TTLAJLUALY 3V vy vy,

ISSN 1035-7521

The Journal of AUUG Inc.
Volume 23 ¢ Number 4

Features:

This Issues CD: Knoppix Bootable CD

Using ODS to move a file system on the fly

Handling Power Status using snmptrapd

Process Tracing us ptrace - Part 2

Viruses: a concern for all of us

Viruses and System Security

Why Success for Open Source is great for Windows Users
Root-kits and Integrity

Installing and LAMP System

Exploring Perl Modules - Part 2: Creating Charts with
GD::Graph

DVD Authoring

Review: Compaq Presario 1510US

Athlon XP 2400 vs Intel Pentium 4 2.4Ghz and 2.8Ghz
Creating Makefiles

The Story of Andy's Computer

News:

Public Notices
AUUG: Corporate Members
AUUG: Chapter Meetings and Contact Details

Regulars:

President's Column
/var/spool/mail/auugn
My Home Network
AUUGN Book Reviews

11
13
21
22
24
32

38
41
43
46
52
54

= \O W

3
3
5
7

December 2002

i

Print post approved by Australia Post - PP2391500002

AUUG Membership and General Correspondence

The AUUG Secretary

AUUG Inc

PO Box 7071

Baulkham Hills BC NSW 2153
Telephone: 02 8824 9511

or 1800 625 655 (Toll-Free)
Facsimile: 02 8824 9522
Email: auug@auug.org.au

AUUG Management Committee

Email: auugexec@auug.org.au

President

Greg Lehey

PO Box 460

Echunga, SA, 5153

Bus. Tel (08) 8388 8286, Mobile 0418 838 708, Fax (08) 8388 8725
<Greg.Lehey@auug.org.au>

Immediate Past President

David Purdue

Sun Microsystems

Level 6, 476 St Kilda Road

Melbourne, Victoria, 3004

Phone: +61 3 9869 6412, Fax: +61 3 9869 6288
<David.Purdue@auug.org.au>

Vice-president

Malcolm Caldwell
Bus. Tel (08) 8946 6631, Fax (08) 8946 6630
<Malcolm.Caldwell@ntu.edu.au>

Secretary
David Bullock

0402 901 228
<David.Bullock@auug.org.au>

Treasurer

Gordon Hubbard

Custom Technology Australia Pty Ltd

Level 22, 259 George Street, Sydney NSW 2000
Bus Tel: 02 9659 9590, Bus Fax: 02 9659 9510
<Gordon.Hubbard@auug.org.au>

Committee Members

Sarah Bolderoff

FourSticks

Suite 2, 259 Glen Osmond Rd,
Frewville, South Australia, 5065

<Sarah.Bolderoff@auug.org.au>

Adrian Close

Mobile: +61 412 385 201, <adrian@auug.org.au>

Stephen Rothwell

IBM Australia, Linux Technology Center
8 Brisbane Ave, Barton ACT 2600
Business phone: 02 62121169

<Stephen.Rothwell@auug.org.au>

Andrew Rutherford

lagu Networks, 244 Pirie St

Adelaide, SA, 5000

Bus. Tel (08) 8425 2201, Bus. Fax (08) 8425 2299
<Andrew.Rutherford@auug.org.au>

Mark White

apviva technology partners

P. O. Box 1870, Toowong QLD 4066

Bus Tel 07 3876 8779, Mobile 04 3890 0880
<Mark.White@auug.org.au>

AUUG Business Manager

Elizabeth Carroll

AUUG Inc

PO Box 7071

Baulkham Hills BC NSW 2153
<busmgr@auug.org.au>

AUUGN Vo0l.23 ¢ No.4

Editorial

Con Zymaris auugn@auug.org.au

I remember how exhilarating my first few brushes
with computers were. It was the late '70s. We had just
experienced two massive waves of pop-technology
which swept through the public consciousness like a
flaring Tesla-coil: Star Wars had become the most
successful film of all time, playing in cinemas (and
drive-ins... remember those?) for over two years. This
film ushered in an era where all tech was 'big’ and
exciting. Almost as big is what happened next: a little
game built on an 8-bit micro-controller, 4K of EPROM
and a black & white screen which had coloured band-
strips pasted across the top to mimic a colour
monitor. That phenomenon, Space Invaders, seemed
to lock-grips with Star Wars, and both helped segue
the Personal Computer into the general public
mindscape. Computers were suddenly a tool that
geeky teenagers could pour undue attention into.
Space Invaders, Star Wars and the PC: the stuff
wrought by geeks who loved to hack and build.

It was into this environment that I dove, when I
started with computers. These were truly new and
amazing devices. You could let your imagination run
apace, conceiving of alternate worlds and then fully,
richly conjuring your imaginings into software-reality.
Here were the makings of a compelling, universal tool,
one that could be morphed (like digital clay) into
almost any task at hand. And here it was in my
hands. T lost track of the number of 40-hour-straight
coding stints I immersed myself into. I too, had
become a geek who hacked and built.

The marathon that is life runs its course, and what
had once been one of the most engrossing of activities
and hobbies, had somehow become rather pedestrian
and humdrum. The time was the early-90's. The
world seemed to settle upon a rather technologically-
wanting and dull platform, and things had become
un-innovative, predictable and gray. The commen-
realm of our industry emanated more from mega-
corps, and not from the lone-coders and dreamers.
But those who hacked and built had not gone away
however; far from it.

The wandering troupes of geeks had, of course been
there all along, beavering away behind the scenes.
And what they had produced then, and continue to
perfect now, is the technology which allowed them to
become frighteningly effective at collaborative
development, distribution and evangelism; that which
changed the world as we knew it: the Internet.

More importantly and personally precious than any
particular technology, ideology or product; they had
rekindled my keenness in computers. No longer do we
deal with a merely 'business’ functional tool; we have,
re-acquired that most wonderous of things and the
ultimate conduit for our imaginations.

To all those who tinkered, hacked and coded their idle
hours, engrossed as I had once been, and kept the

flame burning during the time of gray, I salute you.
Cheers, Con

December 2002

Contribution
Deadlines for AUUGN

in 2002

Volume 24 ¢ Number 1 — March 2003: February 159,
2003

Volume 24 ¢ Number 2 - June 2003: May 15", 2003

AUUG Incorporated gratefully acknowledges
the support of its corporate sponsor:

microsystems

AUUGN Vol.23 ¢ No.4 -2 -

AUUGN Editorial Committee

The AUUGN Editorial Committee can be reached by sending email to:
auugn@auug.org.au

Or to the following address:
AUUG Inc

PO Box 7071

Baulkham Hills BC NSW 2153

Editor:
Con Zymaris

Sub-Editors:
Frank Crawford, Mark White

Contributors:

This issue would not have happened without the transcription and
editorial efforts of Gary R. Schmidt” <grschmidt@acm.org>, Rik Harris
<rik@kawaja.net>, Raymond Smith <zzrasmit@uqconnect.net>, David
Llioyd <lloy0076@adam.com.au>, Peter Sandilands
<peter@sandilands.vu>, Grahame Bowland <grahame@ucs.uwa.edu,au>,

Cameron Strom <c.strom@statscout.com>

Public Relations and Marketing:
Elizabeth Carroll

AUUGN Submission Guidelines

Submission guidelines for AUUGN contributions can be obtained from
the AUUG World Wide Web site at:

Wwww.auug.org.au

Alternately, send email to the above correspondence address,
requesting a copy.

AUUGN Back Issues

A variety of back issues of AUUGN are still available. For price and
availability please contact the AUUG Secretariat, or write to:
AUUG Inc

PO Box 7071

Baulkham Hills BC NSW 2153

Conference Proceedings

A limited number of copies of the Conference Proceedings from
previous AUUG Conferences are still available. Contact the AUUG
Secretariat for details.

Mailing Lists

Enquiries regarding the purchase of the AUUGN mailing list should be
directed to the AUUG Secretariat.

Disclaimer

Opinions expressed by the authors and reviewers are not necessarily
those of AUUG Inc., its Journal, or its editorial committee.

Copyright Information
Copyright © 2002 AUUG Inc.

All rights reserved. Portions © by their respective authors, and released
under specified licences.

AUUGN is the journal of AUUG Inc., an organisation with the aim of
promoting knowledge and understanding of Open Systems, including,
but not restricted to, the UNIX® operating system, user interfaces,
graphics, networking, programming and development environments and
related standards.

Copyright without fee is permitted, provided that copies are made
without modification, and are not made or distributed for commercial
advantage.

December 2002

President's Column

Greg Lehey <Greg.Lehey@auug.org.au>

In early 1997 I read an article on the web which
ventured the opinion that Microsoft's empire had
reached its peak, and that things would go downhill

from then on. I didn't have enough knowledge of the-

industry at large to be able to have an opinion on this
statement, but from time to time I've revisited it. I
still don't have enough knowledge to form a good
opinion, but certainly Microsoft's standing in the
industry is changing.

There are a number reasons: computers are becoming
more pervasive, users are becoming more demanding,
requirements are changing. It's worth remembering
that Microsoft got into the operating system business
by accident, and the system they chose was chosen
because it was available, not because it was the best
choice (ironically, it displaced Microsoft's XENIX
release of UNIX). It took Microsoft years to shake off
the consequences of that initial decision.

In the meantime, they made another far-reaching
decision: "Windows”. That, too, took a long time to
become established, but now it's everywhere. You
can't do anything in client computing without coming
up against it. But "Windows" isn't a good match for
server applications, as even Microsoft has been forced
to admit as various uses of UNIX in their Internet
infrastructure have become known.

The real issue, though, is price. Bill Gates didn't
become the richest man in the world by giving away
software. Nowadays you can buy a cheap white-box
PC and install a Microsoft operating system and
Microsoft Office on it, and end up paying 50% more
for the software than you do for the hardware. Or
you can install a free UNIX operating system and
OpenOffice and pay nothing for the software. No
wonder the latter solution looks attractive.

What about security and reliability? Traditionally
Microsoft has not excelled at either. I don't think
that's particularly important to Microsoft's market
share, though. People are still using Microsoft boxes
infected with the Nimda and Code Red viruses;
looking at my own system, I see more than one
breakin attempt every second. That's not to say that
security and reliability are not important, just that
the majority of users wouldn't change just for a more
reliable or secure system.

This is pretty much where the government comes in.
Last month Gordon Hubbard, Con Zymaris and
myself had a meeting with the NOIE in Canberra to
discuss their upcoming seminar on open source for
government agency CTOs and CIOs (see
http:/ /www.noie.gov.aw/ projects / eqgovernment/Better
Infrastructure/oss.htm for more details). There's no
ideology involved there, and most of our technical
goals are of little interest to them. Certainly NOIE is
interested in security as well, and though our
discussions did not mention reliability, it's clear that

AUUGN Vol.23 ¢ No.4 -3-

that's also important. The issue is that open source
Is not seen as a method to improve security or
reliability: it's seen as a way of saving money.

Where does AUUG stand in this matter? We're not
really an open source organization, we're a UNIX
organization. Sure, the areas overlap, but there's
plenty of open source software that isn't UNIX, and
plenty of UNIX that isn't open source. Nevertheless,
there's more at stake than it might seem.

The UNIX operating system is one of the most mature
operating systems available, and the cost of
maintenance is significantly higher than the cost of
development. It's clear from the broad support for
Linux from big UNIX companies that they see the
advantages of a commodity operating system as
outweighing the loss of competitive edge. Earlier this
year, Caldera (now SCO again) released the sources of
"ancient UNIX" under a Berkeley license. This meant
specifically Research UNIX up to and including the
Seventh Edition and 32V, the first virtual memory
version. This also means that all BSD versions of
UNIX are now open source.

On the other hand, how much non-UNIX software is
open source? I don't know of any, which is certainly
in part due to the fact that I haven't looked. But even
if you're not in the industry, you get Linux thrown
into your face on a weekly basis. It's clear that open
source and UNIX are closely intertwined. Supporting
open source helps us support UNIX, even the
proprietary versions.

/var/spool/mail/auugn

Editor: Con Zymaris <auugn@auug.org.au>

The most useful resource that AUUG has to offer its
members is access to other members. The collective
nous of this organisation is oft-times staggering.
When you have that tricky problem that shows no
sign of release, talk to your fellow AUUG'ers, by using
mailmar:

http://www.auug.org.au/mailman /listinfo /talk

From: David Bullock <db@dawnbreaks.net>
Subject: Re: A request of real-world
SysAdmins/SysManagers/CIOs...

On Thu, 5 Dec 2002, Gary Schmidt wrote:

> Just a quick questions folks:

>

> What is the current attitude towards running JVMs
on production systems

> these days?

The per-JVM overhead on memory is quite high, but if
you are talking of running just a single one as a
daemon process and it fits comfortably into RAM,
there is no reason not to do it. JDK 1.4 introduces
significant enhancements that make it quite a viable
platform:

December 2002

- memory mapped 1I/O

- unix-style 'select' on TCP sockets (was previously 1
thread per socket, which was a real point of concern
for server apps)

And since 1.3 there has been:

- generational garbage collection (GC)
- quite a reaonsable just-in-time compiler (JITC)

Java will always pay a little for its GC, runtime
bounds checking, late binding and reflection features,
even after code has been recompiled by the JITC (as
well as the initial recompilation hit in the 'startup
phase' of the app). However, after these necesary
impacts are considered, Java is no slouch. It is
impossible to generalise about performance compared
with alternative approcahes without understanding
the precise problem domain, but most people are
quite comfortable to say 'performance approaching
CH++'.

Note that your app will grind to a halt the instant the
JVM starts getting memory page faults. On a server-
side system it needs to be treated with much the
same respect as a database instance, and given its
own block of memory for keeps at startup.

> I've been hiding out as a developer for the last few
> years, and it may be that my prejudices and biases
> are out of date.

Many people still have bad impressions about Java
from several years ago, before 1.3, and you won't be
alone here.

You might also be interested in Sun's 'support
readiness documents':

http://accessl.sun.com/SRDs/access1_srds.html

> 111 be looking at an internal presentation, where
> they plan to use Java to write monitoring software

Hopefully the events they are monitoring are exposed
by the JVM's core APl (you haven't told us if the
agents or the server was being targeted by Java).
Java abstracts a lot of the machine (both a benefit
and a drawback, depending on what you're doing).

cheers,
David.

[Can anyone help Bruce out with the following
request? -- Ed]

From: bruce@cs.usyd.edu.au
Hi,
I am looking for a copy of
"An Architecture of the UNIX System",

Stuart I. Feldman,
AUUGN, Val. 6, No. 2, AUUG Inc.,

AUUGN Vol.23 ¢ No.4 -4 -

Pp. 8-13, Sydney, NSW, June 1985.
Any idea where/how I might find one?
Regards,

Bruce Janson, School of Information Technologies,
University of Sydney Email: bruce@cs.usyd.edu.au

Knoppix CD-R

Greg Lehey <Greg.Lehey@auug.org.au>

This quarter your AUUGN includes a CD-R of Knoppix
3.1 beta. Knoppix is a standalone Linux distribution
designed to run without a hard disk. It's useful as a
rescue disk or as a demonstration, since it will run on
just about any computer. 1 tried it on my Dell
Inspiron 7500 with a 1400x1050 display, which had
given me problems with other systems in the past. It
also had a Lucent wireless card. Knoppix recognized
and configured both the display and the wireless card
correctly, which I found quite impressive. On one of
my development test machines it came up correctly,
but of course it didn't recognize that the monitor was
an ancient ICL VGA incapable of more than 640x480.
Fortunately 1 was able to switch back to that
resolution with Ctrl-Alt-Numeric - and use it anyway.
At this point, though, 1 should point to the following
disclaimer, which 1 have decapitalized to save pain:

Disclaimer: This is experimental software. Use at
your own risk. Knopper.net can not be held liable
under any circumstances for damage to
hardware or software, lost data, or other direct
or indirect damage resulting from the use of this
software, In some countries the cryptographic
software and other components on the CD are
governed by export regulations and thus may not
be freely copied in these countries as is otherwise
normal for software under the GPL license. If you
do not agree to these conditions, you are not
permitted to use or further distribute this
software.

The point here is that Knoppix can't know anything
about older monitors. Get things wrong and it will
burn out the monitor. With a bit of finger trouble you
might also find a way to overwrite the hard disk on
the machine on which you're running. With a bit of
care, though, you should find it a useful tool.

You can mount the CD on another system to look at
things, of course. There's some documentation in the
directory KNOPPIX, in particular the file
KNOPPIX/KNOPPIX-FAQ-EN.txt. There's more
documentation in the directory Talks, but it's all in
German.

To start KNOPPIX, just boot from the CD-ROM. It
comes up with a functional KDE 3 desktop and
doesn't use any local disk. A rather strange quirk is
that it doesn't allow login at all, so you can't get a root
shell. Instead use sudo without a password. More
details are in KNOPPIX/README-Security.txt, which is
in German first and then English.

December 2002

Public Notices

Upcoming Conferences & Events

Linux.conf.au 2003
Jan 22-25
Perth

USITS '03

4th USENIX Symposium on Internet Technologies
and Systems

March 26-28

Seattle, WA FAST '03

2nd Conference on File and Storage Technologies
Mar. 31 - Apr. 2
San Francisco, CA

USENIX '03

USENIX Annual Technical Conference
June 9-14

San Antonio, TX

DATASAFE

Networked backup

srechiving device

'S an ‘entirély new. idea in network backup, that
of-mind.” How. does-it do this? DATASAFE
Ves:.'snapshots’ of _your. network servers daily.

stalled in minutes and.is managed through your
b-|] unlike tape backups, DATASAFE runs completely
unattended, securing your data against the risk of a'mislabeled tape or a
/’forgo’ttenf'backup} Best:.of all,"DATASAFE offers unbeatable. purchase
value, -and by requiring no regular maintenarice; very low, overall

ownership costs,

Ahd when it: comes: time to restore lost data,"DATASAFE makes; data
retrieval easy - simply select the files you want from the archive (using
your web-browser) and click 'Restore.’ You can even select the version
and date of each file you want from the archive, going back months or

perhaps years.

: ication : ' e LT

. DATASAFE is a totally self-contained server appliance supplied as a rack
:mountable unit. It ships with, either 80GB,160GB o 480GB of online archive
:storage.. DATASAFE-usés TCP/IP network protocols, and can operate with
-standard Micfosoft Windows Networking (SMB/CIFS on Windows, 95,98, Me,
NT, 2000, XP.) ‘Contact Cybersource-“for Unix/Linux (NES) and Apple
Macintosh suppart. *, T ot

”DATASAF'Ecome' v tﬁ a tweNe month rétumrto-fﬁ:;pufacturer hérdWare
wai'fanty. Business and Extended: Hours Service Level Agreenients are also
available. DATASAFE “js available from Cybersource or. throUgh____é national

dealer channel. Contact Cybersalirce for more information.

B Unit: $2950 (inclusive of GST; unlimited usérs, u'qlirqit’ed servers)
Canp vide 6-12 months of online daily-backups‘for a small organisation

160GB Unit: $3950 (inclusive'of GST; unlimited sers, unlimited servers)
Can provide 3-6 midnths--of-onlife "daily-backups for a medium-sized
organisation

480GB Unit: $P.0.A (inclusive of GST; unlimited users, unlimited servers)
Can provide 1-3 months of online daily-backups for a large organisation

Web: http.//www.cyber.com.au/cyber/product/datasafe/

Phone: +613 96425997 Mall: info@cyber.com.au Cybersoirce

AUUGN Vol.23 ¢ No.4

My Home Network
(December 2002)

By: Frank Crawford <frank@crawford.emu.id.au>

Well, it's already December and Christmas is coming
soon, with lots of nice presents. If you've read my
previous column you will know what I hope to get.
I've already received and installed half of the
upgrades, now I'm just looking forward to setting up
my "power machine",

However, before Christmas there is the traditional
bush fire season to get through, and today, I'm sitting
at home on "fire watch", as there are major fires
around my area. I'm not too concerned as I've been
through bush fires before with no major problems.
One thing it did bring home to me was how our way of
dealing with major disasters has changed, and how
some things haven't.

Last time I was working for ANSTO and the whole site
was cut-off. I wasn't able to get home and my
children were evacuated to safety by their school. This
time, again, I wasn't able to get home, I was stuck in
the city and public transport was pretty much
stopped, but I was much more able to keep in touch
with my whole family. The first point of call was the
mobile phone, everyone carries one and despite the
problems with congested phone networks, with some
perseverance you can get through directly to anyone
almost anywhere.

The next major advance was the use of Broadband
networks and permanent connections. With this I
was able to connect to my home system and check
the status of things. Even more interestingly, I have a
UPS on my main server system and it sends me SMS
messages when there is a power outage. Used in
conjunction with an ADSL connection I can get
immediate notification when (or in this case if) the
power goes out. At no time did I get any outage,
which did indicate that everything was, in general,
fine at home.

As an interesting side note to monitoring the power
and sending SMS messages in the event of an outage,
it has foiled at least one attempted break in at my
home. Recently, in the middle of the night someone
pulled the fuses, on my house, but the SMS message
woke me up (yes my mobile is on 24x7) and the
subsequent activity seems to have scared off the
would-be robbers. Of course finding new fuses in
middle of the night proved to be a big problem in
itself!

Anyway, back to the current emergency, having a
network at home allowed me to chat online to the
whole family independently and helped to ensure
piece of mind both for me and the others (except for a
brief minute when one of my "sweet" children claimed
they were being evacuated, however, when our "pet
dog" then started chatting with me, I thought
something might be a bit fishy). I wasn't the only one
online, aside from chatting to me, both my children

December 2002

were chatting to their friends and finding out what
was going on locally. From this they were able to
have a much better idea of what was going on in the
local area, although like any other communication
medium, rumors were also able to be sent at the
"speed of light".

