, the group decided instead to pro-
duce a standard including both existing interfaces.
In addition, the standard will include the Simple
Network Interface (SNI), which would insulate the
programmer from lower-level details.

The April meeting included discussions of the
changes or additions that were needed for the
existing interfaces to become standards. A poll
had been sent to several mailing lists and news
groups, but few concrete suggestions were re-
ceived. Most of the suggestions for extensions
have come from inside the working group. Sug-
gestions for changes in sockets have come mostly

from the Berkeley representatives, and sugges-
tions for XTI have come mainly from people active
in the x/open technical community.

A fair amount of time was devoted to the
proposal for extending XTI option management by
Gerhard Kieselmann. The proposal allows much
more flexible option management by encoding
option values with types and lengths. The encod-
ing is similar to the encoding of ancillary data in
the 4.3-Reno send and receive calls. The main
point of contention was whether the transport
provider should maintain both current settings
and default settings to be used for any future
connections.

The discussions of extensions to the socket
interface was confined to a description of the
recent Berkeley changes (4.3-Reno) to the socket
interface.

The meeting schedule was nearly filled with
coordination meetings with other groups. Petr
Janacek of x/open reported on the status of future
XT~ specifications. Other than the option man-
agement proposal mentioned above, the XPG4
version of XT~ has been finalized. It is hoped that
the XPG5 version of XTI will be aligned with the
POSIX version. At the last meeting, POSIX. 12 asked
x/open for editorial assistance in producing a
POSlX version of XTI. Petr replied that the budget
did not allow for assistance at this time, but that
an on-line version of XTI would be made avail-
able.

Paul Rabin met with the PII group to discuss
issues surrounding POS~X language independent
specifications. The working group currently hopes
to produce a single language independent speci-
fication for DN~; there would be two C language
bindings, namely sockets and XTI. This should
prevent the necessity of providing two interfaces
for languages other than C, but makes the lan-
guage independent specification more difficult to
produce.

The POSIX.12 group also met with members
of the Name Space/Directory Services group
(POSIX.17) to discuss the DNI dependency on the
Directory Services interfaces. There are some
problems in this area. The NS/DS group currently
intends to provide an interface only to the X.500
directory service, while the r,n group assumes an
interface that could include other services such as

AUUGN 65 Vol 12 No 6

;login: 16:4

the Internet Domain Name System. The NS/DS
group intends to provide a full-featured low-level
interface to the directory service based on the
x/open X.500 API. However, they also plan to
)nclude simplified higher-level interfaces to an-
swer needs such as this one.

The final coordination meetings were with
members of the Real-Time group. The current
Real-Time draft includes an interprocess commu-
nication (Ipc) facility that many believe is too
complex and does not extend gracefully to handle
networked systems. Many hoped that the I~C in-
terface could be replaced by the 1003.12 interface,
with real-time extensions as necessary. A group is
working on a straw-man proposal in time for the
July meeting.

Report on POSIX.17 - Name Space/
Directory Services

Mark Hazzard <markh@rsvl.unisys.com>
reports on the meeting in Chicago, IL:

Summary

The POSIX.17 group is generating a user to
directory services API, for example an API to an
X.500 Directory User Agent (DUA). We are re-
ferring to a network idea of a directory, not the
"file which contains file entries" defined in
POSIX.1. It is not limited to just the X.500 func-
tionality. We are using XAPIA -- xiopen’s Direc-
tory Services specification (XDS) -- as a basis for
work. XDS is an object-oriented interface and re-
quires a companion specification for object man-
agement (XOM).

XOM is a stand alone specification with gen-
eral applicability beyond the API to directory ser-
vices. It will be used by IEEE 1224.1 (X.400 API)
and possibly other POSIX groups, and is being
standardized by IEEE 1224.

We made significant progress on a third draft
of the document in Chicago, with the language
independent specification work still to be done.
We hope to mock ballot the document sometime
after the July working group meeting. POSIX.12
(Protocol Independent Interfaces) and POSlX.17
worked together this week and arrived at a num-
ber of scenarios for coordinating the work.
POSlX. 17 is taking steps to determine if their work

overlaps with the proposed work of certain lso/
sc2I (osl) working groups.

Status

Commitment within the group remains ade-
quate, but there’s more than enough work to go
around.

Chris Harding, (from x/open) our Technical
Editor, brought a second draft of the specification
to the meeting. We made significant progress to-
wards producing a third draft with emphasis on
format cleanup, model, overview sections and test
assertions.

The "homework" assignments on Language
Independent Specification (LIS) weren’t com-
pleted and additional work on LIS was put on hold
until the outcome of the SEe meeting. There
seemed to be some confusion as to the applica-
bility of the L~S requirement for POS~X.17 and
other Distributed Services AP~s. The SEC reaf-
firmed the LIS requirement. The LIS work was
reassigned to the Technical Editor.

