
The Journal of AUUG Inc.
Volume 23 ¯ Number 3

October 2002

Features:

Dynamically Tune up a File System 12
SGI Shatters World Performance Record 14
Book Review: Multitool Linux: Practical Uses for O~pen
Source Software 15
Advocacy for Open Source in Government 16
Multi-Account Email with mutt 18
Amanda CD-RW Taper 19
Dynamically Expand a File-system to a Single Stripe
instead of to Several Concatenated Stripes 20
How to Install SuSE Linux 8 on your Xbox 21
Chrooting all Services in Linux 23
Avoiding Security Holes when Developing an
Application - Part 5: Race Conditions 28
Kerberos: The Watchdog of the Ether 34
Process Tracing using Ptrace 37
Exploring Perl Modules - Part 1: On-The-Fly-Graphics
with GD 40
An Introduction to GNU Privacy Guard 46
Commentary: Why Linux will Conquer the World 56

News:

Public Notices
AUUG: Corporate Members
AUUG: Chapter Meetings and Contact Details

8
12
63

Regulars:

President’s Column
/var/spool/mail/auugn
My Home Network
AUUGN Book Reviews

3
4
8

10

ISSN 1035-7521 Print post approved by Australia Post - PP2391500002

AUUG Membership and General Correspondence
The AUUG Secretary
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153
Telephone: 02 8824 951t
or 1800 625 655 (Toll-Free)
Facsimile: 02 8824 9522
Emaih auug@auug.org.au

AUUG Management Committee
Email: auugexec~auug.org.au

President
Greg Lehey
PO Box 460
Echunga, SA, 5153
Bus. Tel (08) 8388 8286, Mobile 0418 838 708, Fax (08) 8388 8725
<Greg.Lehey@auug.org.au>

Immediate Past President
David Purdue
Sun Microsystems
Level 6, 476 St Kilda Road
Melbourne, Victoria, 3004
Phone: +61 3 9869 6412, Fax: +61 3 9869 6288
<David.Purdue@auu~.or~q.au>

Vice-president
Malcolm Caldwell
Bus. Tel (08) 8946 6631, Fax (08) 8946 6630
<Malcolm.Caldwell@ntu.edu.au>

Secretary
David Bullock
0402 90t 228
<David.Bullock@auug.org.au>

Treasurer
Gordon Hubbard
Custom Technology Australia Pry Ltd
Level 22, 259 George Street, Sydney NSW 2000
Bus Tel: 02 9659 9590, Bus Fax: 02 9659 9510
<Gordon.Hubbard@auug0org.au>

Committee Members
Sarah Bolderoff
FourSticks
Suite 2, 259 Glen Osmond Rd,
Frewville, South Australia, 5065
<Sarah.Bolderoff@auug.org.au>

Adrian Close
Mobile: +6t 412 385 20t, <adrian@auug.or~l.au>

Stephen Rothwell
IBM Australia, Linux Technology Center
8 Brisbane Ave, Barton ACT 2600
Business phone: 02 62121169
<Stephen.RothwellL~auug.org.au>

Andrew Rutherford
lagu Networks, 244 Pirie St
Adelaide, SA, 5000
Bus. Tel (08) 8425 220t, Bus. Fax (08) 8425 2299
<Andrew.Rutherford@au ug.org.au>

Mark White
apviva technology partners
P. O. Box 1870, Toowong QLD 4066
Bus Tel 07 3876 8779, Mobile 04 3890 0880
<Mark.White@.auug.or.q.au>

AUUG Business Manager
Elizabeth Carroll
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153
<busmgr(~auug.org.au>

Editorial
Con Zymaris
auugn@auug.org.au

I’m noticing a trend, and I don’t think I’m the only
one. The trend I’m seeing is the grass-roots re-
energisation of the world of Unix, the world of open
computing platforms and the world of AUUG. These
three are fully, inexorably integrated. When one rises,
they all rise. The catalyst which is causal and
inspiration to this rise is open source software, in
both methodology and philosophy. K’s this
renaissance of AUUG, which is my focus today.
Renaissance. A word which means rebirth in Latin by
way of simple translation, but which conveys much
much more. Here’s how it comes to mean what we
understand of it today.

In the 64 Century, the Byzantine emperor Justinian
ordered the closure of the Academy (nee Plato’s) in
Athens, as it was considered to be a pagan remnant.
This, and the contemporaneous burning of the Great
Library of Alexandria, and the evisceration of its last
librarian, Hypatia, bought about what we colloquially
know as the Dark Ages. Inspiration, methodology and
philosophy were lost to the western world for almost a
a thousand., but thankfially not to the Arab world.

Ancient Greek knowledge, garnered from translated
Arabic texts, stored in libraries in Islamic Spain in the
124 century precipitated a rebirth; an explosion of
scholastic and academic knowledge in western and
southern Europe: the Renaissance, from which flowed
the Enlightenment and political and social reforms,
the formulation of the modern scientific method and
our world as we Imow it.

These epochal changes flowed from the ideas and
tenets of the ancients, to become the inspiration,
methodology and philosophy of the modern world.
Old, solid principles which had examined,
c6iitemplated and sometimes resolved many a
complex problem, were worth re-introducing, to help
avoid the often painful task of knowledge acquisition
from first principles. The results, as we all know, were
breathtaking.

The conceptual bit-mask of the Dark Ages may also be
applied to our industry. I see AUUG fulfilling a
spiritually equivalent role with respect to the re-
introduction of the ideas, tenets and principles. Many
or most of the problems and issues (technical, ethical
and social) wrought by complex, vastly inter-
connected computing systems, have been examined,
contemplated and sometimes resolved by the people
who constitute AUUG and its sister organisations. We
were there. We have done this. We can do this again.
Let’s seize this renaissance of advanced computing
systems based on Unix, and let us help the IT world
by shedding light on how best to move forward. Let us
accept this challenge and regain full relevance to both
the advanced technical realm and also the popular.
Let’s teach to the world to Carpe Unix!

Cheers, Con

AUUGN Vol.23 ¯ No.3 1 - October 2002

Contribution
Deadlines for AUUGN
in 2002

Volume 23 o Number 4- December 2002:
15th, 2002

Volume 24 o Number 1 - February 2003:
2003

November

March 15~,

AUUG Incorporated grateffflly acknowledges
the support of its corporate sponsor:

AUUGN Editorial Committee

The AUUGN Editorial Committee can be reached by sending email to:
auu~n@auuK.or~.au

Or to the following address:
AUUG Inc
PO Box 707t
Baulkham Hills BC NSW 2153

Editor:
Con Zymaris

Sub-Editors:
Frank Crawford, Mark White

Contributors:
This issue would not have happened without the transcription and
editorial efforts of Gary R. Schmidt" <~qrschmidt~acm.org>, Rik Harris
<rik@,kawa]a.net>, Raymond Smith <zzrasmit@uqconnect.net>, David
Lloyd <lloy0076@adam.com.au>,

Public Relations and Marketing:
Elizabeth Carroll

AUUGN Submission Guidelines

Submission guidelines for AUUGN contributions can be obtained from
the AUUG World Wide Web site at:

www.auug.org.au

Alternately, send email to the above correspondence address,
requesting a copy.

AUUGN Back Issues

A variety of back issues of AUUGN are still available. For price and
availability please contact the AUUG Secretariat, or write to:
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2t53

Conference Proceedings
A limited number of copies of the Conference Proceedings from
previous AUUG Conferences are still available. Conthct the AUUG
Secretariat for details.

Mailing Lists

Enquiries regarding the purchase of the AUUGN mailing list should be
directed to the AUUG Secretariat.

Disclaimer

Opinions expressed by the authors and reviewers are not necessarily
those of AUUG Inc., its Journal, or its editorial committee.

Copyright Information

Copyright © 2002 AUUG Inc.

All rights reserved. Portions © by their respective authors, and released
under specified licences.

AUUGN is the journal of AUUG Inc., an organisation with the aim of
promoting knowledge and understanding of Open Systems, including,
but not restricted to, the UNIX© operating system, user interfaces,
graphics, networking, programming and development environments and
related standards.

Copyright without fee is permitted, provided that copies are made
without modification, and are not made or distributed for commercial
advantage.

AUUGN Vo1.23 * No.3 - 2 - October 2002

President’s Column
Greg Lehey <Gre.q.Lehev~,auuff.or.q.au>

change, n. [a. AF. chaunge, OF. change (=
Pr. camge, camje, Sp. cange):- late L.
cambi-um exchange (Laws of Lombards),
f. cambire, to change.] 1. a. The act or
fact of changing; substitution of one
thing for another; succession of one
thing in place of another. 11. Sc. An ale-
house; = change-house. --Oxford Eru31ish
Dictionary

We’re certainly living in an era of change, and AUUG
has not been excepted. When I joined AUUG a little
over two years ago, I had little intention of taking a
serious part in its org .ar~ization. Now I’m reminded of
a saying we had at university: "Too years ago I didn’t
know how to spel presadent, and now I are one".

It’s not an easy office to slip into. I spent one year as
an ordinary committee member and another as
secretary, but I was still unprepared for the office of
president, as some of you may have noted at the
annual conference. It certainly makes me appreciate
my predecessors, and I’d like to thank them all for
their support. I’d particularly like to thank David
Purdue, the immediate past president, for still being
there to help me find my way.

In the last few years things have changed a lot. Some
things have deteriorated: chapter activity has
declined, and so have membership numbers. I
suspect there’s a strong correlation there. Other
things have got better: we now have strong corporate
sponsors, IBM and Sun, and we’ve just had one of the
most successful annual conferences in years, with a
25% increase in delegates over the previous year--and
that in one of the most dismal economic climates I
can recall. In addition, membership involvement is
increasing. We’ve had the first election to the Board
of Directors that either Liz Carroll or I can remember.

Oh yes, the "Board of Directors". We used to call it
the executive committee, but it’s really Liz, our
business manager, who does all the work, so we
thought that the name change made sense.

There are other signs that things are looking up:
recently the National Office of the Information
Economy (http://www.noie.gov.au/) recognized our
position as Australia’s foremost UNIX and Open
Source organization and asked us to help them in
their evaluation of Open Source software for use in
government departments. At the time of writing we
don’t have too much to report, but that will change in
the course of the next few months.

In addition, happenings in South Australia show that
the decline of the chapters isn’t inevitable. The SA
chapter closed down about seven years ago, but it
was revived in April 2001, and it is now very active.

Things don’t stop here, of course. Where are we
going?. There are a number of changes in the

industry which have to affect AUUG.

Most notably, of course, there’s "Open Source". Or is
that Open Systems? Or Open Computing?. Or Open
Standards? Or just plain Free Software? The Board
has discussed the terminology at length and we’re
still far from agreeing. Anyway, we’re moving towards
less proprietary solutions. Ten years ago, AUUG was
a stronghold of proprietary UNIX. Nowadays you
almost have to look for peoplewho use any
proprietary UNIX except for Solaris.The majority of
the system-related papers at this year’s conference
were about Linux, followed by BSD (including Apple’s
MacOS X). Even the vendors of proprietary UNIX are
jumping on the bandwagon, including both of our
corporate sponsors.

This development has caused a lot of introspection on
the board. Linux users already have their own very
active organizations, and there are also a number of
BSD groups round the country. The Linux users run
their own very successful conference every summer,
the linux.conf.au. One of the things we’ve asked in
public is: "’is AUUG still relevant?".

Obviously I think we are. Linux is certainly not a
passing fad: it’s showing the way to the future of
UNIX. But we’ve been in situations like these before,
and we found it necessary to have a significant
organization. Many of the Linux groups are proud of
not having such an organization, and this is almost
certainly the reason why we, and not the Linux
groups, are representing Open Source to the NOIE.

Still, we have an issue with our relationships with the
Linux communities. Effectively, they are us. My
experience with LinuxSA shows them to be very much
the same group of people who frequent the AUUG SA
chapter, and many of them are more interested in
BSD than in Linux. One of the challenges facing the
Board in the coming year is to fred better ways of
cooperating with the Linux community. This is
probably the key to our membership problems. They
have a big advantage over AUUG: they don’t have any
membership fees. On the other hand, they don’t have
a number of our membership benefits either, in
particular AUUGN. Is that enough? Do we need
more membership benefits? If you have any ideas,
please let us know (auugexec@auug.org.au).

Part of the problem is the question of our identity:
who are we? On our web site we have two statements
of our aims. The constitution says:

To promote knowledge and understanding of Open
Systems including but not restricted to the UNIX
system, networking, graphics, user interfaces and
programming and development environments, and
related standards.

There’s that "Open Systems" word again. We also
have another statement, from Michael Paddon:

A bunch of people who gather together to talk about the
cool stuff they’re doing - preferably over a been

So who are we really?. I get asked that question a lot,
and I haven’t come up with a really good answer. A

AUUGN Vol.23 ® No.3 - 3 - October 2002

starting point might be to think of ourselves as a
technically savvy group of professionals. Some of us
may wear suits, but we’re not IT bureaucrats. We
may hack code for the fun of it, but most of us aren’t
just hobbyists. That doesn’t mean we exclude people
from either the IT management scene or the pure
hobbyists--we have quite a number of members who
fit each description--but those are not our core
interests. Our members are some of the cleverest
UNIX technical people anywhere in the world. Let’s
keep it that way.

/var/spool/mail/auugn
Editor: Con Zymaris <auugn@auug.org.au>

The mail keeps on coming, and it’s becoming
increasingly pertinent and useful. I found one of the
compositions so useful and interesting, that I thought
I’d include it here, in toto. Remember, to join the
forum-of-ideas, talk to the mai!marc
http: //www.auug.org.au/mailman/listinfo/talk

From: Steve Jenkin <sjenkin@pcug.org.au>
Subject: SIIMMARY Package building software
Many thanks to all those who replied. Credits listed
below, then
summary, then original post...

No replies were received for HP-UX. Here are some
old links I already had, no idea of their current
state/usefulness.
http: //www.yacc. com. au/hp.html YACC’s HP-UX
Resource List
http://hpux.ee.ualberta.ca/ Software Porting &
Archive Centre for HP-UX

No replies for any of the other Sys V.2 derivaties, SCO
or FSF/Tru64.

The closest thing to what I wanted was ’pkgsrc’ [from
NetBSD] that can package for Solaris & others,
besides NetBSD.

Steve Landers, as always, had a very interesting &
provocative viewpoint.

For applications, developers should just be delivering
a _single_ file. In Tcl/Tk there is a module that allows
a local ’loopback’ mount of a file [the distribution],
combine this with a ’stub’ Tcl executable & you have
a very powerful way to deliver complete applications
without suffering many of the usual problems...
Steve even has a way to distribute a single CD
containing both Mac & Windows and it ’Just Works’
(tm?) The technique is portable to other [scripting]
environments, not looked to see it has been done. I
don’t see this technique as generally applicable to the
’systems’ space where most of us play...

Hope this is useful.
SteveJ Wed 9-Oct-2002

Ben Elliston - autoconf/automake/libtool
Brad Marshall - Debian (.deb files)
Edwin Groothuis - FreeBSD ’ports’
grant beattie - NetBSD & ’pkgsrc’
Gregory Bond - FreeBSD ’ports’
Jason Thomas - Debian
Lee Sanders - Win (.MSI)
Paul Armstrong - Linux variants
Peter Nixon - Where to load a page...
Rob Kearey - Red Hat & rpm’s
Scott Howard - doco on Solaris Packaging
Joe SHEVLAND - FreeBSD ’ports’
Steve Landers - Tcl/Tk + MacOS (.app file trees)
Zebee Johnstone - rpm

Ben Elliston
Autoconf isn’t the package for packaging. If anything,
it would be Automake. You might want to check the
Automake mailing list archives.

As it happens, Tom Tromey and I are working on a
new tool to eliminate autoconf/automake and libtool.

Brad Marshall
Debian uses .deb as the packaging format. Useful
links are:-
http: //www. debian, org/doc)maint-guide/ for the
New Maintainers Guide,
http: //www. debian, org/doc/developers-reference/for
the Developers Reference, and
http://www.debian.org/devel/ for general developer
related stuff.

Edwin Groothuis
http://www, freebsd, org/doc/en_US.ISO8859-
1/books/handbook/ports.html
http://www.freebsd.org/doc/en_US.ISO8859-
1/books/porters-handbook/

[building using ports] Was a piece of cake. For
example, have a look at the Makefile in
h ttp : / / www.freebsd, org/ c~l / CVsweb. cgi / ports /net / dh
cpdump/

The most difficult part of making a FreeBSD port is
the first port you make. All looks new, all looks
difficult etc. But once you’ve completed your first you
will never fred it difficult again :-)

Oh euh, if you’re doing this for a company, I would
like to offer myskills in FreeBSD porting:
http: //k7.mavetju/unix/freebsd.php
Enough experience ;-)

[[And a good demonstration]]
This is only for the port, which is used to make the
package. If you have read the ULRs you know the
difference between ports and packages.

The makefile tells where to find the port (master_sites)
and the name of the tarball (portname + version +
extension which is defaulted to tar.gz). It has the list
of man-pages in it (so they will be compressed and

AUUGN Vol.23, No.3 - 4 - October 2002

stored as cat-files too)

grant beattie
NetBSD’s pkgsrc currently support NetBSD, Linux,
Solaris and Darwin, with HP/UX and other support in
progress.

I use it regularly on NetBSD and Solaris, it is far
superior to the Solaris native package system, and it
WORKS.

http: //www.netbsd.org/Documentation/software/pac
kages.html

and further information on using pkgsrc on non-
NetBSD systems:

http: //www.netbsd. org/zoularis /

It also has support for building native Solaris style
binary packages which can then be installed with the
usual pkgadd tools.

pkgsrc itself has support for building binary
packages, as well as including a digital signature
(from gpg).

Dependancies are automatically handled, which is
great when you have a package with a lot of
dependancies (intnm, mozilla, or mplayer for example)
:-)

Its primary development platform is obviously
NetBSD. It was originally based on the FreeBSD Ports
collection, but has since been significantly expanded
and multi-platform support is growing quickly.

It can also be used to install binary distributed
software, such as Netscape 7 for Linux. It is certainly
good to know that everything in /usr/pkg (or
whatever LOCALBASE you use) is registered as
belonging to a package.

Gregory Bond
FreeBSD (And I think NetBSD and OpenBSD) use a
"ports" structure to build stuff from source, with the
option of building a binary "package". See

http: //www.freebsd. or~/doc/en_US.ISO8859-
1/books/handbook/ports.html

for an overview.

Have I built a port for something not already in the
ports tree? Sure, several. It can take ages if you are
porting a large and difficult program, but that is true
no matter how you package up the results.

Jason Thomas
debian has dpkg (which is the same thing as the rpm
command - with different options) to install packages.
apt-get is used to automate downloading and
installing/updating packages from debian

ftp/http/rsync servers.

there is a tool called ’alien’ which will convert from
debs to rpms to tarballs to unpacked debs/rpms/etc.
This is available on redhat and debian, i think.

http: //p ackages, debian, org/unstable/base / dpkg. htm
1 - not really helpful

http://www.advogato.org/proj/dpkg/- this one is old

http: //www. kitenet, net/programs / alien /

[and attached 2 man pages, not included here...]

Lee Sanders
For windows your package format is MSI. Many
different ones, I would recolimlend
’5rCise for Windows 4" or "Installshield Admin Studio"

We use Wise for Windows and have all the software
used in the university environment packaged. Takes
us less than 10 mins to install/setup the software for
a machine.

Paul Armstrong
Debian uses deb packages.
Apt-get is simply a frontend for package management.
dpkg is the main suite of programs for working with
(including building) packages.

Package system works wonderfully. Dependencies are
checked fully on install and the package supplying
the required item is listed.

> Are there any other Linux package variants?

Slackware uses tarballs. Gentoo uses a FreeBSD like
build system.

FreeBSD uses tarballs with added information (a bit
like Solaris). The main way of adding non-system
software is through the ports system. This allows you
to build the software from source and it installs it as
a registered package so you can modify it as requried.
The core operating system is not packaged at all. It is
built from
source from which you can select not to build certain
sections via
make.conf.

Rob Kearey

[Building rpms] Fairly straightforward, really. You can
just use a skeleton spec file and flesh it out. It’s
generally just a matter of making a buildroot,
autoconfig with patches, build and go, just as an
example.

Also depends on what you mean by helper scripts.
rpm support %pre and %post directives for scripts to
be run before and after installation.

[On problems making packages] Well, not quite. You
still need to do a filelist, &c, but you can generally do
that via a src.rpm. It’s important to keep in mind the
difference between a src.rpm and the binary rpms it

AUUGN Vol.23 o No.3 - 5 - October 2002

generates. For example:

foo- 1.2.src.rpm

rpmbufld --rebuild foo- 1.2. src.rpm

might generate

foo- 1.2.i386.rpm
foo- 1.2-devel.i386.rpm
foo-utils- 1.2.i386.rpm

Typically, for a src.rpm, you have a tarball, and a list
of patches. Rpm will unpack the source, apply
patches, do an autoconfig (for example), apply post-
patches if needed, build, make md5sums, and
package up according to the spec file. rpm does
however have helper apps to make buildroots, that
kind of thing.

Any kind of packaging soon becomes a black art,
really, rpm is very good at it, though :)

http://www.rpm.org.

Note that rpm has been revamped substantially for
rpm 4.1.

Scott Howard
Not exactly what you’re looking for, but..
http: //www.docbert.org/Solaris/Pkg/

I really need to html’ize it one day...

Joe SHEVLAND
I’m sure someone will go into it in more detail, but in
brief FreeBSD uses the Ports system to distribute
application packages, which can have dependancies
on other packages. The ports system will pull down
the relevant source packages from a master site (with
configurable alternatives), rebuild the software,
branch off and build other dependancies and return
to the original build, and finally register the package
in a package database (and potentially a lot more
features that I don’t use, can’t recall at the moment,
or don’t understand ;)

http: //www.freebsd. org/ports/

is a good official starting point for further information
on the system.

But no, I haven’t ever rolled my own port

Steve Landers
I don’t know if this is exactly what you are looking for,
but you might fmd http: //www. digital-
smarties.com/Tcl2002/tclkit.pdf interesting. I
presented this paper 2 weeks ago at the 9th Annual
Tcl/Tk conference in Vancouver.

Re other OS’s doing packages - MacOS X has a really
neat facility whereby an entire directory tree becomes
an application. Sort of like a package, except that you
don’t need to "install" just copy your disk. >From
memory they are called .app bundles or something
similar.

Autoconf is, IMNSHO, part of the problem not part of
the solution. Read my paper and you’ll see why.

But, in summary, why should application developers
care about all that gumph - it should be hidden.

>Is the problem a 30-yo paradigm of ’C’ programs and
re-inventing the wheel [vs

+building on what has gone before]??

I suspect the problem is system administrators
thinking they are
software engineers or computing scientists ;-)

I would argue the set of skills needed to be a good
system admin is
almost tangential to the set of skills needed to be a
good computing
scientist. RPM (et al) is a system admin solution to a
problem that
perhaps should be avoided altogether.

Zebee Johnstone

I use redhat to package stuff.

Basically you need a version of rpm on the build
machine and the machine to install on.

You tar up the source, which can be either something
to be configged and compiled or else a bunch of files.
You write a SPEC file, which has pre and post install
shellscript ability, including the ability to run scripts
that are in your source. This SPEC file tells the rpm
program how to get the files to package, and what to
do with the files when installed.

You give the SPEC file config and install commands,
and a list of files that will be in the final RPM. when
you create the RPM it performs what config, compile,
and install commands you have given it, then it gets
the fries you tell it to package, and packages them.

you can have several sub-packages, I have 4
colocated servers that require the same apache virtual
sites, but have different IP addresses and marl
requirements and so on, but the same file suffices for
logrotation and other scripts. So each virtual server
has one SPEC
file, with some fries in the source the same and some
individual ones for each colo. The SPEC file has a
section for each colo, that runs the colo-specific
scripts, and packages the files for each colo. It
produces 4 different RPMs, but I only have to change
things in one file and one source tarball.

I find it useful - decent version control, easy central
configuration that can deal with some files on each
machine being the same as other machines, and some
files are different, plus it can do anything a shellscript
call.

see http://www.rpm.org it has a documentation link
that has good explanations.

AUUGN Vol.23 ¯ No.3 -6- October 2002

Original Post:

I’m looking for software to build ’packages’ on
different Operating Systems - good/bad comments on
them also solicited. Replies to me & I will summarise
within a week or so - could you please indicate in
your replies if I CANNOT include all/part of the reply
in the summary. I expect to cut/paste the whole of
received replies. [And I’d like to make a short ’white
paper’ from this as well. Any ideas on where it could
be loaded?]

- and feel free to share relevant experiences with the
whole list :-)

Redhat et al use ’rpm’ format & the rpm command
can build packages. -I’ve never tried to build a
package in RPM and don’t know ff it needs ’helper’
scripts or not.

Debian - haven’t got a clue ;-) Know there is
something like ’appt-get’ & ’.deb’ files,

Are there any other Linux package variants?

NetBSD/FreeBSD/OpenBSD:
Don’t know anything about them.
Wasabi crew can (&will)
give me a good rundown :-) TIA

I’m sure the

http://www.bullfreeware.com/
Bull’s Large Freeware and Shareware Archive for AIX

Have used the package builder on this site - works
f’me. Simple, easy - highly recommended.

Solaris:
Have used a ’home-brew’ system from IP Australia
that bttilt on the standard Solaris commands. Yes,
you can hand-build Solaris packages, BUT some
helper scripts [that auto generate the directory
structures, config files and other proto-files] it really
becomes a breeze. Anyone seen a public domain
Solaris ’package builder’?

Have a friend at DFAT who builds HP-UX packages.
Don’t know how hard it was, or what sort of ’helper’
scripts he needed.

Other O/S:
Do other O/S even ’do’ packages??
NT has ’Service Packs’ - but these seem to be the
equivalent to ’tarballs’ - no pkglist, remove/rollback
or central inventory. I’ve been told that SMS has
something like packages, but I’ve never seen it in
action or heard more.

Other OSes?? MVS, VMS, do we care??

To: talk auug <talk@auug.org.au>
From: Michael Paddon <michael@paddon.org>
Subject: AUUG - not just
Linux[BSD /Apple [Vendor group

Steve Jenkin writes:
It is ’Unix’ specific, but not Oust) Sys Admin,
programming, interconnecting, metrics, performance,
..... and_ it makes us ’_the_ place to meet peers when
you earn your livlihood from Unix"

The trick is to find a tag that describes us well
(ubergeekspace) but avoids unfortunate legalities or
associations.

Upon reflection, there are several words that can
describe us (at least broadly)" open, interoperate,
technology, professional, enthusiasts, etc.

There axe words and phrases I think we should avoid
due to excess baggage: unix, linux, internet,
enterprise, open system, open source, etc. The~se are
not bad terms, just potentially seK limiting in various
ways.

As a tag, therefore, I tend to like something along the
lines of."
Open Computing Technology for Professionals and
Enthusiasts

Of course, an infmite number of tag lines with
different emphasis are possible. The key is to find a
way to describe ourselves to the world in general (and
prospective members in particular) that sums up our
raison d’etre. This description shouldbe as
extroverted and inclusive as possible.