The final change to the world is how much
information is now available online. As I mentioned
at the start, I was stuck in the city due to transport
problems. But, while I couldn't improve matters, at
least 1 could keep up to date on delays and road
blocks, and choose the best time and way to get
home.

Anyway, back to a more normal column. In the last
edition, 1 mentioned that while disk sizes have been
doubling every 12mths, their performance hasn't
been. Well this is not quiet true. I'm not sure what
the time frame is, but in the last 2-3 years it has
changed dramatically. Most IDE drives have normally
been able to transfer at 33MB/sec (i.e. UDMA-2), with
standard cables and "recent chipsets". The possible
data transfer rates can be seen in the table below

hdparm" by Piter Punm, which outlined how to use
“hdparm' to get the most out of your IDE disks.
However, before changing over the cables in my new
system, 1 was never able to get more than about 4-
5MB/sec. However since installing a new cable, I'm
now getting over 22MB/sec with a disk that supports
UDMA-4. This is less than the 66MB/sec listed in the
table above, however, you should note, that the
66MB/sec is a burst rate, while 22MB/sec is a
sustained rate, a very different thing.

One other thing I should mention about the article by
Piter Pumn. While it gives good details on how to
improve performance, often many of the optimisations
are already performed by the Linux kernel. If you
have a recent kernel installed, and you have a fairly
common chipset, then it isn't usually necessary to do
much. On my recently upgraded system, with a
UDMA-5 disk system and an Intel ICH4 chipset, I can
get over 40MB/sec.

Just as an additional item, “hdparm' reports the
various data rates according to transfer modes. To
translate this to a burst transfer rate, use the
following table

What did surprise me was that the internal IDE cable
has changed recently to support newer speeds. While
the 40pin flat-ribbon cable that has long been able to
support up to 33MB/sec, to get higher transfer rates
(i.e. UDMA-4 and above) you need a newer cable
which is still 40pin, but 80 conductors.

For those of you interested in future performance
increases, it looks like another cable change is
needed. Future IDE controllers will run Serial-ATA,
which has a burst rate of 166MB/sec but uses a
serial protocol and a much thinner cable, which plugs
into an RJ45 style connector. Expect to hear more
about this in the near future.

As a sample of this, in a AUUGN V23.2 there was an
article on "Improving Hard Disk Performance with

AUUGN Vo0l.23 ¢ No.4

Talking about speed improvements, disks aren't the
only issue, network bandwidth is something that is
also always an issue. While often it isn't possible to
increase the speed, utilising it better is often just as
good. In line with this, the ability to prioritise bulk
traffic (such as an FTP download) differently to an
interactive session or web browsing, makes the
network feel much faster.

A recent package 1 picked up called "wondershaper".
To understand what it does, you have to know a bit
about how the kernel handles TCP/IP traffic. Within
the kernel (and all other network devices) there are a
number of queues, and what "wondershaper" does,
via some of the QoS (Quality of Service) options that
are available within recent kernels. To understand it
better, it is best to read the 'README' that comes
with the package, but the script itself is simple to
understand, even if the concepts are fairly complex.
For most people, following the procedures listed in the
README will get you going with a network that feels
much faster.

The package can be found at
http://lartc.org/wondershaper, and the version I am

December 2002

running is wondershaper-1.1a. For those interested,
the site lartc.org is The Linux Advanced Routing and
Traffic Control site and has a number of other details
and packages for improving network performance.

If you have any other ideas about improving
performance, then drop me a line.

Well, that will do me for this year. Look after

yourselves, and I wish you all a Merry Christmas and
Happy New Year.

AUUGN Bookreviews

Editor: Mark White <mark.white@auug.org.au>

Bunping WireLEss CommuniTy NETWORKS

Roe FLICKENGER
O'ReiLLy 2002

Reviewed by Anna Gerber <agerber@dstc.edu.au>

Recent years have seen an increase in grassroots
community networking efforts, bypassing traditional
connectivity through ISPs and instead connecting
community members directly by means of inexpensive
802.11b (or WiFi) devices and DIY antennas. O'Reilly
& Associates' Building Wireless Community Networks
is targeted at the wireless networking novice and
provides a solid introduction to the technical
essentials of 802.11b networking as well as
discussion of the issues particular to metropolitan
community networks. Written by Rob Flickenger,
best known in the wireless community as the inventor
of the Pringles antenna, the book covers his
experiences with wireless networking, from first
contact, to his involvement with the NoCat project, a
cooperative network based in Sonoma County, CA.

The first few chapters ease the reader into the field of
wireless networking, describing the motivation and
history behind community wireless networks and a
basic overview of network layout, services and
security. While it does not assume that the reader
has any background knowledge in this area, the book
provides only cursory coverage and a novice could
quickly suffer from acronym overload. However, the
terse coverage of these basics means that Flickenger
has not only kept the book down in size (125 pages in
total), but also that he can focus specifically on the
issues involved in wireless networking, and
particularly, in community wireless networking.

The rest of the book is much more hands-on than the
initial chapters, and provides step-by-step guides to
constructing each part of a wireless network. There is
a chapter devoted to setting up a network based
around an Access Point (specifically, an Apple
Airport), as well as a chapter that describes how to
set up a wireless gateway under Linux using an
802.11b card in Ad-Hoc mode. Both of these
chapters provide easy to follow instructions
illustrated by examples, and references to useful
utilities and further documentation to supplement the
instructions provided.

AUUGN Vol.23 e No.4

Having described how to set up the basic network,
Flickenger then turns to extending the range of the
wireless network from a single site to many sites
across a community. The remaining chapters
describe how connectivity of wireless sites spread
across cities has been achieved by existing
community groups. The book describes the range of
hardware required in addition to an 802.11b network
card, including pigtail adaptors, connectors, cables
and antennas, and when it is appropriate to use each
different type. This section also provides the theory
behind using antennas to focus wireless signal, and
provides formulas that can be used to determine
signal loss, or how far the signal can go. It is also in
this section that the famous Pringles can antenna is
described, providing a concrete application of the
theory.

Flickenger is also careful to discuss some of the
issues involved in extending wireless networks,
including avoiding obstacles, security and the legal
power limits of 802.11b devices. The US FCC Part 15
Rules are included as an appendix in the book,
however Australians should be mindful of the rules
set out in the Australian Radio Communications
Class Licence
(http://Www.sma.gov.au/lega]/licence/class/spread.
htm).

Finally, Flickenger lists some of the community
wireless network groups established in the US, While
the book is US-centric, there are many other
community wireless projects around the world,
including a number in Australia. Non-US readers
should be careful also to investigate the legality of
setting up a community wireless network, including
power limits, as discussed in the book, but also
issues such as whether or not additional licenses or
rules apply for carrying the community's traffic across
the wireless network.

Much of the book's content is already available online,
in fact, the book encourages the reader to check for
updates at nocat.net. The nature of some of the
content lends itself better to a website than a book, as
information provided such as prices of network
components, and the progress of the Pringles antenna
is quickly dated. However, this does not detract from
the book's value, as all of the content essential to
getting started with cooperative wireless networking
has been collated into a lightweight offline reference.

Using ODS to move a
file system on the fly

Author: Joseph Gan <joseph.gan@abs.gov.au>

Moving a large file system to a new partition on the
disk units, such as RSM Raid box, Sun T3 and
StorageTek Hardware Raid devices for instance,
involves dismount the file system, then back it up to
tapes and restore it to a new partition, or using copy
command to copy the file system from one place to
another while it is un-mounted. It could take a
significant amount of time for a large file system, and
will impact users' useability of the system.

December 2002

By using ODS, you can move a file system to a
different partition on the fly. If you don't want to
expand it, you don't even need to mount it as a meta
device. In the end, you only need to do is dismount
the file system, mount it onto the new partition. All
the processes can be executed at the back ground
while the file system is still in using. You can swap to
the new partition at anytime.This can significantly
reduce system down time.

Using the home file system as an example:

~df =k:/home
lesystem =
ity “Mounted or
v/dsk/c0t2d1ls3
" /home-~

ca

: 50700783 39746386 10530839,
80 SR R

5.7

1. Creating a metadevice named d101 on top of this
physical mount-point of home file system, remember
the home file system was still mounted.

“#imetainit —f d101717°1 cOt2dis3:

2. Initialising an one-way mirror metadevice named
d100 with the submirror d101 created above.

metainit d100 -m lel
. metastat’-d100 i
leO - Mirror :
,Submlrror 0: lel
"State:’ Okay T
-Passi 1] .
Read: optlon
herte ‘option:’ parallel
'Slze 102961152 blocks

'roundrobln (default)
(default)

'dlbl Submlrror of leO
. State -Okay i ,
S;ze 102961152'blocks'*

- Block Dbase -

3. Creating a single stripe metadevice d102 on
c0t2d1s7, on which will be the target file system. The
size of the new partition should be the same as d101.

4. Adding the metadevice d102 as the second
submirror to d100, resync will automatically take
place at the back ground.

“¥ometattach d100°d102

5. After the resync has completed successfully, you
would get the following two way mirrors:

metastat:d100
d100: Mirror -
Submirror 0:.d 01‘~

V'Staﬁe; Okay B
'Submifrq:,l d102
State: Okay

AUUGN Vol.23 e No.4

6. Now you have a new partiton for home file system
ready to swap at any time, while it is still on line.

7. You can schedule to dismount the home file system
when user agreed, and mount it to the new partition
on c0t2d1s7 as follow:

The home file system has been moved dynamically.

Call for Papers: AUUG
2003 - Open Standards,
Open Source, Open
Computing

The AUUG Annual Conference will be held in Sydney,
Australia, 10, 11 and 12 September 2003.

The Conference will be preceded by three days of
tutorials, to be held on 7, 8 and 9 September 2003.

The Programme Comimittee invites proposals for
papers and tutorials relating to:

e Open Systems or other operating systems

* Open Source projects
« Business cases for Open Source

December 2002

* Technical aspects of Unix, Linux and BSD variants

* Managing Distributed Networks

° Performance Management and Measurement

* System and Application Monitoring

* Security in the Enterprise

* Technical aspects of Computing

* Networking in the Enterprise

* Business Experience and Case Studies

* Cluster Computing

* Computer Security

* Networking, Internet (including the World Wide
Web).

Presentations may be given as tutorials, technical
papers, or management studies. Technical papers are
designed for those who need in-depth knowledge,
whereas management studies present case studies of
real-life experiences in the conference's fields of
interest.

A written paper, for inclusion in the conference
proceedings, must accompany all presentations.
Speakers may select one of two presentation formats:
Technical presentation:

A 30-minute talk, with 10 minutes for questions.
Management presentation:

A 25-30 minute talk, with 10-15 minutes for
questions (i.e. a total 40 minutes).

Panel sessions will also be timetabled in the
conference and speakers should indicate their
willingness to participate, and may like to suggest
panel topics.

Tutorials, which may be of either a technical or
management orientation, provide a more thorough
presentation, of either a half-day or full-day duration.
Representing the largest Technical Computing event
held in Australia, this conference offers an
unparalleled opportunity to present your ideas and
experiences to an audience with a major influence on
the direction of Computing in Australia.

SusmissioN GUIDELINES

Those proposing to submit papers should submit an
extended abstract (1-3 pages) and a brief biography,
and clearly indicate their preferred presentation
format.

Those submitting tutorial proposals should submit an
outline of the tutorial and a brief biography, and
clearly indicate whether the tutorial is of half-day or
full-day duration.

SPEAKER INCENTIVES

Presenters of papers are afforded complimentary
conference registration.

Tutorial presenters may select 25% of the profit of
their session OR complimentary conference
registration. Past experience suggests that a
successful tutorial session of either duration can

AUUGN Vol.23 ¢ No.4

generate a reasonable return to the presenter.

Please note that in accordance with GST tax
legislation, we will require the presentation of a tax
invoice containing an ABN for your payment, or an
appropriate exempting government form. If neither is
provided then tax will have to be withheld from your

payment,
IMpORTANT DATES

Abstracts/Proposals Due
2 May 2003

Authors notified

2 June 2003

Final copy due

1 July 2003

Tutorials

7-9 September 2003
Conference

10-12 September 2003

Proposals should be sent to:

AUUG Inc.

PO Box 7071

Baulkham Hills BC NSW 2153
Australia

Email: auug2003prog@auug.org.au
Phone: 1800 625 655 or +61 2 8824 9511
Fax: +61 2 8824 9522

Please refer to the AUUG website for further
information and up-to-date details:

http://www.auug. org.au/events/2003/auug2003/

Sponsorship opportunities available. Contact Liz
Carroll <busmgr@auug.org.au> 1800 625 655

December 2002

silicon breeze,

waw INUXjEWeEllery com

info@linuxjewellery.com

AUUG Corporate
Members

as at 1st October 2002

ac3

Accenture Australia Ltd

ADFA

ANSTO

ANU

Australian Centre for Remote Sensing
Australian Bureau of Statistics
Australian Defence Force Academy
Australian Industry Group

Bradken

British Aerospace Australia

Bureau of Meteorology

C.ILS.R.A.

Cape Grim B.A.P.S

Centrelink

CITEC

Corinthian Industries (Holdings) Pty Ltd
CSC Australia Pty Ltd

CSIRO Manufacturing Science and Technology
Curtin University of Technology
Cybersource Pty Ltd

Deakin University

Department of Land & Water Conservation
Department of Premier & Cabinet
Energex

Everything Linux & Linux Help
Fulcrum Consulting Group

IBM Linux Technology Centre

L0 20 20 2% 2% K R 2R K R BK IR EE IR 3R 2K 2K B IR IR SR W W W R W W S

AUUGN Vo0l.23 « No.4 - 10 -

ING

Land and Property Information, NSW

LPINSW - Macquarie University

Multibase WebAustralis Pty Ltd

Namadgi Systems Pty Ltd

National Australia Bank

National Library of Australia

NSW National Parks & Wildlife Service
NSW Public Works & Services,

Services

Peter Harding & Associates Pty Ltd

Rinbina Pty Ltd

Security Mailing Services Pty Ltd

St John of God Health Care Inc

St Vincent's Private Hospital

Stallion Technologies Pty Ltd

Sun Microsystems Australia

TAB Queensland Limited

The University of Western Australia

Thiess Pty Ltd

Tower Technology Pty Ltd

Uniq Advances Pty Ltd

University of Melbourne

University of New South Wales

University of Sydney

University of Technology, Sydney

Victoria University of Technology

Workcover Queensland

L 2R 2R 3K 2R BR R SR R

Information

L 2R 2R 2R K K 2R ER 25 2R 2R 2R BK BR BE SR ER B

Handling Power Status
Using snmptrapd

Author: A. B. Prasad <prasad ab@yahoo.com>

IF YOU ARE NEW TO THIS TOPIC

Refer to the following if you are new to SNMP

* mnet-snmp documentation

* rfcl678

* UPSHowto

» man pages of snmptrapd(8), snmptrapd.conf(8)
and snmptrap(8).

NET-sNMP

Various tools relating to the

Management Protocol including:

* An extensible agent

e An SNMP library

e Tools to request or set information from SNMP
agents

» Tools to generate and handle SNMP traps

A version of the unix 'netstat' command using
SNMP

» A graphical Perl/Tk/SNMP based mib browser

See the NET-SNMP site.

Simple Network

SNMPTRAPD

Snmptrapd is an SNMP application that receives and
logs snmp trap messages sent to the SNMP-TRAP port
(162) on the local machine. It can be configured to
run a specific program on receiving a snmp trap.

December 2002

SNMPTRAPD.CONF
snmptrapd.conf is the configuration file(s) which
define how the ucd-snmp SNMP trap receiving demon
operates when it receives a trap.

urs-MIB

RFC1628 document defines the managed objects for
Uninterruptible Power Supplies which are to be
manageable via the Simple Network Management
Protocol (SNMP).

How 10 UsE SNMPTRAPD WITH POWERH

Please Note: I renamed 'powerd' as 'powerh' as here it
is not a daemon but only a trap handling routine

We had the powerh to handle the Power Status of the
system. powerh communicates with the UPS through
the serial port. However, in a networked system where
a number of machines are using the same UPS it is
not possible for each system to directly communicate
with the UPS. Most modern high capacity UPS
support the SNMP Protocol either directly or through
a proxy. To handle various power status follow these
steps

1. To your snmptrapd.conf add the following lines

traphandlé 33.2.3 powerh.bis ol
traphandle 33.2.4 powerh.p. . i

2. Compile the following C code by entering cc
powerh.c -0 powerhand copy powerh to a directory in
path like /usr/local/sbin/.
[Text version of this listing.]

o string.h>.
o <unmistd.h> -

rv'f'aii:('int é‘\’/_ernvt)?f ”{ 'L :

Ld- P ai
codntofdy oot
Y Unlink (PWRSTAT);

0644))->=0) (.~
EE ~“swit’ch “(event)

{

({fd = open (PWRSTAT, 'O .CREAT | 0 WRONLY,

AUUGN Vo0l.23 » No.4 -11-

3. Run snmptrapd on your system (you can configure
it in the init scripts)

The system will shutdown 2 minutes after receiving a
'battery low alarm' from the UPS. Then if power is OK
before the shutdown it will cancel shutdown or as
configured in the powerfail and powerokwait lines in
/etc/inittab

Copg ExpLANATION

When recejved a trap 33.2.3
(upsMIB.upsTraps.upsTrapAlarmEntryAdded) the
program is executed with a 'b’ option. Program checks
for the 'upsAlarmld' send by the trap and if it is
33.1.6.3.3
(upsMIB.upsObjects.upsAlarm.upsWellKnownAlarms.
upsAlarmLowBattery) it notfies init that a power
failure occurred. This alarm is added to the alarm
table by the UPS agent if the remaining battery run-
time is less than or equal to upsConfigLowBattTime.
It is removed when the power is back and is
acknowledged by trap 33.2.4. The program then
sends init a powerokwait message.

Drawgacks

* The program handles only two traps and look for
only one type of alarm. The upsMIB has a number
of alarms and the program is to be extended to
handle all conditions.

* The obsolete method of informing init is used. This
has to be changed.

* As I had no UPS that sends a snmp traps, I used

the snmp t nerat

I am not sure whether this is correct.
* The snmptrapd is to be run without -f option.
* Tested only on RedHat Linux 6.2,

TODO

I 'would like to see this few lines of code grow into a

complete general purpose UPS managing software

capable of:

* Monitoring and changing all possible MIB of the
upsMIB node

* Handle signals from multiple UPS

° Use data from a configuration file

° Handle authentication

All Suggestions, Criticisms, Contibutions (code and
idea only - no cash please ;)) etc. are welcome. You
can contact me at prasad_ab@yahoo.com. See also
my home page .

December 2002

Copyright © 2002, A B Prasad. Copying license
http://www.linuxgazette.com/copying.html
Published in Issue 83 of Linux Gazette, October 2002

This article is re-printed with permission. The originals
can be found at:

http:/ /www.linuxgazette.com/issue83/prasad. htrml

Process Tracing Using
Ptrace, part 2

Author: Sandeep S <sk_nellayi@rediffmail.com>

[Editor's note: We continue where Sandeep left off in our last
issue]

The basic features of ptrace were explained in Part I
(http: / /www.linuxgazette.com/issue81 /sandeep.html
). We saw a small example too. As I said earlier, the
main applications of ptrace are accessing memory or
registers of a process being run (either for debugging
or for some evil purposes). So first we should have
some basic idea on the binary format of executables -
then only we know how and where to access them. So
1 shall give you a small tutorial on ELF, the binary
format used in Linux. In the last section of this
article, we find a small program which accesses the
registers and memory of another one and modifies
them so as to change the output of that process, by
injecting some extra code.

Note: Please don't get confused. Definitely this is an
article about ptrace, not about ELF. But a basic
knowledge of ELF is required for accessing the core
images of processes. So it should be explained first.

Waat s ELF?

ELF stands for Executable and Linking Format. It
defines the format of executable binaries used on
Linux - and also for relocatable, shared object and
core dump files too. ELF is used by both linkers and
loaders. They view ELF from two sides, so both
should have a common interface.

The structure of ELF is such that it has many
sections and segments. Relocatable files have section
header tables, executable files have program header
tables, and shared object files have both. In the
coming sections I shall explain what these headers
are.

ELF HeADERS

Every ELF file has an ELF header. It always starts at
offset O in the file. It contains the details of the binary
file — should it be interpreted, what data structures
are related to the file, etc.

The format of the header is given below (taken from
/usr/src/include/linux/elf.h)

#define EI_NIDENT 16

AUUGN Vol.23 ¢ No.4 -12 -

3 E1£37 Endrs

A short description on the fields is as follows

1. e_ident Contains information about how to treat
the binary. Platform dependent.

2. e_type Contains information on the type and how
to use the binary. Types are relocatable,
executable, shared object and core file.

3. e_machine As you have guessed, this field
specifies the architecture - Intel 386, Alpha, Sparc
ete.

4. e_version Gives the version of the object file.

5. e_phoff Offset from start to the first program
header.

6. e_shoff Offset from start to the first section
header.

7. e_flags Processor specific flags. Not used in i386

8. e_ehsize Size of the ELF header.

9. e_phentsize & e_shentsize Size of program
header and section header respectively.

10.e_phnum & e_shnum Number of program headers
and section headers. Program header table will be
an array of program headers (e_phnum elements).
Similar is the case of section header table.

11.e_shstrndx In the section header table a section
contains the name of sections. This is the index to
that section in the table. (see below)

SECTIONS AND SEGMENTS

As said above, linkers treat the file as a set of logical
sections described by a section header table, and
lIoaders treat the file as a set of segments described by
a program header table. The following section gives
details on sections and segments/program headers.

