The Journal of AUUG Inc.

Volume 19 « Number 1
February 1998

P

RecurSivé‘?i\/Iake .
the whole story!

Contributions from

kit

e

UNIX & OPEN SYSTEMS USERS

ISSN 1035-7521 Print post approved by Australia Post - PP2391500002

AUUGN

The Journal of

AUUG Inc.

AUUG Membership and
General Correspondence

The AUUG Secretary
PO Box 366
Kensington NSW 2033

Tel: 02 9361 5994

Fax: 02 9332 4066

Toll Free: 1800 625 655
Internet: auug @auug.org.au

Volume

19 ¢ Number 1
February 1998

AUUG Executive

President:

Michael Paddon
Michael.Paddon @auug.org.au
Australian Business Access
723 Swanson Street

Carlton VIC 3053

Vice President:

Lucy Chubb

Lucy.Chubb @auug.org.au
Softway Pty. Ltd.

79 Myrtle St

Chippendale NSW 2008

Secretary:

David Purdue
David.Purdue @auug.org.au
Sunsoft Pacific

Level 4, Sunsoft Building

44 Hampden Road
Artarmon NSW 2064

Treasurer:

Stephen Boucher
Stephen.Boucher@auug.org.au
MTIA

509 St. Kilda Road

Melbourne VIC 3004

Committee Members:

Malcolm Caldwell
Malcolm.Caldwell@auug.org.au
Northern Territory University
Casuarina Campus

Darwin NT 0909

Luigi Cantoni

Luigi.Cantoni @auug.org.au
ST™M

Suite 3, 77 Millpoint Road
South Perth WA 6153

Peter Laytham
Peter.Laytham @auug.org.au
SCO

Level 7, 157 Walker Street
North Sydney NSW 2060

Mark White

Mark.White @auug.org.au
Tandem Computers

143 Coronation Drive
Milton QLD 4064

AUUG Business Manager:

Elizabeth Egan
busmgr@auug.org.au
Level 4, 90 Mount Street
North Sydney NSW 2060

February 1998

Editorial 3
President’s Column 3
NT to the Max...(NoT) 6
The ABC’s of TPC’s and NT Scalability 11 8
Recursive Make Considered Harmful 14
Book Reviews 27
Meet the AUUG-Exec 29
Call For Papers 32
SAGE-AU Sixth Annual Conference and General Meeting 33
AUUG Incorporated 1998 Annual Elections Call for Nominations 37

37

AUUG Incorporated Election Procedures

Returning Officer's Report AUUG Rules Ballot, September 1997 40

Chapter News: Canberra

Chapter News: AUUG-NSW

AUUG Local Chapter Meetings 1998
UNIX Traps & Tricks

Thanks to our Sponsors:

NVIRINTT]

Contribution Deadlines
for AUUGN in 1998/99

AUUGN Editor

Ginther Feuereisen
gunther@ibm.net

PO Box 366
Kensington NSW 2033

AUUGN Correspondence

Please send all correspondence regarding
AUUGN to:

AUUGN Editor
auugn@auug.org.au
PO Box 366
Kensington NSW 2033

Submission Guidelines

Submission guidelines for AUUGN
contributions are regularly posted on the
aus.org.auug news group.

They are also available from the AUUG
World Wide Web site at:

http://www.auug.org.au

Alternately, send email to the above
correspondence address, requesting a

copy.

--AUUGN Back Issues

A variety of back issues of AUUGN are
still available; for price and availability
please contact the AUUG Secretariat, or
write to:

AUUG Inc.

Back Issues Department
PO Box 366

Kensington NSW 2033
Australia

Conference Proceedings

A limited number of copies of the
Conference Proceedings from previous
AUUG Conferences are still available.
Contact the AUUG Secretariat for details.

Mailing Lists

Enquiries regarding the purchase of the
AUUGN mailing list should be directed to
the AUUG Secretariat.

Tel: (02) 9361 5994
Fax: (02) 9332 4066

During normal business hours.

Disclaimer

Opinions expressed by the authors and
reviewers are not necessarily those of
AUUG Inc., its Journal, or its editorial
committee.

Volume 19 ¢ Number 2 « May 1998 : April 7th 1998
Volume 19 ¢ Number 3 ¢ August 1998 : July 7th 1998
Volume 19 « Number 4 « November 1998 : October 7th 1998

Volume 20 Number 1 ¢ February 1999 : January 7th 1999

Copyright Information

Copyright © 1998 AUUG Inc.
All rights reserved.

AUUGN is the journal of AUUG Inc., an
organisation with the aim of promoting
knowledge and understanding of Open
Systems, including, but not restricted to,
the UNIX® operating system, user
interfaces, graphics, networking,
programming and development
environments and related standards.

Copyright without fee is permitted,
provided that copies are made without
modification, and are not made or
distributed for commercial advantage.

AUUGN: The Journal of AUUG Inc.

Editorial

Glinther Feuereisen <gunther@ibm.net
Happy 1998 Everyone!!

I trust everyone had a good break, and we’re all ready
to go once more!

The holidays are generally a quiet time, but there has
been some noise in the computer world. On January
26", Digital and Compaq announced a US$9 billion
deal which effectively sees Digital become part of
Compagq. This follows a deal by Compaq in late 1997
which saw them acquire Tandem.

What does this mean? Well, at the moment there
seems to be a lot of speculation, but you need to look
at what Compagq has been buying.

Tandem and Digital are world leaders in High
Availability, or Cluster technology products. By
acquiring both companies, Compaq now has the
biggest base of UNIX cluster technology, as well as
picking up VMS clusters from Digital, and
combining it with NT clusters which Compaq has
already been providing.

Compagq is now, in effect, a one stop cluster house for
all your High Availability needs, irrespective of your
corporate server environment.

Definitely something to rattle the other HA players
out there.

This should provide interesting times ahead in the
HA server market, it will be interesting to see what
happens with the evolution of the various products; if
they stay as separate entities, or merge to some
common environment.

I hope everyone is enjoying the summer conferences,
as well as the roadshows!

See you in May!

ﬁﬂw

©,
0'0

February 1998

President’s Column

Michael Paddon <Michael.Paddon @auug.org.au>

Netscape Communications Corporation finally
worked out what the rest of us knew already. Free
software wins every time. And it has been obvious to
all observers for quite a while that Microsoft's
Explorer was systematically stomping Mozilla into a
green, lizard flavoured pate. Something was going to
have to be done, or the wunderkind of the corporate
internet industry was going to make a spectacular exit
from the history books.

And, lo!, something was done. On January 22, our
favourite reptile announced a "bold move" to
"harness the creative power ... [of] developers". More
precisely, Navigator was now free for all to use and
enjoy. Let's quietly ignore the fact that most users
weren't paying for it anyway, and that this could be
seen as a face saving realisation that they never
would. By any yardstick, this was a radical move
relative to traditional corporate thinking: telling your
shareholders that you're now giving away your
flagship product isn't exactly plain sailing.

One is left wondering, however, whether or not our
saurian buddy has really got the point. You see there
is a difference between free software and well,
ummm, stuff you can download from the net. And,
no, I'm not talking about the cost of bandwidth here.

Truly free software is code that people can use,
understand, modify and pass on without restriction.
Money has nothing to do with it. If you want to
charge me one dollar or a million for a piece of
software, or even give it to me for nothing, that is
your right. I get to decide whether or not I am getting
good value. If you try and charge me a thousand
bucks for

a web server I'll probably just go and download
Apache. On the other hand, if you ask thirty for an
OpenBSD CDROM, I just might decide that it is well
worth my hard earned cash.

I'm not saying that software isn't worth money, or
that we shouldn't get paid for investing and working
with it. I'm just saying that the ways we measure that
worth and how the fiscal rewards flow from it are
changing. This sort of change is common in history.
Reflect on the economics of the publishing industry
pre and post printing press to see what massive
changes technology has wrought.

OK, this is a radical idea, though hardly original. But
let's work with it for a while.

If a piece of software is free, then the dynamics of the
internet can go to work. Millions of beta testers (you
can think of them as users), thousands of developers,
hundreds of insights. I've played this tune before, and

it suffices to mention a few examples like Linux, the
GNU project, the BSD variants and the XFree
consortium to prove that free software kicks butt.
Whatever happened to NeWS, OSF, DCE, AFS and
NextStep, to name a few? All great technologies and,
sure, a few still languish in commercial obscurity, but
they didn't exactly change the world now, did they?
Instead, they seemed caught in some kind of go slow
time warp while the rest of the world accelerated
away (some may still be resurrected as free software,
with luck).

When you think about the modern software economic
in these terms, it throws the way we think about open
systems into question. A lot of people have tried to
convince us that "open" meant standards conformant
or, at least, interoperability. In the end, however, they
wanted to ship us chunky, monolithic software that
felt more like a straitjacket than a tool. Standards and
interoperability are good, but they are now baseline
expectations like reliability and ease of use.

As we head towards the next century our real
challenge is not going to be fixing some stupid
COBOL program with two digit year fields, but
rather redefining the meaning of open to include and
require the freedoms mentioned above. We have no
choice... we want more from our software than ever
before, and our demands grow by an order of
magnitude each decade. The old economic model
cannot support this, and it's now time to evolve or,
well, face the fate of the dinosaurs.

Which brings us back to our pal Mozilla. There's
nothing "bold" about making a web browser free to
use. And if he (or she... we only get a head and
shoulders shot on the browser icon so it's hard to tell)
thinks that the "creative power" will be "harnessed”
by plonking a monolithic slab of software in our
backyards, with HTML as the only open interface,
then I suggest that looking for alternative
employment may be wise. Laying waste to Tokyo is
always a career option for large, cold blooded bipeds.

If I can't open the black box and make it work better,
then I can't tailor it to my needs in ways that only I
can foresee. If I can't hook it up with my other
software efficiently and elegantly there is no synergy
between the components of my system. If code is not
free and open (and I submit that for important values
of "free", this is a redundant phrase) then I can't be
competitive and I can't realise my ideas into working
software.

The days of writing everything from scratch are over.
Modern software is the most complicated machinery
on the planet and we need to build on each other's
successes to continue forward. Openness and
freedom have everything to do with this.

Netscape may have, indeed, understood this. In the
same press release they committed to "post the source
code for free for Communicator 5.0". Now that is
beyond radical. That is a twenty first century business
model. And if they follow through on this
commitment, if they make the release truly free and
open software, then we are going to see Mozilla
come back with a vengeance. Forget Tokyo...
Redmond is going to be wasted, and Bill Gates will
have a lot more to worry about than a cream pie in
the face.

Go, Go, Mozilla.

9,
0’0

Want to know
more about
AUUG?

Check our the AUUG website
for more information:

WWW.auug .org.au

AUUGN: The Journal of AUUG Inc.

O’REILLY ANIMAL
MAGNETISM

UNIX In a Nutshell System V Perl 5 Desktop Reference

& Solaris 2 2/e Vromans ORE
Gilly ORE 1565921879 9.95
1565920015 19.95

Java in a Nutshell 2/e Windows NT Server 4.0 for
Flonagen ~ ORE NetWare Administrators

156592262X [t Thompson ORE |
| ~ 1565922808 79.95

™

] Available from all good bookstores
=4 VAN 4 OR

direct from woodslane on
Tel: (02) 9970 5111 Fax: (02) 9970 5002

NT to the
Max... (NoT)

Neil Gunther <ngunther@ricochet.net>
© 1997 Performance Dynamics. All Rights Reserved.

To NT or NoT to NT? As someone who analyzes the
performance of large-scale UNIX servers, I finally
decided to face this nagging question by attending the
recent USENIX WindowsNT Workshop in Seattle.
Seattle’s weather being in the 90’s all week was as
much of a surprise as having the trade names
USENIX and NT in the same conference title!
Surprises, however, turned out to be a theme of the
conference. Overall, I came away being much more
impressed with NT than I had expected and I'm very
glad I attended. But there were some unexpected low
points too and it’s one of those I would like to bring
to your attention. It has do with a topic near and dear
to the hearts of many UNIX SysAdms and others
involved in managing large UNIX systems--server
scalability [1]. It is also the next frontier for
Microsoft.

Naturally, one presentation I was looking forward to
was the opening address by Jim Gray entitled,
“Windows NT to the Max—1Just How Far Can It
Scale Up?” Gray is a respected figure in the database
community who’s career spans companies like
Tandem, DEC, and now Microsoft. Moreover, he’s
possibly best known as one of the leading evangelists
[2] for standardizing database benchmarks that
ultimately led to the formation of the Transaction
Processing Performance Council.

Imagine my surprise to hear from Gray that NT could
outperform UNIX by scaling to billions of
transactions at prices much lower than UNIX

platforms. Imagine my dismay at some of the subtle
misinformation invoked to make the point! OK. You
can’t imagine my dismay: either you weren’t there or
the details were unfamiliar to you. Either way, I
would like to examine some points in Gray’s
presentation with a view to separating the technical
“wheat” from the marketing “chaff.” Since this will
require excursions off the beaten UNIX path, more
details will appear in forthcoming ; login: articles.
In this opening salvo, there is only space to highlight
the issues I plan to revisit. Eventually, I hope this
discussion will better help you understand the
scalability of both NT and UNIX.

What’s Wrong With This Picture?

So, what did the man say? Figure 1 represents OLTP
(On-Line Transaction Processing) throughput using
the TPC Benchmark™ C. The TPC-C benchmark
workload models inventory control in a distributed
warehouse, and performance is measured in
transactions per minute (or tpmC) [3]. The
benchmark must be audited by the TPC and
documented before being announced publicly,
otherwise it’s a technical violation of TPC rules.

Figure 1 appeared in Gray’s presentation with the
title: “NT Scales Better Than Solaris.” Although not
a usage violation of TPC data, the reader needs to
exercise extreme caution when reading comparative
charts of this type. The major variables in any TPC
benchmark are:

e Platform (e.g., Intel or Sun processors and disks)

e Operating system (e.g., NT or Solaris)

e RDBMS (e.g., database management software;
SQLServer or Sybase)

e Application (e.g., the TPC-C benchmarking
workload or other)

The performance analyst’s golden rule is: Only
change one thing at a time [1]. In Fig. 1 there are
many things that are different.

—O—— Sybase/Solaris

—0— SQLS/Wintel

20000

15000

10000 /D/:/

5000

Processors

10 156 20

Figure 1. Comparative server scalability (no 4-way result was published by Sun).

AUUGN: The Journal of AUUG Inc.

Here are some variables to watch out for: - -

* Are all SQLServer data points on the same
wintel architecture?

e SQLServer and Sybase are not the same
RDBMS.

* Are there any Sybase results on wintel platforms,
and how do they compare?

* Microsoft has full control over SQLServer code
and its performance.

* Why are there no TPC-C data points above a 6-
way wintel server?

* Do other RDBMSs scale better than SQLServer
on wintel platforms?

e How contemporaneous were these
measurements?

Incidentally, Gray publicly blamed Intel-based
hardware for currently limiting scalability
performance above 6 way servers. We’ll return to
these points in a subsequent article.

Billions and Billions!

To give some idea of the future potential of large-
scale NT servers Gray reported on several scalability
projects:

* Online Atlas (1.1 Million US place names with
SPIN-3 images) '

¢ Tandem’s “Two-Ton” (DSS workload on 64
CPUs with 2 TBytes on 480 disks)

e Compaq “Debit-Credit” (OLTP workload on 140
CPUs and 900 disks)

The last of these projects apparently supports over 1
billion database transactions per day. These large-
scale prototype systems are non-trivial to construct
and the.results in themselves are very impressive.
Note that 1 billion transactions per day is about
700,000 transactions per minute. But Microsoft has
apparently entered the Carl Sagan zone of
benchmarking because these are not TPC-C
transactions or any other TPC benchmark
transactions. Why not? Since Gray did not explain
this point to the conference audience, I asked him
about it afterward. He told me they couldn’t publish a
TPC-C benchmark because SQLServer failed to
handle ~“transparency” (a TPC benchmarking
technical requirement).

The intended message for the audience, however, was
that SQLServer is more than capable of exhibiting
superior TPC-like benchmark performance, they just
couldn’t hack an official TPC number because of an
annoying technicality. This is precisely the kind of
self-promotional clandestine benchmarking that TPC
was formed to discourage.

There is another problem in using a debit-credit
workload. As the name indicates, debit-credit implies
a simple ATM banking transaction like the TPC-A
benchmark (now defunct) not the more complex

February 1998

“transaction of TPC-C. A rule of thumb states that

TPC-A throughput is about 5 times greater than TPC-
C throughput[1]. One might guess that the
Compag/OLTP throughput would be more like
100,000 TPC-C equivalent transactions per minute.
For historical reference, Tandem reported 20,000
tpmC over three years ago on a 120 node MIPS-
R4000 Himalaya server.