Michael

Other Unixcs:
SCO, Digital Tru64 (FSF}, SysV.2 & V.4 variants..

AUUGN Vol.23 * No.3 - 7 - October 2002

Public Notices
Upcoming Conferences & Events

LISA ’02
16th Systems Administration Conference
November 3-8
Philadelphia, PA

~ 2002
Internet Measurement Workshop 2002
November 6-8
France

OSDI ’02
5th Symposium on Operating Systems Design and
Implementation
December 9-11
Boston, MA

DA TA SAFE

idea in network backup, that
do this? DATASAFE

servers daily.
through your

=s completely
.,d tape or

480GB Unif.: $P.O.A (inclusive of GST; unlimited users, unlimited servers)
Can provide 1-3 months of online daily-backups for a large organisation

Web: http:llwww.cyber.com.aulcyberlproductldatasafel
Mail: info@cyber.com.au

My Home Network
(October 2002)
By: Frank Crawford <frank@,crawford.emu.id.au>

It is strange how a little annoyance can lead to big
change in an environment. In this case, my main
server, bits, started to make a lot of noise, which
turned out to the fan in the power supply. This
system was made up of all the bits and pieces I’d
collected over the years, in particular, the case from
my first computer, circa 1987. It is amazing to think
that a power supply can still be used after 15 years.
Unfortunately, power supply technology has changed
over the years, so there is no way I could fred a
replacement power supply, or a new one that would
fit in the old case.

Now, I had been expecting this for some time, and one
of my previous upgrades to the system was to install
a motherboard which supported both AT and ATX
power supplies. So, my first plan was to purchase a
new case and ATX power supply. Technically this
should work, and in practice it sort of did. The one
thing I didn’t consider is how the computer cases
have changed to match motherboards over the last
few years.

When I last upgraded ’bits’, while there were a few
extras, such as sound chips, were built-in, it was
generally by supplying pins to connect external
connectors to. Modern motherboards now have the
connectors as part of the board and modern cases
have cutouts in the box for these connectors. To
make matters slightly worse, the previous keyboard
standard was for "A~P’ style connectors (i.e. the big
plugs) but is now "PS" style connectors (i.e. the little
plugs), and the cutouts are very different. The final
difference is that modern motherboards have fewer
slots for additional cards because there are so many
things built-in to the motherboard, so I was going
from 6 slots to 4 slots in the case.

The most amazing thing about all this is that despite
all the problems, I was able to find a case that suited
and got my system back together in a fashion that
worked, although not in the nicest fashion. For
example, there were a number of cables that were
hanging out the back and I had to leave out an old
SCSI card that I no longer used. One thing that made
this easier was that the cutouts for the connectors
was a separate panel that could be changed
depending on the motherboard. By leaving this panel
off, I was able to feed lots of the cables out.

Of course, I wasn’t really happy with this, and so I
quickly made the decision that I would upgrade the
motherboard. The one that was in ’bits’ was an
unnamed brand (well, just some strange one from
Hong Kong) that supported Slot 1 cards, and
standard SDRAM SIMMS (168 pins). I had a 400MHz
Celeron processor on a conversion card for Slot 1
motherboards.

As well, it supported both AT and ATX power

AUUGN Vol. 23, No. 3 -8- October 2002

supplies, had audio and USB support on-board.

Since I was planning to upgrade this system, I
decided to look at all my systems and plan possible
upgrades for them. My current systems consisted of
either Pentium III or Celeron from around 1998/99.
They were all around 450MHz systems, with either
128MB or 256MB SDRAM. One of the systems
supported an ATX power supply, the other two
motherboards supported either AT and/or ATX power
supplies.

At this point I should say that all these systems have
been undergoing continual upgrades of such
components as disk, video cards and memory, so that
now the systems have somewhere between 20GB and
80GB disks, Matrox G550, G450 and Millennium
video cards and 128MB to 256MB SDRAM
(PC100/133). They all. have cheap NlCs supporting
10Mb Ethernet all with BNC connectors (i.e. coaxial
cable). Given the history of changes there is a
mixture of PCI and ISA cards.

Finally, I should also throw in some statistics.
Current technology has CPU performance doubling
every 1Broths, disk capacity (but not necessarily
performance) doubling every 12mths and network
bandwidth every 9mths. To this I should add some
comments once made to me, that I should only
upgrade ff the performance was double what I
currently have. Given it is nearly 3 years since I
upgraded, CPU performance should be up to 4 times,
which it is, i.e. around 2GHz. On the other hand disk
capacity should be nearly 8 times, but as I’ve been
upgrading it progressively, it isn’t as obvious. In fact,
my disk capacity has increased from around 10GB to
over 80GB, so again, I’m right on the curve. If I look
at the network performance, it is far more
problematic, as over the time it should have increased
by a factor of 16. Now, my internal bandwidth hasn’t
changed (hopefully it will soon), but my external link
has gone from 28Kbps to 512Kbps a factor of around
18! So, excluding CPU, I have been on track.

These statistics give some ball park figures for what I
need to achieve, but in addition, I want to reuse as
much of my current equipment. If possible, only
changing the CPU. Given the change in technology
over the last few years, just replacing the CPU is out
of the question, unfortunately, I soon found out how
much.

The first and obvious change was that AT power
supplies are no longer supported, hence all systems
need to become ATX based. This also implies that the
system case needs to change, as the mounting point
for the power supplies have changed, as has the
power switches.

Now going back to the upgrade for ’bits’, I made the
decision to maximise the reuse of existing memory,
etc, and reduce the cost as far as possible.
For a long time, I’ve favoured Gigabyte motherboards,
and looking on their website, http://www.giga-
byte.com, I hunted up a suitable motherboard. To
keep the costs down, I looked at slightly older
technology, going for a GA-6VEML motherboard, and

a 1.3GHz Celeron processor. This is basically
12month old technology, but the motherboard had
on-board support for 4xUSB, Audio, Video and NIC,
basically everything I had as separate cards for the
previous system.

By selecting this card, I was able to reuse my current
memory modules, and only required 1 additional NIC
(as ’bits’ needed to support two NICs). In addition, the
on-board IDE controller supports higher transfer
speeds, better audio and better video.

Of course, finding this motherboard itself was the
next issue, and again, keeping in mind the cheapest
option, I elected to go to one of the computer markets.
These markets cycles around to various locations,
usually once a month, and I was able to check the
dates via their web page,
http://www.acomputermarket.com. There should be
similar markets in your local area.

Okay, so, once this upgrade was complete (and it
went fairly smoothly), it is on to looking at my other
systems. Again, keeping prices to a minimum, and
reusing as much as possible are an important issue,
although maybe not to the extent of ’bits’.

Instead of using older technology, I need to move up
to what is current, and this brings in a much larger
number of changes. To start with, to support the
latest bus speeds, new types of memory are required,
either RAMBUS or PC1600 (or later). In addition to
support the power requirements of Pentium 4
systems, new ATX power supplies, with a rating of
300W and supporting a 12V output are required. The
latest technology also requires a new socket (Socket
478) and a Front-Side Bus (FSB) of 400MHz or now
533MHz. This last point is important, as it relates to
the maximum speed of the CPU. A FSB400 system
can only support Pentium 4 speeds up to 2.4GHz,
while the newer CPU (2.53GHz and later) require a
FSB533 system. Lastly, all my ISA bus cards have to
go, as most new systems only support PCI.

The final piece of the puzzle is the on-board
components and the layout of the connectors. In
practice, different models of motherboards have the
connectors in different orders, often this will need to
match the case you have. If you are buying a new
case, then you need to match it up with the
motherboard, but if you are upgrading, you need to
be more selective.

So, what have I decided to do? Well, to start with, I
plan to continue upgrading over a few months. I’ll
start with a motherboard that fits the current ATX
case I have, but, I will have to change the ATX power
supply to one that includes a 12V output, suitable for
Pentium 4 support.
As well, I will go for a slightly older technology, one
that supports my current memory DIMMs, so will be a
400MHz FSB, and limit the CPU to 2.4GHz. Such a
motherboard is Gigabyte’s GA-8ID533. In fact, if I’m
lucky (and as of writing this I haven’t had a chance to
check), I may be able to swap the ATX power supply
from ’bits’, with my slightly older ATX system, drop in
the new motherboard and CPU and increase the CPU

AUUGN Vol.23 ® No.3 - 9 - October 2002

performance from 450MHz to 2.4GHz, with little or no
other changes.

Of course the final step in my upgrade plans will
include the purchase of a new case, including a
suitable ATX power supply, a new FSB533
motherboard, more memory and the fastest CPU
available at the time.

On current specs that would probably be a GA-8IEXP
with a 2.53GHz Pentium 4, but I expect the new
3.02GHz Pentium 4 to be available by the time I
purchase it.

I guess the final item is, how much did all this cost
and did I really save anything over buying a whole
new machine? That is a bit difficult to really tell, as
the upgrades are progressive, and there are a number
I am yet to purchased, but the upgrade to ’bits’ cost
about $100 for the case and about $250 for the
motherboard and CPU and gave me a system that will
continue to meet my expanded needs for 2-3 years. I
expect to get away with a cost of around $500-$600
for the next round, and around $700-$1000 for the
final upgrades (including memory, case, etc). This is
a total cost of less than $2000 for three systems, that
really bring them up to state of the art, and in one
case (the last upgrade), something that is difficult to
find as a complete system at the present .time.

I should add as a closing comment, a number of my
decisions here are based on personal preferences.
They are items that have proved reliable for me over
time and that have given me good service. I’m sure
there are other combinations that would work just as
well. The upgrades I’m suggesting are something that
you should only consider if you are confident about
your own abilities, but at the same time, is a good
way to learn about what really makes up your
computer system. You get to choose every
component, and know why and how they work. As an
aside, during this process I’ve found that there have
been considerable advances in disk performance
technologies over the last few years, and getting these
to work cleanly with the new systems will give me a
tremendous improvement in my server, with nothing
more than swapping a few cables and tuning the
system. I’ve also left out how the things that will be
left over will go to improve my lowest end system and
even give me enough to build yet another low end
beast, if I am so inclined.

In a future colunm, I’ll let you know how my upgrades
go, and keep you informed of some of the other
changes that go through, for example with disks and
video. But for now let me know what you are
planning and what you think the best upgrade path
is.

AUUGN Bookreviews
Mark White <mark.white~,,auu.q.org.au>

AUUGN BOOK REVIEWS

This edition of AUUGN sees the re-introduction after a
brief hiatus of reviews of books that will be of interest
and relevance to the AUUG community. For this
issue, we present reviews of two books from O’Reilly
and Associates.

We hope to grow this section of AUUGN over the next
few issues to become a useful resource for AUUG
members. Some assistance would be great - if you
have ideas on books you would like to see reviewed,
have read a good book lately and are interested in
writing a few hundred words about it, or if you are
interested in reviewing books on a particular topic,
please drop me a line.

Thanks for this issue go to AUUGN Editor Con
Zymaris for his support, also to Woodslane in Sydney
for providing the review copies.

Mark White
AUUGN Book Review Editor-.
mark.white@auug, or~.au

FREE AS IN FREEDOM: RICHARD STALLMAN’S CRUSADE

FOR FI~E SOFTWARE.
Williams, Sam (2002): O’Reilly & Associates

Imagine for a moment you are a budding author,
backed by a traditional publishing house to write
your first book. It’s to be a biography, and all you
need to do is convince the subject to co-operate.
Sounds simple, right?

Then imagine that your subject is Richard Stallman,
who effectively finds the notion of traditional
copyrights not only wrong, but personally offensive
and indeed downright evil, and unequivocally tells
you so. Loudly.

At least you know that you’re interviewing the right
guy.

Enter O’Reilly & Associates, publishers of many
telTifically useful tomes about various open
computing topics, Linux, perl, sendmafl, DNS, UNIX
etc. ,with an offer to publish the book both in
hardcopy and online but under the author’s choice of
licenses - either the Open Publication License (OPL) or
the GNU Free Documentation License (GDFL). RMS
acquiesces, and the book is on.

Sam Williams has gone to great lengths here to cover
not only Stallman’s defining position on free software
and the achievements in this area, but also in non-
intrusively exploring the early stages of Stallman’s life
and evolution of his thoughts on the topic of software.
Covered in detail are his stints at MIT’s famed AI lab,
his founding of the Free Software Foundation, the

AUUGN Vol.23 o No.3 10 - October 2002

creation of St Ignucius, his technical achievements
(emacs, the GNU compilers) and of course his
rationale and history behind the GNU General Public
License (GPL).

Given Stallman’s propensity for debate (and vocal
disagreements!) with people about his views, it’s not
surprising to see other figures in the open source
movement pop up in the book. While not always
glowing of the legendary RMS persona (Bob Young:
’The biggest problem with Richard is that he treats
his friends worse than his enemies’), they are all but
universal in their respect of his dedication and
unwavering commitment to his beliefs.

While the contents of the book are of course available
online (see http://www.faffzflla.org) under the GFDL,
the hardcover package (somewhat of a novelty for
O’Reilly books) is well-presented and sturdy - a good
sign for an enduring work.

To Williams’ credit, he has created a good read and
quite a fair representation of one of the most visible
proponents of open source. (Sorry, I meant ’free
software’!). Free as in Freedom is well worth the time
of any open source software enthusiast with an
interest in digging a little deeper into the psyche of
one of the seminal figures of the movement.

Reviewer: Mark White
mark.white@auu~, org.au

PROGRAMMING PYTHON, 2ND EDITION.
Lutz, Mark (2002): O’Reilly & Associates

Mark Lutz’ Programming Python was the first book
published on the then new scripting language. Five
years later, the second edition is basically an entirely
new book.

With the availability of dozens of other books on
Python, the material in Programming Python has
been cut, restructured, and expanded and now
focuses on applying Python to real tasks. This is not
the book to buy ff you’re looking for a tutorial
introduction to Python, a language or library
reference, or a cookbook-style collection of sample
code. Instead, it explores the language and in
particular, the standard libraries, over a series of
major topics each divided into a handful of chapters.

The second edition has also been updated to cover
}hjthon 2.0, which includes extensions to both the
base language and the libraries not covered in the
earlier version. Still, Python continues to evolve
rapidly, and at the time of this review, 2.2.2 is about
to be released. There should be few (ff any) problems
with the example code from the book but it does not
cover newer features like iterators and generators, list
comprehensions, rich comparisons and weak
references.

The first section covers using Python for tasks for
which you might normally use a Unix shell. It works
through file and directory handling, environment
variables, streams, and text handling, before looking
at processes, threads, signals, pipes and so on.

One of the strengths of this section is its coverage of
both Unix and Windows. The Python standard
libraries are mostly portable, but as might be
expected, these sorts of system-oriented tasks see the
most difference between the ports to various
operating systems, and the issues of writing portable
code for Unix and Windows are well covered. Sadly,
MacOS (or at least OS9 and earlier) is not given the
same treatment.

Like most programming languages, Python has
support for numerous GUI toolkits. Tkinter, an
interface to TCL’s Tk widgets, is the default toolkit,
supplied with the interpreter source and available on
most platforms. The next major section gives an
overview of Tkinter programming, a tour of widget set
from Python, and then some complete example
programs: a text editor, drawing program, desktop
clock, etc.

Starting with the obligatory "Hello World!" (for the
record, 4 lines using readable syntax) it works
through layout, resizing, events and widget sub-
classing in 30 pages of dense but clear text.
Geometry management is one of the harder aspect of
Tk programming for novices, and the overview chapter
in this section does a reasonable job of explaining it
without burying the reader in details.

Network programming is the subject of the third
major section. Starting with sockets and multiplexing
I/O, it moves on to the rich support for various
Internet protocols in the standard library. Client-side
use of FTP, HTTP, news, and email protocols is
covered, resulting in a complete GUI email client.

Server-side web programming forms a large part of
this section, starting with simple CGI scripts, and
moving up to another version of the email client, this
time as a web application. Integration of database
access, web application frameworks and a brief
mention of XML processing round out the section.

The final chapters cover some loose ends: more on
database access, Python data structures, text
processing (and parsing), and integration with C and
C++. The book closes with some thoughts on
Python’s strengths and its role as a programming
language, and a couple of appendices for reference
material.

Frequent sidebars throughout the book point the
reader to more detailed coverage of relevant topics,
and expand on portability issues orhidden
complexities not addressed in the main text.

Programming Python is a difficult book to position:
neither tutorial, nor an advanced programmer’s
reference. I’d recommend it for experienced
programmers who’re able to pick up the syntax from a
quick reference, but need to reduce the learning curve
of the standard libraries, or as a second Python book
for the less experienced,following a tutorial
introduction to the language.

Areas that could use more coverage are XML

AUUGN Vol.23 * No.3 - 11 - October 2002

processing (which is the most glaring omission),
Python’s built-in testing and documentation features,
and the use of CORBA, DCOM or SOAP for writing or
integrating distributed applications.

The author, Mark Lutz, has a distinct style that fits
well with the never-too-serious Python community.
Throughout the book, footnotes help the reader
decipher the ongoing Monty Python jokes, but he
manages to balance the humour well, and it never
seems to detract from the technical material.

Reviewer: David Arnold
davida@pobox, com

Dynamically Tune up a
File Systeni
Author: Joseph Gan <ioseDh.flanLl~abs.flov.au>

Nowadays, the performance becomes a issue in terms
of the file system tuning in Solaris. Changing some of
file system’s parameters that usually will destroy the
data on the file system.

For instance, changing the cache segment block size
in the volume of a T3 requires that you delete the
existing volume; deleting volume will destroy the
data. And the volume on the T3 has to be
reinitialised, which can take a significant amount of
time for a large disk space.

And also, change the segment size of a LUN in a raid
box which needs to delete the existing LUN etc.

Even if changing the parameter of a metadevice, or re-
name a metadevice under SDS (Solstics DiskSuite)
which needs to un-mount the file system.

How to dynamically change the parameters of the file
system without destroy the data on it?

First, the file system has to be created and mounted
as one-way mirror metadevice, in the following
example, dl00 which contends dl01 as its submirror:

Next step is to create a new metadevice d102, which
must be the same size of the submirror dl01 with a
set of new parameters.

For T3, you need a spare disk volume. For the raid
box, you need a set of spare disks and so on.

Then, add the new metadevice d102 as the second
submirror to dl00, resync will automatically take
place.

After the resync has done, you have a two way
mirrors. One submirror has the old parameters, and
the other has the new parameters.

Finally, you can detach the old submirror d l01 from
dl00, and remove metadevice dl01 all together.

Now, you have got the file system with a set of new
parameters dynamically.

silicon

AUUGN Vol.23 o No.3 - 12 - October 2002

AUUG Corporate
Members
as at 1st October 2002

ac3
Accenture Australia Ltd
ADFA

Australian Centre for Remote Sensing
Australian Bureau of Statistics
Australian Defence Force Academy
Australian Industry Group
Bradken
British Aerospace Australia
Bureau of Meteorology
C.I.S.R.A.
Cape Grim B.A.P.S
Centrelink
CITEC
Corinthian Industries (Holdings) Pty Ltd
CSC Australia Pry Ltd
CSIRO Manufacturing Science and Technology
Curtin University of Technology
Cybersource Pry Ltd
Deakin University
Departlnent of Land & Water Conservation
Department of Premier & Cabinet
Energex
Everything Linux & Linux Help
Fulcrum Consulting Group
IBM Linux Technology Centre
ING
Land and Property Information, NSW
LPINSW. Macquarie University
Multibase WebAustralis Pty Ltd
Namadgi Systems Pty Ltd
National Australia Bank
National Library of Australia
NSW National Parks & Wildlife Service
NSW Public Works & Services, Information

Services
Peter Harding & Associates Pry Ltd
Rinbina Pty Ltd
Security Mailing Services Pry Ltd
St John of God Health Care Inc
St Vincent’s Private Hospital
Stallion Technologies Pty Ltd
Sun Microsystems Australia
TAB Queensland Limited
The University of Western Australia
Thiess Pry Ltd
Tower Technology Pty Ltd
Uniq Advances Pry Ltd
University of Melbourne
University of New South Wales
University of Sydney
University of Technology, Sydney
Victoria University of Technology
Workcover Queensland

Advertisment: Job
Positions
SENIOR SOFTWARE DEVELOPER

Endace is a New Zealand startup company which
grew out of the University of Waikato WAND network
research group. We develop and market solutions for
Internet monitoring and security. Our clients are
located in all developed countries of the western
world; the US/Canada, Europe and the Asia/Pacific.
Our team is highly multicultural, bringing together
the strength of people from a dozen different
countries. This is a rare opportunity to work on
leading edge computer and network technology while
enjoying the best of New Zealand’s rurual lifestyle.

For our Hamilton Technology team we are looking for
a Senior Software Developer. The successful applicant
will have:

had a minumum of five years experience in
software
application development, two years in a
commercial
environment
an in-depth knowledge of programming in C and
other high-level programming languages, as well
as assembler
previous experience in developing UNIX kernel
modules, device drivers on freeware operating
sYstems (Linux, FreeBSD, others), or equivalent
experience in embedded programming
a solid understanding of software devel@ment
under
version control (CVS, RCS or SCCS) and release
management and engineering
a background in UNIX system, web server and
Internet administration, including system security
a good understanding of computer networking and
the ability to learn new terms and technologies
within a short time frame
excellent interpersonal communication skills
some experience in coordinating a project with
other developers
the desire to grow with the company and take over
more responsibilities, as the need arises

For further information, please contact Endace
Human Resources at <hr@endace.com> or phone
Selwyn Pellett at +64-9-2610407.

Technical Support Engineer

Endace is a New Zealand startup company which
grew out of the University of Waikato WAND network
research group. We develop and market solutions for
Internet monitoring and security. Our clients are
located in all developed countries of the western
world; the US/Canada, Europe and the Asia/Pacific.
Our team is highly multicultural, bringing together
the strength of people from a dozen different
countries. This is a rare opportunity to work on

AUUGN Vol.23 ¯ No.3 - 13 - October 2002

leading edge computer and network technology while
enjoying the best of New Zealand’s rurual lifestyle.

For the support of our international customers out of
our Hamilton Technology center, we are looking for
applicants with:

an outgoing, supportive and positive attitude
excellent interpersonal communication skills
the desire to succeed in an environment of high
technology computer networking, without ever
forgetting that it is all about people and solving
their problems
strong background in freeware UNIX configuration
and administration, including Linux, FreeBSD and
others
strong background in Internet configuration and
troubleshooting, computer and network security
sound knowledge " in general computer
communications and the desire to learn fast and
aquire new skills in this area
the ability to work in stress situations, stay calm,
friendly and supportive
willigness to work at odd hours of the day, during
Saturdays, to take phone calls and reply to emafls,
as needed
the ability to travel overseas, as the need arises, to
cope with time differences and jetlag

Preference will be given to people with previous
employment in a technical support role and/or
working at an Internet Service Provider, however, you
are encouraged to send in your resume at all times.

For further information, please contact Endace
Human Resources at <hr@endace.com> or phone
Selwyn Pellett at +64-9-2610407.

SGI Shatters World
Performance Record
Author: SGl, Inc.

[Editor’s Note: This is purely a reprint of a release sent around
by SGI, but ! felt that it’s of importance to the AUUGN
readership, particularly in light of the commercialisation and
commoditisation of a number of previously esoteric technology
lines. And, aw-shucks.., linear scalability of clustered CPUs is
pretty damn cool :-)]

Company Attains Linear Scalability on 64-Processor
Itanium 2-based System Running Linux INTEL
DEVELOPER FORUM, SAN JOSE, Calif., (September
9, 2002)-- At the Fall 2002 Intel Developers’ Forum,
SGI (NYSE: SGI) today announced a bre~rough in
advancing high-performance, scalable systems based
on the Intel® Itanium® 2 processor and the Linux@
operating system for high-end technical application
users.

SGI has attained linear scalability on a 64-processor
Itanium 2-based system and world-record results
among microprocessor-based systems on the
STREAM Triad benchmark, which tests memry
bandwidth performance. Demonstrating linear
scalabflity from 2 to 64 processors, the Itanium 2-

based prototype system from SGI exceeded 120GB per
second on a single system image. This result, derived
from initial internal testing, marks a significant
milestone for the industry: Early Itanium 2-based
SGI® systems built on the irmovative SGI®
NUMAflexTM shared-memory architecture, have
proven that Linux can scale well beyond the perceived
limitation of eight processors in a single system
image.

Additionally, results show that the upcoming Itanium
2-based SGI system has not only outperformed the
IBM® eServer p690 and Sun Microsystems Sun
FireTM 15K high-end microprocessor-based systems,
it has also surpassed memory bandwidth
performance on the CRAY C90TM, the CRAY SV1TM
and the Fujitsu VPP5000 CMOS vector-based
supercomputers.

SGI recently announced its expanded business
strategy in which it will incorporate systems based on
the Itanium processor family running Linux into its
established line of high-performance computing
systems. By utilizing Intel components within its
NUMAflex modular architecture, SGI positions itself
as the lead source for scalable Linux systems.

Early next year, SGI will release its fully optimized
Itanium 2-based systems and its final STREAM
benchmark results. The new Itanium 2- based SGI
systems will enable maximum performance and
scalability for a breadth of technical applications and
will be fully compatible with two future Itanium
processor family products (code-named "Madison"
and "Montecito") to offer an unmatched investment
protection.
’%Vith its rich legacy in technical computing, SGI is
well positioned to speed the adoption of the Itanium 2
processor in scalable high- performance
environments," said Mike Fister, senior vice president
and general manager, Enterprise Platforms Group,
Intel. ’"We are delighted to see an Itanium 2-based
system achieve such high efficiency in scaling Linux
to this level, clearly demonstrating the benefits of
combining the Itanium 2 processor’s outstanding
performance and scalability with SGI’s NUMAflex
architecture."

"This accomplishment will turn the heads of those
who considered clustering a multitude of PCs as an
optimal solution for integrating Linux into technical
computing labs," said Jon "maddog" Hall, president
and executive director, Linux International. "For
those applications that need to scale, SGI has just
proven that Linux need not be synonymous with
clutter."

"This accomplishment demonstrates SGI’s unique
ability to innovate at the edge of the performance
frontier," said Paul McNamara,vice president,
Products and Platforms, SGI. "Our NUMAflex
architecture enables us to create the world’s most
scalable shared-memory supercomputers, while
delivering the rich application environment that is
developing around the Intel Itanium line of processors
and the Linux operating system."

AUUGN Vol.23 o No.3 - 14 - October 2002

EXPANDED STRATEGY
Under its new business strategy, SGI will expand its
product and service offerings by adding its core
technology into systems running the MIPS® processor
and the IRIX® operating system--and soon, its
Itanium 2-based systems running the Linux operating
system. NUMAtlex will remain the foundation of all
SGI systems. Through its experience and expertise in
high-performance computing, SGI will offer customers
of the highest quality 64-bit operating environments.

ABOUT STREAM
STREAM is a highly regarded performance metric that
measures the sustainable memory bandwidth, or
flow, of a computing system. High- performance
computing codes require a balance between the
processor and memory subsystem to maintain a
constant flow of data.