ELF Sections and Section Headers

The binary file is viewed as a collection of sections
which are arrays of bytes of which no bytes are
duplicated. Even though there will be helper
information to correctly interpret the contents of the
section, the applications may interpret in its own way.

There will be a section header table which is an array
of section headers. The zeroth entry of the table is
always NULL and describes no part of the binary.
Each section header has the following format: (taken
from /usr/src/include/linux/elf.h)

typedef struct elf32 shdr-{ =
: Elf32 Word’sh name; - 0 /A

/* Type of sectlon

“E1£32_Word gn;:ty'p'e ;
: ' (yes EI£32) '*/

December 2002

‘Entry size

Molds table */

Now the fields in detail.

1. sh_name This contains an index into the section
contents of the e_shstrndx string table. This
index is the start of a null terminated string to be
used as the name of the section. There are many,
a few are:

* .text This section holds executable instructions
of the program

* .data This section holds initialized data that
contributes to the programs image.

* .init This section holds executable instructions
that contribute to the process initialization
code.

2. sh_type Section type such as program data,
symbol table, string table etc..

3. sh_flags Contains information such as how to
treat the contents of the section.

4. sh_addralign Contains the alignment requirement
of section contents, typically 0/1 (both meaning no
alignment) or 4.

The remaining fields seem to be self explaining.

ELF Segments And Program Headers

The ELF segments are used during loading i.e., when
the image of the process is made in the core. Each
segment is described by a program header. There will
be a program header table in the file (usually near the
ELF header). The table is an array of program
headers. The format of the program header is as
follows.

'emafY’%/ CELT
egment-flags %/
gment .alignment */.

1. p_type Gives information on how to treat the
contents. It gives the type of program header such

as:
* unused
* loadable

AUUGN Vo0l.23 ¢ No.4 - 13 -

* Dynamic linking information
* reserved

etc ..

2. p_vaddr relative virtual address of where the
segment expects to be loaded.

3. p_paddr physical address of where the segment
expects to be loaded into the memory.

4. p_flags Contains protection
read/write/execute permissions

5. p_align Contains the alignment for the segment in
memory. If the segment is of type loadable, then
the alignment will be the expected page size.

flags -

Remaining fields appear to be self explaining.

LoapinG Tre ELF FiLe

We have got some idea about the structure of ELF
object files. Now we have to know how and where
these files are loaded for execution. Usually we just
type program name at the shell prompt. In fact a lot
of interesting things happen after the return key is
hit.

First the shell calls the standard libc function which
in turn calls the kernel routine. Now the ball is in
kernel's court. The kernel opens the file and finds out
the type/format of the executable. Then loads ELF
and needed libraries, initializes the program's stack,
and finally passes control to the program code.

The program gets loaded to 0x08048000 (you can see
this in /proc/pid/maps) and the stack starts from
OxBFFFFFFF (stack grows to numerically small
addresses).

Cobk INnJECTION

We have seen the details of the programs being loaded
in the memory. So when a process is given and its
memory space known, we can trace it (if we have
permission) and access the private data structures of
the process. It is very easy to say this, but not that
easy to do it. Why not have a try?

First of all, let's write a program to access the
registers of another program and modify it. Here we
use the following values of request.

* PTRACE_ATTACH : Attach to the process pid.

° PTRACE_DETACH : Detach from the process pid.

Note: Do not forget to call this, otherwise the process

will stay in stopped mode and is hard to recover.

° PTRACE_GETREGS This copies the process'
registers into the struct pointed by data (addr is
ignored). This structure is struct
user_regs_struct defined as
asm/user.h.

this, in

strdct:user;regs;strqct;{pgf;l e
" long ebx; - ecx, edx, esi;iedi) ebp, eax;

~unsigned short ds, _.ds, es, _.es; -
unsigned short fs, ' 'fs, gs, _gsiie
long orig;eag,‘eip; T :

unsigned: short cs, ...cs; -
long eflags, “esp; e
unsigned short ss, _..ssi

)i

December 2002

* PTRACE_SETREGS
GETREGS.

 PTRACE_POKETEXT : This copies 32 bits from the
address pointed by data in the addr address of the
traced process.

Does just the reverse of

Now we are going to inject a small piece of our code to
image of the process being traced and force the
process to execute our code by changing its
instruction pointer.

What we do is very simple. First we attach the
process, and then read the register contents of the
process. Now insert the code which we want to get
executed in some location of the stack and the
instruction pointer of the process is changed to that
location. Finally we detach the process. Now the
process starts to execute and will be executing the
injected code.

We have two source files, one is the assembly code to
be injected and other is the one which traces the
process. | shall provide a small program which we
may trace.

The source files

¢ Tracer.c
http: //www .linuxgazette.com/issue83/misc/sand
eep/Tracer.c

* Code.S
http: //www .linuxgazette.com/issue83 /misc/sand
eep/Code.S

¢ Sample.c
http: //www.linuxgazette.com/issue83/misc/sand
eep/Sample.c

Now compile the files.

Go to another console and run the sample program

by typing

Come back and execute the tracer to catch the
looping process and change
its output. Type

et cE

s'ax | grep’ ¥oop!

Now go to where the sample program 'loop’ runs and
watch what happens. Definitely your play with ptrace
has begun.

Looxing ForRwARD

In the first part we traced a process and counted its
number of instructions. In this part we studied the
ELF file structure and injected a small piece of code
into some process. In next part I would expect to
access the memory space of some process. Till then,
bye from Sandeep S.

AUUGN Vol.23 ¢ No.4 -14 -

Sandeep is a final year student of Government Engineering
College in Thrissur, Kerala, India. His interests include
FreeBSD, Networking and also Theoretical Computer Science.

Copyright © 2002, Sandeep S. Copying license
http: //www .linuxgazette.com/copying.html.
Published in Issue 83 of Linux Gazette, October 2002

This article is re-printed with permission. The originals
can be found at:

http:/ /www.linuxgazette.com/issue83/ sandeep.html

Viruses: a Concern for
all of us

Author: Christophe Blaess <http://perso.club-internet.fr/ccb/>

ABSTRACT:

This article was first published in a Linux Magazine
France special issue focusing on security. The editor,
the authors and the translators kindly allowed
LinuxFocus to publish every article from this special
issue. Accordingly, LinuxFocus will bring them to you
as soon as they are translated to English. Thanks to
all the people involved in this work. This abstract will
be reproduced for each article having the same origin.

PREAMBLE

This article reviews internal security problems that
can appear on Linux systems because of aggressive
software. Such software can cause damage without
human intervention: Viruses, Worms, Trojan Horses,
etc. We will go deep into the various vulnerabilities,
insisting in the pros and cons of free software in this
matter.

INTRODUCTION

There are mostly four types of distinct threats what
can be confusing for the user, especially since it often
happens that an attack relies on various
mechanisms:

» Viruses reproduce themselves infecting the body of
host programs;

e Trojan horses execute tasks hiding themselves
within a harmless looking application;

« Worms take advantage of computers networks to
propagate themselves, using for instance,
electronic mail;

« Backdoors allow an external user to take control of
an application using indirect means.

Classifying them is not always that easy; for example,
there are programs considered as viruses by some
observers and as worms by others, making the final
decision quite complicated. This is not very important
considering the scope of this article, which is to
clarify which dangers can threaten a Linux system.

Contrary to common believe, these four plagues

December 2002

already exist under Linux. Of course, viruses find a
less favorable area to spread than under DOS, for
instance, but the present danger must not be
neglected. Let us analyze what the risks are.

THE POTENTIAL THREATS

Viruses

A virus is a bit of code installed in the core of an host
program, able to duplicate itself by infecting a new
executable file. Viruses were born in the seventies,
when the programmers of that time were playing a
game called the "core war". This game comes from the
Bell AT&T laboratories [MARSDEN 00]. The goal of the
game was to run in parallel, within a restricted
memory area, small programs able to destroy each
other. The operating system did not provide
protection between the programs memory areas, thus
allowing mutual aggression with the aim to kill the
competitors. To do this, some were "bombing" with '0’
the widest possible memory area, while others were
permanently moving within the address space, hoping
to overwrite the code of the opponent, and sometimes,
a few of them cooperated to eliminate a tough
"enemy".

The algorithms implemented for the game were
translated into an assembly language especially
created for the matter, the "red code", which was
executed through an emulator available on most of
the existing machines. The interest in the game was
more scientific curiosity, like e.g the enthusiasm
toward the Life of Conway Game, the fractals, the
genetic algorithms, etc.

However, following articles concerning the core war,
published in the Scientific American [DEWDNEY 84],
the inevitable had to happen and some people began
to write bits of auto-replicating code especially
dedicated to floppies boot sector or executable files,
first on Apple][computers, and next on Maclntosh
and PC's.

The MS DOS operating system was the environment
of choice for viruses proliferation: static executable
files with a well known format, no memory protection,
no security for file access permissions, wide use of
TSR resident programs stacked up in memory, etc.
We must add to this the users state of mind, wildly
exchanging executable programs on floppies without
even caring about the origin of the files.

In its simplest form, a virus is a small piece of code
which will be executed as an extra when launching an
application. It will take advantage of that time to look
for other executable files not yet infected, will embed
itself in them (preferably leaving the original program
unmodified for more discretion) and will exit. When
launching the new executable file, the process will
restart.

Viruses can benefit from a wide bunch of "weapons"
to auto-replicate themselves. In [LUDWIG 91] and
[LUDWIG 93] there is a detailed description of viruses
for DOS, using sophisticated means of hiding to stay
beyond current anti-viruses software: random

AUUGN Vol.23 ¢ No.4 - 15 -

encryption, permanent change of code, etc. It is even
possible to meet viruses using genetic algorithms
methods to optimize their survival and reproduction
abilities. Similar information can be found in a very
famous article: [SPAFFORD 94].

But we have to keep in mind that beyond a subject of
experiments with artificial life, the computer virus can
cause widespread damage. The principle of multiple
replication of a bit of code is only a waste of space
{disk and memory) but viruses are used as a support
- transport agent - for other entities much more
unpleasant: the logical bombs, that we will find again
in Trojan horses.

Trojan horses and logical bombs

Timeo Danaos et dona ferentes - I fear the Greeks even
when they make a gift. (Virgile, the Aeneid, I, 49).

The besieged Trojan have had the bad idea to let in
their town a huge wood statue representing a horse,
abandoned by the greek attackers as a religious
offering. The Trojan horse concealed in its side a real
commando whose members, once infiltrated, took
advantage of the night to attack the town from the
inside, thus allowing the greek to win the Trojan war.

The famous "Trojan horse" term is often used in the
computer security field to designate an a priori
harmless application, which like above mentioned
viruses, spreads a destructive code called logical
bomb.

A logical bomb is a program section intentionally
harmful having very varied effects:

* high waste of system resources (memory, hard
disk, CPU, etc.);

* fast destruction of as many files as possible
(overwriting them to prevent users from getting
their content back);

* underhand destruction of one file from time to
time, to remain hidden as long as possible;

* attack on system security (implementation of too
soft access rights, sending of password file to an
internet address, etc.);

* use of the machine for computing terrorism, such
as DDoS (Distributed Denial of Service) like
mentioned in the already famous article [GIBSON
01};

* Inventory of license numbers concerning the
applications on the disk and sending them to the
software developer.

In some cases the logical bomb can be written for a
specific target system on which it will attempt to steal
confidential information, to destroy particular files, or
to discredit an user taking on his identity. The same
bomb executing on any other system will be harmless.

The logical bomb can also try to physically destroy the
system where it lies in. The possibilities are rather few
but they do exist (CMOS memory deletion, change in
modem flash memory, destructive movements of
heads on printers, plotters, scanners, accelerated
move of hard disks read heads...)

December 2002

To carry on with the "explosive" metaphor, let us say
a logical bomb requires a detonator to be activated.
As a matter of fact, running devastating actions from
Trojan horse or virus at first launch is a bad tactic as
far as efficiency is concerned. After installing the
logical bomb, it is better for it to wait before
exploding. This will increase the "chances" to reach
other systems when it is about virus transmission;
and when it is about Trojan horse, it prevents the
user for making too easily the connection between the
new application installation and the strange behavior
of his machine.

Like any harmful action, the release mechanism can
be varied: ten days delay after installation, removal of
a given user account (lay-off), keyboard and mouse
inactive for 30 minutes, high load in the print
queue... there is no lack of possibilities ! The most
famous Trojan horses are the screen savers even if
they are a bit hackneyed today. Behind an attractive
look, these programs are able to harm without being
disturbed, especially if the logical bomb is only
activated after one hour, which almost ensures the
user is no more in front of his computer.

Another famous example of Trojan horse is the
following script, displaying a login/password screen,
sending the information to the person who launched
it and exiting. If it works on an unused terminal, this
script will allow to capture the password of the next
user trying to connect.

#1 /bin/sh. ¢

To make it disconnect when finished, it must be
launched with the exec shell command. The victim
will think he/she made a typing mistake when seeing
the "Login incorrect” message and will connect again
the normal way. More advanced versions are able to
simulate the X11 connection dialog. To avoid this
kind of trap, it is a good thing to use first a false
login/password arriving at a terminal (this is a reflex
quite easy and fast to learn).

Worms

And Paul found himself on the Worm, exulting, like an
Emperor dominating the universe. (F. Herbert "Dune”)

"Worms" come from the same principle as viruses.
They are programs trying to replicate themselves to
get a maximal dissemination. Even if not their main

AUUGN Vol.23 e No.4 -16 -

feature, they can also contain a logical bomb with a
delayed trigger. The difference between worms and
viruses comes from the fact that worms do not use an
host program as a transport media, but instead, they
try to benefit from the capabilities provided by
networks, such as electronic mail, to spread from
machine to machine.

The technical level of the worms is rather high; they
use the vulnerabilities of software providing network
services to force their self-duplication on a remote
machine. The archetype is the 1988 "Internet Worm".

The Internet Worm is an example of pure worm, not
containing a logical bomb, nevertheless its
involuntary devastating effect was fearsome. You can
find a short but acute description in [KEHOE 92] or a
detailed analysis in [SPAFFORD 88] or [EICHIN 89].
There is also a less technical but more exciting
explanation in [STOLL 89] (following the Cuckoo Egg
saga), where the frenzy of the teams fighting this
worm comes after the panic of the administrators
whose systems were affected.

In short, this worm was a program written by Robert
Morris Jr, student at the Cornell university, already
known for an article about security problems in
networks protocols [MORRIS 85]. He was the son of a
man in charge of computers security at the NCSC,
branch of the NSA. The program was launched late in
the afternoon of November 2nd 1988 and stopped
most of the systems connected to Internet. It worked
in various stages:

1. Once a computer was infiltrated, the worm was
trying to propagate into the network. To get
addresses it was reading system files and was
calling utilities such as netstat providing
information about network interfaces.

2. Next, it was trying to get into user accounts. To do
this it was comparing the content of a dictionary to
the password file. Also, it was trying to use as a
password, combinations of the user's name
(reverse, repeted, etc). This step then relied on a
first vulnerability: passwords encrypted in a
readable file (/etc/ passwd), thus benefitting from
the bad choice of some users passwords. This first
vulnerability has now been solved using shadow
passwords.

3. If it succeeded in getting into user accounts, the
worm was attempting to find machines providing
direct access without identification, that is using
~/.rhost and /etc/hosts.equiv files. In that case, it
was using rsh to execute instructions on the
remote machine. Thus, it was able to copy itself on
the new host and the cycle was starting again.

4. Otherwise a second vulnerability was used to get
into another machine: fingerd buffer overflow

exploit. (Check our series about secure
programming Avoiding security holes when
developing an application - Part 1, Avoiding

security holes when developing an application -
Part 2: memory, stack and functions, shellcode,
Avoiding security holes when developing an
application - Part 3: buffer overflows.) This bug
allowed remote code execution. Then the worm
was able to copy itself on the new system and start

December 2002

again. In fact, this only worked with some
processor types.

5. Last, a third vulnerability was used: a debugging
option, active by default within the sendmail
daemon, allowing to send mail finally transmitted
to the standard input of the program indicated as
destination. This option should never have been
activated on production machines, but,
unfortunately most of the administrators were

ignoring its existence.

Let us note that once the worm had been able to
execute some instructions on the remote machine,
the way to copy itself was rather complex. It required
the transmission of a small C program, recompiled on
the spot and then launched. Then, it was establishing
a TCP/IP connection to the starting computer and
was getting all the worm binaries back. These last,
pre-compiled, were existing for various architectures
(Vax and Sun), and were tested one after the other.
Furthermore, the worm was very clever at hiding
itself, without trace.

Unfortunately, the mechanism preventing a computer
to be infected various times did not work as expected
and the harmful aspect of the Internet 88 worm, not
containing a logical bomb, showed itself because in a
strong overload of the affected systems (notably with a
blocking in electronic mail, what caused a delay in
providing solutions).

The author of the worm went to prison for some time.

The worms are relatively rare because of their
complexity. They must not be mixed up with another
type of danger, the viruses transmitted as
attachments to an electronic mail such as the famous
‘ILoveYou". These are quite simple since they are
macros written (in Basic) for productivity applications
automatically launched when the mail is read. This
only works on some operating systems, when the mail
reader is configured in a too simplistic way. These
programs are more similar to Trojan horses than to
worms, since they require an action from the user to
be launched.

Backdoors

Backdoors can be compared to Trojan horses but they
are not identical. A backdoor allows an ("advanced")
user to act on a software to change its behavior. It
can be compared to the cheat codes used with games
to get more resources, to reach a higher level, etc. But
this is also true for critical applications such as
connection authentication or electronic mail, since
they can provide a hidden access with a password
only known by the software creator.

Programmers wishing to ease the debugging phase,
often leave a small door open to be able to use the
software without going through the authentication
mechanism, even when the application is installed on
the client site. Sometimes they are official access
mechanisms using default passwords (system, admin,
superuser, etc) but are not very well documented
what leads the administrators to leave them on.

AUUGN Vol.23 e No.4 - 17 -

Remember the different hidden accesses allowing to
discuss with the system core in the "Wargame" film,
but you can also find earlier reports about such
practices. In an incredible article [THOMPSON 84],
Ken Thompson, one of the Unix fathers, describes a
hidden access he implemented on Unix systems many
years ago:

* He had changed the /bin/login application to
include a bit of code in it, providing a direct access
to the system typing a precompiled hardcoded
password (not taking /etc/passwd into account).
Thus, Thompson was able to visit every system
using this login version.

* However, the sources of the applications were
available at that time (like for free software today).
Then the login.c source code was present in the
Unix systems and everybody could have read the
trapped code. Accordingly, Thompson was
providing a clean login.c without the access door.

* The problem was that every administrator was
able to recompile login.c thus removing the
trapped version. Then, Thompson modified the
standard C compiler to make it able to add the
backdoor when noticing someone was trying to
compile login.c.

* But, again, the compiler source code cc.c was
available and everybody could have read or
recompile the compiler. Accordingly, Thompson
provided a clean compiler source code, but the
binary file, already processed, was able to identify
its own source files, then included the code used
to infect login.c... °

What to do against this ? Well, nothing ! The only way
would be to restart with a brand new system. Unless
you build a machine from scratch creating the whole
microcode, the operating system, the compilers, the
utilities, you cannot be sure that every application is
clean, even if the source code is available.

AND, WHAT ABOUT Linux ?

We presented the main risks for any system. Now, let
us have a look at the threats concerning free software
and Linux.

Logical bombs

First, let us watch the damages a logical bomb is able
to cause when executed on a Linux box. Obviously,
this varies depending on the wanted effect and the
privileges of the user identity launching it.

As far as system file destruction or reading of
confidential data is concerned, we can have two
cases. If the bomb executes itself under the root
identity, it will have the whole power on the machine,
including the deletion of every partition and the
eventual threats on the hardware above mentioned. If
it is launched under any other identity, it will not be
more destructive than a user without privileges could
be. It only will destroy data belonging to this user. In
that case, everyone is in charge of his own files. A

December 2002

conscientious system administrator does very few
tasks while login as root, what reduces the probability
to launch a logical bomb under this account.

The Linux system is rather good at private data and
hardware access protection, however it is sensitive to
attacks aiming at making it inoperative using lot of
resources. For example, the following C program is
difficult to stop, even when started as a normal user,
since, if the number of process by user is not limited,
it will "eat" every available entry from the process
table and prevent any connection trying to kill it:

’,#;nclude <51gnal h>

The limits you can set for users (with the setrlimit()
system call, and the shell ulimit function) allow to
shorten the life of such a program, but they only act

after some time
unreachable.

during which the system is

In the same connection, a program like the following
uses all the available memory and loops "eating" the
CPU cycles, thus being quite disturbing for the other

processes:

Usually this program is automatically killed by the
virtual memory management mechanism in the latest
kernel releases. But before this, the kernel can kill
other tasks requiring a lot of memory and presently
inactive (X11 applications, for instance). Furthermore,
all other processes requiring memory will not get it,
what often leads to their termination.

Putting network features out of order is also rather
simple, overloading the corresponding port with
continued connection requests. The solutions to avoid
this exist but they are not always implemented by the
administrator. We then can notice that under Linux,
even if a logical bomb launched by a normal user
cannot destroy files not belonging to him, it can be
quite disturbing. Enough to combine a few fork(),
malloc() and connect() to badly stress the system and
the network services.