Cluster (un)Availability

Attracted by the desire to support billions of desktop
clients, Gray emphasized Microsoft’s focus on cluster
technologies. The essential idea is to strap multiple
servers together using a high-performance
interconnect network to enable both scalable
performance and reliability (i.e., no single point of
failure--see (3]). But the cluster concept is not new.

There are several historical precedents for scalable
clusters that support commercial database workloads.
In particular, Tandem for OLTP, Teradata for DSS
(Decision Support Systems), and the IBM Parallel
Sysplex. More recently Sun, HP, Sequent and others
have developed and are developing UNIX cluster-
based servers.

Despite Gray’s claim that “NT clusters are easy,”
perhaps the most telling indicator of the current state
of NT cluster technology was the failure to
demonstrate 2-node failover! Another surprise: after
the big wind-up, it was the small stuff that bombed!

Conclusion

I hope my review has given you some sense of my
surprise. Be aware that I am NoT anti-NT by any
means. On the contrary, from my standpoint NT
looks like modern UNIX (commodity Mach?) with
integrated windows--something I've wanted since my
days at Xerox PARC. So, maybe it would be kinder
and more accurate to retitle this opening piece: “NT
to the Max...(NoT)...Yet.”

References

{11 NJ. Gunther, The Practical Performance
Analyst, McGraw-Hill, 1997. In press. See
<http://members.aol.com/CoDynamo/Book.toc.h
tm> for publication status.

[2] Anon et al., "A Measure of Transaction
Processing Power," Datamation,31,112, 1985.

{3] The interested reader can learn more about this
and the TPC-D Decision Support Systems (DSS)
benchmark at <www.tpc.org>.

k)
0.0

This article originally appeared in the USENIX
Association journal ; login:, November 1997. We
thank Dr. Gunther kindly for giving us permission to
publish this article in AUUGN.

The ABC’s of TPC’s
and NT Scalability
II

Neil Gunther <ngunther@rncochet.net>
Copyright © 1998 Neil J. Gunther, All Rights
Reserved.

In the last issue of ;login: [1] I promised to delve
more into my concerns about the comparisons of
UNIX and NT scalability that were presented at the
USENIX-NT Workshop last August. In this second
article I want to start with the data presented in
Figure 1 which purported to show the superiority of
NT over UNIX scalability on the common basis of
the TPC-C benchmark workload.

Fig 1. Microsoft version of NT vs. UNIX

20000

[0 Sybase/Solaris —c»—seLS/vwnfeﬂ/"

15000

in

/

10000 /o/

50008//3

Processors

T T =

10 15 20

Before doing so, however, I have to assume that most
readers are not familiar with the TPC approach to
database benchmarking. Unfortunately, there is not
enough space to go into great detail about this
complex measurement process, so I can only provide.
the briefest of sketches. The interested reader can
find specifics at <www.tpc.org>.

TPC Road Rules :
Unlike many computer benchmarks (e.g., Dhrystone,
Linpack, SPEC) TPC benchmarks do not exist as
code that you purchase or download. Rather, TPC
provides a (downloadable) benchmarking
specification document. Anyone, wishing to run the
benchmark is free to implement the specification in
any way they see fit. You are not free, however, to
interpret the TPC rules as you please. In order to
report an official TPC result you must write a
corresponding full disclosure report that itemizes
how you met each onc of the clauses in the TPC
specification. In addition, the benchmark runs that
produced the result you wish to report must be
witnessed and reviewed by an official TPC auditor at
runtime. Your disclosure report is also reviewed by
members of the TPC council. Any discrepancies that

cannot be satisfactorily explained may lead to the
result being withdrawn. In other words, TPC
benchmarks are a serious and expensive undertaking
that come with a high degree of credibility. Any
attempt to cut corners is likely to be spotted and dealt
with accordingly.

The TPC Performance Race

Currently, there are two TPC benchmarks: TPC-C
(for benchmarking on-line database transaction
processing; AKA OLTP systems) and TPC-D (for
benchmarking decision support systems; AKA DSS).
The TPC-A and TPC-B benchmarks have been
retired for two major reasons:

¢ These workloads corresponded to a relatively
simple debit/credit banking transaction.

e It stops ongoing attempts to exploit any
loopholes in those older benchmark designs.

Moreover, both the TPC-A and TPC-B were directed
solely at OLTP performance. TPC-C is a more
complex OLTP benchmark that uses a heterogencous
mix of 5 transactions accessing a database that
models inventory control in a distribute warchouse.

AUUGN: The Joumal of AUUG Inc.

"TPC-D is the first TPC benchmark to be directed at:

multi-user, large-scale, query-intensive systems,
Rather than get bogged down in technical details,
I’ve chosen to highlight the difference between TPC-
C and TPC-D using the following whimsical analogy
with automobile sporting events.

TPC-C Indianapolis 500

TPC-C is the Indy 500 of database benchmarking. In
the real Indy event, 35 vehicles race around a 2.5
mile circuit and the first car over the finish line on the
200th lap is declared the winner. The sporting focus
is on the performance of individual vehicles as
measured by their top speeds in miles per hour.

In the TPC-C benchmark the database transactions
are analogous to the Indy race-cars, but the
performance focus is shifted away from the cars and
onto the racetrack itself. For example, a wet track is
slower than a dry one. The racetrack is analogous to
the database platform and its performance could be
measured by the number of cars per minute the track
can support over the 200 loops of the Indy 500 race.
It is a measure of the raceway’s carrying capacity.
Technically, this would be accomplished by counting
the number of cars that cross the same place (e.g., the
starting line) every 5 minutes (roughly the time it
takes a car to make one loop of the raceway) and
averaging those counts over the duration of the entire
race. Under TPC road rules, any car taking longer
than- 5 minutes would not counted as part of the
track’s capacity. In the TPC version of the Indy 500,
. there is another rule that all cars must make at least
one simultaneous pit-stop (corresponding to a
database checkpoint) and then continue again.

In practice, when the checkered flag falls, all the cars
take some time to maneuver into position and get up
to top speed. In the TPC-C benchmark, this
corresponds to the ramp-up period necessary to get
the database cache warmed up and the system
operating in steady-state. This ramp-up period is not
included in the performance results. In the real TPC-
C benchmark, transactions committed every half
minute or so are counted and used to determine the
average throughput measured as transactions per
minute (or tpmC) over the entire benchmark run. Any
transaction that does not commit within a 2 second
response time is not counted.

That Transparency Thing

Furthermore, suppose you wanted to assess the Indy
track capability on a worldwide basis

e.g., tracks in the USA, Australia, Canada, and
Britain. This would be a way to compare Indy racing
with other kinds of races e.g., NASCAR racing. The
worldwide Indy performance would be given as the
sum of the performance of each Indy raceway.

If you only raced USA cars on the USA track,
Australian cars on the Australian track, and so on,
you would be unintentionally optimizing the
measurement. The TPC-C version of measuring this

February 1998

worldwide Indy performance does not permit such an
optimization. Instead, you must also run some USA
cars on the Australian raceway, and some Australian
cars on the British track, and every other permutation
in between. Moreover, which car runs on which track
must be determined by drawing track-car pairs out of
a hat. In other words, you are not allowed to bias the
results by knowing beforehand which car will race on
which track. The selection process is then said to be
unbiased or transparent..

Similarly, in the real TPC-C benchmark you can have
4 servers with 4 separate database instances, but
TPC-C does not permit you to confine transactions to
each database separately and then add the separate
throughputs together to give the total capacity.
Transactions must be distributed in such a way that
any transaction can access any of the 4 database
tables without knowing ahead of time which database
it will run against. This adds realism to the
benchmark. But transparency can also introduce
some performance degradation due to longer code
paths needed to distribute the transactions.

Clearly, it would be much simpler to ignore this
transparency requirement and just add up the
throughputs of more and more independent servers.
That is an easy (but unrealistic) way to generate a big
throughput number without any distribution ‘
overhead. So that’s precisely what Microsoft did and,

. since it violates TPC-C road rules, they could not

report it as a bona fide TPC-C result. It would never
have got past the TPC auditor. Gray claimed this was
just a “technicality”; now you can decide. On top of
this failure, they didn’t use TPC-C transactions either
(contrary to the statement in [3]). What did they use?
We'll never know because, not being a TPC
benchmark, they were not subject to the disclosure
rule. Gray used the term “debit-credit transaction”
which suggests some kind of banking transaction, but
we don’t know that. I'd prefer to call it diddleysquats
per day just to remind myself that the entire
Microsoft claim is beFUDdled.

TPC-D Monster Tractor-Pull

In contrast to the TPC-C Indy 500 race, TPC-D is
more like a monster tractor-pull. In the TPC-D
version of the tractor-pull, there are 17 vehicles of
different weights that the tractor must tow across the
arena to complete the competition. For each tow, the
elapsed time to get across the arena is measured and
used to construct an overall towing capacity for the
tractor. There's no constraint on how long it takes to
pull all 17 vehicles since it's only the elapsed time for
each pull that is measured. In the real TPC-D
benchmark, the key performance metric is the time
taken to execute each of the 17 queries. Gray did not
discuss TPC-D results for SQLServer. Why not?
Because there isn’t any for SQLServer. You check
for yourself at <http://www.tpc.org/execsum-
_TPCD.html>. On the other hand, there many TPC-D
results on UNIX,

Sensible Scalability Comparisons ’
Figure 2 shows a comparison of TPC-C results across
a wide variety of results published in 1997. The most
important notable difference from Figure 1 is that
there are no curves. Why not? Because these are all
different platforms running various flavors of UNIX,
different RDBMSs, on different hardware. Using
curves (as in Fig.1) would erroneously suggest that
certain data belong to the same family, when they do
not. Recall what I said about the performance
analyst’s cardinal rule [1]: Only change one thing at a
time!

There are four CPU categories shown in Figure 2:
uniprocessor, 2-way, 4-way, and 6-way
multiprocessors. In CPU each category, the UNIX
results are grouped together to the left while the NT
results are grouped to the right. I've selected official
TPC-C UNIX and NT results for all of 1997 to give
some reasonable definition to my requirement that
the data be in some sense contemporaneous [1]. The
selected servers have between 1-6 processors to
conform to the range where NT actually tries to
compete with UNIX servers.

Fig. 2 1997 UNIXs vs. 1997 NTs

25000

Number of server CPUs

Things look a little less impressive for NT than in
Gray’s benchmarketing presentation [2]. First, note
that there is considerable variance within each UNIX
‘group. This is to be expected because (unlike NT)
there is no single UNIX, and the data in Fig. 2
includes ORACLE and SYBASE running on various
UNIX platforms. Typically, CPUs with larger
second-level caches produce higher throughput
~because they can’ accommodate a large RDBMS
footprint. :

Second, there is far less variation within each NT
group. This is to be expected when there is only one
RDBMS (viz., SQLServer) tuned to tun a relatively
few Intel-based architectures. Note also that for the 6-
way configurations the best UNIX result
(HP/SYBASE) has.more than twice the throughput
performance of the NT system, and the next best

UNIX result (Sun/SYBASE) is more than 30% better
than NT. This demolishes Gray’s point based on
Figure 1 that one needs to go to a more expensive 12-
way UNIX system just to match a 6-way NT in
throughput. How did 1 arrive at a different
conclusion? I didn’t bias the data by hand-picking
aged Solaris/SYBASE TPC-C results for making
comparisons.

Table 1 summarizes the various platform
combinations that have been reported. (a) Sequent
has announced a parallel query result on a 4 node
NUMA-Q 2000 cluster with dual-quad CPUs (32
total CPUs). This is NOT a TPC-D result, however.
Also, Compaq has an official TPC-C result with
ORACLE on NT (third column in Fig.2). There are
no SQLServer results on UNIX that I know of.

Table 1. Database and Platform combinations

RDBMS\ 0OS NT Solaris UNIX
SQLServer v X ?
SYBASE v v v
Others (a) v v

Price-Performance Comparisons

We can use the disclosed price of the TPC
benchmark platform expressed as $/tpmC to make the
comparisons shown in Fig. 3. When it comes to
price-performance, Microsoft does indeed have the

10

drop on UNIX; especially at the low end. But it's not
so dramatic for larger CPU configurations. In case
you're wondering, the expensive outlier in the 2-way
class is a Fujitsu UNIX box.

AUUGN: The Journal of AUUG Inc.

Fig. 3 Price-Performance Comparisons

900
800
700
600
500
400
300
200
100

Number of server CPUs

Since open system hardware is generally cheaper
than mainframes, how is it that Wintel pricing beats
UNIX so convincingly? One way of looking at this is
simply, history repeating itself. Over the last 20 years
UNIX workstations and multiprocessors have eroded
the profit margins that were sacred to selling
mainframe big-iron. This occurred because UNIX
boxes were cheaper to build and became more
ubiquitous than centralized mainframes. At the outset
they could not compete with mainframe performance
but gradually, that changed as UNIX systems scaled

up.

Over the last 10 years, the PC has become more
ubiquitous than UNIX servers. They represent real
commodity computers. At the outset they could not
compete with UNIX workstation or multiprocessor
performance but gradually, that is changing as PC-
based system scale up. In other words, the PC shall
do unto UNIX servers what UNIX server hath done
to mainframes.

Next time, I'll consider the factors that determine
platform scalability.

February 1998

Acknowledgments
I am grateful to Kim Shanley (TPC CEO), Francois

Raab (TPC Auditor), and Mike Brey (Oracle) for
various technical discussions.

References

[1] N.J. Gunther, “NT to the Max...(NoT),” ;login:
pp.9-11, November 1997.

[2] J. Gray, “Windows NT to the Max,” Original
presentation slides are available at
http://www.usenix.org/publications/library/proce
edings/usenixnt97/presentations/index.html

[3] B. Dewey, Conference Report-Keynote
Summary ;login: pp.32-33, November 1997.

®,
0‘0

This article will appear in the USENIX Association
journal ;login:, February 1998. We thank Dr.
Gunther kindly for giving us permission to publish
this article in AUUGN.

Neil Gunther is founder and principal consultant for Performance
Dynamics Company™ in Mountain View, CA.

<http://members.aol.com/CoDynamo/Home . htm>

Dr. Gunther has worked in the Silicon Valley for 18 years. He is
a member of IEEE, ACM, and CMG.

11

New

Professional Computing Titles

Cisco TCP/IP Routing Professional
Toolkit

Chris Lewis
0.07.041088.7
softcover
$110.00
AUUG $88.00

With the proliferation of TCP/IP networks and
Cisco’s vast share-of the router market, this
toolkit is an essential for MIS directors, LAN
managers and administrators, network engi-
neers and technical support staff. The book
explains: Setting up your first router, System
implementation; Protocol basics; Performance

Network management;

troubleshooting;
Security. This comprehensive guide also offers
solutions to everyday problems inherent in net-
work use (eg. recovery of lost passwords), plus

an overview of Cisco products.

FROM McGRAW-HILL

Building Communications
Networks with Distributed Objects

William Yarborough
0.07.072220.X
softcover

$110.00

AUUG $88.00

Firewalls Complete

Marcus Goncalves
0.07.024645.9
softcover+ CD ROM
$115.00

AUUG $92.00

This guide is a powerful ally for the computing
professional working in the client/server arena.
The book is not only a thorough primer on
using distributed object technology to integrate
networks and to support client/server applica-
tions, it also offers comprehensive treatments
of middleware, vital security considerations,
and every issue of concern to those charged
with building today's crucial corporate net-

works.

What's the best way to ensure Internet securi-
ty? With firewalls. And the best way to learn
firewall installation and maintenance from A to
Z? This info-packed guide covers virtually all
firewall techniques, technologies, and brands-
and even includes a blueprint for designing
your own. The CD ROM contains 20 firewall
product demos and evaluations from such
maijor vendors as Check Point, IBM and Sun.

Qty ISBN Title ARRP $
0.07.041088.7 Lewls Clsco TCP/IP Routing Toolkit $110.00
0.07.072220.X Yaraborough Bullding Communications Networks with $110.00

Distributed Objects
OMP R
0.07.024645.9 Gonclaves Firewalls Complete $115.00
SUBTOTAL
POSTAGE &t HANDLING $6.00
TOTAL

McGraw-Hill Bock Company Australia Pty Ltd
4 Barcoo Street, Roseville NSW 2069, Phone: (02) 9415 9888 Fax: (02) 9417 7003. E-mail: profref@mcgraw-hill.com.au

AUUG298

THE PRACTICAL PERFORMANCE

ANALYST

by Dr. Neil Gunther
(published by McGraw-Hill)

Following Neil’s successful tour around Australia, in which he presented,
“High Performance WEB and DATABASE Techniques”, we are pleased
to offer a copy of his latest book to AUUG members at the specially discounted

price of $90 per copy (trp $160).