The big debate on generalizing the Object
Management API never materialized. (Refer to
the three snitch reports on the New Orleans 1991
meeting.) I strongly suspect this was largely due
to the absence of Scott "Owls in the bushes"
Guthrey at the Chicago meeting.

Requirements from POSIX.12

The group met with POSIX.12 (Protocol In-
dependent Interfaces) to get their requirements
for the POS~X.~7 API. They expressed the desire
(necessity?) to:

--access existing directory services (e. g. DNS)
via the POSIX.17 API

-- map the existing BSD API (e.g. geth-
ostbyname, getservbyaame, etc.) onto
the POSIX.17 API.

We discussed at length how these and other
requirements should best be met, and produced
three different scenarios describing relationships
between the user application, the directory API(S),
the directory service(s), and the transport service
(accessed via POSIX.12’s Simplified Network In-
terface).

In the first scenario, the transport provider
(sNI) would talk directly to all directory services

Vol 12 No 6 66 AUUGN

__

;login: 16:4

e.g. DNS, X.5OO, etc. Each directory service re-
solver would be accessed through its native in-
terface, of which PosIx.17 would be just another
API.

In scenario two, POSlX.17 would be the only
API and would be used to access all directory
services. To access a non-x.5oo DUA, the under-
lying implementation might have to translate
PosIx. I7 calls into the appropriate format and
invoke the corresponding resolver.

In the final scenario, POSlX. ~7 would again be
the only APl, but only one resolver (x.5oo DUA)

would be used to query a singl~ composite infor-
mation base (DIB) containing information on all
objects (e.g. Dr,rs Resource Records and X.500
Distinguished Names).

In each of the scenarios, impact to the
PosIx.~7 API will be minimal. However, signifi-
cant impact is anticipated for the underlying im-
plementation and directory information base.

We discussed the relative merits of each and
decided that at some future time a single API,
resolver (agent), directory service, and informa-
tion base just might be the best for POSiX systems.
We also recognized that POSIX systems will need
to interoperate with non-POSlX systems for the
foreseeable future, and that fact won’t be lost on
implementors.

Live long and prosper! or Extending the life of
our standard

The base document defines both the API and
the collection of objects managed through the API,
called a "package." We believe that packages will
be much more dynamic than the API itself, and
could be unbundled from the API to give the API
greater stability. We asked the Distributed Ser-
vices Steering Committee (DSSC) to recommend a
common solution, as this problem is shared by
other networking groups. We expect the DSSC to
take this issue up in Santa Clara.

Mock Ballot

We decided to try to mock ballot our doc-
ument sometime after the July meeting. After
reaching agreement on the minimum document
content for mock ballot, we assigned actions to

get this work done. We wish to solicit input on
requirements and feedback on our LIS and Test
Assertion work.

Is SC21 doing APIs too?

With the granting of any IEEE project request
(PAR) comes a responsibility to coordinate with
other de jure standards bodies, the list of which
is included on the PAR itself. In fulfilling this
obligation, the group has learned (and dutifully
reported to the sEc) that ISO sc21 is considering
working on APIs to OSI application level services.
This work has a potential to overlap the sc22
supported work being done by IEEE TCOS/POSIX
(e.g. POSIX.17, P1224, P1238).
In Closing

The group made good solid progress in Chi-
cago, and our document is beginning to flesh out.
We think we understand what’s required for test
assertions and language independence, and have
done several things to make the base document
more readable. If we can maintain critical mass
within the group, we have a good chance of going
to mock ballot yet this year. There’s a lot of work
to do, so we hope you can make it to Santa Clara
in July.

Report on P1224:X.400 API
Steve Trus <trus@osi.ncsl.nist.gov> reports

on the April 15-19, 1991 meeting in Chicago, IL:

Introduction

P1224 is the IEEE working group standardiz-
ing an application program interface (API) for
X.4OO and also for a companion, osI Object Man-
agement (OM). The work will result in two doc-
uments. Interfaces developed by the x.4oo API
Association and x/open have provided the basis
for the standards. The x.4oo API consists of two
parts: an application interface and a gateway in-
terface. Both of these are based on the 1988 CCITT
X.4OO Series of Recommendations.

The P1224 working group has the following
officers:

--Steve Trus, Chairman (NIST)

--Tim Carter," Vice Chairman (IBM)

--Iain Devine, Technical Editor, Secretary
(x/open)

AUUGN 67 Vol 12 No 6

;login: 16:4

The Chicago meeting was very productive for
the P1224 working group. We have been gaining
momentum over the past three meetings, and are
well under way to producing an IEEE standard.