AUUGN Vo0l.23 » No.4 -18 -

VIRUSES

your ‘system::’

Despite a widespread idea, viruses can be a threat
under Linux. Various exist. What is true is that a
virus under Linux will not find a useful ground to
spread. First, let us watch the phase of infesting a
machine. The virus code must be executed there. It
means a corrupt executable file has been copied from
another system. In the Linux world, the common
practice is to provide an application to someone is to
give him the URL where to find the software instead of
sending him executable files. This means the virus
comes from an official site where it will be quickly
detected. Once a machine infected, to make it able to
spread the virus, it should be used as a distributing
platform for precompiled applications, what is rather
infrequent. As a matter of fact, the executable file is
not a good transport media for a logical bomb in the
world of free software.

Concerning the spreading within a machine,
obviously a corrupt application only can spread to
files for which the user running it, has writing rights.
The wise administrator only working as root for
operations really requiring privileges, is unlikely
running a new software when connected under this
identity. Apart from installing a Set-UID root
application infected with a virus, the risk is then quite
reduced. When a normal user will run an infected
program, the virus will only act on the files owned by
this user, what will prevent it from spreading to the
system utilities.

If viruses have represented an utopy under Unix for a
long time, it is also because of the diversity of
processors (then of assembly languages) and of
libraries (then objects references) which limited the
range for precompiled code. Today it is not that true,
and a virus infecting the ELF files compiled for Linux
for an i386 processor with GlibC 2.1 would find a lot
of targets. Furthermore a virus could be written in a
language not depending on the host executing it. For
instance, here is a virus for shell scripts. It tries to get
into every shell script found under the directory
where it is launched from. To avoid infecting the same
script more than once, the virus ignores the files in
which the second line has the comment "infected" or
"vaccinated".

#1._ /bin/sh.. .
lnfected

(tmp flc,/tmp/$$
candlda és -5 (flnd

exec < $flC

#Let's try to. .

if ! read dine ;it]
continue

December 2002

The virus does not care about hiding itself or its
action, except that it executes in the background
while leaving the original script to do its usual job. Of
course, do not run this script as root! Especially if
you replace find . with find /. Despite the simplicity of
this program, it is quite easy to loose its control,
particularly if the system contains lots of customized
shell scripts.

The table 1 contains information about well known
viruses under Linux. All of them infect ELF
executable files inserting their code after the file
header and moving back the rest of the original code.
Unless told otherwise, they search potential targets in
the system directories. From this table, you can
notice that viruses under Linux are not anecdotal
even if not too alarming, mostly because, until now
these viruses are harmless.

Table 1 - Viruses under Linux

§Name ﬁLogical Bomb : fNotes
x f Automatic desinfection of the
Bliss | Apparently lexecutable file if called with the
éinactive option - -bliss-disinfect-
| Ifiles-please
| Diesel %{None I |
L i L i
l H
Kagob {None ‘Uses a tempqrary file to execute the
i infected original program
fSatyr §£None “ f
i I : :
Vitd096 E None QDIy infects files in current
! i/directory.
s i : ;
Winter (None he virus ct?de is 341 by'tes. Only
; i iinfects files in current directory.
‘Thls virus holds two different codes, ‘
; ;;and can infect as well Windows files
. ‘ :ias EIf Linux files. However it is !
Winux i None ; .
: {lunable to explore other partitions
i‘than the one where it is stored, what
iireduces its spreading.

AUUGN Vol.23 e No.4 - 19 -

Inserts a "troll"
text about Linux
and Windows

into the Zip files

ZipWor it finds. ("troll"=
m
some sort of
gnome in
Swedish
mythology)

You will notice that "Winux" virus is able to spread
either under Windows or Linux. It is a harmless virus
and is rather a proof of possibilities than a real
danger. However this concept sends shivers down
your spine, when you think that such an intruder
could jump from one partition to the other, invade an
heterogeneous network using Samba servers, etc.
Eradication would be a pain since the required tools
should be available for both systems at once. It is
important to note that the Linux protection
mechanism preventing a virus working under a
normal user identity from corrupting system files is
no more available if the partition is accessed from a
virus working under Windows.

Let us insist on that point: every administration
precaution you can take under Linux becomes
ineffective if you reboot your machine from a Windows
partition "homing" an eventual multi-platform virus.
It is a problem for every machine using dual-boot with
two operating systems; the general protection of the
whole relies on the security mechanism of the
weakest system! The only solution is to prevent
access to Linux partitions from any Windows
application, using an encrypted file system. This is
not very widespread yet, and we can bet that viruses
attacking unmounted partitions will soon represent a
significant danger for Linux machines.

Trojan horses

Trojan horses are as fearsome as viruses and people
seem to be more conscious about jt. Unlike a logical
bomb transported by a virus, the one found in a
Trojan horse has intentionally been inserted by some
human. In the free software world, the range from the
author of a bit of code to the final user is limited to
one or two intermediaries (let us say someone in
charge of the project and someone preparing the
distribution). If a Trojan horse is discovered it will be
easy to find the "guilty".

The free software world is then rather well protected
against Trojan horses. But we are talking about free
software as we know it today, with managed projects,
receptive developers and web sites of reference. This
Is quite far from shareware or freeware, only available
precompiled, distributed in an anarchic way by
hundreds of web sites (or CD provided with
magazines), where the author is only known from an
e-mail address easy to falsify; those make a true
Trojan horses stable.

Let us note that the fact to have the source of an
application and to compile it is not a guarantee of
security. For example a harmful logical bomb can be
hidden into the "configure" script (the one called

December 2002

during "./configure; make") which usually is about
2000 lines long! Last but not least, the source code of
an application is clean and compiles; this does not
prevent the Makefile from hiding a logical bomb,
activating itself during the final "make install",
usually done as root!

Last, an important part of viruses and Trojan horses
harmful under Windows, are macros executed when
consulting a document. The productivity packages
under Linux are not able to interpret these macros, at
least for now, and the user quickly gets an
exaggerated feeling of security. There will be a time
when these tools will be able to execute the Basic
macros included in the document. The fact that the
designers have the bad idea to leave these macros run
commands on the system will happen sooner or later.
Sure, like for viruses, the devastating effect will be
limited to the users privileges, but the fact of not
loosing system files (available on the installation CD,
anyway), is a very little comfort for the home user who
just lost all his documents, his source files, his mail,
while his last backup is one month old.

To end this section about Trojan horses included in
data, let us note that there is always a way of
annoying the user, even without being harmful, with
some files requiring an interpretation. On Usenet, you
can see, from time to time, compressed files
multiplying themselves into a bunch of files till
reaching disk saturation. Some Postscript files are
also able to block the interpreter (ghostscript or gv)
wasting CPU time. These are not harmful, however
they make the user loose time and are annoying.

Worms

Linux did not exist at the time of the 1988 Internet
Worm; it would have been a target of choice for this
kind of attack, the availability of free software source
making the search of vulnerabilities very simple
(buffer overflows, for instance). The complexity of
writing a "good quality" worm reduces the number of
those really active under Linux. Table 2 presents a
few of them, among the widespread ones.

The worms exploit network server vulnerabilities. For
the workstations occasionally connected to Internmet
the risk is theoretically less than for the servers
permanently connected. However, the evolution of the
types of connection provided to the home users
(Cable, SDL, etc) and the ease of implementation of
current network services (HTTP servers, anonymous
FTP, etc) imply that it can become quickly a concern
for everybody.

Table 2 - Worms under Linux

Name I./ulnerabllt Notes
ifies
Installs a backdoor (TCP port 10008) and a
Lion f'bind root-kit on the invaded machine. Sends
(1i0n) system information to an email address in
China.
Ramen | -PTPES Changes the index . html files it finds
wu-ftpd

AUUGN Vol.23 e No.4 -20 -

Ad bind, 1pr, Installs a backdoor in the system and sends
R odre 1nc I_) ’iiinformation to email addresses in China and
(Re PS, Wu USA. Installs a ps modified version to hide
Worm) iftpd .

its processes.

Worm introduced as a nice one, checking
Cheese ;iLike Lion | and removing the backdoors opened by

Lion.

About worms, let us note that their spreading is time
limited. They only "survive" replicating themselves
from one system to the other, and since they rely on
recently discovered vulnerabilities, the quick updates
of the target applications stop their spreading. In near
future, it is likely that home systems will have to
automatically consult web sites of reference (everyday)
- that will need to be trusted - to find there security
patches for system applications. This will become
necessary to prevent the user from working full time
as a system administrator while allowing him to
benefit from performing network applications.

Backdoors

The backdoor problem is important, even for free
software. Of course, when the source code of a
program is available, you can check, theoretically,
what it does. In fact, very few people read the archive
content downloaded from Internet. For instance, the
small program below provides a full backdoor, though
its small size allows it to hide within a big enough
application. This program is derived from an example
from my book [BLAESS 00] illustrating the
mechanism of pseudo- terminal. This program is not
very readable since it has been uncommented to
make it shorter. Most of the error checks have also
been removed for the same reason. When executed, it
opens a TCP/IP server on the port mentioned at the
beginning of the program (default 4767) on every
network interface of the machine. Each requested
connection to this port will automatically access a
shell without any authentication !!!

flongueur, /* length */
‘sockZ,) '
é, & pty master */ g
v/* pty slav T ST

. , buffer (40967 ;
sint 0 np

sock & socket (AF.INET, SOCK. STREAM;:0);

December 2002

struct sockaddr_ in) ;
~(sock;, &adresse;

open’ (nom-pty, -0 RDWR) ;" :
setattr: (pty esclave; TCSANOW, gtermios);
2 (pty-esclave; STDIN-FILENO); . - .
2. (pty_esclave, STDOUT_FILENO);
(pty._esclave, STDERR FILENO);

/. &termios);

CSANOW, &termios);

Insertion of such a code into a big application
(sendmail for example) will stay hidden long time
enough to allow nasty infiltration. Furthermore, some
people are past master in the art of hiding the work of
a bit of code, like the programs submitted every year

at the IOCC (International Obsfucated C Code
Contest) contest can provide the evidence.

The backdoors must not only be considered as
theoretical possibilities. Such difficulties have really
been encountered, for example in the Piranha

AUUGN Vol.23 ¢ No.4 - 21 -

package from the Red-Hat 6.2 distribution, which was
accepting a default password. The Quake 2 game has
also been suspected of hiding a backdoor allowing
remote command execution.

The backdoor mechanisms can also hide themselves
in such complex appearances that they become
undetectable for most of the people. A typical case is
the one concerning encryption systems. For example,
the SE-Linux system, on the work, is a Linux version
where security has been strengthened with patches
provided by the NSA. The Linux developers having
checked the provided patches said that nothing
seemed suspect, but nobody can be sure and very few
people have the required mathematics knowledge to
discover such vulnerabilities.

ConNcLusioN

Observing these harmful programs found in the
Gnu/Linux world allows us to conclude: free software
Is not safe from viruses, worms, Trojan horses, or
others ! Without being too hasty, one must watch
security alerts concerning current applications,
particularly if the connectivity of a workstation to
Internet is frequent. It is important to take good
habits right now: update software as soon as a
vulnerability has been discovered; use only the
required network services; download applications
from trusted web sites; check as often as possible the
PGP or MD5 signatures for the downloaded packages.
The most "serious" people will automate the control of
installed applications, with scripts, for instance.

A second note is required: the two main dangers for
Linux systems in the future are either the
productivity applications blindly interpreting the
macros contained in documents (including electronic
mail), or multi-platform viruses which, even executed
under Windows, will invade executable files found on
a Linux partition of the same machine. If the first
problem depends on the user behavior, who should
not allow its productivity applications to accept
everything, the second one is rather difficult to solve,
even for a conscientious administrator. In a very near
future, powerful viruses detectors would have to be
implemented for Linux workstations connected to
Internet; let us hope such projects will appear very
soon in the free software world.

BIBLIOGRAPHY

The number of documents about viruses, Trojan
horses and other software threats is and important
indication; there are many texts talking about current
viruses, how they work and what they do. Of course,
most of these lists concern Dos/Windows but some of
them concern Linux. The articles mentioned here are
rather classical and analyze the implemented
theoretical mechanism.

* [BLAESS 00] Christophe Blaess - "C system
programming under Linux", Eyrolles, 2000.

- [DEWDNEY 84] A.K. Dewdney - "Computer
recreations” in Scientific American. Scanned

December 2002

versions available at
http://www.koth.org/info/sciam/

» [EICHIN 89] Mark W. Eichin & Jon A. Rochlis -
"With Microscope and Tweezers: An Analysis of the
Internet Virus of November 1988", MIT Cambridge,
1989. Available at
www.mit.edu/people/eichin/virus/main.html

¢ [GIBSON 01] Steve Gibson - "The Strange Tale of
the Denial of Service Attack Against GRC.COM",
2001. Available at http://grc.com/dos/grcdos.htm

» [KEHOE 92] Brendan P. Kehoe - "Zen and the Art
of the Internet”, 1992, Available at
ftp://ftp.lip6.fr/pub/doc/internet/

* [LUDWIG 91] Mark A. Ludwig - "The Little Black
Book of Computer Virus", American Eagle
Publications Inc., 1991.

e [LUDWIG 93] Mark A. Ludwig "Computer
Viruses, Artificial Life and Evolution", American
Eagle Publications Inc., 1993.

¢ [MARSDEN 00] Anton Marsden - "The
rec.games.corewar FAQ" available at
http://homepages.paradise.net.nz/~anton/cw/cor
ewar-faq.html

e [MORRIS 85] Robert T. Morris - "A Weakness in
the 4.2BSD Unix TCP/IP Software", AT&T Bell
Laboratories, 1985. Available at
http://www.pdos.lcs.mit.edu/ ~rtm/

° [SPAFFORD 88] Eugene H. Spafford - "The Internet
Worm Program: an Analysis", Purdue University
Technical Report CSD-TR-823, 1988. Available at
http:// www.cerias.purdue.edu/homes/spaf/

* [SPAFFORD 91] Eugene H. Spafford - "The Internet
Worm Incident", Purdue University Technical
Report CSD-TR-933, 1991. Available at http://
www.cerias.purdue.edu/homes/spaf/

° See also rfc1135: The Helminthiasis of the Internet

° [SPAFFORD 94] Eugene H. Spafford - "Computer
Viruses as Artificial Life", Journal of Artificial Life,
MIT Press, 1994, Available at http://
www.cerias.purdue.edu/homes/spaf/

¢ [STOLL 89] Clifford Stoll - "The Cuckcoo's egg",
Doubleday, 1989.

< [THOMPSON 84] Ken Thompson - "Reflections on
Trusting Trust”, Communication of the ACM vol.27
n°8, August 1984. Reprinted in 1995 and available
at http://www.acm.org/classics/sep95/

This article is re-printed with permission. The originals
can be found at:
http: //www.linuxfocus.org/English /September2002/
article255.shtml

Viruses and System
Security

[Editor's note: Since we're on the subject of malware, | thought
I'd dredge up this crusty 'ol piece, which was my favourite virus
story from the '80s. If you have something better, send it to me:
<auugn@auug.org.au>]

From R746RZ02@VB.CC.CMU.EDU Fri Mar 3 11:46:50 1989
To: VIRUS-L@IBM1l.CC.LEHIGH.EDU

Date: Fri, 3 Feb 89 04:00:00 EST

Sendex: SECURITY
<SECURITY@PYRITE.RUTGERS.EDU>

AMSTerDamn System <R746RZ02@VB.CC.CMU.EDU>

Digest

From:

AUUGN Vol.23 ¢ No.4 -22 -

Subject: Viruses and System Security (a story)
The following story was posted in news.sysadmin
recently.

The more things change, the more they stay the
same...

Back in the mid-1970s, several of the system support
staff at Motorola (I believe it was) discovered a
relatively simple way to crack system security on the
Xerox CP-V timesharing system (or it may have been
CP-V's predecessor UTS). Through a simple
programming strategy, it was possible for a user
program to trick the system into running a portion of
the program in "master mode" (supervisor state), in
which memory protection does not apply. The
program could then poke a large value into its
“privilege level’ byte (normally write-protected) and
could then proceed to bypass all levels of security
within the file-management system, patch the system
monitor, and do numerous other interesting things.
In short, the barn door was wide open.

Motorola quite properly reported this problem to
XEROX via an official "level 1 SIDR" (a bug report with
a perceived urgency of "needs to be fixed yesterday”).
Because the text of each SIDR was entered into a
database that could be viewed by quite a number of
people, Motorola followed the approved procedure:
they simply reported the problem as "Security SIDR",
and attached all of the necessary documentation,
ways-to-reproduce, etc. separately.

Xerox apparently sat on the problem... they either
didn't acknowledge the severity of the problem, or
didn't assign the necessary operating-system-staff
resources to develop and distribute an official patch.

Time passed (months, as I recall). The Motorola guys
pestered their Xerox field-support rep, to no avail
Finally they decided to take Direct Action, to
demonstrate to Xerox management just how easily
the system could be cracked, and just how thoroughly
the system security systems could be subverted.

They dug around through the operating-system
listings, and devised a thoroughly devilish set of
patches. These patches were then incorporated into a
pair of programs called Robin Hood and Friar Tuck.
Robin Hood and Friar Tuck were designed to run as
"ghost jobs" (daemons, in Unix terminology); they
would use the existing loophole to subvert system
security, install the necessary patches, and then keep
an eye on one another's statuses in order to keep the
system operator (in effect, the superuser) from
aborting them.

So... one day, the system operator on the main CP-V
software-development system in El Segundo was
surprised by a number of unusual phenomena. These
included the following (as I recall... it's been a while
since I heard the story):

e Tape drives would rewind and dismount their

tapes in the middle of a job.
= Disk drives would seek back&forth so rapidly that

December 2002

they'd attempt to walk across the floor.

* The card-punch output device would occasionally
start up of itself and punch a "lace card" (every
hole punched). These would usually jam in the
punch.

* The console would print snide and insulting
messages from Robin Hood to Friar Tuck, or vice
versa.

* The Xerox card reader had two output stackers; it
could be instructed to stack into A, stack into B,
or stack into A unless a card was unreadable, in
which case the bad card was placed into stacker
B. One of the patches installed by the ghosts
added some code to the card-reader driver...
after reading a card, it would flip over to the
opposite stacker. As a result, card decks would
divide themselves in half when they were read,
leaving the operator to recollate them manually.

I believe that there were some other effects produced,
as well.

Naturally, the operator called in the operating-system
developers. They found the bandit ghost jobs

running, and X'ed them... and were once again
surprised. When Robin Hood was X'ed, the following
sequence of events took place:

le 3 Fear not; frlen]
Sheriffiof Nottingham's me

id3: Thank you,

Each ghost-job would detect the fact that the other
had been killed, and would start a new copy of the
recently-slain program within a few milliseconds. The
only way to kill both ghosts was to kill them
simultaneously (very difficult) or to deliberately crash
the system.

Finally, the system programmers did the latter... only
to find that the bandits appeared once again when the
system rebooted! It turned out that these two
programs had patched the boot-time image (the
/vmunix file, in Unix terms) and had added
themselves to the list of programs that were to be
started at boot time...

The Robin Hood and Friar Tuck ghosts were finally
eradicated when the system staff rebooted the system
from a clean boot-tape and reinstalled the monitor.
Not long thereafter, Xerox released a patch for this
problem.

I believe that Xerox filed a complaint with Motorola's
management about the merry-prankster actions of
the two employees in question. To the best of my
knowledge, no serious disciplinary action was taken
against either of these guys.

Several years later, both of the perpetrators were
hired by Honeywell, which had purchased the rights
to CP-V after Xerox pulled out of the mainframe

AUUGN Vol.23 e No.4 -23 -

business. Both of them made serious and substantial
contributions to the Honeywell CP-6 operating system
development effort. Robin Hood (Dan Holle) did much
of the development of the PL-6 system-programming
language compiler; Friar Tuck (John Gabler) was one
of the chief communications-software gurus for
several years. They're both alive and well, and living
in LA (Dan) and Orange County (John). Both are
among the more brilliant people I've had the pleasure
of working with.

Disclaimers: it has been quite a while since I heard
the details of how this all went down, so some of the
details above are almost certainly wrong. I shared an
apartment with John Gabler for several years, and he
was my Best Man when I married back in '86... so I'm
somewhat predisposed to believe his version of the
events that occurred.

Dave Platt
Coherent Thought Inc.
Palo Alto CA 94303

3350 West Bayshore #205

Why Success for Open
Source is Great for
Windows Users.

Author: Con Zymaris <conz@cybersource.com.au>

Microsoft reportedly has increased its desktop market
share to around 93%. I'm sure that this figure varies
from industry to industry and from country to
country, but lets assume its valid. This number, and
the possibility that Microsoft may increase it, is a very
long-term strategic threat to all users of personal
computers. Let's consider some reasons for this and
why the rise of a seriously competitive alternative is in
the absolute best interests of even the staunchest
pro-Windows protagonists.

Computer operating systems, as noted once many
years back by one Bill Gates, are an example of what
economists call a 'natural monopoly'. That is, they
benefit greatly by an installed base and through the
pervasiveness of software applications,
interoperability and the common, shared-knowledge
amongst all users of that particular operating system.
As a natural monopoly, operating systems allow their
purveyors great leverage as well as the strong
possibility of price gouging of their client base. In
many social structures and industries, this kind of
situation is abhorred and avoided at whatever cost.
Some examples will help clarify why this may be the
case.

What would happen worldwide if there was one and
only one high-volume car manufacturer? What would
that do to the innovation and quality of new cars?
What of their cost competitiveness? Another example,
What would happen if one country held 93% of the
world's oil reserves? What do we think that the profit
margins available to this supplier would likely be?

December 2002

What affect will this inflated price have on industries
which rely on this product? The analogies don't
always have to be econo-centric. Think of what would
happen in any democratic society if there was one,
and only effective electoral party? How would that
effect the long-term viability of the democracy? Can
we apply this analogy to software? What are the
implications of the vesting of a substantial portion of
any market with a single, non-regulated supplier?