Please complete the McGraw-Hill order form on the

facing page to ensure you don’t miss out!

The book covers the following topics:
PART I - FOUNDATIONS

Chapter 1 About Time!

Chapter 2 Queuing theory for those who can't wait
Chapter 3 Systems of queues

Chapter 4 Distributed performance management

PART II - APPLICATIONS

Chapter 5 Commercial parallelism
Chapter 6 Parallel systems

Chapter 7 Multiprocessor systems
Chapter 8 Client/Server applications
Chapter 9 Web servers

PART III - INNOVATIONS

Chapter 10 Small numbers, BIG consequences

Chapter 11 Paths, potentials, and probabilities

Chapter 12 Large transients in packet-switched networks
Chapter 13 Large transients in circuit-switched networks
Chapter 14 The dynamics of scaling

PART IV - APPENDICES

Appendix A PDQ®© (Pretty Damn Quick) user manual

Appendix B Performance organizations

Appendix C Guidelines for Making Multiprocessor Applications Symmetric
(Contributed by Robert M, Lane)

Appendix D Glossary of terms

Bibliography

February 1998 13

Recursive Make
Considered
Harmful

Peter Miller <millerp @canb.auug.org.au>
Copyright (C) 1997 Peter Miller. Al rights reserved.

Abstract

For large UNIX projects, the traditional method of
building the project is to use recursive make. On
some projects, this results in build times which are
unacceptably large, when all you want to do is
change one file. In examining the source of the
overly long build times, it became evident that a
number of apparently unrelated problems combine to
produce the delay, but on analysis all have the same
root cause.

This paper explores an number of problems regarding
the use of recursive make, and shows that they are all
symptoms of the same problem. Symptoms that the
UNIX community have long accepted as a fact of
life, but which need not be endured any longer. These
problems include recursive makes which take
“forever" to work out that they need to do nothing,
recursive makes which do too much, or too little,
recursive makes which are overly sensitive to
changes in the source code and require constant
Makefile intervention to keep them working.

The resolution of these problems can be found by
looking at what make does, from first principles, and
then analyzing the effects of introducing recursive
make to this activity. The analysis shows that the
problem stems from the artificial partitioning of the
build into separate subsets. This, in turn, leads to the
symptoms described. To avoid the symptoms, it is
only necessary to avoid the separation; to use a single
Makefile for the whole project.

This conclusion runs counter to much accumulated
folk wisdom in building large projects on UNIX.
Some of the main objections raised by this folk
wisdom are examined and shown to be unfounded.
The results of actual use are far more encouraging,
with routine development performance improvements
significantly faster than intuition may indicate. The
use of a single project Makefile is not as difficult
to put into practice as it may first appear.

1. Introduction

For large UNIX software development projects, the
traditional methods of building the project use what
has come to be known as “‘recursive make." This
refers to the use of a hierarchy of directories
containing source files for the modules which make
up the project, where each of the sub-directories
contains a Makefile which describes the rules and

14

instructions for the make program. The complete
project build is done by arranging for the top-level
Makefile to change directory into each of the sub-
directories and recursively invoke make.

This paper explores some significant problems
encountered when developing software projects using
the recursive make technique. A simple solution is
offered, and some of the implications of that solution
are explored.

Recursive make results in a directory tree which
looks something like this:

(1 Profect

— [Makefile
—[medulel

— [] Makefile
— [] sourcel.c
— [ete...
L—-™Mmodule2

— [Makefile
— [] source2.c

[etc...

This hierarchy of modules can be nested arbitrarily
deep. Real-world projects often use two- and three-
level structures.

1.1 Assumed Knowledge
This paper assumes that the reader is familiar with
developing software on UNIX, with the make
program, and with the issues of C programming and
include file dependencies.

This paper assumes that you have installed GNU
Make on your system and are moderately familiar
with its features. Some features of make described
below may not be available if you are using the
limited version supplied by your vendor.

2. The Problem

There are numerous problems with recursive make,
and they are usually observed daily in practice. Some
of these problems include:

e It is very hard to get the order of the recursion
into the sub-directories correct. This order is
very unstable and frequently needs to be
manually ““tweaked." Increasing the number of
directories, or increasing the depth in the
directory tree, cause this order to be increasingly
unstable.

e It is often necessary to do more than one pass
over the sub-directories to build the whole
system. This, naturally, leads to extended build
times.

e Because the builds take so long, some
dependency information is omitted, otherwise
development builds take unreasonable lengths of

AUUGN: The Journal of AUUG Inc.

time, and the developers are unproductive. This
usually leads to things not being updated when
they need to be, requiring frequent ““clean"
builds from scratch, to ensure everything has
actually been built.

e Because inter-directory dependencies are either
omitted or too hard to express, the Makefiles

are often written to build foo much to ensure that .

nothing is left out.

e The inaccuracy of the dependencies, or the
simple lack of dependencies, can result in a
product which is incapable of building cleanly,
requiring the build process to be carefully
watched by a human.

3. Analysis

Before it is possible to address these seemingly
unrelated problems, it is first necessary to understand
what make does and how it does it. It is then possible
to look at the effects recursive make has on how
make behaves.

3.1. Whole Make

Make is an expert system. You give it a set of rules
for how to construct things, and a target to be
constructed. The rules can be decomposed irito pair-
wise ordered dependencies between files. Make takes
the rules and determines how to build the given
target. Once it has determined how to construct the
target, it proceeds to do so.’

Make determines how to build the target by
constructing a directed acyclic graph, the DAG
familiar to many Computer Science students. The
vertices of this graph are the files in the system, the
edges of this graph are the inter-file dependencies.
The edges of the graph are directed because the pair-
wise dependencies are ordered; resulting in a acyclic
graph — things which look like loops are resolved by
the direction of the edges.

This paper will use a small example project for its
analysis. While the number of files in this example is
small, there is sufficient complexity to demonstrate
all of the above recursive make problems. First,
however, the project is presented in a non-recursive
form.

(3 Project
[Makefile
[Jmain.c

[parse.c
[l parse.h

The Makefile in this small project looks like this:

February 1998

OBJ = main.o parse.o

prog: $(OBJ)
$(CC) -o s@ $(OBJ)

main.o: main.c parse.h
$(CC) -c main.c

parse.o: parse.c parse.h
$(CC) -c parse.cC

Some of the implicit rules of make are presented here
explicitly, to assist the reader in converting the
Makefile into its equivalent DAG.

The above Makefile can be drawn as a DAG in the

following form:

=D
This is an acyclic graph is because of the arrows
which express the ordering of the relationship

between the files. If there was a circular dependency
according to the arrows, it would be an error.

Note that the object files (. o) are dependent on the
include files (.h) even though it is the source files
(.c) which do the including. This is because if an
include file changes, it is the object files which are
out-of-date, not the source files.

The second part of what make does it to perform a
postorder traversal of the DAG. That is, the
dependencies are visited first. The actual order of
traversal is undefined, but most make
implementations work down the graph from left to
right for edges below the same vertex, and most
projects implicitly rely on this behavior. The last-
time-modified of each file is examined, and higher
files are determined to be out-of-date if any of the
lower files on which they depend are younger. Where
a file is determined to be out-of-date, the action
associated with the relevant graph edge is performed
(in the above example, a compile or a link).

The use of recursive make affects both phases of the
operation of make: it causes make to construct an
inaccurate DAG, and it forces make to traverse the
DAG in an inappropriate order.

3.2. Recursive Make

To examine the effects of recursive makes, the above
example will be artificially segmented into two
modules, each with its own Makefile, and a top-

15

level Makefile used to invoke each of the module
Makefiles.

The directory structure is as follows:

(1 Project
[Makefile
((Mant
— [} Makefile
— N main.c
Cbee
[Makefile
— [parse.c
— [} parse.h

The top-level Makefile looks like this:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $&dir; S${MAKE} all); \
done

The ant /Makefile looks like this:

all: main.o

main.o: main.c ../bee/parse.h
$(cCc) -I../bee -c main.c

and the equivalent DAG looks like this:

The bee/Makefile looks like this:

OBJ = ../ant/main.o parse.o
all: prog

prog: (OBJ)
$(CcC) -o $@ $(OBJ)

parse.o: parse.c parse.h
§(CcC) -c parse.c

and the equivalent DAG looks like this:

16

Take a close look at the DAGs. Notice how neither is
complete - there are vertices and edges (files and
dependencies) missing from both DAGs. When the
entire build is done from the top level, everything
will work.

But what happens when small changes occur? For
example, what would happen of the parse.c and
parse.h files were generated from a parse.y
yacc grammar? This would add the following lines to
the bee/Makefile:

parse.c parse.h: parse.y
$(YACC) -d parse.y
mv y.tab.c parse.c
mv y.tab.h parse.h

And the equivalent DAG changes to look like this:

This change has a simple effect: if parse.y is
edited, main.o will not be constructed correctly.
The is because the DAG for ant knows about only
some of the dependencies of main.o, and the DAG
for bee knows none of them.

To understand why this happens, it is necessary to
look at the actions make will take from the top level.
Assume that the project is in a self-consistent state.
Now edit parse.y in such a way that the generated
parse.h file will have non-trivial differences.
However, when the top-level make is invoked, first

AUUGN: The Journal of AUUG Inc.

ant and then bee is visited. But ant/main.o is
not recompiled, because bee/parse.h has not yet
been regenerated and thus does not yet indicate that
main. o is out-of-date. It is not until bee is visited by
the recursive make that parse.c and parse.h are
reconstructed, followed by parse.o. When the
program is linked main.o and parse.o are non-
trivially incompatible. That is, the program is wrong.

3.3. Traditional Solutions
There are three traditional fixes for the above
“glitch."

3.3.1. Reshuffle

The first is to manually tweak the order of the
modules in the top-level Makefile. But why is this
tweak required at all? Isn't make supposed to be an
expert system? Is make somehow flawed, or did
something else go wrong?

To answer this question, it is necessary to look, not at
the graphs, but the order of traversal of the graphs. In
order to operate correctly, make needs to perform a
postorder traversal, but in separating the DAG into
two pieces, make has not been allowed to traverse the
graph in the necessary order - instead the project has
dictated an order of traversal. An order which, when
you consider the original graph, is plain wrong.
Tweaking the top-level Makefile corrects the order
to one similar to that which make could have used.
Until the next dependency is added... '

3.3.2. Repetition

The second traditional solution is to make more than
one pass in the top-level Makefile, something like
this:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $8dir; S${MAKE} all); \
done
for dir in $(MODULES); do \
(cd $$dir; S${MAKE} all); \
done

This doubles then length of time it takes to perform
the build. But that is not all: there is no guarantee that
two passes are enough! The upper bound of the
number of passes is not even proportional to the
number of modules, it is instead proportional to the
number of graph edges which cross module
boundaries.

3.3.3. Overkill

We have already scen an example of how recursive
make can build too little, but another common
problem is to build too much. The third traditional
solution to the above glitch is to add even more lines
to ant/Makefile:

February 1998

.PHONY: ../bee/parse.h

./bee/parse.h:
cd ../bee; \
make clean; \
make all

This means that whenever main.o is made,
parse.h will always be considered to be out-of-
date. All of bee will always be rebuilt including
parse.h, and so main.o will always be rebuilt,
even if everything was self consistent.

4, Prevention

The above analysis is based one simple action: the
DAG was artificially separated into incomplete
pieces. This separation resulted in all of the problems
familiar to recursive make builds.

Did make get it wrong? No. This is a case of the
ancient GIGO principle: Garbage In, Garbage Out.
Incomplete Makefiles are wrong Makefiles.

To avoid these problems, don't break the DAG into
pieces; instead, use one Makefile for the entire
project. It is not the recursion itself which is harmful,
it is the crippled Makefiles which are used in the
recursion which are wrong. It is not a deficiency of
make itself that recursive make is broken, it does the
best it can with the flawed input it is given.

“‘But, but, but... You can't do that!" 1 hear you
cry. VA single Makefile is too big, it's
unmaintainable, it's too hard to write the
rules, you'll run out of memory, I only want to
build my little bit, the build take too long. It's
Just not practical.”

These are valid concerns, and they frequently lead
make users to the conclusion that re-working their
build process does not have any short- or long-term
benefits. This conclusion is based on ancient,
enduring, false assumptions.

4.1. A Single Makefile Is Too Big

If the entire project build description were placed into
a single Makefile this would certainly be true,
however modern make implementations have include
statements. By including a relevant fragment from
each module, the total size of the Makefile and its
include files need be no larger than the total size of
the Makefiles in the recursive case.

4.2. A Single Makefile Is Unmaintainable

The complexity of using a single top-level Makefile
which includes a fragment from each module is no
more complex than in the recursive case. Because the
DAG is not segmented, this form of Makefile
becomes less complex, and thus more maintainable,
simply because fewer ““tweaks" are required to keep
it working.

17

Recursive Makefiles have a great deal of
repetition. Many projects solve this by using include
files. By using a single Makefile for the project,
the need for the ““‘common" include files disappears -
the single Makefile is the common part.

4.3. It's Too Hard To Write The Rules

The only change required is to include the directory
part in filenames in a number of places. This is
because the make is performed from the top-level
directory; the current directory is not the one in
which the file appears. Where the output file is
explicitly stated in a rule, this is not a problem.

GCC allows a -o option in conjunction with the -c
option, and GNU Make knows this. This results in
the implicit compilation rule placing the output in the
correct place. Older and dumber C compilers,
however, may not allow the -o option with the —c
option, and will leave the object file in the top-level
directory (i.e. the wrong directory). There are three
ways for you to fix this: get GNU Make and GCC,
override the built-in rule with one which does the
‘right thing, or complain to your vendor.

Also, K&R C compilers will start the double-quote
include path (#include ‘filename.h") from the
current directory. This will not do what you want,
ANSI C compliant C compilers, however, start the
double-quote include path from the directory in

which the source file appears; thus, no source .

changes are required. If you don't have an ANSI C
compliant C compiler, you should consider installing
GCC on your system as soon as possible.

4.4. I Only Want To Build My Little Bit

Most of the time, developers are deep within the
project tree and they edit one or two files and then
run make to compile their changes and try them out.
They may do this dozens or hundreds of times a day.
Being forced to do a full project build every time
would be absurd.

Developers always have the option of giving make a
specific target. This is always the case, it's just that
we usually rely on the default target in the
Makefile in the current directory to shorten the
command line for us. Building ““my little bit" can still
be done with a whole project Makefile, simply by
using a specific target, and an alias if the command
line is too long.

Is doing a full project build every time so absurd? If a
change made in a module has repercussions in other
modules, because there is a dependency the
developer is unaware of (but the Makefile is aware
of), isn't it better that the developer find out as early
as possible? Dependencies like this will be found,
because the DAG is more complete than in the
recursive case,

The developer is rarely a seasoned old salt who
knows every one of the million lines of code in the

18

product. More likely the developer is a short-term
contractor or a junior. You don't want implications
like these to blow up after the changes are integrated
with the master source, you want them to blow up on
the developer in some nice safe sand-box far away
from the master source.

If you want to make ““just your little" bit because you
are concerned that performing a full project build will
corrupt the project master source, due to the directory
structure used in your project, see the ““Projects
versus Sand-Boxes" section below.

4.5. The Build Will Take Too Long

This statement can be made from one of two
perspectives. First, that a whole project make, even
when everything is up-to-date, inevitably takes a long
time to perform. Secondly, that these extended delays
are unacceptable when a developer wants to quickly
compile and link the one file that they have changed.

. 4.5.1. Project Builds

Consider a hypothetical project with 1000 source
(.c) files, each of which has its calling interface
defined in a corresponding include (.h) file with
defines, type declarations and function prototypes.

- These 1000 source files include their own interface

definition, plus the interface definitions of any other

. module they may call. These 1000 source files are

compiled into 1000 object files which are then linked
into an executable program. This system has some
3000 files which make must. be told about, and be
told about the include dependencies, and also explore
the possibility that implicit rules (.y = .c for
example) may be necessary.

In order to build the DAG, make must ““stat" 3000
files, plus an additional 2000 files or so, depending
on which implicit rules your make knows about and
your Makefile has left enabled. On the author's
humble 66MHz 1486 this takes about 10 seconds; on
native disk on faster platforms it goes even faster.
With NFS over 10MB Ethernet it takes about 10
seconds, no matter what the platform.

