AN A FrLBLAR Y

ISSN 1035-7521

 Austalan UNIX syt User Group Newsieter

- ~ February 1992

Registered by Australia Post, Publication Number NBG6524

The AUUG Incorporated Newsletter

Volume 13 Number 1

February 1992

CONTENTS
AUUG General Information
Editorial
AUUG Institutional Members « . .
President’'sReport '

Appointment of AUUG Business Manager Liz Fraumann

AUUG’92 Preliminary Announcement and Call for Papers

Open System Publications
SESSPOOLE . . . + « & « « o & o« &
The WAUG Column« . .

Canberra AUUG Chapter- User meeting

AUUG Summer’92 Technical Conference report Adrian Booth

ACSnetSurvey« « o . .
A New C Complier Ken Thompson .
A UNIX Task Broker = Andrew McRae .
The Hunting of the Open System Rolf Jester .
Life, the Universe and Open Systems Rolf Jester
From ,login - Volume 16, Number 5 . .

An Update on UNIX-Related Standards Activities
From ;login - Volume 16, Number 6

An Update on UNIX-Related Standards Activities
AUUG Membership Categories
AUUGForms

AUUGN 1

e

°

. o ° e ° . . ° ° 19

Vol 13 No 1

o

Copyright © 1992 AUUG Incorporated. All rights reserved.

AUUGN is the journal of AUUG Incorporated, an organisation with the aim of promoting knowledge
and understanding of Open Systems including but not restricted to the UNIX* system, networking,
graphics, user interfaces and programming and development environments, and related standards.

Copying without fee is permitted provided that copies are made without modification, and are not made
or distributed for commercial advantage. Credit to AUUGN and the author must be given. Abstracting
with credit is permitted. No other reproduction is permitted without prior permission of AUUG
Incorporated.

* UNIX is a registered trademark of UNIX System Laboratories, Incorporated

Vol 13 No 1 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

Membership and General Correspondence

All correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033,
AUSTRALIA

AUUG Business Manager

Liz Fraumann,
P.O. Box 366,
Kensington, N.S.W. 2033,
AUSTRALIA

AUUG Executive

President Pat Duffy
pzd30@juts.ccc.amdahl.com
Amdahl Pacific Services Pty. Ltd.
1 Pacific Highway
North Sydney NSW 2000

Secretary Rolf Jester
rolf jester@sno.mts.dec.com
Digital Equipment Corporation
(Australia) Pty. Ltd.
P.O. Box 384
Concord West NSW 2138

Committee Andrew Gollan
Members adjg@softway.sw.oz.au
Softway Pty. Ltd.
79 Myrtle Street
Chippendale NSW 2008

Peter Karr

Computer Magazine Publications
1/421 Cleveland Street

Redfern NSW 2016

Scott Merrilees

Sm@ bhpese.oz.au

BHP Information Technology
P.O. Box 216

Hamilton NSW 2303

AUUGN 3

Vice-President

Phone: (02) 361 5994
Fax: (02) 332 4066
Email: auug@munnari.oz.au

Phone: (02) 953 3542
Fax: (02) 953 3542
Email: eaf@softway.sw.oz.au

Chris Maltby
chris@softway.sw.oz.au
Softway Pty. Ltd.

79 Myrtle Street
Chippendale NSW 2008

Frank Crawford
frank@atom.ansto.gov.au

Australian Supercomputing Technology
Private Mail Bag 1

Menai NSW 2234

Glenn Huxtable
glenn@cs.uwa.oz.au

University of Western Australia
Computer Science Department
Nedlands WA 6009

Michael Tuke
mjt@anl.oz.au

ANL Ltd.

432 St. Kilda Road
Melbourne VIC 3004

Vol 13 No 1

AUUG General Information

Next AUUG Meeting _
The AUUG’92 Conference and Exhibition will be held from the 8th to the 11th of September, 1992, at
the World Congress Centre, Melbourne. See later in this issue for Preliminary Announcement and Call

for Papers.

Vol 13 No 1 4 AUUGN

ARE YOU
SERIOUS

ABOUT OPEN
SYSTEMS?

You may need the latest X/Open
spec on the OSI- Abstract- Data
Manipulation API, or perhaps CPI-
C, X/ Open’s specification defining
a programming interface that
allows X/Open compliant systems
to communicate with systems
implementing SNA Logical Unit

type 6.2?

There are dozens of important
publications avadilable from
X/Open, the organisation leading
open systems standardisation.
The full list is available from
X/Open Publications in Australia.

BLICATIONS

P.0. BOX 475, Ringwood, Australia 3134
43 Cralg Rd, Donvale, Australia 3111

Tel: 61 3 879 7412

Fax: 61 3 879 7570

AUUG Newsletter

Editorial
Wellcome to AUUGN Volume 13 Number 1, the first for 1992.

By the time this reaches members, most of the AUUG summer technical conferences will be over. In
this issue we have a report by Adrian Booth on the Perth meeting. Hopefully in the next issue we will
have a report on most of the other summer meetings.

The next major activity is the Winter Conference. The call for papers has been included in this issue.

As most members will be aware, Liz Fraumann has been appointed AUUG's Business Manager. I have
included the press release of her appointment.

Papers include, A New C compiler from the Plan 9 series, a paper by Andrew McRae on a UNIX Task
Broker and two articles by Rolf Jester which originally appeared in DECUS News, but are just as useful
to AUUG members (if not more so0).

Jagoda Crawford

AUUGN Correspondence
All correspondence regarding the AUUGN should be addressed to:-

AUUGN Editor

PO Box 366
Kensington, NSW, 2033
AUSTRALIA

E-mail: auugn@munnari.oz.au

Phone: +61 2 543 3885
Fax: +61 2 543 5097

AUUGN Book Review Editor

The AUUGN Book Review Editor is Dave Newton (dave@teti.ghtours.oz.au). Contact him for more
details.

Contributions

The Newsletter is published approximately every two months. The deadlines for contributions for the
next issues are:

Volume 13 No2 Friday 17th April
Volume 13 No3 Friday 29th May
Volume 13 No 4 Friday 31st July
Volume 13 No 5 Friday 25th October
Volume 13 No 6 Friday 27th November

Contributions should be sent to the Editor at the above address.

I prefer documents to be e-mailed to me, and formatted with troff. I can process mm, me, ms and even
man macros, and have tbl, eqn, pic and grap preprocessors, but please note on your submission which
macros and preprocessors you are using. If you can’t use troff, then just plain text or postscript please.

Hardcopy submissions should be on A4 with 30 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Vol 13 No 1 6 AUUGN

Advertising

Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. Advertising rates are $300 for the first A4 page, $250 for a second
page, and $750 for the back cover. There is a 20% discount for bulk ordering (ie, when you pay for
three issues or more in advance). Contact the editor for details.

Mailing Lists

For the purchase of the AUUGN mailing list, please contact the AUUG secretariat, phone (02) 361
5994, fax (02) 332 4066.

Back Issues

Various back issues of the AUUGN are available. For availability and prices please contact the AUUG
secretariat or write to:

AUUGN Inc.

Back Issues Department
PO Box 366
Kensington, NSW,.2033
AUSTRALIA '

Acknowledgement

This Newsletter was produced with the kind assistance of and on equipment provided by the Australian
Nuclear Science and Technology Organisation.

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of AUUG Incorporated, its
Newsletter or its editorial committee.

AUUGN 7 Vol 13 No 1

AUUG Institutional Members as at 05/03/1992

AN.U.

AAII

Adept Business Systems Pty Ltd

Adept Software

AIDC L.

Alcatel Australia

Amdahl Pacific Services Pty Ltd

Andersen Consulting

ANSTO

ANZ Banking Group/Global
Technical Services

Apple Computer Australia

Apscore International Pty Ltd

Ausonics Pty Ltd

Australian Airlines Limited

Australian Bureau of Agricultural and
Resource Economics

Australian Bureau of Statistics

Australian Eagle Insurance Co. Ltd

Australian Electoral Commission

Australian Information Processing
Centre Pty Ltd

Australian National Parks &
Wildlife Service

Australian Taxation Office

Australian Technology Resources (ACT)

Australian Wool Corporation

Avid Systems Pty Ltd

Bain & Company

Ballarat Base Hospital

BHP CPD Research & Technology Centre

BHP Information Technology

BHP Minerals

BHP Research - Melbourne Laboratories

BICC Communications

Bond University

Burdett, Buckeridge & Young Ltd.

Bureau of Meteorology

Byme & Davidson Holdings Pty Ltd

CISR.A.

Capricorn Coal Management Pty Ltd

CITEC

Co-Cam Computer Group

Codex Software Development Pty. Ltd.

Cognos Pty Ltd

Colonial Mutual

Com Tech Communications

Commercial Dynamics

Communica Software Consultants

Computechnics Pty Ltd

Computer Power Group

Computer Science of Australia Pty Ltd

Computer Software Packages

Corinthian Engineering Pty Ltd

Vol 13 No 1

CSIRO
Curtin University of Technology
Cyberscience Corporation Pty Ltd
DMP Software Pty Ltd
Data General Australia
Deakin University
Defence Housing Authority
Defence Service Homes
Dept. of Minerals & Energy (NSW)
Dept. of Transport
Dept. of Treasury & Finance
Dept. of Agricultural & Rural Affairs
Dept. of Conservation & Environment
Dept. of Defence
Dept. of Foreign Affairs & Trade
Dept. of LTR.
Dept. of The Premier & Cabinet
Dept. of Treasury
Digital Equipment Corp

(Australia) Pty Ltd
DMP Software Pty Ltd
Duesburys Information Technology

Pty Ltd
ESRI Australia Pty Ltd a
Eastek Pty Ltd
EDS (Australia) Pty Ltd
Electronics Research Labs
Emulex Australia Pty Ltd
ESRI Australia Pty Ltd
Expert Solutions Australia
FGH Decision Support Systems Pty Ltd
Financial Network Services
First State Computing
Fremantle Port Authority
Fujitsu Australia Ltd
G. James Australia Pty Ltd
GEC Alsthom Australia
Geelong and District Water Board
Genasys II Pty Ltd
General Automation Pty Ltd
George Moss Ltd
GIO Australia
Hamersley Iron Pty. Limited
Harris & Sutherland Pty Ltd
Hermes Precisa Australia Pty Ltd
Highland Logic Pty Ltd
Honeywell Ltd
LB.A.
IBM Australia Ltd
Iconix Pty Ltd
Infonetics
Information Technology Consultants
Insession Pty Ltd
Internode Systems Pty Ltd

AUUGN

AUUG Institutional Members as at 05/03/1992

Ipec Management Services
James Cook University of
North Queensland
Labtam Australia Pty Lid
Land Information Centre
Leeds & Northrup Australia Pty. Ltd
Macquarie University
Mayne Nickless Courier Systems
McDonnell Douglas Information
Systems Pty Ltd
McIntosh Hamson Hoare Govett Lid
Medical Benefits Funds of Australia Ltd
Metal Trades Industry Association
Mincom Pty Ltd
Minenco Pty Ltd
Ministry of Consumer Affairs
Ministry of Housing & Construction (VIC)
Mitsui Computer Limited
Motorola Computer Systems
Multibase Pty Lid.
NEC Information Systems Australia Pty Ltd
Nucleus Business Systems
Office of the Director of
Public Prosecutions
Olivetti Australia Pty Ltd
OPSM
Oracle Systems Australia Pty Ltd
Parliament House
Paxus
Philips PTS
Port of Melbourne Authority
Prime Computer
Public Works Department
Pulse Club Computers Pty Ltd
Pyramid Technology
Q.H. Tours Limited
Queensland Department of Mines
Queensland University of Technology
Radio & Space Services
RMIT
SBC Dominguez Barry
Sculptor 4GL+SQL
SEQERB Control Centre
Shire of Eltham
Silicon Graphics Computer Systems
Snowy Mountains Hydro-electric Authority
Software Development International Pty Ltd
Softway Pty Lid
Sony (Australia) Pty Ltd
South Australian Lands Dept.
Sphere Systems Pty Ltd
St Vincent's Private Hospital
Stallion Technologies Pty Ltd
Stamp Duties Office

AUUGN

Standards Aunstralia

State Bank of NSW

Steedman Science and Engineering

Sugar Research Institute

Swinburne Institute of Technology

Sydney Ports Authority

Systems Union Pty Ltd

Tasmania Bank

Tattersall Sweep Consultation

Telecom Australia

Telecom Australia Corporate Customer

Telecom Network Engineering Computer
Support Service

Telectronics Pty Ltd

The Anti-Cancer Council of Victoria

The Far North Qld Electricity BOard

The Fulcrum Consulting Group

The Opus Group

The Preston Group

The Roads and Traffic Authority

The Southport School

The University of Western Australia

Toshiba International Corporation Pty Ltd

Tower Computing Services

Tower Technology Pty Ltd

Tradelink Plumbing Supplies Centres

Turbosoft Pty Ltd

TUSC Computer Systems

UuccQ

Unidata Australia

Unisys

University of Adelaide

University of Melbourne

University of New South Wales

University of Queensland

University of South Australia

University of Sydney

University of Tasmania

University of Technology

UNIX System Laboratories

Unixpac Pty Lid

Vicomp

VME Systems Pty Ltd

Wacher Pty Ltd

Wang Australia Pty Ltd

Water Board

Westfield Limited

Wyse Technology Pty Ltd

Vol 13 No 1

AUUG President’s Report

Dear AUUG Member,

The last report in AUUG’N, coupled with the AUUG column in Open Systems Review magazine, has
resulted in three postings on the net, a disappointing result both by volume and lack of constructive
criticism or suggestions.

On the other hand, there’s been plenty of general criticism - invective even. One posting (from someone
who is not a current member) hopes that "we" can "wrest control of AUUG back from the marketing
types who dominate it..." and goes on to unearth a conspiracy by vendors to "get some of their staff
involved, gradually change the focus of the group, and before too long you have created a marketing
group that meets your requirements *and* that already has hundreds of members".

I don’t believe it’s any secret that I, along with a number of other committee members, am employed by
a vendor. I don’t think it’s any secret, either, that a vendor organisation actually makes quite a sacrifice
in terms of time and money to support an employee who is on the committee. I'm not sure what
benefits accrue to a vendor organisation through this involvément; what I am certain of is that EVERY
person who has been involved with the committee during the five years that I have has been 100%
dedicated to the aims of the organisation and the needs of the members, and has put immense personal
effort into AUUG.

The management committee regards AUUG’s directions as its most serious piece of business and would
like to hear the views of EVERY member, but suggestions for improvement would be much more useful
than us/them criticism.

We've maintained that one organisation can suit the needs of all members. This doesn’t necessarily
imply that every event will suit every member, but that within the context of our aims, membership and
financial means, we can provide a sufficient range of benefits from which members can choose.

The decision to make changes to AUUG, to become involved in marketing both the organisation and its
events, and to try to attract new members, was based on the need to increase revenue so that member
benefits could be increased. We've had lively discussions about the "chicken and egg" nature of this
conundrum, but I think there’s been clear consensus all along that what we were doing was in
everyone’s interests. Nothing’s taken place without the membership being informed (admittedly, at
times, through poor channels). And, remember, the composition of the committee is still very heavily
weighted in favour of "traditional” members.

I believe (as previously stated) that the last AGM clearly gave us the mandate to continue the new
directions. At that time, I reported to the membership exactly what we had been doing, planned to do,
and why, and there was not only no disagreement, but what seemed to be an air of general approval.

We don’t want to disenfranchise ANY AUUG member, and we are investing an immense amount of

time, energy and emotion into this entire issue, Please, could we hear from the silent majority as well
as what seems to be the vocal minority?

Vol 13 No 1 10 AUUGN

February 25th, 1992

ELIZABETH FRAUMANN APPQOINTED BUSINESS MANAGER AT AUUG

The Australian Open Systems Users Group, (AUUG Inc.) have appointed Elizabeth
Fraumann as their Business Manager. The newly created position will see Fraumann
established as the main contact point for AUUG and handling the general business
of the orgc'niscfion‘ Fraumann has over ten years experience in marketing. sales and
human resources with Open Systems organisations in the United States. She brings
this knowledge., plus a good knowledge of the Open Systems market and its key
contiroutors, to her role with AUUG.

A major project for Fraumann will be AUUG '92, the maijor, annual exhibition and
conference of the Australian Open Systems Users Group. This year to be held at the
Word Congress Centre in Melboume, September 8 - 11.

For further information regarding this press release please contact:
Liz Fraumecnn

Business Manager, AUUG

Telephone or Fax: +61 2 953 3542

or
Ellen Gubbins

AUUG Media Ligison
Telephone: +61 2973 1992

AUUGN 11 Vol 13 No 1

AUUG '92 World Congress Centre, Melbourne, Australia, September 8-11

1992 Preliminary Announcement and Call for Papers
AUUG, Inc., forum for Open Systems Users Presents:
"Maintaining Control in an Open World."
How do you "maintain control” with open systems?
...Stories From the Front...

"I've been dealing with company ‘X' since I started this business.
How do I move to open systems and not have to completely retool my office?"

"I made Perth 'talk’ TCP/IP to South East Asia!”

"Changing Corporate EDP Strategy to Open Systems"
"Changing Corporate EDP Strategy from Open Systems"

"WAN implementation overview... who holds the key?"
"Who is in control?... The Vendors?... The 'Standards’ Organisations?... The Customers?"

"Who is steering 'SS Open Systems' ?"
"Who is driving computer PR?"

"Communications with two carriers... AOTC & OPTUS... and these are my expenences..."

Mission critical appIications and environments, in particular system and
network management and high reliability/availability systems are at stake.
Everyone wants answers!

The management team on,"How is our bottom line going to be affected;

The System Administrator who has just been asked to keep 10 'Open Systems' strung
together with no down time; and

Of course, the budding "Guru" who continues to amaze everyone with innovations and tools
to go beyond our dreams for tomorrow.

* Quality,

* Impact of standards and standardization,

* Commercialisation of UNIX

* Analysis of network/host security issues and
* Protection of current and future investments.

AUUG '92 will explore "maintaining control with open systems” from all aspects.

Vol 13 No 1 12 AUUGN

Events:

AUUG '92 will be a four day conference, commencing September 8, 1992. The first day will
be devoted to tutorial presentations, followed by three days of papers, work-in-progress
sessions and BOFs.

Tutorials:

Provisions for two full-day tutorials and up to eight half-day tutorials have been made. These
sessions, typically in a lecture format, are targeted to educate the audience and arm them with
new and innovatdon "how to" lessons. The speakers selected to present the tutorials will
receive 40% portion of the total tutorial fee their session draws, in addition to receiving a free
conference registration. Please submit tutorial abstracts, along with preference for a half-

or full-day slot to address below.

Papers:

AUUG '92 provides a dual Technical and Commercial track for the afternoon presentations.
To share your new and innovative details of implementation, ‘how to', and similar areas
subrnit your abstract for the technical track. We are also interested in your experiences, ‘'why',
'so what', strategic issues, and the like. If your topic better fits these areas submit your
abstract for the Commercial track. Many subjects are equally interesting and would benefit
attendees being presented from different perspectives. If you feel your topic has both
technical and commercial interest value and could be presented twice with differing emphasis,
your paper will receive priority from the committee and a special recogniton from AUUG if
it is accepted. The above should not, of course, discourage papers which are either more
specifically targeted or are appropriate for both audiences at once.

Prize for the Best Student Paper:

A cash prize of $500 will be awarded for the best paper submitted by a full-time student at an
accredited tertiary education institution..

Work-in-Progress Sessions:

In order to schedule work-in-progress sessions we will need some idea of the number of
people interested in making a 10 to 15 minute presentation. Please mail expressions of
interest to the committee at the address below.

Birds-of-a-Feather Sessions (BOFs):

Are you interested in hearing side by side product comparison, the global affect of computing,
AARNET, or other controversial topics? At the end of each presentation day, one hour tme
slots for BOFs will be available. We distinguish two types of BOF; general interest and
vendor sponsored. Please contact the Program Committee if you would like to organis¢ a
Birds-of-a-Feather Session. There may be some facilities charge to vendor sponsored events.
Speaker Incentives:

Tutorial presenters will receive 40% of their total attendee draw and a free conference
registration. Presenters of papers are afforded free conference registragon.

Slide Preparation Offer:

We understand most presenters have access to slide/overhead generating equipment today.
For those presenters who do not have this resource available, AUUG will again offer a slide
production service. Final slide information will be rcqmrcd at least 4 weeks prior to the
conference to partake in this service. Please note presenters meeting the 4 week deadline will
be afforded a proof cycle before final slide generation.

Form of Submissions:
Please indicate whether your submission is relevant to the technical or commercial audiences,
or both. In either case, submissions are required to be in the form of an abstract and an
outline. Please provide sufficient detail to allow the committee to make a reasoned decision
about the final paper; of course a full paper is also perfectly acceptable. A submission should
be from 2-5 pages and include:
1. Author name(s), postal addresses, telephone numbers, bio, and e-mail addresses.
2. Abstract: 100 words
3. Outline: 1-4 pages giving details of the approach or algorithms pursued.
4. References to any relevant literature
5. Time needed for the presentation. Most presentations will be for 30 minutes including a 5
minute question/answer time, although 1 hour time slots may be made available.
6. Audio-visual requirements

+ 35 mm slides are preferred, however, overheads will be accepted.

+ Hand written or typewriter generated overheads will not be accepted.

Acceptance:

Authors whose submissions are accepted will receive instructions on the preparation of final
papers for inclusion in the conference proceedings, and the format requirements for slides.

Vol 13 No 1 14 AUUGN

@

Relevant Dates:

Abstract and outlines due: April 30, 1992
Notifications to authors: May 15, 1992
Final Papers due: July 15, 1992

Please submit one hard copy and one electronic copy (if possible to the address below):

AUUG '92 Program
P.O. Box 366
Kensington, NSW 2033

e-mail: AUUG92@softway.sw.oz.au

Phone: +61 2 361-5994
Fax: +61 2 332-4066

Please be sure to include your postal code and electronic mail addresses in
all correspondence.

Program Committee:

Chair: Peter Karr - CMP Publications
Ian Hoyle - BHP Research Labs
Robert Elz - Melbourne University
Liz Fraumann - AUUG

AUUGN 15 , Vol 13 No 1

Open System Publications

As a service to members, AUUG will source Open System Publications from around the world. This
includes various proceeding and other publications from such organisations as

AUUG,

Uniform,

USENIX,

EurOpen,

Sinix,
etc.
For example:
EurOpen Proceedings USENIX Proceedings

Dublin Autumn’83 C++ Conference Apr'9l
Munich Spring’90 UNIX and Supercomputers Workshop Sept’88
Trosmo Spring’90 Graphics Workshop IV Oct’87

AUUG will provide these publications at cost (including freight), but with no kandling charge. Delivery
times will depend on method of freight which is at the discretion of AUUG and will be based on both

freight times and cost.

To take advantage of this offer send, in writing, to the AUUG Secretariat, a list of the publications,
making sure that you specify the organisation, an indication of the priority and the delivery address as

well as the billing address (if different).

AUUG Inc.
Open System Publication Order
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

Fax: (02) 332 4066

Vol 13 No 1 16

AUUGN

ESSPOOHE,

SESSPOOLE is the South Eastern Suburbs Society for Programmers Or Other Local
Enthusiasts. That’s the South Eastern Suburbs of Melbourne, by the way.
SESSPOOLE is a group of programmers and friends who meet every six weeks or so
for the purpose of discussing UNIX and open systems, drinking wines and ales (or
fruit juices if alcohol is not their thing), and generally relaxing and socialising over
dinner.
Anyone who subscribes to the aims of SESSPOOLE is welcome to attend
SESSPOOLE meetings, even if they don’t live or work in South Eastern Suburbs. The
aims of SESSPOOLE are:
To promote knowledge and understanding of Open System; and to promote
knowledge and understanding of Open Bottles.
SESSPOOLE is also the first Chapter of the AUUG to be formed, and its members
were involved in the staging of the AUUG Summer’90 and Summer’91 Melbourne
Meetings.
SESSPOOLE meetings are held in the Bistro of the Oakleigh Hotel, 1555 Dandenong
Road, Oakleigh, starting at 6:30pm. Dates for the next few meetings are:

Thursay, 16 April 1992

Tuesday, 26 May 1992

Wednesday, 8 July 1992
Thursay, 20 August 1992

Hope we’ll see you there!