Note, I'm not advocating any extension of the various
government actions worldwide. Quite the opposite in
fact. If Microsoft has broken any commercial laws in
various countries through various anti-competitive
behaviours, that's up to the courts in those countries
to decide. What I am advocating, and strongly, is this:
you, even as a happy, contented and supportive user
of Microsoft technologies, are best served by a strong
and viable long-term competitor to Microsoft's
platforms and applications technologies. The reasons
for this are not difficult to fathom. With a strong
competitor to the status-quo comes increased
competition. With competition comes normalisation of
price to a more realistic level, more rapid advances in
technology and better overall service to you, the
customer. And Linux and Open Source are the best,
most effective, long-term-viable competitors to the
status-quo that exist.

What makes Linux (and other Open Source platforms
such as FreeBSD generally) the only viable
competitor? Several reasons. Linux runs on all the
modern computer architectures, from almost all
builders of hardware; from IBM's Linux wristwatch,
through 1386, 1586, PentiumlIV, AMD's Hammer and
the Itanium II, all major RISC CPUs and through to
super clusters and Crays. This pervasiveness allows
Linux to become, perhaps for the first time in our
industry, a single, unifying platform, with true write-
once, run anywhere capabilities. Secondly, like all
open source software, it's free of licence costs. This
competitive advantage is an absolute must for making
headway against an entrenched competitor. Finally,
with an attribute that eerily mirrors the rise, success
and dominance of the Internet as the ultimate
network platform, Linux as an operating system
platform is not, nor can ever be co-opted or 'owned' by
any single entity, corporation or government. This
characteristic gives it immense long-term viability, as
most vendors see Linux as a form of neutral territory,
placing them all, perhaps for the first time, on equal
footing. This rise and rise, dumbfounding successive
iterations of industry commentators and naysayers,
inexorably building momentum as it grows, makes
Linux the first real competition that Microsoft has
faced in the market.

To see how the severe lack of competition in the
desktop platform and business productivity software
space has affected things, let's take a brief historical
snapshot of the PC industry of a around a decade ago
and contrast that with the current marketplace.
Around 10 years ago, a mid-level, top-tier name
brand PC, fully decked-out, would retail for around
US$2,000. The price of Microsoft's DOS+Windows and
Office, to be used with that PC, were available at a
total street-price of around US$400. The ratio of

AUUGN Vol.23 e No.4 -24 -

hardware to software is therefore around 5:1. Now, in
the ensuing decade, we have seen a constant non-
remitting battle of contestants for customers in all
areas of PC hardware space. Even Intel, which looked
unassailable as the maker of the CPU heart of a PC, is
facing fierce competition from AMD. To wit, the speed,
capability and performance improvements in CPU
hardware in these past 10 years has been incredible.
We've moved from 16 MHz 386 to 3.0GHz Pentium IVs
in this time. The relative price improvements in PC
hardware have been even more amazing. The current
price for the equivalent, mid-level, top-tier name-
brand PC is under US$800. The price of the
equivalent Microsoft platform and business
productivity software today? Windows XP Pro and
Microsoft Office will set you back around US$800.
Thus the ratio of hardware to software for the modern
PC is around 1:1. What we have is a five-fold decrease
in the overall cost of the hardware in comparison to
software. The hardware performance has skyrocketed
while falling in price like a stone, while the price of
software has gone up. Why is this? Now some would
state that the reason for the increase in the price of
Microsoft's platform and application software is due
to the marked increase in functionality in the
software. I have no doubt that the software (as would
be expected) has improved. Has it improved relatively
more than the corresponding improvement in the
hardware? I doubt it. Definitely not by a factor of five.
Further, this argument is facetious and can be
exposed quite quickly with the following simple
analysis.

It is accepted that the cost of hardware does decrease
with the number of units produced and sold, and the
R&D costs are amortized over a larger number of
units (the normalized benefits of mass production).
This behavior is even more pronounced when we look
at software. Whereas Microsoft may have had a
possible market of perhaps 100 Million PCs a decade
ago, they have a market catchment area of 500
million in 2002. Furthermore, while Microsoft had a
certain portion of the desktop market a decade ago,
they have a far higher portion of that market now.
Platforms like DR Dos and OS/2, along with
WordPerfect, Quattro Pro and Lotus 1-2-3 still had
extensive slices of the market back then. Now while
there is a cost of R & D for producing software, the
distribution and replication costs, contrasting
hardware, are negligible, Lets perform a little
gedankenexperiment; assume that the costs of
developing a new version of Windows are in the order
of US$2 billion. Now, if you sell 200 million copies of
this new platform, at an average price of $200 per
copy, that leaves you with a gross revenue of US$40
billion. That's quite a return on the R & D investment.
But this, as we accept, is the one half of the basis of
capitalism. What we, as consumers, should demand
however, and do everything in our power to help bring
about, is evident and fierce competition in platforms
and business productivity applications software, to
invoke the other half of capitalism. Here's why.

In recent times, the IT industry has been undergoing
a substantial flattening of overall demand, and a
general malaise. Most IT companies are either
treading water, substantially hurting or are going out

December 2002

of business. Returning to our analogy of the
overwhelmingly-dominant oil-supplier, we project that
this supplier will be buoyant and profitable,
regardless of the status of the economy around it. In
the IT industry, Microsoft indeed does seem to float
above our industry's problems, confirming the
suspicion of a lack of viable competition. This is bad
for other vendors and service suppliers. It's bad for
the consumers of IT. The implication for other
vendors, when one considers that global budgets for
IT expenditure are stagnant or shrinking, is that there
will be less and less cake for them, if one dominant
player eats more and more. For consumers, reduced
competition results in higher prices, lower levels of
service, lower quality of products than should be the
case, reduced innovation and increased likelihood for
the introduction of onerous restrictions as to the use
of the software. Therefore, as true believers in the
power of unfettered markets, we should all join in
welcoming any competition from a platform such as
Linux, even if we keep using our existing supplier of
operating system and application suite software.

While the benefits of increased competition are many,
we should, in closing, look beyond the mere
economic. Linux is perhaps the first platform which
encompasses a dangerous and beautiful concept, one
that I feel has been lost on many users: freedom.
Freedom is what we, in the industrialised western
civilasation, have treasured most for almost 3000
years. It's something that much of the rest of the
world is increasingly growing to covet and deem an
appropriate pursuit of citizenry. Linux is the first
instance where these rights and freedoms are made
concrete in an operating system, allowing the user to
transgress beyond the often limiting boundaries
proscribed by the vendors of proprietary software. It
sometimes transpires that only those who have
extensive, multi-year histories with computers and
dealing with recalcitrant vendors, can begin to
appreciate the necessity for these rights and freedoms
of computer wusers. It's thus an interesting
observation to see that many of these individuals are
often involved in Linux and Open Source
communities. Join with me in helping this growing
group of users extend the rights and freedoms that
should belong to all users of technology.

This form of this piece was originally published on
ZDNet.

Root-kits and integrity

Author: Frédéric Raynal <http://security-labs.org>

ABSTRACT

This article was first published in a French Linux
Magazine special issue focusing on security. The
editor, the authors and the translators kindly allowed
LinuxFocus to publish every article from this special
issue. Accordingly, LinuxFocus will bring them to you
as soon as they are translated to English. Thanks to
all the people involved in this work. This abstract will

AUUGN Vo0l.23 ¢ No.4 - 25 -

be reproduced for each article having the same origin.

This article presents the different operations a cracker
can do after having succeeded in entering a machine.
We will also discuss what an administrator can do to
detect that the machine has been jeopardized.

JEOPARDY

Let us assume that a cracker has been able to enter a
system, without bothering about the method he used.
We consider he has all the permissions
(administrator, root...) on this machine. The whole
system then becomes untrustable, even if every tool
seems to say that everything is fine. The cracker
cleaned up everything in the logs... as a matter of
fact, he is comfortably installed in your system.

His first goal is to keep as discreet as possible to
prevent the administrator from detecting his
presence. Next, he will install all the tools he needs
according to what he wants to do. Sure, if he wants to
destroy all the data, he will not be that careful.

Obviously, the administrator cannot stay connected
to his machine listening to every connection. However
he has to detect an unwanted intrusion as fast as
possible. The jeopardized system becomes a
launching pad for the cracker's programs (bot IRC,
DDOS, ...). For instance, using a sniffer, he can get all
the network packets. Many protocols do not cypher
the data or the passwords (like telnet, rlogin, pop3,
and many others). Accordingly, the more time the
cracker gets, the more he can control the network the
Jjeopardized machine belongs to.

Once his presence has been detected, another
problem appears: we do not know what the cracker
changed in the system. He probably jeopardized the
basic commands and the diagnostic tools to hide
himself. We then must be very strict to be sure not to
forget anything, otherwise the system could be
jeopardized once again.

The last question concerns the measures to be taken.
There are two policies. Either the administrator
reinstalls the whole system, or he only replaces the
corrupt files. If a full install takes a long time, looking
for the modified programs, while being sure of not
forgetting anything, will demand great care.

Whatever the preferred method is, it is recommended
to make a backup of the corrupt system to discover
the way the cracker did the job. Furthermore, the
machine could be involved in a much bigger attack,
that could lead to legal proceedings against you. To
not backup could be considered as hiding evidence...
while these could clear you.

INvISIBILITY EXISTS ...] HAVE SEEN IT!
Here, we discuss a few different methods used to
become invisible on a jeopardized system while

keeping maximum privileges on the exploited system.

Before getting to the heart of the matter, let us define

December 2002

some terminology:

e trojan is an application taking the appearance of
another one. Hidden behind a known feature, the
program can act differently, usually to the
detriment of the user. For example, it can hide
system data to prevent the user from seeing
current the connections.

s backdoor is used to describe an access point to a
program which is not documented. Usually, it
concerns options used by developers to reach data
from the application in which the backdoor has
been implemented.

Once he has jeopardized a system, the cracker needs
both kinds of programs. Backdoors allow him to get
into the machine, including if the administrator
changes every password. Trojans mostly allow him to
remain unseern.

We do not care at this moment whether a program is
a trojan or a backdoor. Our goal is to show the
existing methods to implement them (they are rather
identical) and to detect them.

Last, let us add that most of Linux distributions offer
an authentication mechanism (i.e verifying at once the
files integrity and their origin — rpm --checksig, for
instance). It is strongly recommended to check it
before any software installation on your machine. If
you get a corrupt archive and install it, the cracker
will have nothing left to do :(This is what happens
under Windows with Back Orifice.

BINARIES SUBSTITUTION

In Unix prehistory, it was not very difficult to detect
an intrusion on a machine:

¢ the last command shows the account(s) used by
the "intruder" and the place from where he
connected with the corresponding dates;

e 1s displays files and ps lists the programs (sniffer,
password crackers...) ;

* netstat displays the
connections;

¢ ifconfig indicates if the network card is in
"promiscuous" mode, a mode that allows a sniffer
to get all the network packets...

machine's active

Since then, crackers have developed tools to
substitute these commands. Like the Greeks had
built a wooden horse to invade Troja, these programs
look like something known and thus trusted by the
administrator. However, these new versions conceal
information related to the cracker. Since the files
keep the same timestamps as others programs from
the same directory and the checksums have not
changed (vi another trojan), the "naive"
administrator is completely hoodwinked.

Livux RooT-Kiot
Linux Root-Kit (Irk) is a classic of its kind (even if a

bit old). Initially developed by Lord Somer, it is today
at its fifth version. There are many other root-kits and

AUUGN Vol.23 e No.4 - 26 -

here we will only discuss the features of this one to
give you an idea about the abilities of these tools.

The substituted commands provide privileged access
to the system. To prevent someone using one of these
commands from noticing the changes, they are
password protected (default password is satori), and
this can be configured at compile time,

» The programs hide the resources used by the
cracker from other users:

e 1s, find, locate, xargs or du will not display
his files;

* ps, top or pidof will conceal his processes;

* netstat will not display the unwanted
connections especially to the cracker's
daemons, such as bindshell, bnc or eggdrop;

¢ killall will keep his processes running;

 ifconfig will not show that the network
interface is in promiscuous mode (the
"PROMISC" string usually appears when this is
true);

e crontab will not list his tasks;

* tcpd will not log the connections defined in a
configuration file;

* syslogd same as tcpd.

e The backdoors allow the cracker to change his
identity:

* chfn opens a root shell when the root-kit
password is typed as a username;

» chsh opens a root shell when the root-kit
password is typed as a new shell;

+ passwd opens a root shell when the root-kit
password is typed as a password;

e 1login allows the cracker's login as any identity
when the root-kit password is typed (then
disables history);

e su same as login;

¢ The daemons provide the cracker with simple
remote access means:

+ inetd installs a root shell listening to a port.
After connection, the root-kit password must be
entered in the first line;

+ rshd executes the asked command as root if
the username is the root-kit password;

* sshd works like login but provides a remote
access;

¢ The utilities help the cracker:

+ fix installs the corrupt program keeping the
original timestamp and checksum;

 linsniffer captures the packets, get
passwords and more;

o sniffchk checks that the sniffer is still
working;

* wted allows wtmp file editing;

e z2 deletes the unwanted entries in wtmp, utmp
and lastlog;

This classic root-kit is outdated, since the new
generation root-kits directly attack the system kernel.

Furthermore, the versions of the affected programs
are not used anymore.

DETECTING THIS KIND OF ROOT-KIT

December 2002

As soon as the security policy is strict, this kind of
root-kit is easy to detect. With its hash functions,
cryptography provides us with the right tool:

Without knowing what has been changed, it can be
noticed at once that the installed ifconf ig and the
one from 1rk5 are different.

Thus, as soon as a machine installation is over, it is
required to backup the sensitive files (back on
"sensitive files" later) as hashes in a database, to be
able to detect any alteration as fast as possible.

The database must be put on a physically unwritable
media (floppy, not rewritable CD...). Let us assume
the cracker succeeded in getting administrator
privileges on the system. If the database has been put
on a read-only partition, enough for the cracker to
remount it read-write, to update it and to mount it
back read-only. If he is a conscientious one, he will
even change the timestamps. Thus, the next time you
will check integrity, no difference will appear. This
shows that super-user privileges do not provide
enough protection for the database updating,

Next, when you update your system, you must do the
same with your backup. This way, if you check the
updates authenticity, you are able to detect any
unwanted change.

However, checking the integrity of a system requires
two conditions:

1. hashes calculated from system files must be
compared to hashes which integrity can be 100%
trusted, hence the need to backup the database on
a read-only support;

2. the tools used to check integrity must be "clean".

That is, every system check must be done with tools
coming from another system (non jeopardized).

USE OF DYNAMIC LIBRARIES

As we have seen it, becoming invisible requires the
change of many items in the system. Numerous
commands allow us to detect if a file exists and each
of them must be changed. It is the same for the
network connections or the current processes on the
machine. Forgetting the latter is a fatal error as far as
discretion is concerned.

Nowadays, to avoid programs getting too big, most of
the binaries use dynamic libraries. To solve the above
mentioned problem, a simple solution is not to
change each binary, but put the required functions in
the corresponding library, instead.

Let us take the example of a cracker wishing to
change a machine's uptime since he just restarted it.
This information is provided by the system through
different commands, such as uptime, w, top.

AUUGN Vol.23 » No.4 - 27 -

To know the libraries required by these binaries, we
use the 1dd command:

o /1,
10000000)

Apart from 1libc, we are trying to find the
libproc.so library. Enough to get the source code
and change what we want. Here, we will use version
2.0.7, found in the $PROCPS directory.

The source code for the uptime command (i
uptime.c) informs us that we can find the
print_uptime () function (in
$PROCPS/proc/whattime.c) and the uptime (double
*uptime_secs, double =*idle secs) function (in
$PROCPS/proc/sysinfo.c). Let us change this last
according to our needs:

Adding the lines from 10 to 16 to the initial version,
changes the result the function provides. If the TERM
environment variable does not contain the "satori”
string, then the wup variable is proportionally
incremented to the logarithm of the real uptime of the
machine (with the formula used, the uptime quickly
represents a few years:)

December 2002

To compile our new library, we add the
-D_LIBROOTKIT_ and -1m options (for the log (up) ;).
When we search with 1dd the required libraries for a
binary using our uptime function, we can see that
1ibm is part of the list. Unfortunately, this is not true
for the binaries installed on the system. Using our
library "as is" leads to the following error:

ﬁﬁ'(axz;o"ooaoo‘o; :
[procps 2

undeflned symbol.

To avoid compiling each binary it is enough to force
the use of the static math library when creating
libproc. so:

pwcache o
readpro
whattlme o;/usr/llb/llbm‘

Thus, the log() function is directly included into
libproc.so. The modified library must keep the
same dependencies as the original one, otherwise the
binaries using it will not work.

[pappy]_v : S
2:15pm up -average: -0.03, "
0.04,:0.00 e T
USER' ¢ TTY “LOGIN@' : IDLE
JCPU: * PEPUw T PR CA Rt
raynal teyl = i - 12:01pm. -

1:20m 1.04s 0.02s 'xinit /etc/X11l/

AUUGN Vol.23 ¢ No.4 - 28 -

tops Unknown*t,'

Everything works fine. It looks like top uses the TERM
environment variable to manage its display. It is
better to use another variable to send the signal
indicating to provide the real value.

The implementation required to detect changes in
dynamic libraries is similar to the one previously
mentioned. Enough to check the hash.
Unfortunately, too many administrators neglect to
calculate the hashes and keep focusing on usual
directories (/bin, /sbin, /usr/bin, /usr/sbin,
/etec...) while all the directories holding these libraries
are as sensitives as these usual ones.

However, the interest in modifying dynamic libraries
does not only lie in the possibility of changing various
binaries at the same time. Some programs provided to
check integrity also use such libraries. This is quite
dangerous! On a sensitive system, all the essential
programs must be statically compiled, thus
preventing them from being affected by changes in
these libraries .

Thus, the previously used mdSsum program is rather
risky:

Ipéppy)# 1dd "which mdbsum”
libc.so.6 %> /llb/l'
J/llb/ld—llnux sou s
Ox40000000) R FE

-c so 6 (OxébOQSO
/llb/ld—llnux 5

It dynamically calls functions from libc which can
have been modified (check with nm -D ‘“which
md5sum’). For example, when using fopen (), enough
to check the file path. If it matches a cracked
program, then it has to be redirected to the original
program: the cracker should have kept it hidden
somewhere in the system.

This simplistic example shows the possibilities
provided to fool the integrity tests. We have seen that
they should be done with external tools, that is from
outside the jeopardized system (cf. the section about
binaries). Now, we discover they are useless if they
call functions from the jeopardized system.

Right now, we can build up an emergency kit to
detect the presence of the cracker:

° 1s to find his files;

* ps to control the processes activity;

* netstat to monitor the network connections;

» ifconfig to know the network interfaces status.

These programs represent a minimum. Other
commands are also very instructive:

¢ 1sof lists all the open files on the system;
» fuser identifies the processes using a file.

Let us mention that they are not only used to detect

the presence of a cracker, but also to assist system
troubleshooting.

December 2002

It is obvious that every program part of the emergency
kit must be statically compiled. We have just seen that
dynamic libraries can be fatal.

Livux KerNeL MopuLe (LKIM) FOR FUN AND PROFIT

Wanting to change each binary able to detect the
presence of a file, wishing to control every function in
every library would be impossible. Impossible, you
said? Not quite,

A new root-kit generation appeared. It can attack the
kernel.

RANGE oF A LKM

Unlimited! As its name says, a LKM acts in the kernel
space, thus being able to access and control
everything,

For a cracker, a LKM allows:

* to hide files, like those created by a sniffer;

 to filter a file content (remove its IP from logs, its
process numbers...);

* to get out of a jail (chroot);

* to conceal the system state (promiscuous mode};

° to hide processes;

° to sniff;

¢ to install backdoors...

The length of the list depends on the cracker's
imagination. However, like it was for the above
discussed methods, an administrator can use the
same tools and program his own modules to protect
his sytem:

* to control modules addition and deletion;

° to check file changes;

* to prevent some users from running a program;

* to add an authentication mechanism to some
actions (to set promiscuous mode for network
interface...)

How to protect against LKMs? At compile time,
module support can be deactivated (answering N in.
CONFIG_MODULES) or none can be selected (only
answering Y or N). This leads to a so called monolithic
kemnel.

However, even if the kernel does not have module
support, it is possible to load some of them into
memory (not that simple). Silvio Cesare wrote the
kinsmod program, which allows to attack the kernel
via the /dev/kmem device, the one managing the
memory it uses (read runtime-kernel-kmem-
patching. txt on his page).

To summarize module programming, let us say that
everything relies on two functions with an explicit
name: init_module () and cleanup_module(). They
define the module behavior. But, since they are
executed in the kernel space, they can access
everything in the kernel memory, like system calls or
symbols.

AUUGN Vol.23 e No.4 -29 -

Tms way InN!

Let us introduce a backdoor installation through a
Ikm. The user wishing to get a root shell will only
have to run the /etc/passwd command. Sure, this
file is not a command. However, since we reroute the
sys_execve() system call, we redirect it to the
/bin/sh command, taking care of giving the root
privileges to this shell.

This module has been tested with different kernels:
2.2.14, 2.2.16, 2.2.19, 2.4.4. It works fine with all of
them, However, with a 2.2.19smp-owl
(multiprocessors with Openwall patch), if a shell is
open, it does not provide root privileges. The kernel is
something sensitive and fragile, be careful... The path
of the files corresponds to the usual tree of the kernel
source code,

/* rootshell.c */

December 2002

*) ' regs.ecx,
®s) : .