This is an astonishing statistic! Imagine being able to
a single file compile, out of 1000 source files, in only
10 seconds, plus the time for the compilation itself.

Breaking the set of files up into 100 modules, and
running it as a recursive make takes about 25
seconds. The repeated process creation for the
subordinate make invocations take quite a long time.

Hang on a minute! On real-world projects with less
than 1000 files, it takes an awful lot longer than 25
seconds for make to work out that it has nothing to
do. For some projects, doing it in only 25 minutes
would be an improvement! The above result tells us
that it is not the number of files which is slowing us
down (that only takes 10 seconds), and it is not the
repeated process creation for the subordinate make

AUUGN: The Journal of AUUG Inc.

invocations (that only takes another L5 seconds). So
just what is taking so long?

The traditional solutions to the problems introduced
by recursive make often increase the number of
subordinate make invocations beyond the minimum
described here; e.g. to perform multiple repetitions
* (3.3.2), or to overkill cross-module dependencies
(3.3.3). These can take a long time, particularly when
combined, but do not account for some of the more
spectacular build times; what else is taking so long?

Complexity of the Makefile is what is taking so
long. This is covered, below, in the Efficient
Makefiles section.

4.5.2. Development Builds

If, as in the 1000 file example, it only takes 10
seconds to figure out which one of the files needs to
be recompiled, there is no serious threat to the
productivity of developers if they do a whole-project
make as opposed to a module-specific make. The
advantage for the project is that the module-centric
developer is reminded at relevant times (and only
relevant times) that their work has wider
ramifications.

By consistently using C include files which contain -

accurate interface definitions (including function
prototypes), this will produce compilation errors in
many of the cases which would result in a defective
product. By doing whole-project builds, developers
discover such errors very early in the development
process, and can fix the problems when they are least
expensive.

4.6. You'll Run Out Of Memory

This is the most interesting response. Once long ago,
on a CPU far, far away, it may even have been true.
When Feldman [1] first wrote make it was 1978 and
he was using a PDP11. Unix processes were limited
to 64KB of data.

On such a computer, the above project with its 3000
files detailed in the whole-project Makefile, would
probably not allow the DAG and rule actions to fit in
memory.

But we are not using PDP11s any more. The physical
memory of modern computers exceeds [OMB for
small computers, and virtual memory often exceeds
100MB. It is going to take a project with hundreds of
thousands of source files to exhaust virtual memory
on a small modern computer. As the 1000 source file
example takes less than 100KB of memory (try it, I
did) it is unlikely that any project manageable in a
single directory tree on a single disk will exhaust
your computer's memory.

4.7. Why Not Fix The DAG In The Modules?

It was shown in the above discussion that the
problem with recursive make is that the DAGs are
incomplete. It follows that by adding the missing

February 1998

portions, the problems would be resolved without
abandoning the existing recursive make investment.

¢ The developer needs to remember to do this. The
problems will not affect the developer of the
module, it will affect the developers of other
modules. There is no trigger to remind the
developer to do this, other than the ire of fellow
developers.

o It is difficult to work out where the changes need
to be made. Potentially every Makefile in the
entire project needs to be examined for possible
modifications. Of course, you can wait for your
fellow developers to find them for you.

e The include dependencies will be recomputed
unnecessarily, or will be interpreted incorrectly.
This is because make is string based, and thus
" and “../ant" are two different places, even

when you are in the ant directory. This is of

concern when include dependencies are
automatically generated - as they are for all large
projects.

By making sure that each Makefile is complete,
you arrive at the point where the Makefile for at
least one module contains the equivalent of a whole-
project Makefile (recall that these modules form a
single project and are thus inter-connected), and there
is no need for the recursion any more.

5. Efficient Makefiles : :

The central theme of this paper is the semantic side-
effects of artificially separating a Makefile into the
pieces necessary to perform a recursive make.
However, once you have a large number of
Makefiles, the speed at which make can interpret
this multitude of files also becomes an issue.

Builds can take ““forever" for both these reasons: the
traditional fixes for the separated DAG may be
building too much and your Makefile may be
inefficient.

5.1. Deferred Evaluation

The text in a Makefile must somehow be read
from a text file and understood by make so that the
DAG can be constructed, and the specified actions
attached to the edges. This is all kept in memory.

The input language for Makefiles is deceptively
simple. A crucial distinction that often escapes both
novices and experts alike is that make's input
language is text based, as opposed to token based, as
is the case for C or even the Unix shell. Make does
the very least possible to process input lines and stash
them away in memory.

As an example of this, consider the following
assignment:

OBJ = main.o parse.o

Humans read this as the variable OBJ being assigned
two filenames “‘main.o" and ‘“‘parse.o". But
make does not see it that way. Instead OBJ is
assigned the string “main.o parse.o". It gets
worse:

SRC
OBJ

main.c parse.c
$(SRC:.c=.0)

In this case humans expect make to assign the same
two filenames to OBJ, but make actually assigns the
string “"$(SRC:.c=.0)". This is because it is a macro
language with deferred evaluation, as opposed to one
with variables and immediate evaluation.

If this does not seem too problematic, consider the
following Makefile:

SRC = $(shell echo 'Ouch!' \
1>&2 ; echo *.[cyl])
OBJ = \
S (patsubst %.c,%.0,\
$(filter %.c,$(SRC))) \
$ (patsubst %.y,%.0,\
S(filter %.y,S$(SRC)))

test: $(OBJ)
$(CC) -o $@ $(OBJ)

How many times will the shell command be
executed? Ouch! It will be executed twice just to
construct the DAG, and a further rwo times if the rule
needs to be executed.

If this shell command does anything complex or time
consuming (and it usually does) it will take four
times longer than you thought.

But it is worth looking at the other portions of that
OBJ macro. Each time it is named, a huge amount of
processing is performed:

e The argument to shell is a single string (all built-
in-functions take a single string argument). The
string is executed in a sub-shell, and the standard
output of this command is read back in,
translating newlines into spaces. The result is a
single string.

e The argument to filter is a single string. This
argument is broken into two strings at the first
comma. These two strings are then each broken
into sub-strings separated by spaces. The first set
are the patterns, the second set are the filenames.
Then, for each of the pattern sub-strings, if a
filename sub-string matches it, that filename is
included in the output. Once all of the output has
been found, it is re-assembled into a single
space-separated string.

* The argument to patsubst is a single string. This
argument is broken into three strings at the first

20

and second commas. The third string is then
broken into sub-strings separated by spaces,
these are the filenames. Then, for each of the
filenames which match the first string it is
substituted according to the second string. If a
filename does not match, it is passed through
unchanged. Once all of the output has been
generated, it is re-assembled into a single space-
separated string.

Notice how many times those strings are
disassembled and re-assembled. Notice how many
ways that happens. This is slow. The example here
names just two files but consider how inefficient this
would be for 1000 files. Doing it four times becomes
decidedly inefficient.

If you are using a dumb make that has no
substitutions and no built-in functions, this cannot
bite you. But a modern make has lots of built-in
functions and can even invoke shell commands on-
the-fly. The semantics of make's text manipulation is
such that string manipulation in make is very CPU
intensive, compared to performing the same string
manipulations in C or AWK,

5.2. Immediate Evaluation
Modern make implementations have an immediate
evaluation ““:=" assignment operator. The above
example can be re-written as:

SRC := $(shell echo 'Ouch!' \
1>&2 ; echo *.[cy])
OBJ := \

S (patsubst %.c,%.0,\
$(filter %.c,$(SRC))) \

S (patsubst %.v,%.0,\
$(filter %.y,S$(SRC)))

test: $(OBJ)
$(CC) -o $@ $(0OBJ)

Note that both assignments are immediate evaluation
assignments. If the first were not, the shell command
would always be executed twice. If the second were
not, the expensive substitutions would be performed
at least twice and possibly four times.

As a rule of thumb: always use immediate evaluation
assignment unless you knowingly want deferred
evaluation.

5.3. Include Files

Many Makefiles perform the same text processing
(the filters above, for example) for every single make
run, but the results of the processing rarely change.
Wherever practical, it is more efficient to record the
results of the text processing into a file, and have the
Makefile include this file.

AUUGN: The Journal of AUUG Inc.

5.4. Dependencies

Try to be careful about include files. They are
relatively inexpensive to read, so more rather than
less doesn't greatly affect efficiency.

As an example of this, it is first necessary to describe
a useful feature of GNU Make: once a Makefile
has been read in, if any of its included files were out-
of-date (or do not yet exist), they are re-built, and
then make starts again, which has the result that make
is now working with up-to-date include files. This
feature can be exploited to obtain automatic include
file dependency tracking for C sources. The obvious
way to implement it, however, has a subtle flaw.

SRC
OBJ :

$(wildcard *.c)
$(SRC:.c=.0)

test: $(OBJ)
$(CC) -o $@ $(OBJ)

include dependencies
dependencies: $ (SRC)

depend.sh $(CFLAGS) \
$(SRC) > se@

The depend.sh script prints lines of the form:
file.o: file.c include.h ...
The most simple implementation of this is to use

GCC, but you will need to edit the output if you want
to avoid dependencies on system include files:

#!/bin/sh
gcc -M -MG $*
sed 's@ /[”]*@Qg'

This implementation of tracking C include
dependencies has several serious flaws, but the one
most commonly discovered is that the
dependencies file does not, itself, depend on the
C include files. That is, it is not re-built in one of the
include files changes. There is no edge in the DAG
joining the dependencies vertex to any of the
include file vertices. If an include file changes to
include another file (a nested include), the
dependencies will not be recalculated, and potentially
the C file will not be recompiled, and thus the
program will not be re-built correctly.

A classic build-too-little problem, caused by giving
make inadequate information, and thus causing it to
build an inadequate DAG and reach the wrong
conclusion.

The traditional solution is to build too much:

February 1998

SRC
OBJ

$(wildcard *.c)
$(SRC:.c=.0)

test: $(OBJ)
$(CC) -o $@ $(0BJ)

include dependencies
.PHONY: dependencies
dependencies: $(SRC)

depend.sh $(CFLAGS) \
$(SRC) > s@

Now, even if the project is completely up-do-date,
the dependencies will be re-built. For a large project,
this is very wasteful, and can be a major contributor
to make taking ““forever" to work out than nothing
needs to be done.

There is a second problem, and that is that if any one
of the C files changes, all of the C files will be re-
scanned for include dependencies. This is as
inefficient as having a Makefile which reads:

prog: $(SRC)
$(CC) -o $@ $(SRC)

What is needed, in exact analogy to the C case, is to
have an intermediate form. This is usually given a
*.d" suffix. By exploiting the fact that more than
one file may be named in an include line, there is no
need to “link" all of the ™ . 4" files together:

SRC
OBJ :

non

$(wildcard *.c)
S(SRC:.c=.0)

test: $(ORJ)
$(CC) -o $@ $(OBJ)

include $(OBJ:.o=.d)

%$.d: %.cC
depend.sh $(CFLAGS) $< > $S@

This has one more thing to fix: just as the object (. o)
files depend on the source files and the include files,
so do the dependency (.d) files. This means
tinkering with the depend. sh script once more:

#!/bin/sh
gcec -M -MG $* |
sed -e 's@ /[~]*@@g' \
-e 's@™"\(.*\)\.o0:@\1.4 \1.0:@"'

This method of determining include file
dependencies results in the Makefile including
more files than the original method, but opening files
is less expensive than rebuilding all of the

21

dependencies every time. Typically a developer will
edit one or two files before re-building; this method
will rebuild the exact dependency file affected (or
more than one, if you edited an include file). On
balance, this will use less CPU, and less time.

In the case of a build where nothing needs to be done,
make will actually do nothing, and would work this
out very quickly.

5.5. Multiplier

All of the inefficiencies described in this section
compound together. If you do 100 Makefile
interpretations, once for each module, checking 1000
source files can take a very long time - if the
interpretation requires complex processing or
performs unnecessary work, or both. A whole project
make, on the other hand, only needs to interpret a
single Makefile,

6. Projects versus Sand-boxes

The above discussion assumes that a project resides
under a single directory tree, and this is often the
ideal. However, the realities of working with large
software projects often lead to weird and wonderful
directory structures in order to have developers
working on different sections of the project without

taking complete copies and thereby wasting precious -

disk space.

It is possible to see the whole-project make proposed
here as impractical, because it does not match the
evolved methods of your development process.

The whole-project make proposed here does have an
effect on development methods: it can give you
cleaner and simpler build environments for your
developers. By using make's VPATH feature, it is
possible to copy only those files you need to edit into
your private work area, often called a sand-box.

The simplest explanation of what VPATH does is to
make an analogy with the include file search path
specified using —Ipath options to the C compiler.
This set of options describes where to look for files,
just as VPATH tells make where to look for files.

By using VPATH, it is possible to ““stack" the sand-
box on top of the project master source, so that files
in the sand-box take precedence, but it is the union of
all the files which make uses to perform the build.

1 Muster Source
)/ main.c f ComBined Vi
, parse.y : ombined View
main.c
Sund-Box “parsesy
main.c /,‘/ variable.c

’

variable.c |’

22

In this environment, the sand-box has the same tree
structure as the project master source. This allows
developers to safely change things across separate
modaules, e.g. if they are changing a module interface.
It also allows the sand-box to be physically separate -
perhaps on a different disk, or under their home
directory. It also allows the project master source to
be read-only, if you have (or would like) a rigorous
check-in procedure.

Note: in addition to adding a VPATH line to your
development Makefile, you will also need to add
-I options to the CFLAGS macro, so that the C
compiler uses the same path as make does. This is
simply done with a 3-line Makefile in your work
area - set a macro, set the VPATH, and then include
the Makefile from the project master source.

6.1. Patch

The POSIX semantics of VPATH are slightly brain-
dead, and GNU Make is POSIX compliant, so the
above discussion assumes you have a GNU Make
with Paul Smith's VPATH+ patch applied. This may
be obtained from ftp://ftp.wellfleet.-
com/netman/psmith/gmake/. Here is an
extract from the README file:

Once GNU make finds a target file through
VPATH/vpath it changes the target path to
the VPATH/vpath name immediately,
causing all dependencies of the target to be
searched for in the VPATH directory to the
exclusion of local files which-might be newer.

See the actual README file for a longer
explanation.

7. The Big Picture

This section brings together all of the preceding
discussion, and presents the example project with its
separate modules, but with a whole-project
Makefile. The directory structure is changed little
from the recursive case, except that the deeper
Makefiles are replaced by module specific include
files:

CaProject

- [)Makefile

—(Jant .

‘—_— [} module.mk
[Jmain.c

—(Jbee

t [) module.mk

() parse.y
—[) depend.sh

AUUGN: The Journal of AUUG Inc.

The Makefile looks like this:

MODULES := ant bee

look for include files in

each of the modules

CFLAGS += $(patsubst %,-I%,\
$ (MODULES))

extra libraries if required
LIBS :=

each module will add to this
SRC :=

include the description for

each module

include $(patsubst %,\
$/module.mk, $ (MODULES))

determine the object files
OBJ := \
$ (patsubst %.c,%.0,\
$(filter %.c,$(SRC))) \
$(patsubst %.y,%.0,\
$(filter %.y,$(SRC)))

link the program
prog: $(OBJ)
$(CC) -o $@ 3$(OBJ) $(LIBS)

include the C include
dependencies
include $(OBJ:.o=.d)

calculate C include
dependencies
%.d: %.cC
depend.sh $(CFLAGS) S$< > $@

The ant /module . mk file looks like:

SRC += ant/main.c

The bee/module . mk file looks like:

SRC += bee/parse.y
LIBS += -1y

%$.c $.h: %.y
$(YACC) -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

Notice that the built-in rules are used for the C files,
but we need special yacc processing to get the
generated . h file.

The equivalent DAG of the Makefile after all of
the includes looks like this:

February 1998

The vertexes and edges for the include file
dependency files are also present as these are
important for make to function correctly.

8. Literature Survey

How can it be possible that we have been misusing
make for 20 years? How can it be possible that
behavior previously ascribed to make's limitations is
in fact a result of misusing it?

The author only started thinking about the ideas
presented in this paper when faced with a number of
ugly build problems on utterly different projects, but
with common symptoms. By stepping back from the
individual projects, and closely examining the thing
they had in common, make, it became possible to see
the larger pattern. Most of us are too caught up in the
minutiae of just getting the rotten build to work that
we don't have time to spare for the big picture.
Especially when the item in question “obviously"
works, and has done so continuously for the last 20
years. '

It is interesting that the problems of recursive make
are rarely mentioned in the very books Unix
programmers rely on for accurate, practical advice.