The goal of the group is to have a draft of the
x.4oo API and the Object Management APIs by
the July meeting, and to ballot the documents
after the October meeting. ,

Report

At the Chicago meeting the group continued
modifying the base documents to produce the
draft API documents for ballot. This work in-
cludes:

1. editing the documents to meet the style
and format requirements of the IEEE,

2. adding a language independent specifica-
tion of the interfaces to the documents, and

3. developing the required conformance test
assertions.

The language independent specification of
the Object Management API is complete, and the
technical editor has made most of the required
style changes. These changes will be complete and
the language independent specification will be in-
corporated into the document by the July meet-
ing. Work on the style modifications to the x.4oo
document will also be complete by the July meet-
ing. The x.4oo language independent specifica-
tion should be complete and incorporated at this
time.

The group spent most of the week developing
the required test methods for the Object Man-
agement Specification. A representative of the
Test Methods working group (posIx. 3) assisted us
with this development. Members of the group
agreed to develop test methods for functions as-
signed to them bv the next meeting. This task will
need to be completed before the complete ballot
of the document.

Balloting Plans

We discussed balloting plans and we would
like to begin balloting the Object Management
Specification and the x.4oo .-xPI in October. These
ballots would not include the test methods, and
balloting cannot complete without them.

We are developing the list of people who will

be invited to ballot these documents, along with
the IEEE-formed balloting group. This list will
include the x.4oo API Association, x/open Lim-
ited, the NIST X.4OO Workshop, and the Elec-
tronic Mail Association.

PAR Restructuring

The original Project Authorization Request
(PAR) for the P1224 group was written when the
baseline document contained an x.4oo gateway
API and the related osI Object Management spec-
ification. Currently, the x.4oo API document con-
tains the user agent interfaces and the gateway
interfaces. The osI Object Management specifi-
cation is contained in a separate document. To
accommodate these changes a revised PAR was
written at the January meeting for the x.4oo API,.
and a new PAR was written for the osI Object
Management specification. These PARS were ap-
proved by the IEEE TCOS SEC at this meeting.

In Closing

P1224 is making good progress. Homework
assignments were delegated at the Chicago meet-
ing to be completed by the Santa Clara meeting.
The primary focus of the Santa Clara meeting will
be to review the Draft x.4oo and Object Man-
agement APIs, and to continue working on test
methods for the interfaces.

Report on X3J16: C + +

Mike Vilot <mjv@objects.mv.com> reports
on the March 1991 meeting in Nashua, NH:

Current Status

The ANSI x3116 committee began its second
year of technical meetings. As expected, the work
grew more detailed, with the Core Language and
Environment working groups being the focus of
most of x3Jt6’s work.

March meeting

Digital Equipment hosted the Nashua meet-
ing. The week’s major activities focused on un-
derstanding the myriad details of the proposed
clarifications and changes to the current working
document.

x3J16’s sub-groups focused on the key topics
listed in the goals statement developed at the

Vol 12 No 6 68 AUUGN

..

;login: 16:4

March, 1990 meeting. They worked by electronic
mail between meetings, and reported their
progress.

International Concerns

Steve Carter, of Bellcore. presented the ma-
jor international concerns.

Due to the concerns expressed at the No-
vember meeting about conversion to a Type I
(international) X3 process, Steve came prepared
with material explaining the implications of the
change. To all appearances, the change seems
benign to the technical work of the committee.
The change would have the positive effect of get-
ting international involvement. It has the poten-
tial to delay the development of the standard, due
to the need to synchronize U.S. and 1so balloting.

The full X3J16 committee almost decided to
vote to adopt the change, but ran out of the
quorum necessary to pass the motion on Friday
morning.

Editorial

Jonathan Shopiro, of AT&T, presented the
Editorial group’s work.

The most significant change from the No-
vember version was the incorporation of the ex-
ception handling proposal. Jonathan also de-
scribed an editorial change that simplified the
treatment of names and name lookup, merging
the concepts that had previously been treated
under the topics of dominance and name hiding.
Martin O’Riordan, of Microsoft, questioned
whether this was a purely editorial change, or a
change to the language semantics. Martin and
others requested time to look over the change
before agreeing to it.

As I mentioned last time, the person who
volunteered to edit the Rationale document has
not been heard from since last summer. Susan
Waggoner, of uswest, has taken on that respon-
sibility.

Formal Syntax

James Roskind, an independent consultant,
presented the work of the Formal Syntax group.

The bulk of the discussion concerned a pro-
posal by Reg Charney of Program Conversions,

Inc. to rename the non-terminals in the grammar.
Although there was much discussion about the
virtues of regularizing the naming versus the evils
of gratuitous changes, the committee decided, in
the end, to adopt the proposal.