To find out more about SESSPOOLE and SESSPOOLE activities, contact either
Stephen Prince (ph. (03) 608-0911, e-mail: sp@Ilabtam.oz.au) or John Carey (ph.
(03) 587-1444, e-mail: john@Ilabtam.oz.au), or look for announcements in the news-
group aus.auug.

AUUGN 17 Vol 13 No 1

The WAUG Column

Welcome to what I intend to be a regular column on the machinations of WAUG, the Western Australian UNIX
systems Group. We have two major activities: a bimonthly newsletter and monthly meetings.

WAUG gets together at 6pm on the third Wednesday of each month. If we have a vendor-sponsored meeting it is
usually at the vendor’s premises; otherwise we meet at a pub or other venue that can provide drinks and nibbles.
We have a 4045 minute seminar, then we socialise until we get tired, which usually takes quite some time. 20 to
30 people usually attend - about a quarter of our members.

Cameron Ferstat <cferstat@sydvm1.vnet.ibm.com> currently has the unenviable job of Meeting Organiser. If you
would like to speak at WAUG you can email him or phone him on (09) 327 6659. Talks must be UNIX-related and
not thinly disguised sales pitches.

WAUG meetings attract a wide range of speakers and topics. In January the members did not throw tomatoes when
I spoke on "Why I Don’t Have a Filofax: time management tools using UNIX shells and perl” (mind you there
have been some rude remarks about perl). In March, Tandem provided refreshments and Peter Lloyd to tell us
about "Fault-Tolerant UNIX: Integrity and NonStop-UX".

In February our regular meeting was cancelled in favour of the AUUG Summer Technical Conference, which was a
great success both technically and socially. Congratulations to Alan Main, the organiser, and Major, the program
chair.

WAUG'’s newsletter is called YAUN (Yet Another UNIX Newsletter). Apart from the usual newsletter stuff, YAUN
encourages members to write UNIX-related articles and to review our meetings. Phil Sutherland has written about
the fun-and-games of carrying UNIX around the world on a portable machine. Adrian Booth has written several
things, including a column on UNIX tricks and traps.

If you’re interested in joining WAUG or contributing to YAUN, our address is PO Box 877, WEST PERTH WA
6005.

Janet Jackson <janet@cs.uwa.edu.au>

Canberra AUUG Chapter

Users meeting

The Canberra Chapter of AUUG (otherwise known as the Canberra Open Systems Users Group) will be holding a
meeting to discuss the dialup facility that we are currently setting up.

The idea of this facility is to provide email, electronic news, and public-domain source access to local members.
Many of the local members can’t get access to these facilities (at work) due to work-imposed restrictions.

The facility will be described, methods of access shown, and functionality displayed. The system will be set up for
6 months initially, and if popular this will be extended. If you are from the Canberra region, and are interested in
this system but can not make the meeting please RSVP your interest.

Topic: Canberra Dialup Unix Facility
When: Thursday April 30th
Time: 7:30 for 8pm
Where: Huxley Lecture Theatre
Huxley Building
Mills Road
ANU Campus
Canberra

RSVP: John Barlow, Secretary, work: (06) 2492930, fax: (06) 2492930, email: John.Barlow@anu.edu.au
(If you are not familiar with the ANU ask for a fax of the campus map, or a copy sent via the post).

John Barlow <John.D Barlow@anu.edu.au>

Vol 13No 1 18 AUUGN

AUUG Summer 92 Technical Conference - Pertht
Adrian Booth

The Perth AUUG Summer 92 Technical Conference (‘the Conference’) was a great success, and
attracted approximately 70 delegates.

The keynote talk, which was very well received, was ‘RTE and other tools for Software Quality
Assurance’ by Ken McDonell from Pyramid Technology. Many of the other talks related to different
aspects of UNIX network and/or system management.

The talks, in the order of presentation, were:
Ken McDonell RTE and other tools for Software Quality Assurance

Hooman Samini The role of UNIX in the management of distributed networks
Toivo Pedaste A quick look at SNMP

Craig Farrel Network Management Software

Hugh Irvine TCP/IP over ISDN

Ian Crawford An Information Strategy for the Network Manager
Janet Jackson Automating user administration with perl

Steve Landers A technology for UNIX data center management
Major Project GNU

I have not attempted to cover everything in each talk, but to extract enough of a summary of the
interesting points to give the flavour of each talk. Any errors in the summaries are, of course, mine and

not the speaker’s.

RTE and other tools for Software Quality Assurance
Ken McDonell, Pyramid Technology

(Ken’s talk stemmed from his interest (passion?) in performing meaningful benchmarks of multiuser
platforms. Ken was responsible for developing Pyramid Technology’s sscript product - which allows
realistic simulations of multiple concurrent users for benchmarking purposes - and has never lived down
writing MUSBUS. Ken's presentation related to extending sscripf’s mechanism - Remote Terminal
Emulation (RTE) - to Software Quality Assurance (SQA)).

The central aspects of SQA are functional correctness, robustness, and performance. Related techniques
that provide an illusion of quality include software ‘science’ metrics, code coverage analysis, proofs of
program correctness, and beta-release programs.

However, to do real SQA, the computer’s humanoid data input peripherals need to be modelled - batch
jobs and shell scripts do not emulate real software usage.

Ken defined the common SQA testing modes - unit and module tests, single- and multi-user performance
measurements, and capacity planning experiments - before discussing ways to perform cost-effective
SQA.

t Copyright (c) 1992, Adrian Booth Computing Consultants

AUUGN 19 Vol 13 No 1

Ken suggests that the cost of and delays in test development are a barrier to the coverage of the testing
procedures. Similarly, the cost of and delays in test execution are a deterrent to the frequency and scope
of validation,

The solution to this is to automate the process, which can be done in a ‘tool-rich’ environment that
maximises productivity. This leads to Ken’s claim:

UNIX-like environments and sophisticated RTE form the basis of extensive, cost-effective SQA.

What is wrong with traditional, batch-oriented SQA? For a start, some applications won’t work at all in
a batch environment: many of those that have a full-screen user interface, for example. Also, the
usefulness of batch-oriented SQA is limited due to input device independence and typeahead and input
buffering problems. The output may be date- and/or time-dependent. Exhaustive testing may require
non-determinism (variation) in input - this is difficult, and changes the output. The response time of the
application cannot be measured. It is difficult to generalise to multiple concurrent instances of the same
test. Finally, batch-oriented tests don’t use the concept of a typical workload, making them useless for
capacity planning.

RTE-based SQA, on the other hand, provides a complete hardware and software environment that
simulates the activities of multiple concurrent users. The simulation includes synchronisation between
‘keyboard’ input and system response, real-time delays for ‘think time’ and realistic typing rates, and no
artificial temporal correlation.

Aspects of the ‘Master Script’ that can be customised include the method used to establish the virtual
circuit (serial line, rlogin, telnet, ...), think times, loop control (iteration) and the input rate.

In conclusion, Ken posed the question:
‘Quality software - can we get there from here?’
and answered ‘Yes’ - but this requires:

* A dramatic reduction in the cost of test suite development, with special purpose tools built on general
purpose tools.

* Integration of robustness into the SQA process - non-determinism.

* Acceptance of performance as a quality measure (which leads to a need for performance and capacity
planning information in SQA).

* User knowledge and usage patterns should be ‘learnt’ in SQA tests.

Ken’s talk - like his keynote talk last year on benchmarking - was one of the best received talks at any
of the three Perth conferences to date. Everyone I spoke to would definitely like to see him return next
year.

The role of UNIX in the management of distributed networks
Hooman Samini, Oscom International

(Hooman’s brief talk was a pleasant break for those who were overwhelmed by Ken’s. Hooman gave an
introductory presentation on the OSI system management model, which fitted in well as the first of a
series of talks on network management).

The OSI system management model is a distributed application model, with a communication
architecture based upon the full seven OSI layers. Its data model comprises two objects: the rules for
defining OSI management information (the SMI: Structure of Management Information), and the set

Vol 13 No 1 20 AUUGN

of standard definitions which can be used and/or extended to form the Management Information Base
(MIB).
OsI splits system management applications into several fundamental types:

« Configuration

» Faults - receiving alarms and identifying alarm causes

« Accounting - charging and billing

« Performance

« Security
(Work on the last two types is ongoing).

Hooman then described how the functionality of several vendors’ network management software related
to the OSI model.

Hooman’s conclusions were that UNIX-based systems would be the network management systems of the
future, and that it was very important for network management to be performed on a distributed
management system, not a centralised one.

A quick look at SNMP
Toivo Pedaste, Winthrop Technologies

(Toivo gave another brief but informative introductory talk, this time on the Simple Network
Management Protocol).

SNMP is part of the Internet Management Framework, and is basically the equivalent of OSI's Common
Management Information Protocol (CMIP), or, specifically, CMIP over TCP/IP (CMOT).

The main goals in the design of SNMP - unlike most other networking standards coming into vogue
today - were that it should be simple and implementable.

SNMP sees the world as a set of variables. In particular, 2 network entity is basically just a sack of
these variables. -SNMP provides both polling (by the network manager) to get variable values and to

confirm that a node is up, and traps generated asynchronously by the network node and sent to the
management node.

This combination is referred to as trap-directed polling.

There are two types of variables: the standard set, which all TCP/IP nodes must support, and enterprise-
specific variables specific to a vendor (e.g. Cisco). All variables are effectively ASN.1 objects.

AUUGN 21 Vol 13 No 1

The initial MIB definition was extended to MIB2. This MIB supports these standard variable groups:

SYSTEM Describes the particular system (node).
INTERFACES ' Describes each network interface on the node.
AT Describes address translation being performed by the node.
IP IP protocol specifics, such as routing tables.
ICMP ICMP protocol specifics
TCP TCP protocol specifics
UDP UDP protocol specifics
EGP EGP protocol specifics
TRANSMISSION media-dependent items
SNMP Related to SNMP itself

SNMP is usually implemented as a synchronous send/request protocol using UDP over IP. However,
definitions also exist for IPX (Novell) and over OSL

There are five SNMP Message Types:

GET Manager requests specified variable(s) from agent
GET-NEXT Manager requests the variable that follows the previously specified variable(s)
SET Manager sets variables in agent
TRAP Agent sends an unsolicited message to the manager
GET-RESPONSE Agent’s reply to a GET or GET-NEXT

Toivo’s talk was ideal for those who, like me, are interested in network management and its protocols,
but don’t want to spend up to $50 on a book that tells us how the protocol is implemented. For those
who want more information on SNMP, Toivo recommends The Simple Book by Marshall Rose, who was
the head of the committee that designed SNMP.

Network Management Software
Craig Farrel, Curtin University

Craig’s talk detailed the typical network management problems he is faced with managing the Computer
Science network at Curtin, and described some software implemented at Curtin to help cope with these
problems.

The problem that Craig and his team needed to solve was that they could not answer any of the
following questions:

« Who is talking to who?

« How much talking is being done?

- Where is my network bandwidth going?

» Why is the network slow?

« Which machines should I subnet off in order to improve network response time?
Initially, they evaluated several network management packages. They found most PC-based software to
be cheap, but inflexible. Three other UNIX-based packages they evaluated were:

« Net Visualiser from Silicon Graphics - excellent (especially the user interface), but requires a Silicon
Graphics workstation, and costs $10,000 for universities (i.e. too much).

Vol 13 No 1 22 AUUGN

» Sniffer - excellent, especially the packet decomposition. Far more expensive than Net Visualiser.
+ SunNet Manager - understood SNMP.

Craig’s team didn’t need all of this functionality, however, and certainly didn’t want to pay these prices.
They determined that what they needed was a package that could show and analyse LAT, DECnet,
AppleTalk and various IP packets, the connections on the network (i.e. ‘Who?’), and the amount of
traffic on each connection (‘How much?’). Of course, they also wanted this information presented
through a good, visual interface that made it immediately and intuitively obvious what was happening.

Craig demonstrated that they had largely achieved this goal with some overhead slides of the software in
action,

Finally, Craig presented a list of futures:
+ A complete Ethernet packet analyzer
« An individual host analyser (who has it been talking to, and with what protocols)
« A network monitor (large FTP transfers, errors/collisions, alarms) - SNMP?
« An SNMP tool providing management and visualisation of local and remote networks and hosts

« Report generation (daily, weekly, monthly) detailing hosts, protocols, and times in a presentable
hardcopy form

+ Automatically generating a physical network map

Craig’s talks are well known for both their technical content and entertainment value. I won’t mention
any of the comments he made of the cuff, but it is probably a good thing that a prominent ‘Open
Systems’ vendor chose not to send any representatives to the Perth conference this year.

TCP/IP over ISDN
Hugh Irvine, Hugh Irvine and Associates

I probably won’t do this talk justice as I had already attended it at the AUUG’91 Winter Conference.
Hugh described the Port of Melbourne Authority’s state of the art TCP/IP wide area network, which was
implemented using ISDN.

Hugh started the talk by describing the computing history of the Port of Melbourne Authority (PMA).
About 18 months ago, the PMA embarked on an ambitious project to totally upgrade their computing
facilities. Approximately six sites throughout Victoria were to be fully interconnected, with UNIX,
TCP/IP, X Windows and Ingres as the base technologies.

The connections between the remote sites and the central head office have been implemented using
Telecom ISDN lines. Hugh demonstrated that ISDN lines - whether MicroLink (2 x 64K data channels)
or MacroLink (20 x 64K data channels) - offer substantial price/performance advantages over traditional
leased line technology.

Hugh also pointed out that with the low cost of ISDN for the home - $300 installation, plus $90 per year
- ‘every home should have at least one’. Two 64K data lines make an X terminal a very feasible
home-based alternative to a complete computer system,

AUUGN 23 Vol 13 No 1

An Information Strategy for the Network Manager
1an Crawford, Department of Community Services

I always enjoy Ian’s talks because I never feel like he is trying to sell or convert me to something.
Instead, they offer a refreshing breath of pragmatism in a marketplace where common sense has been all
but displaced by three-letter acronyms.

Ian’s talk wasn’t a technical one - it was a down to earth summary of the steps that a struggling network
administrator (from a fictitious organisation) could take to encourage users and management to support
and effectively use network facilities.

Ian started by describing the familiar situation where, after a new network has been installed, an
evaluation is done of its effectiveness. The evaluation shows that no files have been created on the
network server for three weeks. Most users have days-old mail that hasn’t been read, and sneakemet is
still the prevailing technology for getting printouts. User confidence is at an ebb because of inital
network tecthing problems. Management have allocated a computer network budget of (number of
computers x unit price).

What can the network manager do to turn around such a situation, and make the network a success?

Ian suggests that there are four layers to the network:

- Management

+ Technical

» Operational

+ Users
The distinction between the upper three layers is how much information they need about the status of
the network ‘now’. Operational staff need immediate notification of any network problem. Technical

staff need notification of problems that operational staff can’t handle. Management need notification of
disaster or very long-lasting network problems.

The key questions that the network manager must ask are:

e What are you going to manage?
» What factors are critical for the success of the network in this organisation?

To make the network a success for Users, the network must become easier to use, and it should provide
information of value to the users. User confidence in the network should also be increased.

>From an Operations perspective, the requirements are for real-time event reporting, and access to
every device’s status. Both of these are easily provided by a network management package.

The management applications required are neatly summed up by the OSI network management model:
fault management, performance, configuration, security and accounting.

The Technical layer needs access to detailed information, as contrasted with Management, who need
tactical reports, regular service level reports, and fault escalation.

In summary, Ian suggested that the first step that the network manager should take is to ask the question
‘What is an information strategy for network management?’. (The answer is usually to identify the
players who influence the success of the network, and to define the critical information required by each
of these players). The second step is to repeatedly go back to the first step.

Vol 13 No 1 24 AUUGN

Automating user administration with perl
Janet Jackson, Department of Computer Science, University of Western Australia

Janet works as a UNIX system administrator at UWA. She has developed a suite of perl scripts that
automate much of her user account management tasks, especially temporary accounts for visitors, and
the bulk addition/removal of student accounts.

Janet began with a brief description of UWA’s Computer Science network - around 30 Sun workstations
running NFS and NIS.

The first part of Janet's talk described her account expiry system. In it, when a temporary account must
be added, she runs a script newexp that automatically adds the user and records the details of the
account (including its expiry date) in a data file.

A related script, check_accexp, is run nightly by cron. It checks the data file for accounts about to
expire and mails the details to Janet. When Janet receives the mail, she ensures that the account is no
longer needed and wipes it.

Janet then described the mkstudents and newuser scripts. Janet had some much-hacked scripts which
had outlived their usefulness. She wanted them to provide automated, non-interactive, bullet proof,
site-specific, NIS-friendly and maintainable user account management. Of the available tools, none
matched UWA'’s specific requirements.

It comes as no surprise to those who know Janet (1) that she decided to write the tools herself; and (2)
that she decided to write them in perl.

Why perl? Janet cited its text handling capabilities, built in arithmetic expression evaluation, access to
system calls, and error handling. Besides, she likes perl’s syntax.

Janet described the implementation of these tools, and showed some per! examples. I was surprised,
after my first few looks at perl, that it looks quite bearable. (I especially liked the idea of

print STDERR "Message” unless $quiet; 4

- maybe I will learn perl, after all).

Janet then described potential improvements/extensions to her scripts. These mainly involved fully
automating all those little things we forget to do when someone leaves, such as deleting their mail alias.

Jgr}et concluded by posing the rhetorical question, ‘Was perl a good choice?’. She answered ‘Yes’,
citing:

« Availability of system()

. Speed

« Complex processing

« Associative arrays

- Powerful regular expressions

«» Ease of maintenance

AUUGN 25 ' Vol 13 No 1

A technology for UNIX data center management
Steve Landers, Functional Software

Functional Software are well known for their Admin Manager product, which automates the tedious
tasks involved in managing a UNIX system or network. The quality and usability of this software can be
gauged by its adoption as a standard product throughout the Australasian region by Pyramid
Technology. Functional Software have now carried this work further with the introduction of the Data
Center Manager, which provides management at a level previously only available on mainframes.
Steve’s talk described the object-oriented database technology that Functional Software have
implemented as a building block of the Data Center Manager.

Steve started by defining a data center as any site, comprising a number of central hosts, which utilised
segregation of responsibility, emphasis on standards and procedures, and formal audit reviews as
mechanisms to perform effective center management. The primary difference between traditional and
UNIX data centers is that UNIX data centers typically comprise heterogenous systems.
The Data CénlervManager was designed around the following implementation framework:

- Support existing practices, and lead to better ones

« Accomodate change with consistency and control

« Be flexible and extensible

» Facilitate portability of operations staff

- Encourage innovation and creativity

- Accomodate different management styles

This led to the application structure:

User Interface Functional Toolset

Application p?ocedural code Boume/I%om shell

Data management Functional Database

Much of the Data Center Manager is implemented using the Functional Toolset, which comprises user
interface tools, X Windows support, an object management framework, an interpretive 4GL (i.e.: the
Bourne shell), a data dictionary, and a relational database system.

Problems in developing a management package include supporting different UNIX variants, supplying a
consistent command-line interface, allowing distribution (delegation) of management tasks, and
facilitating customisation, These problems were the causes of Functional Software moving towards an
object-oriented paradigm.

Steve then went on to describe the implementation of object management within the Data Center
Manager.)

Steve’s talk was both instructive and entertaining, and I will certainly be asking for a test copy of the
Data Center Manager when I start managing a large UNIX site.

Vol 13No 1 26 AUUGN

Project GNU
Major, Pyramid Technology

Major wrapped up the conference with a light discussion about Project GNU. As expected, Major spent
much of the talk trying to convert the delegates to e/m. Major’s talk was an interesting historical look at
the origins of Project GNU, plus an overview of the GNU software available (for free) today.

I could not possibly do Major’s talk justice with a short summary, and hope that he will write up his
talk in a separate article.

In summary, the Perth Summer Conference provided a marked contrast to AUUG’91 in that it consisted
of consistently high quality talks presented by technically competent people who earn a living from
producing real results from today’s technology. I hope to see a similar set of talks in Perth next year,
and wish I could expect to see the same at AUUG’92.

Finally, on behalf of all of the conference delegates, I would like to thank - in no particular order - all
of the speakers; Major' (Pyramid Technology), the programme chair; Alan and Lexie Main (Functional
Software), who handled all of the conference administration, including registrations; Glenn Huxtable
(UWA), the national coordinator of the AUUG Summer Technical Conferences; and of course AUUG,
who floated the conference and sent along an AUUG banner (even if it did have ‘Open Systems’ written
on it :-).

See you all again next year!
Adrian Booth
Adrian Booth Computing Consultants

abcc@DIALix.oz.au
(09) 385 1003

AUUGN 27 Vol 13 No 1

ACSnet Survey Host Name:

ACSnet Survey

1.1 Introduction

ACSnet is a computer network linking many UNIX hosts in Australia. It provides connections over
various media and is linked to AARNet, Internet, USENET, CSnet and many other overseas networks.
Until the formation of AARNet it was the only such network available in Australia, and is still the only
network of its type available to commercial sites within Australia. The software used for these
connections is usually either SUN III or SUN IV (or MHSnet). For the purposes of this survey other
software such as UUCP or SLIP is also relevant.

At the AUUG Annual General Meeting held in Melbourne on September 27th, the members requested
that the AUUG Executive investigate ways of making connection to ACSnet easier, especially for sites
currently without connections. This survey is aimed at clearly defining what is available and what is
needed.

Replies are invited both from sites requiring connections and sites that are willing to accept connections
from new sites. Any other site that has relevant information is also welcome to reply (e.g. a site looking
at reducing its distance from the backbone).

Please send replies to:

Mail: Attn: Network Survey - FAX: (02) 332 4066
AUUG Inc E-Mail: auug@atom.lhrl.oz
P.O. Box 366

Kensington N.S.W. 2033
Technical enquiries to:

Frank Crawford (frank@atom.lhrl.oz) (02) 543 9404
or .
Scott Merrilees (Sm@bhpese.oz) (049) 40 2132

Thank you

1.2 Contact Details

Name:
Address:

Phone:
Fax:
E-Mail:

1.3 Site Details

Host Name:

Hardware Type:

Operating System Version:
Location:

Vol 13 No 1 28 AUUGN

ACSnet Survey

£y

Host Name:

New Connections

If you require a network connection please complete the following section.

Please circle your choice (circle more than one if appropriate).

Al.

A2,

A3,

A4,

A6.

AT7.

A8.

A9.

Al0.

All.

Al2,

Al3,

Al4,

AUUGN

Do you currently have networking software?

If no, do you require assistance in selecting
a package?

Are you willing to pay for networking
software?
If yes, approximately how much?

Do you require assistance in setting up your
network software?

Type of software:

Type of connection:

I3

If modem, connection type:

Estimated traffic volume (in KB/day):
(not counting netnews)

Do you require a news feed?

Any time restrictions on connection?

If the connection requires STD charges (or
equivalent) is this acceptable?

Are you willing to pay for a connection
(other than Telecom charges)?

If yes, approximately how much (please
also specify units, e.g. $X/MB or flat fee)?

Once connected, are you willing to provide
additional connections?

Additional Comments:

29

Yes No

Yes No

Yes No

Yes No

SUNIII MHSnet 101004

TCP/IP SLIP

Other (Please specify):

Direct Modem/Dialin Modem/Dialout
X.25/Dialin X.25/Dialout

Other (Please specify):

V21 (300 baud) V23 (1200/75) V22 (1200)
V22bis (2400) V32 (9600) Trailblazer
Other (Please specify):

<1 1-10 10-100
> 100: estimated volume:
Yes No
Limited (Please specify):
Please specify:
Yes No
Yes No
Yes No
Vol 13 No 1

ACSnet Survey

If you are willing to accept a new network connection please complete the following section.