8.1. The Original Paper

The original make paper (1] contains no reference to
recursive make, let alone any discussion as to the
relative merits of whole project /make over recursive
make.

It is hardly surprising that the original paper did not
discuss recursive make, Unix projects at the time
usually did fit into a single directory.

It may be this which set the ““one Makefile in
every directory” concept so firmly in the collective
Unix development mind-set.

8.2. GNU Make

The GNU Make manual {2] contains several pages of
material concerning recursive make, however its
discussion of the merits or otherwise of the technique
are limited to the brief statement that

23

““This technique is useful when you want to
separate makefiles for various subsystems that
compose a larger system."

No mention is made of the problems you may
encounter.

8.3. Managing Projects with Make
The Nutshell Make book [3] specifically promotes
recursive make over whole project make because:

“"The cleanest way to build is to put a separate
description file in each directory, and tie them
together through a description file that invokes
make recursively, While cumbersome, the
technique is easier to maintain than a single,
enormous file that covers multiple
directories." (pp. 65)

This is despite the book's advice only two paragraphs
earlier that:

““make is happiest when you keep all your
files in a single directory." (pp. 64)

Yet the book fails to discuss the contradiction in
these two statements, and goes on to describe one of
the traditional ways of treating the symptoms of
incomplete DAGs caused by recursive make.

The book may give us a clue as to why recursive
make has been used in this way for so many years.
Notice how the above quotes confuse the concept of a
directory with the concept of a Makefile.

This paper suggests a simple change to the mind-set:
. directory trees, however deep, are places to store
files; Makefiles are places to describe the
relationships between those files, however many.

8.4. BSD Make

The tutorial for BSD Make [4] says nothing at all
about recursive make, but it is the first the author read
which actually described, however briefly, the
relationship between a Makefile and a DAG (p.
30). There is also a wonderful quote

“If make doesn't do what you expect it to, it's
a good chance the makefile is wrong." (p.
10)

Which is a pithy summary of the thesis of this paper.

9. Summary

This paper presents a number of related problems,
and demonstrates that they are not inherent
limitations of make, as is commonly believed, but are
the result of presenting incorrect information to
make. This is the ancient Garbage In, Garbage Out
principle at work. Because make can only operate
correctly with a complete DAG, the error is in
segmenting the Makefile into incomplete pieces.

24

This requires a shift in thinking: directory trees are
simply a place to hold files, Makefiles are a place
to remember relationships between files. Do not
confuse the two because it is as important to
accurately represent the relationships between files in
different directories as it is to represent the
relationships between files in the same directory.
This has the implication that there should be exactly
one Makefile for a project, but the magnitude of
the description can be managed by using a make
include file in each directory to describe the subset of
the project files in that directory.

This paper has shown how a project build and a
development build can be equally brief for a whole-
project make. Given this parity of time, the gains
provided by accurate dependencies mean that this
process will, in fact, be faster than the recursive make
case, and more accurate.

9.1. Inter-dependent Projects

In organisations with a strong culture of re-use,
implementing whole-project make can present
challenges. Rising to these challenges, however, may
require looking at the bigger picture.

e A module may be shared between two programs
because the programs are closely related.
Clearly, the two programs plus the shared
module belong to the same project (the module
may be self-contained, but the programs are not).
The dependencies must be explicitly stated, and
changes to the module must result in both
programs being recompiled and relinked as
appropriate. Combining them all into a single
project means that whole-project make can
accomplish this.

e A module may be shared between two projects
because they must inter-operate. Possibly your
project is bigger than your current directory
structure implies. The dependencies must be
explicitly stated, and changes to the module must
result in both projects being recompiled and
relinked as appropriate. Combining them all into
a single project means that whole-project make
can accomplish this.

e It is the normal case to omit the edges between
your project and the operating system or other
installed third party tools. So normal that they
are ignored in the Makefiles in this paper,
and they are ignored in the built-in rules of make
programs.

Modules shared between your projects may fall
into a similar category: if they change, you will
deliberately re-build to include their changes, or
quietly include their changes whenever the next
build may happen. In either case, you do not
explicitly state the dependencies, and whole-
project make does not apply.

e Re-use may be better served if the module were
used as a template, and divergence between two
projects is seen as normal. Duplicating the

AUUGN: The Journal of AUUG Inc.

module in each project allows the dependencies
to be explicitly stated, but requires additional
effort if maintenance is required to the common
portion.

How to structure dependencies in a strong re-use
environment thus becomes an exercise in risk
management., What is the danger that omitting
chunks of the DAG will harm your projects? How
vital is it to rebuild if a module changes? What are
the consequences of not rebuilding immediately?
How can you tell when a rebuild is necessary if the
dependencies are not explicitly stated? What are the
consequences of forgetting to rebuild?

9.2. Return On Investment

Some of the techniques presented in this paper will
improve the speed of your builds, even if you
continue to use recursive make. These are not the
focus of this paper, merely a useful detour.

The focus of this paper is that you will get more
accurate builds of your project if you use whole-
project make rather than recursive make.

e The time for make to work out that nothing
needs to be done will not be more, and will often
be less.

e The size and complexity of the total Makefile
input will not be more, and will often be less.

e The difficulty of maintaining the Makefile
will not be more, and will often be less.

The disadvantages of using whole-project make over
recursive make are often unmeasured. How much
time is spent figuring out why make did something
unexpected? How much time is spent figuring out
that make did something unexpected? How much
time is spent tinkering with the build process? These
activities are often though of as ““normal"
development overheads.

Building your project is a fundamental activity, if it is
performing poorly so is development, debugging and
testing. Building your project needs to be so simple
the newest recruit can do it immediately with only a
single page of instructions. Building your project
needs to be so simple that it rarely needs any
development effort at all. Is your build process this
simple?

February 1998

10. References

[1] Stuart 1. Feldman, Make - A Program for
Maintaining Computer Programs, Computing
Science Technical Report 57, Bell Laboratories
(Aug 1978).

[2] Richard M. Stallman and Roland McGrath, GNU
Make: A Program for Directing Recompilation,
Free Software Foundation, Inc., Cambridge,
Massachusetts, USA (Jul 1993).

[3] Steve Talbott, Managing Projects with Make,
2nd Ed., Nutshell, O'Reilly & Associates, Inc.,
Newton, MA, USA (1991). ISBN: 0-937175-18-
8.

[4] Adam de Boor, PMake - A Tutorial, University
of California, Berkeley, Beley, CA, USA (Jul
1988).

7
0‘0

Linux Expo 98

28-30 May 1998
to be held at:
Duke University

Durham
North Carolina

for info see www. 1i.org

25

New

Addison

Wesl
Longrggf Y

from Addison Wesly Longman

order form

THE COMPLETE PC UPGRADE & MAINTENANCE GUIDE 8TH EDITION

MARK MINAS]

New revised and updated eighth edition of this best selling title features detailed dis-
cussions of the latest PC hardware — motherboards, memory boards, sound and
video cards. Also includes instructions on how to use the Internet to upgrade PCs and

peripherals.

Also included are two CD-roms the first providing professional problem-solving tech-
niques using videos from Minasi’s own seminars. The second PC Tuning CD includes
multimedia clips, searchable text and hyperlinks to assist in upgrading and tuning

your PC.

JSBN : 0-782-2151-9 RRP $109.95

JAVA 1.1 - CERTIFICATION STUDY GUIDE

SIMON ROBERTS AND PHILIP HELLER

Every Java programmer can improve their skills with this book. Designed specifically
to teach you all you need to know to pass the exam, each chapter has been technical-
ly reviewed and approved by a member of the Sun Education Team.

Inside you will find chapters that cover — Language fundamentals; Operators and
assignments; Casting and conversion; Applets and HTML plus much more.

JSBN : 0-782-12069-5 RRP $79.95

AUUG Members receive a 20% Discount off the RRP

To order a copy of these texts, please fill in the details below.
This form should be faxed or mailed (freepost) to Lisa Russell, Trade Marketing Co-ordinator at Addison Wesley

Longman, Level 1, 2 Lincoln Street. Lane Cove NSW 2066. Ph: (02) 9428 8086 or Fax: (02) 9427 9922

Book Details

Author/Title ISBN Price
Total less 20%

Order details

If you are purchasing the books detailed above, please give the following information. (Please note that books
can also be ordered directly from bookstores.)
Book(s) price:

Postage:
O
()

Your Name:
Address:

Daytime Ph:

Note: Prices are subject to change without notice

1 book = $4.00, 2 or more = $7.00 Total $
| enclose a cheque made out to Addison Wesley Longman

Please charge my credit card:
0 Bankcard OVisa [Mastercard O American Express ID No:

Card Number: Expiry Date
Signature:
Mr/Mrs/Ms

Book Reviews

ADVANCED ORACLE PL/SQL
PROGRAMMING WITH PACKAGES

By: Steven Feuerstein
O’Reilly and Associates
1996, 661 pages + 3.5” disk
ISBN 1-56592-238-7

Reviewed by:

Matthew Dawson
<dawson.matthew.ms @bhp.com.au>
BHP Information Technology

Steven Feuerstein is an Oracle guru renowned for his
articles, presentations and courses regarding the
development of code that interfaces with Oracle
databases. His main area of interest is PL/SQL -
Oracle’s procedural extension to SQL - and he wrote
a 900+ page tome on the subject in 1995. Roughly a
year later he has returned to his home territory, but
this time focussing on a single under-utilised section
of the PL/SQL. language; packages.

Packages are constructs that bare many similarities to
the programming concepts of both libraries and
objects. They allow developers to group many
related functions/procedures into a single library, but
are more than just a handy repository for code. They
offer developers the chance to use object-oriented
design principles (particularly in regard to data
encapsulation and implementation hiding) in an
environment that traditionally discourages these
design approaches.

In his preface Steven states his objectives as:
increasing awareness of packages and their usage,
distributing his software as widely as possible and
making his readers more creative and effective
problem solvers. A pretty tall order by most
standards but he makes a valiant attempt at meeting
these lofty goals.

Steven uses a conversational style of writing which
makes for very easy reading. He carefully explains
each concept without falling into the trap of being
condescending or too simplistic for the more
advanced readers. Even so this is not a book for
beginners - don’t even consider attacking it unless
you have at least a passing familiarity with PL/SQL.

The book is broken into six sections with the first
addressing the development of Oracle packages, four
devoted to the suite of packages provided on the
companion disk and the final section containing a
series of exercises (and their solutions) to test the
reader’s PL/SQL knowledge. From this simple
breakdown it is easy to determine the basic thrust of
this publication.

February 1998

Chapter one contains an introduction to the topic of
packages. Steven walks the reader through a
description of what a package is, the various flavours
that are available and continues on to the benefits of
their use. He then discusses the various components
of a package; the specification (public declarations),
body (implementation details and private code/data)
and all of the elements that they can encapsulate.
The remainder of the chapter is devoted to the
mechanics of creating packages and why anyone
would want to bother with them at all. I found this
area of discussion both intriguing and annoying.
Intriguing because I had rarely really considered
packages as anything more than a place to store
reusable code fragments, and annoying because I
spent the remainder of the day contemplating how I
could have better handled issues encountered during
recent projects.

The next chapter delves into the author’s ‘Best
Practices’ for developing/designing packages. In it
he expounds the philosophy that all PL/SQL
development should start as packages rather than
stand-alone functions/procedures i.e. that developers
should approach programming with a view to create
reusable application building-blocks rather than
quick-and-dirty components which address only the
problem at hand. The suggestions provided are
practical, well explained and are focused on creating
understandable, maintainable and above all useable
code.

To round off the first section of the book Steven has
included a chapter to illustrate the development
lifecycle (or Development Spiral as he prefers to call
it) of a PL/SQL function,. It is based on the creation
of a function that concatenates a string to itself. Not
particularly exciting as far as examples go but he
somehow manages to turn this simple task into the
perfect illustration of why many of the techniques
from chapter two should be applied.

The remaining two thirds (or more) of the book
degenerates into what is essentially a user guide for
the companion disk. While the supplied packages are
useful, they are merely a cutdown/unsupported
version of the ‘Professional’ version which can be
purchased from www.revealnet.com. As this full
version will undoubtedly be better documented and
more robust than the ‘Lite’ version I’'m a little unsure
of Steven’s reasoning in devoting this large a
proportion of the book to the user guide. Most
serious developers planning to use his software
wouldn’t consider basing production programs on the
unsupported version of the packages - it isn’t worth
the risk - so these sections are of limited use to them.
Which insinuates that much of this book is intended
either as an advertisement for the ‘real’ packages or
as a play toy for hobbyists.

So did Steven reach the objectives he set for himself?

I’d have to say yes. But I’m left feeling disappointed
because the book didn’t live up to its title. Its first

27

section provided me with valuable insights into this
facet of PL/SQL, leaving me with high hopes for the
upcoming sections. When they turned out to be little
more than software documentation my attention
began to wane.

The verdict? 1 would recommend that all Oracle
developers read the first quarter of the book at least
once, but I don’t expect it to be a permanent feature
on your bookshelf. Consider asking your workplace
to buy a copy for the team...

9,
0‘0

THE PRACTICAL PERFORMANCE ANALYST
PERFORMANCE-BY-DESIGN TECHNIQUES
FOR DISTRIBUTED SYSTEMS

By: Neil J. Gunther
McGraw-Hill, 1998, ISBN 0-07-912946-3

Reviewed by:
Michael Paddon <Michael. Paddon @auug.org.au>

This is an ambitious book. Its fundamental thesis is
that, if you want your software to meet its
performance goals, you are most likely to succeed if
you design in that performance from the very start.
As Dr Gunther points out in his preface, however, the
budget and schedule demands of the modern software
project seldom leave room for essential modelling
and measurement steps, especially when traditional
formal methods are applied. As a consequence the
performance profile of the final system is primarily
accidental.

The aim of "The Practical Performance Analyst" is to
give the reader sufficient tools for streamlined
modelling and measurement. This is a
straightforward tradeoff between the resolution of the
analysis and the resulting cost in time and resources.
In most cases, a software designer does not need an
exact answer, just an understanding of the critical
performance aspects of an architecture and enough
guidance to choose intelligently between different
design options.

Section one of the book, "Foundations", starts by
discussing the nature of time, both in the real world
and in the measurement of events within a computer.
This naturally leads on to discussion of fundamental
time based metrics. This is followed by "Queuing
Theory For Those Who Can't Wait", which is the
lynchpin of the entire work. Dr Gunther happily
throws all the hard stuff (stochastic modelling,
probability theory and simulation) out the window,
and replaces it all with a system of basic queue types
and simplified formulae founded on averages. This
works surprisingly well, and the math turns out to be
trivial. Best of all, a simple one page summary at the
end of the chapter makes it all too easy. A more
detailed discussion of modelling the real world with

28

systems of queues then provides the final piece of the
puzzle. The section ends with a chapter covering
commonly available distributed performance
management protocols and tools.

Section two, "Applications", focuses on the practical.
It kicks off with a brief overview of currently
available commercial parallel architectures, and the
types of applications (especially databases) that are
driving the development of such machines. An
analysis of the various parallel architectures follows,
with emphasis on measuring their effectiveness, both
in terms of pure parallel speedup and real world
workloads. SMP architectures, as the dominant
contemporary multiprocessor, are modelled and
analysed in fine detail. Whilst this is of some help to
a software engineer like myself, the next target of
discussion, a similarly detailed analysis of client-
server architectures, 1s invaluable. Client-server
methods are so ubiquitous in modern software and
the techniques presented gave me a new
understanding of performance issues and limitations
that I need to deal with daily. The section ends with
an analysis of Web servers which, not surprisingly,
shows fundamental performance bottlenecks in
HTTP, but also examines the effects of different
design decisions in the servers themselves.

Finally, section three, "Innovations”, presents some
more complex ideas and analysis techniques. In
particular, the math gets a bit more complex and a bit
of calculus starts popping up. Dr Gunther, however,
does an admirable job at explaining what is going on
in plain English, so you can quite happily ignore the
integrals, and still come away with a solid
understanding of the concepts. The section begins
with an examination of stable and unstable states, non
linear system response and transient behaviour. This
quickly becomes a very formal exploration of path
integrals and their applicability in large population
systems. In simple terms, this is all about high
powered tools to analyse large scale systems. All this
math is then thrown at typical packet switched and
circuit switched network problems in a frenzy of no-
holds-barred serious performance analysis. The last
chapter of the section takes a complete break from
the preceding material, and models the non-linear
performance degradation effects of an SMP
architecture. I got the feeling that this got put at the
end, simply because it didn't slot in anywhere else
neatly.