Eric Krohn, of Bellcore, presented the syn-
tactic ambiguities involving the newly-adopted
throw-expression syntax for exceptions. The dis-
cussion clarified the issues, and a final resolution
is likely next meeting.

Tom Penello, of Metaware, gave an inter-
esting presentation on the inherent problems with
ambiguous grammars. He established the fact that
an ambigous grammar makes the question of a
conforming implementation undecidable. He also
illustrated that arbitrary rules to resolve gram-
matical ambiguities has the side-effect of rejecting
valid programs.

He then went on to explain the syntactic
ambiguities of the template syntax, arising from
the conflict over using the ">" symbol as both a
relational operator and a template argument list
delimiter. Although he proposed a grammar re-
write that solved the problem, he decided not to
recommend it on aesthetic grounds.

There seems to be an appreciation within
X3J16 as a whole for the technical issues involved
in making the grammar correct. There also seems
to be a sentiment in favor of letting the semantic
rules settle most of the complex issues.

Core Language

Andy Koenig, of AT&T, presented the Core
Language group’s work.

Document X3J16/91-0005 describes the
group’s discussion about the linkage of typedef
names and anonymous classes. The group decided
it was an Environmental issue, and handed it off
to the Environment group.

The group discussed objects created under a
condition, and resolved to consider those objects
governed by an implicit block scope, as if the
programmer had explicitly supplied a compound
statement. Discussion is summarized in X3J16/
91-0021.

Document 91-0019 covers the discussion of
lifetimes for temporary objects created by the

AUUGN 69 Vol 12 No 6

;login: 16:4

compiler. This issue has not reached closure, al-
though the issues were clarified.

Environment

Peter Chapin, of Vermont Technical College,
presented the work of the Environment group.

Document X3J16/91-0011 describes the
group’s discussion about c/c + + compatibility is-
sues. This discussion is continuing.

The group discussed at length the one defi-
nition rule -- enforcing the rule that a program
must have exactly one definition for a given func-
tion, even in the presence of multiple inclusions
of inline functions and the potential need for the
compiler to generate such functions out of line.
Document X3J16/91-0024 summarizes the discus-
sion.

There is a proposal to include a section in the
standard on required warnings. Laura Yaker, now
at Mentor Graphics, presented some ideas of the
sorts of things that might be considered as re-
quired warnings. The discussion indicated that
this is a difficult issue to standardize, since there
is so much variation in environments and imple-
mentations. This ongoing discussion is summa-
rized in X3J16/91-0014.

Another ongoing discussion concerns static
initialization order for objects in different trans-
lation units. Document X3J16/91-0012 summa-
rizes this discussion.

There was some discussion on specifying
translation limits in the standard. The discussion
seemed to generate more heat than light, and
nothing was decided.

Lastly, the linkage of types discussion con-
tinues, and is summarized in X3J16/91-0023. Pe-
ter described several alternate rules to ensure
type-safe linkage of types. A central issue is
whether the linkage specification is part of the
type. There are interesting arguments for and
against this.

Libraries

I presented the Library. group’s work.

There has been some progress on formulating
proposals for submission to X3J16. Aron Insinga
of DEC presented his proposal to apply templates

to the definition of the standard string class. His
progress has been slowed by the lack of an avail-
able implementation supporting templates.

Steve Clamage of TauMetric presented pro-
posed resolutions for almost all of the compati-
bility issues regarding the C library. Most of the
small type insecurities can be handled in a rea-
sonably straightforward manner. There are more
substantial issues regarding signals, exceptions
and the facilities provided by longjmp().

The iostreams proposal continues to receive
comment. Many of the UNIX-specific issues have
been removed. Addressing these concerns raised
an interesting point -- should the C + + standard
adopt the practice of the C standard, in describing
only that certain types exist, or should it describe
them as classes and specify their required oper-
ations? There was some concern that describing
classes would be inefficient, but other concerns
that the vague wording without a class description
would introduce too much variability among im-
plementations.

Language Extensions

Bjarne Stroustrup, of AT&T, presented the
work of the Extensions group.

The group is working through a long list of
proposals for changes to the language. A signif-
icant number of them came from the Core lan-
guage group, due to an evaluation of what Andy
Koenig calls "language extension by technicality"
-- where suggestions for changing the wording of
the standard would have the effect of changing the
meaning of the language.

The current list of language extension pro-
posals includes overloading of the "." operator,
a proposal for handling national character set is-
sues with digraphs and new keywords, and the
adoption of the "inherited" keyword (as in Ap-
ple’s implementation).

The largest issue lurking in the Extensions
category, is the addition of support for run-time
type information. There will be much discussion
on this topic over the next months.