Host Name:

Existing Sites

Please circle your choice (circle more than one if appropriate).

B1.

B2.

B3.

B4,

BS.

B6.

B7.

BS.

B9.

Type of software:

Type of connection:

If modem, connection type:

Maximum traffic volume (in KB/day):
(not counting netnews)

Will you supply a news feed?

Any time restrictions on connection?

If the connection requires STD charges (or
equivalent) is this acceptable?

Do you charge for connection?
If yes, approximately how much (please
also specify units, e.g. $X/MB or flat fee)?

Any other restrictions (e.g. educational
connections only).?

B10. Additional Comments:

Vol 13 No 1

30

SUNIII MHSnet UuCP
TCP/IP SLIP
Other (Please specify):
Direct Modem/Dialin Modem/Dialout
X.25/Dialin X.25/Dialout
Other (Please specify): :
V21 (300 baud) V23 (1200/75) V22 (1200)
V22bis (2400) V32 (9600) Trailblazer
Other (Please specify):
<1 1-10 10-100
> 100: acceptable volume:
Yes No
Limited (Please specify):
Please specify:
Yes No
Yes No
AUUGN

A New C Compiler T

Ken Thompson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes yet another series of C compilers. These compilers were
developed over the last several years and are now in use on Plan 9. These compilers are
experimental in nature and were developed to try out new ideas. Some of the ideas were
good and some not so good.

1. Introduction
Most C compilers consist of a multitude of passes with numerous interfaces. A typical C compiler has the
following passes — pre-processing, lexical analysis and parsing, code generation, optional assembly optimi-
sation, assembly (which itself is usually multiple passes), and loading. [Joh79a]
If one profiles what is going on in this whole process, it becomes clear that I/O dominates. Of the cpu
cycles expended, most go into conversion to and from intermediate file formats. Even with these many
passes, the code generated is mostly line-at-a-time and not very efficient. With these conventional compil-
ers as benchmarks, it seemed easy to make a new compiler that could execute much faster and still produce
better code.

The first three compilers built were for the National 32000, Western 32100, and an internal computer called
a Crisp. These compilers have drifted into disuse. Currently there are active compilers for the Motorola
68020 and MIPS 2000/3000 computers. [Mot85, Kan88]

2. Structure

The compiler is a single program that produces an object file. Combined in the compiler are the traditional
roles of pre-processor, compiler, code generator, local optimiser, and first half of the assembler. The object
files are binary forms of assembly language, similar to what might be passed between the first and second
passes of an assembler.

Object files and libraries are combined and loaded by a second program to produce the executable binary.
The loader combines the roles of second half of the assembler, global optimiser, and loader. There is a
third small program that serves as an assembler. It takes an assembler-like input and performs a simple

translation into the object format.

3. The Language

The compiler implements ANSI C with some restrictions and extensions. [Ker88] If this had been a
product-oriented project rather than a research vehicle, the compiler would have implemented exact ANSI
C. Several of the poorer features were left out. Also, several extensions were added to help in the imple-
mentation of Plan 9. [Pik90] There are many more departures from the standard, particularly in the

libraries, that are beyond the scope of this paper.

+ This paper was originally published in Proc. of the Summer 1990 UKUUG Conf., London, July, 1990, pp. 41-51
Editor: Sunil K Das, City University London.

AUUGN 31 Vol 13 No 1

3.1. Register, volatile, const

The keywords register, volatile, and const, are recognised syntactically but are semantically
ignored. Volatile seems to have no meaning, so it is hard to tell if ignoring it is a departure from the
standard. Const only confuses library interfaces with the hope of catching some rare errors.

Register is a holdover from the past. Registers should be assigned over the individual lives of a vari-
able, not on the whole variable name. By allocating registers over the life of a variable, rather than by pre-
allocating registers at declaration, it is usually possible to get the effect of about twice as many registers.
The compiler is also in a much better position to judge the allocation of a register variable than the pro-
grammer. It is extremely hard for a programmer to place register variables wisely. When one does, the
code is usually optimised to a particular compiler or computer. The portability of the performance of a pro-
gram with register declarations is poor.

There is a semantic feature of a declared register variable in ANSI C - it is illegal to take its address. This
compiler does not catch this ‘‘mistake.”” It would be easy to carry a flag in the symbol table to rectify this,
but that seems fussy.

3.2, The pre-processor A
The C pre-processor is probably the biggest departure from the ANSI standard. Most of differences are
protests about common usage. Some of the difference is due to the generally poor specification of the
existing pre-processors prior to the ANSI report.

This compiler does not support #if, though it does handle #ifdef. In practice, #if is almost always
followed by a variable like *‘pdp11.”” What it means is that the programmer has buried some old code that
will no longer compile. Another common usage is to write ‘‘portable’’ code by expanding all possibilities
in a jumble of left-justified chicken scratches.

As an alternate, the compiler will compile very efficient normal if statements with constant expressions.
This is usually enough to rewrite old #i£-laden code.

If all else fails, the compiler can be run with any of the existing pre-processors that are still maintained as
separate passes.

3.3. Unnamed substructures
The most important and most heavily used of the extensions is the declaration of an unnamed substructure
or subunion. For example:

struct lock
{
int locked;
} *lock;
struct node
{
int type:;
union

{
double dval;

float fval;
long lval;
}i
struct lock;
} *node;

This is a declaration with an unnamed substructure, 1ock, and an unnamed subunion. This shows the two
major usages of this feature. The first allows references to elements of the subunit to be accessed as if they
were in the outer structure. Thus node->dval and node->1locked are legitimate references. In C, the
name of a union is almost always a non-entity that is mechanically declared and used with no purpose.

Vol 13 No 1 32 AUUGN

The second usage is poor man’s classes. When a pointer to the outer structure is used in a context that is
only legal for an unnamed substructure, the compiler promotes the type. This happens in assignment state-
ments and in argument passing where prototypes have been declared. Thus, continuing with the example,

lock = node;
would assign a pointer to the unnamed lock in the node to the variable lock. Another example,

extern void lock(struct lock¥*);
func(...)
{

lock (node) ;

}

will pass a pointer to the lock substructure.

It would be nice to add casts to the implicit conversions to unnamed substructures, but this would conflict
with existing C practice. The problem comes about from the almost ambiguous dual meaning of the cast
operator. One usage is conversion; for example (double)5 is a conversion, but (struct
lock*)node isaPL/1 ‘‘unspec.”

3.4. Structure displays ‘

A structure cast followed by a.list of expressions in braces is an expression with the type of the structure
and elements assigned from the corresponding list. Structures are now almost first-class citizens of the
language. It is common to see code like this:

r = (Rectangle) {pointl, (Point) {x,y+2}}.

3.5. Initialisation indexes

In initialisers of arrays, one may place a constant expression in square brackets before an initialiser. This
causes the next initialiser to go in that indicated element. This feature comes from the expanded use of
enum declarations. Example:

enum errors
{
Etoobig,
Ealarm,
Egreg,
}:
char* errstrings[] =

[Etoobig] "Arg list too long"”,
[Ealarm] "Alarm call",
[Egregq] "Panic out of mbufs",

}i
. This example also shows a micro-extension — it is legal to place a comma on the last enum in a list. (Wow!
What were they thinking?)

3.6. External register

The declaration extern register will dedicate a register to a variable on a global basis. It can only be
used under special circumstances. External register variables must be identically declared in all modules
and libraries. The declaration is not for efficiency, although it is efficient, but rather it represents a unique
storage class that would be hard to get any other way. On a shared-memory multi-processor, an external
register is one-per-machine and neither one-per-procedure (automatic) or one-per-system (external). It is

AUUGN 33 Vol 13 No 1

used for two variables in the Plan 9 kemnel, u and m. U is a pointer to the structure representing the cur-
rently running process and m is a pointer to the per-machine data structure.

3.7. Goto case, goto default
The last extension has not been used, so is probably not a good idea. In a switch it is legal to say goto
case 5 or goto default with the obvious meaning.

4. Object module conventions
The overall conventions of the runtime environment are very important to runtime efficiency. In this sec-
tion, several of these conventions are discussed.

4.1. Register saving

In most compilers, the called program saves the exposed registers. This compiler has the caller save the
registers. There are arguments both ways. With caller-saves, the leaf subroutines can use all the registers
and never save them. If you spend a lot of time at the leaves, this seems preferable. In called-saves, the
saving of the registers is done in the single point of entry and return. If you are interested in space, this
seems preferable. In both, there is a degree of uncertainty about what registers need to be saved. The con-
~ vincing argument is that with caller-saves, the decision to registerise a variable can include the cost of sav-
ing the register across calls.

Perhaps the best method, especially on computers with many registers, would to have both caller-saved reg-
isters and called-saved registers.

In the Plan 9 operating system, calls to the kernel look like normal subroutine calls. As such the caller has
saved the registers and the system entry does not have to. This makes system call considerably faster.
Since this is a potential security hole, and can lead to non-determinisms, the system may eventually save
the registers on entry, or more likely clear the registers on return.

4.2. Calling convention

Rule: “‘It is a mistake to use the manufacturer’s special call instruction.”” The relationship between the
(virtual) frame pointer and the stack pointer is known by the compiler. It is just extra work to mark this
known point with a real register. If the stack grows towards lower addresses, then there is no need for an
argument pointer. It is also at a known offset from the stack pointer. If the convention is that the caller
saves the registers, then the entry point saves no registers. There is therefore no advantage to a special call
instruction.

On the National 32100 computer programs compiled with the simple *‘jsr’’ instruction would run in about
half the time of programs compiled with the ‘‘call’’ instruction.

4.3. Floating stack pointer

On computers like the VAX and the 68020, there is a short, fast addressing mode to push and pop the top of
stack. In a sequence of subroutine calls within a basic block, arguments may be pushed and popped many
times. Pushing arguments is, to some extent, a useful activity, but popping is just overhead. If the argu-
ments of the first call are left on the stack for the second call, a single pop of both sets of arguments (usu-
ally an ‘‘add’’ instruction) will suffice for both calls. This optimisation is worth several percent in both

space and runtime of object modules.

The only penalty comes in debugging, when the distance between the stack pointer and the frame pointer
must be communicated as a program counter-dependent variable rather than a single variable for an entire

subroutine.

4.4. Functions returning structures

Structures longer than one word are awkward to implement since they do not fit in registers and must be
passed around in memory. Functions that return structures are particularly clumsy. These compilers pass
the return address of a structure as the first argument of a function that has a structure return value. Thus

Vol13No 1 34 AUUGN

x=£f(...)
is rewritten as

f(ex, ...).
This saves a copy and makes the compilation much less clumsy. A disadvantage is that if you call this
function without an assignment, a dummy location must be invented. An earlier version of the compiler
passed a null pointer in such cases, but was changed to pass a dummy argument after measuring some run-
ning programs.
There is also a danger of calling a function that returns a structure without declaring it as such. Before
ANSI C function prototypes, this would probably be enough consideration to find some other way of
returning structures. These compilers have an option that complains every time that a subroutine is com-
piled that has not been fully specified by a prototype, which catches this and many other errors. This is
now the default and is highly recommended for all ANSI C compilers.

5. Implementation
The compiler is divided internally into four machine-independent passes, four machine-dependent passes,
and an output pass. The next nine sections describe each pass in order.

5.1, Parsing
The first pass is a YACC-based parser. [Joh79b] All code is put into a parse tree and collected, without
interpretation, for the body of a function. The later passes then walk this tree.

The input stream of the parser is a pushdown list of input activations. The preprocessor expansions of
#define and #include are implemented as pushdowns. Thus there is no separate pass for preprocess-
ing.

Even though it is just one pass of many, the parsing take 50% of the execution time of the whole compiler.
Most of this (75%) is due to the inefficiencies of YACC. The remaining 25% of the parse time is due to the
low level character handling. The flexibility of YACC was very important in the initial writing of the com-
piler, but it would probably be worth the effort to write a custom recursive descent parser.

5.2. Typing
The next pass distributes typing information to every node of the tree. Implicit operations on the tree are
added, such as type promotions and taking the address of arrays and functions.

5.3. Machine-independent optimisation

The next pass performs optimisations and transformations of the tree. Typical of the transforms: & *x and
* g x are converted into x. Constant expressions are converted to constants in this pass.

5.4. Arithmetic rewrites

This is another machine-independent optimisation. Subtrees of add, subtract, and multiply of integers are
rewritten for easier compilation. The major transformation is factoring; 4+8*a+16*b+5 is transformed
into 9+8* (a+2*b). Such expressions arise from address manipulation and array indexing,.

5.5. Addressability

This is the first of the machine-dependent passes. The addressability of a computer is defined as the
expression that is legal in the address field of a machine language instruction. The addressability of differ-
ent computers varies widely. At one end of the spectrum are the 68020 and VAX, which allow a complex
array of incrementing, decrementing, indexing and relative addressing. At the other end is the MIPS, which
allows registers and constant offsets from the contents of a register. The addressability can be different for
different instructions within the same computer.

It is important to the code generator to know when a subtree represents an address of a particular type. This

AUUGN 35 Vol 13 No 1

is done with a bottom-up walk of the tree. In this pass, the leaves are labelled with small integers. When
an internal node is encountered, it is labelled by consulting a table indexed by the labels on the left and
right subtrees. For example, on the 68020 computer, it is possible to address an offset from a named loca-
tion. In C, this is represented by the expression * (¢éname+constant). This is marked addressable by
the following table. In the table, a node represented by the left column is marked with a small integer from
the right column. Marks of the form A1 are addressable while marks of the form N1 are not addressable.

Node Marked

name Al

const A2

&A1l A3

A3+Al N1 (note this is not addressable)
*N1 ‘ a4

Here there is a distinction between a node marked A1 and a node marked A4 because the address operator
of an A4 node is not addressable. So to extend the table:

Node Marked
&A4 N2
N2+N1 N1

The full addressability of the 68020 is expressed in 18 rules like this. When one ports the compiler, this
table is usually initialised so that leaves are labelled as addressable and nothing else. The code produced is
poor, but porting is easy. The table can be extended later.

In the same bottom-up pass of the tree, the nodes are labelled with a Sethi-Ullman complexity. [Set70] This
number is roughly the number of registers required to compile the tree on an ideal machine. An address-
able node is marked 0. A function call is marked infinite. A unary operator is marked as the maximum of
1 and the mark of its subtree. A binary operator with equal marks on its subtrees is marked with a subtree
mark plus 1. A binary operator with unequal marks on its subtrees is marked with the maximum mark of
its subtrees. The actual values of the marks are not too important, but the relative values are. The goal is to
compile the harder (larger mark) subtree first.

5.6. Code generation

Code is generated by simple recursive descent. The Sethi-Ullman complexity completely guides the order.
The addressability defines the leaves. The only difficult part is compiling a tree that has two infinite (func-
tion call) subtrees. In this case, one subtree is compiled into the return register (usually the most conve-
nient place for a function call) and then stored on the stack. The other subtree is compiled into the return
register and then the operation is compiled with operands from the stack and the return register.

There is a separate boolean code generator that compiles conditional jumps. This is fundamentally different
than compiling an expression. The result of the boolean code generator is the position of the program
counter and not an expression. The boolean code generator is an expanded version of that described in
chapter 8 of Aho, Sethi, and Ullman. [Aho87]

There is a considerable amount of talk in the literature about automating this part of a compiler with a
machine description. Since this code generator is so small (less than 500 lines of C) and easy, it hardly
seems worth the effort.

5.7. Registerisation

Up to now, the compiler has operated on syntax trees that are roughly equivalent to the original source lan-
guage. The previous pass has produced machine language in an internal format. The next two passes oper-
ate on the internal machine language structures. The purpose of the next pass is to reintroduce registers for
heavily used variables. '

All of the variables that can be potentially registerised within a routine are placed in a table. (Suitable vari-
ables are all automatic or external scalars that do not have their addresses extracted. Some constants that
are hard to reference are also considered for registerisation.) Four separate data flow equations are evalu-
ated over the routine on all of these variables. Two of the equations are the normal set-behind and used-

Vol 13 No 1 36 AUUGN

ahead bits that define the life of a variable. The two new bits tell if a variable life crosses a function call
ahead or behind. By examining a variable over its lifetime, it is possible to get a cost for registerising.
Loops are detected and the costs are multiplied by three for every level of loop nesting. Costs are sorted
and the variables are replaced by available registers on a greedy basis.

The 68020 has two different types of registers. For the 68020, two different costs are calculated for each
variable life and the register type that affords the better cost is used. Ties are broken by counting the num-
ber of available registers of each type.

Note that externals are registerised together with automatics. This is done by evaluating the semantics of a
“call”” instruction differently for externals and automatics. Since a call goes outside the local procedure, it
is assumed that a call references all externals. Similarly, externals are assumed to be set before an “‘entry’”’
instruction and assumed to be referenced after a “‘return’’ instruction. This makes sure that externals are in
memory across calls.

The overall results are very satisfying. It would be nice to be able to do this processing in a machine-
independent way, but it is impossible to get all of the costs and side effects of different choices by examin-
ing the parse tree. '

Most of the code in the registerisation pass is machine-independent. The major machine-dependency is in
examining a machine instruction to ask if it sets or references a variable.

5.8. Machine code optimisation

“The next pass walks the machine code for opportunistic optimisations. For the most part, this is highly spe-
cific to a particular computer. One optimisation that is performed on all of the computers is the removal of
unnecessary ‘‘move’’ instructions. Ironically, most of these instructions were inserted by the previous pass.
There are two patterns that are repetitively matched and replaced until no more matches are found. The
first tries to remove ‘‘move’’ instructions by relabelling variables.
When a ‘‘move’’ instruction is encountered, if the destination variable is set before the source variable is
referenced, then all of the references to the destination variable can be renamed to the source and the
“move’’ can be deleted. This transformation uses the reverse data flow set up in the previous pass.

An example if this pattern is depicted in the following table. The pattern is in the left column and the
replacement action is in the right column,

MOVE a,b (remove)
(no use of a)

USE b USE a.
(no use of a)

SET b SET b

Experiments have shown that it is marginally worth while to rename uses of the destination variable with
uses of the source variable up to the first use of the source variable.

The second transform will do relabelling without deleting instructions. When a ‘‘move’’ instruction is
encountered, if the source variable has been set prior to the use of the destination variable then all of the ref-
erences to the source variable are replaced by the destination and the ‘‘move”’ is inverted. Typically, this
transformation will alter two ‘‘move’’ instructions and allow the first transformation another chance to
remove code. This transformation uses the forward data flow set up in the previous pass.

Again, the following is a depiction of the transformation where the pattern is in the left column and the
rewrite is in the right column.

SET a SET b
(no use of b)

USE a USE b
(no use of b)

MOVE a,b MOVE b,a

Iterating these transformations will usually get rid of all redundant ‘“‘move’’ instructions.

AUUGN 37 Vol 13 No 1

A problem with this organisation is that the costs of registerisation calculated in the previous pass must
depend on how well this pass can detect and remove redundant instructions. Often, a fine candidate for reg-
isterisation is rejected because of the cost of instructions that are later removed. Perhaps the registerisation
pass should discount a large percentage of a ‘‘move’”’ instruction anticipating the effectiveness of this pass.

5.9. Writing the object file

The last pass walks the internal assembly language and writes the object file. The object file is reduces in
size by about a factor of three.with simple compression techniques. The most important aspect of the
object file format is that it is machine-independent. All integer and floating numbers in the object code are
converted to known formats and byte orders. This is important for Plan 9 because the compiler might be

run on different computers.

6. The loader

The loader is a multiple pass program that reads object files and libraries and produces an executable
binary. The loader also does some minimal optimisations and code rewriting. Many of the operations per-
formed by the loader are machine-dependent.

The first pass of the loader reads the object modules into an internal data structure that looks like binary
assembly language. As the instructions are read, unconditional branch instructions are removed. Condi-
tional branch instructions are inverted to prevent the insertion of unconditional branches. The loader will
also make a copy of a few instructions to remove an unconditional branch. An example of this appears in a
later section.

The next pass allocates addresses for all external data. Typical of computers is the 68020 which can refer-
ence 32K from an address register. The loader allocates the address register A6 as the static pointer. The
value placed in A6 is the base of the data segment plus 32K. It is then cheap to reference all data in the first
64K of the data segment. External variables are allocated to the data segment with the smallest variables
allocated first. If all of the data cannot fit into the first 64K of the data segment, then usually only a few
large arrays need more expensive addressing modes.

For the MIPS computer, the loader makes a pass over the internal structures exchanging instructions to try
to fill *‘delay slots’’ with useful work. (A delay slot on the MIPS is a euphemism for a timing bug that
must be avoided by the compiler.) If a useful instruction cannot be found to fill a delay slot, the loader will
insert “‘noop’’ instructions. This pass is very expensive and does not do a good job. About 20% of all
instructions are in delay slots. About 50% of these are useful instructions and 50% are ‘‘noops.’’ The ven-
dor supplied assembler does this job much more effectively filling about 80% of the delay slots with useful
instructions.

On the 68020 computer, branch instructions come in a variety of sizes depending on the relative distance of
the branch. Thus the size of branch instructions can be mutually dependent on each other. The loader uses
a multiple pass algorithm to resolve the branch lengths. [Szy78] Initially, all branches are assumed minimal
length. On each subsequent pass, the branches are reassessed and expanded if necessary. When no more
expansions occur, the locations of the instructions in the text segment are known.

On the MIPS computer, all instructions are one size. A single pass over the instructions will determine the
locations of all addresses in the text segment.

The last pass of the loader produces the executable binary. A symbol table and other tables are produced to
help the debugger to interpret the binary symbolically.

The loader has source line numbers at its disposal, but the interpretation of these numbers relative to
#include files is not done. The loader is also in a good position to perform some global optimisations,
but this has not been exploited.

7. Performance
The following is a table of the source size of the various components of the compilers.

Vol 13 No 1 38 AUUGN

lines module
409 machine-independent compiler headers
975 machine-independent compiler Yacc
5161 machine-independent compiler C
819 68020 compiler headers
6574 68020 compiler C
223 68020 loader headers
4350 68020 loader C
461 MIPS compiler headers
4820 MIPS compiler C
263 MIPS loader headers
4035 MIPS loader C
3236 Crisp compiler headers
2526 Crisp compiler C
132 Crisp loader headers
2256 Crisp loader C

The following table is timing of a test program that does Quine-McClusky boolean function minimisation.
The test program is a single file of 907 lines of C that is dominated by bit-picking and sorting. The execu-
tion time does not significantly depend on library implementation. Since no other compiler runs on Plan 9,
these tests were run on a single-processor MIPS 3000 computer with vendor supplied software. The opti-
miser in the vendor supplied compiler is reputed to be extremely good. Another compiler, lcc, is compared
in this list. Lcc is another new and highly portable compiler jointly written at Bell Labs and Princeton.
None of the compilers were tuned on this test.

1.0s
0.5s
90.4s

1.6s
0.1s
138.8s

4.0s
0.1s
84.7s

1.6s
0.1s
96.3s

new cc compile time
new cc load time
new cc run time

vendor cc compile time
vendor cc load time
vendor cc run time

vendor cc —O compile time
vendor cc —O load time
vendor cc —O run time

vendor lcc compile time
vendor Icc load time
vendor lcc run time

Although it was not possible to directly compare gec to the new compiler, lcc typically compiles in 50% of
the time of gcc and the object runs in 75% of the time of gcc. The original pcc compiler is also not directly
compared. It is too slow in both compilation and runtime to compete with the above compilers. Since pcc
has not been updated to accept ANSI function prototypes, it is also hard to find test programs to form a

comparison.

8. Example
Here is a small example of a fragment of C code to be compiled on the 68020 compiler.

AUUGN 39 Vol 13 No 1

int afl0];
void

f (void)

{

int 1i;

for(i=0; i<10; i++)
alil] = 1i;

}

The following is the tree of the assignment statement after all machine-independent passes. The numbers in
angle brackets are addressabilities. Numbers 10 or larger are addressable. The addressability, 9, for the
INDEX operation means addressable if its second operand is placed in an index register. The number in
parentheses is the Sethi-Ullman complexity. The typing information is at the end of each line.