Book Review:
Multitool Linux:
Practical Uses for
Open Source Software
Author: Aleksandar Stancin <sal(~net-securitv.orfl>

Multitool Linux: Practical Uses for Open Source Software
Authors: Michael Schwarz, Jeremy Anderson, Peter Curtis and
Steven Murphy
Pages: 576
Publisher: Addison Wesley
ISBN: 0-201-73420-6

Available for download is chapter 5 entitled "Samba:
talking to Windows networks".

An interview of three of the four authors of the book is
availabe, for their thoughts on the book click here.

INTRODUCTION

Linux is popular, not to say cool. A free alternative for
Windows, Mac OS, and other OS’s. Not long ago,
Linux was mainly used by power users for various
developing processes, system and network
administrators for it’s reliability, curios hackers and
hacker wanna-be’s alike. Nowadays, the situation is
slightly different. Everyone wants to give it a spin,
sooner or later, regardless of the user’s knowledge. All
major distributions are now as easy to install and
perform basic system setup as any Windows version,
not to mention a huge leap in the term of user
friendliness. I can already hear old-school admins
grunting at this one, but this is a book review not a
rant, so leave it for some other more appropriate
occasion. But, the real question is, what to do with
Linux after you’ve successfully installed it? And,
judging by a local linux newsgroup I follow and
participate in, such questions arise more often, as the
group is literally flooded by novice users asking for
help, or pointers to which software to use and for
what purpose. If you follow any Usenet group, you

know how irritating it can get when people, again
usually novice users, ask questions already answered
in a message or thread dating one month ago, or so.
The general idea of publishing a book that would
serve such a purpose, giving example of what to do
and how with linux seems like a good idea at this
time. So, what we have here is a book that tries to do
exactly that. To answer the ’what next’ question for
novice, and all linux users alike. Does it deliver? Read
on.

SOME TIDBITS ABOUT THE AUTHORS AND BOOK

Multitool linux is written by four authors, M.
Schwarz, J. Anderson, P. Curtis, and S. Murphy. As
the cover says it, they are all experienced in
programming in various developing environments,
and have been working on various Unix systems for
quite some time now. The book itself spreads on some
500+ pages of useful resources. Was that brief or
what? Now, for the book itself...

CONTENTS

To say that this book is packed with useful resources,
ideas and pointers would be a heavy understatement.
It boasts some 25 chapters, each with its subsections,
so you can rest assured it isn’t light bed time reading
material. Let’s shed some light on the material in it.
As I’ve stated, it consists of 25 chapters, of which 24
are packed with information on various software
packages.

The-authors have tried to organize it into 3 major
parts, the introduction, the toolbox and the afterword.
As you already might guess, the introduction deals
with some real basics of Linux, such as describing the
concepts behind some of the licences (ie, GPL), Linux
kernel, reconfiguring it, and such. Not much space is
spent on it, as it’s not a linux system administration
book.

The real flesh of the book is the toolbox section, which
contains all the really useful information in the book.
It spreads from chapter 2 to 24, just to give you the
idea. Now, what I’d usually do is describe each
chapter in brief, but as there are far too many
chapters to discuss, I’ll stick with the authors
organization of chapters into larger sections. Basic
topics of network and communications are covered
through chapters 2-9, containing information on
subjects like remote control, masquerading, IPChains,
even PLIP, Samba, undernets, secure web marl service
and such. Surprising eh? Like I said, this is not
"Running Linux" or "Linux System Administration
Book", but a book of a different kind.
Next comes in line a section about privacy and
security, spreading from chapter 10 - 14, containing
such fine things as GPG and emafl security, sniffing,
organising system security using software such as
Tripwire, Snort, SSH, and configuring them. Mind
you, there are far much better books written solely on
system security, so don’t look for too much here, it’s
only a section, but a decent one.

Then comes the part with miscellaneous tools

AUUGN Vol.23 ¯ No.3 - 15 - October 2002

described, in chapters 15 - 17. Now, the chapter 15 is
a real gem here, as it describes in brief some valuable
and irreplaceable tools for Linux, such as Vi, sed, dd,
tar, CVS, Perl, various shells, grep, lsof, wget, various
mail clients, GUI and non-GUI tools. Every novice
user will find it very useful as all major Linux
distributions install some or all of these by default,
and are a priceless help for any linux user. It is
concluded with a list of usefull linux related web
sites. This one is a must read, not to be forgotten but
used.

The following three sections are a lightweight reading
in comparison to others, as they mainly deal with
music and audio, graphics of any kind and video.
Areas a lot of people work professionally in, and some
of them make a living out of it, so it’s a good thing to
tag along and read them. You’ll find useful software
references and ideas about audio processing, vinyl
clean up, mp3’s, various cd burning tools, MIDI,
speech synthesis, image processing, the lot.

WHAT DO I MAKE OF IT

This book is intended as a guide for users who
already installed their Linux boxes, but are unsure of
their possibilities or don’t know what to do with them.
As such, it does good. As you can clearly see from the
books contents it’s packed with information about all
major areas of interest for all sorts of users.

Anyone looking for a book of such subject can safely
look here. If you’re looking for one of those "Learn
Linux in 24 Hours" or "Running Apache", look
further, or prepare to be disappointed. Luckily, this
book doesn’t even try to pretend to be something it’s
not, so I must give credit to the authors for clearly
stating it at the very beginning of it.

Now, very few, If any, books succeed in desire to be
the jack of all trades when it comes to computers.
Such is the case here. Even though it’s literally
packed with useful information, I can’t really
recoinlnend it to a novice or inexperienced user,
especially those users with little practical computer
knowledge. In my honest opinion, far more knowledge
is required to deal with this book and ftffly
understand some of the subjects dealt with, than an
average novice Linux user usually possesses. Sure,
the authors have tried, but it seems to me that they
aimed for the more intermediate users, than novice. I
got no problem there, but one must keep in mind that
such users already have and use software they need,
and are advancing to some other topic that choosing
how to encode mp3’s. On the other hand, it deals with
some pretty odd but amusing ideas of using email as
a system console. How’s that for an intermediate
subject? Defmitely.

So, on a scale od 1 - 5 (1 being the lowest possible
grade) I can give it a 3.5, but cannot recommend it to
novice users, only more intermediate ones. At first
sight, it may seem like a book glued together of
various unrelated subjects, but when you look into it
better you’ll see it’s fairly good organized, but requires
some knowledge. As it tries to cover as much various
aspects as possible, you have to be prepared to do

some extra researching and reading on your own in
order to use it to a full extents. But, being a Linux
user, that is expected of you, so there’s no need for
me to emphasize that fact, right?

This article is re-printed with permission. The originals
can be found at:
http : / / www. net-securi~, . or, q/review, php ?id= 12

Advocacy for Open
Source in Government
Author: Con Zymaris <conz~cybersource.com.au>

The thoughts expressed here have had a multi-year
gestation period, reaching a degree of cogency only in
recent months, when a multitude of events, including
the statement of intent to consider widespread
deployments of open source technologies by close to
40 countries around the world, including the whole
European Union, as well as an attempt (led my
Microsoft no less) to stymie this brewing stampede,
have caused me to consider this more completely.

This piece was written partly as a response to a
column by Andrew Parsons ~n ZDNet, who wrote there
recently about the misdirected push by sections of the
our industry to push for Linux and Open Source
adoption by government due to their zero licence cost.
While much of Andrew’s thesis can be quickly
dismissed and countered, which I will do below, he is
right on a couple of points. In his piece (Free source
or free beer?, source:
http: //www.zdnet.com.au/newstech/os/stoIV/0,200
0024997~20267851,00.htm) Andrew rhetorically asks
ff it’s a good idea to opt for the cheapest technology
(i.e., the one with no licence fee costs) to which he
doesn’t render a complete response. I’ll provide an
answer in lieu of his, with the following rumination:
the freedom from price of any software should not be
the most significant aspect for the selection of
software for government. What is of absolute
importance is a combination of open and inter-
operable formats, APIs and standards, along with
transparency of software. What’s at stake is not
merely or primarily a discontinuity of commercial
interests. It’s far more fundamental.

The core concept here is that government functions
differently to commerce, and rightly so. Open
government is good government. The code which runs
under the machinery of government should also be
open; open to inspection; open to review; open to
discussion, somewhat mirroring the Freedom of
Information legislation which permeates through most
advanced democracies, and much like open contracts
and publically reviewable government processes,
which are a pre-requisite for the viable governance of
democratic society. We must always remember that
governments are, and should continue to be, different
to profit-driven businesses. Democratically elected
governments have a much higher calling and should
therefore be measured against a much more stringent
gnomon. What might suffice as acceptable practice

AUUGN Vol.23 ® No.3 - 16 - October 2002

and probity in business, is never enough for the
leaders and purveyors of citizenry.

Let’s expand on these basic tenets of open
government computing. Firstly, open standards for
intercolnmunication and file formats should be an
absolute must for any system implemented for
government. Document standards should be fully
disclosed, and preferably implemented by a range of
developers. This is for reasons of longevity and
permanence of the government record. We must not
have documents which have been created by
technologies that only one supplier can provide. This
means that while Microsoft Word should never be
used to create or store documents, open and clearly
defined standards such as PDF and OpenOffice.org
are f’me. Further, systems technology which only runs
on platforms from any single vendor (for example
Microsoft’s .Net) should .likewise never be used. Once
again, this has to do with ensuring the longevity and
permanence of applications which can manipulate the
data formats used, as well as encapsulate the
machinery of government. As an alternative,
standards-based Web-services, which are clearly
defmed and ratified by a non-vendor body such as the
W3C, and implemented by many suppliers, are fine.
Another example: VB.Net should not be used as it’s
only available from one supplier. Java is free, as once
again, it’s available from many suppliers, including
compliant and free open source versions.

Secondly, there should be strong and viable
competition amongst suppliers of platform and
application software technology. Construing that the
government have one, and only one supplier of
desktop platform and productivity software, as it does
now, is just not on. As indicated by the Sincere
Choice project (http: //www.sincerechoice.org/)
software suppliers should compete fairly on the merit
of their products, rather than by attempting to lock
each other’s products out of the market. At the risk of
belabouring this point, open formats and platforms,
particularly with Open Source reference
implementations, assist greatly here.

Lastly, as a democratic society, we need to view the
increasing adoption of the technologies which rtm
counter to open government computing (i.e. closed file
formats, platform specific technologies and the spread
of technologies which have only one single,
monopolistic supplier,) as alarming. Whilst this
wasn’t as big a problem 20 years ago with the
minimal pervasiveness of computer technology, in 20
years from now, when e-government will be a
fundamental component of many a democratic
society, we will have serious and irreparable fractures
unless the technology which deploys e-government in
all its facets, is also open.

Note, no mention has been made of any financial
basis for the adoption of Open Source software. This
is a whole additional level and should form, as
Andrew points out in his piece, a sideline issue.
Having said that, Open Source is of great importance
from a national economic perspective. By considering
Open Source software systems (by way of import
replacement for other expensive software systems)

governments locally will not only be in line to save
hundreds of millions of dollars each year in licence
costs and help stem the current major trade deficit in
IT, but also be at the forefront of this exciting next-
wave now sweeping through our industry. Further, by
establishing this country as a center of excellence for
the development of this type of software, we can play
a more prominent part and gain fmancially from the
services and support revenue this realm fosters.

This combination of benefits haven’t been lost on
many functionaries of governments worldwide.
Siegmar Mosdorf, German Secretary of State, voiced
increasing support by the German Federal
Government of Open Source and Linux software.
Among others, he indicated the following reasons as
to why governments worldwide should adopt Open
Source software:

o protection from coercion by corporate entities
(such as Microsoft) that control closed-source
software upon which your government depends;

° reduced litigation;
o reduced international pressure regarding "piracy"

issues;
° greater control of the software from a national

security
o standpoint;
* greater national economic benefits for companies

within your country to develop, improve and
support software without the need for any external
corporations outside your country; and finally

° cost saving reductions to your taxpayers.

(Source:
htt-p: //www.internetnews. com/infl-
news/article/0,2171,6_408271,00.html)

Now, let’s reach for the scalpel and bone-saw for some
belated deconstruction of Andrew Parson’s arguments
in his recent missive on this subject. On the
proponents of Open Source for governments, Andrew
states:

"They attempt to put forward the claim that to
allow goverrmlents to use commercially supplied
software somehow curtails their choice in the
matter?."

Incorrect. The fact of the matter is that there should
be a viable set of options for technologies which meet
the open and inter-operable standards requirements,
as discussed above, and from a variety of suppliers.
This isn’t happening at present. For example, ff you
seek information about the list of platform and
technology suppliers shortlisted to offer desktop
operating system and office productivity software to
governments locally, how many suppliers do you
think will be on this list?

Andrew continues:

"Are these protagonists trying to state that these
companies are not entitled to charge for their
product? Are they not entitled to recoup some of
their costs, and more importantly, as a BUSINESS
are they not entitled to seek to make a profit so

AUUGN Vol.23 * No.3 - 17 - October 2002

they can continue to BE a business?"

Incorrect. No one with a reasonable perspective could
possibly expect that these suppliers should give their
software away or to Open Source their code. That’s
never been on the agenda. What proponents of open
government computing state is that government is a
different realm, and unlike the commercial world,
should mandate open and inter-operable document
standards, platforms and communications
technologies. If the closed-source vendors are able to
meet these criteria with their products, then they too
should be shortlisted for supply of technologies. It’s
then up to the individual purchasing officers to decide
if the value proffered by these products is
commensurate with the money asked for by these
vendors, which must presumable therefore be above
and beyond the quality or capabilities provided by the
Open Source contenders .to justify the extra cost. If
so, fine. If not, default to the Open Source option.
This is open and fair competition.

Finally we have:

"I challenge YOU, the one who says they’re over-
priced to produce a product yourself that rivals
the colnmercially available products. I challenge
YOU to then provide the infrastructure and
support levels that are normally available with
these so- called more expensive programs."

I think Andrew has not been following events in our
industry over these past few years. In response, I
would point to suppliers like IBM or SGI, both of
whom implement open and inter-operable (in this
case Linux and Samba) technologies on high-end,
enterprise-class computing hardware platforms, and
charge a lot of money to very satisfied government
customers for the supply and support of these
products. These are just a few examples of hundreds
of similar cases. Now, while these are products from
commercial vendors, let’s see ff they meet our open
government computing requirements. Are the
products inter-operable and open, and offered from
many other suppliers in a similar configuration? You
bet. Are the core technologies open source? You bet.
Are the customers happy?. You bet? Are we, the
taxpayers saving money?. You bet. Are there any
issues with this? I don’t know. Ask Andrew.

With our eyes on the horizon, it is becoming obvious,
with the increasing importance of computer software
in all manner of government function, that open and
inter-operable computing, often best implemented as
Open Source software libre, is the best software
model which allows the IT-functioning of modern
government to progress in a manner colnmensurate
with the aims and motives of open and democratic
society. This is an issue that you, the citizens of
society, can help raise, discuss and bring to bear.
Assuming that someone else will take up the
challenge is a myopic stance. As with many other
aspects of the body-politik, vigilance is the price for
eternal freedom.

This piece was originally published on ZDNet.

Multi-Account E-mail
with mutt
Kamil Klimkiewicz <kamil@,adrem.pl>

About three or four months ago I switched from
Windows to Linux. I had been using Linux before but
it was only my second operating system. When it
became my primary one I had to deal with several
problems. Most of them I was able to fix quickly.
There was one thing which caused many troubles - I
had three e-marl accounts.

Windows user could say, "Download some e-mail
client and configure it to use several accounts." But
there is something called the ’Unix philosophy’. It
says that programmers should write small
applications which do only one thing but do it well.
What does it mean for us? It means that there is no
single tool which fetches your marl from remote
server, allows you to read and write marl and sends it
to its target.

In this short article I will only show you how to
configure tools called fetchmail and mutt. If you want
to go deeper into this topic you should read:
Mail-Administrator-HOWTO, Mafl-User-HOWTO.
You can get them from http://www.linuxdoc.org..

1. ENVIRONMENT

Let’s defme our e-mail envirolltnent: we have three e-
mail accounts, each placed on different server. We
will call them ’First’, ’Second’ and ’Third.’ Their
addresses are: flrst@firstdomain, corn,
second@seconddomain.com, third@thirddomain.com.
Moreover the first account uses IMAP protocol and
the others POP3.

The local user who is going to receive all the messages
is called ’john’. We need to set new value for SMALL
environment variable, since we won’t use default
’/var/spool/mafl/john’ (this is unsafe and less
convenient.) To do this we add following lines to
.bash_proiefle (of course ff you use different shell you
have to change different things):

We will also use additional mailboxes for read
messages (each account has its associated box.)

2. FETCHMAIL

Before we can read our marl we have to fetch it from
remote server. To do this we will use a tool called
fetchmafl. It should be already installed on your
system.

Configuring fetchmail is quite easy task. Moreover we
can use utility ’fetchmaflconf which makes the
process even easier. Configuration file we should edit
is $HOME/.fetchmailrc. Simple one, appropriate for
our environment, looks like this:

AUUGN Vol.23, No.3 18 - October 2002

poll First via firstdomain.com with proto IMAP
user first there with password this_is_password is
john here warnings 3600 poll Second via
seconddomain.com with proto POP3 user second
there with password this_is_password is john here
warnings 3600 poll Second via thirddomain.com with
proto POP3 user third there with password
this is password is john here warnings 3600 To run
fetchmafl you only need to type fetchmail. It will be
started in daemon mode and will check whether there
is new marl every 5 minutes.

3. MUTT
Our messages are on Ideal machine now, so we can
read them using any Marl User Agent. I assume it is
mutt because this article is intended to deal with
mutt. Mutt needs to be configured before it can work
like we want. First of all we have to put some basic
definitions in its configuration file (it is usually called
SHOME/.muttrc.) They can look like this:

This actually allows us to read the messages but
every outgoing message will have something like
john@localhost in its From header field. We should be
able to change the sender address so the message can
look like it was sent from firstdomain.com or
seconddomain.com or whatever machine you have
account on. To achieve this we use additional
mailboxes (First, Second and Third) and mutt’s so
called hooks mechanism. The latter executes user
defmed commands when some action is being
performed. There is folder-hook which is called when
user changes marl folder (by pressing ’c’ key.) To
change the From field we need to modify from and
realname mutt variables:

This article is re-printed with permission. The originals
can be found at:

http: //www.linuxgazette. corn/issue83/klimkiewicz.ht
ml

Amanda CD-RW Taper
Ben Elliston <bie~air.net.au>

I have enjoyed skimming Con’s reviews of useful open
source software packages in previous issues of
AUUGN. I found a piece of software a few months ago
that I think ranks a mention and thought I would
write a few words about it. I hope others find it as
useful as I did!

For those who are familiar with it, Amanda
(http://www.amanda.org/) is quite an advanced
backup system. It takes a little while to learn how to
operate it on a day to day basis, but for those who
know it or are prepared to learn, it’s even useful for
backing up home systems.

Tape drives are increasingly hard to justify for home
use: they are so much more expensive than disks of
the same capacity, media are expensive and the units
can be somewhat prone to failure (in my experience,
anyway!).

Amanda is reasonably modular. In particular, dump
images are moved from a holding area to tape using a
separate program known as "taper". Peter Conrad and
Richard Kunze of Tivano Software in Germany have
produced a replacement "taper" program that can use
CD-RWs as a backup medium! The software and
documentation can be found at
http: //www. tivano, de / software / amanda/index, shtml

In short, the taper places dump images collected by
Amanda into an intermediate directory (not to be
confused with the holding area) and then generates
ISO file system images using as many of dump
images as it can to fill each CD-RW (or CD-Rs, if you
want to use cheaper media for permanent archival).
The ISO images are then written to CD-RWs using the
"cdrecord" program. The CD-RW taper emulates a
CD-RW changer for multi-volume backups. CDs have
to be changed manually. Because disk space is so
cheap, it is also possible to just write dump images to
the intermediate directory and leave them there.

All in all, this is a very useful utility for anyone who
owns a $150 CD-RW drive!

We should also define the alternates variable so mutt
can recognize messages sent to and by us:

which you can use to configure your mutt.

AUUGN Vol.23 ® No.3 - 19 - October 2002

Several Concatenated
Stripes
Joseph Gan <joseph.flan@abs.9ov.au>

A metadevice can be expanded by adding slices. Most
UNIX file systems can be concatenated into a
metadevice that contains an existing file system on
the fly. If the file system type is UFS, it can be grown
to fill the larger space while the file system is in use.

But the concatenation is good only for small random
I/O and for even I/O distribution. On the other hand,
striping is advantageous for large sequential I/O and
for uneven I/O distribution.

Striping will increase performance by accessing data
in parallel. However, if you want to expanded a file
system to a single striped metadevice, you have to
dismount the file system, then back it up to tapes and
restore it back to the new partition.

How to dynamically expand a file system to a single
striped metadevice without interrupting access to
data?

Solstics DiskSuite (SDS) can do the job. Since SDS is
co-packaged with Solaris and is available as an
unbundled product. In the Solaris 9 however, now
delivered as an integral part of the Solaris Operating
Environment known as The Solaris Volume Manager

First, the file system has to be created and mounted
as one-way mirror metadevice, in this example, d80
mounted by/opt:

end of the existing submirror of d80, d81:

Then, use growfs command to expand the mounted
file system (/opt) onto the raw metadevice
/dev/md/rdsk/d80:

Next, use the metattach command to dynamically
concatenate a new slice, /dev/dsk/c0tld0sl, to the

Now the file system (/opt) has been expanded
dynamically, but it contends two stripes: stripe 0
which is the original one, and stripe 1 which is the
expanded one.

AUUGN Vol.23 ® No.3 - 20 - October 2002

Next step is to create a single stripe metadevice d82,
which is the same size of the submirror d81:

In this example, we create a stripe with three 2.1Gb
disks:

Finally, we can detach the submirror d81 from d80,
and remove metadevice d81 all
together:

Then, add the metadevice d82 as the second
submirror to d80, resync will automatically take
place:

Now, we have got the expanded file system (/opt) with
a single stripe metadevice dynamically.

After the resync has done, we got the following two
way mirrors:

Michael Steil <mist~c64.org>

Standard Linux distributions do work on the Xbox,
with minor modifications. To run SuSE Linux as a
server or for X Window and KDE or Gnome, you only
have to change two lines in the Linux kernel, disable
one init script, install two drivers for audio and
networking and use our X Window configuartion file.
This article is a step-by-step tutorial to install SuSE 8
with X-Window on the Xbox.

INGREDIENTS

You willneed

an Xbox that is equipped with a 10 GB drive (most
are; bigger hard drives not tested) and with any
modchip
a SuSE 8 compatible PC with a network card
SuSE Linux 8 (at least CD 1)
the latest XBE bootloader as well as the patched
SuSE kernel available from the Xbox Linux Project
("SuSE8-Xbox.tar.bz2")
either a CD/RW (or DVD/RV0 that works in your
Xbox DVD drive or EvoX on your Xbox hard disk
good Linux knowlegde

For network and audio support you will also need
¯ the SuSE 8 nForce device driver RPM, available on

AUUGN Vol.23, No.3 - 21 - October 2002

nVidia’s site (the SuSE support database links
there)

To work interactively on the command line, you’ll
need

an Xbox/USB adaptor, as described on the web
site

¯ a USB keyboard

To work in X Window on your Xbox, you will need in
addition:
¯ either another Xbox/USB adaptor or a hub to plug

the Keyboard and the mouse into the first adaptor
o aUSBmouse

PRINCIeLE

We’ll do a cross-install, i.e. we connect the Xbox hard
disk to the PC, install Linttx onto it, make some more
modifications to the installation (drivers, patches),
plug it into the Xbox and install the bootloader for the
Xbox0

CROSS-INSTALLING SuSE

Before you start, it is strongly recommend to backup
your Xbox hard disk, as described on the Xbox Linux
site. Linux will be installed into unused parts of the
hard disk, but...

You cannot just connect the Xbox hard disk to your
PC, because it is locked. You have to "hot-swap" it.
Place the PC and the Xbox next to each other and
prepare an IDE cable to be able to connect the Xbox
hard drive as secondary master. With the USB
keyboard and USB mouse (if you want to use them on
the Xbox later) connected (and with the PS/2
keyboard and mouse disconnected), turn the PC on
and put the SuSE boot CD into the PC’s CD drive.
Stop at the boot loader menu and turn on the Xbox.
When the Microsoft Dashboard (or EvoJ0 shows up,
disconnect the Xbox hard disk’s IDE cable and
connect the PC’s IDE cable while both computers are
running. Chose "Installation" in the bootmanager. In
the boot messages, the HD should be detected as a 10
GB drive at /dev/hda. If it’s only 8 GB, you cannot
install SuSE using this method (yet), sorry.

The USB mouse and the keyboard should get properly
detected, just install according to your wishes
(keyboard map, time zone, packages to install), but
you will have to change the partitioning SuSE
suggests or else it will overwrite your Xbox system
data and savegames on the disk. Tell SuSE to discard
the suggestion, and you want to define the partitions
on your own in expert mode. Create /dev/hdal
starting at track 15534 (that’s right after the last
Xbox partition) with a size of 128 MB as a swap
partition. Allocate the rest behind this partition
(about 1.7 GB) as your root file system /dev/hda2;
ReiserFS is preferred. Note that the SuSE installer
can safely write a PC-like partition table, since the
first sector of the Xbox hard disk is unused.

Start the installation and follow the onscreen-
instructions. If the installer tells you that the disk

might not be bootable, just ignore it, it should be
bootable afterwards, unless your PC is really very old.
When the installer wants to reboot, you either have to
discoimect the IDE cable of the hard disk between the
unmount messages and the actual reboot and
reconnect it when the VGA card’s bios prints it’s
initialization messages onto the screen, or you will
have to unlock it again by connecting it to the Xbox
and starting the Dashboard and hot-swap it to the PC
while the VGA messages are shown (these should be
some seconds), because a reboot locks the hard disk
again.

The second phase of the installer should now start
from hard disk. Configure your network now to match
the settings you will expect in your Xbox. Just ignore
all other hardware settings. The installer will reboot
again, and you’ll have to do the disconnect trick or
unlock process again. Boot into your newly installed
system.

Install the nForce driver RPM now. Edit
/etc/modules.conf and disable your PC network
interface and audio hardware. Enable the already
existing nForce lines Oust scan for "nForce"). If you
want to use X, copy our XF86Config-4 to /etc/Xl 1,
else edit / etc/inittab and change the default runlevel
from 5 to 3 ("id:3:initdefault:"). The init script
"hwscan" in /etc/init.d would crash the Xbox, so
disable it by simply renh_ming it. Copy the file
/boot/initrd to a disk, because we will need it later.
Your SuSE installation is now prepared for the Xbox
hardware. Shut down and connect the hard disk to
the Xbox.

You need a bootloader configuration now. Either you
boot from CD or through EvoX. In either way, you
need the bootloader default.xbe, the patched SuSE
kernel, the initrd you copied from the SuSE hard disk
before, and a linuxboot.cfg file. The package from the
Xbox Linux web site contains the kernel and for each
of both solutions a default.xbe and a linuxboot.cfg.
Put the corresponding four fries either onto a CD/RW
(DVD/RW) containing a UDF fflesystem ("mkisofs
-udf’) or copy them to E:\Linux\ using EvoX.