C Compatibility

Tom Plum, of Plum-Hall, presented the work
of the C Compatibility group.

Vol 12 No 6 70 AUUGN

__

;login: 16:4

The group continued its investigation of the
vocabulary differences between C and C+ +.
They decided to categorize their efforts into
groups, covering the language, environment, and
library. One likely outcome of their work will be
a proposal to adopt the same model of sequence
points used by X3Jll.

Next events

The next three X3J16 meetings (and their
hosts) will be:

¯June 17-21, Lurid, Sweden (Lurid Institute
of Technology)

. November 11-15, Toronto, Canada (IBM)

¯ March 1992, Austin, TX (TI)
Zortech announced plans to host one of the

other two 1992 meetings in London.

Membership on an x3 committee is open to

any individual or organization with expertise and
material interest in the topic addressed by the
comanittee. The cost for membership is $250.
Contact the chair or vice chair for details.

Chair:
Dmitry Lenkov
r~P California Language Lab
19447 Pruneridge Avenue MS 47 LE
Cupertino, CA 95014
(408)447-5279
FAX

(408)~447-4924
email drnitry% hpda@hplabs, hp. corn

Vice Chair:
William M. Miller
Glockenspiel, Ltd
P.O. Box 366
Sudbury, MA 01776-0003
(508)443-5779
email wrnmiller@cup.portal, com

AUUGN 71 Vol 12 No 6

AUUG

Management Committee

Minutes of meeting 9 December 1991

Held at ACMS, Paddington.

Present: Glenn Huxtable, Michael Tuke, Chris Maltby, Frank Crawford, Scott Merrilees, Peter Karr
(from 12:00), Roll Jester.

Meeting commenced at 10:10 am.

Wael Foda of the AUUG Secretariat (ACMS) was present during the relevant portions of the meeting.
Presentations to the committee were made by Bob Kummerfeld of MHS, Joe Watkins and Ellen
Gubbins of Symmetry Design, and Hugh Irvine of connect.com.au.

1. Apologies

Apologies were received from Pat Duffy and Andrew Gollan.

.
Minutes of last Meeting (24 September 1991)

Moved (FC/MT) that the minutes be accepted. Carried.

There was no business arising from the minutes other than the items dealt with as part of the
agenda.

.
President’s Report

Due to Pat Duffy’s absence there was no President’s report.

,
Secretary’s Report

Rolf Jester reported:

4.1 Membership has grown to 663 since the last report in August. All of these are financial.
Although there were 637 members on the books at 1/8/91, 231 of those were unfinancial, so we
have achieved a significant boost to the effective membership. A break-down of membership
statistics is attached.

4.2 Rolf Jester will write a letter to go our with the renewal notices for those members whose
subscription is due at the end of this year.

Action: RJ

4.3 It was agreed that ACMS need a network connection urgently to facilitate exchange of mail with
members and the committee. Purchase of a modem has already been approved. It was suggested

Vol 12 No 6 72 AUUGN

that Wael Foda obtain a copy of U-ACCESS, a package that will allow ACMS’s Macintosh to
access the network. MHS sell this package and can install it.

Moved (FC/SM) that expenditure of up to $500 be approved for this purpose. Carried.

4.4 Chris Maltby agreed to help Peter Karr get his �-mail connection working.

4.5

5.1

5.2

Action: RJ/WF

5.3

Action: CM/PK

Michael Tuke will ~heck whether we have registered "Australian Open Systems Users Group" as a
trading name.

Action : MT

Moved (SM/GH) that the Secretary’s Report be accepted. Carried.

Treasurer’s Report

Frank Crawford reported:

Income & Expense accounts for the tinancial year to date and Balance sheet as at 9/12/91 are
attached. The final contribution from AUUG’91 has yet to be added to these reports (see below).

$120,000 of our bank balance has now been transferred to a cash management account, reducing
the cheque account balance to just over $23,000 to cover operational costs.

Michael Tuke will continue to follow up clarification of AUUG’s tax-exempt status. The issue
currently rests in the hands of the Australian Tax Office.

Action: MT

5.4 Frank Crawford will prepare a budget by the next meeting.

Action: FC

5.5 ACMS will be asked to start and maintain a register of AUUG assets.

Moved (RJ/MT) that the Treasurer’s Report be accepted. Carried.

Action: RJ/WF

6. AUUGN Editor’s Report

As the AUUGN Editor was not present, there was no formal report. Frank Crawford reported on
behalf of Jagoda Crawford that Vol. 12 issue 4/5 was distributed about a month ago and that issue
6 should be mailed shortly after the end of the year.