ASSIGN (1) long
INDEX <9> long
ADDR <12> *long
NAME "a" 0 <10> long
NAME "i" -4 <11> *long
NAME "i™ -4 <11> long

The following is the 68020 machine language generated before the registerisation pass. Note that there is
no assembly language in this compiler; this is a print of the internal form in the same sense as the previous

tree is a print of that internal form.
Here is some explanation of notation: (SP) denotes an automatic variable; (SB) denotes an external vari-
able; A7 is the stack pointer, $4 is a constant.

f: TEXT
SUBL $4,A7
CLRL 1(SP)
loop: MOVL $10,R0
CMPL R0, i(SP)
BLE ret
MoOvL i(SP),RO
MOVL 1i(SP),a(SB) (R0O.L*4)
ADDL $1,1(SP)

JMP loop
ret: ADDL $4,A7
RTS

The following is the code after all compiling passes, but before loading:

f: TEXT
SUBL $4,A7
CLRL R1

loop: MOVL "$10,RO
CMPL RO,R1
BLE ret
MOVL R1,a(SB) (R1.L*4)
ADDL $1,R1

JMP loop
ret: ADDL $4,A7
RTS

The following is the code produced by the loader. The only real difference is the expansion and inversion

Vol 13 No 1 40 AUUGN

of the loop condition to prevent an unconditional branch.

f: TEXT
CLRL R1
loop: MOVL $10,R0
CMPL RO,R1
BLE ret
11: MOVL R1l,a(SB) (R1.L*4)
ADDL $1,R1
MOVL $10,R0
CMPL RO,R1
BGT 11
ret: RTS

The compare sequence

MOVL $10,R0
CMPL RO,R1

was expanded from the single instruction
CMPL $10,R1

because the former is both shorter and faster. The relatively dumb loader made a second copy of the
sequence without realising that the

MOVL $10,R0
1s redundant.

9. Conclusions

The new compilers compile quickly, load slowly, and produce medium quality object code. The compilers
are relatively portable, requiring but a couple weeks work to produce a compiler for a different computer.
As a whole, the experiment is a success. For Plan 9, where we needed several compilers with specialised
features and our own object formats, the project was indispensable.

Two problems have come up in retrospect. The first has to do with the division of labour between compiler
and loader, Plan 9 runs on a multi-processor and as such compilations are often done in parallel. Unfortu-
nately, all compilations must be complete before loading can begin. The load is then single-threaded. With
this model, any shift of work from compile to load results in a significant increase in real time. The same is
true of libraries that are compiled infrequently and loaded often. In the future, we will try to put some of
the loader work back into the compiler.

The second problem comes from the various optimisations performed over several passes. Ofien optimisa-
tions in different passes depend on each other. Iterating the passes could compromise efficiency, or even
loop. We see no real solution to this problem.

10. References

Aho87. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers — Principles, Techniques, and Tools,
Addison Wesley, Reading, MA (1987).

Joh79a. S. C. Johnson, ‘‘A Tour Through the Portable C Compiler,”’ in UNIX Programmer’s Manual, Sev-
enth Ed., Vol. 24, AT&T Bell Laboratories, Murray Hill, NJ (1979).

Joh79b. S. C. Johnson, ‘““YACC - Yet Another Compiler Compiler,”” in UNIX Programmer's Manual,
Seventh Ed., Vol. 2A, AT&T Bell Laboratories, Murray Hill, NJ (1979).

Kan88. Gerry Kane, MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs, NJ (1988).

Ker88. Brian W. Kemighan and Dennis M. Ritchie, The C Programming Language, Second Edition,
Prentice-Hall, Englewood Cliffs, NJ (1988).

AUUGN 41 Vol 13 No 1

Mot85. Motorola, MC68020 32-Bit Microprocessor User's Manual, Second Edition, Prentice-Hall, Engle-
wood Cliffs, NJ (1985).

Pik90. Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, ‘‘Plan 9 from Bell Labs,”” Proc.
UKUUG Conf., London, UK (July 1990).

Set70. R. Sethi and J. D. Ullman, ‘‘The Generation of Optimal Code for Arithmetic Expressions,’’ J. ACM
17(4), pp. 715-728 (1970).

Szy78. T. G. Szymanski, ‘‘Assembling Code for Machines with Span-dependent Instructions,”” Comm.
ACM 21(4), pp. 300-308 (1978).

Vol 13 No 1 42 AUUGN

A UNIXT Task Broker

Andrew McRae

Megadata Pty Lid.
2/37 Waterloo Rd
North Ryde.
andrew@megadata.mega.oz.au

This paper is the first of two papers describing a redundant process manager and
services lookup directory.

This paper describes a UNIX Task Broker, an application which provides redundant
processing configurations using multiple hetrogeneous hosts connected via a network.

Firstly some background is provided to explain the context in which the Task Bro-
ker was developed; then the overall functionality and environment is discussed. Some
closer detail is given of the various components that make up the system, and some real
world results of delivered systems are reported.

1. Introduction.

The growth and development of the distributed computing environment has brought with it mixed
blessings; on one hand cheap and affordable computing power has meant a major increase in the amount of
CPU performance able to be applied to data processing; on the other hand it is often difficult (especially
with a hetrogeneous distributed environment) to rationally apply the performance in a manner which guar-
antees high user availability and robustness, yet providing application invisibility and best use of resources.

To solve the general problem of high availability and robustness in the UNIX environment, Megadata
has developed a distributed Task Broker system, comprising an application task manager and a services
directory manager. The combination of these modules allow a group of diverse networked Unix systems to
run a set of application services providing mutual backup in the event of host or network failure (for high
reliability multiple physical networks remove any single point of failure). A Services Directory protocol
allows dynamic-discovery of available services for client applications, and automatic re-homing to a new
server in the event of host or software failure. The Services Directory protocol is described in another
paper.

One of the most interesting aspects of this system is the fact that systems of entirely different archi-
tecture (and systems from different vendors) may form a highly reliable network that is expandable and
robust, where applications will ‘fail-over’ from one system to the other. This gives the customer indepen-
dance from any one vendor’s system, demonstrating that Open Systems are a reality in the real time world.

2. Background.

Traditional fault tolerant systems rely on proprietary hardware and software to ensure a guaranteed
level of availability. Availability is measured as a percentage of up-time to down-time; typical real time
systems must meet or exceed 99.9% availability under all operating conditions, which is equal to less than
9 hours down-time in a year. A goal is to achieve another order of magnitude of availability (99.99% - less
than an hour of down-time per year). As an example, one system Megadata has had operational in the field
since 1983 has experienced an accumulative total of 16 minutes downtime.

+ UNIX is a trademark of Bell Laboratories.

AUUGN 43 Vol 13 No 1

To achieve this level of availability, real time systems usually relied on duplication (or triplication) of
critical components such as CPUs, discs and other peripherals, all of which operated on proprietary bus
interconnection, and relied on specialised inter-processor communication to detect host hardware or soft-
ware failure (Figure 1), Because of the duplicated bus, generally only one CPU was online performing all
necessary functions, with the other running in a monitoring standby mode.

™ cpu [* " cpuU

Sl o N e = aony

BUS

v v
DUAL PORTED PERIPHERALS
Figure 1

One side effect of this architecture is expense. It costs a lot of money both in actual hardware due to
duplicated subsystems and peripherals, and in the design, support and commissioning of the specialised
hardware and software. Another cost is the inability to keep up with new technology, as generally the pro-
prietary nature of the products require a major investment in time to develop and prove. This is a valid
point in favour of Open Systems in general, though especially relevant in the real time field which is tradi-
tionally slow to accept new technology.

Another problem is that the redundant systems must be in physical proximity because of the reliance
on the bus hardware to share peripherals. More and more installations are requiring a greater degree of
physical distribution, and yet maintain some degree of backup across the communication links connecting
the control equipment.

Another major factor is that the implementor is at the mercy of the vendor supplying the major com-
ponents, and cannot take advantage of any price/performance benefits offered by other vendors.

When Megadata started developing real time applications under UNIX instead of a proprietary archi-
tecture, it heralded a radical change in the approach to developing high availability, redundant real time
systems. One point to highlight at this stage is that Megadata real time systems are not aimed at high speed
laboratory data acquisition, but at high availability supervisory and control systems, in which the time scale
is on the order of tens or hundreds of milliseconds, not microseconds. Specialised data agquisition hardware
performs the real work of obtaining the telemetry data, which is then telemetered back to the UNIX host via
slow speed FSK dedicated links, Wide Area Network virtual circuits or any other available communication

Vol 13No 1 4 AUUGN

means.

The problem that faced us was how to achieve high availability and fault tolerance using standard
‘Open Systems’ i.e. Unix workstations without specialised hardware.

After some evolution, the following diagram shows a new UNIX based architecture replacing the

older style architecture (figure 2).
CPU : CPU
DUAL ETHERNET
FRONT END|
PROCESSOR
TELEMETRY .
Figure 2

The new hardware architecture is orientated around a dual Ethernet LAN (for even greater levels of
fault tolerance more LAN sub-nets or splitting segments with bridges may be considered), with two or
more hosts acting as central processing nodes, and peripherals distributed along one or both LANs.

The new architecture has some major advantages over the older architecture:

. Being LAN based rather than CPU-bus based means that the peripherals need not be duplicated on a
per CPU basis - this results in a major saving in dual peripheral switching hardware.

. The system may be upgraded much more easily, by replacing hosts or by simply adding new periph-
erals.

. A LAN configuration means that physical distribution of processing hardware is much more config-
urable, and the savings in cabling costs alone are high.

. The number of hosts available for operational duty is not limited to two. A corollary of having multi-
ple hosts is providing a graceful degradation path in the event of multiple host failures.

. Because the peripherals are not closely associated with one particular host, applications may be dis-
tributed across different hosts.

. Different vendor hosts and peripherals may be used, since the common connection medium is a stan-
dard LAN. This also means that new technology such as FDDI may be integrated without major
reconfiguration or replacement of hardware. ‘

e By adhering to industry standards such as TCP/IP, it is easy to internetwork the system into a larger
scale distributed system. By the same token it allows ready interconnection to customer MIS and
vendor networks via gateways.

AUUGN 45 Vol 13 No 1

A critical component of this grand scheme is the software equivalent of the specialised hardware and
software that controlled the software and host failure handling, which has evolved into a general software
solution to maintaining high availability of services on multiple hosts on a network.

3. Overall Design. .

The Megadata UNIX task broker basically provides host independent service migration (as opposed
to process migration). True process migration operates by moving a complete process image (including file
descriptors, memory image, process state etc.) transparently between different CPUS, either to load balance
or to cater for processor failure. Very few systems provide this level of redundancy, and it requires a large
degree of operating system support, high network bandwidth and network protocol support to achieve it.
Standard UNIX (if such a beast ever really exists), does not provide any support for process migration.

Service migration, on the other hand, is the ability for clients to dynamically discover hosts which are
providing required services, and then if some failure causes the host to stop providing the service, then
another host will ‘pick up’ the service and initiate action whereby the client(s) of the failed host can trans-
fer to the new host. In other words, the service migrates to a new host. Two elements work in conjunction
to provide this action. The Task Broker performs the role of detecting host failures and ensuring that at
least one host is providing the service by actively monitoring the operational state of processes running on
other hosts via a task broker network protocol, and if need be running the processes locally; the Services
Directory provides a dynamic database of services and hosts that clients query to discover a host that can
provide a particular service. The Task Broker co-operates with the Services Directory by informing it when
hosts or services are not available.

The Task Broker appears thus:
e m e e mmmmcceccaemam———

Services
Directory pmmmm e ;
) i Other |
| |
] |

Config

]
]
]
]
]
]
]
]
1
)
1]
]
[]
]
]
]
)
)
! File
)
)
]
]
]
i
]
]
]
]
]
]
]
]
]
]

Each host that is involved in the system runs an instance of the Task Broker.

The tasks that the Task Broker controls are known as entities, where each entity is one or more UNIX
processes. For an entity to be operational (or online), all processes in the entity group must be running. If
any process dies, or is otherwise unrunnable, then the whole entity is considered offline.

Multiple instances of the Task Broker may run on the same host, and each is assigned a separate net-

work port to communicate with other Task Brokers. Thus it is possible to have completely separate and dis-
tinct systems running on a group of hosts. Each system is uniquely identified via an defined name, known as

Vol 13No 1 46 AUUGN

a System Identification, or just System ID.

The hosts that co-operate in providing the services need not be on the same physical network, but
may be scattered throughout a wide area network.

A configuration file is used by the Task Broker to describe the hosts upon which entities are to be
run, and each entity is defined (specifying the programs to run, arguments, home directory etc.). Each Task
Broker in the same system on different hosts shares the same configuration file (making it easy to main-
tain).

4. Host Failure.

When several Task Brokers on different hosts are operational in a system, they continually monitor
each other by communicating to the other hosts their state (including the list of entities that are currently
online on this host). The transmission interval is configurable, and determines the length of time that
elapses before host failures are detected. If two or more watchdog packets are missed from one host than
the other hosts poll the (possibly failed) host, and if no reply is obtained then the host is considered failed.
The entities that the host was running are re-arbitrated amongst the remaining hosts.

Dual physical LANs may be provided to remove the possibility of some kind of network problem,
and the Task Broker will always attempt to use both physical paths to communicate to Task Brokers on
other hosts.

Using a watchdog interval of 1 second (the lowest allowed) host failure can be detected within 4 sec-
onds, and depending on the time it takes for entities to initialize, clients can be informed of the new server
and be re-homed to the host providing the service within 5 to 10 seconds of the failure of the original hosts.
A interval of one second does not generate excessive network traffic, nor does it load the hosts excessively
(setting slower rates will proportionally relax the timing constraints).

5. Task Arbitration.

When the Task Brokers are started on the target hosts, the configuration file will specify which hosts
are allowed to run the list of entities. Two types of host lists are attached to each entity. A preferred host list
specifies a list of hosts for running a particular entity. The order of hosts is important, as they are assumed
to be in priority order. Lower priority hosts will only start the entities if (and only if) the higher priority
hosts are deemed to be inoperative. If a lower priority host is running an entity, and a host that is marked
(for this entity) as being a more preferred host becomes available, then the lower priority host will yield up
the entity to the preferred host.

Another host list may be specified either instead of, or appended to, the preferred list. This list places
no priority onto the hosts, so arbitration becomes somewhat more random.

If an entity has no clear priority indicating which host to run on, the Task Broker on each host arbi-
trates by sending a claim entity message to all the other hosts that the entity can operate on. Attached is a
psuedo-random number, and if two Task Brokers collide when arbitrating the random number is used as a
magic token to select between the two.

A number of rules govern the arbitration process, ensuring that the same entity cannot be accidently
started on different hosts at the same time. Basically every host that starts an entity must have obtained a
go-ahead token from every host capable of running this entity. Of course if a host is broken it is considered
offline, and does not take part in the arbitration process.

The only way possible that an enitity will be online on two hosts at the same time is if the hosts can-
not communicate at all e.g all communication paths between the two hosts are broken. If this occurs, and
communications are re-established, the task brokers on each host will detect the duplicated entity, and
immediately abort its own running copy and attempt a new arbitration cycle.

6. Status Indications.

The task broker may be configured to listen on a UNIX domain socket. Other processes may connect
to this socket and obtain information concerning the status of entities and hosts. When the socket is first
connected, the task broker will report the current state of all entities as being ONLINE or OFFLINE

AUUGN 47 Vol 13No 1

depending on whether this host is running the entity or not. The state of each host is also reported, whether
it is UP or DOWN. If during the connection the status of the entities or the hosts change, the new status for
that entity or hosts will be reported. The status monitoring connection may then be a once-off reporting of
current status, then changes being reported as they occur.

7. Configuration File

When the task broker is executed, it expects the name of a configuration file as one of its arguments,
If no name is given, then it defaults to /etc/system-config. This configuration file must be the same for all
task brokers operating as part of the same online system.

The file contains task broker parameters such as the network port number for peer to peer communi-
cation, defaults for the watchdogs timers, etc. Each entity along with the entity’s parameters is defined as
part of the configuration file.

Similar to many other configuration files under UNIX, the task broker’s configuration file is ASCII
based, with free form input. Line continuations using backslash (°\') are supported, and tokens may be sep-
arated by spaces or tabs for readability. The character ‘#' will cause the rest of the line to be ignored. For
strings that contain blanks or tabs, quotation marks may be used to quote the string. Strings quoted in this
way are considered a single token. Indentation may be used to make the file more readable, especially when
multiple attributes pertain to an entity.

‘When the task broker is sent a HANGUP signal it will re-read the configuration file. If the new config-
uration indicates that certain entities are no longer runnable by this task broker, it will kill those entities;
new entities and hosts are integrated smoothly into the currently active list of hosts and entities without
affecting any running entities.

Each entity may be marked using one of three keywords to indicate how or when this entity should
run. The ONCE flag indicates that the entity should be run locally by the task broker, and that if any of the
processes terminate than no attempt is to be made to restart or rearbitrate for the entity. CONT INUOUS indi-
cates that the entity should be started on the local host, and that if any of the processes should terminate the
task broker should attempt to restart the entity. ARBITRATE is the default, which indicates that the task
broker must arbitrate with the hosts on the HOSTS and PREFERRED lists to determine who should run this
entity. When no hosts appear on either list when the ONCE or CONTINUOUS options are specified, it is
assumed that the entity must run on all‘hosts.

Following is a sample configuration file:

#

Configuration file for task broker example
#

Set the system ID

#

id C999

#

Set up UDP port for task brokers to communicate
#

port sysman-2

#

Use this name for connections from processes wishing
to discover the status of entities

#

status /dev/sysman_sock

#

Send watchdogs every 3 seconds.

#

broadcast 3

#

Vol 13 No 1 48 AUUGN

Enable System logging.
¥

syslog all

¥ .

No network A extension
4 Net B extension is =2

#

netb -2

#

Entities to be controlled.
#

Run CRTPROC on a few hosts. (continuous means restart it if
it crashes).

#
entity CRTPROC continuous
hosts cpul cpu2 mmil mmi2 # will run CRTPROC on all these.
process /usr/online/crtserver # no arguments
alternate /backup/online/crtserver
direct /usr/database/pictures # cd’s to this directory first
#

Dataproc - runs program /usr/online/dataproc on
cpul (preferred) or cpu2
#
entity DATA-PROCESSOR
preferred cpul cpu?2
process /usr/online/dataproc # no arguments
alternate /backup/online/dataproc
process /usr/online/history
alternate /backup/online/history
direct /usr/database # Has to run in this directory
log system

EMS - must run on ems machines, but can also run on
others if the EMS machines are down.
Runs both opf and nmb

e Ak 3k A A

entity ENERGY-MANAGEMENT
preferred emsl ems2
hosts cpul cpu2 mmil mmi2
process /usr/online/nmb init-nmb -debug
directory /usr/database/ems/nmb
log system

process /usr/online/opf init-file output-file
directory /usr/database/ems/opf
log file opf-output

The above file should exist on the hosts cpul, cpu2, mmil, mmi2, emsl, ems2. When the hosts are
powered up, the task brokers will arbitrate according to the configuration rules in the file, and then begin
execution. During operation the task broker will respond to changes in host's availability by checking peri-
odically that the hosts running the entities are still active, and failing over (re-arbitrating) in the event of a
host failure.

AUUGN A 49 Vol 13 No 1

8. Process Execution.

The task broker executes the process(es) for each entity via fork/exec system calls. All file descrip-
tors are closed except for stdin, stdowst and stderr.

Each process may have arbitrary arguments, and in the event of a process’s pathname being
unrunnable, a backup process name be be declared. Each process may also have a current directory associ-
ated with it, and when that process is executed it will be started in that directory.

The LOG command allows logging from the stderr stream of the process. Two types of logging are
supported, to a file, and to the system log. When logging to the system log is enabled, any lines sent to the
stderr stream will be logged via the syslog library call. This normally causes a message to be printed on the
console of the loghost machine. The SYSLOG command may be used to redirect log output to a file, or to
turn it off entirely.

When the process is first started by the task broker, the process group number is changed to the pro-
cess ID number. Any child processes subsequently started by the process will inherit the same process
group number. When the task broker wishes to kill the process it sends a terminate signal to all processes
belonging to that particular process group, ensuring that no processes are accidently left running.

When a process exits, the task broker will examine the status and log the reason why the process ter-
minated. If any other host is flagged as being able to run this entity, and is seen to be operaticnal, the task
broker will not attempt to restart the entity, but will assume the other host will attempt to run it.

If the entity is flagged as running locally using the CONTINUOUS option, the task broker will attempt
to restart the entity immediately,

9. Field Results and Experiences.

Because of the vendor-independant nature of the task broker protocol, it is possible to mix different
makes of workstations and still provide redundant processing. In one experiment, a Hewlett-Packard host
was shadowing a Sun workstation across a dual Ethernet, and upon power-cycling the Sun, the HP host
smoothly took up the services that were operating on the Sun. Upon restoration of the Sun, the services
were again transferred back to the original machine. This achieved our goal of creating a truly open system
of real time high availability.

The task broker has been successfully installed and is operational in a number of sites. Each of these
sites is considered a high reliability site, and must maintain greater availability then 99.9%. It has been
ported to three common workstation architectures (Sun, Hewlett-Packard and DEC) with little effort. At
this stage all sites have been designed as dual local area networks, but several planned installations are
designed as wider area networks, where the task broker will be operating on hosts communicating locally
on Ethernet and also communicating with remote hosts across a range of communication media.

Experience has shown that the UNIX hosts available at this time are generally very reliable, with vir-
tually all failures due to either operator error, network failures (e.g unplugged LANS) or software error (too
often OS crashes). In all cases the task broker has managed to reliably transfer the online services from the
failed machine to another host, or operate correctly in the event of partial network failure. Of course we
must keep in mind Jackson’s Law:

"The chances of getting eaten by a lion on Main St. are one in a million, but it only takes once.”

Thus it won’t be for another 8 years or so that we can truly say that we have reproduced a similar
level of availability by using non-proprietary network based redundancy as the older hardware-based
redundant architectures.

Vol 13 No 1 50 AUUGN

The Hunting of the Open Systemt
by Rolf Jester

Open Systems Marketing Manager,
Digital Equipment Corporation, South Pacific Region;
Secretary, Australian Open Systems Users Group

"We have sailed many months, we have sailed many weeks
(Four weeks to the month you may mark),
But never as yet ('tis your Captain who speaks)
Have we caught the least glimpse of a Snark!"

From The Hunting of the Snark, Fit the Second.
by Lewis Carroll

So what is an Open System anyway? How shall we recognise one if we see it? And will we like it?

I think that it is possible now to answer these questions, or at least to lay some foundations for an
emerging understanding of a new information systems discipline called Open Systems. There isn't a
single one-word answer to what an open system is. It isn’t something you can go out and buy at your
comner store, not even at Digital or any other vendor.

In Graham Honeywill’s thought-provoking editorial in DECUS news [vol. 12 number 4 November
1991], he describes an open system as "the implementation of a vision of the future", adding that "the
hardware and software vendors can help us get there, but it is up to us to decide upon the vision first
and then to establish the road-map to get there.” That is one of the most perceptive things I have heard
on this topic.

He had bought a large map representing the sea,
Without the least vestige of land:
And the crew were much pleased when they found it to be
A map they could all understand.

"What’s the good of Mercator’s North Poles and Equators,
Tropics, Zones and Meridian Lines?"
So the Bellman would cry: and the crew would reply,
"They are merely conventional signs!

"Other maps are such shapes, with their islands and capes!
But we’ve got our brave Captain to thank”
(So the crew would protest) "that he’s bought us the best -
A perfect and absolute blank!”

t A slightly modified version of an article that appeared in DECUS news Volume 13 Number 1

AUUGN 51 Vol 13 No 1

The map of the open systems world may indeed seem to be unhelpful, or totally confusing. In what
follows I shall sketch in some of the main features so that we can go on like the intrepid hunters in
pursuit of the Snark.

UNIX?