You should now be able to boot Linux. You should see
the kernel initialization messages, the initrd messages
and the init scripts, and you should finally get a
"Login:" after a minute or two, either on the text
screen, or, ff you have X Window enabled, in the
graphical environment. If you chose to access the
Xbox only through the network, you can ssh into it
now and do eve~g you can do on a Linux PC. If
you want to work with the Xbox directly, you can now
connect the USB keyboard (and mouse) through the
adaptor(s), and you should be able to log in.

~SSUES

This is not yet perfect. Some issues:
¯ Starting SaX or installing software with YaST

crashes (system configuration with YaST works,
though).

o Pressing the eject button reboots.
¯ Pressing the power button doesn’t shut Linux

down.

AUUGN Vol.23 ¯ No.3 - 22 - October 2002

¯ Trying to reboot Linux only makes it halt, you can
reboot then by pressing the eject button.

I only had the current versions of Mandrake and
SuSE here, and I don’t have a broadband internet
connection, so that I could download any other
distributions. I tried Mandrake first, starting with root
mounted as NFS, and with its own partition later. Too
bad Mandrake is very pedantic about module
versions, and there’s something wrong with the
compiler, so I was unable to run a kernel based on
the Mandrake-patched 2.4.18 sources that loads
nvnet.o. And without a Mandrake kernel, the kernel
modules on hard disk would not load. So I tried
SuSE, which made a lot less problems. If there are
any Mandrake experts out there, I would st~ like to
try Mandrake, too! And RedHat...

Again: The project has nothing to do with SuSE.

This article has been written in OpenOffice.org 1.0.1
in SuSE 8 on the Xbox.

This article is re-printed with permission. The originals
can be found at:

http: / /xbox-
linux.source. ~or.qe. net/articles, php ?aid=200224 706452
5

The author has also informed AUUGN that there have
been substantial additions to this project, and other
distributions are now booting. Please refer to the
website for more upto-date information:

http: / / xbox-linux, source~orqe, net/ index.php

Chroofing All Services

Author:Mark Nielsen http://www.tcu-inc.com/mark

]INTRODUCTION

What is chroot? Chroot basically redefines the
universe for a program. More accurately, it redefines
the "ROOT’ directory or "/" for a program or login
session. Basically, everything outside of the directory
you use chroot on doesn’t exist as far a program or
shell is concerned.

Why is this useful? If someone breaks into your
computer, they won’t be able to see all the Fries on
your system. Not being able to see your Fries limits the
commands they can do and also doesn’t give them the
ability to exploit other files that are insecure. The only
drawback is, I believe it doesn’t stop them from
looking at network connections and other stuff. Thus,

you want to do a few more things which we won’t get
into in this article too much:

¯ Secure your networking ports.
° Have all services run as a service under a

non-root account. In addition, haveall

services chrooted.
¯ Forward syslogs to another computer.
¯ Analyze logs files
¯ Analyze people trying to detect random ports

on your computer
¯ Limit cpu and memory resources for a service.
° Activate account quotas.

The reason why I consider chroot (with a non-root
service) to be a line of defense is, if someone breaks in
under a non-root account, and there are no files
which they can use to break into root, then they can
only limit damage to the area they break in. Also, if
the area they break into is owned mostly by the root
account, then they have less options for attack.
Obviously, there is something wrong if someone
actually does break into your account, but it is nice to
be able to limit the damage they can do.

PLEASE REMEMBER that my way of doing this is
probably not 100% accurate. This is my first attempt
at doing this, and ff it just partially works well, it
should be easy to finish out the rough edges. This is
just a roadmap for a Howro I want to create on
chroot.

HOW ARE WE GOING TO CHROOT EVERYTHING?

Well, We create a directory, "/chroot" and we put all
of our services under there in the following format:

¯ Syslogd will be at chrooted with each service.
o Apache will be at/chroot/httpd.
o Ssh will be at/chroot/sshd.
- PostgreSQL will be at/chroot/postmaster.
¯ Sendmail will be chrooted, but it won’t be

rtmning under a non-root account,
unfortuantely.

¯ ntpd will be chrooted to/chroot/ntpd
¯ named will be chrooted to/chroot/named

Each service should be completely isolated.

q~/IY PERL SCRIPT TO CREATE CHROOTED

ENVIRONMENTS o

Config_Chroot. pl. txt should be renamed
Config__Chroot.pl after you download it. This perl
script lets you list the services being installed, view
the config files, configure a service, and start and stop
the services. In general, this is what you should do.

i. Create the chroot directory
mkdir -p /chroot/Config/Backup

2. Download Config_Chroot .pl. txt to
/chroot/Config Chroot. pl

3. Change the SHome variable in the perl script ff
you are not using/chroot as the home
directory.

4. Download my config files,

AUUGN Vol.23 ¯ No.3 - 23 - October 2002

http: //www.linuxfocus. or~/comlnon/src/arti
cle225

Now, the important thing here is: I have only tested
in on RedHat 7.2 and RedHat 6.2.

Modify the perl script for your distribution.

I ended up making a huge gigantic article on Chroot,
but with my Perl script, it became much smaller.
Basically, I noticed aKer chrooting many services,
they all have very similar flies and configurations that
needed chrooted. The easiest way to figure out which
files need copying for a particular service is to look at
the manpage and also type "ldd /usr/bin/file" for
programs that use library files. Also, you can chroot
the the service you are installing and manually start
it to see what errors you get or look at its log fries.

In general, to install a service do this:

CHROOTING NTPD

Ntpd is just a time service that lets you keep your
computer and other computers in sync with the real
time. It was a simple thing to chroot.

Already done, check out
http: //www.linuxdoc.org/HOWTO/Chroot-BIND8-
HOWTO.html
or

http: //www.linuxdoc. org/HOWTO/Chroot-BIND-
HOWTO.html

Or, ff you want to use my script,

facility.
¯ Just log files to a file and not through syslogd.

This is probably the best security option,
although if someone breaks, they could play
around with the logs.

¯ Configure the main syslogd to look at several
locations to get all the services. You use the
-a option with syslogd to do this.

My only solution was to make sure syslogd is
chrooted with every service. I would like some sort of
solution which would log stuff in a non-root account
using its own chrooted environment, like maybe a
network port. It can probably be done, but I am going
to stop where I am at and figure out a better solution
later.

If you do not want to make a separate syslogd for
each service, then with the main syslogd that you are
running on your system, add the following command
when syslogd starts:

If I had ssh and dns running, it might look like,

Last note on Syslogd, I wish I could make it run
under a non-root account. I tried a couple of simple
things, but it didn’t work and I gave up. If I could run
syslogd under a non-root account with each service,
that would satisfy my security issues. Possibly, even
have it log offsite.

CHROOTING APACHE

This was extremely easy to do. Once I got it setup, I
was able to execute Perl scripts. Now, my config file is
rather long because I had to include Perl and the
PostgreSQL libraries into the chrooted area. One
thing to note, if you are connecting to a database,
make sure your database service is running on the
127.0.0.1 loopback device and you specify the host to
be 127.0.0.1 in your Perl scripts for the DBI module.
Here is an example of how I connect to a database
using persistent connections in apache:

CHROOTING SYSLOG WITH SERVICES AND MY

COMPLAINTS.

I want to chroot syslogd. My problem is, syslogd uses
/dev/locj by default, which can’t be seen by chrooted
services. Thus, I can’t syslogd easily. Here are the
possible solutions:

¯ Chroot syslogd with every service. I actually
tested this, and yes, I was able to log stuff. I
don’t like this since I have a root running
service.

o See if we can connect to an offsite logging

Source: http: //httpd. apache, org/dist/httpd/

Compile and install apache on your main system at
/usr/local/apache. Then use the perl script.

AUUGN Vol. 23 ® No. 3 - 24 - October 2002

I changed my httpd.conf file to have this stuff: CHROOTING POSTGRESQL

Then, just point your browser at
http://127.0.0.1/server-status or
http://127.0.0.1/server-infoandcheck~ out!

CHROOTING SSH

First off, ideally, you should port forward ssh on port
22 to port 2222. Then, when you start ssh, have it
listen to port 2222 under a non-root account. For the
initial ssh connection, we want to have secure
accounts with passwords just to let the people in, but
not do anything else. After they log in, then have a
second ssh program running on port 127.0.0.1:2322
which will let them connect to the real system -- the
second ssh program should ONLY listen on the
loopback device. Now this is what you should do. We
aren’t going to do it. The only thing we are going to do
is chroot ssh for this example. Exercises which are
left up to the reader include putting sshd under a
non-root account and to install a second sshd which
listens on the loopback device to let people into the
real system.

Again, we are going to just chroot ssh and let you
worry about the consequences of doing that (you
won’t be able to see your entire system ff you just do
this). Also, ideally, it would be nice to set this up to
record logs offsite. Also, we should use OpenSSH, but
I am using the commercial SSH for simplicity (which
is not a good excuse).

Source:
http: //www.ssh. com/pr0ducts/ssh/download.cfm

Install ssh at /usr/local/ssh_chroot. Then use the
Perl script.

I suppose one really good thing with putting ssh
under a chrooted environment is that ff you want to
use it to replace an ftp seI-ver, people will have limited
access to your area. Rsync and SCP go very well
together for letting people upload fries. I don’t really
like to put an ftp server up for people to log into. A lot
of ftp servers are also chrooted, but they still transmit
passwords in the clear, which I don’t like.

This was almost as simple as perl, except it required a
few more libraries. Overall, it wasn’t that hard to do.
One thing I had to do was put PostgreSQL open to the
network, but only on the loopback device. Since it
was chrooted, other chrooted services couldn’t get to
it, like the apache web server. I did compile Perl into
PostgreSQL, so I had to add a lot of Per stuff to my
config file.

Source:
ftp: //ftp. us.post~resql, or~/source/v7.1.3/post~resql-
7.1.3.tar.~z

Compile and install apache on your main system at
/usr/local/postgres. Then use the Perl script.

CHROOTING SENDMAIL

GO ahead and execute my script.

Now are there catches? Yes. It is still running as root.
Darn. Also, certain files are recreated by the
/etc/rc. d/init.d/sendmail file when it is started.
Mine script doesn’t handle that. Anytime you make
changes to sendmail under /etc/ma±l, please copy
the changes to /chroot/sendmail/etc also. Also,
you will have to point /var/spool/mail to
/chroot/sendmail/var/spool/mail so that the
sendmafl program and the users (when they log in)
can see the same files.

The good thing is, you can always send mail out, it is
just receiving it that is the problem. Thus, I was able
to install sendmafl with apache without any
problems. Some of my perl scripts send marl out, and
so, I needed the sendmail fries copied into the chroot
area for apache.

OTHER THINGS TO CHROOTo

Hereis
1.

.

3.

my philosophy:
Evei3rthing should be chrooted, including
sendmail, ssh, apache, postgresql, syslog, and
any service running on the computer.
Everything should be put under a non-root
account (you might need to port forward
protected ports to a non-protected port). This
includes sendmafl and syslog by the way.
Logs should be sent offsite.
A partition should be setup for each service to
limit the amount of diskspace a hacker can
use up if they decide to write fries. You could
use a loopback device to mount files as

AUUGN Vol.23 e No.3 - 25 - October 2002

filesystems for some of these services if you
run out of partitions.

5. Root should own all files that do not change.

Now, when it comes to sendmafl and syslogd, I still
think they should be run under a non-root account.
For sendmail, this should be possible, but I found it
extremely difficult to run as a non-root account. I
haven’t been successful getting sendmail to run as a
non-root account, and I think it is a serious mistake
for it not to be. I know there are problems doing that,
but I think they can ALL be taken care of. As long as
file permissions are taken care of, I don’t see why
sendmail needs to be run as root. There might be
some reason I am overlooking, but I doubt any of the
obstacles can’t be overcome.

For syslog, I haven’t even tried, but I would say logs
should should be logged, under a non-root account
and I don’t see why that shouldn’t be possible. At
least I was able to get syslog to be chrooted for each
service.
All services should be setup as non-root accounts.
Even NFS. Everything.

SUGGESTIONS

Use two logins for ssh and have two running
sshd daemons.
Figure out how to get sendmail or some other
marl program running as non-root.
Strip out the unnecessary libraries under
/lib. I just copied everything to make it easy
on myself. Most of it you don’t need.
Do remote logging of syslogd and fred out ff
we can attach syslogd to a network port and
get all the services to connect to that network
port on the loopback device. See if we can get
syslogd to run as a non-root account.

CONCLUSION

I think chroot is cool for all services. I believe it is a
big mistake not to chroot all services under non-root
accounts. I wish a major distributions would do that,
or a smaller distribution: ANY distribution. Mandrake
started off by taking stuff from RedHat and expanding
off of it, so perhaps, someone should take Mandrake
and expand chroot off of them. Nothing prevents
people from redoing other people’s work in
GNU/Linux, so I think it is possible. If some company
wanted to chroot everything and create a systematic
easy environment for people to manage their chrooted
services, they would have a fantastic distribution!
Remember, now that Linux is going mainstream,
people don’t want to see the command line, so if
everything is done at a gui level, they don’t need to
see the guts and they really don’t need to know what
is going on -- they just need to be able to configure it
and know that it just works!

I am in 100% complete support of the idea that all
services should be chrooted with non-root accounts
and that any distribution that doesn’t do this is less
than proper for me to use in a production
environment. I am going to chroot everything, as

much as possible -- eventually I will get there.

I plan on creating s HOWTO about chrooting. I am
submitting a request to have someone help me
convert this article into LyX format so that it can be
put in the HOWTOs for Linux.

This article is re-printed with permission. The originals
can be found at:

http: / / www. linuxfocus, org /English/ danuary2OO2 / art
icie225, shtml

Avoiding Security
Holes when
Developing an
Application - Part 5:
Race Conditions
Authors: Fr~d6ric Raynal <pappv~users.sourcefor~e.net>,
Christophe Blaess <ccb@.club-internet.fr>, Christophe Grenier
<flrenier~nef.esiea.fr>

~NTRODUCTION

The general principle defining race conditions is the
following: a process wants to access a system
resource exclusively. It checks that the resource is
not already used by another process, then uses it as
it pleases. The race condition occurs when another
process tries to use the same resource in the time-lag
between the first process checking that resource and
actually taking it over. The side effects may vary. The
classical case in OS theory is the deadlock of both
processes. More often it leads to application
malfunction or even to security holes when a process
wrongfully benefits from the privileges another.

What we previously called a resource can have
different aspects. Most notably the race conditions
discovered and corrected in the Linux kernel itseK
due to competitive access to memory areas. Here, we
will focus on system applications and we’ll deem that
the concerned resources are filesystem nodes. This
concerns not only regular files but also direct access
to devices through special entry points from the
/ dev/ directory.
Most of the time, an attack aiming to compromise
system security is done against Set-UID applications
since the attacker can benefit from the privileges of
the owner of the executable file. However, unlike
previously discussed security holes (buffer overflow,
format strings...), race conditions usually don’t allow
the execution of "customized" code. Rather, they
benefit from the resources of a program while it’s
running. This type of attack is also aimed at "normal"
utilities (not Set-UID), the cracker lying in ambush for
another user, especially root, to run the concerned
application and access its resources. This is also true
for writing to a file (i.e, ~/. rhost in which the string
"+ +" provides a direct access from any machine

AUUGN Vol.23 o No.3 - 26 - October 2002

without password), or for reading a confidential file
(sensitive commercial data, personal medical
information, password file, private key...)

Unlike the security holes discussed in our previous
articles, this security problem applies to every
application and not just to Set-UID utilities and
system servers or daemons.

FroST EXAMPLE

Let’s have a look at the behavior of a Set-UID program
that needs to save data in a file belonging to the user.
We could, for instance, consider the case of a mail
transport software like sendmail. Let’s suppose the
user can both provide a backup filename and a
message to write into that file, which is plausible
under some circumstances. The application must
then check ff the file "belongs to the person who
started the program. It also will check that the file is
not a symlink to a system file. Let’s not forget, the
program being Set-UID root, it is allowed to modify any
file on the machine. Accordingly, it will compare the
file’s owner to its own real UID. Let’s write something
like:

to every user. Always running under the root ID, it
would check using the UID instead of its own real
UID. Nevertheless, we’ll keep this scheme for now,
even if it isn’t that realistic, since it allows us to
understand the problem while easily "exploiting" the
security hole.

As we can see, the program starts doing all the
needed checks, i.e. that the file exists, that it belongs
to the user and that it’s a normal file. Next, it actually
opens the file and writes the message. That is where
the security hole lies! Or, more exactly, it’s within the
lapse of time between the reading of the file attributes
with star () and its opening with £open (). This lapse
of time is often extremely short but an attacker can
benefit from it to change the file’s characteristics. To
make our attack even easier, let’s add a line that
causes the process to sleep between the two
operations, thus having the time to do the job by
hand. Let’s change the line 30 (previously empty) and
insert:

Now, let’s implement it; first, let’s make the
application Set-UID root. Let’s make, it’s very
important, a backup copy of our password file
/etc/shadow:

As we explained in our first article, it would be better
for a Set-UID application to temporarily drop its
privileges and open the file using the real UID of the
user having called it. As a matter of fact, the above
situation corresponds to a daemon, providing services

Everything is ready for the attack. We are in a
directory belonging to us. We have a Set-UID root
utility (here ex__01) holding a security hole, and we
feel like replacing the line concerning root from the
/ere/shadow password file with a line containing an
empty password.

First, we create a f ic file belonging to us:

Next, we run our application in the background "to
keep the lead". We ask it to write a string into that
file. It checks what it has to, sleeps for a while before
really accessing the f’fle.

The content of the root line comes from the
shadow (5) man page, the most important being the
empty second field (no password). While the process
is asleep, we have about 20 seconds to remove the
f ic file and replace it with a link (symbolic or
physical, both work) to the /etc/shadow file. Let’s
remember, that every user can create a link to a file in
a directory belonging to him even if he can’t read the
content, (or in /tmp, as we’ll see a bit later). Hovcever
it isn’t possible to create a copy of such a file, since it
would require a full read.

AUUGN Vol.23 ® No.3 - 27 - October 2002

Then we ask the shell to bring the ex__01 process
back to the foreground with the fg command, and
wait till it finishes:

Voile! It’s over, the /etc/shadow file only holds one
line indicating root has no password. You don’t believe
it ?

Let’s finish our experiment by putting the old
password file back:

LET’S BE MORE REALISTIC

We succeeded in exploiting a race condition in a Set-
UID root utility. Of course, this program was very
"helpful" waiting for 20 seconds giving us time to
modify the flies behind its back. Within a real
application, the race condition only applies for a very
short time. How do we take advantage of that ?

Usually, the cracker relies on a brute force attack,
renewing the attempts hundreds, thousands or ten
thousand times, using scripts to automate the
sequence. It’s possible to improve the chance of
"falling" into the security hole with various tricks
aiming at increasing the lapse of time between the
two operations that the program wrongly considers as
atomically linked. The idea is to slow down the target
process to manage the delay preceding the file
modification more easily. Different approaches can
help us to reach our goal:

o To reduce the priority of the attacked process
as much as possible by rtmning it with the
nice -n 20 prefix;

o To increase the system load, running various
processes that do CPU time consuming loops
(likewhile (i) ;);

° The kernel doesn’t allow debugging Set-UID
programs, but it’s possible to force a pseudo
step by step execution sending SIGSTOP-
SIGCONT signal sequences thus allowing to
temporarily lock the process (like with the
Ctrl-Z key combination in a shell) and then
restart it when needed.

The method allowing us to benefit from a security
hole based in race condition is boring and repetitive,
but it really is usable! Let’s try to fred the most
effective solutions.

POSSIBLE IMPROVEMENT

The problem discussed above relies on the ability to
change an object’s characteristics during.~the time-
lapse between two operations, the whole thing being
as continuous as possible. In the previous situation,
the change did not concern the file itseK. By the way,
as a normal user it would have been qnite difficult to
modify, or even to read, the /etc/shadow file. As a
matter of fact, the change relies on the link between
the existing file node in the name tree and the file
itself as a physical entity. Let’s remember most of the
system commands (rm, my, ln, etc.) act on the file
name not on the file content. Even when you delete a
file (using rm and the unlink() system call), the
content is really deleted when the last physical link -
the last reference - is removed.

The mistake made in the previous program is
considering the association between the name of the
file and its content as unchangeable, or at least
constant, during the lapse of time between star ()
and £open() operation. Thus, the example of a
physical link should suffice to verify that this
association is not a permanent one at all. Let’s take
an example using this type of link. In a directory
belonging to us, we create a new link to a system file.
Of course, the file’s owner and the access mode are
kept. The in command -£ option forces the creation,
even ff that name already e~ists:

The /bin/ls -i option displays the inode number at
the beginning of the line. We can see the same name
points to two different physical inodes.

In fact, we would like the functions that check and
access the file to always point to the same content
and the same inode. And it’s possible! The kernel

AUUGN Vol.23 o No.3 - 28 - October 2002

itself automatically manages this association when it
provides us with a file descriptor. When we open a file
for reading, the open () system call returns an integer
value, that is the descriptor, associating it with the
physical file by an internal table. All the reading we’ll
do next will concern this file content, no matter what
happens to the name used during the file open
operation.

Let’s emphasize that point: once a file has been
opened, every operation on the filename, including
removing it, will have no effect on the file content. As
long as there is still a process holding a descriptor for
a file, the file content isn’t removed from the disk,
even if its name disappears from the directory where
it was stored. The kernel maintains the association to
the file content between the open() system call
providing a file descriptor and the release of this
descriptor by close () or the process ends.

So there we have our solution! We can open the file
and then check the permissions by examining the
descriptor characteristics instead of the filename
ones. This is done using the £suau () system call (this
last working like suau()), but checking a file
descriptor rather than a path. To access the content
of the file using the descriptor we’ll use the £dopen ()
function (that works like £open()) while relying on a
descriptor rather than on a filename. Thus, the
program becomes:

This time, after line 20, no change to the filename
(deleting, renaming, linking) will affect our program’s
behavior; the content of the original physical file will
be kept.

GUIDELINES

When manipulating a file it’s important to ensure the
association between the internal representation and
the real content stays constant. Preferably, we’ll use
the following system calls to manipulate the physical
file as an already open descriptor rather than their
equivalents using the path to the file:

i~-~’ - ’" - ~ £d’] Goes to the directoryl
~,,u-~ ~-~1~ J /ire,~resented bv fd~

£chmod (±nt £d, Changes the file access
’mode t mode) rights.

11 ... ::

u±d__t u±d, g±~t] Changes the file owner.

st.~uct stat * I~stored ~ ~e inode of
es t) [ime physm~ m .

~ [...

iftruncate (int
fd, off_t ~ncs[es
length)

~

~d~es ~0 ~om
fdopen (int fd, ,~eady open desc~p[or.
char * mode) {K’s ~ s[d~ ~br~ routine,

no[a sys[em c~.

~en, of course, you mus[open ~e file in ~e ~[ed
mode, c~g open () [don’[forge[~e ~d
~hen crea~g ~ ne~ file). ~ore on open () taler ~hen
~e discuss ~e [empor~ ~e problem.

We must insist that it is important to check the
system calls return codes. For instance, let’s mention,
even ff it has nothing to do with race conditions, a
problem found in old /bin/login implementations
because it neglected an error code check. This
application, automatically provided a root access
when not finding the/etc/passwd file. This behavior
can seem acceptable as soon as a damaged file
system repair is concerned. On the other hand,
checking that it was impossible to open the file
instead of checking if the file really existed, was less
acceptable. Calling /bin/login after opening the
maximum number of allowed descriptors allowed any
user to get root access... Let’s finish with this
digression insisting in how it’s important to check,
not only the system call’s success or failure, but the
error codes too, before taking any action about
system security.

RACE CONDITIONS TO THE FILE CONTENT

A program dealing with system security shouldn’t rely

AUUGN Vol.23 o No.3 - 29 - October 2002

on the exclusive access to a file content. More exactly,
it’s important to properly manage the risks of race
conditions to the same file. The main danger comes
from a user running multiple instances of a Set-UID
root application simultaneously or establishing
multiple connections at once with the same daemon,
hoping to create a race condition situation, during
which the content of a system file could be modified
in an unusual way.

To avoid a program being sensitive to this kind of
situation, it’s necessary to institute an exclusive
access mechanism to the file data. This is the same
problem as the one found in databases when various
users are allowed to simultaneously query or change
the content of a file. The principle of file locking solves
this problem.

When a process wants to.write into a file, it asks the
kernel to lock that file - or a part of it. As long as the
process keeps the lock, no other process can ask to
lock the same file, or at least the same part of the file.
In the same way, a process asks for a lock before
reading the file content to ensure no changes will be
made while it holds the lock.

As a matter of fact, the system is more clever than
that: the kernel distinguishes between the locks
required for file reading and those for file writing.
Various processes can hold a lock for reading
simultaneously since no one will attempt to change
the file content. However, only one process can hold a
lock for writing at a given time, and no other lock can
be provided at the same time, even for reading.

There are two types of locks (mostly incompatible with
each other). The first one comes from BSD and relies
on the flock() system call. Its first argument is the
descriptor of the file you wish to access in an
exclusive way, and the second one is a symbolic
constant representing the operation to be done. It can
have different values: LOCK__SH (lock for reading),
LOCK__EX (for writing), LOCK_UN (release of the
lock). The system call blocks as long as the requested
operation remains impossible. However, you can do a
binary OR I of the LOCK_NB constant for the call to
fail instead of staying locked.

The second type of lock comes from System V, and
relies on the £cntl () system call whose invocation is
a bit complicated. There’s a library function called
lock£ () close to the system call but not as fast.
fcntl() ’s first argument is the descriptor of the file
to lock. The second one represents the operation to be
performed: F___SETLK and F_SETLKW manage a lock,
the second command stays blocks till the operation
becomes possible, while the first immediately returns
in case of failure. F__GETLK consults the lock state of a
file (which is useless for current applications). The
third argument is a pointer to a variable of skruc~
flock type, describing the lock. The flock structure
important members are the following:

Type i Meaning

.. ii ~@~~~~ilock for reading),~~~~~~i{~F__N_RLCK (to

lock for ~n~ ~d ~ONLCK (to
I
l_s~ar~ Field od~ (usury

~~ Posi~on of ~e be~g of ~e

...
[......................................~~n~ of ~e lock, 0 to reach

i~i ~e end of ~e ~e. ,

We can see fcntl () can lock limited portions of the
file, but it’s able to do much more compared to
flock (). Let’s have a look at a small program asking
for a lock for reading concerning files which names
are given as an argument, and waiting for the user to
press the Enter key before finishing (and thus
releasing the locks).

We first launch this program from a first console
where it waits:

>From another terminal...

AUUGN Vol.23 ~ No.3 - 30 - October 2002

locks.

With this locking mechanism, you can prevent race
conditions to directories and print queues, like the
lpd daemon, using a flock () lock on the
/var/lock/subsys/ipd file, thus allowing only one
instance. You can also manage the access to a system
file in a secure way like /etc/passwd, locked using
fcntl () from the pamlibrary when changing a user’s
data.