After this short demonstration, let us have a look at
the /var/log/kernel file content: syslogd is here
configured to write every message sent by the kernel
(kern.* /var/log/kernel in /etc/syslogd.conf):

0707070y~ -
0/0/0/0)

Slightly changing this module, an administrator can
get a very good monitoring tool. All the commands
executed on the system are written into the kernel
logs. The regs.ecx register holds **argv and
regs.edx **envp, with the current structure
describing the current task, we get all the needed
information to know what is going on at any time.

AUUGN Vol.23 ¢ No.4 - 30 -

DETECTION AND SAFETY

From the administrator side, the integrity test does
not discover this module anymore (well, not really
true, since the module is a very simple one). Then, we
will analyze the fingerprints potentially left behind by
such a root-kit:

« backdoors: rootshell.o is not invisible on the file
system since it is a simplistic module. However,
enough to redefine sys_getdents () to make this
file undetectable;

» visible processes: the open shell appears in the
task list, this can reveal an unwanted presence on
the system. After redefining sys_kill() and a
new SIGINVISIBLE signal, it is possible to hide
access to marked files in /proc {check the adore
1rk);

¢ within the module list: the lsmod command
provides a list of the modules loaded in memory:

“ [rooflcharly modulé

When a module is loaded, it is placed at the
beginning of the module_list containing all the
loaded modules and its name is added to the
/proc/modules file. 1smod reads this file to find
information. Removing this module from the
module list

/proc/modules:

makes it disappear from

Unfortunately, this prevents us from removing the
module from memory later on, uniess its address
is kept somewhere.

* symbols in /proc/ksyms: this file holds the list of
the accessible symbols within the kernel space:

The EXPORT NO_SYMBOLS macro, defined in
include/linux/module.h, informs the compiler
that no function or variable is accessible apart
from the module itself:

int init module (void) { = - oo
[erar.cs I ERRCR
- EXPORT_NO_SYMBOLS;

S B Ry
e

However, for 2.2.18, 2.2.19 et 2.4.x (x<=3 - I don't

December 2002

know for the others) kernels, the __insmod_*
symbols stay visible. Removing the module from
the module list also deletes the symbols
exported from /proc/ksyms.

The problems/solutions discussed here, rely on the
user space commands. A "good" LKM will use all
these techniques to stay invisible.

There are two solutions to detect these root-kits, The
first one consists in using the /dev/kmem device to
compare this memory kernel image to what is found
in /proc. A tool such as kstat allows to search in
/dev/kmen to check the current system processes,
the system call addresses... Toby Miller's article
Detecting Loadable Kernel Modules (LKM)
http://www.incident-response.org/LKM.htm
describes how use kstat to detect such root-kits.

Another way, consists in detecting every system call
table modification attempt. The St_Michael module
from Tim Lawless provides such a monitoring. The
following information is likely to change since the
module is still in development at the time of this
writing,

As we have seen in the previous example, the lkm
root-kits rely on system call table modification. A first
solution is to backup their address into a secondary
table and to redefine the -calls managing the
sys_init_module () and sys_delete module()

modules. Thus, after loading each module, it is
possible to check that the address matches:

This solution protects from present lkm root-kits but
it is far from being perfect. Security is an arms race
(sort of), and there is a means to bypass this
protection. Instead of changing the system call
address, why not change the system call itself? This is
described in Silvio Cesare stealth-syscall.txt. The

AUUGN Vol.23 ¢ No.4 - 31 -

attack replaces the first bytes of the system call code
with the "jump &new_syscall” instruction (here in
pseudo Assembly):

Like we protect our binaries and libraries with
integrity tests, we must do the same here. We have to
keep a hash of the machine code for every system
call. We work on this implementation in St_Michael
changing the init_module () system call, thus
allowing an integrity test to be performed after each
module loading.

However, even this way, it is possible to bypass the
integrity test (the examples come from mail between
Tim Lawless, Mixman and myself; the source code is
Mixman's work):

1. Changing a function which is not a system call:
same principle as a system call. In
init module(), we change the first bytes of a
function (printk() in the example) to make this
function "jump" to hacked printk ()

Thus, the integrity test put into init module()
redefinition, confirms that no system call has been
changed at load time. However, the next time the
printk() is called, the change is done... To
counter this, the integrity test must be extended to
all kernel functions.

2. Using a timer: in init_module (), declaring a
timer, activates the change much later than the
module loading. Thus, since the integrity tests

December 2002

were only expected at modules (un)load time, the
attack goes unnoticed:(

S

At the moment, the solution is thought be to run
the integrity test from time to time and not only at
module (un)load time.

CONCLUSION

Maintaining system integrity is not that easy. Though
these tests are reliable, the means of bypassing them
are numerous. The only solution is to trust nothing
when evaluating, particularly when an intrusion is
suspected. The best is to stop the system, to start
another one (a sane one) for harm evaluation.

Tools and methods discussed in this article are
double-edged. They are as good for the cracker as for
the administrator. As we have seen with the
rootshell module, which also allows to control who
runs what.

When integrity tests are implemented according to a
pertinent policy, the classic root-kits are -easily
detectable. Those based on modules represent a new
challenge. Tools to counter them are on the work, like
the modules themselves, since they are far from their
full abilities. The kernel security worries more and
more people, in such a way that Linus asked for a
module in charge of security in the 2.5 kernels. This
change of mind comes from the big number of

AUUGN Vo0l.23 » No.4 - 32 -

available paiches (Openwall, Pax, LIDS, kernelli, to
mention a few of them).

Anyway, remember that a potentially jeopardized
machine cannot check its own integrity. You can trust
neither its programs nor the information it provides.

Links

» www.packetstormsecurity.org: there you will find
adore and knark, the most known lkm root-kits;

» sourceforge.net/projects/stjude: the intrusion
detection St_Jude and St_Michael modules;

* www.sOftpj.org/en/tools.html: kstat to explore
/dev/kmem;

* www.chkrootkit.org: script to detect well known
root-kits;

» www.packetstormsecurity.org/docs/hack/LKM H
ACKING.html: THE guide to fiddling about with
the kernel (a bit old - it concerns 2.0 kernels - but
so rich);

» www.big.net.au/~silvio: the excellent Silvio Cesare
page (a must-read)

e mail. wirex.com/mailman /listinfo/linux-security-
module: the linux-security-module mailing-list.

e www.tripwire.com: tripwire is the classic in
intrusion detection. Today, the company runs as a
headline Tripwire Open Source, Linux Edition;

¢ www.cs.tut.fi/~rammer/aide.html: aide (Advanced
Intrusion Detection Environment) is a small but
efficient replacement for tripwire (completely free
software).

Frédéric Raynal has a Ph.D in computer science after a thesis
about methods for hiding information. He is the editor in chief
of a French magazine called MISC http://www.miscmag.com
dedicated to computer security. Incidentally, he is looking for a
job in R&D.

Translated to English by: Georges Tarbouriech
georges.t@linuxfocus.org

This article is re-printed with permission. The originals
can be found at:

http:/ /auw.linuxfocus.org/English/November2002/ artic
le263.shtml

Installing a LAMP
System

Author: Sascha Blum

ABSTRACT

In this tutorial, I would like to show you how to install
a Linux server with basically every useful feature
included. In other words, I will show you how to
install a LAMP system.

But first I'll tell you what the abbreviation LAMP
stands for.

LAMP means Linux Apache MySQL PHP. So, as you

December 2002

might guess from the name, a LAMP system consists
of a Linux operating system, an Apache Web server, a
MySQL database, and the script language PHP.,

INTRODUCTION

This tutorial explains how to install a LAMP system
using Dynamic Shared Objects (DSO). DSOs have a
major advantage over static installation: you can
replace each individual module with a newer version
easily and at any time, without having to recompile
and reinstall all the other modules. It doesn't matter
whether the module in question is the PDF-Lib
module, the GD-Lib module, or anything else.

With a static installation, if you wanted to update
PHP 4.2.3 to PHP 4.2.4, for example, you would have
to recompile and reinstall everything - and by this I
mean the Apache server, the GD-Lib, the PDF-Lib,
and all the other modules you need (and of course
PHP itself). With a DSO installation, only PHP would
be affected, and everything else remains the same.

Note: in general, you should carefully read the
README file for each package before installing or
compiling, as every installation can be different.
Often, a successful installation depends on some
switch or other that you have to or can set using
./configure. Having said that, based on my
testing, this installation should work first time
round. If you get any errors, consult the README.
Make sure to use the root access permissions for
the installation!

But enough preamble. Let's get started with installing
our LAMP system. Make sure to read this tutorial
carefully and in its entirety before starting the
installation!

‘WaAT You Neep AND DOWNLOAD SOURCES

You need the following packages, which you should
download before starting the installation:

GD»:‘lerary 1: T
(http: //www boutell com/gd/)
Download: :) R T
http://wuw. boutell com/gd/http/gd 1 8 4 tar gz R
(252 ‘KBY 235 e

AUUGN Vol.23 ¢ No.4 -33 -

Note: for licensing reasons, the GD library no longer
supports the GIF format (and has not done so for quite
some time)!

INsTALLATION

Once you have downloaded all these packages, you're
ready to go. First, copy the files to the following
directory (if you have not already done so, create the
directory lamp using mkdir /usr/local/src/lamp):
/usr/local/src/lamp/

The only files you don't need to copy here are the
MySQL RPM files. They can be installed straight away
in the usual way. The best idea is to do this first. For
instructions on how to do this, see the section
"MySQL 3.23.52" below,

Now all six packages should be in the
/usr/local/src/lamp/ directory as tar.gz. Now you
need to unpack them. Proceed as shown below.

Note: the commands you need to enter appear in bold
type; PC output is in normal type. All input is
preceded by a > symbol.

First open a text console (shell terminal, e.g. Bash),
then execute the following commands:

After you have unpacked all the packages, enter the
command "Is -1" to display all the directories.

From this point on, it is essential that you follow the
installation steps exactly in the order shown here.
This is because some packages need other packages
to work properly. For example, the GD library needs
zlib and libpng, and libpng in turn needs zlib. Now
let's move on to the Apache Web server.

Aracur 1.3.27

Note: make sure to read the README file! There are

December 2002

several switches under ./configure that can be set
here.

Never compile the Apache Web server using the
option --enable-module=alll If you do it this way,
nothing will work. The best way to go about it is to
specify as few modules as possible. Usually, this is
more than enough for DSO support. You can then
add any other modules you want yourself, which is
after all the advantage of the DSO installation.

To install and configure Apache, proceed as follows.

First, change to a text console (shell terminal, e.g.
Bash), as before.

Note: do not enter user:/usr/local/src/lamp > with
your commands. This is the Linux prompt and is
Linux's way of telling you that it is waiting for input.
Your prompt may look different, as it can be
individually configured.

zus 1.1.4

root:/usr/local/src/lamp/apache_1.3.27 > cd /zlib-

Comment: we use the switch --shared here to tell zlib
that we want to include the library as a dynamic
module in PHP.

LispNG 1.2.3

The installation for libpng is a little different from the
to the directory /libpng-

usual. First, change

1.2.3/scripts/ :

rooti/usr/local/src/Tamp
1.2, 3/scr1pts“

enable modu1e=so

Note: enter this last part as one line! There is usually a
space character in front of the --. The document
directory where your websites will be stored later
comes after -datadir. You can of course choose your
own document directory. If you enter a document
directory other than "/web/htdocs”, though, make sure
to change the relevant paths accordingly later in this
tutorial.

rooti/usr/local /src/lamp/apache 1,3 .27>mal ;
Toot/us /1ocal/sré/iamp/apache >make’: 1nsta1l

If you have entered everything correctly, your Apache
Web server should now be completely compiled and
installed

MySQL 3.23.52

If you followed the instruction earlier in this tutorial,
this has already been installed.

Security note: if your server is connected to a public
network, i.e. an intranet or the internet, maie sure to
make the password for the MySQL Server root user as
complicated as possible!

Note: replace /home/user/donwload/mysql with the
directory where the relevant RPM files are located.

AUUGN Vol.23 « No.4 _34 -

With these commands, you have just copied the
relevant make file into the libpng master directory.
Now you need to take a look at the make file and
make any changes that the system may require, e.g.
special include directories. Normally, all the data in
the file is correct, but you should still check, as this
allows you to find errors more quickly.

To continue, enter the following command:

root: /usr/Local /src/lanp/Iibpng 1:2:3 > make tes

If you do not get any error messages at this point, you
can now install libpng with the following command:

6p-1.8.4

First, change into the directory gd-1.8.4:

You should also take a look at the make file here. If
something in your system has changed, you will have
to make the corresponding changes to the make file
now. You can view and edit the file using any text
editor you like.

Usually, though, you do not need to make any
changes to the make file.

If you are now happy with the make file, enter the
following command:

root:/usr/lotal/sre/ldnp/gd- 1.8.4>: make .
root': /usr/local/src/lamp/gd 180473 ‘make’ 1nsta11

December 2002

If any errors occur at this point, enter the following:

‘/local/sre/lamp/gd-1,8 .45 make ciean:

felel

But only enter this last command if there are errors!
If you execute make clean, you will have to check the
make file again and adapt it accordingly, then carry
out the make again.

Note: make sure to check the settings for
INCLUDEDIRS and LIBDIRS!

PDF-L154.0.3

This is a little simpler, as the module is already
compiled and you only have to copy it to the directory
/usr/local/lib.

To do this, enter the following:

PHP 4.2.3
Lastly, you have to install PHP.

Change into the PHP directory:

Note: enter this last part as one line! There is usually a
space character in front of the --. There is not an error
in the second and third lines ("sysvshm” and
“sysvsem”).

Then enter the following, as before:

Note: compiling (make) PHP can take a little longer on
slow PC systems. So don't get impatient if nothing
appears to be happening for long periods. You can
delete the directory /usr/local/src/ lamp (as root)
using “rm -r /usr/local/src/lamp”. Make sure to enter
this correctly, because if you execute a ‘rm -r /" as
root, you will destroy the whole system. However, be
aware that if you delete "/usr/local/src/ lamp”, it will
be more work to deinstall or update the system.
Therefore, you should only delete the packed source
package “.tar.gz" and retain the directories with the
sources.

CONFIGURATION

AUUGN Vol.23 e No.4 - 35 -

HTTPD.CONF

So, that was the installation. Now for the

configuration.

First of all, we have to tell the Apache Web server
what it is supposed to do with the *.php- or *.php3
files.

To do this, change into the Apache "conf” directory:

Then, open the "httpd.conf" file in a text editor so you
can edit and then save it,

Note: the editor "Kate" is very suitable for editing
the config file. Note that KDE has to be running in
the background. To start it, press Alt + F2 =>
kdesu kate. Press Ctrl + G to go to the line you
want.

In the file, you will find the following around line 190:

At this point, enter the following, if it is not there
already:

Note: make sure to enter this accurately, or errors
may occur.

If you do not want the PHP parser to run HTML files,
you can omit the following lines:

December 2002

AddType application/x-httpd-php .htm
AddType application/x-httpd-php .html

Now the httpd.conf file is configured.

PHP.INI

Now you have to set up, and possibly adapt, the
php.ini file.

First, you have to copy the php.ini file to the proper
location. To do this, change into the PHP install
directory:

root:/usr/local/ar
Jusr/local/src/lamp/p

Now copy the file "php.ini-dist" into the directory
/usr/local/lib and re-name the file "php.ini". Do this
as follows:

root:/usr/local/src/l
php.ini-dist /usr/loec

Then write "pdflib" into the php.ini file as an
extension. This is so that PHP knows what to do with
the corresponding PDF functions, should you ever
need these and want to work with them. PHP finds
the other modules on its own (zlib, GD,etc.).

Now open the file "/usr/local/lib/php.ini" in a text
editor. The section about extensions is located around
line 371.

It should look something like this:

extension_dir = ./ <= remove this and replace it with
the following:

Now save the file.

You're finished - you now have a complete, fully-
functioning LAMP system!

Now for the server test. This tests whether you can
start the server successfully. The first step is to shut
down any old servers that might still be running (if a
Web server was already installed when you installed
the distribution, for = example). To do this, enter the
following:

rodti/usr/local/sre/lamp/php-4:2.3 * killall-httpd

Now attempt to start the new server, as follows:

root /> /usr/l cal/apache/l 3. 27/b1n/apachect1
start ... : : ! Gl :

If you see the following message...

AUUGN Vol.23 ¢ No.4 - 36 -

everythmg is OK and "your' server is up and
running!

Now change into your “"web/htdocs" directory
(DocumentRoot - if you have given this a different
name, remember to change the following accordingly)
and create a new file there. Call the new file info.php.
To do this, proceed as follows:

> ‘od /web/htdoos/ : i
userf/w b/htdocs >touch 1nfo php

Open the new file "info.php" in an editor and write in
the following:

<?PHP
echo phpinfo();
?>

Note: make sure to enter this exactly as it appears
here, including the brackets!

Save the file and close it. Now for the exciting part!
Open the following URL in your Internet browser:

http://l2750@O.l/info.php'_'?~*g5#3-f1”77"u""’
http://localhost/info:php -+
http://rechnérname/info.php. = " CE e
Or S

http://lokale IP/info.php.

At this point, if you can see the output of phpinfo(),
everything has gone according to plan and you can
get on with programming in PHP straight away.
Congratulations! You now not only have a fully-
functioning LAMP system but also a Web server to
boot.

Note: you can now create as many sub-directories as
you like in the directory /web/htdocs (or any other
directory you specified during installation). For
example, if you have multiple Web projects, you can
create a directory for each project.

Note that /web/htdocs (or the other directory you
specified) is your root directory as far as the Web
server is concerned. This is why the URL is
http://127.0.0.1/info.php. If you have other sub-
directories, e.g. projectl, project2, etc., you will have
to adjust the URL accordingly:
http://127.0.0.1/projectl/ or
http://127.0.0.1/project2/, etc.

Note: PHP files are parsed (displayed/executed)
only if they are located in these paths, i.e. either

/web/htdocs or its subdirectories!

You can add to and extend your Web server in any
way you like.

RECOMMENDATIONS

December 2002

In this section I recommend some admin tools that
will make your work with the system and the Web
server significantly easier:

Webmin 1.000
(http:/ /www.webmin.com /)

Webmin lets you handle your system with absolute
ease. You can also use it as an easy way to configure
your Web server, e.g. to have your server restart with
every system start. The same goes for MySQL.
Webmin itself is simple to use and for this reason is
ideally suited to Web server novices.

Download:
http://prdownloads. sourceforge.net/webadmin/web
min-1.000.tar.gz?download

or

http://www.webmin.com/

phpMyAdmin 2.3.1
(http://www.phpwizard.net/ projects/phpMyAdmin/)

phpMyAdmin is a great tool for MyS@L. It lets you
create, delete, and edit tables, and a lot more. Also
highly recommended.

Download:
(PhpMyAdmin-2.3.1-php.tar.gz)
http://www.phpmyadmin.net/ index.php?dl=2

CONFIGURATION USING WEBMIN

Settings for the Apache server::
webmin => Server => Apache Webserver
Module config:

Apache server root directory:
/usr/local/apache/1.3.27/bin/

Path to httpd executable:
/usr/local/apache/1.3.27/bin/httpd

Apache version:
select empty field and enter: => 1.3.27

Path to apachectl command:
in empty field => /usr/local/apache/1.3.27/bin/

Command to start Apache:
in empty field => /etc/init.d/apachectl start

Note: if apachectl is not in the directory, just copy
it there:

root > cp /usr/local/apache/ 1.3.27/bin/apachectl
/etc/init.d/

Command to stop Apache:
in empty field => /etc/init.d/apachectl stop

Display virtual servers as:
=> Icons

Order virtual servers by :
=> order in config file(s)

AUUGN Vol.23 ¢ No.4 - 37 -

Maximum number of servers to display
=>100

Path to httpd.conf
in empty field =>
/usr/local/apache/1.3.27/conf/httpd.conf

Path to srm.conf
in empty field =>
/usr/local/apache/1.3.27/conf/srm.conf

Path to access.conf
in empty field =>
/usr/local/apache/ 1.3.27/conf/access.conf

Path to mime.types
in empty field =>
/usr/loca]/apache/l.3.27/conf/mime.types

File to add virtual servers to:
=> httpd.conf

Test config file before applying changes?
=>Yes
Note: do not enter the => !

If you want the Apache server to start automatically
when the system boots up, you can set this up in
Webmin as follows:

webmin => System => Bootup and Shutdown

If Apache is not listed here, just enter it as a new
service.

Name => apachectl

Script => is usually loaded automatically

Start at boot time? => Yes

Bootup commands => /etc/init.d/apachectl start
Shutdown commands => /ete /init.d/apachectl stop

UppaTE

Urpating PHP

First of all, copy the packed file of the new PHP
version into the following directory:

/usr/loca]/src/lamp/

Let's assume that the new PHP version is called PHP
4.2.4 (I don't know whether there will ever actually be
a version of this name). This section describes the
steps you need to take to update PHP. Basically, all
you need to do is swap the old version for the new
version.

Unpack the file you just copied, as follows.

Open a text console (shell terminal, e.g. Bash), and
execute the following commands:

December 2002

If your old source directory under
"/usr/local/src/lamp” still exists, proceed as follows.

Our old source directory is called
"/usr/local/lamp/php-4.2.3".

We first need to create a copy of libphp4.so. Give the
copy the name "libphp4-4.2.3 .s0". Do this as follows:

We then \create a backupof theold phplm ‘ﬁle,‘és
follows:

Then delete the old php.ini file, as it makes more
sense to use the new one:

rooti /> tmi/ust/Tocal/lib/phpidni i

It's a very good thing that you kept your old PHP
source directory, as you have saved yourself a lot of

typing!