The book also includes a source, documentation and
sample code for a piece of performance analysis
software called PDQ, or Pretty Damn Quick. PDQ is
a queuing circuit solver that uses the averaging
techniques presented by the book to rapidly calculate
performance metrics without resorting to simulation.
This tool is used throughout the book to calculate real
numerical answers to problems, so it looks like it will
be pretty useful in the real world as well.

AUUGN: The Journal of AUUG Inc.

As you can see by now, this is not a lightweight
book. Effective performance measurement and
analysis are demanding tasks requiring a deep
understanding of what is actually happening behind
the models and metrics. "The Practical Performance
Analyst" does not claim to make this easy. However,
it places in the reader's hands the tools and
techniques needed to do the job properly, fast and as
accurately as required. Furthermore, the book is
superbly and clearly written. Anyone with a typical
computing background can pick up this tome today
and start applying its lessons tomorrow. For such a
complex subject, that is quite an achievement.

I don't often find myself unreservedly recommending
a book. The fact is that "The Practical Performance
Analyst" should be on every programmer's and
sysadmin's bookshelf. Have a look at it, and I think
you'll agree.

0,
0‘0

THE JAVA LANGUAGE REFERENCE,
2ND EDITION

By Mark Grand
O'Reilly & Associates, 2nd Edition July 1997
492 pages, $32.95 US, ISBN: 1-56592-326-X

Reviewed by:
David Hook <dgh @aba.net.au>

Mark Grand's resume states that he spends a great
deal of time teaching the Java programming
language, and primarily this book is an introductory
text, which probably would be useful, up to a point,
in enabling someone to learn the in, outs, and
subtleties of the Java programming language and its
primary API, the java.lang package. Each chapter is
divided into sections and each section includes a list
of cross references to other parts of the book making
the text a very easy one to get around in.

The book is roughly divided into two parts, the first
part covers the types and syntax of the language, a
look at object oriented programming - Java style, the
use of Threads, classes, and interfaces, and a
reasonably well documented look at issues such as
synchronisation, the ins and out of flow control, and
exception handling. All the fundamentals appear to
be covered, and the first part of the book also
includes a brief look at how applications and applets
are put together.

The second half of the book is largely a repeat of
what you would find in the JavaDoc documentation
for java.lang package. While it is cross referenced
with the rest of the book, I could not avoid thinking
that the space would have been better taken up with
a basic look at the input/output features of the io
package and the standard utilities. At the moment the
only thing covered in the book is println!

February 1998

In what it covers the book is very thorough, and
while it is certainly not possible to cover all the Java
programming language in one book, I do believe the
book is of limited use to someone wishing to program
anything "real" in Java. Indeed, on the back cover the
publishers mention that the book should be used in
conjunction with two other books, and it is my
feeling that this book would be one of those which
would rapidly migrate to the back of the bookshelf. If
you are already using Java and have one or two
books, this probably is not a good book to buy. If
you are interested in learning Java, this book is worth
considering, although if you are looking for a broader
introduction to the language and its APIs, I would
recommend having a look at "The Java Programming
Language" by Ken Arnold and James Gosling first.

K2
“0

Meet the
AUUG-Exec

MICHAEL PADDON

The first computer I ever got to lay my hands on was
a PDP 11/04 at the tender age of thirteen. This
machine came complete with a mark sense card
reader, a line printer and a shiny new copy of the
MONECS operating system. This was a great system
to learn with, despite the fact that the entire operating
system fit on a single eight inch floppy and was only
marginally more functional than MSDOS. The
Fortran compiler was the only one worth using but,
despite that, I retained my sanity. All this, and the
machine only tried to kill me twice!

Then I discovered machine code and my world
changed forever. I actually worked out how
computers tick. Shortly thereafter I purchased my
very own TRS-80 and settled into Z-80 assembler
heaven. Actually, writing, assembling, linking and
crash testing machine code on a computer with just

29

about no debugging tools and a tape drive as mass
storage isn't fun...but I didn't know that back then.

University led to two new important things in my
life... girls and real operating systems. Meeting Unix
and C for the first time is a satori when all you've
seen are horrible little toy computer program loaders.
Quite by good fortune, I'd ended up at Melbourne
Uni, and had the benefit of finding myself in a hotbed
of local Unix hacking. I also got to play with real
computers, like vaxen. Wow! And later on, these
weird things called Sun workstations. By the way,
did I mention the girls? Who says computer science
is boring?

Armed with a fresh new BSc(Hons), I signed up as a
staff member at the Uni and spent two years
researching and building user interface technology. I
also spent way too much time posting netnews and
organising aus.sf dinners. Around that time, the Uni
got hooked up to this thing that one day would be
called the Internet. A whole new. world.

Naturally it was only a matter of time before I sold
out to the commercial world for the big bucks. Yeah,
Two years at DEC, nearly three at an underfunded
startup called Iconix, and then two years at Kodak
preceded my current lifestyle as technical director of
Australian Business Access, an internet commerce
startup. See, I don't learn.

I've been involved with AUUG since my university
days, and actually got suckered into presenting my
first paper at the 1989 winter conference. I can't
begin to describe what influential and inspirational
environment AUUG provided for me back then,
Suffice it to say that I and my peers were all
improved and enriched by being involved.

Around 1990 and 1991, I started to get really pissed
off by what I saw as the dilution of AUUG's strengths
by short term and short sighted interests. There even
seemed to be a danger of a schism into two groups,
which would have been an unmitigated disaster.
After one too many of my complaints, some wag
suggested I should actually do something, and by
1992 I was elected to the executive committee. Three
years of that, followed by three as president have
given me ample opportunity to "fix" things. You get
to be the judge of whether I've done any real good.

Nowadays? Professional interests are operating
systems, security, protocols, the usual grab bag. One
day I'm going to finish that perfect OS. In my spare
time (hah!) I study Japanese (which gives me an
excuse for the manga and anime addiction), read
novels (mostly SF), watch movies (with a weakness
for Hong Kong cinema), race the RXS5, fix the RXS,
torment my cat and sleep. Somewhere along the line I
wound up married to a wonderful lady, Linda, who is
way too nice for a guy like me. Go figure.

R/
0‘0

30

LuiGl CANTONI

I have been involved with Unix since about 1981 first
with Microsoft (OH NO I said that company name)
XENIX sys III. This is the version SCO first started
with when they said "We think this is a good
product” and Bill said "Go forth you sinners". This
was an interesting version as it had a split Kernel.
One half was all the screen and disk I/O processing
and was done on a 80186 (remember one of those).
The other half was the true kernel and it ran on a
80286 processor. Multi processor back in 81? Since
then I have predominately used various versions of
SCO although I have had brief stints with other
variations like DGUX, Motorola, Sun AIX etc.

I have predominately worked for small firms where
basically I have been the entire computer dept. This
has meant that I have had to do all sorts of System
work and administration even though my passion is
accounting and business applications. I remember
early at a WAUUG meeting when we where all
discussing what we did. As I was near the end I was
able to state I was a USER of Unix. I was not
involved with a Software house or Vendor and was
not from an Academic institution. That is not true
now as I am in charge of development with a team of
programmers. I both program predominately in 'C'
and a language tailored to our business applications
and do a great deal of shell scripting.

I have been involved with several aspects of the
building industry. Several engineering type firms and
now am heavily involved in the quick service (that’s
fast food to humans) industry. Some of my clients
include Hungry Jacks, KFC, Dominoes, Burger King
and several smaller operations. Several overseas
firms are also looked after and that means 24hr a day
7 days a week being on call to these clients.

I am proud to say I have several sites that run my
applications that are still on their original hardware
with the same software for over 10 years and require
less than a few hours a year of systems/application
support. Who said Unix requires constant systems
support. All my working life has been in computing
and almost all of that with Unix. I fully expect that to
continue.

PS I'm writing this while waiting for my name to be
called for Jury Duty.... No one loves me I can go
home instead.

9,
0’0

AUUGN: The Journal of AUUG Inc.

AUUG BOOK CLUB
&
PRENTICE HALL AUSTRALIA

Please send me the following book/s on 30-Day approval

Unix Unleashed Internet Edition - Burk et al Sams Publishing
ISBN 0672312050 Cloth $169-95 $87.95
HP-UX Systems Administration Handbook and Toolkit - Poniatowski Prentice Hall
ISBN 0139055711 Paper $89-95 $71.95
Mobile IP The Internet Unplugged - Solomon Prentice Hall
ISBN 0138562466 Cloth $49-95 $39.95
Timebomb 2000 - Yourdon Prentice Hall
ISBN 0130952842 Paper $19:95 $15.95
Cisco IOS Configuration Fundamentals - Cisco Systems Cisco Press
ISBN 1578700442 Cloth $H9:95 $95.95
‘Internetworking Technologies Handbook - Cisco Systems Cisco Press
ISBN 1562056034 Cloth $79-95 $63.95
AUUG members receive 20% discount below recommended retail price
Mail Fax Phone or Email your order to:
ATTN: Jan Blenkinsop
Prentice Hall Australia, Marketing Department
Locked Bag 507, Frenchs Forest NSW 2086
Tel:(02) 94542211 Fax:(02) 9453 0117 Email: jan_blenkinsop @prenhall.com.au
Name: Position:
Company:
Address:
Telephone:
PLEASE SEND MY D Enclosed cheque for $ (Payable to’Prentice Hall Australia’)
BOOK/S ON [] Charge to me OR [] Company purchase Order No.
30-DAY APPROVAL
Please charge my: []Bankcard []Visa [|MasterCard [| AMEX
Expiry Date: CreditCardNo: [T T T [TTTITLTITITILITT]
Signature:

PRENTICE HALL AUSTRALTIA

== 14 Aquadtic Drive, Frenchs Forest NSW 2086
= Tel: (02) 9454 2200 e Fax: (02) 9453 0117 A cN. 000 383 406

Call For
Papers

AUUGY8 Conference
September 3-5, 1997
Sydney Hilton Hotel,
Sydney, New South Wales,
Australia

Open Systems:
The Common Thread

THEME:
"OPEN SYSTEMS: THE COMMON THREAD'"'

The 1998 AUUG winter conference will be held at
the Sydney Hilton Hotel, New South Wales,
Australia, between September 16th and 18th.

The conference will be preceded by two days of
tutorials, on September 14th and 15th.

The program committee invites proposals for papers
and tutorials relating to:

Technical aspects of Unix and Open Systems

New developments in open software systems,
languages and applications

Networking, Internet (including the World Wide
Web) and Security

Business and Management Experience and Case
Studies

The theme of this years conference is "Open
Systems: The Common Thread". The program
committee will interpret the theme very broadly with
the aim of highlighting the breadth of applicability
for Open Systems. As always, papers and tutorials
with a strong technical flavour are particularly
welcome.

Presentations may be given as tutorials, technical
papers, or management studies. Technical papers are
designed for those who need in-depth knowledge,
whereas management studies present case studies of
real-life experiences in the conference's fields of
interest. Tutorials may be either 1/2 day or full day
and have a strong practical focus.

All presentations must be accompanied by a written
paper for the conference proceedings.

Speakers may select one of two presentation formats:

Technical presentation:
a 25 minute talk, with 5 minutes for questions;

32

Management presentation:
a 20-25 minute talk, with 5-10 minutes for

questions (i.e. a total 30 minutes);

Panel sessions will also be timetabled in the
conference and speakers should indicate their
willingness to participate, and may like to suggest
panel topics.

Tutorials, which may bte of either a technical or
management orientation, provide a more thorough
presentation, of either a half-day or full-day duration.

Representing the largest Unix and Open Systems
event held in Australia this conference offers an
unparallelled opportunity to present your ideas and
experiences to an audience with a major influence on
the direction of computing in Australia.

SUBMISSION GUIDELINES

Those proposing to submit papers should submit an
extended abstract (1-3 pages) and a brief biography,
and clearly indicate their preferred presentation
format.

Those submitting tutorial proposals should submit an
outline of the tutorial and a brief biography, and
clearly indicate whether the tutorial is of half-day or
full-day duration.

SPEAKER INCENTIVES

Presenters of papers are afforded complimentary
conference registration.

Tutorial presenters may select 25% of the profit of
their session OR complimentary conference
registration. Past experience suggests that a
successful tutorial session of either duration can
generate a reasonable return to the presenter.

IMPORTANT DATES

Abstracts/Proposal Due: May 15, 1998
Authors notified: June 5, 1998
Final copy due: August 7, 1998
Tutorials: September 14-15, 1998
Conference: September 16-18, 1998

Proposals should be sent to:

AUUG Inc.

PO Box 366
Kensington NSW 2033
AUSTRALIA

Email: auug98@auug.org.au

0.0

AUUGN: The Journal of AUUG Inc.

SAGE-AU Sixth
Annual Conference
and General
Meeting

Tuesday 7/7/1998 to Friday 10/7/1998
Old Parliament House

Canberra, ACT,

Australia

CALL FOR PAPERS AND TUTORIALS

The System Administrators Guild of Australia
(SAGE-AU) will be hosting its sixth annual
conference in conjunction with its 1998 annual
general meeting.

The annual SAGE-AU Conference, Tutorials and
AGM provides a forum for Systems Administrators,
Systems Managers, Network Administrators,
Developers of Systems Administration Software and
Managers of such groups to meet and share their
knowledge and experiences.

SAGE-AU'98 is hereby calling for papers and tutorial
presentations on any and all topics related to system
administration.

DEADLINES
Applications to present tutorials and papers must
reach the organisers by April 3, 1998.

To be included in the conference proceedings, papers
must reach the organisers by June 19, 1998.

CONFERENCE DETAILS
SAGE-AU'"98 will be a 4 day conference running
from Tuesday July 7, 1998 to Friday July 10, 1998.

The first two days (Tuesday & Wednesday) will be
dedicated to tutorials on tools and techniques to aid
system administration.

The AGM will be held at the end of the third day
(Thursday). All other times will be allocated to
presentations or discussions.

A conference dinner will be held on the Thursday
evening.

The conference will feature a small trade show on the

third and fourth days, focusing on system
administration tools and information.

February 1998

PAPERS

Timeslots are available for 15, 30, 45 and 60 minute
presentations. 5-10 minutes should be reserved for
questions from the audience.

15 minute timeslots are less formal and are to allow
people to talk briefly about some topic of interest or
problem without having to prepare a formal paper
(Work in Progress).

People presenting a 30+ minute talk will receive free
conference registration.

People presenting a 15 minute talk will receive a 50%
discount on the conference registration fees.

If you wish to present a paper, send an abstract to the
address below by the due date. Please indicate
whether you are asking for a 15, 30, 45 or 60 minute
timeslot.

Abstracts should be 100 -- 200 words in length.
Papers should have a technical orientation and should
not contain advertising.

People giving 30+ minute presentations will be
expected to provide a paper for inclusion in the
conference proceedings.

TUTORIALS

Tutorial sessions will be either half day or full day in
duration. People wishing to present tutorials should
submit an abstract of the material they wish to
present and an indication of whether they require a
half day or a full day timeslot. Tutorials should be
run in lecture format. Suggested topics include:

e Computer and Network Security/Network
Authentication

e PC/Apple/Unix/Mainframe Interoperability

e NFS/Automount/AMD Configuration and
Operation

e Perl/Java/Tcl/Python

e Sendmail/Qmail/smapd/Anti-SPAM

e WWW Cache/Router Config/Firewall
Setup/Squid

e NT/Win95 Administration

Tutorial presenters will be paid-$500 for a half day
tutorial and $1000 for a full day tutorial and will
receive free conference registration. SAGE-AU will
reimburse tutorial presenters for reasonable costs of
handout materials or will print them on your behalf.

As with papers, tutorials should have a technical
orientation and should not contain advertising.

33

EXHIBITION/TRADE SHOW

On the third and fourth days of the conference
(Thursday and Friday) SAGE-AU'98 will host a
small, technically orientated trade show focusing on
system administration tools and information.

If you or your company are interested in participating
in the trade show please contact the organisers for
details.

REGISTRATION

Conference registration includes one ticket to the
Conference Dinner and Conference and Tutorial
registration includes Lunch and Refreshments.
Additional tickets to the Conference Dinner may be
purchased.

Non-members who register for SAGE-AU'98 at the
non-member rate and successfully apply for
membership of SAGE-AU will have their first year's
membership fee waived.

Conference registration forms will be available in
mid May 1998. '

Registration forms for tutorials will be available
approximately six weeks before the conference date.

Early Registration is considered when registration

form and payment has reached SAGE-AU by COB

on 19th of June 1998.