In the DECUS News editorial referred to above, Graham Honeywill says that "UNIX ... is not an 'Open
System’." That may be technically correct. In itself UNIX is just an operating system, and not
sufficient to build a complete open system. But UNIX did give us the vision that open systems might
be possible. It is a key component of many if not most open systems today, and will remain an
important part of future open systems architectures.

Definition

"Come, listen, my men, while I tell you again
The five unmistakable marks
By which you may know, wheresoever you go,
The warranted genuine Snarks."

So let’s start with a definition of an open system. This is the official definition of the POSIX 1003.0
committee of the U.S. Institute of Electrical and Electronics Engineers (IEEE), worked out by a
thorough consensus process among professional engineers from vendors, users and governments.

".. a system that implements sufficient open specifications for
interfaces, services, and supporting formats to enable properly
engineered applications software to be ported across a wide range
of systems with minimal changes, to inter-operate with other
applications on local and remote systems, and to interact with
users in a style which facilitates user portability."

Leaving aside the mind-boggling thought of "user portability” (down-sizing gone mad maybe?), this is a
good definition. It focuses on the purposes of open systems, namely the portability of applications, the
inter-operability of applications, and the ease of use by end-users. It says that to achieve these things
we need open specifications for interfaces. It doesn’t talk about which brand name of computer, or
which brand name of operating system or of data base we need to achieve it. It does recognise that only
"properly engineered" applications will benefit from open systems. And that is something that is often
overlooked by those pushing their particular flavour of UNIX.

The definition goes on to define what an "open specification” is:
".. a public specification that is maintained by an open, public

consensus process to accommodate new technology over time and
that is consistent with standards."

Such standards exist. They are independent of vendors and of particular products. It is possible today
to plan an evolution from today’s systems to an open systems architecture.

Standards
Far too many people use the word "Standard" to mean exactly what they want it to mean, much to the

confusion of everyone else. So let’s distinguish between various sorts of standards that are relevant to
this topic.

Vol 13 No 1 52 AUUGN

Formal standards

Formal standards are made by official standards organisations at the international and national level.
They are sometimes called "de jure" standards, by contrast with "de facto". Standards Australia and the
Standards Association of New Zealand are two examples of formal standards organisations. The
American National Standards Institute (ANSI) is important because of the leading role of U.S. vendors
in our industry. At the international level, ISO and CCITT are the main organisations.

Formal standards are best in the sense that they are secure. Users and vendors can depend on them to
be stable and agreed upon by everyone. They are also totally independent of particular proprietary
products.

A good example is IS 9945, the ISO standard for a portable operating system interface. This is
essentially the POSIX standard internationalised. Locally, Standards Australia has recently published the
same specification as AS 3976.1-1991.

Formal standards are always interface definitions. They rigorously define the external behaviour of a
product, not how it works inside. That leaves vendors free to compete for users’ business with various
products that all comply strictly but that differ intemally and may “differ on such criteria as price,
performance, robustness, maintainability, packaging, marketing/distribution and service availability.

Consider the Open Systems Interconnection (OSI) set of standards for networking published by the ISO.
Each of the component standards of OSI is one standard, but is implemented in many different products
from different vendors. Assuming that they implement the same options of the same standard, they are
still different products.

After all, if the "open" in "Open Systems" means anything it must mean open to competition.

De facto standards

Formal national and intemational standards should take precedence in a standards-based architecture.
But they are not sufficient. The consensus process is slow and technology moves faster than ever. So
de facto standards of various kinds are also needed. The de facto standards should supplement formal
standards in such ways that compliance with the formal standards is maintained.

The best sort of de facto standard is one which has essentially universal support. A good example of
this is the X Portability Guide (XPG) of the X/Open group - see below. Because the formal "POSIX"
standard (IS 9945) covers only the interface to the operating system at this stage, the XPG provides a
more comprehensive framework, a "Common Application Environment” (CAE), in which applications
written strictly to the XPG standard are guaranteed to be portable by a re-compilation to any
hardware/operating-system platform that has been verified and branded as conforming to the XPG.

De facto to formal standard

Some de facto standards go on to become formal standards, as has happened with the X Window
System. This actually started life as a public-domain product, actual software, developed at MIT. A de
facto standard emerged after the product became very popular, managed by the X Consortium, and
adopted by all suppliers. Finally the ANSI committee X3H3.6 selected the X Window System interfaces

as the basis for a formal user interface standard.

AUUGN 53 Vol 13 No 1

Proprietary standards

Major vendors may produce specifications that have considerable success in the market and are thus
widely adopted by users and other vendors, as with IBM's SNA. Proprietary standards are useful for
users of that vendors’ products, but are still controlled by the vendor.

Proprietary standard to vendor-neutral standard

Some standards developed by a vendor or a group of vendors may then become accepted formally.
Ethernet, originally developed by Digital, Intel and Xerox, evolved into an IEEE standard and an
international standard IS 8802.3.

Proprietary products that lead to standards

Proprietary products may also end up as the basis for a standard. It was, after all, the UNIX operating
system (trade marked and owned by a division of the American Telephone and Telegraph Company) that
led to the standardisation efforts of UniForum (then called /usr/group) and eventually to POSIX, IS 9945
and AS 3976.

Another good exémple is C-ISAM, a product of Informix Software, Inc. The X/Open group, seeing the
need for an ISAM standard for the UNIX environment, used this popular product as the basis for its
definition because no other formal or de facto standard was available.

Products considered standard

Some proprietary products become so pervasive that they are frequently considered to be a standard.
Microsoft’s MS-DOS is the obvious example.

Products from major vendors, even if less universal than MS-DOS, may well serve users well as key
components in their information systems architectures. But we must never lose sight of the essentially
proprietary nature of such products, whose definition, evolution and licensing is in the hands of a
vendor.

Profiles

A suite of standards may be so complex that subsets of it are necessary for realisable implementations in
particular user environments, This is the case with the OSI network standards, where various major
groups of users have defined paths through the range of options to create a workable set of standards for
their needs. The Australian Government Open Systems Interconnection Profile (GOSIP) is an example
that was developed by the Information Exchange Steering Committee (IESC) in Canberra, and has been
formally adopted by the Federal Government.

"For, although common Snarks do no manner of harm,
Yet I feel it my duty to say,
Some are Boojums - " The Bellman broke off in alarm,
For the Baker had fainted away.

Vol 13 No 1 54 AUUGN

In the next article, we shall examine some of the major organisations, standards bodies, consortia,
standards and products that are prominent in the open systems market, and try to produce some further
clarity.

TRADEMARK ACKNOWLEDGEMENTS

IBM and SNA are trademarks of International Business Machines Corporation.
C-ISAM is a trademark of Informix Software, Inc.

Ethernet is a trademark of Xerox Corporation

MS-DOS is a trademark of Microsoft Corporation.

UNIX, System V and SVID are trademarks of UNIX Systems Laboratories.
The X Window System and X11 are trademarks of the Massachusetts Institute

of Technology.

AUUGN 55 Vol 13 No 1

Life, the Universe and Open Systemst
by Rolf Jester

Open Systems Marketing Manager,
Digital Equipment Corporation, South Pacific Region;
Secretary, Australian Open Systems Users Group

The world of open systems can appear confusing and bewildering. It is certainly complex.
DON’T PANIC.

Since any discussion of this topic will involve use and abuse of various standards, consortia and
numerous acronyms, a useful place to begin would be to clarify the roles of these various entities and
place them in context.

I am going to deal with the major organisations, standards and products. And I shall distinguish among
the following categories.

* Formal standards organisations
* De facto standards groups
* Government standards bodies
* User groups
* Vendor consortia
* Software providers
* Standards - formal and de facto
* Products.
There are many more organisations, standards and acronyms that could be covered, but I believe that

these are the ones that are most directly relevant to current open systems issues and also the ones that
need the most clarification.

FORMAL STANDARDS ORGANISATIONS

Formal standards organisations are official bodies that create, maintain and publish standards at a
national or international level. Some have national Government or U.N. endorsement. The actual
development work is often done by specialist professional organisations associated with the industry,
involving all interested parties such as users, vendors and Governments. The process involves free
discussion, criticism, wide circulation of drafts and a working towards consensus among all participants.
The national and international bodies will then usually adopt and promulgate these standards after
verifying that they meet the appropriate criteria.

ANSI

The American National Standards Institute is the formal national standards body for the United States.

+ A slightly modified version of an article that appeared in DECUS news Volume 13 Number 1

Vol 13 No 1 56 AUUGN

It co-ordinates the development of standards by accredited standards organisations such as the "X3"
Accredited Standards Committee which is responsible for information systems standards. Standards are
actually developed by professional organisations like the IEEE (see below) on behalf of ANSI X3.

The importance of the U.S. Market and of U.S. vendors ensures that ANSI standards are internationally
used and frequently adopted by ISO (see below), of which ANSI is the U.S. member. The global nature
of the information industry at the same time helps ensure that these standards are produced with the
international user community in mind.

CCITT

The International Telegraph and Telephone Consultative Committee is a permanent subcommittee of the
International Telecommunications Union, which is a United Nations treaty organisation. It specialises in
communications standards (e.g. X.25) which have become important parts of the over-all open systems
framework.

IEEE

The Institute of Electrical and Electronics Engineers is a U.S.-based intemational professional
organisation whose members are qualified engineers. The IEEE Computer Society produces formal
information technology standards which are then adopted by ANSL The IEEE Local Area Network
(LAN) standards such as 802.3 are well known.

One of the most important efforts of the IEEE is the POSIX group of commitiees creating standards for
a complete open systems environment - see below.

ISO

The International Organisation for Standardisation (ISO) is the body that co-ordinates international
formal standards. Its members are the national standards bodies like SANZ, Standards Australia and
ANSL ISO has formed a joint committee with the International Electrotechnical Commission (which is
responsible for electrical standards) called the Joint Technical Committee 1 (JTC1), and this committee
is the one that is responsible for international information technology standards.

A standard passes through the stages of Draft Proposal (DP), Draft International Standard (DIS) and then
becomes an official International Standard (IS).

JTC1 has a structure of Subcommittees (SC) and Working Groups (WG). JTC1/SC22/WG15 is the
group responsible for the international "POSIX" portable operating systems interface standard IS 9945,
which was ratified in 1990.

Standards Australia

Standards Australia is Australia’s national formal standards body and a member of 1SO. The Australian
Information Industry Association (AIIA) is the link between the industry and Standards Australia.

Recently, Standards Australia published Australian Standard AS 3976.1-1991, which is IS 9945-1:1990,
otherwise known as POSIX.1, the international standard for a portable operating system interface.

AUUGN 57 Vol 13 No 1

DE FACTO STANDARDS GROUPS

Because the formal standards process takes a long time, and because information technology is
advancing so rapidly, agreement on many things is needed beyond the scope of currently ratified formal
standards. Thus groups of users and vendors may form to achieve agreement on de facto standards that
may eventually form the basis of formal standards.

X Consortium

The X Consortium was formed by vendors and other parties interested in managing the standardisation
and promotion of the X Window System, a network-transparent window system first developed at the
Massachusetts Institute of Technology (MIT). The group has been successful in maintaining the X11
standard, which has now been adopted by ANSI committee X3H3.6 as the basis for a formal user
interface standard.

X/Open

X/Open is the major unifying force in the open systems industry. It is a consortium of all the major
hardware vendors, and. is truly representative of the industry as a whole. Its role is to publish and
promote standards for an open computing environment. Members commit themselves to implement
those standards in their products.

The hardware members of X/Open include AT&T/NCR, Bull, Digital, Fujitsu/ICL, HP, Hitachi, IBM,
NEC, Olivetti, Prime, Siemens-Nixdorf, Sun and Unisys. In other words, every large computer supplier
is a member. Importantly, both the Open Software Foundation (see below) and UNIX International (see
below) are committed to complying with the X/Open standard called the X Portability Guide (XPG).

X/Open also has an active User Council consisting of representatives of many major IT user
organisations, and an Independent Software vendor Council. Both of these work to ensure that the
evolution of the X/Open standards meet the real needs of users.

GOVERNMENT STANDARDS BODIES

National and regional Governments are probably the largest purchasers of information technology.
Being accountable to the public and responsible for a large information infrastructure, they are now
tending to define vendor-neutral standards profiles for their IT purchases. These standards profiles are
intended to be comprehensive information systems architectures that allow for rational and effective
investment and technology planning over the long term. The organisations responsible for these
standards are effectively setting an important lead for all other sectors of the economy.

CCTA

The Central Computer and Telecommunications Authority of the UK. Government issues advice and
guidelines for other central Government authorities. It has strongly endorsed the X/Open’s X Portability
Guide as an appropriate standards profile. It has also developed an OSI networking standards profile -
the U.K. GOSIP (see below).

IESC

The Australian Government’s Information Exchange Steering Committee is a group of senior executives
from major Federal departments who co-ordinate information systems policies for the Federal
Government. In 1990, Federal Cabinet approved the Australian Government Open Systems
Interconnection Profile (GOSIP) as developed by the IESC. It is now Government policy to use OSI
networking standards wherever possible, as specified in the Australian GOSIP.

Vol 13 No 1 58 AUUGN

Currently the IESC is working on the more far-reaching task of developing a comprehensive open
systems framework along the line of the work done by the NIST in the United States (see below).

NIST

The National Institute of Standards and Technology is a U.S. Government standards body. One of its
divisions is the National Computer Systems Laboratory (NCSL), which is chartered with producing
Federal Information Processing Standards (FIPS) for U.S. Government information technology
purchases. It therefore controls the standards direction of what is by far the biggest purchaser of
information systems in the world. As such, it is one of the most important players in the whole
standards movement, because no vendor can afford to ignore the FIPS.

FIPS 151 defines an Application Portability Profile (APP). This is a definition by NIST of the suite of
standards that systems, components and applications must adhere to in order to achieve the aim of
software portability across all vendors’ systems. The APP is a comprehensive profile, but it can be
summarised as a layered architecture made up of pre-existing formal standards from national and
international standards bodies.

Operating system POSIX

User interface / graphics X Window System
GKS & CGM, IGES

Languages (ANSI) C, COBOL,
Fortran, Ada, Pascal

Data management SQL, IRDS

Data interchange SGML, ODA/ODIF

While the needs of other user organisations may not be identical to those of the U.S. Government, NIST
has at least set an excellent example in creating a vendor-neutral, product-neutral standards framework.

USER GROUPS
AUUG

Formerly known as the Australian UNIX-Systems Users Group, AUUG is now called the Australian
Open Systems Users Group. It is an association of Australian IS professionals who use UNIX and other
open systems. AUUG conducts conferences and publishes technical newsletters particularly for UNIX
users. Although AUUG has not had a direct role in standards, it is the Australian affiliate of UniForum
(see below) and also has links with X/Open. It is thus a source of information about international
standards and publications from these bodies.

UniForum

UniForum is the U.S.-based international association of open systems users. It also started life as a
UNIX user group and was formerly known as /usr/group. It now has over 7,000 individual members
world-wide, publishes technical and general journals, a UNIX industry newsletter, technical booklets and
an important directory of UNIX-based hardware and software products.

UniForum started the standardisation effort that led eventually to the POSIX standard. The many users
of UNIX were dissatisfied with the many incompatibilities that existed between the many UNIX

AUUGN 59 Vol 13 No 1

"flavours” and set about creating a common standard many years ago. The task of writing a standard
proved bigger than the resources of a user group could handle, and therefore the work was handed over
to the IEEE (see above), who could also apply their experience with the drafting of formal standards.
See "POSIX’ below.

Apart from actively promoting POSIX and its further development, UniForum also has a link with
X/Open and endorses the XPG standard. Thus the annual UNIX product directory now indicates which
products conform to POSIX and to the XPG. That, in turn, along with pressure from major users, will
be a factor in encouraging application developers to conform to these standards.

VENDOR CONSORTIA

Although short-term interests of vendors might seem to be best served by totally proprietary systems, the
industry has changed significantly and vendors are actually better off by co-operating with wide industry

consortia on common standards. As long as the products of these consortia comply with industry-wide -

standards, that is a good thing for users.

Vendor consortia will act on behalf of vendors, and their statements should always be evaluated
critically as you would those of a vendor.

ACE

The Advanced Computing Environment (ACE) is an initiative by a group of now over 230 companies to
build systems to a set of common specifications. ACE sets out to create a clone-like market for
advanced systems ranging from notebook size to super-computer. In doing that, it recognises the
importance of the Intel-based PC environment (MS-DOS, Windows) as used on tens of millions of
desk-tops. ACE offers two operating systems for those systems - Windows NT from Microsoft, the next
generation of the successful MS-Windows; and a unified UNIX operating system - Open Desktop from
The Santa Cruz Operation (SCO). More recently, UNIX Systems Laboratories has stated that it will
supply a version of its product UNIX System V for ACE systems.

At the higher performance levels, ACE uses Reduced Instruction Set Computing (RISC) processors from
MIPS Computer, Inc. Again, both the Windows NT system and Open Desktop (ODT) will run on these
systems, as will UNIX System V. Because they are built to a common agreed specification, applications
will be compatible at the binary level across all vendors ACE/ODT systems in the same way that all
MS-DOS applications are strictly executable on all PC clones.

Thus ACE, supported by so many vendors, small and large, from so many countries and industry
sectors, creates an enormous market for compatible hardware, shrink-wrapped software, add-on
components and services. It is helping software developers because they now have to port to fewer
platforms. And that means that many thousands of quality applications will be available for users.

ACE products from many vendors based on the MIPS R4000 processor, on Open Desktop and on
Windows NT are expected to come on the market during 1992.

OSF

The Open Software Foundation is a software development company, and is therefore described further
below under Software Providers. However the original sponsors were major hardware vendors including
Bull, Digital, Hitachi, HP, IBM, and Siemens-Nixdorf, so it appropriate to mention it under the heading
of vendor consortia as well. OSF now has over 300 members among hardware vendors, software
vendors, research institutions, Governments and end-users. Technology selections are made by the

Vol 13No 1 60 AUUGN

OSF’s professional staff and consultants on the basis of technical issues and market requirements.

UNIX International

UNIX International (UI) is a group of vendors who are committed to using USL’s product UNIX
System V. UI has some 300 or so members and it acts like a user group in that it provides feed-back to
the UNIX Systems Laboratories (USL) subsidiary of AT&T as to the desired features for future versions
of the System V product. Since the members of UI are vendors of systems, UI also plays a major role
in the promotion of USL’s products.

SOFTWARE PROVIDERS
OSF

The Open Software Foundation is a not-for-profit company that develops system software in accordance
with industry standards. It is not in itself a standards body. Rather, it develops actual producis (source
code) and licenses them to anyone, OSF members or not. Although the OSF does not produce formal
standards, its products may become the basis of de facto standards.

The OSF’s employees are predominantly software engineers. However they normally do not produce
new products in-house. Rather, a process of tendering, called the "open process” is used, based on
"requests for technology" to elicit the best available software technology from research institutions and
from hardware and software vendors. Thus OSF acts as an integrator of components from multiple
sources, producing fully standards-compliant products that are then readily and inexpensively available
to the whole industry.

See below for various OSF products. See also "AES" below.

USL

UNIX Systems Laboratories (USL) is a subsidiary of the American Telephone and Telegraph Company
(AT&T). It develops, licenses and markets software products, especially UNIX System V (see below),
one of the major UNIX operating systems.

STANDARDS: formal, de facto, and future
AES

The Application Environment Specification (AES) is the Open Software Foundation’s specification of
the suite of industry standards to which its products conform. Like any software developer, the OSF
needs a coherent architectural framework for its products, and the AES provides OSF’s engineers with a
consistent basis for development. More importantly, it provides OSF’s customers and end-users with the
security of a firm set of industry standards to which they know OSF products will conform.

Since the OSF offers software products on the open market, it makes good sense for it to adhere to
recognised industry standards in order to maximise the usefulness and applicability of its products on the
widest range of platforms. In general, OSF’s direct customers are hardware vendors who implement
OSF products on their machines. For those vendors 1o easily take advantage of the OSF software, it has
to conform to a common set of standards to allow easy porting and integration. Vendor "standards” will

AUUGN 61 Vol 13 No 1

not do.

The AES specifications are not OSF’s own standards, but taken from formal and de facto industry
standards. The complete set is too extensive to list in a short article, but includes the POSIX operating
system interface, various ANSI language standards, the X Window System network windowing interface,
TCP/IP, OSI networking protocols, and SQL.

CAE

The Common Application Environment (CAE) is the name for the standards architecture developed by
the X/Open group and published as the X Portability Guide - XPG (q.v.)

GOSIP

A Government Open Systems Interconnection Profile (GOSIP) is a profile of standards from the Open
Systems Interconnection (OSI) suite. It is concerned with interconnection between systems of different
manufacturers - i.e. networking. Because OSI is such a comprehensive set of networking standards, it
has proved necessary to define sub-sets or "profiles" for various application environments, where choices
have been made for the various options at each level.

The U.S., UK., and Australian Governments, among others, have adopted their own GOSIPs, the
Australian one being developed by the IESC (see above).

Note that the systems that are inter-connected need not be "open" in any other sense. They may be fully
"proprietary" systems, but with OSI protocols implemented to allow them to exchange data readily.

OSI

The Open Systems Interconnection (OSI) suite is a comprehensive suite of communications protocol
standards designed by ISO (see above).

POSIX

The standard for a Portable Operating System Interface (POSIX) was ratified by the IEEE in 1988 as
P1003.1. It is an ANSI standard, an ISO standard (IS 9945-1) and an Australian Standard (AS 3976.1-
1991).

The original P1003.1 specification is simply the definition of the interface between an application
program written in the C language to an operating system. It was of course based on an abstract version
of UNIX, but is now quite independent of any trade-marked and licensable product. To the best of my
knowledge all major UNIX systems vendors support it.

An application that uses only the POSIX interface is fully portable to any POSIX-compliant platform.
Current UNIX applications in fact still make use of the many proprietary extensions in the historical
UNIX "flavours" (AIX, SunOS, HP-UX, System V, ULTRIX etc.). But pressure from major users will
ensure that applications software vendors too will begin to strictly conform to POSIX in their future
versions. Otherwise they sacrifice easy portability and access to the huge market for portable and
standards-compliant products.

Work continues in the IEEE POSIX committees. The next standard, nearly complete now, will be the
Vol 13 No 1 62 AUUGN

1003.2 standard for the "shell" commands and utilities. Other POSIX committees are working on test
methods for verifying conformance, real-time extensions, interfaces from other programming languages,
security, system administration and many other aspects of a complete open systems environment.

But the basic 1003.1 standard (IS 9945-1) is secure and usable now.

XPG

X/Open (see above) publishes the X Portability Guide (XPG), which specifies a Common Application
Environment (CAE) - a suite of compatible standards aimed at total software portability. The standards
that make up the XPG are not developed by X/Open itself. Rather, X/Open adopts formal standards
where they exist (such as IS 9945 or POSIX), and de facto standards where there are no formal
standards (e.g. the X Window System).

The XPG is a complete computing environment rather than just an operating system interface and is thus
more complete than the currently ratified parts of POSIX. It is independent of any actual product, both
hardware and software.

X/Open conducts verification tests of XPG compliance and "brands” compliant products.

Since all vendors are committed to it, the XPG is the safest choice for users. Many Government
agencies, especially in Europe have mandated XPG compliance for their systems. The European
Commission has done so, and the U.K. Central Computer and Telecommunications Agency (CCTA - see
below) recommends it. Such user endorsement in turn is driving application vendors to comply also, so
that their application software packages are portable across all XPG branded systems.

VENDOR STANDARDS
SVID

The System V Interface Definition (SVID) is a document published by AT&T/NCR’s subsidiary UNIX
Systems Laboratories as a specification of their product System V (see below). It is a specification of
the external interface to the System V operating system. Its usefulness lies in the fact that it makes it
possible for other UNIX operating systems to be compatible with applications that were written for the
unique features of System V - i.e. those features that are outside of the industry standards POSIX and
XPG.