However, this only protects from interferences with
applications having correct behavior, that is, asking
the kernel to reserve the proper access before reading
or writing to an important system file. We now talk
about cooperative lock, what shows the application
liability towards data access. Unfortunately, a badly
written program is able to replace file content, even if
another process, with good behavior, has a lock for
writing. Here is an example. We write a few letters
into a file and lock it using the previous program:

>From another console, we can change the file:

Back to the first console, we check the "damages":

To solve this problem, the Linux kernel provides the
sysadmin with a locking mechanism coming from
System V. Therefore you can only use it with fcntl ()
locks and not with flock (). The administrator can
tell the kernel the fcntl () locks are strict, using a
particular combination of access rights. Then, ff a
process locks a file for writing, another process won’t
be able to write into that file (even as root). The
particular combination is to use the Set-GID bit while
the execution bit is removed for the group. This is
obtained with the command:

However this is not enough. For a file to automatically
benefit from strict cooperative locks, the mandatory
attribute must be activated on the partition where it
can be found. Usually, you have to change the
/etc/fstab file to add the mand option in the 4th
column, or typing the colnmand:

Now, we can check that a change from another
console is impossible:

>From another terminal:

And back to the first console:

The administrator and not the programmer has to
decide to make strict file locks (for instance
/etc/passwd, or /etc/shadow). The programmer has
to control the way the data is accessed, what ensures
his application to manages data coherently when
reading and it is not dangerous for other processes
when writing, as long as the environment is properly
administrated.

TEMPORARY FILES

Very often a program needs to temporarily store data
in an external file. The most usual case is inserting a
record in the middle of a sequential ordered file,
which implies that we make a copy of the original file
in a temporary file, while adding new information.
Next the unlink () system call removes the original
file and rename() renames the temporary file to
replace the previous one.

Opening a temporary file, if not done properly, lh often
the starting point of race condition situations for an
fll-intentioned user. Security holes based on the
temporary files have been recently discovered in
applications such as Apache, Linuxconf, getty_ps, wu-
ftpcl rdist, gpm, inn, etc. Let’s remember a few
principles to avoid this sort of trouble.

Usually, temporary file creation is done in the /trap
directory. This allows the sysadmin to know where
short term data storage is done. Thus, it’s also
possible to program a periodic cleaning (using cron),
the use of an independent partition formated at boot
time, etc. Usually, the administrator defmes the
location reserved for temporary files in the <paths. h>
and <stdio.h> files, in the __PATH_TMP and P__tmpdir
symbolic constants definition. As a matter of fact,
using another default directory than /tmp is not that
good, since it would imply recompiling every
application, including the C library. However, let’s
mention that GlibC routine behavior can be defined
using the TMPDIR environment variable. Thus, the
user can ask the temporary files to be stored in a
directory belonging to him rather than in /tmp. This
is sometimes mandatory when the partition dedicated
to /tmp is too small to run applications requiring big
amount of temporary storage.

The /tmp system directory is something special
because of its access rights:

AUUGN Vol.23, No.3 - 31 - October 2002

The Sticky-Bit represented by the letter t at the end or
the 01000 octal mode, has a particular meaning when
applied to a directory: only the directory owner (root),
and the owner of a file found in that directory are able
to delete the file. The directory having a full write
access, each user can put his fries in it, being sure
they are protected - at least till the next clean up
managed by the sysadmin.

Nevertheless, using the temporary storage directory
may cause a few problems. Let’s start with the trivial
case, a Set-UID root application talking to a user.
Let’s talk about a mail transport program. If this
process receives a signal asking it to finish
immediately, for instance SIGTERM or SIGQUIT during
a system shutdown, it can try to save on the fly the
marl already written but not sent. With old versions,
this was done in /trap/dead. letter. Then, the user
just had to create (since he can write into /trap) a
physical link to /etc/passwd with the name
dead. letter for the mailer (running under effective
UID root) to write to this file the content of the not yet
finished mail (incidently containing a line
"root: :1:99999: : : : :").

The first problem with this behavior is the foreseeable
nature of the filename. You can to watch such an
application only once to deduct it will use the
/ tmp / dead. i e t t er file name. Therefore, the frost step
is to use a filename defined for the current program
instance. There are various library functions able to
provide us with a personal temporary filename.

Let’s suppose we have such a function providing a
unique name for our temporary file. Free software
being available with source code (and so for C library),
the filename is however foreseeable even if it’s rather
difficult. An attacker could create a symlink to the
name provided by the C library. Our first reaction is
to check the file exists before opening it. Naively we
could write something like:

Obviously, this is a typical case of race condition,
where a security hole opens following the action from
a user succeeding in creating a link to /etc/passwd
between the first open() and the second one. These
two operations have to be done in an atomic way,
without any manipulation able to take place between
them. This is possible using a specific option of the
open () system call. Called O_EXCL, and used in
conjunction with O_CREAT, this option makes the
open() fail ff the file already exists, but the check of
existence is atomically linked to the creation.

By the way, the ’x’ Gnu extension for the opening
modes of the fopen () function, requires an exclusive
file creation, failing if the file already exists:

The temporary files permissions are quite important
too. If you have to write confidential information into
a mode 644 file (read/write for the owner, read only
for the rest of the world) it can be a bit of a nuisance.
The

function allows us to determine the permissions of a
file at creation time. Thus, following a umask (077)
call, the file will be open in mode 600 (read/write for
the owner, no rights at all for the others).

Usually, the temporary file creation is done in three
steps:

1. unique name creation (random) ;
2. file opening using O__CREAT I O_EXCL, with

the most restrictive permissions;
3. checking the result when opening the file and

reacting accordingly (either retry or quit).

How create a temporary file ? The

functions return pointers to randomly created names.
The first function accepts a NULL argument, then it
returns a static buffer address. Its content will change
at tmpnam(NULL) next call. If the argument is an
allocated string, the name is copied there, what
requires a string of at least L__trapnam bytes. Be
careful with buffer overflow!! The raan page informs
about problems when the function is used with a
NULL parameter, if _POS IX_THREAD S or
_POS IX_THREAD_SAFE_FUNCTIONS are defined.

The tempnam() function returns a pointer to a string.
The dir directory must be "suitable" (the man page
describes the right meaning of "suitable"}. This
function checks the file doesn’t exist before returning
its name. However, once again, the raan page doesn’t
recommend its use, since "suitable" can have a
different meaning according to the function
implementations. Let’s mention that Gnome
recommends its use in this way:

AUUGN Vol.23 o No.3 - 32 - October 2002

The loop used here, reduces the risks but creates new
ones. What would happen ff the partition where you
want to create the temporary file is full, or if the
system already opened the maximum number of Fries
available at once...

The

function creates an unique filename and opens it.
This file is automatically deleted at closing time.

With GlibC-2.1.3, this function uses a mechanism
similar to tmpnam() to generate the fflename, and
opens the corresponding descriptor. The file is then
deleted, but Linux really removes it when no
resources at all use it, that is when the File descriptor
is released, using a close () system call.

The simplest cases don’t require filename change nor
transmission to another process, but only storage and
data re-reading in a temporary area..We therefore
don’t need to know the name of the temporary ffie but
only to access its content. The tmpfile () function
does it.

The man page says nothing, but the Secure-Programs-
HOWTO doesn’t recommend it. According to the
author, the specifications don’t guarantee the File
creation and he hasn’t been able to check every
implementation. Despite this reserve, this function is
the most efficient.

Last, the

functions create an unique name from a template
made of a string ending with "xxxxxx". These ’X’s are
replaced to get an unique Fflename.

According to versions, mktemp () replaces the first five
’X’ with the Process ID (PID) ... what makes the name
rather easy to guess: only the last ’X’ is random.
Some versions allow more than six ’X’.

mkstemp() is the recommended function in the
Secure-Programs-HOWTO. Here is the method:

These functions show the problems concerning
abstraction and portability. That is, the standard
library functions are expected to provide features
(abstraction)... but the way to implement them varies
according to the system (portability). For instance, the
tmpf±le{) function opens a temporary ffie in
different ways (some versions don’t use O__EXCL), or
inks temp () handles a variable number of ’X’ according
to implementations.

CONCLUSION

We flew over most of the security problems
concerning race conditions to the same resource. Let’s
remember you must never assume that two
consecutive operations are always sequentially
processed in the CPU unless the kernel manages this.
K race conditions generate security holes, you must
not neglect the holes caused by relying on other
resources, such as variables shared between threads
or memory segments shared using shrngei2 ().
Selection access mechanisms (semaphore, for
example) must be used to avoid hard to discover
bugs.

LINKS

Secure-Programs-HOWTO by David A.
Wheeler: www.linuxdoc.or~/HOWTO/Secure-
Pro~rams-HOWTO/

This article is re-printed with permission. The originals
can be found at:
http : / / www. linuxf ocus. org /English / Septernber2001 /
article198, shtml

AUUGN Vol.23 ¯ No.3 - 33 - October 2002

Kerberos: The
Watchdog of the Ether
Author: Raj Shekhar <rajshekhar3007L’~.yahoo.co.in>

INTRODUCTION

The first computer networks were used to send
e-marls and share files and printers between
researchers and corporate employees. In such a
scenario security was not given much thought. Now
the computer networks (especially the Internet) are
used by millions for banking, shopping and filing
their tax returns, and network security has become a
major problem. Network security can be divided into
four areas.

Secrecy
Secrecy has to do with keeping information out of the
reach of nosy unauthorized people.

Authentication
Authentication deals with determining the identity of
the communication partner, whether it/he/she is an
impostor or the real thing.

l~lon repudiation
Non repudiation deals with signatures: it uniquely
identifies the sender of a message or file. How can you
prove that the order for "10 million left shoes only"
came from your customer when he claims he ordered
"10 right shoes only".

Integrity control
Integrity control assures that vital data has not been
modified. Integrity is critical for conducting commerce
over the Internet. Without assured integrity, purchase
orders, contracts, specifications, or stock purchase
orders could be modified with devastating effects.

NEED FoR AUTHENTICATION

Why do we need an authentication service? An
authentication service verifies the identity of the
colnmunication partner. Authentication is a
fundamental building block of a secure network
environment. If a server knows for certain the identity
of its client, it can decide whether to provide it a
particular service (for example., printing facility) or
not, whether to give the user special privileges etc. As
an aside authentication and authorization are
different. If user Foo says "delete file bar", then the
problem of verifying whether the command came from
Foo is authentication. The problem of verifying
whether Foo has permission to delete file bar is
authorization.

Let’s take an example of Alice, who wishes to deal
with Bob, her banker. In real life Bob and Alice can
authenticate each other by recognizing each others
faces, voices or handwriting. However if they wish to
transact over network none of these options are
available. How can Bob be sure that the request to
transfer all of Alice’s money to a secret Swiss bank
account came from Alice and not from Eve?

This is where an authentication service comes in.
Alice starts by sending out a message to Bob. As
these messages are being sent, we have Eve, an
intruder, who may intercept, modify or replay the
messages to trick Alice and Bob or just to throw a
spanner in the works. Nevertheless when the
authentication is complete, Alice is sure she is talking
to Bob and Bob is sure that he is talking to Alice.

ENTER KERBEROS

Kerberos was created by MIT as a solution to network
security problems. It has its roots in Project Athena,
started in 1983. The aim of Project Athena was to
create an educational computing environment built
around high-performance graphic workstations, high
speed networking, and servers of various types.
Project Athena used Kerberos as its authentication
system. The name Kerberos comes from Greek
mythology; it is the three-headed dog that guarded
the entrance to Hades. The Kerberos protocol uses
strong cryptography so that a client can prove its
identity to a server (and vice verse) across an insecure
network connection. After a client and server have
used Kerberos to prove their identity, they can also
encrypt all of their communications to assure privacy
and data integrity as they go about their business.

From http: //web.mit. edu/Kerberos/www/

Many of the protocols used in the Internet do not
provide any security. Tools to "sniff’ passwords
off the network are in common use by systems
crackers. Thus, applications which send an
unencrypted password over the network are
extremely vulnerable. Worse yet, other
client/server applications rely on the client
program to be "honesff about the identity, of the
user who is using it .Other applications rely on
the client to restrict its activities to those which it
is allowed to do, with no other enforcement by
the server.

The original design and implementation of Kerberos
Versions 1 through 4 was the work of two former
Project Athena staff members, Steve Miller of Digital
Equipment Corporation and Clifford Neuman (now at
the Information Sciences Institute of the University of
Southern California), along with Jerome Saltzer,
Technical Director of Project Athena, and Jeffrey
Schiller, MIT Campus Network Manager. Many other
members of Project Athena have also contributed to
the work on Kerberos. The latest version of Kerberos 4
from MIT is patch level 10.it is officially considered
"dead" by MIT; all current development is
concentrated on Kerberos 5. The latest version of
Kerberos 5 is 1.2.1.

SOME KEYWORDS FIRST

The art of devising ciphers is known as cryptography
and breaking them is known as cryptanalysis;
together they are known as cryptology. The message
to be encrypted is known as plaintext or cleartext.
The plaintext is encrypted by using a function, which

AUUGN Vol.23 ® No.3 - 34 - October 2002

takes as a parameter a key. The output of the
encryption process is known as ciphertext .When
ciphertext is put through a decryption function, we
get back the plaintext. Going back to our story of
Alice and Bob, they (Alice and Bob) are sometimes
referred to as principals, the main characters of the
story.

Traditionally, the encryption key is same as the
decryption key. The key is known only to the
principals. Such a key is known as shared secret
key. However in a cypto system proposed by Dfffie
and Hellman (researchers at Stanford University) in
1976, the encryption and decryption keys are
different. The key to be used for encryption is made
public so that messages to be sent to that user can be
encrypted using the publicly available key. This key is
known as the public key. Each user also has a
private key ,known only to the user, which is used
for decrypting messages sent to the user. This system
is known as public-key cryptography , to contrast
with shared-key cryptography. The RSA algorithm is
an example of public-key cryptography.

AND Sovm MoP~ ...

Before describing the authentication process, it is
important to remove ambiguities in the terms to be
used.

Often network applications are made of two parts,

¯ the part which requests a service, called the client
side of the application

¯ the part which provides the service, called the
server side of the application

In a sense, every entity that uses the Kerberos system
is a client. To distinguish between the Kerberos client
and the client of a service, the client using the
Kerberos service is known as a Kerberos client. The
term application server refers to the server part of
the application, that the clients communicate with
using Kerberos for authentication.

Kerberos is a trusted third par~y authentication
system. It is trusted in the sense that each of its
client believes the judgment of the Kerberos’ as to the
identity of each of its other client to be accurate. To
prove to the application server that it (Kerberos client)
is trusted by the Kerberos server, it uses a ticket. In
order for the Kerberos client to use any application
server, a ticket is required. The server examines the
ticket to verify the identity of the user. If all checks
out, then the client is accepted. Along with a ticket an
authenticator is also used by a Kerberos client to
prove its identity. The authenticator contains the
additional information which, when compared against
that in the ticket proves that the client presenting the
ticket is the same one to which the ticket was issued.

Kerberos maintains a database of its clients and their
private keys for authentication. Because Kerberos
knows these private keys, it can create messages
which convince one client that another is really who it
claims to be. The designers did not expect the entire

world to trust a single database, so they made
provision for having different realms. The realm is an
administrative entity that maintains authentication
data. Each organization wishing to run a Kerberos
server establishes its own "realm".

AND Now THE DETAILS

Kerberos assumes that the Kerberos clients are not
trustworthy and requires the client to identify itself
every time a service is requested from some other
Kerberos client. The technique used by Kerberos are
unobtrusive. Kerberos follows the following
guidelines:

¯ Passwords are never sent across the network in
cleartext. They are always encrypted. Additionally,
passwords are never stored on Kerberos clients or
server in cleartext.

¯ Every client has a password i.e. every application
server, user, Kerberos client has a password.

° The only entity that knows all the password is the
Kerberos server and it operates under considerable
physical security.

Both the client and the application server are required
to have keys registered with the authentication server
(AS). If the client is a user, his key is derived from a
password that he chooses; the key for a service (for
example, a printing daemon) is a randomly selected
key. These keys are negotiated during the registration
of the clients.

The authentication process proceeds as follows:

A client sends a request to the authentication
server requesting "credentials" for a given
application server. The credentials consist of a
ticket for the server and a session key.. The ticket
contains, along with other fields, the name of the
server, the name of the client, the Internet address
of the client, a timestamp, a lifetime, and session
key. This information (the ticket) is encrypted
using the key of the server for which the ticket will
be used. Once the ticket has been issued, it may
be used multiple times by the named client to gain
access to the named server, until the ticket
expires.

Why is a timestamp included? The timestamp is
put to prevent someone else from copying the
ticket and using it to impersonate the Kerberos
client at a later time. This type of attack is
known as a replay. Because clocks don’t always
work in perfect synchrony, a small amount of
leeway (about five minutes is typical) is given
between the timestamp and the current time.

The AS responds with these credentials (the ticket
and the session key), encrypted in the client’s key.
The AS also includes its name in the credentials to
convince the Kerberos client that the decryption by
the server was successful and the message came
from the server.

The AS does not know whether the client is

AUUGN Vol.23 ¯ No.3 - 35 - October 2002

actually the principal which initiated the request
for a the ticket. It simply sends a reply without
knowing or caring whether they are the same.
This is acceptable because nobody but the
Kerberos client whose identity was given in the
request will be able to use the reply. Its critical
information is encrypted in that principal’s key.

,
The Kerberos client decrypts the credentials using
its key to extract the session key. Note that
because the ticket is encrypted in the key of the
application server, a Kerberos client cannot
decrypt it.

4, In order to gain access to the application server,
the Kerberos client builds an authenticator
containing the client’s name and IP address, and
the current time. The authenticator is then
encrypted in the session key that was received
with the ticket for the server. The client then sends
the authenticator along with the ticket to the
server.

5. The service decrypts the ticket with its own key,
extracting the session key and the identity of the
Kerberos client which the server sent it inside the
ticket. It then opens the authenticator with the
session key. The authenticator and the ticket
demonstrate the identity of the client..

6. The session key (now shared by the client and
application server) is used to authenticate the
client, and may optionally be used to authenticate
the server. It may also be used to encrypt further
communication between the two parties or to
exchange a separate sub-session key to be used to
encrypt further colnmunication.

Tm~ TICKET GRANTING TICKET

One of the goals of the Kerberos system is to remain
as unobtrusive as possible. In the above exchange,
the Kerberos client has to enter in a password every
time it has to decrypt the credentials passed to it by
the AS . If the Kerberos client is a user it becomes
quite irritating to enter his password to have a file
printed or whenever he wants modify a file on the
network (remember that the key is derived from the
user’s password). The obvious way around this is to
cache the key derived from the password. But caching
the key is dangerous. With a copy of this key, an
attacker could impersonate the user at any time (until
the password is next changed).

Kerberos resolves this problem by introducing a new
agent, called the ticket granting server (TGS). The
TGS is logically distinct from the AS, although they
may reside on the same physical machine. (They are
often referred to collectively as the KDC--the Key
Distribution Center). The function of the TGS is as
follows. Before accessing any regular service, the user
requests a ticket to contact the TGS, just as if it were
any other service. This usually occurs when the user
first logins into the system. This ticket is called the
ticket granting ticket (TGT). After receiving the TGT,
any time that the user wishes to contact a service, he
requests a ticket not from the AS, but from the TGS.

Furthermore, the reply is encrypted not with the
user’s secret key, but with the session key that the AS
provided for use with the TGS. Inside that reply is the
new session key for use with the regular service. The
rest of the exchange now continues as described
above. The TGT is good only for a fairly short period,
typically eight hours.

CROSS I~EALM AUTHENTICATION

The Kerberos protocol is designed to operate across
organizational boundaries. A client in one
organization can be authenticated to a server in
another. Each organization wishing to run a Kerberos
server establishes its own "realm". The name of the
realm in which a client is registered is part of the
client’s name, and can be Used by the application
server to decide whether to honor a request.

By establishing "inter-realm" keys, the administrators
of two realms can allow a client authenticated in the
local realm to use its authentication remotely The
exchange of inter-realm keys registers the ticket-
granting service of each realm as a principal in the
other realm. A client is then able to obtain a ticket-
granting ticket for the other realm’s ticket-granting
Seladce from its local realm. When that ticket-granting
ticket is used, the other ticket-granting service uses
the inter-realm key (which usually differs from its
own normal TGS key) to decrypt the ticket-granting
ticket, and is thus certain that it was issued by the
client’s own TGS. Tickets issued by the remote ticket-
granting service will indicate to the end-service that
the client was authenticated from another realm.

CONCLUSION

Kerberos is not a one-shot solution to the network
security problem. Trust is inherent throughout the
system: the client trusts Kerberos, ff it correctly
provides the client’s encryption key. The application
Ianasts the client ff the client successfully provides a
ticket that is encrypted using the server’s key. In this
trust lies the weakness of the system.

Specifically speaking, secret keys should be kept just
that, secret. If an intruder somehow steals a
principal’s key, it will be able to impersonate the
principal. "Password guessing" attacks are not solved
by Kerberos. If a user chooses a poor password, it is
possible for an attacker to successfully mount an
dictionary attack. Kerberos makes no provisions for
client’s security; it assumes that it is running on
trusted clients with an untrusted network. If the
client’s security is compromised, then Kerberos is
compromised as well. However, the degree to which
Kerberos is compromised depends on the host that is
compromised. If an attacker breaks into a multi-user
machine and steals all of the tickets stored on that
machine, he can impersonate the users who have
tickets stored on that machinebut only until those
tickets expire.

This article is re-printed with permission. The originals
can be found at:
http : / / www. linuxgazette, com/ is s ue82 / shekhar, html

AUUGN Vol.23, No.3 - 36 - October 2002

Process Tracing Using

Author: Sandeep S <sk_nellayi@.rediffmail.com >

The ptrace system call is crudal to the working of
debugger programs like gdb - yet its behaviour is not
very well documented - unless you believe that the
best documentation is kernel source itselfi. I shall
attempt to demonstrate how ptrace can be used to
implement some of the functionality available in tools
like gdb.

1o ~NTRODUCTION

ptrace0 is a system cal!. that enables one process to
control the execution of another. It also enables a
process to change the core image of another process.
The traced process behaves normally until a signal is
caught. When that occurs the process enters stopped
state and informs the tracing process by a wait() call.
Then tracing process decides how the traced process
should respond. The only exception is SIGKILL which
surely kills the process.

The traced process may also enter the stopped state
in response to some specific events during its course
of execution. This happens only ff the tracing process
has set any event flags in the context of the traced
process. The tracing process can even kill the traced
one by setting the exit code of the traced process.
After tracing, the tracer process may kill the traced
one or leave to continue with its execution.

Note: Ptrace0 is highly dependent on the architecture
of the underlying hardware. Applications using ptrace
are not easily portable across different architectures
and implementations.

2. MOaE DETAILS

The prototype of ptrace0 is as follows:

#include <sys/ptrace.h>
long int ptrace(

enum ___ptrace_request request,
pid_t pid,
void * addr,
void * data)

Of the four arguments, the value of request decides
what to be done. Pid is the ID of the process to be
traced. Addr is the offset in the user space of the
traced process to where the data is written when
instructed to do so. It is the offset in user space of the
traced process from where a word is read and
returned as the result of the call.

The parent can fork a child process and trace it by
calling ptrace with request as PTRACE_TRACEME.
Parent can also trace an existing process using
PTRACE_ATTACH. The different values of request are
discussed below.

2.1 How DOES PTRACE0 WORK.

Whenever ptrace is called, what it first does is to lock
the kernel. Just before returning it unlocks the
kernel. Let’s see its working in between this for
different values of request.

PTR~CF.,_TRACEM~. This is called when the child is
to be traced by the parent. As said above, any signals
(except SIGKILL), either delivered from outside or
from the exee calls made by the process, causes it to
stop and lets the parent decide how to proceed. Inside
ptrace0, the only thing that is checked is whether the
ptrace flag of the current process is set. If not,
permission is granted and the flag is set. All the
parameters other than request are ignored.

PTRACE_ATTACH: Here a process wants to control
another. One thing to remember is that nobody is
allowed to trace/control the init process. A process is
not allowed to control itself. The current process
{caller} becomes the parent of the process with
process ID pid. But a getpid{} by the child {the one
being traced} returns the process ID of the real
parent.

What goes behind the scenes is that when a call is
made, the usual permission checks are made along
with whether the process is init or current or it is
already traced. If there is no problem, permission is
given and the flag is set. Now the links of the child
process are rearranged; e.g., the child is removed
from the task queue and its parent process field is
changed (the original parent remains the same). It is
put to the queue again in such a position that init
comes next to it. Finally a SIGSTOP signal is delivered
to it. Here addr and data are ignored.

PTRACE_DETACH: Stop tracing a process. The tracer
may decide whether the child should continue to live.
This undoes all the effects made by
PTRACE_ATFACH/lYrRACE_TRACEME. The parent
sends the exit code for the child in data. Ptrace flag of
the child is reset. Then the child is moved to its
original position in the task queue. The pid of real
parent is written to the parent field. The single-step
bit which might have been set is reset. Finally the
child is woken up as nothing had happened to it;
addr is ignored.

PTRA CE_PEEKTEX T, PTRA CE_PEEKDA TA,
PTRACF.,_PEEKUSER: These options read data from
child’s memory and user space. PTRACE_PEEKTEXT
and PTRACE_PEEKDATA read data from memory and
both these options have the same effect.
PTRACE_PEEKUSER reads from the user space of
child. A word is read and placed into a temporary
data structure, and with the help of put_user0 (which
copies a string from the kerners memory segment to
the process’ memory segment) the required data is
written to data and returns 0 on success.

In the case of PTRACE_PEEKTEXT and

AUUGN Vol.23 * No.3 - 37 - October 2002

PTRACE_PEEKDATA, addr is the address of the
location to be read from child’s memory. In
PTRACE_PEEKUSER addr is the offset of the word in
child’s user space; data is ignored.

PTRACE_PO~Ed~T, PTRACE_POKEDATA,
PTRACE_POI~USEI~ These options are analogous to
the three explained above. The difference is that these
are used to write the data to the memory/user space
of the process being traced. In PTRACE_PO~XI"
and PTRACE_POKEDATA a word from
location data is copied to the child’s memory location
addr.

In PTRACE_POKEUSER we are trying to modify some
locations in the task_struct of the process. As the
integrity of the kernel has to be maintained, we need
to be very careful. After a .lot of security checks made
by ptrace, only certain portions of the task_struct is
allowed to change. Here addr is the offset in child’s
user area.

PTRACE_SYSCALL, PTRACE_CON~. Both these
wakes up the stopped process. PTRACE_SYSCALL
makes the child to stop after the next system call.
PTRACE_CONT just allows the child to continue. In
both, the exit code of the child process is set by the
ptrace0 where the exit code is contained in data. All
this happens only ff the signal/exit code is a valid
one. Ptrace0 resets the single step bit of the child,
sets/resets the syscall trace bit, and wakes up the
process; addr is ignored.

PTRACF.,_SINGLESTEP. Does the same as
PTRACE_SYSCALL except that the child is stopped
after every instruction. The single step bit of the child
is set. As above data contains the exit code for the
child; addr is ignored.