This is because the old directory,
"/usr/local/lamp/php-4.2.3", contains a short Shell
script. Before the last installation, this script stored
all the parameters from ./configure. Therefore, if you
had not kept this old directory, you would now have
to enter all these parameters by hand!

Now execute ./configure, as follows:

Note: also, if you did not keep the old directory
"/usr/local/lamp/php-4.2.3", you will have to enter
all the ./configure parameters, as described in the
section "Installation => PHP 4.2.3" above, by hand.

Now copy the new php.ini into the correct directory:

Now just adapt and change the new php.ini file as
necessary, as described in the section "Configuration
=> php.ini" above.

Finally, restart Apache, and that's your update

completed:

root:/ > -/usr/lccal/apache/1 :3.27/bin/apachectl -
festact LT R I TR SR

AUUGN Vol.23 e No.4 - 38 -

CrosinG COMMENTS

Postscrirt

As we all know, no-one is perfect, and there may be
errors in this tutorial. If a subject matter expert has
read this tutorial and thinks that anything needs to
be corrected, that something is missing, or needs
further explanation, please let me know, so that I can
improve the tutorial. A lot of care and attention went
into the creation of this tutorial and it was
successfully tested on several systems with SuSE
Linux 8.0. But you should also be able to use it with
other Linux distributions.

There are certainly a lot more ways to configure a
LAMP system than explained here, but this tutorial is
basically intended as an aid for beginners in setting
up a Web server. 1 will try to keep the tutorial up to
date. I suggest you take a look at my homepage every
so often to check whether an updated version is
available (see the comment beside the download link).

REFERENCES

I will keep this tutorial up to date here:

http:/ /linux.computerbraxas.de/ [in German]
http://www.apache.org/
http://www.apache.org/dist/httpd/apache_1.3.27.ta
r.gz

http://www.mysql.org/

http://www.gzip.org/zlib/

GD: http://www.boutell.com/gd/

http:/ /www.pdflib.com/pdflib/index.html
http://www.php.net/

http://www.webmin.com/

This article is re-printed with permission. The originals

December 2002

can be found at:

http:/ /au.linuxfocus.org/English/ November2002 /artic
le270.shtml

Exploring Perl
Modules -Part Two:
Creating Charts with
GD::Graph

Author: Pradeep Padala <p_padala@yahoo.com>

[Editor's note: We continue where Pradeep left off in our last
issue]

INTRODUCTION

If you have read my previous article on GD [in AUUGN
Vol.23 No.3 or at
http:/ /www.linuxgazette /issue81 / padala.html], you
might have noticed that creating charts with the GD
module is cumbersome. (That article also contains
some general information about loading Perl
modules.) Martien Verbruggen has created the
GD::Graph module that allows easy creation of
charts. This module has useful functions to create
various types of charts such as bar charts, pie charts,
line charts etc... The module is very useful in creating
dynamic charts depicting network statistics, web page
access statistics etc

In this article, I will describe a general way of using
the module and also show a few examples of creating
various charts.

TyricaL Way or UsinG THE GD:: GraAPH MODULE

A perl script using GD::Graph to create charts
typically contains the following things:

* Prepare your data as an array of arrays. (More
about this later)

* Decide on the type of chart. You would use a call
like

$mygraph = GD::Graph::chart
->new($width, $height);

* where chart can be bars, lines, points, linespoints,
mixed or pie. For example, if you wanted a bar
chart, you would use

$mygraph = GD::Graph::bars
->new($width, $height);

¢ Set options for the graph as needed. This involves
setting 'title', 'x-label' etc... You can also set chart-
type specific options.

* Plot the graph using the plot function

$myimage = $mygraph->plot(\@data);

* Finally, you can save the image to a file or output
for web. This is similar to the way we have saved
images using the GD module [in our past article].

AUUGN Vol.23 » No.4 -39 -

A SivpLE EXAMPLE

Let's draw a simple chart following above steps. This
script uses CGI to output the image on to a web page.

my- $myimage = $mygr ,
‘o die]$mygpaph4>errgr;

print "Content-typ
print Smyimage=>pngji: -

The output of the program can be seen [below:]

Number of Hits in Each Month in 2002

100

30 |-

o
2
T

Number of Hits
-

TSep Oct
Month

Figure 1: A bar graph generated by GD::Graph

The above program is pretty much self-explanatory.
The @data variable is an array of arrays. The first
array represents the labels on X-axis and all the
subsequent arrays present different datasets.

TWEAKING THE OPTIONS

As you can see, the graph produced by above program
is quite bland and simple. We can tweak various
options to produce better looking and

customized graphs. There are a multitude of options
to control the various aspects of the graph. Options
are divided into two types: the options common to all
types of graphs, and the options specific to each type

of graph.

December 2002

way to create customized graphs. Let's prepare
Options can be set while creating the graph or with another chart with a logo.

options.

Output of above program can be seen here:

Grade report for a student
92

100
90

The output of above program can be seen here:

Grade report for a student

920

Semester

Marks

Fator or 01 Faul 02 Here is the Linux Gazette logo [at

Exon 4 E1Exen 2 HEvon :E”“m }'lttp: / /wwiv.linué(gz;ctte.con}l){vi(s}s%eSS/misTcépadala/ 1%[

. ., ogo.png> used. It's in ormat. e curren
Figure 2: A graph with a legend version of GD::Graph doesn't recognize any image
types besides GIF (although it can write PNG, go
figure). I submitted a patch [at

GRAPH WITH A LOGO IN THE BACKGROUND http://www.cise.ufl.edu/~ppadala/perl/exploring/gd

graph/logo patch] to fix this. You can either apply
the patch or use an older version of GD or GD::Graph.

Again as you can see, GD::Graph provides a flexible to

AUUGN Vol.23 e No.4 - 40 - December 2002

GraPE with LiNgs

Some information can be better presented with line
graphs. Here's an example showing a line graph.

Output of above program can be seen here:

Grade report for a student

00

50

s s L L
Fall 01 Ser 01 Fall 92 Srr 02
Semester
—Exan 1 ~ Exan 2 -~ Exan 3

Figure 4: A Line Graph

Here I have used GD::Graph::lines to create the graph
handle. But for this change, the program follows the
same pattern for creating graphs.

A PiE Graru

Similarly we can create a pie chart.

#1/4sr/local/bin/perl -w '

AUUGN Vo0l.23 ¢ No.4 -41 -

FEEEIA
error;

étéy

The output pie chart can be seen here:

Grading Policy for COP5555 course

Figure 5: A Pie Chart

The '3d’ option draws the pie chart in 3d.

AN Area GrarH
An area graph shows the data as area under a line.

#{/usr/local/bin/perl —w
#-Change:

abov line'tpvpoint;ﬁd'Ydur”perl”bt

#“Béth.the arrays should same number of entries.

December 2002

Output image can be seen here

Number of Hits in Each Month in 2002

100

80 1

60 |-

40

Number of Hits

20

0

Figure 6: An Area Graph

CoONCLUSION

The GD::Graph module provides a powerful and
flexible way to create charts. It's very useful for
creating graphs dynamically for serving on

web.

1 hope you have enjoyed reading this article. Next
month, we will have a look at the PerlMagic Module.

Copyright © 2002, Pradeep Padala. Copying license
http://www.linuxgazette,com/copying.html

First ublished in Issue 83 of Linux Gazette, October
2002

This article is re-printed with permission. The originals
can be _found at:

http:/ /www.linuxgazette.com/ issue83/padala.html

AUUGN Vol.23 ¢ No.4 -42 -

DVD Authoring

Author: Chris Stoddard <numbersyx@hot.rr.com>

This document provides the steps necessary to make
a DVD which will play in a stand alone DVD player,
using Linux and a DVD+RW or DVD-RW drive.

TaBLE OF CONTENTS

Introduction

Hardware Required

Software Required

Recording, encoding and burning the video
Fixing audio sync problems

Final Note

SN

INTRODUCTION

1 am constantly amazed at how easy it is to
accomplish things in Linux once someone works out
the process. DVD Authoring is a good example of this,
all the parts are in place, all the information is
available and it is a relatively easy thing to do, but no
where is there a single document showing how to
accomplish it. Authoring DVD under Linux is still in
its infancy, there are no tools for menus or any
advanced features, for now all we can do is single
straight DVD stream, which is enough for home
videos and saving TV shows. 1 will not be discussing
video editing here, I assume you will either be
recording from TV or have a video tape you wish to
transfer to a DVD.

Harpware REQUIRED

I'm not going into much detail about installing the
hardware, if you don't know how to install your
hardware, I have provided links to articles for help.

¢ Video Capture device: I am using a Hauppauge
WinTV PCI card, TV tuner cards are cheap and
easy to come by, and are well supported by Linux.
There are more expensive solutions which will get
you better video quality, but support under Linux
varies widely. Video Applications on Your Linux
Box
(http:/ /www.linuxgazette.com/issue62/silva.tml)

*+ DVD+RW or DVD-RW drive: I am using an old
Ricoh MP5120A DVD+RW drive 1 purchased
refurbished for $150. Luckily these drives install
exactly the same way as a standard CDRW drive.
You also need to be able to play DVD's on your
system. Please be sure your stand alone DVD
player supports the format of your burner. Playing
DVDs on Linux
(http:/ /www.linuxgazette.com/issue81/durodola.
html) and CD-Writing with an ATAPI CDR Mini-
HOWTO
(http: / /linuxgazette.com/issue57/ stoddard.html)

= Fast CPU and a huge hard drive: I am personally
using an Athlon 1600XP, 384 MB of RAM and a 40
GB hard Drive. I probably wouldn't even attempt
this with less than 1 Ghz CPU and 20 GB of free
hard drive space.

SorFTWARE REQUIRED
Each of these packages has their own install process,
please follow the instructions for each individual

December 2002

package
xawtv comes with streamer, which we will use for
recording the video: xawtv
(http:/ /bytesex.org/xawtv/)

* mjpeg-tools is used for encoding the recorded
video into a DVD compatible format: mjpeg-
tools (http://mjpeg.sourceforge.net)

* dvdauthor is the key piece of software, without it,
we would not be able to do this. This package
generates the IFO files required by DVD player.
There is no automatic install for this program,
simply run make, then copy the binaries to
/usr/local/bin: dvdauthor (http:/ /sourceforge.net
/project/showfiles.php?group_id=59028)

* dvdrtools is a fork of cdrtools which we will use to
build the iso and write to newer DVD-
RW drives: dvdrtools (http://www.freesoftware.fsf,
org/dvdrtools/)

° dvd+rw tools is used to burn to older DVD+RW
format, this is only necessary if you have a first
generation DVD+RW drive. If you have a newer
DVD-RW drive this package is not
needed: dvd+rw tools (http://fy.chalmers.se/ ~appr
o/linux/DVD+RW/)

dvd+rw tools has no Makefile. You can build the

bmanes domg thls

I{ECORDHVG,ENCIHHN(;ADH)BURNHVG'PHE\HDEO

Recording the video is the most important step, the
size of the video and the frame rate must be right. The
following command uses streamer, which comes with
xawty to record the video:

‘ol dek/v1de00

The -n switch is for format, if you use PAL, change
ntsc to pal. The -t switch is record time in minutes. -s
is the size of the video, in the USA, we use NTSC
which requires the video to be 720x480 if you use
PAL, change this to 720x576. -r is the frame rate, for
NTSC use 30, for PAL use 24, -c is the video device,
change it if need be. The rest of the switches should
remain unchanged.

The next thing to do is to properly encode the audio
and video into something a DVD player can read. The
tools we need for this are from mjpeg-tools. This
command line strips the audio out of our avi file and
encodes it to mp2 audio. The -V switch actually is for
VCD compatlblhty but works for here:

o ‘audio: mp2

Next we strip out the video and encode it to mpeg
video. This part is what takes the longest, the faster
your system is the better. The important switches
here are -f 8, which ensures the video will be DVD
compatible and -n n, which is for NTSC, if you are
usmg PAL change it to -np:

lavauv +p stream av1
l6~-Q video.mlv k

Now we need to join the two encoded files. Be sure to

use the -f 8 switch for DVD compatible video:
© mplex =f- 8¢ audio.mp2: video:. miv -=o ‘complete.mpg

AUUGN Vo0l.23 e No.4 -43 -

In order for our disc to be played in a stand alone
DVD player, the directory structure HAS to be perfect,
so please make sure you type the next several
commands exactly as shown, in the order shown:

Next we need an Table of Content IFO file, type:
‘tocgen > dvd/VIDEO_TS/VIDEO TS.IFO

Now we want to copy our encoded video file into the
structure and give it the correct permissions, type:
"cp ‘complete. mpg. dvd/VIDEO: TS/VTSTO

chmod utw, dvd/VIDEO. T§/* :

IFO and BUP files provide DVD players with
information specific to the video file it is trying to
play, ifogen looks at the video and extracts the
information needed. To generate the needed files use

this command line:
lfogen = dvd/V]

Now we need to generate an iso image which can be
burned to a DVD disc. Be sure you are using mkisofs
version from dvdrtools, which supports the DVD files

system: e e
‘mkisofst~dvdrvideo ~udf 26 dvdiiss dvd/l

And, finally, we can burn our disc. If you are using an
older first generation DVD+RW drive, the disc will
need to be formated before the image can be burned,
use the following commands, replacing srcdO with the

device name of your drive:)
sdvdrw= format -f/dev/sTréd0: s
‘growisofs =7 /dev/srcdos

If you are using a newer DVD-RW, no formating is

necessary, dvdrecord will do the _]ob
Sdvdrecord —dac speed=2 dev=0;0,0:

FIXING AUDIO SYNC PROBLEMS

The most common problem with this process is audio
sync. The first thing you should try is optimizing your
hard drive with hdparm, turn on 32 bit I/O and DMA,
1t ooks somethi

This should fix any audio sync problems, if it does
not, you may need to use the -O n option when
running mplex. This delays the video by n mSeconds.
The problem with this is it is a trial and error process
and often leaves the joined video file in a state that
causes ifogen to segfault. It may also be possible to
record the video at a lower size, say 352x240, then
use yuvscaler from the

mpjeg-tools to resize it to 720x480, but I have not
tried this.

FmaL Notkes

This process will not give you "Buy in the Store" DVD
quality video, the quality will depend largely on the
quality of your capture source, so you should use the
best quality settings you can when recording anything

December 2002

on video tape you intend to burn to DVD. This
process takes several hours, I use the shell script
below

to do the work for me, while I am at work or in bed
sleeping. 100 minutes of video will require about 11
GB to record, 2 GB to encode and 1 GB for the iso
image. Your mileage will vary.

————— make-dvd.sh-----

‘bin/sh

Copyright © 2002, Chris Stoddard. Copying license
http://www.linuxgazette.com/copying.html
Published in Issue 83 of Linux Gazette, October 2002
This article is re-printed with permission. The originals
can be found at:

http:/ /www.linuxgazette.com/issue83/ stoddard. html

AUUGN Vol.23 e No.4 -44 -

Review - Portable
Linux Workstation:
Compaq Presario
1510US

Author: Chris Koresko <koresko@fitzgerald.jpl.nasa.qov>

I'm writing this on my new Compaq Presario 1510US
portable Linux workstation. It took a while to get it
going, and there are still significant limitations with it
but if you're looking for a lot of computer in a modest-
sized package, this model may be worth a look. Here's
the low-down:

Ture Goop

What makes this machine attractive can be summed
up in two words: Power, and Portability. The Presario
specs out like a pretty decent desktop box: 2.2 GHz
P4 processor with 512 KB of on-chip cache, half a gig
of DDR memory, 40 gigs of disk, USB 2.0, FireWire,
ATI Radeon graphic chip with 32 MB of its own DDR
memory driving a 15-inch LCD screen with
1400x1050 resolution, a big comfortable keyboard,
and JBL speakers. As for portability, the machine
weighs in at 7.7 pounds (plus another pound or so for
the power brick) and slips easily into the laptop
compartment of my Spire Zoom backpack.

Compaq threw in a coupon for a free {read $15 or so
after tax and shipping) 802.11b wireless network
adapter that plugs into a port on the back of the
laptop screen. I haven't received this yet, but the word
on the Net is that it's possible to get it working in
Linux, though not without some hassles.

I haven't bothered with real benchmarks, as I
consider the importance of benchmarks to be
massively overrated when it comes to choosing
computer hardware - and that goes double for
laptops. But on very informal tests on some heavy
numerical simulation code, the Presario appears to
run about 50% faster than my aging 1.3 GHz Athlon.
And it runs glxgears at 440 frames per second, at
standard size. Not quite state-of-the-art desktop
performance, but not bad at all!

And the hardware support under Linux is pretty
complete: Everything, including the MiniPCI
winmodem and the little scroll button below the
touchpad, is working.

Tue Bap

Of course, all this power and portability carries a
price, and it may be enough to make you stop and
think a while. That price is paid in several forms,
starting with the hit to your credit card (roughly
$1900, though if you bend over backward and touch
your toes Compaq promises to send you $100 of that
back, eventually), and soon followed by a lot of really
unnecessary but unavoidable hassles as you work

December 2002

through the process of getting Linux up and running
right. This review is devoted mainly to those hassles
and how to get around them with minimum
frustration, but it goes on to explain how to customize
a few things in helpful ways. Though much of it is
obviously specific to the particular model of laptop 1
bought, a lot of the information in it probably applies
to a lot of other models of similar (read: late 2002)
vintage.

BIOS Bucs

Where would we be without the BIOS? It's the little bit
of software built into a semi-permanent memory chip
on the motherboard that tells the computer how to
boot up. A modern notebook BIOS has extra
functions for controlling very hardware-specific
features such as power management state, screen
brightness, and CPU speed. When the BIOS has bugs,
they're likely to cause you headaches.

And the Presario's BIOS has bugs. The ones I've run

into so far fall into three categories: Device
injtialization, Power management (APM), and
Keyboard. The initialization problem has a

workaround, and the keyboard problem has both a
workaround and a real fix, but with regard to the
APM problems there seems to be no solution at
present.

Disk Interface Initialization Bug: When the
computer boots, the BIOS is supposed to assign
system resources such as interrupt levels, DMA
channels, and 1/O port addresses to the various
hardware devices that need them. The Presario's
BIOS misses the 1/0 port assignment for the built-in
IDE disk controller. Without that, the system can't
safely use DMA transfers for its disk access. That
slows the disk reads down by nearly an order of
magnitude, from about 20 MB/s to 2.5 MB/s, as
measured by hdparm -tT /dev/hda . Perhaps worse,
the disk transfers are very CPU-intensive, and they
make the whole machine drag: the mouse skips
around instead of gliding smoothly, keystrokes don't
register belatedly, and the whole thing feels like it's
about to fall on its face (though it doesn't).

There's another catch: Older Linux kernels don't
catch on to the fact that there's a problem, and will
allow DMA access to be turned on (using hdparm -d
1 /dev/hda), thus providing great relief followed by a
potentially huge headache as your filesystems hose
themselves.

Kernel 2.4.19, the current stable release, refuses to
allow DMA to be activated. Luckily, there are kernels
which know about this kind of problem and how to fix
it, and the new Red Hat 8 comes with one.

Hint:You can find out whether the 1/0 ports were
assigned to the IDE controller by typing

lspci ~v | less

and looking for a set of lines like this:

00:1f.:1 IDE interface: Intel Corp. §2801CAM IDE. f»

U100 (rev 02) ' (prog-if 8a [Master ‘SecP PriP}j -
Subsystem: Compaq Computer Corporation: Unknown'

AUUGN Vol.23 » No.4 -45 -

device 00de .

If yoﬁ see like thé’t, your IDE controﬁéf probably isn't
doing its job. Be careful!

The Keyboard bug causes the Enter key to produce a
Keypad-Enter scancode rather than the normal Enter
scancode. In many applications this makes no
difference, but there are a lot of Linux apps that do
care, and with those the bug can be pretty annoying.
For example, the NEdit text editor interprets Keypad-
Enter as an instruction to send the current line of
text to the shell, and paste whatever comes back into
the editing window. And certain GNOME apps such
as Ximian's Evolution end up with little gray boxes at
the ends of lines.

Fortunately, this bug has caught the attention of
Compaq themselves, and they've issued a BIOS
update for it. You can download the image for their
bootable install disk from the support pages on their
website. One catch: though the disk itself is based on
DOS, the image you download is a Win32 executable.
So if you've already blown away the XP Home that
came with the Presario, you might be stuck. I got
around this by borrowing a machine. Once you use
Windows to create the floppy, boot the Presario with it
and follow the directions.

If you're looking for an easier, if less universal,
workaround, then consider adding the line

keycode 108 = Return

to the file .Xmodmap in your home directory. Most
Linux distros should read this file and process it with
the xmodmap program when X starts up, and itll
cause X to treat Keypad-Enter as a regular Enter.

Note the . in the filename - that's important. You can
create the file with a text editor if it doesn't exist.

Once you've got your .Xmodmap file in place, run the
command

xmodmap ~/.Xmodmap

to activate the changes immediately without having to
log out and restart X.

The Power Management bug has a pretty simple set
of symptoms: It's impossible to put the machine into
APM Sleep or Standby mode. That means you'll
probably have to shut it down and reboot it
completely every time you move it, which partly
defeats the portability of the notebook design.
Bummer. The Presario has ACPI support in addition
to APM, but Linux doesn't work with that very well
yet. The only bright side is that the APM support for
reading out the state of the battery does work, so at
least you'll know when the machine is about to poop
out.