FUTURE STANDARDS
ANDF

The OSF’s Architecture Neutral Distribution Format (ANDF) is a means of solving the problem of how
to create executable software for multiple hardware architectures. The source-level standards (POSIX,
XPG) achieve true portability by re-compilation for any standards-compliant platform. Application
Binary Interfaces (ABIs) achieve binary compatibility between computers from various vendors provided
that they use the same microprocessor chip and operating system. But ANDF goes one step further. It
allows the application to be compiled into a neutral intermediate format in which it can be distributed
and then loaded on various different hardware platforms through a second “installer” stage. The
software developers source code is protected, but easy access to many vendors’ hardware is gained
because the installer need only be written once for each hardware/operating system platform.

AUUGN 63 Vol 13 No 1

Large IT users with multiple vendors’ systems will also benefit from ANDF, as a single copy of each
application will be loadable on many platforms.

The Open Software Foundation has selected the technology for ANDF and a prototype version for three
different hardware platforms has been successfully demonstrated. It promises to be a truly revolutionary
technology that will significantly advance the cause of portability and open systems. It may well
become a de facto standard.

DCE

The OSF has produced a set of software tools called the Distributed Computing Environment (DCE).
DCE is easily portable to many different systems, UNIX and non-UNIX, and provides application
developers with a means of readily allowing applications to take full advantage of all the computing
resources on a network. It permits the application program to be split into components each of which
can run on the best machine for that task, and yet ensures that the components work together as one
application.

DCE has been released by the OSF and has been licensed by some 200 vendors, including many who
are not OSF members, to make available on their systems. It was demonstrated at the AUUG’91
exhibition in Sydney in September 1991. Its expected near-universal adoption will probably make it
into a kind of de facto standard.

PRODUCTS
Products may or may not comply with standards, but products are not in themselves standards.
Open Desktop (ODT)

The Santa Cruz Operation (SCO) has packaged its popular operating systtm SCO UNIX for Intel
systems with a database, user interface, networking products and other components to produce a
complete UNIX-based operating environment for Intel systems called The Open Desktop (ODT).

As a leading participant in the ACE Initiative (see above), SCO now plan to make a future version of
ODT available for both of the ACE hardware platforms - Intel and MIPS-based RISC systems. That
future version will use the same OSF/1 operating system kernel as used by Digital, HP, IBM, Bull and
others.

As ACE becomes more prominent in the market, SCO’s Open Desktop will become one of the unifying
forces in the UNIX world.

OSF/1

OSF’s operating system, OSF/1 was officially made available in 1990, and is now being built into many
vendors’ operating systems. Of course it conforms strictly to the relevant standards (POSIX, XPG). But
while not differentiated on standards compliance from any of the UNIX systems, OSF/1 takes standard
operating systems to a new generation of well-engineered software technology that results in greater
robustness, maintainability, security and expandability.

OSF/1 is available now from Digital and Hewlett-Packard, and other commercial implementations of it
are expected to become available from other vendors in the very near future.

Vol 13 No 1 64 AUUGN

OSF/Motif

OSF’s first product OSF/Motif is already the de facto standard for the graphical user interface, being
available for every workstation platform. It conforms to the X Window System standard.

SCO UNIX

The most popular version of UNIX for Intel-based small systems based on the numbers of licences,
supplied by The Santa Cruz Operation. See "Open Desktop" above.

System V

The UNIX version developed and marketed by UNIX Systems Laboratories (USL). It is licensed by
USL to various vendors and is an extremely version of the UNIX operating system. It now conforms to
the POSIX and XPG standards. Recently, USL announced that System V would in future also conform
to the OSF’s Application Environment Specification (AES).

UNIX

UNIX is a trademark of UNIX Systems Laboratories (USL), a subsidiary of AT&T/NCR. USL'’s
current version is called System V release 4 (see above).

FURTHER READING

Pamela Gray, Open Systems: a business strategy for the 1990s. New York: McGraw Hill, 1991.

TRADEMARK ACKNOWLEDGEMENTS

AIX is a trademark of International Business Machines Corporation.
HP-UX is a trademark of Hewlett-Packard Company.
MS-DOS, MS-Windows and Windows NT are trademarks of Microsoft Corporation.
OSF, OSF/1, OSF/Motif are trademarks of the Open Software Foundation.
SCO, Open Desktop and ODT are trademarks of The Santa Cruz Operation, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
ULTRIX is a trademark of Digital Equipment Corporation.
UNIX, System V and SVID are trademarks of UNIX Systems Laboratories.
The X Window System and X11 are trademarks of the Massachusetts Institute
of Technology.

AUUGN 65 Vol 13No 1

Jdogin: 16:5

An Update on UNIX-Related Standards Activities

Stephen R. Walli

Report Editor, USENIX Standards Watchdog Committee

The Five Great Myths of Open Systems
Standards

I recently read a column where the author
described computer people at cocktail parties as
the doctors of the 90’s. Instead of everyone want-
ing to discuss their aches and pains with some
poor medical practitioner while they’re trying to
sip scotch and nibble hors d’oeuvres, computer
people are plagued with the latest chat from com-
puter literate business people.

No longer are you merely cornered by DOS
know-it-alls, now you get to deal with the sweep-
ing issues of GUI Wars, and whether UNIX will
displace DOS on the desktop. Open systems are
in vogue. Standards are ‘‘sexy’.

With all of this comes the new “Open Sys-
tems’’ know-it-all. These are people who“an spell
POSIX, but can’t pronounce it. They’ve all been
taken to lunch recently by their favorite market-
ing rep from one of those lavish companies whose
name is a regulation three letter acronym, let’s
call them TLA for short.

I started discerning certain patterns in all of
this idle gossip and chatter, and now present to
you the Five Great Myths of Open Systems Stan-
dards:

Myth #1

“Vendor TLA IS the standard.” This is the
traditional mix-up between de jure standards, and
de facto standards. Or REAL standards and mar-
ket share. De jure standards are built by accred-
ited standards development bodies. There is a fair
process involved to ensure that all points of view
are heard. It is a consensus process, not a majority
one,

De facto standards are mostly under the lim-
ited control of a single organization. They are
often trademarked. If they are available at all
outside of their controlling organization, the tech-
nology is often licensed. The holder of the license
etfectively controls where thev want to take the

Vol 13 No 1

66

technology. They accept input from some form of
user constituency, but ultimately they run the
show. I look at this as the difference between a
POSIX standard interface, and a UNIX operating
system.

Myth #2

“Vendor TLA is part of the standards de-
velopment group, and they’re donating this tech-
nology to the standard.” Always a knee slapper.
As if all it took to make a standard was for a
vendor to donate part of its technology, obviously
out of the goodness of its heart for mankind.
These people have not participated in the excite-
ment of Threads Wars, or the current painful GUI
Wars. '

Many vendors would love to have their spec-
ification as a standard. It gives them an instant
product to sell into the hot “'standards™ market.
They just have to get past the rest of the standards
working group, made up of various backgrounds
and biases.

Then comes a balloting group, a superset of
the working group. These people haven't neces-
sarily had the benefit of participating in the dis-
cussions that led to a decision. The popularity of
publishing the rationale for decisions helps alle-
viate this problem, but not always. There will
always be people in a balloting group that know
their solution is the technically correct one. It’s
much easier to disagree with the committee, bal-
loting a draft you didn’t help make, than in the
working group sessions where the talking is done
face to face.

Other vendors don'’t want their technology to
be a public-controlled standard. They lose control
of their own specification. If they have a large
market share, i.e. they're a de facto standard,
they may want nothing to do with becoming a de
jure standard.

Myth #3

“Vendor TLA sells a POSIX conforming sys-

AUUGN

tem.” Wrong. No one sells a **POSIX’* conforming
system. Indeed, POSIX conformance is the real
myth here.

posix.3 is a standard which defines the test
methodology used to measure conformance to
posIX. It has recently become a standard, IEEE
1003.3-1991. An accompanying document, still in
the balloting process and therefore unstable, is
posix.3.1. This document contains the test meth-
ods themselves for PosIX.1. (the base system in-
terface standard), which everyone refers to as
“pPOSIX”’.

By definition, POSIX.3.1 is not yet a standard,
hence no POsIX.1 conformance test suite actually
exists.

There is a United States government pro-
curement profile of Posix.1 called FIPS 151-1, or
in today’s open systems circus, simply “THE
FIPS.” FIPS 151-1 chooses certain options within
the standard. It even defines certain behavior that
in the standard is left as implementation defined.
It was written against the original POSIX.1 stan-
dard, IEEE 1003.1-1988, not the current one,
(IEEE 1003.1-1990.) In fact it was written prior
to the completion of the standard.

In theory, nothing changed in POSIX.1, be-
tween 1988 and 1990, except for the reformatting
to make it ISO acceptable, and “‘bug fixes”. The
removal of cuserid() was a ‘‘bug fix”.

Because of the obvious buying power of the
U.S. government, most major vendors are im-
plementing FIPS 151-1. It is a profile or subset of
POSIX.1.

Test suites exist to test conformance against
FIPS 151-1. These must use the test methods
described in Posix.3.1 (still in ballot.) One of
them was written to an early draft of POSIX.3.1.
Another was written by using the AT&T UNIX
System V Verification Suite (SVVS) as a base.
SVVS dependencies are still being discovered and
weeded out of this one. It is quite possible to
implement something different from the FIPS,
which would fail the FIPS test suites miserably,
yet would technically conform to the standard. (If
only there was a way to prove it.)

Myth #4

“POSIX isn't important — it's source code

AUUGN

67

login: 16:5

portability that's important.”™ Well, no and yes.
One vendor is notorious for this game.

Yes, absolutely. source code portability is
what it's all about. This is typically one of the
banners that's waved around in many people’s
definitions of open systems.

POSIX is a family of standards designed to
provide source code portability. The interface was
derived from the many UNIX system interfaces
that existed. UNIX was/is a de facto operating
system in many arenas. Many vendors are imple-
menting the POSIX interface on their non-UNIX
derivative proprietary operating systems.

No, POSIX is not UNIX. Many UNIX devel-
opers mourn and despise what has happened to
the UNIX interface. They shouldn’t. First of all.
the base technology, which is close enough that
they are already familiar with it, is becoming
available on a huge installed base of technology.
The demand will far outstrip the supply of tech-
nologists familiar with it. Second, nothing is pre-
venting them from continuing on in their current
preferred environment. It is different enough that
they can continue developing software as they
always have. It's just not as portable.

There are other software development envi-
ronments which ensure software portability. VMS
on a VAX architecture guarantees portability of
source (and executables) across the entire line of
VAX hardware. This is fine if that’s where your
business lays. Likewise, IBM's SAA will provide
similar source portability benefits across disparate
IBM architectures. They’re really muddying the
waters by also implementing some of the other
“open system” interfaces on the SAA platforms.
Again, it all depends where you, as a software
developer, want to draw the portability line.
POSIX is becoming the path to widest portability.

Myth #5

“Open systems technologies will revolution-
ize the way software is developed.” Yet another
silver bullet contestant. Does everyone remember
the marketing hype around 4GLs? CASE? These
are all good useful technologies. They simply
need to be applied in their proper forum. They dc
not remove the responsibility of thought. i.e. cre-
ative design, careful development, and inventive
testing of a problem’s solution.

Vol 13 No 1

:login: 16:5

The current “‘promise” of open systems tech-
nologies has us living in a completely networked
corporation of resources. Applications running
where the optimal appropriate processing re-
source is. Information available everywhere at
once, both properly protected and with its true
location completely irrelevant. All of it interfaced
via some wonderful intuitive graphic user inter-
face.

I do believe this is where we're going. The
technology is often commercially available al-
ready, but with some very real constraints on it.
Often these constraints involve how new the tech-
nology is, and the lack of standardization.

It is a great vision, but before it’s available
in completely heterogeneous networked environ-
ments, the technology has to stabilize enough for
standards to be created. No matter how dazzling
the technology seems to be, a standard cannot be
wrestled onto it too early, or it becomes a straight
jacket on the creative forces shaping it.

Networked system administration at this
level is in its infancy. A corporation’s information
and application architecture is often weighted
down in a heavy history of legacy systems. (That’s
if the corporation can even draw its architec-
tures!) These are a couple of the “minor” prob-
lems that need to be dealt with before marketing
sells the “promise™ too fully.

Conclusions

So there they are. My five favorite myths of
open systems standards. I'm sure this is just the
beginning. (I don’t get to a lot of cocktail parties.
I have small children.)

I'd love to hear other additions to this. No
matter how outrageous.

POSIX.0 Guide to Open Systems Envi-
ronment

Kevin Lewis <klewis@ gucci.enet.dec.com>
reports on the July 8-12, 1991 meeting in Santa
Clara, CA:

The July meeting of POSIX.0 saw a different
approach to the week's work. Instead of abiding
by the draft agenda. the group trashed it and took

Vol 13 No 1

68

what might be called a “‘fish or cut bait™ approach.
POSIX.0 looked at each major section and deter-
mined whether or not it was ready for mock bal-
lot, or could be made ready by the October meet-
ing.

Accomplishing the latter required individuals
to step up to the task of editing sections during the
meeting, with some degree of plenary review be-
fore the week’s end. This required a commitment
from the group at large to refrain from any super
ethereal or journalistically-based editorial discus-
sions. This has sometimes been hard to avoid in
the past. The group stuck to its guns, however,
and made a great deal of headway.

The sections within the guide that remain
undecided for mock ballot are:

* networking,

* security,

e graphics (GKS, etc.),

e command user interface,

e system administration,

¢ fault management.

Should the group decide that a section is not
ready, we will simply not include it in the mock
ballot. It will be included in the formal ballot.

As it currently stands, the group plans to start
the mock ballot early in November, bringing all
ballot comments to the January meeting. This
appears to be very feasible.

The POSIX.0 project was reviewed at this
meeting by the TCOS-SS Project Management
Committee. The review determined there was the
need for other TCOS-Ss working groups to better
coordinate with and contribute to the POSIX.O
guide. This was mandated through an SEC reso-
lution. The greatest concern among the other
standards working groups is “*how in the world are
they going to find time to do that.” The groups
are already concerned about their current work
loads.

I believe that once we go through the prep-
aration at the October meeting, and get into the
mock ballot, many of the loops that are still open
will be closed. That is not to say that there will
be no outstanding issues, but the major concerns
should be laid to rest.

AUUGN

Report on POSIX.2: Shell and Utilities

David Rowley <david@mks.com> reports
on the July 8-12, 1991 meeting in Santa Clara,
CA:

Summary

POsIX.2(Shell and Utilities) Draft 11.1 closed
its recirculation ballot on July 19. This draft was
circulated as the 250 pages that had changed from
Draft 11. Balloting a *‘changes-only” draft proved
to be a challenge in itself. PosIX.2A (User port-
ability extension) Draft 7 closed its recirculation
ballot on August 19.

POSIX.2b has been approved after a number
of recommendations from the Project Manage-
ment Committee. The POSIX.2 group continued
work on the new PAX archive format. Most of the
time was again spent in a joint meeting with
POSIX.3.2 (Test Methods for POSIX.2) creating
test assertions for the document.

Background

A brief POSIX.2 project description:

e POSIX.2 is the base standard dealing with
the basic shell programming language and
a set of utilities required for the portability
of shell scripts. It excludes most features
that might be considered interactive.
POSIX.2 also standardizes command-line
and function interfaces related to certain
POSIX.2 utilities (e.g., popen(), regular ex-
pressions, etc.). This part of POsIX.2, which
was developed first, is sometimes known as
“Dot 2 Classic.” ‘

e POSIX.2a, the User Portability Extension
or UPE, is a supplement to the base stan-
dard. It standardizes commands, such as vi,
that might not appear in shell scripts, but
are important enough that users must learn
them on any real system. It is essentially an
interactive standard, and will eventually be
an optional chapter to a future draft of the
base document. This approach allows the
adoption of the UPE to trail Dot 2 Classic
without delaying it.

Some utilities have both interactive and non-
interactive features. In such cases, the UPE defines
extensions from the base PosIX.2 utility. Features
used both interactively and in scripts tend to be
defined in the base standard.

AUUGN

69

Jogin: 16:5

* POSIX.2b is a newly approved project which
will cover extensions and new requests from
other groups. such as utilities for the
POSIX.4 (Realtime) and POSIX.6 (Security)
documents.

Together, Dot 2 Classic and the UPE will
make up the International Standards Organiza-
tion’s 15O 9945-2— the second volume of the
proposed IS0 three-volume POSIX standard.

POSIX.2 Status

Resolution of PosiX.2 Draft 11 ballot objec-
tions was completed, and a Draft 11.1 was re-
circulated. There were 900 objections received for
Draft 11. The Draft 11.1 recirculation ballot
closed July 19.

This draft was circulated as a 250 page
“changes-only” document. This is created by
printing the document and extracting all those
pages containing change bars. Although this saves
paper, it makes balloting extremely difficult. The
context of the changes is lost. Since the page
numbers (and even some section numbers) have
changed since Draft 11, cross referencing old
drafts doesn’t help-much.

The intent of this technique is to physically
demonstrate the increase in consensus by the
smaller size of the document. Even though bal-
loting is made more difficult, I agree with the
spirit of this approach, since most of the changes
between Draft 11 and Draft 11.1 were fairly minor
clarifications of the wording.

One advantage of the ‘“changes-only” ap-
proach is that it helps to prevent balloters from
commenting on those items that have not changed
since the last draft. This is a restriction placed on
recirculation ballots. You can’t object to some-
thing you can’t see!

The complete Draft 11.1 document is avail-
able from the IEEE for copying costs. Draft 11.2
is already in the works, and should appear some-
time in September or Ottober.

There have been a few requests lately to
amend the POSIX.2 project’s base documents list.
This is a list of documents which may be refer-
enced when discussing existing practice issues.
The osF’s Application Environment Specification
(AES) is one such candidate for addition.

Vol 13 No 1

login: 16:5

Draft 9 of posix.2 is currently an ISO com-
mittee document. The IS0 standards process sees
a document move through three phases on its way
to standardization — Committee Document,
Draft International Standard, and finally Inter-
national Standard. 1SO has requested the U.S.
Member Body to forward to them another draft
once it has become more stable. Draft 11.2 has
been recommended for this, when it becomes
available.

Draft 11.3 should be out sometime in De-
cember. It should be complete from a technical
standpoint. Hal Jespersen, the Posix.2 Chair, re-
ported that final IEEE approval of POSIX.2 as a
full-use standard will be delayed until all 1SO con-
cerns have been addressed. This could mean post-
poning the IEEE POSIX.2 standard until the middle
of 1992. I don’t completely understand why the
1SO concerns cannot be addressed now, through
180 responses to the Committee Documents sent
to them. This will no doubt be discussed heavily
in the months ahead.

"POSIX.2a Status

Ballot resolution for POSIX.2A (UPE) Draft 6
was completed. There were only 400 objections.
Draft 7 was produced and recirculated, and the
ballot closed August 19. Ballot resolution is on-

going.

The list of PosIX.2a utilities is now stable.
There should not be any additions or deletions.
The technical content of the standard should be
wrapped up in the first quarter of 1992. Draft 6
of POSIX.2 a was submitted to ISO as a proposed
Committee Document/Proposed Draft Amend-
ment (PDAM) for eventual balloting as 150 9945-2,
Amendment 1. Due to some procedural prob-
lems, it was changed to a Review and Comment
draft. The next draft of posix.2 a will likely be
Draft 8. a full draft. This will also be forwarded
to the 150, as a Proposed Draft Amendment, and
will hopefully make it this time. Expect the ap-
proval of POSIX.2 a as a full-use standard any-
where from three to six months after POSIX.2.

Project Management Committee Review

Both POSIX.2 and POSIX.2 a are up for review
by the Project Management Committee (PMC) in
October. Each project will be examined to ensure
that the work is fulfilling its mandate.

Vol 13 No 1

70

The PMC has recommended that the proposed
project request (PAR) for POSIX.2B deal strictly
with new utilities. The 1SO timing and formatting
issues originally included in the scope of POsIX.2B
were thought to be unnecessary.

POSIX.2b will include utilities from the other
POSIX working groups. These working groups may
allocate chapters in the standard in a similar fash-
ion to PoSIX.2a. Each group retains control of its
chapter. This is preferable to delegating the spec-
ification of the utilities to the existing POSIX.2
working group, which may not have the required
expertise.

One question arose from this as the work of
other groups is integrated into POSIX.2 should
those other groups’ base documents automatically
be added to those of POSIX.2?

New PAX Archive Format

Work continued on the new PaX archive for-
mat. No new proposals were forthcoming, and the
group continued working in its current direction.
The intent is to build a new archive format on top
of the 1S0 1001 tape standard. The current new
format specification does not draw a clear line
between what is part of the 1S0 format, and what
was added for pax. This will be remedied in a
subsequent draft.

I have reconsidered my earlier challenges to
basing this new format on ISO 1001. It does have
tangible benefits, and should make transferring
tapes between non-traditional environments eas-
ier. The current proposal addresses both tape and
non-tape based formats.

Unfortunately, the current POSIX.2 working
group does not seem to have a great deal of
enthusiasm for this project. Progress is slow. Un-
less someone champions this new format, it may
well stall. Mark Brown (iBM) has volunteered to
flesh out the current draft for distribution in the
next POSIX.2 mailing.

Test Plans and Assertions

A test plan for POSIX.2 and POSIX.2 a was
written, and submitted to POSIX.3.2 (Test Asser-
tions for POSIX.2) for review. Lowell Johnson,
POSIX.3.2 Chair, expressed some concerns over
the linkage of the POSIX.2 and the POSIX.2 a test

AUUGN

plans. It is important that each test plan cover the
scope of one and only one project.

Tuesday to Friday were spent writing test
assertions in a joint meeting between POSIX.2 and
POSIX.3.2 . Confusion continues to reign when
writing assertions. There are many different as-
sertion styles. and it seems to be more art than
science. Styles range from “you know what I
mean”, to precise, verbose, legalese. The group
requested that the Chair (Lowell Johnson) and
the Technical Editor (Andrew Twigger) produce
a style guide for POSIX.3.2 assertions. The guide
would be reviewed at the beginning of each joint
meeting. This should greatly help the consistency
of the assertions being produced.

Draft 5 of posix.3.2 is now 400 pages, and
most of the POSIX.2 commands have assertions.
The group is still intending to mock ballot the
document after the October meeting. A few util-
ities are noticeably absent: awk, lex, and
yacc. I'm sure donations of good assertions for
these utilities would be most welcome.

The turnout for the joint meetings was dis-
appointing. Writing test assertions is time con-
suming hard work. Ideally the joint meeting time
should be spent reviewing assertions, and clari-
fying the implied interpretations of the standard.
Unfortunately, it is difficult for members to find
the time between meetings to write assertions.

Writing test assertions for POSIX.2a will
likely start in January 1992. If you thought test
assertions for make were difficult, wait until you
try vi!

Report on POSIX.3: POSIX Test Meth-
ods and Conformance

Andrew Twigger <att@root.co.uk> reports
on the July 8-12, 1991 meeting in Santa Clara,
CA:

In many ways the Santa Clara meeting could
be considered to be one of the less eventful of the
recent POSIX.3 meetings.

Draft 5 of the PosIX.3.2 document was dis-
tributed at the meeting, with the majority of the
test assertions having been aligned with the text
of Posix.2 (Shell and Utilities) Draft 11. This
alignment was exquisitely timed to coincide with
the production of Draft 11.1 of POSIX.2, imme-

AUUGN

71

Jdogin: 16:5

diately rendering parts of Draft 5 out of date!
Perhaps the documents can be synchronized for
the next meeting, or the one after that, or

The majority of the POSIX.3 working group
spent most of the meeting writing assertions with
POSIX.2. Having already dealt with the “‘simpler™
utilities, some of the more complex utilities
(mnake, pax, 1s) were tackled during the week.
The next draft should contain assertions for about
95% of the utilities. however the remaining 5%
could take 95% of the time!

The ballot review group for POSIX.3.1 met
briefly during the week to look over the objec-
tions received during the last ballot recirculation.
Most of these had been resolved prior to the
meeting and it was expected that the remaining
items could be resolved by the end of August.
Another brief recirculation ballot is expected in
the Autumn, with possibly another standard being
completed by the end of the year.