TRAVEL

To encourage interstate attendees, SAGE-AU offers
members a- travel discount off registration for
interstate travellers (Qld/Vic/Tas/'WA/SA/NT).

ADDRESSES
Send all enquiries regarding the conference as well as
tutorial and paper abstracts to:

SAGE-AU'98
GPO Box 2984
Sydney NSW 2001
Australia

E-Mail: conference @sage-au.org.au

Requests for general information about SAGE-AU
and membership applications should be addressed to:

WWW: http://www.sage-au.org.au/
Email: secretary@sage-au.org.au

Fax: 0500 544 488 (Attn: David Conran)

Or alternatively,

Secretary

SAGE-AU

GPO Box 2984

Sydney NSW 2001
Australia

WWW PAGE

-A web page for the conference is

http://www.sage-au.org.au/conf.html

*,
0.0

Tellurian Pty Ltd

¢ |nternet access

NVYIINTTH]

Tellurian Pty Ltd
272 Prospect Road
Prospect SA 5082

Come to us if you need seriously capable people to help with your
computer systems. We're very good at what we do.

* Unix, Macintosh and Windows experts
* legacy system re-engineering and integration
* System management and support

Our two current major projects:

* Support and development of an infegrated environment covering |
applications running on IBM3090, DEC Alpha, SCO Unix and Nortel
switches. Just Imagine the cost benefits of supporting over 500
concurrent users on four little 486 and Pentium PC's.

e From the ground-up implementation of MFC and Windows APl on Apple
Macintosh. We've got our client’'s Windows MFC application running.
bug-for-bug, on Apple Macintosh,

(08) 8408 9600
www.fellurian.com.au
sales@tellurian.com.au

34

AUUGN: The Journal of AUUG Inc.

February 1998

We want you...

to nominate for a position on the
AUUG Management Committee.

Help make AUUG the kind of organisation you want it to be — nominate
for a position on the AUUG Management Committee! The call for
nominations and a sample nomination form can be found on the next few
pages. The nomination form should be returned to AUUUG by the 14" of
April.

You need to be nominated by three voting members of AUUG (that is,
either individual members or institutional members), and you must be an
individual member yourself.

If you want to know more about serving on the Management Committee,
e-mail the current committee at:

auugexec@auug.org.au

What? You can’t find three
members to nominate you?

Send 1n your nomination form
anyway — we’ll find someone
to sign it.

And don’t forget your 200
word policy statement!

35

AUUG Incorporated
1998 Annual Elections

Nomination Form

We,
(1) Name: AUUG Member #: and
(2) Name: AUUG Member #: and
(3) Name: AUUG Mcmber #:

being current financial members of AUUG Incorporated do hereby nominate:

for the following position(s):

(Strike out positions for which nomination is not desired. Each person may be elected to at
most one position, and election shall be determined in the order shown on this nomination
form.)

President

Vice President

Secretary

Treasurer

Ordinary Management Committee Member (5 positions)
Returning Officer

Assistant Returning Officer

Signed (1) : Date
Signed (2) Date
Signed (3) Date
I, Name: AUUG Member #:

do hereby consent to my nomination to the above position(s), and declare that I am currently a
financial ordinary member of AUUG Incorporated.

Signed Date

36 AUUGN: The Journal of AUUG Inc.

AUUG
Incorporated 1998
Annual Elections
Call for
Nominations

Nominations are invited for the following positions
within AUUG Incorporated:

President

Vice President

Secretary

Treasurer

Ordinary Management Committee Member (5
positions)

Returning Officer

Assistant Returning Officer

Nominations must be made in writing and must be
signed by the nominee and three (3) financial voting
members of AUUG Incorporated, and must state
which position(s) are sought by the nominee. The
nominee must be a financial ordinary member of
AUUG Incorporated, and can nominate for any or all
of the above positions. While any ordinary member
may be nominated to more than one position, no
person may be elected to more than one position.
Election to positions is determined in the order
shown above.

A sample nomination form can be found on the
previous page.

Nominees may include with their nomination a policy
statement of up to 200 words. This word count will
not include sections of the statement stating, in point
form, the name of the nominee and positions held on,
or by appointment of, the AUUG Management
Committee or positions in AUUG Chapters.

Policy statements that exceed the word limit shall be
truncated at the word limit when included in the
ballot information.
Nominations must be received by the Secretary of
AUUG Incorporated by the 14th of April 1997, and
may be lodged by one of the following methods:
1 by post to:

The Secretary

AUUG Incorporated

PO Box 366

Kensington, NSW, 2033

(the nomination must be received no later

than April 16th and must be postmarked no
later than 12 noon on April 14th 1997).

February 1998

(2 by hand to:
The Secretary (David Purdue) OR
The AUUG Incorporated Secretariat
no later than Spm on April 14th 1997.

3) by FAX to: ,
The Secretary (fax to (02) 9904 7057,
marked Attn: David Purdue) OR
The AUUG Incorporated Secretariat (fax to
(02) 9332 4066)

no later than Spm on April 14th 1997.
David Purdue

Secretary
AUUG Incomporated

AUUG
Incorporated

Election Procedures

These rules were approved by the AUUG Inc.
Management Committee on 14/12/1994.

1. NOTICE OF ELECTION

The Returning Officer shall cause notice of election
to be sent by post to all financial members no later
than March 15 each year.

2. FORM OF NOTICE

The notice of election shall include:

(a) alist of all positions to be elected, namely:
e President

Vice President

Secretary

Treasurer

Ordinary Committee Members (5)

Returning Officer

Assistant Returning Officer

(b) anomination form;

(c) the date by which nominations must be
received (in accordance with clause 21(2) of
the Constitution, this date is 14 April);

(d) the means by which the nomination form may

be lodged;

(e) a description of the format for a policy
statement.

3. POLICY STATEMENT

A person nominated for election may include with
the nomination a policy statement of up to 200
words. This word limit shall not include sections of

37

the statement stating in point form the nominee’s
name, personal details and positions held on, or by
appointment of, the AUUG Management Committee
and chapters.

Policy statements exceeding the word limit shall be
truncated at the word limit when included in the
ballot information.

The Returning Officer may edit policy statements to
improve readability, such edits being limited to
spelling, punctuation and capitalisation corrections
and spacing modifications.

Use of the UNIX wc program shall be accepted as an
accurate way to count words.

4. RECEIPT OF NOMINATIONS

In accordance with clause 21(2) of the Constitution,
nominations shall be received by the Secretary up
until April 14. A nomination shall be deemed to have
been received by the due date if one of the following
is satisfied:

e it is delivered by post to AUUG Inc’s Post Box,
the AUUG Secretariat’s Post Box or the AUUG
Secretariat’s street address no. later than 2
business days after April 14 and is postmarked

" no later than 12 midday on April 14;

e it is delivered by hand to the Secretary or the

AUUG Inc Secretariat no later than 5 pm on

April 14;

e it is transmitted by facsimile to the Secretary or
the AUUG Inc Secretariat no later than 5 pm on
April 14.

5. REQUIREMENT FOR A BALLOT
AND DUE DATE

In accordance with clause 21(5), no later than May 1,
the Secretary)

e shall advise the Returning Officer of all valid
nominations received;

e and if a ballot is required, shall advise the
Returning Officer of a date no later than May 15
for the ballot for all contested election.

In accordance with clause 42(3), the due date for
return of ballots shall be 4 weeks after the date
advised above.

6. FORM OF BALLOT PAPER

The ballot paper shall contain:

e details of all positions for which the number of
nominations exactly equals the number of
positions to be filled;

38

e for each position for which a ballot is required,
the names of all- persons seeking election to that
position, except those already elected to a higher
position, with a square immediately to the left,
for the elector to place a voting preference;

¢ instructions on how to complete the ballot paper;
¢ instructions on how to return the ballot paper;

e a brief description of how the ballot is to be
counted.

The ballot paper shall not contain any identification
of existing office-bearers.

The ballot paper shall be accompanied by a copy of
all policy statements submitted by all persons
nominated, including any persons elected unopposed.
These policy statements may be truncated or
modified as outlined in 3.

7. METHOD OF VOTING

Voting for each. position shall be by optional
preferential vote. The number “1” must be placed
against the candidate of the elector’s first preference, -
and a number other than “1” against any or all of the
other candidates. Preferences shall be determined by
the numbers placed against other candidates, which
must be strictly monotone ascending to count as
preferences.

A vote shall be informal if:

¢ it does not have the number “1” against exactly
one candidate.

8. SECRECY OF BALLOT

The ballot paper shall be accompanied by two
envelopes, which may be used by the elector to
ensure secrecy. On completion of the ballot paper,
the paper may be placed inside the smaller envelope.
This envelope is then placed inside a second
envelope. The elector must then sign and date the
outer envelope, making the following declaration:

“ ‘
member number , declare that I am
entitled to vote in this election on behalf of the voting
member whose membership number is shown above,
and no previous ballot has been cast on behalf of this
voting member in this election.”

9. RETURNING BALLOT

To be considered to have been returned by the due
date, the ballot paper together with declaration as
above must be returned by one of the following
means:

¢ it is delivered by post to AUUG Inc’s Post Box,
the AUUG Secretariat’s Post Box or the AUUG
Secretariat’s street address no later than 2
business days after the due date and is

AUUGN: The Journal of AUUG Inc.

postmarked no later than 12 midday on the due
date;

e it is delivered by hand to the Returning Officer
or the AUUG Inc Secretariat no later than 5 pm
on the due date.

10. METHOD OF COUNTING

Where there is an election for a single position, the
votes shall be counted by the preferential method.
Where there is more than one position to be filled, the
votes shall be counted by the modified preferential
Hare Clark system described in Schedule .

11. METHOD OF ELECTION

A person may be elected to only one position.
Elections shall be counted in the order of positions
described in 2(a). When counting ballots, any person
previously elected shall be deemed withdrawn from
that election, and all ballot papers shall be implicitly
renumbered as though that person was not included.

12. NOTIFICATION OF RESULT

In accordance with clause 42(7) of the Constitution, .

the Returning Officer shall advise the Secretary in
writing of the result no later than fourteen days after
the due date. The Returning Officer shall advise all
candidates for election of the result no later than
fourteen days after the due date. The Returning
Officer shall advise the AUUGN Editor in writing of
the result no later than fourteen days after the due
date. The AUUGN Editor shall include the results in
the first issue of AUUGN published after receiving
the results from the Returning Officer.

13. PUBLICATION OF THESE RULES

The Returning Officer shall advise the AUUGN
Editor of the current rules, and the AUUGN Editor
shall cause the current rules to be published in the
first issue of AUUGN published on or after 1 January
each year. Where no issue of AUUGN has been
posted by February 28 in any calendar year, the
Returning Officer shall cause the current rules to be
distributed with the notice of election.

14. OCCASIONAL VARIATION FROM
THESE RULES

Subject to ‘the Constitution, the Management
Committee may authorise occasional variations from
these rules. Such variations shall be advised in
writing to all members at the next stage in the
election process in which information is distributed to
members.

February 1998

15. EXECUTION

Where these rules require the Returning Officer to
carry out an action, it shall be valid for the Returning
Officer to delegate execution to the Secretariat from
time to time employed by the Management
Committee.

16. RETENTION OF BALLOT PAPERS

The Secretary shall retain that ballot papers and
member declarations (as specified in 8) until the
AUUG AGM of the calendar year following the year
of the election, unless a general meeting of AUUG
directs the Secretary to hold them for a longer period.

Schedule 1

1. Each ballot paper shall initially have a value of one.

2. The value of each ballot paper shall be allotted to the
candidate against whose name appears the lowest
number on the paper among those candidates not
elected or eliminated. If there is no such candidate (i.e.
the ballot paper is exhausted) the ballot paper shall be
set aside. : :

3. A quota shall be calculated by dividing the number of
formal votes by one more than the number of positions
remaining to be elected, and rounding up to the next
whole number.

4. If any candidate is allotted a total value greater than the
quota, that candidate shall be declared elected, and the
ballot papers allotted to that candidate shall be assigned
a new value by multiplying their previous value by the
excess of the candidate’s vote above the quota divided
by the candidate’s total vote. This new value shall be
truncated (rounded down) to 5 decimal places. Ballot
papers that subsequently have a value of zero shall be
set aside. Steps 2 and 3 shall then be repeated.

5. If no candidate is allotted a total value greater than the
quota, the candidate who is allotted the lowest total
value among those candidates not elected or eliminated
shall be eliminated. Steps 2 and 3 shall then be
repeated.

6. Where

(a) two or more candidates declared elected at the
same stage of counting according to Step 4
have an equality of votes, and it is necessary to
determine which is deemed elected first,

or

(b) a candidate is required to be eliminated under
Step 5, and two or more candidates have an
equally low vote,

the Returning Officer shall return to the immediately
preceding stage of counting and

(i) in the case of candidates elected, deem first
elected the candidate with the highest vote at
the immediately preceding stage, and

(ii) in the case where a candidate is to be
eliminated, eliminate the candidate with the
lowest vote at the immediately preceding stage.

Where an equality of votes still exists at the
immediately preceding stage, the Returning Officer

39

shall continue proceeding to preceding stages until a
result can be determined.

In the event that candidates have maintained an
equality of votes throughout the entire counting
process, the Returning Officer shall determine which
candidate is to be determined first elected or to be
eliminated by lot in the presence of the Assistant
Returning Officer.

Returning Officer's
Report

AUUG Rules Ballot,
September 1997

Chris Maltby)

AUUG Returning Officer

Ballot Envelopes received ' 139

Excluded votes 9
Student Members 6
Duplicate Inst. 1
Unknown voter 1
Blank declaration 1

Informal 1
(no ballot paper encl.)

Total not counted 10

In Favour 129

Against A — 0

Total 139

I declare the proposal to change the AUUG Rules to
have been carried unanimously.

o
0‘0

Chapter News:
Canberra

The next chapter meeting will be held on the 10th of
March. Ken Day from the Computer Crime Squad of
the Australian Federal Police will be talking about
Computer Security and the law. The meeting will be
held at 7.30pm in Room LG102, the John Dedman
Building, Australian National University.

)
o

40

Chapter News:

AUUG-NSW

AUUG NSW PRESIDENTS REPORT 1997

1997 was a mixed bag as far as AUUG NSW was
concerned. The year started with a delayed summer
technical conference after the original conference
which was planned for Bathurst was cancelled due to
poor registration numbers. This lead to a rethink on
the whole conference issue resulting in a move to a
less grand and much cheaper approach. It was also
decided to experiment with a Saturday date, to enable
people with heavy work commitments to attend. The
resulting conference, while small, was well received
and the approach was continued with- the 1998
summer conference.

Meetings were held on the 3rd Thursday of each
month, starting at 7:00PM. After quite a bit of
searching, the Wesley conference centre was finally
chosen as the venue, and feedback on the- facility
from members has been positive. Attendance at
meeting has been growing slowly, with the most
popular talks being on SPAM (Pauline Van Winson),
LINUX (Jon "Mad Dog" Hall), Java (Larry Weber),
SSH (Charlie Brady) and router technology (Andrew
McCrae). January's meeting was a barbecue in Lane
Cove National Park, which was great fun, although
(again) not particularly well attended.

Attendance at meetings ranged between 10 and 30
people over the 12 months, not entirely satisfactory
out of more than 300 AUUG members in the Sydney
area. The incoming committee should focus efforts
on increasing meeting attendance. The Christmas
party was a particular disappointment with only
around 10 people attending. The closeness of the date
to Christmas may have adversely affected attendance. -

The 1998 summer conference is currently being
organised and will be held on Feb 20 and 21 at the
Wesley Centre in conjunction with the 1998 AGM.

Finding good speakers who have a high standard of
technical excellence is hard, and has been getting
harder. Finding people who can help with mundane
tasks on the Committee is also hard. 1998 will be a
challenge to the new Committee, which I wish them
every success in overcoming.

)
0‘0

AUUGN: The Journal of AUUG Inc.

AUUG Local Chapter Meetings 1998

BRISBANE

24 February
31 March

26 May

30 June

28 July

25 August

29 September
27 October
24 November

Inn on the Park
507 Coronation Drive
Toowong

For further information, contact the
QAUUG Executive Committee via email
(qauug-exec@auug.org.au). The techno-
logically deprived can contact Rick
Stevenson on (07) 5578-8933.

To subscribe to the QAUUG
announcements mailing list, please send
an e-mail message to:
<majordomo@auug.org.au> containing
the message "subscribe qauug <e-mail
address>" in the e-mail body.

CANBERRA

10 March

14 April

12 May

9 June

14 July

L'l August

8 September
13 October
10 November
8 December

Australian National University

HOBART

Each month, although
dates can vary. Often
will fit in with the
schedule of a speaker
should one be available.