AUUGN 73 Vol 12 No 6

7. Summer Conferences

7.1 Glenn Huxtable tabled a list of the planned AUUG Summer Conferences in Perth, Adelaide,
Melbourne, Hobart, Sydney, Canberra, Brisbane and Darwin, with contact details of their
respective organisers. See attached.

The following two motions were proposed (GH/MT) and carried.

7.2 AUUG will provide each organiser with an initial cash float, not to exceed $500, for which the
organiser must keep accounts. AUUG will also provide additional support to underwrite each
Summer Conference up to $5000 to cover air-fares and up-front conference costs, with the
expectation of recovering most if not all of that figure.

7.3 AUUG will open a separate "Summer Conference" bank account. Organisers will be given
triplicate deposit books and Bankcm’d transaction stationery. ACMS will account for transactions
on this account and AUUG will pay bills authorised by the organisers.

Action: FC

7.4 Glenn Huxtable will request feed-back forms to be completed by all Summer Conference
participants so that we can ensure that we are addressing members’ needs.

Action: GH

8. Network

8.1 It was agreed that as a principle, AUUG will seek to promote easy access by members to the
network, that we should favourably consider proposals to that end from any interested party, and
that we would consider some form of financi~d support such as loans if appropriate.

8.2 Bob Kummerfeld of MHS outlined a possible service that MHS could provide. It would be a
message transfer service to the Internet, initially in Sydney and possibly in Melbourne. Charges
would be of the order of $8 per hour connect time, and there could be a discount for AUUG
members. MHS could also offer an installation and support service for users who require that.

A service in Melbourne would require purchase of hardware, modems, software and lines. Some
support from AUUG for this could help get it started.

The committee generally supported the idea, and asked Bob Kummerfeld to submit a detailed
proposal before the next meeting.

8.3 Glenn Huxtable agreed to talk to Dialix in Perth about a similar service there.

Action: GH

8.4 Regarding AARNET, it was agreed that we would offer a $100 discount on next year’s AARNET
registration fee to those organisations who joined only in the last quarter of this year. Chris
Maltby will advise Wad Foda of which organisations are affected.

Vol 12 No 6 74 AUUGN

Action: CM

8.5 Hugh Irvine of connect.com.au presented an outline proposal for a commercial Intemet service.
The committee supported the idea and asked for a detailed proposal by the next meeting to cover

discounts available to AUUG members,

what publicity or other support AUUG should give.

9. Publicity matters.

9.1 Ellen Gubbins provided sets of press clippings showing the result of recent PR activity aimed at
raising AUUG’s profile.

9.2 Ellen Gubbins provided a design and quotation for the AUUG membership card. The cost of
2000 cards to be delivered in Janu~u’y is $1071.

Moved (PKiFC) that we approve this expenditure. Carried.

9.3 Ellen Gubbins presented two articles for "Open Forum", our future 6-monthly publication for the
general commercial/managerial user. It was decided that Ellen would request another article of a
slightly more technical nature from MHS.

9.4 Since no quote for this publication has formally been received or accepted by the committee
members present, Roll Jester will check to see what Pat Duffy had agreed to and obtain a copy of
Symmetry’s quote. He will then ask for a break-down of the cost into Editorial/writing and
print/production costs so that we can obtain an alternative quotation.

Action: RJ

9.5 A press release on the AUUG’92 Call for Papers was submitted by Symmetry and approved with
some amendments.

10. Symmetry proposal

10.1 Joe Watkins and Ellen Gubbins presented an outline proposal for a comprehensive "Management
Service" aimed primarily at marketing AUUG. The committee agreed to study the proposal and
decide on further action, if any, at the next meeting.

10.2 Symmetry’s presentation stimulated comments frown all present. Some of those comments are
recorded below for further discussion. Note that these point were not necessarily agreed.

* AUUG is at a cross-roads with respect to aims and services.

* We do need a comprehensive business plan to achieve our agreed goals.

* The costs envisaged by Symmetry are too high.

* We could use the existing infrastructure of ACMS and add a part-time marketing person.

AUUGN 75 Vol 12 No 6

* We should aim at wider coverage of UNIX users.

* We do need to raise AUUG’s profile further.

* We may need cross-organisational links - AUAOS, UIAMG, OSF etc.

* We may need to advertise more.

* We should support local Chapters.

* We could run local ad hoc seminars when speakers and opportunities present themselves, to
serve the local user communities.

* We must never lose sight of the needs of the technically oriented membership.

* Our focus should be on member benefits and services, not on numbers and revenue.

* We should concentrate on doing better what we do now conferences, AUUGN etc. - and maybe
pay an publishing organisation to produce AUUGN.

10.3 Peter Karr will arrange a survey of all members and other AUUG delegates to obtain formal feed-
back on AUUG’91 and on members’ expectations.