PTRACE_KILL: When the child is to be terminated,
PTRACE_KILL may be used. How the murder occurs
is as follows. Ptrace0 checks whether the child is
already dead or not. If alive, the exit code of the child
is set to sigldII. The single step bit of the child is
reset. Now the child is woken up and when it starts to
work it gets killed as per the exit code.

2.2 MOR~ MACHINE-DEPENDENT CALLS

The values of request discussed above were
independent on the architecture and implementation
of the system. The values discussed below are those
that allow the tracing process to get/set (i.e., to
read/write) the registers of child process. These
register fetching/setting options are more directly
dependent on the architecture of the system. The set
of registers include general purpose registers, floating
point registers and extended floating point registers.
These more machine-dependent options are discussed
below. When these options are given, a direct
interaction between the registers/segments of the
system is required.

PTRA CE_GETREGS, PTRA CE_GETFPREGS,

PTRACE_GETFPXREGS: These values give the value
of general purpose, floating point, extended floating
point registers of the child process. The registers are
read to the location data in the parent. The usual
checks for access on the registers are made. Then the
register values are copied to the location specified by
data with the help of getreg0 and put_user0
functions; addr is ignored.

PTRA CE_SETRE GS , PTRA CE_SETFPRE GS ,
PTRACE_SETFPXREGS: These are values of request
that allow the tracing process to set the general
purpose, floating point, extended floating point
registers of the child respectively. There are some
restrictions in the case of setting the registers. Some
are not allowed to be changed. The data to be copied
to the registers will be taken from the location data of
the parent. Here also addr is ignored.

2.3 RETURN VALUES OF PTRACE0

A successful ptrace0 returns zero. Errors make it
return- 1 and set errno. Since the return value of a
successful PEEKDATA/PEEKTEXT may be -1, it is
better to check the errno. The errors are

EPERM: The requested process couldn’t be traced.
Permission denied.

ESRCH: The requested process doesn’t exist or is
being traced.

EIO:. The request was invalid or read/write was made
from/to invalid area of memory.

EFAULT. Read/write was made from/to memory
which was not really mapped.

It is really hard to distinguish between the reasons of
EIO and EFAULT. These are returned for almost
identical errors.

3. A SMALL EXAMPLE.

If you found the parameter description to be a bit dry,
don’t despair. I shall not attempt anything of that sort
again. I will try to write simple programs which
illustrate many of the points discussed above.

Here is the first one. The parent process counts the
number of insh-uctions executed by the test program
rtm by the child.

Here the test program is listing the entries of the
current directory:

AUUGN Voi.23 * No.3 - 38 - October 2002

open your favourite editor and write the program.
Then run it by typing

You can see the number of insta-uctions needed for
listing of your current directory, cd to some other
directory and run the program from there and see
whether there is any difference. (note that it may take
some tilne for the output to appear, if you are using a
slow machine).

4. CONCLUSION

Ptrace0 is heavily used for debugging. It is also used
for system call tracing. The debugger forks and the
child process created is traced by the parent. The
program which is to be debugged is exec’d by the
child (in the above program it was "Is") and after each
instruction the parent can examine the register values
of the program being run. I shall demonstrate
programs which exploit ptrace’s versatility in the next
part of this series. Good bye till then.

SANDEEP ~

I am a final year student of Government Engineering
College in Thrissur, Kerala, India. My areas of
interests include FreeBSD, Networking and also
Theoretical Computer Science.

Copyright © 2002, Sandeep S.Copyinglicense
[http: //www.linuxgazette.com/copying.htn~..l. First
published in Issue 81 of Linux Gazette, August 2002

This article is re-printed with permission. The originals
can be found at:
http: / / www. linuxgazette, corn/issue81/sandeep, htrnl

Exploring Perl
Modules - Part 1: On-
The-Fly Graphics with
GD
Author: Pradeep Padala <.o_.oadala@.vahoo.com>

WELCOME TO EXPLORING PERL MODULES~..~.~

Perl modules are considered to be one of the strongest
points for perl’s success. They contain a lot of re-
usable code and of course are free. This is an attempt
to trap the treasure trove. There are lot of tutorials
and even books written on popular modules like CGI,
DBI etc.. For less popular modules, users are left with
documentation which is cryptic and sometimes
incomplete.

I am starting a series of articles that will attempt to
explain some of the less popular but useflal modules.
During the last year, I came across and programmed
with numerous perl modules. I will explain the
modules with numerous useflll examples from my
experience. We will take one module at a time and
explore its various uses.

WHO SHOULD BE READING THESE

Well, you should know perl. We won’t be delving
much into the basics of perl. There are plenty of
documentation, articles and books on perl. Learning

AUUGN Vol.23 o No.3 - 39 - October 2002

Perl [by Randal Schwartz & Tom Phoenix, ISBN
0596001320] is often recommended for beginners.
Once you gain experience, you can try Programming
Perl [by Larry Wall, Tom Christiansen and Jon
Orwant, ISBN 0596000278].

If you are an average perl programmer and haven’t
used lot of modules, this is the right place. Modules
provide a great way to re-use code and write efficient
and compact applications. In each article we will
graduate from simple examples to complex examples
ending in a real-world application, if appropriate.

]_NTRODUCTION TO 1VIODULES

Modules provide an effective mechanism to import
code and use it. The following line imports a module
and makes its functions accessible.

For example if you want to use GD, you would write

FINDING AND INSTALLING MODULES

¯ Install the modul make install

READY TO Go
So you have installed your favourite module and are
raring to learn. In this article we will explore the perl
GD module, which provides an interface to GD library
[http://www.boutell.com/Kd/]. We will also be using
the CGI module for the web interface. You don’t need
to know a great deal of CGI to understand this article.
I will explain things where necessary.

GRAPHICS WITH GD

Let’s start the wheels with a simple and effective
example:

Before we plunge into the details of programming,
here are some instructions for finding and installing
modules. We will be using various modules, and most
of them are not installed by default. Some modules
require libraries which may or may not have been
installed. I will mention the things required whenever
appropriate. Here are generic instructions for
downloading and installing modules.

An easy way to install the module is by using the
CPAN module. Run CPAN in interactive mode as

Then you can do various tasks like downloading,
decompressing and installing modules. For example,
for installing GD you can use

If you are like me and and are accustomed to
configure, make, make install method, here are the
steps to install a module.

Find the module in CPAN’s list of all modules [at
http: //www. cpan. org/modules/00modlist.lon~, ht

Download the latest version of the module. For
example, the latest GD module can be downloaded
from http://www.cpan.orR/authors/id/LDS/GD-
1.40.tar.~z
Unzip the module

Build the module

(or)

This is the example given in the GD man page
[see http://stein.cshi, orR/WWW/soffware/GD/1 with
little modifications. This produces a small rectangle
with a red oval with blue border. Let’s dissect the
program.

One of the first things you do with GD library, is
create an image handle to work with. The line

creates and image with the specified width and
height. You can also create an image from an existing

AUUGN Vol.23 - No.3 - 40 - October 2002

image as well. It is useful for manipulating existing
images. We will see an example on this in the later
part of the article.

Next we need to allocate some colors. As you can
guess, the RGB intensities need to be specified for
initializing colors. Since we will be using lots of colors,
let’s write a small function which will initialize a
bunch of colors for use.

I often refer to this page
[http: //www.hypersolutions.org/pages/rgbhex.html]
for some nice rgb combinations.

The next few lines are straightforward and pretty
much self-explanatory. The last lines regarding the
file creation require special mention. Since we will be
writing an image to a file, we need to put the file
handle in binary mode with

This actually is a no-op on most UNiX-like systems.

Then we write to the file with the usual print
command. GD can print the image in various formats.
For example if you want to print a jpeg image instead
of png, all you need to do is

SIMPLE DRAWING

The output looks like Figure 1

GD offers some simple drawing primitives which can
be combined to generate complex graphics. Examine
the following script that gives a whirlwind tour of all
the simple primitives.

Figure 1: Basic Output from GD

The above script is self-explanatory. The polygon
needs a little bit of explanation. In order to draw a
polygon, you first have to make the polygon and then
draw it. Of course, a polygon must have at least three
vertices.

DRAWING TEXT

So what about text? You can draw text in some of the
simple fonts provided by GD or use a True Type font

AUUGN Vol.23 o No.3 - 41 - October 2002

available on your system. There are two simple
functions available to draw text.

The output picture looks like Figure 2.

Smal i font

Nedium Bold Fent

Large ~ont
Giant ~ont

Figure 2: Playing with Fonts

As you can see, these fonts are quite limited and not
so attractive. The following section shows the usage of
True Type Fonts with GD

TRUE TVVE FONTS

You can use the true type fonts available on your
system to draw some nice text. The function stringFT
is used to draw in TYF font.

Here’s an example showing the usage

The output looks like this:

A T -F font

Another one-here
Figure 3: True Type Fonts

LETVS GO ONLINE

Now that we have seen some basic uses of GD, let’s
turn our attention to web graphics. So how do you
output an image through CGI? Simple. Add the
following lines to the scripts instead of printing to a
File.

AUUGN Vol.23 - No.3 - 42 - October 2002

This is all you need to know about CGI for now. If you
already know CGI, you can enhance your code for
handling complex web interaction. Let’s
write a small program which reads an image and
displays a resized version of it. It might be useful for
showing thumbnails.

In this example, the function newFromJpeg0 reads a
jpeg file. Then we then calculated the boundaries and
resized it accordingly. A demo of the resizing can be
found [at
http: //www. cise.ufl, edu/~ppadala/perl/exploring/
-bin/resize.cgi].

With this resizing knowledge we can create a small
online photo album. In this we use resizing to show
smaller images and display the original image when
the user clicks on the smaller images.

This script uses a few CGI features. The function
param returns theparameter value, if supplied. This
value is used to display the proper image. If the user
wants to see an original image, it is
displayed.Otherwise a temporary resized image is
created and displayed.

A demo of the album is [available at
http: //www.cise.ufl. edu/~ppadala/perl/explorinK/cg__A
-bin/album.cgi>l

A GRAPmCAL HIT COUNTER

AUUGN Vol.23 ® No.3 - 43 - October 2002

Now let us turn our attention to another popular web
application "A Hit Counter". There are many counter
scripts available on web. Here’s our attempt to write
one.

The counter works like this. Every time a web-page is
accessed, the cgi script records the hit count and
creates an image on-the-fly. So why wait? Let’s write
it.

This script can be used by adding a line like this in
your web page.

The id needs to be unique. A sample counter can be
seen on my home page [at
http://www.cise.ufl.edu/~ppadala].

Now to the innards of the script. The counter script

AUUGN Vol.23 o No.3 - 44 - October 2002

has three important functions.

update_counter_value: This function reads the hit
count from a file named html_file.counter and
increments it. It creates the counter file, ff one already
doesn’t exist. It also locks the file to avoid conflicts
due to multiple simultaneous accesses.

print_counter: Prints the counter by attaching the
counter digits in a new image. The digits are read
from an appropriate directory.

print_error_image: This is a useful function to show
error images. You can use it in your programs, for
reporting errors through GD.

You need to have the digits (0-9) in jpg or png format.
Sites like Counter Art dot Com
[http://www.counterart.com/] provide free counter
digits. In my next al~cle, I’ll discuss how to generate
digits on the fly.

I developed a personal website statistics package
woven around this counter concept. It provides much
more than a simple counter. It logs the accesses,
shows visitor statistics and much more. Check it out
at [http: //pstats.sourceforge.net].

You can also use the Ffle::CounterFfle module for
managing the counter file.

Coming Up

I hope you enjoyed reading this article. In the coming
months, we will look at GD::Graph and PerlMagick
modules. Send me comments at this
address p_padala@yahoo.com.

ACKNOWLEDGEMENTS

My best friend ravi has become the official editor for
all my writings. I am indebted to him for looking
through all the gibberish I write and make sense out
of it. Thanks ravi :-)

I thank Benjamin A. Okopnik for reviewing the article
and pointing out some nice perl hacks.

PRADEEP PADALA

I am a master’s student at University of Florida. I love
hacking and adore Linux. My interests include solving
puzzles and playing board games. I can be reached
through p_padala@yahoo.com or my web site
[at http: //www.cise.ufl. edu/~ppadala].

Copyright © 2002, Pradeep Padala. Copying
license http: //www.linux~azette.com/copying.html.
First published in Issue 81 of Linux Gazette, August
2002

This article is re-printed with permission. The originals
can be found at:
http: / / www. linuxgazette, corn/issue81/padalca html

An Introduction to
GNU Privacy Guard
Author: David D. Scribner <dscribner@,bigfoot.com>

ABSTRACT

An article targeting users new to GnuPG on
GNU/Linux (and UNIX) systems, and how it can play
an important role in their personal and business lives
in inceasing the security and communication of
digital medium. The article explains some of what
GnuPG can do, the very basics in using it, and why it
can be so important in becoming a valuable utility in
anyone’s toolbox, both personally and professionally.

AN INTRODUCTION TO GNU PmVAC¥ GUARD

’IYs personal IYs private. And ifs no one’s business
but yours.’ - Philip Zimmermann

GNU Privacy Guard, or GnuPG
(http: //www.gnupg. org/), is the open-source
equivalent of Philip Zimmermann’s PGP (Pretty Good
Privacy) encryption/authentication software released
under GPL. Philip Zimmermann and others developed
PGP in 1990 using the Rivest-Shamir-Adleman (RSA)
public-key cryptosystem to answer the need for
private and secure communications between
individuals over digital medium. After its release to
the public in 1991, it quickly grew to become the de
facto standard worldwide for secure public-key
encryption.

Even though the concept of public-key cryptography
for encryption purposes was introduced close to three
decades ago, and PGP has been around for over a
third of that, you’ll likely find that for some reason
only a small number of PC users take full advantage
of public-key security. I, myself, am guilty of this.
When I first started using PGP 2.6 for DOS in the
mid-nineties, it was used for little more than
encrypting local documents and fries for my own use.
Few outside of technical circles had heard of it, and
the majority of the people I talked to felt it was too
cumbersome to use on a regular basis. That was
then.

Today, I use GnuPG for a variety of tasks. Whether
it’s to sign and encrypt documents and contracts
submitted to businesses, encrypt local files, or merely
sign email and files to ensure others that no
modifications have occurred to its content, I have
found GnuPG to be a ’must have’ utility kept close at
hand when using my PCs.

Why did I switch from PGP to GnuPG? A lot of
personal reasons, really, but it all basically came
down to trust, and the fact that I believe in GPL.

GnuPG is also fully OpenPGP compliant, and was
built from scratch from the ground up. It does not
natively use any patented algorithms, supports a very
wide array of current cipher technologies, is built to

AUUGN Vol.23 ® No.3 - 45 - October 2002

easily integrate future cipher technologies, and
decrypts and verifies PGP versions 5.x, 6.x and 7.x
messages. I still keep my early RSA keys around in
case the need arises to decrypt a file from one of my
old archives, but eventually even those fries will be
wiped, or re-encrypted with one of the newer, and
perhaps stronger cipher algorithms available with
GnuPG.

GnuPG is available for various flavors of Linux/UNIX,
as well as Windows and Macintosh operating systems.
As a GNU/Linux advocate, the focus of this article
will be on using GnuPG with Linux, though the
commands and procedures listed would apply across
any of the supported platforms. As there is already
very free documentation for GnuPG, including the
man page, The GNU Privacy Handbook, the GnuPG
mini-HOWTO and the GnuPG FAQs, I won’t go into
great detail on all the many command-line operations
or configuration settings. Instead, I’ll try to explain in
simple terms what GnuPG can do, the very basics in
using it, and why it can be so important in becoming
a valuable utility in your toolbox, both personally and
professionally.

PRIVACY~ DO YOU NEED IT?

When most people talk about privacy and strong
encryption in the same sentence, they often think the
only people needing such things must be doing
something wrong, illegal, or involved with government
espionage.

Spies, smugglers, mobsters, and terrorists come to
mind, so you, not fitting into any of these categories
and being an honorable and upstanding citizen
certainly don’t need to be involved with this kind of
stuff, right?

You may also think, with Linux’s advanced security
features such as a protected filesystem structure,
memory and strong policies in place, along with a
good firewall and IDS, your private data (that list of
important account numbers for example) is safe.
Perhaps... at least until your fortress gets cracked. By
then however, your private data may have been
compromised, leaving you wondering what additional
steps could have been taken to protect it.

Perhaps you conduct a lot of your business via emafl,
sending quotes, contracts, or financial reports over
the Internet to your corporation, boss, or business
partners. If you’ve used the Internet for any length of
time, surely you know that the emafl containing your
documents takes multiple paths, and makes multiple
’pit stops’ at various servers before it reaches its
destination. Are you sure that when your document
passes through these servers that your files and
communications are not scanned, even forwarded on
to a paying competitor?.

Maybe your data isn’t that confidential, but you
would still lfl~e to ensure that the document or
communication you’re submitting reaches its final
destination exactly as it was sent.., no additions, no
subtractions, no modifications at all. Can you be sure
of this when sending it via standard emafl

procedures?

Suppose you don’t have any secrets, and there’s not
any real concern about someone modifying your
email. Do you st~ want your ISP’s service technician
with nothing better to do snooping through your
email on the server while it’s sitting there waiting to
be retrieved to know all about your life? If you’re in a
small or rural town, your ISP may be just a core crew
that rims the show. Do you trust them fully with your
account? If you sometimes email your family traveling
itineraries, information about doctor visits or what
stocks you’ve bought recently, do you really want
your ISP to possibly know this information, too?

Even if you’re using a large corporate ISP with
established privacy policies; can you be sure that
their policy is enforced all the way down, and at every
level? Believe me, there’s been more than one
technician discovered snooping through user’s
mailboxes without their knowing. Some of these
’technicians’ consider such a practice as entertaining
as others might consider soap operas! As Philip
Zimmermalm stated in the original PGP User’s Guide,
’It’s personal. It’s private. And it’s no one’s business
but yours.’ If you send plain-text email over the
Internet, it may be personal, and it may be private,
but it can easily become anyone else’s business, too!

When you start thinking about it, you will no doubt
fmd many areas in your life needing increased
privacy, encryption and digital signatures, which may
include private fries, documents and emafl. If the need
arises to share those files, documents and emafl with
others, you may want to seriously consider
incorporating public-key security into your routines.

PUBLIC-KEY SECURITY

The concept behind public-key security is that there
is no need to disclose what should be kept most
private, your secret key. With conventional encryption
techniques, you encrypt a file for example with a
password or passphrase. However, should you need
to deliver that file to someone else, you will also need
to disclose that password or passphrase to him or her
so they can decrypt the file.

How can this be accomplished, and securely?. Well,
you could personally hand-deliver the key to the other
party, along with the file, however this may not
always be possible due to distance or other
restrictions. You could emafl the file, then snail-mail,
phone or fax the key to them, but between the time it
leaves your hand, mouth or fax machine and is
received by the other party, you still can’t be 100%
sure that it wasn’t intercepted.

You could also emafl the file, and in a separate email,
disclose the key.

However even this is not secure, and less so than one
of the above methods at that! Short of hiring trusted
’key couriers’ to deliver your password or passphrase
such as government agencies might do, there is one
alternative and that is to use two keys. One key, kept
private, is used to decrypt or sign information, and

AUUGN Vol.23 o No.3 - 46 - October 2002

the other key is made ’public’ and is used to actually
encrypt the data or verify the signature.

That is the basis behind GnuPG and PGP techniques.
Using various cipher algorithms you create ’key rings’
to hold your secret (private) and public keys. Your
secret keys are protected by passphrases known only
to you and should be kept secure. But your public
key, which can be dispersed freely, instructs the
GnuPG/PGP application used by others on how to
encrypt the data, after which only one key can then
decrypt it... your secret key.

Before you create your first key pair, you should come
up with a good passphrase to protect it. The word
’passphrase’ is used, as it should really be more than
just a pass ’word.’ There are utilities available to help
you choose a passphrase ff needed (Diceware is one
such utility), but the general idea is to come up with a
string of words or characters using mixed case, and
one that includes numbers, punctuation marks and
special characters that will provide strong resistance
to cracking. The trick is to come up with a
passphrase you’re not likely to ever forget! You could
use a single password, but ff you’re protecting your
data with strong encI3rption ciphers, why make the
weakest link (the passphrase) even weaker with
something that might make it easier for someone to
crack? You could also use a sentence perhaps, just be
careful. Most all of the common and well known
’phrases’ and quotes are already included in a
cracker’s toolkit, right along with all the dictionary
words, and in multiple languages at that.

You can always change your passphrase after the
secret key has been generated as well. Based on your
use of GnuPG, with regards to privacy and
surroundings, the passphrase should be changed
regularly. Some suggest monthly, but if you ever find
yourseK doubting the security of your passphrase
because someone was too near your shoulder when it
was last entered, it should be changed the first
chance you get. This feature is also handy if you fred
yourself wanting to experiment and work with GnuPG
for a short session of learning.., change your
passphrase to something that can be quickly entered
for the exercise, then change it back when your
session is over.

More information on creating a strong passphrase can
be found in the documentation or on the Internet, but
the same common sense used in creating a strong
password should be used in creating a stronger
passphrase. Don’t write it down. Don’t tell it to
anyone. And remember, if you forget your
passphrase, you’re sunk. There’s truly no way to
retrieve it.

So, with your fleshly installed copy of GnuPG you can
create a pair of these keys easily with:

By following the prompts, you will indicate what type
of key you want to create (signing, encryption, or
both) decide on a key size, expiration date, and enter
your name, email address and an optional comment.
You will also enter the good passphrase you decided

to protect the pair with and the key generation will
begin. After you’ve generated your first key pair, you
can see that the keys are now in your keyring with
the command: Sgpg -list-keys

This, as the command indicates, lists all keys
currently in your public keyring. If you’re just starting
out with GnuPG the only key listed will be the one
just created. In this example, the output’s format will
resemble (with your own identity of course):

In the example output above, you can see that the key
listed has a key ID of F357CB52, and contains the
name and email address of the key’s owner.

If your public keyring contains several keys for other
users, you can specify which key you want to view by
simply adding the ’key specifier’ of the key you want
to view after the ’--list-keys’ directive. The ’key
specifier’ could be the owner’s name, the key’s ID, or
the user’s emafl address.

Depending on how many keys are on your keyring, an
owner’s name could be as simple as their first name,
or their last name. If there’s only one Kathy in your
keyring, you could use Kathy. If there are two keys
belonging to Kathy, but the email addresses are
different, the email address of the chosen key could
be used. If both keys have the same name and email
addresses, the key’s ID can be used to differentiate
them.

When using an emafl address to identify a key, it’s not
necessary to use the entire emafl address, only the
part that’s unique to that user’s key.

Whatever means you use to identify that key, all
that’s necessary is for it to be unique enough to
identify the key you want. One note to make is that
when using a key ID as a specifier, since the key ID is
a hexadecimal number you can also prefix the ID with
’0x’. If you were specifying the key ID F357CB52, it
could be entered as 0xF357CB52. This is not required
for GnuPG, but as you start working more with key
servers, you will find that when using a key ID to
search their database, they need to be prefixed with
’0x’.

I highly suggest that the first thing you do after
creating a key pair is generate a revocation certificate
for that pair, then move it onto a diskette you can
keep secured someplace safe (along with a printed
hard copy of the certificate in case the medium
becomes damaged). To create a revocation certificate
for the key pair we just created (using the key ID as
exampled above), issue the command:

This will generate a revocation certificate for the key
ID F357CB52. The resulting file, ’revokedkey.asc’ is
the revocation certificate.

What is a revocation certificate and why do you need

AUUGN Vol.23, No.3 - 47 - October 2002

one? In the beginning, if you’re just experimenting
with GnuPG and haven’t dispersed your public key,
there might not be a need for one. But, once you’ve
started using GnuPG to encrypt Files and your public
key is out there for others to use, a revocation
certificate adds another layer of protection to your key
pair.

Should your secret key become compromised or lost,
or if you forget your passphrase, a revocation
certificate posted to a keyserver or sent to your
contacts to update their keyring will not only inform
them of your key’s demise, but also prevent them
from encrypting new files to that public key (and
likewise prevent you from using that key to sign or
encrypt files yourself). If your key has been
compromised, you can still use the secret key to
decrypt fries previously encrypted to or by you, and
others can still verify your signatures created before
the revocation, but it’s an added safeguard you
should take now.

If you’ve forgotten your passphrase, there’s nothing
you can do short of a brute-force attack of trying
every passphrase combination you can think of that
may have been used. And, without that passphrase
(and access to the secret key), generating a revocation
certificate is not possible. Hence the importance of
generating one before it’s too late!

ENCRYPTION & DIGITAL SIGNATURES

Since GnuPG uses the dual-key concept for increased
security, how can this be used in your personal or
business life? Let’s take a look at the various areas
where strong encryption and authentication could
apply.

Asymmetric Encryption - Asymmetric encryption is
the standard with dual-key concepts. As previously
explained, anyone can use your public key to encrypt
information, but only you can decrypt it. You might
be working on a project meant for ’limited eyes only.’
Protecting the data generated in that project via
encryption could keep competitors from uncovering,
and possibly beating you to market, with your
project’s outcome. Say it’s a programming project for
a new ’killer application’ that will revolutionize the
personal computer industry, a new product-
packaging concept that will reduce costs for your
company, or even a new and creative marketing
scheme that will rake in big bucks. It would be a
devastating blow to your project should your
competitor catch wind of it before its time, so
encrypting the flies and communications relating to
that project would defmitely help keep them out of the
loop.

Aside from other business data such as financial
reports, projections, or statistics that might serve well
being encrypted before being sent off over the
Internet, as also mentioned it doesn’t have to be
’secret’ data that should be kept from prying eyes. It
could be common data that you or I wouldn’t even
consider the need to secure, but with today’s
problems with identity theft, burglaries and crime on
the rise, perhaps we should take a second look at

some of this ’common’ data we so easily send off
without a second thought.

Phri Zimmermalm likened sending plain-text email to
a postcard. Actually, I think it’s worse. I say this in
consideration that at least those working for the US
Postal Service are government-regulated employees.
Surely those that consider government ’big brother’
might disagree, but, having a career in the computer
industry and not having known too many postal
workers personally, I have met far more network and
ISP technicians that I wouldn’t trust with a ten-foot
pole. I would dread the thought of having them know
I was taking my family on a vacation on a particular
date and wouldn’t be back for a week... I might arrive
home and fred it empty! If it’s none of their business,
encrypt it!

The general command to encrypt a File using
another’s public key is:

As an added measure of security explained later in
the article, when encrypting a file to be sent to
another GnuPG/PGP user, most prefer to also sign
the file. The colnmand for this would be: $gpg --
recipient username --sign --encrypt filename The
result of either of these two colnmands will encrypt a
file (’filename’) to a particular user’s (’username’)
public key, producing a binary encrypted file
(’filename.gpg’). If the ’--sign’ command was given, the
encrypted file would incorporate a signature produced
with your private key as well.