University of Tasmania

MELBOURNE

18 February
18 March

15 April

20 May

17 June

15 July

19 August

21 October
18 November
16 December

Various. For updated information See:

http://www.vic.auug.org.av/auugvic/av_m
eetings.html

The meetings alternate between Technical
presentations in the odd numbered months
and purely social occasions in the even
numbered months. Some attempt is made
to fit other AUUG activities into the
schedule with minimum disruption.

PERTH

18 February
18 March

15 April

20 May

17 June

15 July

19 August

21 October
18 November
16 December

The Victoria League
276 Onslow Road
Shenton Park

Meeting commences at 6.15pm

SYDNEY

19 March

16 April

21 May

18 June

16 July

20 August

15 October
19 November
17 December

The Wesley Centre
Pitt Street
Sydney 2000

The February meeting will be replaced by
the summer conference on 21 February.

February 1998

* All dates are subject to change.

Up-to-date information is available by calling AUUG on 1-800-625-655.

41

UNIX Traps &
Tricks

Sub-Editor: Matthew Dawson
<dawson.matthew.ms @bhp.com.au>

Hi Everyone! Welcome to another issue of UNIX
Tricks & Traps - a column designed to provide
insights into how your fellow AUUG members make
their day-to-day usage of UNIX easier.

You may have noticed the new name at the top of this
page. Since Giinther (the previous UT&T editor) has
taken over as editor of AUUGN he has been unable
to spend as much time on this column as he would of

reins to myself, so that he has more time to devote to
his editorial role.

I'd like to thank this month’s contributors, Graham
Jenkins and the ever present (in AUUGN at least)
David Purdue, for their useful tips. This is also the
perfect chance to plead for more UT & T
contributions - the cupboard is looking very bare at
the moment. All of you have the qualifications
necessary to supply a useful tip - you use UNIX - so
please take the time to share some of the secrets that
make your use of this O/S more enjoyable. If you
have found any items in UT & T useful in the past, it
is the least you can do to return the favour.

Anyway, I suppose its time to hop off the soap box
and get back to our regularly scheduled program...

%0

liked. As a result he has decided to hand over the

TIDYPATH
From: David Purdue <David.Purdue @Aus. Sun.COM>

For various reasons that I do not want to go in to here, I do not have full control of my .login and .cshrc files. The.
result of this is that various scripts that are out of my control add directories to my path. Thus I end up with a path
that contains many redundant directories and is so long that the "which" command refuses to search it.

And so I wrote tidypath. Remember that it is only the first occurrence of a directory in.your path that makes any
difference - if the shell did not find a program the first time it searches that directory, it almost certainly won't find it
the second. So tidypath takes the value of the PATH environment variable and strips from it any directary that is
repeated. You end up with a shorter path that has the same effect.

Use it like this:

In csh: % setenv PATH “tidypath $PATH"
In Bourne-like shells: $ export PATH="tidypath $PATH"

I tried to write tidypath as a shell scrlpt but after ten minutes could not get the right combination of commands and
so gave in and wrote it in C. I imagine there is a 5 line equivalent in perl, but I don't have a week to find, install and
learn perl.

/**tt**‘k*\0(**********************itttt*t**************ﬁ******tt******t/

/* t/
/* tidypath.c - tidy up a long $PATH. */
/* */
/* Usage: csh: % setenv PATH "tidypath $PATH® */
/* sh, ksh: $ export PATH="tidypath $PATH’ */
/* */
/* Copyright (c¢) 1998 David Purdue <David.Purdue@computer.org> */
/* */

/*****************t**********t*****************t******tt************t/

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

main(int argc, char *argvl(])
(
char **final_path, *path_ptr, *end_dir;
int num_colons, i, j, num_dirs, dir_length, found;

/* Count the number of colons in the path. */

num_colons = 0;
path_ptr = index(argv(l], ':');

42 AUUGN: The Journal of AUUG Inc.

while (path_ptr != NULL)

(

num_colons++;

path_ptr++;

path_ptr = index(path_ptr, ':');

/* There will never be more directories out than in. */

final_path = (char **)calloc{num_colons + 1, sizeof(char *));
path_ptr = argv(l];
num_dirs = 0;

/* Load up the path. */
while (path_ptr != NULL)

{
end_dir = index(path_ptr, ':'});

if (end_dir == NULL)

{
dir_length = strlen(path_ptr);
}
else
(
dir_length = end_dir - path_ptr;
}
found = 0;
for (j = 0; j < num_dirs; j++)
{
if (strncmp(path_ptr, final_path{j], dir_length) ==
{
found = 1;
break;
}
}
if (found == 0)
(
final_path[num_dirs] = malloc(dir_length + 1);
strncpy(final_path(num_dirs], path_ptr, dir_length);
final_path(num_dirs]) [dir_length] = '\0';
num_dirs++;
}

if (end_dir == NULL)
(
path_ptr = NULL;
}
else
{

end_dir++;
path_ptr = end_dir;

}

/* Write out the path. */
for (i = 0; i < (num_dirs - 1); i++)
{

printf("%s:*, final_path(i])};

}
printf(“%s\n", final_path(num_dirs - 1]);

/* Clean & Go. */
for (i=0; i < num_dirs; i++)
{
free(final_path(i]);
}
free(final_path);
exit(0);
} /* main() */

February 1998

CoNTINUOUS PS

From: Matthew Dawson <dawson.matthew.ms @bhp.com.au>

Occasionally I need to keep track of what processes are starting up/shutting down on a UNIX system, usually when
monitoring or testing new applications that have been installed on a machine. This is especially useful when trying
to determine whether applications which spawn child processes are behaving as expected.

I initially tried using plain old ps, but the time taken to type the command and interpret its output caused me to miss
certain vital events. So I wrote the following script - contps - to do the job for me. One word of warning; this script
was developed under AIX, and as such will require modification to run on some UNIX variants.

#!/bin/sh
contps (Continuous ps)

Shows processes as they start/stop. Use CTRL-C to exit.

Usage:
contps [-i n] [-g string] [-h|-?]

where
-in n is the number of seconds between ps checks
-g string string will be used to grep the ps output
-h|-? Displays usage information

H o kAR 3k 3k 3k ok 3k 3

Copyright (c) 1998 Matthew Dawson <mattd@auug.org.au>

TMPDIR=/tmp # Temporary file directory
sleepsecs=1 # Default ps interval

oldpsfile="$TMPDIR/psold$s$.log" # Previous Processes
newpsfile="$TMPDIR/ps$S$. log" # Current Processes
tempfile="$TMPDIR/psdiff$$.log" # Temporary File

Cleanup resources on exit
trap "rm -f $oldpsfile; rm -f $newpsfile; rm -f $tempfile; exit 0" 1 2 3 15

touch Soldpsfile # Ensures diff will have two files to check.
while [“S$#” -ne “0") # Process shell script options
do
case "$1" in
-i) shift # Set the number of seconds between ps checks
sleepsecs="$1"
shift
continue;;
-g) shift # Only check for certain processes
greptext="§1"
shift
continue;;
-h{-?) echo “Usage: contps [-i n] [-g string] [-h|-?]
-in n is the number of seconds between ps checks
-g string string will be used to grep the ps output
-h|-? Displays usage information”
exit 0;;
*) echo "'$1' is an invalid option."
shift;;
esac
done
echo "Added? PID PPID User Command*"
echo "====== === ==== ==== EF Y E T
while [1] # Continue checking until CTRL-C is pressed
do
Gets the details for all running processes (excluding this script’s).
ps -ef -F" %P %p %U %a" | grep -v "$$" > $newpsfile
if [-n "S$greptext"] # Only check for processes containing this string.
then

grep "$Sgreptext" $newpsfile > $tempfile
mv $tempfile $newpsfile
£i

Checks for added/deleted processes, and shows whether they were added.

diff $newpsfile $oldpsfile | tr '<>' 'YN' > $tempfile
no_lines="cat $tempfile | we -1 | tr -d * '°

44 AUUGN: The Journal of AUUG Inc.

if ["$no_lines" -ne "0"] # If the number of processes changed, show them.
then

tail -‘expr $no_lines - 1
fi

.

Stempfile

mv $newpsfile $oldpsfile
sleep $sleepsecs
done

*,
0

BIGTAIL
From: Graham Jenkins <Graham.K.Jenkins @ corpmail. telstra.com.au>
How many times have you been caught trying to do something like:

tail -1000 /var/adm/messages | pg

and discovered that the standard version of 'tail' won't give you as many lines as you require?

The attached 'bigtail' script provides a solution. If input is being taken from a file, it uses 'sed' to return the lines
which are required. Otherwise, it uses 'nawk' to collect the required lines into a circular buffer as they arrive.
Depending on your system, you may need to change 'nawk' to 'awk' and/or change the way in which the value of the

'Lines' variable is fed to it.

#!/bin/sh

bigtail Enables 'tail -1000' etc. operations on standard input or
file. Graham Jenkins, IBM GSA, January 1998.

#

Last revised: 980203

Lines="-10" # Default

case X"$1" in
X-{0-9)*) Lines=$1
shift ;;
X-*) echo "Usage: ‘basename $0° [-lines) (filename]" >&2
exit 2;;
esac

case $# in
1) We="we -1 < $1° || exit 2
Start="expr $Wc + $Lines + 1°
(N 8?2 1= 0\) -a \N(8?2 !=11\)] && exit 2
[$Start -1t 1] && Start=1
sed -n "$Start,\$ p" $1 || exit 2
exit 0 ;;

0) nawk 'BEGIN{ j = 1
while (j == 1) (j = getline a(n$Lines]; n = NR}
}
END { if(j < 0) exit 1
Start=NR-Lines+2
if(Start < 1) Start = 1
for (j=Start;j<=NR;j++) print a((j-1)%Lines]
}' Lines=‘expr 1 - $Lines’ && exit 0
echo "Memory overflow! Retry with a smaller number of lines, ">&2

echo "else use: ‘basename $0' -lines filename" >&2
exit 2 ;;

*) echo "Usage: ‘basename $0° ([-lines] [filename]" >&2
exit 2 ;;

esac

°
.

February 1998

45

Notification of
Change

o

UNIX®AND OPEN SYSTEMS USERS

You can help us! If you have changed your mailing address,
phone, title, or any other contact information, please keep us
updated. Complete the following information and either fax it to
the AUUG Membership Secretary on (02) 9332-4066 or post it to

AUUG Membership Secretary
P.0. Box 366

Kensington, NSW 2033
Australia

(Please allow at least 4 weeks for the change of address to take effect..)

("3 The following changes are for my personal details, member #:

D The following changes are for our Institutional Member, primary contact.
(71 The following changes are for our Institutional Member, representative 1.

("] The following changes are for our Institutional Member, representative 2.

PLease PRINT YOUR OLD CONTACT INFORMATION (OR ATTACH A MAILING LABEL): | |PLEASE PRINT YOUR NEW Contact INFORMATION:
Name/Contact: Name/Contact:
Position/Title: Position/Title:
Company: Company:
Address: Address:
Postcode Postcode
Tel: BH AH Tel: BH AH
Fax: BH AH Fax: BH AH
email address: email address:

AUUG Secretariat Use

Date:
‘nitial:
:Date processed:
:Membership #

Now my AUUG
mail will come to
my new address!

AUUG Inc is the Australian UNIX and
Open Systems User Group, providing
users with relevant and practical
information, services and education
through co-operation among users.

Technical Newsletter
AUUG’s bi-monthly
publication, keeping you
—| up to date with the
world of UNIX and
open systems.

Education

Tutorials
Workshops

Events.....Events......Events

* Annual Conference & Exhibition
* Overseas Speakers e Local Conferences
* Roadshows ¢ Monthly meetings

|
DISCOUNTS

Application for

Individual or Student Membership

Section A: PERSONAL DETAILS

Surname First Name

Title: Position

Organisation

Address

Suburb State Postcode
Telephone: Business Private

Facsimile: E-mail

Section B: MEMBERSHIP INFORMATION

Please indicate whether you require Student or Individual Membership by
ticking the appropriate box.

RENEWAL/NEW INDIVIDUAL MEMBERSHIP
Renewal/New Membership of AUUG
RENEWAL/NEW STUDENT MEMBERSHIP

Renewal/New Membership of AUUG D $25.00
(Please complete Section C)

(] $100.00

SURCHARGE FOR INTERNATIONAL AIR MAIL D $60.00

Rates valid as at 07/96

to all AUUG events and neGHOnS

education. con

Reciprocal arrangements with || ¢ NeWSg rOUp
overseas dffiliates.
aus.org.auug

Discounts with various

Section C: STUDENT MEMBER CERTIFICATION

For those applying for Student Membership, this section is required to be com-
pleted by a member of the academic staff.

| hereby certify that the applicant on this form is a full time student and that the
following details are correct.

NAME OF STUDENT:
INSTITUTION:
STUDENT NUMBER:
SIGNED:

NAME:

TITLE:

DATE:

Section F: PAYMENT

Cheques to be made payable to AUUG Inc
(Payment in Australian Dollars only)

For all overseas applications, a bank draft drawn on an Australian bank
is required. Please do not send purchase orders.

OR-
lj Please debit my credit card for A$

D Bankcard D Visa D Mastercard

Name on Card
Card Number

Expiry Date
Signature

Please mail completed form with payment to: Or Fax to:

Reply Paid 66 . AUUG Inc
AUUG Membership Secretary (02) 9332-4066
PO Box 366

KENSINGTON NSW 2033

AUSTRALIA

Section D: LOCAL CHAPTER PREFERENCE

By default your closest local chapter will receive a ﬁercentage of your member-
ship fee in support of focal activities. Should you choose to elect another chap-
ter to be the recipient please specify here:

internet service providers,

software, publications and
more...!!

Section E: MAILING LISTS

AUUG mailing lists are sometimes made avaitable to vendors. Please indicate
whether you wish your name to be included on these lists-

[:I Yes D No

Section G: AGREEMENT

I agree that this membership will be subject to rules and by-
laws of AUUG as in force from time to time, and that this mem-
bership will run from time of joining/renewal until the end of the
calendar or financial year.

Signed:
Date:
AUUG Secretariat Use ‘
Chq: bank bsb
A/C: #
Date: $

Initial: Date Processed:
Membership#:

Application for

Institutional Membership

Section A: MEMBER DETAILS

The primary contact holds the full member votin? rights and two designated representatives will be given membership rates to AUUG
activities including chapter activities. In addition Yo the primary and two representatives, additional representatives can be included at a
rate of $70 each. Please attach a separate sheet with details of all representatives to be included with your membership.

NAME OF ORGANISATION:

Primary Contact

Surname ' - First Name
Title: Position
Address
Suburb State Postcode
Telephone: Business Facsimile
Email Local Chapter Preference
Section B: MEMBERSHIP INFORMATION. Section D: MAILING LISTS l]
Renewal/New Institutional Membership of AUUG [:I $350.00 AUUG mailing lists are sometimes made available to vendors. Please
indicate whether you wish your name to be included on these lists:

Surcharge for International Air Mail D $120.00 D Yes D No UNIX®AND OPEN SYSTEMS USERS
Additional Representatives Number |:I @ $80.00
Rates valid as at 07/96) S " E' A GREEMENT

Section C: PAYMENT ection E:

I/We agree that this membership will be subject to rules and by-laws of AUUG as
in force from time to time, and that this membership will run from time of join-
ing/renewal until the end of the calendar or financial year.

Chegques to be made payable to AUUG Inc (Payment in Australian Dollars only)

For all overseas applications, a bank draft drawn on an Australian bank is required.

I/We understand that I/we will receive two copies of the AUUG newsletter, and
Please do not send purchase orders.

may send two representatives to AUUG sponsored events at member rates,
though Il/we will have only one vote in AUUG elections, and other ballots as
_OR- required.

Signed:

Title:

D Bankcard D Visa I:I Mastercard Date:
Name on Card AUUG Secretariat Use
Card Number

D Please debit my credit card for A$,

AUUG Inc Secretariat
PO Box 366, Kensington NSW 2033, Australia

: Tel: (02) 9361 5994

Expiry Date Free Call: 1800 625 655

Signature Chq: bank bsb Fax: (02) 9332 4066

Please mail completed form with payment to: Or Fax to: A/C: # email: auug@auug.org.au

Reply Paid 66 AUUG Inc Date: 5 ACN A00 166 36N (incorporated in Victoria)
AUUG Membership Secretary (02) 9332-4066 Initial: Date Processed:

PO Box 366

KENSINGTON NSW 2033 Membership#: htt P [lwww. a uug.org.au