Action: PK

10.4 Each committee member present agreed to write a brief statement on key AUUG aims and
member benefits, and circulate these by e-mail for discussion at the next meeting.

Action: All

11. AUUG’91

11.1 Wael Foda presented the final report of the AUUG’91 conference and exhibition - see attached*.
The event was an over-all success, with 499 conference registrations. The exhibition was
significantly larger than ever before, 1902 square metres of space having been sold (vs 1131 last
year), to 66 exhibitors (vs 40 in 1990). A total of 4463 visitors passed through the show, over 3.5
times last year’s count.

11.2 The contribution from the exhibition was $99,572, well up on last year’s $60,227. However, due
to significantly increased Conference costs, the net contribution to AUUG from these events was
down to $15,787, plus another $12,625 yet to be collected. After deducting costs incurred directly
by AUUG, particularly for the AUUG stand at the exhibition, the result was a rough break-even.
By contrast, previous years’ events have produced significant contributions to the organisation,
although the amount of that net contribution has been declining.

12. AUUG’92

12.1 The plan for AUUG’92 will address the criticisms made of AUUG’91, especially the concern
about the blatant "commercialism" or attempts at sales pitches in some of the vendors’
presentations.

* Report too large to include here. Anyone interested should contact the Secretary.

Vol 12 No 6 76 AUUGN

12.2 In the light of the AUUG’91 results, we must plan to reduce the expenditure for AUUG’92. Wael
Action : WF

Foda will present a budget to the next meeting.

12.3 Frank Crawford agreed to contact Stephen Prince to verify that Stephen has accepted the
AUUG’92 programme responsibility.

Action: FC

12.4 The primary exhibition space is sold at this stage.

13. Chapters

13.1 Rolf Jester indicated that Ursula Purnell-Webb, for~ner DECUS Board member, and responsible
for DECUS’s Local User Groups, would be available to consult on how to develop effective local
chapters. Her travel costs from Canberra would have to be reimbursed. It was agreed that Rolf
Jester should make tentative arrangements for her to spend time with us at a future meeting and to
inform the committee of details.

Action: RJ

13.2 We agreed that, after such consultation, we would set out objectives for Chapters and delegate the
task to a sub-committee which will involve members in the local areas in the process.

14. Other items

14.1 Rolf Jester has received a request from GEC Alsthom for use of our membership list for a
mailing. This will be referred to ACMS.

Action: RJ

14.2 Rolf Jester has received a request from a member that we start a database of job vacancies as a
service to members seeking employment. It was agreed that we would not be able to provide such
a service effectively.

15. Next Meetings

Monday 20 January 1992.
Friday 27 March 1992.
Monday 18 May 1992.

Action: RJ

Meeting closed at 5:00 pm.

AUUGN 77 Vol 12 No 6

AUUG Membership Categories
Once again a reminder for all "members" of

AUUG to check that you are, in fact, a member,
and that you still will be for the next two
months.

There are 4 membership types, plus a
newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member

Honorary Life Member

Institutional memberships are primarily
intended for university departments, companies,
etc. This is a voting membership (one vote),
which receives two copies of the newsletter.
Institutional members can also delegate 2
representatives to attend AUUG meetings at
members rates. AUUG is also keeping track of
the licence status of institutional members. If, at
some future date, we are able to offer a software
tape distribution service, this would be available
only to institutional members, whose relevant
licences can be verified.

If your institution is not an institutional
member, isn’t it about time it became one?

Ordinary memberships are for individuals.
This is also a voting membership (one vote),
which receives a single copy of the newsletter.
A primary difference from Institutional
Membership is that the benefits of Ordinary
Membership apply to the named member only.
That is, only the member can obtain discounts an
attendance at AUUG meetings, etc. Sending a
representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time
students at recognised academic institutions.
This is a non voting membership which receives
a single copy of the newsletter. Otherwise the
benefits are as for Ordinary Members.

Honorary Life Membership is not a
membership you can apply for, you must be
elected to it. What’s more, you must have been
a member for at least 5 years before being
elected.

It’s also possible to subscribe to the
newsletter without being an AUUG member.
This saves you nothing financially, that is, the
subscription price is greater than the membership
dues. However, it might be appropriate for
libraries, etc, which simply want copies of
AUUGN to help fill their shelves, and have no
actual interest in the contents, or the association.

Subscriptions are also available to members
who have a need for more copies of AUUGN
than their membership provides.

To find out if you are currently really an
AUUG member, examine the mailing label of
this AUUGN. In the lower right comer you will
find information about your current membership
status. The first letter is your membership type
code, N for regular members, S for students, and
I for institutions. Then follows your
membership expiration date, in the format
exp=MM/YY. The remaining information is for
internal use.