The Steering Committee for Conformance
Testing (SCCT) met twice during the week and
finally approved some of the test method devel-
opment plans submitted by the other working
groups. The rumour that this was only in response
to moans from the other working groups that the
sccT had rejected every plan submitted in the
previous nine months is not entirely without foun-
dation! Most of the other working groups, how-
ever, are getting geared up to produce test meth-
ods with their documents.

Several members of POSIX.3 spent time in
assisting other working groups to develop test
methods for their standards. Much of this time
was spent in helping the working groups to un-
derstand how significant a task this is and in help-
ing the working groups to develop a reasonable
strategy for test methods. Some time was also
spent in reviewing the work that had already been
done by work group members. There seems to be
an increased awareness of the problems and an
ever improving quality to the test methods that
the working group are producing.

Report on POSIX.4, POSIXd4a,
POSIX4b, POSIX.13: Realtime POSIX

Bill O. Gallmeister <bog@ lynx.com> re-
ports on the July 8-12, 1991 meeting in Santa
Clara, CA:

Vol 13 No 1

Jdogin: 16:5

Summary

The working group continued work on Ap-
plication Profiles, on the extended POSIX.4B Re-
altime Proposals, and on the thorny issues of IpC
and synchronization mechanisms. Since both
POSIX.4 and POSIX.4A are preparing for another
ballot recirculation, there was little work done on
these drafts.

Real-time Application Profiles

POSIX.4 has produced four different profiles,
matching different scales of real-time endeavor.
The Embedded profile is meant for small ma-
chines that may lack hardware for paging, disks,
and terminals. As such, this profile is rather dif-
ferent than what is generally considered to be a
UNIX® system. In particular, the threads work is
called out, and some of the POsIX.1 file system,
but fork() is not needed.

This requires subsets of POSIX.1. Its multi-
process aspects and a lot of the extended file-
system semantics are considered optional by the
people working on the smaller Real-Time pro-
files. This subsetting work has to be sanctioned by
POsIX.I. Getting them to agree to this work may
be an interesting task.

Other profiles under development are a
*Controller” profile, an “Avionics” profile, and
the “Kitchen Sink” profile. The Kitchen Sink and
the Embedded profiles define two endpoints of a
spectrum of real-time practice. The Controller
and Avionics profiles define particular points of
practice within that spectrum. The Avionics pro-
file reflects the current requirements of the Avi-
onics industry. The Controller profile is a step up
from the Embedded profile.

IPC Again

POSIX.4 inter-process communication (IPC)
remains an issue. We had a liaison meeting with
the PosiX.12 (Protocol Independent Interfaces)
working group and presented our requirements
for a Real-Time sockets mechanism. There were
28 possible requirements; we decided that 17 of
these requirements were truly necessary for a
socket-based mechanism for Real-Time (pc. The
POSIX.12 group helped us refine these require-
ments into something they can use in defining a
mechanism. These discussions will undoubtedly
carry on for some time.

Vol 13 No 1

72

Meanwhile, the existing POSIX.4 IPC chapter
is undergoing radical surgery. The recirculation
draft that should come out this October should
feature an [PC mechanism that more closely re-
sembles the message-passing interfaces of small
real-time kernels. The interaction of this message-
passing mechanism and the future POSIX.12 real-
time sockets mechanism is an open issue.

Synchronization Again

At the last meeting, it was the POSIX.4 pro-
posal that needed guidance from the working
group on its binary semaphores chapter. This
meeting, the POSIX.4A proposal required guid-
ance with regards to mutexes. (Mutexes are sim-
ple MUTually EXclusive locks.) Specifically, the
priority ceiling protocols in the current draft ran
into serious balloting problems. In response to
this, a simplified version of the priority ceiling
protocol, called Priority Ceiling Protocol Emula-
tion, was proposed to replace the existing two
mechanisms currently in POSIX.4A. The emulation
protocol is much easier to understand, offers the
same worst-case blocking behavior as the earlier
proposals (although worse average-case behav-
ior), and works with multiprocessor systems. The
working group was torn whether any priority ceil-
ing protocol should be in POSIX.4A at all. As-
suming that one would be present, the group
clearly preferred the emulation protocol.

The debates on priority ceiling featured a
lively exchange between POSIX.4 and POSIX.14
(Multiprocessor Profile). This is the closest that
POSIX.4 has come to its old glory days of large
bloody group battles.

POSIX.4b

Some work was done on the timeout exten-
sions of POSIX.4B. This work involves providing
timeouts to all POSIX.4 calls that may block. An
early draft of this proposal is available in the latest
POSIX.4 mailing.

Future Drafts

The technical reviewers for POSIX.4 and
POSIX.4A have been working hard towards new
drafts of each of these documents. It is our current
plan to recirculate them both at about the same
time as the Fall meeting. If this happens, the next

AUUGN

meeting will again focus on application profiles
and continuing POSIX.4B.

Report on POSIX.6: POSIX Security
Extensions

AnaMaria De Alvaré <anamaria@sgi.com>
reports on the July 8-12, 1991 meeting in Santa
Clara, CA:

Hello USENIX members!

This time my report will be very brief. It is
brief because there were no big disagreements at
the meeting, and because the whole week was
spent in cleaning up the document for formal
ballot.

This was the last meeting working in func-
tional subgroups, addressing discretionary and
mandatory access controls (DAC and MAC), audit,
and privileges. At the next meeting the group will
be divided into people helping with the balloting
process, doing test assertions, and identifying ar-
eas that PosIX.6 has not covered. The ballot doc-
ument should come out sometime after the Sep-
tember mailing (September 10, 1991).

POSIX.6 spent the whole week addressing all
the mock ballot comments and objections. A
small group of three people, including myself,
began working on the first draft of the POSIX.6 test
methods. The test methods draft will be brought
to the next meeting and people from the dis-
banded subgroups will begin creating test meth-
ods for the functions defined in the pPosIX.6 doc-
ument. It will be a long week!

So what areas aren’t covered in the current
POSIX.6 draft? The three major areas that I know
are not covered are:

e authentication,

e security system administration, and

e network security.

There are items in the subgroups which are
also not addressed. A portable audit format has
not been fully defined, and so is not going out for
ballot. With mandatory access controls, we de-
cided at this meeting to not enforce privileges on
an implementation of multi-level directories. Ex-
cept for some clean-up in Draft 11, discretionary
access controls remain the same.

The data type issue still remains across the

AUUGN

73

Jogin: 16:5

DAC, MAC, audit, and privileges subgroups. To
interoperate between systems, opaque objects
need to be stored and retrieved without concern
for the implementation defined formats. An
opaque object model also provides consistency
across the interfaces. POSIX.6 subgroups have de-
fined a number of security related objects. We
cannot agree on a way to represent these, but
have determined four possibilities:

¢ A Type 1 object is opaque, and is only valid
for use by the process which gets the data.
and only for the lifetime of the process.

¢ A Type 2 object is still opaque, but it must
be self-contained and persistent.

e A Type 3 object is a text string with an
undetermined format. MAC labels are rep-
resented as Type 3 data types.

e A Type 4 object is a text string with a
defined format. Access Control Lists (ACLs)
have a Type 4 representation.

One compromise was that the subgroups
would define conversion routines for Type 2 and
3 data, which would return an opaque object and
the length in bytes of the object.

We were still unable to agree upon a uniform
type representation across the four subgroups in
the July meeting. This issue will likely be a hot
one in the balloted document. We will have to
wait and see what the ballot brings to resolve this. -

Well, that’s all folks! Keep an eye out for the
POSIX.6 ballot.

Report on POSIX.12: Protocol Indepen-
dent Interfaces

Tim Kirby <trk@cray.com> reports on the
July 8-12, 1991 meeting in Santa Clara, CA:

POSIX.12 is developing a set of protocol in-
dependent networking interfaces. There were no
major changes in the group’s direction this meet-
ing. Two interfaces are proposed in language in-
dependent form — the simple network interface
(sN1) and the detailed network interface (DNI).
SN1 is a proposal drawn from several sources, with
no existing (de-facto) standard. DNI, however, is
seen as a single language independent specifica-
tion to which there are two valid C language
bindings, one for BsD-style sockets and one for the
x/open Transport Interface (XTI).

Vol 13 No 1

login: 16:5

The group once again reviewed the proposed
changes to XTI option management from Gerhard
Kieselman, following input from X/open during
the intervening three months.

A significant amount of time was spent in
liaison with the Transaction Processing (POSIX.11)
and Real-Time (POSIX.4) working groups as a
result of the proposal from the last meeting to
include their requirements in the POSIX.12 inter-
face. POSIX.4 requirements are a direct result of
ballot objections to the IPC interface proposed in
their current draft. Given the announced inten-
tion of POSIX.4 to include a ‘‘simple” 1PC interface
regardless of the Posix.12 efforts, there is some
concern within our group that there are no ad-
vantages to the proposed POSIX.12 changes.

Work between the meetings continues on
language independent versions of the interfaces,
and the test methods without which the document
may not become a standard.

A review of the test method requirements
revealed a significantly larger amount of work
than had originally been anticipated. This has
résulted in a change to the test method schedule.
The mock ballot of the POsIX.12 draft is not ex-
pected now before the second quarter of 1992,
and the first real ballot not before the fourth
quarter of 1992.

Report on POSIX.17 - Directory Ser-
vices API

Mark Hazzard <markh@srsvl.unisys.com>
reports on the July 8-12, 1991 meeting in Santa
Clara, CA:

Summary

POSIX.17 made significant progress towards
completing another draft in Santa Clara. The
group is on track to mock ballot Draft 2.0 of the
Directory Services API by the end of August. Key
areas of progress were:

 test methods,

* language independence specification (LIS),

* Model text in Section 3.

* ds_ gethostbyname() example,

* preparation for mock ballot.

Introduction

The POSIX.17 group is generating a user to

Vol 13No 1

74

directory API, e.g. an API to an X.500 Directory
User Agent (Dua). We are using XAPIA —
X/open’s XDs specification as a basis for work. The
x/open Directory Services API (XDS) is an object-
oriented interface and requires a companion spec-
ification, xX/open's Object Management API
(xoM), for managing the 0SI objects as they pass
through the directory APrI.

XOM is a stand-alone specification with gen-
eral applicability beyond the directory services
API. [t will be used by IEEE 1224.1 (X.400 aPI) and
possibly other POSIX groups. It is being standard-
ized by IEEE 1224.

Status

Commitment within the group remains
strong, with all Chicago attendees returning to
Santa Clara, and completing homework assign-
ments. We are committed to mock balloting our
document between meeting cycles and have
planned a special mailing for the end of August,
(paid for by x/open - Thanks!).

Once again, considerable time was spent ex-
amining POSIX.12 (Protocol Independent Inter-
faces) requirements for directory services. One of
the requirements is a mechanism to protect ex-
isting applications from changes in how directory
services are offered. We had decided that this was
technically beyond the scope of our work, but that
we would address this by providing a non-
normative annex with coding examples, showing
how it could be done.

The first example is a new function, dsgeth-
ostbyname(), which could be added to the existing
practice APl (BSD's gethostbyname() function).
With it (or something similar) existing applica-
tions wouldn’t need to be modified to work in a
POSIX environment,

Another POSIX.12 requirement was that the
underlying directory service provider be able to
interoperate/co-exist with existing practice direc-
tory services (e.g. the Internet DNS). On the sur-
face. impact to the API itself is minimal, requiring
(at most) the use of an existing parameter which
would allow the application to specify which (of
many) services it wanted to use.

POSIX.17 and P1224 (xOoM API) met in joint
session to review the object management speci-
fication. Many corrections were made, and a new

AUUGN

draft will be released in the first half of August (in
time for our Mock baliot).

Mock Ballot

There were many homework assignments this
time to get the mock ballot out between meetings.
Significant progress was made towards producing
a draft suitable for mock ballot. The technical
editor completed his assignment to provide 25%
of the LIS text. An estimated 25% of the test
assertions were completed as well. Our plan is to
go to mock ballot with this level of completeness
in order to obtain feedback before we proceed
further.

We plan to send it out before the end of
August, so we’ll be able to process the feedback
at our next meeting. Hopefully, we’ll get feedback
on our LIS and test assertion work. The comments
will help us determine our future direction and
better estimate our completion date.

In Closing

The group made good solid progress in Santa
Clara readying the document for mock ballot. We
seem to uncover more requirements with each
meeting but somehow we're managing to move
forward. POSIX.17 will be mock balloted incom-
plete, needing more work on LIS, test methods
and a few more examples.

The group will meet in October to process
the input from our mock ballot, continue working
on LIS and test methods, and determine where we
go from there. As usual, there’s a lot of work to
do.

Report on P1224: X.400 API

Steve Trus <trus@osi.ncsl.nist.gov> re-
ports on the July 8-12, 1991 meeting in Santa
Clara, CA:

Summary

P1224 is producing two documents for stan-
dardization — the X.400 APl and the X/Open
Object Management APl (XOM). At Santa Clara,
the group continued work on the modifications
required to the base documents. Specifically the
group:

e reviewed the first draft of the Object Man-

AUUGN

75

;login: 16:5

agement API,
¢ worked on test methods,
¢ worked on IEEE balloting plans for P1224.

The IEEE Standards Board has approved the
Project Authorization Requests (PARs) for P1224
(os1 Object Management API) and PI1224.1
(X.400 API).

Report

The Santa Clara meeting was generally pro-
ductive for the P1224 working group, and we are
well under way to producing our draft documents
for standardization. Progress wasn’t what it could
have been due to minimal participation by the
X.400 API Association.

Review of Object Management Draft

The first draft of the Object Management API
was distributed to the P1224 working group be-
fore the meeting. The group spent much of the
week reviewing the AP1. The posix.17 (Directory
Services) group joined the review for one day.
Numerous changes were made to the document.
When the changes have been incorporated into
the document, it will again be sent out in the
P1224 mailing.

Test Methods

Tony Cincotta, a test methods expert from
NIST, spent much of the week reviewing the Ob-
ject Management draft and test methods already
developed. Tony provided many suggestions for
improving the test methods developed thus far.

It has become apparent that the development
effort required to build test methods for the X.400
and Object Management APIs could delay the
completion of balloting of the APIs for years. To
resolve this problem X/Open is considering fund-
ing a contractor to develop the test methods for
these documents. This issue should be resolved by
the next meeting. Additionally, Tony recom-
mended that he train the x/open contractor for
the development of the test methods section of
the documents.

Balloting Plans

Our current plans are to ballot the Object
Management APl after the October meeting, and

Vol 13 No 1

login: 16:5

to ballot the X.400 API after the January meeting.
These ballots would not include the test methods;
balloting cannot complete until the test methods
are complete.

Currently we are developing the list of people
who will be invited to ballot these documents.
This list includes members of the [EEE TCOS, the
X.400 API Association, and X/open Limited. In-
vitations to join the balloting group will be sent
out at the end of August by the IEEE. To be
included in the balloting group, a person must
return the invitation to the IEEE by October 10,
1991.

Iain Devine, the P1224 technical editor, will
be the ballot resolution reviewer, assisted in tech-
nical matters by Enzo Signore.

In Closing

PI224 continues to make good progress. The
primary focus of the Parsippany meeting will be
to continue the review of our draft documents,
work on our test methods, and prepare for bal-
loting.

Report on ANSI and the X3 Commit-
tees

John Hill <hill@prc.unisys.com> discusses
ANSI and the X3 committee:

Over the past few years information tech-
nology standards have become more important in
the industry. One of the most prevalent areas for
standardization is operating systems and allied
services. This article discusses the largest formal
standards development organization for informa-
tion technology in the UsA, x3, and its relation-
ship to ANSI.

A brief background is useful in understand-
ing how the Usa develops standards. The premier
standards body is the American National Stan-
dards Institute (ANSI). Its four main functions that
are of interest here are:

¢ membership in the International Standards

Organization (1s0) and the International
Electrotechnical Commission (1EC), the
worldwide standards bodies,

* accreditation of organizations to develop

voluntary U.S. standards,

¢ pubiication of U.S. national standards.e

Vol 13 No 1

76

¢ oversight of the standards development
process to ensure due process and fairness.

That’s right, ANSI does not develop stan-
dards; ANSI accredits other organizations to de-
velop standards.

Standards are developed in one of three

ways:

* by professional and trade organizations
(e.g. Institute of Electrical and Electronic
Engineers, IEEE, an organization which is
involved in more than the development of
standards),

¢ by accredited committee (X3),

e by canvass (e.g. Ada Joint Program Office,
AJPO). The canvass method is intended for
mature and non-controversial standards
processing.

In a nutshell, ANSI accredits the standards
development procedures of individual groups
within some designated, but very broad scope,
and according to one of the three ways. X3, while
not a part of ANSI itself, is an example of a com-
mittee that ANSI has accredited to develop U.s.
national standards.

X3 was established in 1961. Since its incep-
tion, the Computer and Business Equipment
Manufacturers Association (CBEMA) has func-
tioned as the secretariat. X3 has about 850
projects, 200 standards, and some 3000 volun-
teers.

The purpose of X3 is voluntary standardiza-
tion in the areas of computers, information pro-
cessing, and peripheral equipment and devices.
This scope of activity includes standardization of
subsystems in order to provide for hardware in-
teroperability and software portability. As a re-
sult, many of the fundamental standards of the
computer industry have been developed by X3.

The true, nuts-and-bolts work of X3 is done
by its subgroups. There are two types of sub-
groups, advisory and technical. The three advi-
sory committees are collectively empowered to
ensure that the process of standards development
is under control. These advisory committees are

. chartered to

e advise the secretariat in administrative
activities.
¢ develop the X3 strategic plan,

* manage the technical activities of X3.

AUUGN

The forty technical committees of X3 actually
develop the standards. There are committees for:

 media (both magnetic and optical),

e operating system services (database and
graphics),

e programming
COBOL),

¢ codes and character sets,

e vocabulary,

¢ data communications (0SI),

* systems technology (SCSI, security),

e and office systems (ODA/ODIF).

languages (Fortran, C,

These technical committees frequently act as
the U.s. technical advisory groups (TAGs) for the
development of worldwide standards.

Worldwide standards are a major area of
activity for x3. Over the past ten years, the X3
member organizations have expended more re-
sources for development of the base 0sI standards
than on any other single functional area of stan-
dardization. These 175 largely anticipatory stan-
dards were developed for the most part in the
international arena. The US delegates from the X3
technical committees actively worked in SC21, the
ISO/IEC subcommittee responsible for the osI stan-
dards, to ensure that US interests were met in the
worldwide standards being developed.

Membership in X3 is open to anybody af-
fected by its standards. Its current members, of
about 41, include some of the most notable pro-
ducers, users, and general interest groups in-
volved in the information technology industry.

Members have to participate in order to remain-

in good standing.

All members pay annual service fees to sup-
port X3 activities. The larger members pay more
than the smaller. An additional fee is charged for
participating in the subgroups.

If you have further questions concerning X3,
you should contact the X3 secretariat
(202-737-8888). These helpful people can send
you several standing documents which expand
upon this discussion.

Report on X3J16: C++

Mike Vilot <mjv(@ objects.mv.com> reports
on the July 8-12, 1991 meeting in Santa Clara,
CA:

AUUGN

T

Jogin: 16:5

Current Status

The ANSI X3J16 committee took a major step
towards internationalization at its June meeting.
This was the first joint meeting between X3116
and ISO WG21. WG2I is the 1S0 C++ working
group. X3J16 and WG21 are roughly peer orga-
nizations.

June meeting

The Lund Institute of Technology hosted the
meeting in Sweden. The week’s major activities
focused on understanding the myriad details of
producing a single, international C++ language
standard.

The x3116’s sub-groups focus was on the key
topics listed in the goals statement developed at
the March, 1990 meeting. They worked by elec-
tronic mail between meetings, and reported their
progress.

International Concerns

Steve Carter, of Bellcore, presented the ma-
jor international concerns:

International cooperation is an explicit goal
of x3J16, and the committee devoted the entire
first day’s discussion to international concerns.
Most members want to avoid the difficulties en-
countered during the development of the C lan-
guage standard.

Much of the work focused on attaining a
smooth coordination with wG21 without losing
technical effectiveness. The committee agreed to
continue emphasizing informal discussions and in-
formal “straw votes” before making formal deci-
sions. All members of wG21 will be added to the
email lists, and will receive X316 paper mailings.

On the other side, wG21 voted to hold its
technical meetings jointly with X3316. They ap-
pointed Jonathan Shopiro as their editor, which
means both committees have the same editor.

X3J16 decided to conduct a letter ballot on
the question of converting to a Type “I” process.
This means developing an international standard,
rather than developing a domestic standard fol-
lowed by an international standard (as was the
case for the C language). A straw vote indicated
most members would vote in favor of the change.

The committee dissolved the International

Vol 13 No 1

;login: 16:5

Concerns working group, since it has served its
purpose. Steve Carter, serving as Convener of
WwG21, will continue to address international C++
concerns.

Editorial

Jonathan Shopiro, of AT&T, presented the
Editorial group’s work:"

The editorial change that simplified the treat-
ment of names and name lookup, merging the
concepts that had previously been treated under
the topics of dominance and name hiding, re-
mained in the document.

Much of the recent work on the document
has been in clarifying or defining basic terms. For
example, the basic unit of storage is a byte. In the
C standard, it is a character, which confuses the
notion of what type “char” is supposed to rep-
resent, especiaily in light of 8-bit and larger char-
acter sets. The process of resolving the definitions
of the two base documents continues. (These are
the Annotated C++ Reference Manual and the C
standard.)

One minor change to the document format:
the size is now suitable for A4 paper.

Formal Syntax

Reg Charney, of Program Conversions, pre-
sented the work of the Formal Syntax group:

The bulk of the discussion concerned the
change that renamed most of the non-terminals in
the grammar. There are still more proposed
changes.

The conflict between the virtues of regular-
izing the naming versus the evils of gratuitous
changes resurfaced. Bjarne Stroustrup made the
strongest criticism, observing that the changes had
been proposed and adopted without sufficient
principles. He noted that the lack of such prin-
ciples invited the kind of “random changes” that
were presented at the June meeting. He also ob-
served that the changes had not even been
checked against the C standard’s grammar.

Core Language

Andy Koenig, of AT&T. presented the Core
Language group’s work:

Vol 13 No 1

78

Most of the Core Language discussion cen-
tered on name resolution issues. These issues are
highlighted by the interactions of nested classes,
inline friend function definitions, and static class
members.

This work has helped identify ambiguities in
the present wording. Although there has been
progress, open issues remain. For example, de-
fining a friend function in a class causes the name
of the friend to be made available in an “enclos-
ing” scope. The cases involving nested and local
classes still have to be resolved.

Environment

John Wilkinson, of Silicon Graphics, pre-
sented the work of the Environment group:

Discussion continued on static initialization
order for objects in different translation units.
The group proposed two new rules intended to
provide correct initialization that still accommo-
dated dynamic linking:

* Nonlocal static objects defined in a trans-
lation unit must be initialized in the order
that the definitions appear in the translation
unit.

e The nonlocal static objects defined in a
translation unit must be initialized before
any object or function defined in that unit
is used by any other translation unit; the
nonlocal objects defined in the translation
unit containing main() must be initialized
before control enters main().

Specifying translation limits in the standard
was discussed, but seemed to generate more heat
than light, and nothing was decided.

Libraries

Jerry Schwarz, of Lucid. presented the Li-
brary group's work:

There is an evolving proposal for a standard
string class, and its interaction with internation-
alization concerns. The tradeoff involves gener-
ality (strings of both single- and multi-byte char-
acters) versus efficient implementation. This
discussion continues.

The group also worked on issues of conform-
ance, and describing the options available to im-
plementations that choose to extend the standard

AUUGN

library. For example. the implementation may
provide the standard classes by deriving them
from base classes not mentioned in the standard,
or as instances of templates not mentioned in the
standard. As another example, an implementa-
tion may add members to a class definition, with
the constraint that private virtual functions must
be in the implementation name space.