Symmetric (conventional) Encryption - Symmetric,
or conventional, encryption is where encrypted data
needs only one key to decrypt it, the same key it was
encrypted with. The cipher used to encrypt the
document or file is generated at the time of
encryption, and during the process you will be asked
for a passphrase. The passphrase should be different
from the one you normally use with your secret key,
particularly ff the file will be passed on to another.
You will still be faced with finding a secure way of
providing the passphrase to the recipient, but if that
person does not yet utilize a public-key system such
as that provided by GnuPG or PGP, all that’s
necessary to decrypt this file with either of those
utilities is the password or phrase used to encrypt it

Another use for symmetric encryption might be
sensitive documents or fries kept on your own system.
Although it’s advised that any truly sensitive data
should not even be kept on a system accessible to the
Internet, no doubt there’s still data on your system
that would best be protected if encrypted.

Take for example all those Internet sites and web marl
accounts you have passwords for. Some users opt for
simple passwords; some just use one password for all.
Neither of these is secure, so short of keeping a list
handy, trying to remember all these passwords can be
a daunting task. Many browsers nowadays have the
ability to store passwords, but if you change
browsers, wipe your cookies clean or suffer a hard
drive crash without having a current backup,

AUUGN Vol.23 ® No.3 - 48 - October 2002

restoring more than a few of these passwords would
be difficult for most anyone.

That’s where having a document listing these
passwords and account information can come to the
rescue. You can still use strong passwords without
the worry of forgetting them, yet at the same time you
don’t want this document sitting on your hard drive
unprotected, or worse, printed and sitting next to
your keyboard. Encrypt it! When you run into a
situation where you need a password that you can’t
remember, it only takes a second to decrypt the file to
the terminal screen, keeping it safe from prying eyes
when not needed.

No doubt you will think of plenty of other data you
might find on your hard drive that would be better left
protected with strong encryption, and especially ff
that hard drive is on a.laptop that travels.., it’s bad
enough if the laptop gets stolen, but in many
instances the loss of sensitive data kept on the laptop
can be worth more than the hardware by far!

To encrypt a file named ’filename’ using symmetric
encryption, issue the GnuPG command:

A copy of the original file in encrypted form,
’filename.gpg’, will be generated.

Digital Signatures - Although digital signatures
accompanying data don’t yet carry the weight they
deserve in most states, they can be of extreme value
in so many :instances that I’m actually surprised their
use hasn’t caught on more than they have already.

Using your secret key, you can have documents, fries
and messages ’signed’ and time-stamped to
authenticate that they actually did come from you. If
the signature verifies, the receiver can be assured
that the data was not modified in any way, and has
arrived just as it was meant to be. This can be
valuable for authors submitting stories or articles to
publishers, programmers submitting fries to the
public, or businesses sending contracts, purchase
orders or invoices to their partners. Literally just
about any time you would normally send such a
document signed with your own signature, a digitally
signed document offers the same validity and
authenticity in many cases, and prevents tampering
to boot.

GnuPG’s flexibility in signing permits signatures to be
embedded in text messages as ’clear-signed’. Since
the signature appears as ASCII text, this is useful for
emafls. The recipient can verify the signature to
guarantee that the emafl has not been altered
between the time it was sent or posted and the time it
was received if they wish, but the message remains
readable by all. To clear-sign a file named ’message’,
issue the GnuPG command:

The resulting file, ’message.asc’ can then be easily
emailed as an attachment, or the contents included in

the body of an email or posted to a newsgroup forum.
For an example of clear-signed messages you can visit
one of the GnuPG newsgroup forums, such as gnupg-
users, where you’ll find most every message signed by
the GnuPG user submitting the post. Clear-signed
signatures are often referred to as ASCII-armored
signatures. I’ll be covering ASCII-armoring in the next
section.

A digital signature can also be included along with
the document as a single file; the file is compressed
along with the included signature.

Although the file’s not actually encrypted, by using
the GnuPG decrypt command and the sender’s public
key the file can be uncompressed, restored to its
original format and the signature verified. The
signature can also be verified without decompression
in case you wish to keep the binary file intact as is.

Signatures can also be included as a detached file
separate from the original file. This accommodates
others that might not be using GnuPG or PGP
utilities, allowing the original document or file to
remain ’untouched.’ Yet, because the signature hash
was created from that file, it can still be verified as
being unmodified and the time stamp checked.

This is popular with many binary fries found on the
Interact (though in the Linux world MD5 hash
signatures are sometimes more common for this), or
with documents where an embedded signature is not
desired. In order to verify a signature, all anyone
needs is that person’s public key.

To create a detached binary signature (’filename.sig’)
for the file ’filename’, the GnuPG command would be:

Because signatures carry weight and can verify that
the data hasn’t changed, as previously mentioned it is
strongly suggested that anytime you encrypt a file
with another’s public key, the file is also signed using
your secret key prior to encryption. This adds
protection to the file in that not only can that
particular recipient be the only one to decrypt it, but
during the process they are also assured that it came
from you, and only you. The added authenticity helps
thwart attempts by someone else trying to intercept
and modify the file for nefarious means, as without
your secret key there would not be a way to reapply
the signature. To decrypt the file and make changes
they would not only need the secret key and
passphrase of the recipient, but to reapply the
signature they would also need yours.., very unlikely.
To veri~ a signature or a signed file, the GnuPG ’--
verify’ command is used. If the file includes an
embedded signature, it could be as simple as:

Or, if a detached signature accompanies a file, the
command would include both the signature file, and
the file signed, such as: Sgpg --verify sigfile.asc
signedfile

AUUGN Vol.23 ¯ No.3 - 49 - October 2002

ASCII ARMOR

Although many applications support MIME/PGP
standards and work very well with public-key
encrypted or signed files in binaly format, there may
be some instances where ASCII format files are
needed. Many email clients such as Mutt, Sylpheed
and Kmail for example fully support MIME/PGP
standards and work very well with GnuPG, but for
those MUAs lacking full support, even though there’s
very likely a plug-in available, ASCII armor comes to
the rescue.

A good example of situations where ASCII format files
might be needed is email or newsgroup postings. You
want your messages signed, permitting those using
public-key utilities to authenticate your signature, yet
still allow those that don’t to easily view the message’s
content. Or, perhaps your.company’s policies prohibit
binary attachments passing through their email
servers to or from outside networks, requiring any
binary files to first be converted to ASCII, similar to
uuencoded files.

GnuPG takes into account these needs by allowing
the user to specify that an ASCII armored file be
produced for its output. The option for this is ’--
armor’, which can be added to most any command
where ASCII format is needed. Another command-line
option you will often use in conjunction with ’--armor’
is ’--output’, which takes a filename as an argument.

You may have also seen public keys displayed as
’blocks’ of garbled ASCII text on web sites. This makes
it convenient to display the user’s public key so
visitors to the site can easily import the key into their
own keyring. As you would expect, just about any
output GnuPG generates, whether it be keys,
encrypted files or signatures, can be output as ASCII-
armored text. A few examples of producing ASCII-
armored output with GnuPG are included below.

To encrypt the file ’filename’ for recipient ’username’,
creating an armored ASCII text file (Tflename.asc’):

To encrypt the file ’filename’ for recipient ’username’,
creating a signed armored ASCII text file
(’filename.asc’):

To encrypt the file ’filename’ using a symmetric cipher
for encryption (does not include public key
information), and creating an armored ASCII text file
(’filename.asc’):

To digitally sign the file ’message’, creating an ASCII-
armored version (’message.asc’) of the file that
contains the attached signature:

To create an ASCII-armored text file named
’sigfile.asc’ as output for the detached signature, and
is for the file ’filename’, you could use the command:

~EYRINGS & ~EYSERVERS

As you’ve seen, the concept behind GnuPG and
public-key security deals with keys, and keyrings.
When you created your first pair of keys, you also
created your first keyrings. If you take a look in your
home directory, you’ll fred a hidden directory created
for the GnuPG files (~/.gnupg). Within this directory
there will be two keyring files, pubring.gpg and
secring.gpg. The pubring.gpg file is your public
keyring, and secring.gpg is your secret, or private,
keyring.

Your secret keyring, containing only the one or two
secret keys you create will remain small, however the
public keyring will grow as you collect and add more
public keys to it. Your secret keyring should be
stringently protected at all costs, but your public
keys, and keyrings ff desired, can be shared.

As you continue working with GnuPG, you will note
that many users publish their public keys on web
sites or key servers. In the past, keys were exchanged
via email, BBS or newsgroups postings. In recent
years as the popularity of public-key security has
gained ground, formal key servers have evolved to
handle the need of dispersing these keys in a more
convenient and centralized manner. After you’ve
created the keys you’ll be happy with and have
worked with GnuPG to get to know your way around
it a bit (and thoroughly memorized your passphrase!),
you’ll eventually want to start exchanging your public
key(s) with others.

You’ll also find various public keyrings dispersed on
the Internet. Many of these keyrings hold the public
keys of GnuPG/PGP users belonging to special
interest groups. As you experiment with your secret
and public keyrings, you may consider importing
several keys from one of these keyrings to see what
they’re comprised of. You will likely find keys that
have been signed by several other key holders,
include additional email addresses, or even
identifying photos. Since you may not actually know
any of these people, you will probably limit your
experiments to signing and encrypting files to your
own key sets, but importing a few ’popular’ keys from
one of these keyrings will give you an idea of what
yours can become like down the road! When you’re
done, they can be easily deleted from your keyring if
you choose.

Say for example you find a user’s key available for
download on the Internet that you want to import into
your own public keyring, and the key is named ’user-
key.asc’. After downloading the file, to import this
public key into your keyring you would use the
command:

AUUGN Vol.23 ¯ No.3 - 50 - October 2002

Likewise, to make an ASCII-armored copy of your
public key that can be emafled, included as a
download link, or whose contents can be displayed on
a web page so others can import it into their own
keyring, use the command:

This will export your key in ASCII armor format as
previously explained, for the username or key ID
specified, redirecting the output to the file
’keyname.asc’.

Key servers, or ’keyservers’ as they are sometimes
referred to, have simplified the dispersing of public
keys to the masses as it provides a somewhat
centralized repository to post and retrieve public keys
from.

Although there are several key servers out there, most
all are connected and synchronize their data. If you
post or update your key to one of these servers, you’ll
find that the key will be broadcast and updated to the
other key servers, sometimes rather quickly.

A couple of the more popular key servers are MIT’s
.PGP Key Server and the OpenPGP Key Server. For
other key servers closer to your geographic location,
you might take a look at the OpenPGP Server Lookup
web site.

There, you’ll find listed other key servers located
around the world.

It’s at these key servers that you can search for a
public key belonging to someone by their name, email
address or key ID. Keyservers are also good to use
when verifying a key’s fingerprint. If you were given a
key by someone, or download one off the Internet
from a web site, checking that key’s fingerprint
against the one listed on a keyserver to make sure
they match is a good precaution to take as it will
minimize the risk of receiving a bogus key. That’s not
to say that all keys on a keyserver are legitimate, but
due to their circulation bogus keys can often be
exposed for what they are.

Importing public keys from a key server into your
keyring is as simple as specifying the key to import,
and the key server to import it from. For example, the
command:

will import from the keyserver, ’wwwkeys.pgp.net’, the
key for ’user@some-email.com’ into your keyring.
Exporting a key is just as easy.

The command:

vail export the key for ’user@some-emafl.com’
currently residing in your public keyring to the
keyserver ’wwwkeys. p~p .net’.

However, not everyone wishes to have his or her

public key uploaded to a key server. So, if another
user gives you their key for signing, always check
with them prior to submitting it to one of the key
servers. They may prefer that you email it back to
them in a signed and encrypted message instead.

WEB OF TRUST

Now that we’ve covered creating a key pair for your
encryption and authentication needs, and have
experimented a little with importing and exporting
keys for yourself to use as a learning experience,
you’re probably eager to start exchanging keys with
other users. One of the fundamental aspects of using
public-key cryptology with GnuPG/PGP is the ability
for users to ’sign’ other users keys, adding yet
another layer of legitimacy to that key. This also
allows you to detect any tampering with the key in the
future. However, signing another’s key(s) is something
that should not be taken lightly as it will affect the
level of trust others have established in your key.

By having others sign your key, they are helping you
establish what has become known as a ’web of trust.’
Having several signatures on your key helps assure
others receiving your key of its authenticity, especially
if the key receiver also knows one or more of the
others that has signed your key.

Keep in mind that when someone signs your key, they
are only vouching for you in that your key is
authentic and that it indeed belongs to you, because
they have personally verified the fact. They are not
vouching for your personality, ethics or morals, 0nlY
that you are who you say you are identity-wise, and
the key they’ve signed is yours.

Before you go signing another’s key, it’s important
that you first verify that the key you were emafled,
downloaded from a key server or were given actually
belongs to that person. If you were to do this over the
phone, or even in person, checking each character of
the person’s ASCII-armored key block would not only
be exhausting, but extremely error prone as well. As
such, each key has a Tmgerprint.’ These fmgerprints
are derived from a hash of the key block, and provide
a relatively sure way of verifying the key to the owner
without error.

To view a key’s fingerprint, the GnuPG command ’gpg
--fingerprint keyID’ is used. The output displayed can
then be used to communicate the received key’s
Ymgerprint to the owner, who can then verify that the
fingerprint is correct, and matches the fingerprint of
their key. An example of a key’s fingerprint, as output
by GnuPG, might look similar to:

Once you’ve confirmed that the fingerprints match,
you can then sign that user’s public key with your
secret key to validate it. When you created your key
pair and a public key was formed, it was
automatically signed by your secret key when using
GnuPG. To sign another’s key however, you can use

AUUGN Vol.23 ® No.3 - 51 - October 2002

tile command:

Along with ’--sign-key’, one other command for
signing keys is available that I want to bring to your
attention, and that is ’--lsign-key’. The ’--lsign-key’
command signs the public key for local use only
(instead of flagging your signature as being exportable
along with the key as the ’--sign-key’ colnmand). As
your signature is not exportable, you’re not validating
that user’s key for others to rely on, but it will still be
treated as a valid key on your local system.

Why would you sign a key for local use only?. Perhaps
one example would be that you imported a key used
to verify the signature of a software package. You
want to sign the key so that the risk of tampering
with this key without your knowledge is minimized,
and warnings issued by GnuPG about using a non-
validated key won’t be displayed. The command to
locally sign a key is:

You will be prompted for your passphrase, after which
your signature will then be attached to that key. To
sign a key you could also edit that key.
The GnuPG command to edit keys is:

This invokes the interactive menu system that allows
you to modify the properties of a particular key. To
sign the key with your secret key, in turn allowing
your signature to be exported, use the menu
command ’sign’.

Just as when using the ’--sign’ and ’--lsign’
colnmands from the shell’s COlmnand prompt, you
will be asked for your passphrase. When correctly
supplied, it will attach your signature to the chosen
public key when you then use the ’save’ command, or
’quit’ and respond that you want the changes saved.

The interactive menu system used when editing keys
gives you a greater degree of flexibility when signing a
key. For example, ff you have a key that contains
more than one user ID, you may want to sign only
one or more Ids for that key, but not all of them. You
might choose to do this if you weren’t able to verify
the emafl address associated with that ID, or want to
keep the size of your keyring smaller than it would be
if your signed keys had your signature attached to
every ID (the key will still be considered valid, and as
your keyring grows, signing only one ID on locally
signed keys helps keep their size down). When you
first display a key with ’--edit-key’, you will see
something similar to:

The period after ’(2)’ indicates that this ID is the
primary user ID. If you were to sign the key now, your
signature would also be attached to that user ID as
well. To mark a different ID, or several Ids for signing,
the menu option ’uid’ followed by the chosen number
is used. Once marked, the ID number will have an
asterisk placed after it. If you were to mark the first
ID to attach your signature to, the resulting output
would look like:

Signing the key at this point with the ’sign’ menu
command attaches your signature to the chosen ID.
The menu command ’save’ will then save the signed
key and exit, or you could use the menu command
’quit’ to exit without saving any changes.

Other commands you’ll fred useful in the interactive
menu for editing keys are ’fpr’ to list a key’s
fmgerprint (which you’ll do when verifying the key
with the owner), ’check’ to list the signatures on a
key, ’adduid’ and ’deluid’ to add or delete a user ID on
a key (name, comment or email address, which comes
in handy if your email address changes), and ’trust’,
which is used to assign a trust value to a key. For a
list of colnmands that can be used with this
interactive menu, simply type the word ’help’.

After pressing the [Enter] key, a list of possible
commands will be displayed.

When should you use the ’lsign’ command in place of
the ’sign’ command? Anytime you cannot refutably
verify that the key you’re signing belongs to its owner!
This is perhaps the most vitally important safeguard
you can take in keeping your ’web of trust’ sound.
Unless you have personally checked and verified the
identity of the person against the key you were given
with complete complete confidence, or one of your
trusted fellows has (more on this below, in ’Level of
Trust’), don’t sign it with an exportable signature! You
may have found Werner Koch’s (the main developer of
GNU Privacy Guard) key on the Internet, but unless
you can personally verify the key, don’t sign it with an
exportable signature. Doing so ~all only weaken the
level of trust others have placed in you to vouch for
another’s key validity, in turn weakening your web of
trust.

I would like to add that, while on the subject of
building your web of trust, many ’famous’ people have
their public keys posted on key servers and the
Internet (Linus Torvalds, Phfll’p Zimmermalm,
Richard Stallman, Wichert Akkerman, Theodore T’so,
Eris S. Raymond, etc.). If not colmnon sense, then at
least politeness should dictate that unless you
actually know this person or will be conducting
business with them, don’t disturb their peace by
invading their personal life in an attempt to verify
their key just so you can sign it with your exportable
signature. I’m sure they’re kept busy enough as it is.

AUUGN Vol.23 o No.3 - 52 - October 2002

How does your web of trust grow?. By getting to know
other GnuPG/PGP users, and spreading the value
that public-key encryption and authentication can
bring to a person’s personal and business dealings.
You could add your public key’s fingerprint to your
emafl signature line perhaps (which sometimes brings
about questions as to what it is by unknowing
recipients, giving you the chance to evangelize), or
once you’ve created a key pair you’re happy with,
publish your public key to a key server, or post the
key block on your web site.

Many computer user groups may also hold key
sigr~g events where their member’s keys are checked
for accuracy and the holder’s identity verified with a
photo ID or driver’s license. The keys are then later
downloaded or emailed to the participants, key
fingerprints checked, signed and returned to the user
or key server as requested. Check your local user
groups to see ff they’re holding one in your area.
Linux user groups in particular often hold key signing
events, and even parties in some localities, where the
participants are invited to mingle and get to know
each other in a more informal setting after the
verification process is over.

As well, the Internet has come to the aid of some as
there are sites (Biglumber.com for example) that will
post lists of users wanting to have their keys verified,
as well as users willing to sign another’s key.

Checking the lists for your area might put you in
touch with someone local so the verification process
can be completed.

If GnuPG were to stop here however, your ’web of
trust’ would really be no more than a ’wagon wheel of
trust’, as the only trusted keys on your keyring would
be those to which your signature is attached. As in
real life, the concept of trust used with GnuPG
extends beyond that. Say for example there was a
local GNU/Linux convention that you attended with
one of your good friends, Greg. At the convention the
two of you run into a buddy of his, Tom, operating
one of the booths and were introduced. You don’t
know Tom personally, but you do know Greg and
trust that if he said this person was indeed Tom, you
would have few doubts as to his identity.

GnuPG utilizes trust levels in much the same way.
You may acquire keys for which you don’t personally
know the individual they belong to, yet due to the
interaction with other keys on your keyring that are
trusted, they may be ’introduced’ and therefore
treated as valid to varying degrees. This is what
establishes the ’web’ in the web of trust model. These
keys may not be linked directly to your key, but by
the interconnection with other keys on your keyring,
they in fact become a part of your web.

LEVELS OF TRUST

Many new to public-key use are sometimes
overwhelmed by the word ’trust’ when referring to the
keys in their public keyring. In simpler terms, there
are basically two types of trust available to you,

’validity trust’ and ’owner trust’.

Validity trust, also called calculated trust, is based on
to what extent a key can be considered valid. When
you sign a key it’s considered fully valid. If you can’t
verify with absolute certainty that the key belongs to
its owner, and the owner is who they say they are,
you can either sign the key for local use only (so your
signature is not exportable, but the key is still
considered valid), or refuse to sign the key and allow
the validity to be calculated. If you do verify the key
as being authentic, you can sign the key with an
exportable signature and the key is then not only
considered valid by you, but can also be treated as
valid by others that have placed trust in you.

This type of trust is referred to as owner trust, and as
the name implies, has to do with a key’s owner and is
used to specify just how much trust you have in a
person’s key to validate, or introduce, other keys on
your keyring. As mentioned, this is because although
a person may not be able to personally verify the
validity of another’s key, GnuPG allows trusted keys
to validate to various extents other keys containing
that trusted key’s signature. The validity of these
introduced keys depends on the amount of owner
trust placed on the introducing key. A greater amount
of owner trust yields a greater amount of calculated
validity trust.

The default configuration for GnuPG specifies that if
you haven’t personally signed a key yourself, it can
still be considered valid as long as two conditions are
met. The first condition specifies that either the key
has been signed with another key on your keyring
that has been granted full owner trust, or the key has
been signed by at least three other keys on your
keyring that have been granted marginal trust. The
second condition requires that the path of signed keys
leading back to your own key (and inclusive of)
include no more than six keys, or five ’hops’.

These conditions can be altered in the GnuPG
options, however, and can be made as tight (or
flexible) as you wish them to be, but for most users
the defaults are adequate and have withheld the test
of time.

How do these levels of ’owner trust’ work? Let’s say
you have personally validated and signed Greg’s key
and have assigned full owner trust to that key. You’ve
since imported Sandra’s key. Although you can’t
possibly validate her key personally since she lives in
a distant city (and you’ve never met or spoken with
her before), as Greg has signed her key it will be
considered fully valid.

In a perfect world, the owner of every key on your
keyring would be fully trusted, but that just isn’t the
case. It would be nice, and is why I try to stress the
importance of keeping your web of trust sound, but
there will be keys on your keyring whose owner you
simply might not want to place trust in either due to
their lack of knowledge in dealing with public-key
security, or the seriousness they place in trust values.
There might also be keys belonging to people that you
just don’t know enough to grant trust to, or people

AUUGN Vol.23 e No.3 - 53 - October 2002

you simply don’t know at all. They’re all a part of your
web of trust however, so GnuPG addresses this by
allowing you to assign levels of owner trust to each of
your keys.

Assigning owner trust to a key on your public keyring
uses the same interactive menu system that can used
to sign keys (’gpg --edit-key keylD’), and there can be
one of five levels of trust placed on a key. If you recall,
when you first chose to sign a key with the interactive
editing menu, you were displayed with something
similar to:

The two types of trust are displayed on the right. The
owner trust level is displayed first, and the validity, or
calculated trust level is displayed second. In this
example, a ’-’ appears for the owner trust level, and
an ’f appears for the validity trust level, indicating the
key has been signed, but no owner trust level has
been established.

In dealing with owner trust, if the level is signified by
a dash (’-’), it simply means that no level of trust has
been assigned as yet. This is the default level placed
on any new key imported into your keyring. If you
don’t know this person and have no level of trust to
place on the key, simply leave this level of trust where
it is. As there is no level of trust yet established, this
key will never be used in validating another’s key.

The second level is signified by an ’n’ and means no
trust, or to not trust this person to correctly verify
others signatures. Since these levels can be changed
at any time you might assign this level to someone
that is new to public-key use until they’ve grasped the
hang of it. Then again, the key may belong to
someone you know that is careless in the way they
carry out key verifications and don’t wish to have
possible falsely validated keys pollute your web of
lxust. With a trust level of this grade, this key won’t
be used in validating another’s key either.

The third level is signified by an ’m’ for marginal
trust. Assigning marginal trust to a key indicates that
you feel pretty confident that the key’s owner
understands the importance of proper key verification
before placing their signature on a key. Bringing our
example users back into the picture again, Greg
mentioned to you that he has assigned full owner
trust to Sandra’s key on his keyring. You trust Greg’s
judgment of course, but since you don’t personally
know Sandra, her key might be a good candidate for
marginal trust consideration until she’s proved
herseK otherwise.

With a trust level of marginal, ff your public keyring
contains a key, which in turn has been signed by at
least three other keys on your keyring of marginal
standing, that key will be considered valid. Quite
often, the majority of the public keys on your keyring
will likely be granted this level as your web of trust

grows and your keyring expands.

The fourth level, signified by an ’f for full trust, is the
level you would give to a key who’s owner you have no
doubts about their understanding of public-key use
and verification checks, and is someone who’s trust
you would consider as good as your own. Our friend
Greg would be a good example of someone worthy of
full trust. He’s been using GnuPG or PGP for quite a
while, has established a good web of trust, and
definitely takes every precaution in validating keys so
as to not spoil that web of trust. With a flail owner
trust level, any key on your public keyring signed by
this person’s key will be considered fully valid.

The fifth level, signified by a ’u’ for ultimate trust, is
used only for keys in which-there is a corresponding
secret key available. In other words, your personal
public keys will have the status of ultimate trust
when placed on your keyring. Needless to say, any
key on your public keyring signed by you is
considered a fully valid key, and is why it’s important
that you properly validate keys via proper methods
before you sign them. Get carried away by signing
anyone and everyone’s key without properly verifying
them first and you will quickly pollute your web of
trust. I’m sure I’ve said that enough so I’ll leave that
topic alone now.

GUI FRONT ENOS

Since GnuPG is command-line oriented (which
actually adds flexibility to the utility) some users may
be disappointed or miss a graphical user interface.
This may especially hold true for newer Linux users
transitioning from a graphical desktop OS like
Windows. Although there are graphical front-ends to
the application similar to those in earlier PGP days,
they are still in the development stage and. may lack
the ’polish’ you expect, or have grown accustomed to.
Although several GnuPG interfaces exist, I will only
touch on a few of them here.

Gl~/k- GPA, or GNU Privacy Assistant, is actually
being developed by the GnuPG organization. Utilizing
GTK (the GIMP Tool Kit) for its interface’s widgets,
GPA allows you to encrypt/decrypt files, view your
keys, signatures, sign keys, edit trust levels, and
import/export your keys to a public-key server among
other things. Like many GUI front-ends, GPA is early
work in progress, yet the version I’m currently using,
0.4.3, seems to be very stable. One area that GPA
currently lacks is a system for the application’s Help
button (it’s unresponsive). The interface is very
intuitive however, so this certainly isn’t a major
drawback, but indicates there is still work to be done.

Seahorse - Seahorse provides a graphical interface
much like GPA, with perhaps one of the nicest
graphical front-ends to GnuPG that I’ve run across so
far. Still very early in the development stage and
currently at version 0.5.0, this GUI front-end provides
much of the same functionality of GPA. Although the
interface is very appealing to me, I did i’md that in its
current state the application does suffer from a rare
lockup now an then when used on my Debian 2.2 and
Red Hat 7.1 systems. No data is corrupted, and killing

AUUGN Vol.23 o No.3 - 54 - October 2002

the application is easy, but like most early projects
this is to be expected. The author has recently
announced a request to take over the Seahorse
project, as development has stagnated for over a year
now. Hopefully, someone will come to this worthwhile
application’s rescue.