Check that your membership isn’t about to
expire (or worse, hasn’t expired already). Ask
your colleagues if they received this issue of
AUUGN, tell them that if not, it probably means
that their membership has lapsed, or perhaps,
they were never a member at all! Feel free to
copy the membership forms, give one to
everyone that you know.

If you want to join AUUG, or renew your
membership, you will find forms in this issue of
AUUGN. Send the appropriate form (with
remittance) to the address indicated on it, and
your membership will (re-)commence.

As a service to members, AUUG has
arranged to accept payments via credit card.
You can use your Bankcard (within Australia
only), or your Visa or Mastercard by simply
completing the authorisation on the application
form.

Vol 12 No 6 78 AUUGN

AUUG incorporated
Application for institutional Membership
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of UNIX System Laboratories, Incorporated

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Foreign applicants please send a bank draft drawn
on an Australian bank, or credit card authorisation,
and remember to select either surface or air mail.

This form is valid only until 31st May, 1992

.. does hereby apply for
I-I New/Renewal* Institutional Membership of AUUG $325.00

1-1 International Surface Mail $ 40.00

I--I International Air Mail $120.00

Total remitted

Delete one.

AUD$
(cheque, money order, credit card)

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from rime
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter; and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote. in:. AUtJG
elections, and other ballots as required.

Date: / / Signed"

Title:
El Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: ..

Address: ..
Phone: ...(bh)

... (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

to my/our [] Bankcard V] Visa [SJ Mastercard.
..................... . Expiry date: /

Name on card:
Office use only:
Chq : bank

Date: / /
Who:

bsb
$

a/c #

Signed:

Please complete the other side.

CC type ~ V#

Member#

AUUGN 79 Vol 12 No 6

Please send newsletters to the following addresses:

Name: Phone: .. (bh)

Address: .. (ah)

Net Address: ..

Name:
Address:

Phone" (bh)
.. (ah)

Net Address" ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if
these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last me~nbership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD
binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

[] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

Other (Indicate which) ...

Vol 12 No 6 80 AUUGN

Application Ordinary, or S udent, Membership
 us ralian UNiX" systems Users’ Gr u .

*UNIX is a registered trademark of UNIX System Laboratories, Incorporated

To apply for membership of the AUUG, complete this form, and return it with
payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Please don’t send purchase orders -- perhaps
your purchasing department will consider this form
to be an Invoice.
¯ Foreign applicants please send a bank draft
drawn on an Australian bank, or credit card
authorisation, and remember to select either
surface or air mail.

This form is valid only until 31st May, 1992

I,

I-I Renewal/New* Membership of the AUUG $78.00

... do hereby apply for

$45.00

$20.00
$60.00

E] Renewal/New Student Membership

I--1 International Surface Mail

I-] International Air Mail

Total remitted

Delete one.

(note certification on other side)

(note local zone rate available)

AUD$
(cheque, money order, credit card)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.

Date: / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Namo: .. Phone: ...(bh)

Address: ...(ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $
Account number:

~ to my [] Bankcard r-q Visa IS] Mastercard.
¯ Expiry date: /

Name on card:

Office use only:

Chq : bank

Date: / /

Who:

bsb

$
a/c

CC type

Signed:

Member#

AUUGN 81 Vol 12 No 6

Student Member Certification (to be completed by a member of the academic staff)

I, ...certify that

... (name)

is a full time student at ...(institution)

and is expected to graduate approximately / / .

Title: Signature:

Vol 12 No 6 82 AI_VtSGN

Application for Newsletter Subscription
=

Aus.tral=an UNIX systems. Users’ Group.
UNIX is a registered trademark of UNIX System Laboratories, Incorporated

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
PO Box 366
Kensington NSW 2033
Australia

o Please don’t send purchase orders -- perhaps your
purchasing department will consider this form to be an
invoice.
¯ Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
o Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

This form is valid only until 31st May, 1992

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name" Phone: ... (bh)

Add re s s: (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose"

I--1 Subscription to AUUGN

[S] International Surface Mail

FI International Air Mail

Copies requested (to above address)

Total remitted

$ 90.00

$ 20.00

$ 60.00

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

~tomy D Bankcard D Visa[--1 Mastercard.
¯

Signed:

Expiry date: /

bsb - a/c

CC type

Subscr#

Please charge $
Account number:

Name on card:
Office use only:

Chq: bank

Date: / / $

Who:

AUUGN 83 Vol 12 No 6

AUG
Notification o~ Change o~ Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of UNIX System Laboratories, Incorporated

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
PO Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date." / /

Who: Memb#

Vol 12 No 6 84 AUUGN