Work also progressed on standard excep-
tions. One line of investigation is to use excep-
tions to clarify those aspects of the language that
are vague or “undefined.” For example, the de-
fault new_ handler could throw a storage_error
exception.

Language Extensions

Bjarne Stroustrup, of AT&T, presented the
work of the Extensions group:

The group proposed a change that adds di-
graphs and new keywords as synonyms for certain
characters. For example, *{" can be written as
'<%’,’&="as ’and_eq’, and so on. This allows
expression of C++ programs in character sets that
do not include certain of the ASCII characters. It
is a proposal Bjarne has been working on with
Keld Simonsen for over a year, and their work has
been coordinated with the 1s0 wGi4 (C lan-
guage). The committee adopted this proposal.

The group is working through a long list of
proposals for changes to the language. Some of
the items are:

e adding 8-bit (i.e. international) characters

in identifiers;

¢ allowing virtual functions in a derived class

to use a more specific return type than the
base class’ version of the function;

¢ allowing overloading of operator .

* a name space control mechanism.

(dot);

The largest issue currently lurking in the Ex-
tensions category is the addition of support for
run-time type information. There will be much
discussion on this topic over the next months.

C Compatibility

Tom Plum, of Plum-Hall, presented the work
of the C Compatibility group:

The group continued its investigation of the
vocabulary differences between C and C++ . Only

AUUGN

79

Jogin: 16:5

a few of the differences have been resolved, and
Tom plans to meet with Jon Shapiro to decide
which terms can be incorporated as C++ defini-
tions.

Forthcoming events

The next three x3J16 1991 meetings (and
their hosts) will be:
* November 11-15, Austin TX (TI)
s March 9-13 (or 16-20) 1992, London, UK
(BSI and Zortech)
¢ July 13-17 Toronto Canada (IBM)

Membership on an X3 committee is open to
any individual or organization with expertise and
material interest in the topic addressed by the
committee. The cost for voting or observer mem-
bership is $250. Contact the chair or vice chair for
details.

Chair: Dmitry Lenkov

HP California Language Lab

19447 Pruneridge Avenue MS 47 LE
Cupertino, CA 95014

(408)447-5279

FAX (408)447-4924

email: dmitry%hpda@hplabs.hp.com

Vice Chair: William M. Miller
Glockenspiel, Ltd

P.O. Box 366

Sudbury, Ma 01776-0003
(508)443-5779

email: wmm@world.std.com

Report on ANSI X3B11.1: WORM File
Systems

Andrew Hume <andrew(@research.att.com>
reports on the July 8-12, 1991 meeting in Murray
Hill, NJ:

Introduction

X3BII.I is working on a standard for file
interchange on random access, write-once media:
a portable file system for WORMs. First let me
apologize for tardy snitching (again); my excuse
this time is that I am now technical editor of the
working paper. I shall describe the results of the
last two meetings, April (North Falmouth, R1) and
July (Colorado Springs, €0), as a summary of
where we are now. In brief, the current draft

Vol 13 No 1

;login: 16:5

seems fairly stable and we expect to conduct a
letter ballot after the next (October) meeting.
There is also considerable international activity.
[also discuss our method of electronically dis-
tributing our drafts.

International Activity

I am still a novice at international standards
stuff so take the following with a larger than
normal grain of salt.

The appropriate 1SO committee, SCIS, has
been reconstituted and had its first meeting in
several years in July in Tokyo. The meeting was
mostly administrative in nature but there was a
proposal for a volume structure standard submit-
ted by Fujitsu. The motivation for this is that
Fujitsu intends to introduce 3.5in media and
drives that can be partially embossed (like cD-
ROM) and partially WORM or rewriteable. Under-
standably, they would like to have a standard
volume labelling scheme to enhance interchange.
They figure that file system layout standards can
come along later but we need the volume labelling
scheme real soon now.

A common way for an ISO committee to do
work is invite some recognized, accredited com-
mittee to submit a proposal and then vote on it.
In particular, some committee with relatively little
administrative procedure. This means ECMA, (Eu-
ropean Computer Manufacturers Association,)
and not ANSI.

Luckily, the relevant ECMA committee, TCIS,
has just been reconstituted with its next meeting
in Geneva in early September. Ostensibly, TC15’s
first job is to consider and bless the work of the
Frankfurt group, which has been working on an
extension of IS0 9660 (CD-ROM) to handle cD-wO
media. The very next thing will probably be a
volume structure and file system standard, based
on our (X3B11.1) work. (This has required signif-
icant changes to our working paper but more on
that below.)

There is also a dark side to TC15. ECMa
apparently has a hidden agenda for TCIi5 that
includes the development of a general storage
architecture. This is the storage equivalent of the
osI networking model with its 7 layers. The first
guess at the layers are:

Vol 13 No 1

80

* physical layer,

e recording layer,

* formatting layer,

e volume structure layer,

* object management/file system layer (e.g.
150 9660),

» file structure layer (e.g. 1SAM),

* application layer.

Why does the international activity matter?
(That this question needs to be raised is comment
enough for our industry.) The goal of the stan-
dards game is to have a technically sound standard
adopted as soon as possible. Assume for now that
the x3B11.1 draft is technically sound. How do we
get a standard? One way is to go through ANSI
procedure, like the C standard did. Assuming no
problems, hitches, objections and foulups, we
could have an ANSI standard within two years.
And then we would have to work within the
ECMA/ISO committees to ensure that they adopt a
technically equivalent standard (and thus avoid
the prospect of an ANSI standard that conflicts
with an IS0 standard). The other way is to work
within the ECMA committee and produce an ECMA
standard which then, given the heavy European
presence in 180, would fairly automatically be-
come an ISO standard. Astonishingly enough, it
seems likely that we could get an 1s0 standard 6-9
months sooner than we could get an ANSI stan-
dard! (Yes, sadly, this means that often the quick-
est way to get an ANSI standard is to do the 1SO
standard via ECMA and have ANSI adopt the 150
standard.)

The Current Draft Working Paper

In order to facilitate adoption of the working
paper by TC15, we have made several structural
changes to the working paper. It is now in four
parts. The first part is introductory. It specifies the
scope and defines terms. The second part de-
scribes a volume labelling scheme. It specifies how
volumes are labelled, how partitions are defined,
how volumes are grouped into volume sets and a
bad sector replacement scheme. The third part

.describes a file system layout that is independent

of the details of part two. The fourth part is a
short section detailing the (very few) changes
needed to make part three suitable for rewriteable
media. This restructuring was a significant labour,
although it involved negligible technical change.

AUUGN

Volume/Partition Structure

This part is probably the most changed since
my last report. It has become much simplified and
made independent of the file system specification.
It handles space allocation for the volume, re-
cording of volume and partition descriptors, def-
initions . of partitions, and bad-block mapping.
Provision has been made for specifying the type
of file system in a partition. Some of these will be
predefined, such as 150 9660 and 9223. Others can
be registered, such as proprietary formats like
SGI’s EFS file system.

File System

This has been fairly stable although many
details have been tweaked. The space manage-
ment within a partition and integrity controls (es-
sentially the dirty bit for a partition) have been
moved out of the volume description and into the
file system description as it was deemed too com-
plicated to demand that everyone support it.

Technical Editing

Because of the previous technical editor’s
health problems, I was appointed technical editor.
This has been quite entertaining for me; I have
never been involved in such a complicated doc-
ument production (and all of it my own doing!).
A single processing pass produces a table of con-
tents, an index, automatically generated data
structure layouts, ANSI C declarations of all the
data structures, an ANSI C program that tests that
the declarations are correct on your system (the
fields have the correct offsets and sizes), and last
but not least, the troff output.

Each pass runs at least 8 awks, 4 sorts, 10
seds, 2 uniq, spell, tbl, eqn, troff and Kernighan
and Van Wyck's balancing page makeup backend.
It takes 6 minutes clock time on an 80 mips SGI
multiprocessor. (This may not be a game for PDP-
11s anymore but at least I know what to do with
all those cycles!) We iterate until nothing changed
since the last pass.

AUUGN 81

Jdogin: 16:5

A more noteworthy accomplishment (other
than writing more awk scripts than you can point
an editor at) is that the current draft of the work-
ing paper is available online by both ftp and email
(netlib). You can get either of two forms: Post-
Script and the rroff input (minus all the formatting
directives). This way you can print your standard
and grep it too. The files are x3bll.l-wp.ps
and x3bll.l-wp.text and are in the direc-
tory research/memo. For fip, login as netlib on
research.att.con.

Finale

What can, or should, you do? Well, the worst
case is that a standard based closely on the current
draft will become an IS0 standard for interchange
for all random access disk drives (optical and
magnetic). You not only would have to support
it; you may also have to boot off such a disk.

If you wish to comment on the draft, the best
time would probably be in early November during
the letter ballot. (You of course can’t be in the
letter ballot because you aren’t a member, but
you could give your comments to me.)

If you would like more details on X3B11.1's
work, you should contact either me
(andrewdresearch.att.com, 908-582-
6262) or the committee chair, Ed Beshore. I think
the two most useful documents are the current
draft of the working paper (about 60 pages) and
a programmer’s guide to the draft (about 12 pages
written by me). I will send you copies of the latter
document; requests for other documents or more
general inquiries about X3B11.1’s work would be
best sent to Ed Beshore.

The next meeting is in Merrimack, NH on
October 21-25, 1991. Anyone interested in at-
tending should contact either me or Ed Beshore
(edb@hpgrla.hp.com).

Vol 13 No 1

Jlogin: 16:6

An Update on UNIX-Related Standards Activities

Stephen R. Walli

Report Editor. USENIX Standards Watchdog Committee

P1202.1: Windowing Toolkit API

Luisa Johnson. Harris Space Systems. re-
ports on the July 8-12. 1991 meeting in Santa
Clara. CA:

The P1201.1 Working Group's attendance
was significantly lower than that of previous
P1201.1 quarterly working group sessions. Most
participants expected much controversy due to
the recent selection of the base and reference
documents at the Boulder meeting in May. For-
tunately, the participants that did show up for the
week long meetings were more eager to start
drafting the standards document than arguing
over document selection. After all. these docu-
ments are only informational sources to be used
in the drafting of the standard and the layered API
standards document itself will most likely not re-
semble either of them.

The working group was fairly well repre-
sented by both layered API developers and current
or future users. With the exception of the first
morning session,. no representatives from any ma-
jor toolkit or hardware vendor actively partici-
pated in the P1201.1 sessions the rest of the week.

The working group spent the first morning

discussing the usual administrative items and
identifying a strategy to be used for the rest of
week in order to generate the first standard draft
document. The strategy consisted of:
¢ reviewing the strawman document outline,
¢ identifying areas to be deferred or to be
omitted from the standard,
¢ identifying and describing a basic list of
objects including their attributes.

As a result of the document outline review
process, a few minor modifications and additions
were made to the General section, the Termi-
nology and General Requirements section, and
appendices were identified by the group. Topics
covered by the group included:

* internationalization concerns,

* geometry management and anchoring,

* color,

® Cursors.

Vol 13 No 1

82

Rationale will be added regarding the basic
requirements list. language bindings. and the pro-
cess that was used to select the base and reference
documents.

The next area tackled by the group was that
of identifying areas to defer for future meeting
discussions or topics to omit from the standard. If
the area had been or is currently being addressed
by other working or standards groups, then it was
considered out of our standard's scope. Areas
such as drawing, resource formats, and resource
languages were identified as possible areas to ex-
pand on once the initial first draft is completed.

WNDX Corporation made & presentation to
the working group. Their product allows devel-
opers to specify a look and feel that may be
different from the underlving GuI's “look-and-
feel .” It is implemented to the native library and
emulates the style guide, so a developer could
select the MacIntosh “look-and-feel” on a UNIX
Windows environment. WNDX Corporation rep-
resentatives informed the group of their desire to
participate in this standards effort and the work-
ing group agreed that the standards effort could
only benefit with the inclusion of new approaches
and their lessons learned.

From the second day through the end of the
week, P1201.1 worked diligently on the identifi-
cation of objects and attributes. This became an
iterative process by which the first pass was a
simple candidate list of objects which became
further defined each day. Attributes were as-
signed and refined throughout the week. No effort
was devoted to the specific syntax and semantics
to be utilized. Instead, for each object, pointers
to both the Base and Reference documents were
annotated for further details. By the end of the
week, a robust set of objects and attributes had
been identified and the working group members
felt a sense of accomplishment which none had
anticipated. Working group members felt that this
had been one of the most fruitful meetings in their
turbulent history. The next mailing will include
the approved first draft,

AUUGN

login: 16:6

With the lack of participation by any major
GUI vendor, one can only wonder if the accom-
plishments achieved during this week could have
been obtained had they not been so busy fighting
the GUI PAR wars.

POSIX.7: System Administration

Martin Kirk <m.kirk@zxopen.co.uk> re-
ports on the July 8-12, 1991 meeting in Santa
Clara, CA:

The July meeting of the posIX.7 (System Ad-
ministration) working group continued the new
direction established over the previous two meet-
ings.

Small groups continued work on Printer
Management, Software Management, and further
refinement of the “Big Sticky Issues,” i.e. the
global context of these activities.

The most important results from the *‘Sticky
Issues” small group were recommendations for
the style and content of PosiX.7 standards. Their
final recommendations will bring the group into
fuli alignment with the rest of PosIX. The overall
structure for each functional area standard will
have sections for:

® POSIX.1 style programmatic interfaces
based on existing practice
* POSIX.2 style command line interfaces

based on existing practice

e Managed object definitions to provide a
basis for the distributed system administra-
tion functionality [Ed. — It is appropriate
to mention that these have no relationship
to the communications object types to be
managed with the object management API
being defined by P1224 and POSIX.17.]

This approach represents a compromise be-
tween “traditional” systems administration and
the object-oriented approach. Where there are
existing interfaces available they will be used.
They will be supplemented by managed object

AUUGN

83

definitions needed to provide uniform interoper-
ability between different implementations.

Adopting this approach, along with the ear-
lier decision to build separate functional area
standards instead of a monolithic tome, should
enable the group to progress more swiftly.

The Print Management group has been pur-
suing an approach based on the MIT Palladium
distributed printing system. They received a
strong contribution from the UNIX System Lab
(usL) championing the System V lp print system.
This was a timely interjection, allowing us the
opportunity to address the issues that would have
undoubtedly arisen during the balloting process.
By identifying both the common subset and the
differences, it should be possible to provide the
appropriate rationale for the contents of the even-
tual standard.

The Software Management group continued
to make good progress. They are working with
contributions from several sources, including
AT&T, DEC, HP, Siemens-Nixdorf, and sco. (My
apologies to anyone I left out.) As one would
expect, all these differing systems are remarkably
similar in terms of the functionality they present
to the user, and thus the group found it relatively
painless to identify the large common subset be-
tween them.

The group's other activity was to identify a
third functional area in which to commence work.
The chosen candidate was User Management as
it was felt that many other system resources were
managed in terms of their relationship to users.

By the time the next POSIX meeting takes
place in October, the osF Distributed Manage-
ment Environment selection will have been an-
nounced. It will be very interesting to see what
effect this has on the system administration stan-
dards process.

Vol 13 No 1

AUUG Membership Categories

Once again a reminder for all ‘‘members”’ of
AUUG to check that you are, in fact, a member,
and that you still will be for the next two
months.

There are 4 membership types, plus a
newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily
intended for university departments, companies,
etc. This is a voting membership (one vote),
which receives two copies of the newsletter.
Institutional members can also delegate 2
representatives to attend AUUG meetings at
members rates. AUUG is also keeping track of
the licence status of institutional members. If, at
some future date, we are able to offer a software
tape distribution service, this would be available
only to institutional members, whose relevant
licences can be verified.

If your institution is not an institutional
member, isn’t it about time it became one?

Ordinary memberships are for individuals.
This is also a voting membership (one vote),
which receives a single copy of the newsletter,
A primary difference from Institutional
Membership is that the benefits of Ordinary
Membership apply to the named member only.
That is, only the member can obtain discounts an
attendance at AUUG meetings, etc. Sending a
representative isn't permitted.

Are you an AUUG member?

Student Memberships are for full time
students at recognised academic institutions.
This is a non voting membership which receives
a single copy of the newsletter. Otherwise the
benefits are as for Ordinary Members.

Honorary Life Membership is not a
membership you can apply for, you must be
elected to it. What's more, you must have been
a member for at least 5 years before being
elected.

Vol 13 No 1

84

It’s also possible to subscribe to the
newsletter without being an AUUG member.
This saves you nothing financially, that is, the
subscription price is greater than the membership
dues. However, it might be appropriate for
libraries, etc, which simply want copies of
AUUGN to help fill their shelves, and have no
actual interest in the contents, or the association.

Subscriptions are also available to members

who have a need for more copies of AUUGN .

than their membership provides.

To find out if you are currently really an
AUUG member, examine the mailing label of
this AUUGN. In the lower right corner you will
find information about your current membership
status, The first letter is your membership type
code, N for regular members, S for students, and
I for institutions. .Then follows your
membership expiration date, in the format
exp=MM/YY. The remaining information is for
internal use.

Check that your membership isn’t about to
expire (or worse, hasn’t expired already). Ask
your colleagues if they received this issue of
AUUGN, tell them that if not, it probably means
that their membership has lapsed, or perhaps,
they were never a member at all! Feel free to
copy the membership forms, give one to
everyone that you know.

If you want to join AUUG, or renew your
membership, you will find forms in this issue of
AUUGN. Send the appropriate form (with
remittance) to the address indicated on it, and
your membership will (re-)commence.

As a service to members, AUUG has
arranged to accept payments via credit card.
You can use your Bankcard (within Australia
only), or your Visa or Mastercard by simply
completing the authorisation on the application
form.

AUUGN

AUUG Incorporated
Application for Institutional Membership
Australian UNIX" systems Users’ Group.

*UNIX Is a registered trademark of UNIX System Laboratorles, incorporated

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary « Foreign applicants please send a bank draft drawn
PO Box 366 on an Australian bank, or credit card authorisation,
Kensington NSW 2033 and remember to select either surface or air mail.
Australia

This form is valid only until 31st May, 1992

.. does hereby apply for
g0 New/Renewal Institutional Membership of AUUG $325.00
[] International Surface Mail $ 40.00
O International Air Mail $120.00
Total remitted AUD$

. (cheque, money order, credit card)
Delete one.

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at mcmber rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: [/ / Signed:
Title:

0O Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly.

Administrative contact, and formal representative:

..
..

Write ‘‘Unchanged’’ if details have not

.. altered and this is a renewal.

Please charge $ to my/our [J Bankcard [J Visa [J Mastercard.

Account number: . Expiry date: _ /
Name on card: Signed:

Office use only: Please complete the other side.
Chq: bank bsb - alc #

Date: | |/ $ CCtype V¥

Who: Member#

AUUGN 85 Vol 13 No 1

Please send newsletters to the following addresses:

NamME: e ee e Phone: ..o,
AAresS: .ooiiiiiiiccrrreres nseeeseseesses e
.. Net AQArESS: oo
Name: . Phone: ..o,
AAAreSS: ccccvciiiiiciiciircrccisrrersssssinneesssseess aeeeesssssresesserre s
"""""""""""""""""""""""""""" Net AdAress:ccceevvienvivensveenineensinenns
Write “‘unchanged’ if this is a renewal, and details are not to be altered.
Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if
these have not been sent previously.
Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.
Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD
binary licence, and V7 binary licences were very rare, and expensive.
O System V.3 source O System V.3 binary
O System V.2 source J System V.2 binary
O System V source ' O System V binary
O System III source O System III binary
O 4.2 or 4,3 BSD source
O 4.1 BSD source
O V7 source
[0 OMher (INICALE WRICH) uvvvvererrrerveesesssesssssessassrssesssssssossosasssossossssssssasnassssssssassrasassansntessssssssesas sassssesssssssssesens
Vol 13 No 1 86 AUUGN

AUUG Incorporated
Application for Ordinary, or Student, Membership
Australian UNIX" systems Users’ Group.

'UNIX Is a registered trademark of UNIX System Laboratorles, Incorporated

To apply for membership of the AUUG, complete this form, and return it with
payment in Australian Dollars, or credit card authorisation, to:

» Please don't send purchase orders — perhaps
AUUG Membershlp Secretary your purchasing department will consider this form

PO Box 366 to be an Invoice.
Kensington NSW 2033 « Forelgn applicants please send a bank draft
Australia drawn on an Australlan bank, or credit card

authorisation, and remember to select elther
surface or air mall.

This form Is vaild only until 31st May, 1992

TP do hereby apply for

[J Renewal/New Membership of the AUUG $78.00

O Renewal/New" Student Membership $45.00 (note certification on other side)

[J International Surface Mail $20.00

[J International Air Mail $60.00 (note local zone rate available)
Total remitted AUD$

. (cheque, money order, credit card)
Delete one. ,

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.

Date: _/ / Signed:

0 Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly.

NAME: et sesrresst e e s st sesssnssssnes PRONE: ooiciecctentreecie e ssnr e saaeesns (bh)
Yo Lo [Y- T RPN PPPPPPRNO (ah)
.. Nt AQAIBSS: oo
.. Write ‘‘Unchanged’’ if details have not
.. altered and this is a renewal.

Please charge $ to my [J Bankcard [J Visa [J Mastercard.
Account number: . Expiry date: _ / .

Name on card: Signed:

Office use only:

Chq: bank bsb - alc #

Date: | | 3 CCtype V¥

Who: Member#

AUUGN 87 Vol 13 No 1

Student Member Certification (to be completed by a member of the academic staff)

L e teeeeeeatteeeetete s atesesrasas s b asaesaaess s bbb aessabte s srasass certify that
... (name)
is a full ime StUAENt At ...ecovveeerereiieinnreenineeeinreenaeenssesn teerssessaraseeatatestesiseeessenessnanen (institution)

and is expected to graduate approximately /[.

Title: Signature:

Vol 13 No 1 88 : AUUGN

AUUG Incorporated
Application for Newsletter Subscription
Australian UNIX" systems Users’ Group.

*UNIX s a registered trademark of UNIX System Laborstories, Incorporated

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

o Please don’t send purchase orders — perhaps your

AUUG MemberShip Secretary purchasing department will consider this form to be an
PO Box 366 m;mc?. li ! d a bank draft dr

. Foreign applicants please send a awn on an
Kensmgton NSW 2033 Australian bank, or credit card authorisation, and remember
Australia to select either surface or air mail.

« Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

This form is valid only until 31st May, 1992

Please enter /| renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

"""""""""""""""""""""""""""""""""" NEt AQAIESS: vvvvreereeeeveeesressesssessesseesesseseessees

--

.. Write ‘‘Unchanged’’ if address has

.. not altered and this is a renewal.

For each copy requested, | enclose:

J Subscription to AUUGN $ 90.00
O International Surface Mail $ 20.00
[International Air Mail $ 60.00

Copies requested (to above address)

Total remitted AUD$

(cheque, money order, credit card)
o Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $ tomy [] Bankcard [J Visa [J Mastercard.
Account number: . Expiry date: __/
Name on card: Signed:

Office use only:

Chq: bank bsb - alc #
Date: | |) CCtype V¥
Who: Subscr#

AUUGN 89 Vol 13 No 1

AUUG

Notification o*f Change of Address
Australian UNIX systems Users’ Group.

‘UNIX Is a registered trademark of UNIX System Laboratorles, Incorporated
If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
PO Box 366

Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)
Name: . ; 5 110 -2 O (bh) -

Address: . C rvveseesesssrerusenssaeresenassneaesassnessnssasanssanas (ah)

Net AQAresS: ...cceeeererereneecsonsessassorsessnasssassssstssssnease

oooooo

New address (leave unaltered details blank)
Name: . w PHONE: eueeecverereraenneresarensrasesnssnsressssassasonsons (bh)
Address: “ “ . (ah)

............ NEt AQAIESS: voveeeeeernesereesssrnessnnsesanesenssssanssssnsssssnars

Office use only:

Date: /]

Who: Membi

Vol 13No 1 90 AUUGN