TkPGP - Another nice GUI interface for GnuPG.
TkPGP is written with Tcl/Tk, and also allows you to
sign and encrypt documents in a text window, select
files for encryption, decryption, signing and
verification, but provides minimal key management
functions. The application is capable of using a
sizable number of GnuPG commands and
configuration settings, providing a powerful interface
to many of the GnuPG commands and options
available, and includes the ability to remember your
passphrase for a set time (handy when you’re working
with GnuPG for an exten.ded period).

Other graphical front-ends exist for GnuPG and are
worthy of consideration, so be sure to check into
them before settling on one or two you like. There are
also many character-based wrappers, written in Perl
for example, that provide front-ends to this great
utility. If you’re operating at a character-based
terminal and wanting a menu interface for GnuPG, be
sure to check into these offerings as well. A rather
comprehensive list of front-ends for GnuPG can be
found at the GnuPG web site, or freshmeat.org.

CAVEATS

When working with sensitive data, whether you’re
using Gnt~G or not, certain ’common sense’ caveats
should apply. In other words, you should be aware if
your sensitive data is winding up in shared memory
locations, temporary fries, etc., and whether you are
working with your documents over a network or on
shared systems. The same concerns apply when
using GnuPG or any other public-key encryption
system.

Keep in mind that simply deleting a file does not
actually remove the file’s contents from the hard
drive, and that it can often be recovered with a little
work. Also, if the application you’re using to create a
sensitive document uses ’timed’ saves or writes
buffers to an unsecured location on your system,
even after thorough deletion of the file there may be
enough of the original document left behind in these
areas to thwart your security efforts. Various file-
wiping utilities exist for most platforms (such as
’shred’ or ’wipe’ for Linux), so if such a scenario
applies to your situation, you should seriously
consider looking into using one of these.

If you’re using a shared terminal or operating over a
network, you may consider using removable media
such as a floppy or zip disk for your document’s
creation and encryption location.., just don’t leave it
behind! You may also want to look into the features
GnuPG has for encrypting text and messages straight
from the terminal’s keyboard. No plain-text file is left
behind to worry about, as it’s saved straight to an
encrypted file.

Don’t forget that your GnuPG secret keyring should
be kept protected at all times. This file, secring.gpg, is
kept in the ~/.gnupg directory by default. If your
terminal is shared or if your home directory is stored
on a server somewhere, you’ll definitely want to
configure an alternate location for this file in your
~/.gnupg/options configuration file. It could be kept
on a floppy diskette, or even renamed and moved to
another directory location if needed, as long as that
location is secure.

For those that utilize shared terminals at work, a web
cafe or truck stop, there’s even a small distribution of
Linux, Tinfoil Hat, developed especially to operate in
conjunction with GnuPG. A bootable floppy that for
the really paranoid even utilizes a wrapper for GnuPG
called gpggrid to circumvent keystroke loggers, Tinfoil
Hat Linux not only provides a reasonably secure place
to store your keys and encrypted documents
(reasonable as it’s not handcuffed to your wrist), but
also provides secure encryption and decryption of
your fries in RAM.

Keystroke loggers, or key loggers, can be software, or
even small devices or plugs that attach between the
system and the keyboard, logging every keystroke
entered by the user (thereby capturing any text,
including any passwords and passphrases that may
have been entered). The hardware loggers, being small
and usually attached at the back of a system, are
many times overlooked and can go unnoticed.
Software key loggers may save the keystrokes to a file,
or transmit them over a network to another system.

If your data is sensitive, and your system accessible
by others, be aware of the security measures that
need to be taken into consideration in protecting your
passphrase. A weak passphrase, or one that can be
discovered easily, nullifies the security available with
public-key encryption. The point is ~that your
passphrase, as mentioned, is the weakest link in your
encryption. Guard your passphrase well, and use
common sense in keeping it safe or your efforts will be
futile.

Also, if you haven’t done so already, copy your
keyring fries to the same diskette as your key’s
revocation certificate and place it in a safe or deposit
box for security’s sake. Since the revocation certificate
generated when you first created your key pair
probably only includes ’generic’ comments explaining
your reasons for revoking the key, keeping a backup
copy of the keys allows you to generate a new
certificate with details should your secret key ever
become compromised or lost.

CONCLUSION

We’ve now covered your introduction into using
GnuPG. As you have seen, it’s not difficult to use, and
in fact most of it is rather intuitive.

When its features are used from within many other
applications such as email clients or supportive
applications or plug-ins, much of what goes on in the
background is transparent, simplifying matters even
more. The steps to using GnuPG are just as simple...

AUUGN Vol.23 o No.3 - 55 - October 2002

come up with a good passphrase, create a key pair
and its revocation certificate, experiment with it,
publish your public key to a key server when you’re
satisfied, establish and build your ’web of trust,’ and
last but certainly not least, always keep security in
mind.

Although the use of public-key security has grown
tremendously since those early PGP days, it still has a
long way to go to gain popularity in many countries,
perhaps due to the overall sense of freedom those
countries enjoy within their boundaries. With the
tremendous growth of the Internet, thefts of corporate
data and the proliferation of crackers and script-
kiddies, those boundaries have dissolved. Once you’ve
started using GnuPG with regularity you’ll perhaps
wonder what you did without it. With the numerous
worries about the need for increased security
defenses in businesses, corporations and homes, you
may even find that it brings a bit of stress relief to
your lif!!

Copyright (c) 2002 David D. Scribner. This document
may be freely distributed and copied in whole or in
part, as long as credit to the author is given.

This article is re-printed with permission. The originals
can be.found at:

An Introduction to GNU Privacy Guard:
http : / / articles, linuxgunz net/view/193/

Commentary: Why
Linux will Conquer the
World
Author: David Mohring <mohring@ihug.co.nz >

GNU/Linux clearly bears a strong resemblance to
Unix. It offers many of the same features, while
adding interesting additions of its own (free licensing,
open sourced development, etc).

With the Linux platform the open source/free
software community has already created a cross-
market software unification infrastructure better than
Microsoft has ever had (or is). This has result in
rapid expansion in Linux’s popularity which has
eaten into Microsoft server market share as Linux
also grows toward taking over the
governmental,enterprise, desktop and development
world.

There are a number of reasons for this:

1. The breadth of Linux’s market presence.

Due to the liberal nature in which Linux is licensed,
any real measurements of Linux’s current level of
deployment is as difficult to determine as the real
number computers running pirated versions of
Microsoft windows.

Trying to measure the current level of Linux

deployment based around the number of
computers/servers sold with operating systems
installed is flawed. Linux based solutions are often
efficient enough to be deployed on pre-existing
hardware, whereas Microsoft is dropping support for
NT4 and a Windows2000/XP based solutions almost
always have a higher level of minimum requirements
to do the same job. Also unlike Microsoft OEM license
releases, there is no price advantage to purchasing
the Linux with the computer, and Evans Data survey
discloses that a full 38.9% of new Linux hardware
deployments is assembled from parts.
http: //www. evans data. corn/computer, htm

The one exception to measuring the level of Linux
based deployments is publicly accessible and query-
able Interact servers. In the .netcraft September 2001
web server survey. Linux based servers occupy 30%
of the market compared to Microsoff’s IIS webserver’s
27.46% share. As of August 2002, the open source
Apache webserver has 63.51% share compared to
Microsoff’s IIS 25.39%.

Even so, You would be hard pressed to find a software
or hardware market where Linux does not have a
rapidly increasing presence. Linux works on obsolete
hardware (so you needn’t throw the hardware away),
common modem PChardware, prototype wrist
watchs,PDAs, the Playstation, PlaystationlI,
Dreamcast and eventhe XBox consoles, IBM
mainframes, massive clusters, anda number of
supercomputers . Linux runs on a vast nttmber of
different CPU chips, including the x86, Intel Itanittrn,
AMD Hammer, ARM, Alpha, IBM AS/400, SPARC,
MIPS, 68k, and Power PC. Linux securely hosts many
databases, webservers, file and print servers, from
many vendors, scaling both in price and ease,
according to need. Linux now has two fully
interoperating desktop systems and Libraries, KDE
and GNOME, the latters Accessabilty Toolkit with the
OpenOffice.org office suite has been singled out in
this year’s "Helen Keller Achievement Award in
Technology".
http: //newsvac.newsforge.com/article.pl?sid=02/09/
13/1955240

Many vendors are now coming out with Linux based
PDAs and embedded devices.

Granted, many companies, notably IBM, already offer
many Linux based solutions. IBM has already turned
all of its hardware and many software platforms into
Linux hosting or hosted systems, however it is
certainly not only vendor to do so. SGI, one of the
leading Unix companies, is shattering world
performance records, attaining linear scalability on a
64-processor Itanium2 based hardware running
Linux.
http: //www.sgi. com/newsroom/press_releases/2002
/september/stream.html

With Linux many vendors already have the ultimate
software and hardware reference platform. Most of all
the commercial Unixs, Mini and Mainframe
environments provide the ability to either directly run
Linux binaries or host recompfled Linux source,
Linux development will now dominate the enterprise

AUUGN Vol. 23, No. 3 - 56 - October 2002

market. Even Microsoft’s CEO Steve Ballmer has
boasted that ’Microsoft has to make it as easy as
possible to port Linux to Windows.’
http: //www. crn. corn/Sections/BreakingNews / dailyar
chives, asp?ArticlelD=35789

The reason that the Linux and GNU libraries
interpretation of the open Posix interface standards is
becoming the defacto standard among most Unix and
other OS vendors, rather than the BSD variants, is
that it is freely available under commons preserving
GPL and LGPL licensing. Unix/Posix popularity was
driven by the degree to which it has provided a
consistent stable and relatively secure interface while
some other vendors change enterprise architectures
on an almost yearly basis. This has made Posix a
business requirement for forward looking
implementors and vendors who wish to maintain a
feature-rich, reusable, .cross-language environments
over a decent period of time, so the solution has a
chance to be developed to become more stable and
secure. Open source development under commons
preserving licensing is providing an even more
consistently stable and relatively secure interface for
system hardware vendors,for open software/free
licensed software developers and even provides a
highly stable platform for proprietary software
developers.

SAP, one of the leaders in enterprise and CRM
systems is now using Linux as it’s reference platform
for all new SAP developments.
http://www9.sap.com/communitv/week35 1.asp

Oracle, one of the leaders in enterprise database
systems, is now working with Redhat and others to
make Linux even more secure, scaleable and faster
platform for Oracle’s own products.
http: //www.oracle.com/linux/

It is inevitable that the inherent advantages will
extend Linux beyond the datacenter and server
market to migrate to the the Xll enterprise
application server, the technical desktop, the specific
role desktop, the business desktop, the home
desktop, to the inevitable ubiquitous computing
environment.

Xll extends Linux beyond the Linux/Unix desktop
universe. There are Xll-servers available for every
desktop OS, from Microsoft’s windows to MacOS9 and
MacOSX.
http: //www.rahul.net/kenton/xsites.html#XMicrosof
_t ,

Many of these X11-servers, such as under MacOSX s
Xdarwin http://oroborosx.sourceforge.net/or WinaXe
on Microsoft Windows
http: //www. apcmag.com/pics/ws/0101 config5.gff
can fully intergrate the Xl 1 applications into the host
desktop environment, they look and feel like native
applications.

In point of fact, X11 is the only distributed graphical
interface to remain network/binary compatible back
to 1986 X-clients. An organization can set up

enterprise infrastructure behind a internal firewall
and have it interfaced via X11 to the desktop - it can
provide a consistent interface for decades. It is the
only such system to remain virtually future-proof.

It is even possible to run some Microsoft Windows
applications in a distributed thin-client environment
under Linux, without needing Microsoft Operating
System licenses for each client machine.
http: //www.codeweavers. com/products/cxofficeserve
r/

Because you can distribute Xll applications across
computers, it also can provide improved performance
and a more secure environment for your
organization’s systems and data. Data intensive
applications can run on or. close to the the databases.
Processor intensive applications can run on unused
or shared special purpose computers. Exposed
Internet clients such as web browsers, instant
messaging, file sharing etc, can be run on "isolated"
servers. Multimedia/display intensive applications
can run locally, taking full advantage of full hardware
and OpenGL acceleration such as DRI and GFX
though interface libraries such as the multiplafform
Simple DirectMedia Layer
http: //www.libsdl. org/index.php

This multimedia ability, along with Linux’s flexibility
as been driving force for Linux’s recent rapid adoption
as a desktop for professional animation and digital
effects in Hollywood and around the world.
http: //www.linuxmovies.org/articles.html

Where locally hosted applications on other OS’s are
desirable, GNOME, GTK and KDE applications can be
quickly ported to Windows and OSX.
http: //homepage. ntlworld, corn/steven, obrien2 /

2. Sun Grants *full* rights to implement though JSPA
agreement.

Unlike Microsoft’s very limited submission to the
ECMA (excluding ..NET notables, such as ASP.NE~,
WinForms and ADO.N-E--~, to name a few) Sun has
granted the Apache and all open source developers
FULL rights to develop competing products.
http: //j akarta.apache.org/site/jspa-agreement.html

AUUGN Vol.23 o No.3 - 57 - October 2002

Responding to questions about the opening-up of the
.NET framework, Ballmer announced that there would
certainly be a "Common Language . Runtime
Implementation" for Unix, but then explained that
this development would be limited to a subset, which
was "intended only for academic use". Ballmer
rejected speculations about support for free .NET
implementations such as Mono: ’NVe have invested so
many millions in .NET, we have so many patents on
¯ NET, which we want to cultivate."

Microsoft CEO Steve Ballmer has made no similar
acknowledgments, in fact quite the opposite ...
http://swpat.ffii, org/players/microsoft/index, en. html

There are those who claim that .NET is open to
implentation, but until Microsoft make a legal public
declaration similar to that of the JSPA, it is NOT.

Because of the above and Sun’s progressive licensing
toward both proprietary and competing
implementation vendors
http://iava.sun.com/|2ee/licensees.htmlJava will
dominate anywhere a 100% portable and truly secure
distributed agent environment is required.

However it is easy enough to create portable Linux
targeted source code portable to all Linux hosted
architectures, where the Linux kernel can already
provide a more secure environment than Microsoff’s
XP or but does not suffer the implicit overhead
required by a virtual machine environment such as
JVM or .NET.

3. Freely avalable development enviroment.

The GNU GCC project is in the singular position of
being the leading development toolset for both the
open source and proprietary Unix enterprise
com_munity. Even before Linux and FreeBSD was
released, cross compiling and installing GNU utilities
on proprietary Unixs was first things you did. Even
Microsoft recognized this with the inclusion of the
GNU GCC toolkit in it’s Services For Unix (SFU)
toolkit.
http: //www.microsoft.com/windows/sfu/productinfo
/ overview/default, asp

Every iteration of GCC includes more support for the
official ISO/ANSI standards for C,C++ and Sun’s
specifications for Java (yes! GCC compiles Java
Classes into native code), with the aim of providing a
consistent, stable and secure multi-targeted
development platform.
Freely available development tools such as Emacs,
XEmacs and Eclipse follows the principle of being
able to fully customize the enviroment for productive
professional development. Third party proprietary
IDEs range from IBM’s fully integrated J2EE
website/webservices application development
environment Websphere, to Borland’s Kylix, the latter
being freely available for developing GPL licensed
projects. There are so many freely licensed
development tools,environments,libraries and projects
to choose from, that it is VERY rare for not to find an
pre-existing open source stable solution for your
problem; you do not have to start from scratch, just
adopt and maybe adapt a pre-existing open source
solution, http://freshrneat.net/

AUUGN Vol.23, No.3 - 58 - October 2002

The role of open source development, under commons
preserving GPL or LGPL licenses, in driving Linux
adoption should not be underestimated. Though few
companies will be anxious pay for software developed
from scratch in the current slow economic
environment, they don’t have to. One of the key
advantages of free licensing over proprietary solution
development is the simplified legal invocations
without the hassle of NDA’a and intellectual property
cross licensing. It encourages both organizations and
individuals to participate in the full knowledge that
none of the participating parties can deny access at a
later date though threat of intellectual property
lawsuits or licensing.

The end user rights granted by the GPL and LGPL
even extend to vendors of proprietary software, who
may even be produc’.mg software that is direct
competition with open source software. There is
nothing to prevent proprietary software vendors from
linking and distributing LGPL licensed code with
their software, as long as are willing to distributed the
LGPL’ed source code to the end users. There is
nothing to prevent proprietary software vendors from
bundling and distributing GPL licensed code with
their software, as long as are willing to distributed the
GPL’ed source code to the end users. As mentioned
above Microsoft already does this with the GPL
licensed GCC developer toolkit.

Even with a full GPL, the proprietary software vendor
can strip out the required functionality from GPL
sources and create separate standalone application
that runs as a mini-server, callable via command line
and passing data via pipes or even shared dynamic
memory to the proprietary licensed application.

In comparison, on Microsoft’s OSs, most application
and middleware vendors that have gained a large
enough market share of the desktop, soon fmd
themselves directly competing with Microsoft. In
many cases, Microsoft add the competing
functionality to a freely bundled or pre-existing
Microsoft products, often in a manner that is difficult
for the competing vendor to interoperate with. The
only chance of redress in years of lawsuits or decades
of toothless antitrust cases. GPL Freedom is not only
for the Free.

This means open source development method along
with the commons preserving free licensing such as
GPL and LGPL will provide the ultimate competitive
advantage for the participants developing as well as
the end customers, serving an incentive that is
driving open source adoption far beyond what any
NDA closed loop, RAND hobbled UN-"Shared" source
option will provide. Given the assured lffespan of free
licensed software, this is the pebble that *is* causing
an avalanche.

In the meantime proprietary software,made much
easier by adopted initiatives such as Linux Standard
Base http://www.linuxbase.or~/ ,will be there to fill
gaps missing in ease of use or functionality.

4. Anybody can generate revenue from an open

commons.
http: //www.m-w. corn/cgi-
bin/dictionary?va=commons

Commons : the legal right of taking a profit in
another’s land in common with the owner or others

The GPL and similar licenses gives the inevitable
strategic victory in the battle for mindshare with
Microsoft. Microsoft’s recent additions generate little
for its end customers beyond its ability to lock it’s
customers into Microsoft’s own products. Few of
Microsoft’s Internet exposed servers or clients are
designed or implemented with security in mind,
whereas Linux has range of security-compatible
products (securer servers & applications , chroot &
LSM etc) from which-*END* organizations and
individuals can *USE* to generate revenue. Enough of
that revenue will be spent to make alliances with
third parties to collectively develop new functionality,
as well as directly suport the development
infrastructure that has assisted in over one billion (a
Gigabuck) worth of development to freely available
source code available in Linux distributions today.
http: //www. dwheeler, corn/sloc/

GPL/Linux free licensed distributions provides a true
free market, unconstrained by intellectual property
monopolies that inflate the prices, to the developing
vendors and the end consumer. Redhat could never
be the next Microsoft, any attempt to lock customers
into it’s products would have both customers and
vendors quickly switching distributions. But Redhat,
and most of the other Linux distributions, have
actually collaborated in a manner that actually
encourages competition, http://www.linuxbase.org/

Contrast that with Microsoft’s attempts to drive
Microsoft’s profitability by it’s anti-competitive
business practices (Don’t take my word for it, read
the Opinion of the Circuit Court of Appeals
http: //www.naag.org/issues/microsoft/docs-
state/pdf/ms-ct_of_apls-opinion.pdf
) Microsoft has no flexibility to offer when dealing with
any real competition simply because they have so
much of their revenue-generating business model
based solely around retaining a absolutely dominant
monopoly.

CONCLUSION

Customers benefit from seamless interoperability with
other vendors products. (Microsoft has not even
implemented a fully inter-operable version of the BSD
licensed Kerberos). This is partially true in a world
where networks are ubiquitous and computing
devices extend far beyond the traditional computer. In
such a market, breadth is a very good thing. It creates
innovations in software design Even more important,
it gives the customer the knowledge that they can
choose a range of products to truly suit their
individual needs. Even competing proprietary vendors
can benefit from the freedom provided by the GPL and
LGPL to insure that their own products and services
can fully inter-operate, now and in the future.

Linux is simply the best positioned to be the cross-

AUUGN Vol.23 o No.3 - 59 - October 2002

platform, cross-market unification technology,
guaranteed to grow correctly because of the way
Linux is licensed. Many market vendors are already
heavily involved with Linux, open source and free
licensed software, benefiting from unification under
free licensing. Microsoft could have provided that
unification (based on Microsoft’s early popularity
among PC developers), but, right or wrong, Microsoft’s
executives greed ensured that it would not. Once
again, Microsofts guilty of multiple violations of the
Sherman Act
http://www.naag, org/issues/microsoft/docs-
state/pdf/ms-ct_of_apls-opinion.pdf
(including five counts directly involving Java)
, yet once again, seems unable to comply with the
most liberal of Department Of Justice Settlements
http://216.133.66.117/091802.pdf

Horace Greeley (1811-1872), Editor of the New York
Tribune in an editorial in 1841 said: "Do not lounge in
the cities! There is room and health in the country,
away from the crowds of idlers and imbeciles. Go
west, before you are fitted for no life but that of the

factory. "

In the same way, I urge you to...
Do not lounge on the Microsoft platform! There is
room and scope on Linux, away from the crowds of
idlers and imbeciles, Go open, before you are
fitted for no life but that of the helpdesk.

But more importantly, by 1871 Horace Greeley also
wrote: "This Daniel Boone business is about played
o~t."

In the same way, the last decade’s Linux customer
base can be seen as the self reliant pioneers. The "Do
It Yourself’ attitude and habit was learned from a
time when "doing for themselves" was the only option.
This is no longer the case, there are plenty new
settlers and far many more willing to migrate, who are
all too willing to pay for hardware, support,
customization, collective development and even
quality proprietary licensed products.

Linux will conquer the world. Yet, only by attempting
to pull the wool over your eyes does Microsoft stand a
chance, of denying what they have known to be true
from the outset...
http: //www. opensource, org/halloween/

David Mohring - "Go Linux, Young Person!"

AUUGN Vol.23 ® No.3 - 60 - October 2002

AMERICAN
BOOK STORE

173 Elizabeth St, Brisbane Queensland 4000
Ph: (07) 3229 4677 Fax- (07) 3221 2171 Qld Country Freecall: 1800 177 395
american_bookstore@compuserve.com

Name:

Address"

Phone Number:

Payment Method"

Card Number:

Expiry Date:

This is a:

Date:

[] Special Order

Post Code:

Cheque [23 Money Order ~ Amex [23 Bankcard

Diners [21 Mastercard ~ Visa

Signature:

Mail Order Book on Hold

QUANTITY TITLE PRICE

SUBTOTAL

LESS 10% DISCOUNT

POST & PACK

TOTAL

POSTAGE AND HANDLING FEES" 1 BOOK $6.00 2-4 BOOKS $7.00
BOOKS OVER $70.00 WE WILL SEND CERTIFIED - PLEASE ADD ANOTHER $1.50 OR WAIVE
CERTIEIED DELIVERY.

FOR SPECIAL ORDERS, PLEASE ENCLOSE $10.00 PER BOOK AS A DEPOSIT.

AUUG Chapter Meetings and Contact Details

ADELAIDEWe ’ meet " at Internode, LevelContact sa-exec@auug.org.au for further
3/132 Grenfell St aka ’the olddetails.
AAMI building’, at 7 pm on the
second Wednesday of each
month.

BRISBANE Inn on the Park For further information, contact the
507 Coronation Drive QAUUG Executive Committee via email
Toowong (qauug-exec@auug.org.au). The techno-

logically deprived can contact Rick
Stevenson on (07) 5578-8933.

To subscribe to the QAUUG
announcements mailing list, please
send an e-mail message to:
<majordomo@auug.org.au> containing

the message "subscribe qauug <e-mail
address>" in the e-marl body.

CANBERRA Australian National
University

HOBART University of Tasmania

MELBOURNE Various. For updatedThe meetings alternate between
information See: Technical presentations in the odd

numbered months and purely social
http://www.vic, auug. org. au/ occasions in the even numbered
auugvic / av_me etings, html months. Some attempt is made to fit

other AUUG activities into the schedule
with minimum disruption.

PERTH The Victoria League
276 Onslow Road
Shenton Park

SYDNEY TBA

I~OR UP-TO-DATE DETAILS ON CHAPTERS AND MEETINGS~ INCLUDING THOSE IN ALL OTHER AUSTRALIAN CITIES~

PLEASE CHECK TI~E AUUG WEBSITE AT HTTP://WWW.AUUG.ORG.AU OR CALL THE AUUG OFFICE ON
1-800-625655.

AUUGN Vol.23 o No.3 - 63 - October 2002

o

©
©

Use this tax invoice to apply for, or renew, Individual or Student
Membership of AUUG Inc. To apply online or for Institutional
Membership please use http://www.auug.org.au/info/

This form serves as Tax Invoice.

Please complete and return to:

AUUG Inc, PO Box 7071, BAULKHAM HILLS BC NSW 2153, AUSTRALIA

If paying for your membership with a credit card, this form may be foxed to AUUG inc.
on +61 2 8824 9522.

Please do not send purchase orders.
Payment must accompany this form.

Overseas Applicants:
* Please note that all amounts quoted are in Australian Dollars.
o Please send a bank draft drawn on an Australian bank, or credit card

authorisation.
o There is a $60.00 surcharge for International Air Mail

If you have any queries, please call AUUG Inc on +61 2 8824 9511 or
freephone 1800 625 655.

Section A:

Personal Details

First Name:

Title:

Organisation:

Address:

..................................... Position: ..

Suburb:

State: ... Postcode: ...
Country: .. Phone Work: ..
Phone Private: .. Facsimile: ..
E-mail:

Membership Number (if renewing): ..

Student Member Certification

For those applying for Student Membership, this section is required to be completed by a
member of the academic staff.

I hereby certify that the applicant on this form is a full time student and that the following details are correct:

Name of Student:

Institution:

Student Number:

Signed:

Name:

Title

Date Signed:

Section B: Prices

Please tick the box to apply for Membership. Please indicate if International Air Mail is required.

$110.00 (including $10 GST) []

$27.50 (including $2.50 GST) []

S60.O0 []

Renew/New* Individual Membership

Renew/New* Student Membership

Surcharge for International Air Mail

* Delete as appropriate.

GST only applies to payments made from within Australia. Rates valid from 1 st October 2002.

Section C: Mailing Lists

AUUG mailing lists are sometimes made available to vendors. Please indicate whether you wish your name
to be included on these lists:

Yes [] No []

Section D: Payment

Pay by cheque

Cheques to be made payable to AUUG Inc. Payment in Australian Dollars only.

OR Pay by credit card

Please debit my credit card for AS ..

Bard<card [] Mastercard 1"~ Visa []

Card Number: .. Expires: ..

Name on. card: .. Signature: ...

Date Signed: ..

Section E: Agreement

I agree that this membership will be subject to rules and bylaws of AUUG Inc as in force from time to time,
and this membership witl run from the time of joining/renewal until the end of the calendar or financial year
as appropriate.

Signed: ..

Date Signed: ...

This form serves as Tax Invoice. AUUG ABN 15 645 981 718