December 2002

Tue UcLy

There's a another, important compromise with the
Presario: It runs not on a Mobile P4 but on an
ordinary desktop CPU. The difference is that there's
no support for Intel's nifty SpeedStep feature which
dynamically controls the CPU clock rate and the
power to various data paths to balance performance
against power consumption. In other words, the CPU
runs full blast, all the time. That sucks a lot of juice
from the battery, and it requires active cooling in the
form of a noisy fan that's almost always on. It's
enough to make me consider buying a slower CPU to
replace the 2.2 GHz unit that came with the machine.
The partial workaround is to listen to loud music
(using the nice JBL speakers on the Presario, for
example) while you compute. Or buy a set of
earplugs. And a spare battery.

It's also worth mentioning that the support for the ATI
Radeon chipset, while fairly complete, is also very new
(as of XFree 4.20) and not as stable as I'd like. I've
seen X crash out for no obvious reason twice in the
last week. There are also little drawing glitches now
and then. Hopefully all of this will improve as the
driver matures, Meanwhile, I can live with it.

Finally, there are a few subtle details that Compaq got
wrong. Moving the mouse with the touchpad causes
audible noise in headphones plugged into the jack on
the rear of the machine, and turning the PCM volume
all the way up causes the sound to be distorted, even
at low audio levels. There's a rounded ring around the
touchpad which makes it impossible to reach its
corners, which is especially irritating when the right
edge is being used to emulate a scroll wheel. The
hinges at the bottom of the screen are shiny chrome-
plated things, and can cause glare in certain lighting
conditions (you can fix that by covering them with the
right kind of adhesive tape). The power brick has a
three-pronged mains plug, so it won't work with some
outlets. The rounded port cover on the back of the
machine pushes against connectors inserted there.
And the placement of some of the keys is wierd
(there's a giant Caps Lock to the left of the 'A' while
the Control key is small and shoved down toward the
lower-left corner of the keyboard, and the Delete key
is even smaller and located at the very upper right,
while the Insert key is to the right of the rather
shrunken spacebar.)

CustomizatioN: GETTING THE DETAILS RiGgHT

There are several features on the Presario that benefit
from special attention. The first of these is the
included Conexant HSF HSFi modem. That's a
Linmodem, i.e., it relies on a kernel driver for some of
the functionality that would normally be built into the
modem itself. So it won't work unless you download
and install the driver. Grab the driver here
(http://www.mbsi.ca/cnxtlindrv) and follow the
directions, which for a custom kernel will involve
rebuilding parts of the driver from source, installing,
and running a setup program. It's not too hard, but
it'd be nicer if Compaq had included a real modem

AUUGN Vol.23 « No.4 - 46 -

with the Presario, or alternatively if Conexant had
released the driver under the GPL so it could be
included in the Linux kernel distribution. If this
procedure fails or you just don't want to mess with it,
you can stick a PCMCIA modem in the Presario's
single slot.

The Presario's main keyboard sits under a set of
custom keys resembling little pushbuttons. They're
marked with helpful-looking labels, and they can be
made to do actual useful things with just a little bit of
work. The same is true for the Windows keys on the
main keyboard itself.

The trick here is to get X to recognize the buttons’
scancodes and assign keysyms to them. That's easily
done by adding a few lines to our old friend
.Xmodmap. Then you use your window manager to
bind those keysyms to wuseful behaviors, like
launching programs.

My .Xmodmap looks like this:

1 use sawfish as my window manager, running under
GNOME. In that environment, one can bind functions
to the newly-activated keys and buttons using the
Shortcuts pane of the Control Center. For each key,
simply click the Add... button, then Grab..., then
push the button or key you're assigning a function to,
and then select the window-manager behavior you
want from the list and click OK. The most useful
window-manager behavior is Run shell command
about 2/3 of the way down the list. For example, to
make the + and - buttons increase and decrease the
audio volume, one could put in the shell commands
aumix -v +3 and aumix -v -3. See the manpage for
aumix for details on how it works. I bound the
musical note button to launch xmms, the info button
to launch NEdit, and the magnifying glass to launch
a file manager. Your choices may vary!

Don't forget that you can also bind functions to the

December 2002

shifted versions of these keys (i.e., what you get when
you hold down a SHIFT or CTRL or ALT key as you
press the button), as well.

Don't try to bind something to the Power button,
though - that'll just shut off your machine, rather
abruptly!

The Presario's Synaptics touchpad works as a
standard PS/2 mouse, but you can get more

functionality out of it by installing a special driver.
Download that here, extract the files from the archive,
and follow the instructions. Installation is fairly
simple, consisting mainly of compiling a module that
plugs into XFree86 (v4.x) and adding a section to your
XFree86 configuration file. The driver gives some
example settings, but I prefer the following:

With this driver in place, the touchpad acts like a
three-button mouse with a scroll wheel. You can click
the middle or right buttons by tapping with two or
three fingers simultaneously, and sliding your finger
along the right edge of the pad sends scroll-button
events. The little four-way switch below the touchpad
acts like a scroll wheel as well: clicking the top or
bottom edges causes a scroll. Clicking the right or left
edges doesn't appear to do anything, however.

SuMmary

In total, the Presario 1510US is a somewhat
expensive, somewhat buggy, but very powerful and
customizable portable Linux workstation. In the two
weeks since I bought it, it's become my main
machine, used for basically all my computing tasks
with the exception of serving mail (which would
require a permanent network connection). It's far
from perfect, but it works, and I fully expect it to work
better as the Linux kernel adapts to its bugs, Compagq
fixes its bugs, and XFree refines their Radeon driver.
In short, it's replaced both my NEC Versa LX laptop
(PII 400, 256 MB RAM, Red Hat 7.3, and now for
sale!) and my office Athlon desktop.

I hope this writeup will be useful to some people who
are thinking about buying a new laptop to run Linux.
Even those who choose another brand or model are
likely to find yourselves facing one or more of the
issues I've run into. Maybe you can even help figure
out how to fix something, in which case I hope you'll
share that info. In any case, best of luck to you.

Portable Linux Workstation:

Compaq Presario 1510US
Developed by: Compagq

AUUGN Vo0l.23 ¢ No.4 -47 -

Price: $1900
Rating: 3.5 out of 5

Copyright © Bityard Magazine, Inc. All rights

reserved.

This article is re-printed with permission. The originals
can be found at:

http:/ /wwuw.bityard.com/ article.php?sid=443

Athlon XP 2400+ vs.
Intel Pentium 4 2.4GHz
and 2.8GHz

Author: augustus of Linuxhardware.org

INTRODUCTION

The time has come again to take a look at the latest
desktop processor offerings from Intel and AMD. In
this review we'll be looking at AMD's Athlon XP 2400+
and Intel's Pentium 4 at 2.4GHz and 2.8GHz. Our
new set of benchmarks will also be introduced in this
review, some of which you've seen in the past, some
that we debuted in the system of the year dual
processor review, and a new one we're using for the
first time. We've got all the details on the changes to
these chips from the previous and we'll finish up with
a price evaluation. There's a bit to go over so let's get
started.

ATHLbN XP 2400+: Tee NEW THOROUGHBRED

As we mentioned in the system of the year article,
AMD had moved to the new Thoroughbred core. This
new core moved AMD's chips to a 0.13 micron fabbing
process which theoretically should decrease the heat
generated by the core and allow higher yields per
silicon wafer. This process also lowers the power
requirements of the processor, moving the 1.75V
requirements of the Palomino core to 1.65V for the
Thoroughbred. Those were the changes that effected
the 2200+ Athlons and all processors to come from

December 2002

AMD but they didn't leave it at that. The
Thoroughbred core didn't perform as expected when it
clocked too far above the 1.8GHz of the 2200+. So
AMD now had a problem to solve if they were going to
continue the speed increases. Their engineers rose to
the occasion and added an extra metal layer to the
Thoroughbred core to add additional stability through
a slight remapping of some of the processor. With this
revision, now dubbed Thoroughbred-B, the Athlon
has been released at performance ratings of 2400+
and 2600+ or 2.0GHz and 2.13GHz respectively. AMD
was kind enough to provide us with the Athlon 2400+
chip for this review.

VIA's KT333 Cuirser

The chipset we'll be using in this review will be from
VIA, as you would expect, and it comes in the form of
the KT333. This chipset is little more than an upgrade
to the KT266A which adds support for PC2700
(333MHz) DDR memory. In fact, they even use the
same VT8233A South Bridge. The board we're using
is EPoX's EP-8K3A+ which is a fine board that
presented us with awesome stability and more BIOS
options than you will find from any manufacturer,
with the possible exception of the originator of
overclocking boards, ABIT.

Other than the potential for phenomenal
overclocking, the EPoX board offers 6 PCI slots,
onboard Highpoint IDE RAID, and a good clean
layout. Installation of Linux on this system was
painless with Red Hat 7.3.

IntEL PENTIUM 4 2.4GHZz AND 2.8GHZ

Intel has been hard at work finding ways of making

AUUGN Vo0l.23 e No.4 -48 -

the Pentium 4 a faster and more attractive processor
to performance lovers everywhere. The first thing we
saw was their transition to a 0.13 micron fabbing
process and the addition of 256KB of L2 cache
bringing the total up to 512KB with the release of the
Northwood core. Now, with the introduction of the
2.8GHz Pentium 4 we have Intel moving to a 533MHz
front side bus (or 133MHz quad-pumped). This is a
great step for Intel as it brings their processor's FSB
in line with the memory's clock which should provide
for a nice speed boost. In this review, we have the
2.4GHz Pentium 4 running on a 400MHz FSB which
should be our direct comparison to the Athlon 2400+.
We also have the Pentium 4 2.8GHz chip to hopefully
show off some Intel speed lovin'.

InTEL'S 845E CHIPSET

With the release of the faster FSB, comes the release
of several new chipsets from Intel. The lineup begins
with two new DDR chipsets, the 845E and 845G. The
845E is simply an upgrade to the 845D which adds
the needed 533MHz FSB support. The 845G though
adds a few more features such as DDR PC2700
support and integrated graphics. Intel also updated
their 850 chipset, which supported PC800 RDRAM, to
the 850E which now supports the new FSB and also
PC1066 RDRAM.

In this review we got our hands on the MSI 845E
Max2-BLR. This board is at the pinnacle of feature
sets, including features such as onboard Promise IDE
RAID, onboard Realtek 6-channel audio, onboard
Intel Ethernet, and onboard Bluetooth. All of these
features make the 845E a Kkiller board for anyone that
likes the lack of hassle and expense of PCI cards. Best
yet, all of these features are supported by drivers
found in the Linux kernel tree. The only problem we
ran into with this board was an IDE problem that,
according to kernel guys, is caused by a BIOS error.
This error did not prevent installation of Linux but
did limit IDE speed to only a couple of MB/sec due to
the disabling of DMA. A fix for this problem can be
found in the 2.4.20 prerelease kernels.

BencamnG THE COMPETITION

December 2002

CPU AMD Athlon XP | Intel Pentium 4
2400+ 2.4GHz (400MHz
FSB)
Intel Pentium 4
2.8GHz (533MHz
FSB)
CPU Cooling Thermaltake Intel supplied
Volcano 6Cu cooler
Motherboard | EPoX EP-8K3A+ | MSI 845E Max2-BLR
Memory Corsair XMS3000 C2 512MB DDR
SDRAM
Video ABIT Siluro GeForce4 Ti4600
Sound Creative Labs Sound Blaster Audigy
Network Intel Pro/100 S Onboard Intel
10/100
Hard disk Seagate Barracuda ATA III 40GB
CD Drive Sony 6x DVD-ROM
Floppy Generic 1.44MB 3.5" Floppy Drive
Distribution Red Hat 7.3 (Updates current as of
9/25/02)
Kernel Linux 2.4.20-pre7
XFree86 XFree86 4.2.0

As you can see from the table above, we attempted to
keep as many of the components constant as
possible. We also wanted to maximize performance on
both platforms and went with the very latest in
hardware from NVIDIA with ABIT's Siluro GeForced
Ti4600 and high-end Corsair memory, capable of
running at the best memory timings. For both
systems we optimized the BIOSes to maximum
memory performance:

Bank cycle time (or tRAS): 5
RAS Precharge: 2
RAS-to-CAS Delay: 2

CAS Latency: 2

Command Rate: 1T

These timings may be extreme but we wanted to
check out the best performance we could from both
platforms with the given hardware. We were also
interested in keeping the competition fair so we
wanted to mentjon that the Athlon XP 2400+ should
be compared to the Pentium 4 2.4GHz and that the
2.8GHz chip should be considered in a different class.
Also to level things out, we ran the Athlon XP at both
PC2100 and PC2700 memory timings to keep things
level on both platforms. In a nutshell: Athlon XP
2400+ (266MHz memory) = Pentium 4 2.4GHz on an
845E-based motherboard.

Now that we've gotten all of the rules of the game out
of the way, let's see how this actually holds up.

Our first benchmark is the only synthetic benchmark
we'll be showing in this review. LMbench is a
synthetic benchmark used to measure various
latencies and bandwidths throughout a system. For
our purposes, we pulled the memory latency and
bandwidth tests from the plethora of results.

AUUGN Vo0l.23 ¢ No.4 -49 -

LMbench Memoty Latency
] {
1437
o7
L1 Laency ot EAton XP 2400+ fess
Mamcry|
Bl Atlon XP 2400+ 233
bamory|
[OPardum4 24GHz
J4ccFSE
L2 Laency D,”;";s";‘“m
. P .S00
Main Memory | 2500
Latercy 115500
i —
0.000 25.000 50.000 75.000 100.000125.000
hanhoseconds
LMbench Memory Bandwickth
|
!
Mem Read :
17=z7
S] &8
2 “ 552 AiHonXIPZAI)rl?BS
i B3 4ion XP 2400+ (335
35 H i
. 7 ; i Maimory|
Mem Wiite | ; i [IPanfum 4 24GHz
L S B]
P [OPanfum4 28GHz
&yl |S3aFSEY
— ——t

D 250 500 750 1000 1250 1500 1750 2000
VB/s

On the latency graph we see that the Pentium 4 leads
in the L1 and L2 cache at both 2.4GHz and 2.8GHz.
What's interesting also is the difference in main
memory latency in the different Pentium 4 processors.
The 2.8GHz, with its faster FSB takes a substantial
lead over its 2.4GHz brother. While the 2.8GHz
processor held a nice lead over the 2400+ Athlon, the
2.4GHz chip fell slightly behind.

The bandwidth graph shows a substantial lead in
memory read speeds that we aren't too comfortable
with since the memory on the boards are theoretically
running at the same speeds; although, it is possible
for the chipset to be making much better use of what
the memory has to offer. The write speeds are much
more in line with what you'd expect, with the scores
very close together. In the write category the Pentium
4s both still lead but by a much smaller margin.

Next we have POV-Ray 3.5 which is a piece of
software that we've been using around here for quite
some time to show off floating-point performance of
various CPUs. From our last review:

POV-Ray, or the Persistence of Vision Raytracer, "is a

December 2002

high-quality, totally free tool for creating stunning
three-dimensional graphics. It is available in official
versions for Windows, Mac OS/Mac OS X and i86
Linux." [povray.org]

For details on how to run this benchmark, see the
POV-Ray benchmarking page. In the results below, we
took several binaries compiled for different processors
and took the best results using all of the binaries. For
the Pentium 4s we used povray.p4.nosse2 and for the
Athlon XP we used povray.pentiuma3.icc.

H

POV-Ray 35

315700
§

318000

benchmark.pov F
41:19.00
; 380500
T ‘ |
T T T T T T 1
00:0000 10:4800 21:3600 32:24.00 431200

Time (VM SS)

Above, we see the 2400+ beating out, not only the
2.4GHz Pentium 4, but also the 2.8GHz Pentium 4 by
a substantial margin (23% faster than the 2.4GHz
and 9% faster than the 2.8GHz). This is similar to the
results we saw when comparing the Xeon results to
the Athlon MP results. The Athlon core just seems to
handle these floating-point calculations better.

Next, we'll move to our aging gaming benchmark,
Quake 3. We ran the demo version 1.11 through the
demo001 demo at three resolutions for comparison
and even threw in anti-aliasing and anisotropic
texture filtering as an added bonus to compare the
processors at quality settings you would want to play
at {__GL_FSAA_MODE=5 and
__GL_DEFAULT_LOG_AN 1SO=3).

Quake 3: Arena

1024768 (A4 +)

1600x1200

16001200 (34, + AF)

i
0 50 100 150 200 250 300
FPS

AUUGN Vo0l.23 ¢ No.4 - 50 -

The above graph is quite interesting as we see the
Pentium 4 processors take a nice lead at 640x480 but
fall behind at almost every resolution above that. This
lead is as small as less than 1% (1600x1200 AA + AF)
but as large as 7% (1600x1200). While the CPU
should be most dominant at the smaller resolutions,
it's odd to see that at the higher resolutions the
Athlon has that big of a lead.

Our newest benchmark is the other game in our
suite, Unreal Tournament 2003. UT2003 is a
gorgeous game and the new level of performance that
gamer's boxes will have to live up to. These
benchmarks were performed by following the
instructions found in the UT2003 forums. We used
both the flyby and botmatch benchmarks of the
Citadel level.

UT2003: Flyby Citadel

640480 F

1024X768 £

1600x1200 ¢

FPS

UT2003: Botmatch Citadel

640480

344

46912
1024%768

47357

1600x1200

[Pt
| L L
0 5 10 15 20 25 30 35 40 45 SO|[JPenfumazaCh:

| S33FS
FPS |croH

In the flyby benchmark, which is almost entirely
graphics bound, we see the very close results, with
the Athlon XP 2400+ firmly beating the 2.4GHz
Pentium 4 and virtually tying the 2.8GHz Pentium 4

December 2002

botmatch results, we see a different story, as the
2400+ at the same memory speed as the 2.4GHz run
neck and neck and the 2400+ using the extra memory
speed to keep up with the 2.8GHz Pentium 4. In the
end, the Pentium 4 2.8GHz holds a slight lead.

Moving on to workstation graphics applications, we
have SPECViewperf 7.0. This benchmark stresses the
video card, processor, and memory in six different
professional level applications.

SPECViewperf7.0

i i
i

Jdsmax- 01 e

T
30,000 40.000 50.000
FPS

7)
0.000 10.000 20.000

Looking back at the results from the Xeon verses
Athlon MP again, you would think that the Pentium 4
would have no problem defeating the Athlon XP at
either chip speed but, in most of the above tests, it's
clear to see that that's not the case. In the drv-08 and
dx-07 tests, the Athlon XP 2400+ trounced the
competition by as much as 25%.

Moving away from graphics applications, we move to
software development and the kernel compile
benchmark. This is our standard test with multiple
threads used to utilize the processor. We ran this test
with two and three threads to see which processor
handled the stress more efficiently.

AUUGN Vol.23 e No.4 - 51 -

H i H H 1 i
T T T) T T I
00:0000 00:4320 01:2640 02:0960 025280 03:380
Time (MMSS)

This is a benchmark that the Pentium 4 has had a
nice advantage in since the addition of the L2 cache
into the Northwood core. With two threads, the
Pentium 4 2.4GHz and Athlon XP 2400+ at 266MHz
memory run on par with each other with the 2.8GHz
Pentium 4 getting a healthy lead over both of them.
With the addition of one more thread though, it seems
the Pentium 4 2.4GHz chokes up a bit and the Athlon
XP takes the lead over the comparable Pentium 4.

The final benchmark for our analysis is Ogg Vorbis
audio encoding. See the CPU Review Guide for further
details on this test.

Ogg Vorbis Encoding

Atlion XP 2400+ g6
bamory|

[Attion XP 2400+ 123
Mamory|

[Pandum 4 24GHz
|40CFSEY

[Pandum 4 28GHz
|SaaFSE

0104

010480

oggenc 1.0

Grs.10

010340

{ H i
[T T T ¥

00:0000 00:17.28 00:3456 005184 01:0312
Time (MVSS)

Once again, the Pentium 4 just can't keep up, even
though we have traditionally seen a good showing
from Intel in this category. In this test the 11 second
lead by the 2400+ over the 2.4GHz equates to an
about a 15% gain and the 4 seconds over the 2.8GHz
amounts to about a 6% gain. Pretty awesome from a
chip running 400MHz slower.

So overall what can we say about the performance of

December 2002

our contenders? Well nothing besides that the AMD
Athlon 2400+ is clearly the performance leader,
besting both the 2.4GHz Pentium 4 and even the
2.8GHz Pentium 4 in almost every test. In fact, the
only place that the Pentium 4 was able to show off a
little was at compiling benchmarks due to the extra
cache and an 800MHz clock speed advantage. So now
that we know what the numbers tell, what will these
chips set you back?

Prick vs. PERFORMANCE AND THE CONCLUSION

At the time of writing, here's the breakdown of
approximate pricing:

AMD Athlon XP 2400+: $210
Intel Pentium 4 2.4GHz (400MHz FSB): $195
Intel Pentium 4 2.8GHz (533MHz FSB): $490

Seems like there has been a slight shift in the recent
past as now a comparable Intel chip can be had for
less than the AMD part. When looking at Intel's high-
end parts though we see an almost $300 markup for
400MHz of power and a faster FSB. In addition to the
actual costs though, it's important to note that while
all of the Intel processors are available now, AMD's
newest chips (2400+ and 2600+) won't be available
until the first of October from most online retailers.

When is comes to evaluating what's the best bang for
the buck, it seems prudent to recognize what you will
be using your computer for. From the numbers above,
it seems clear that if you plan on working on a
raytracing project or a professional graphics project,
the Athlon XP would definitely be worth the extra bit
of money. When looking at gaming performance, it
seems to be less important which processor you go for
and the $15 saving on the 2.4GHz chip could go
towards a slightly faster video card that would end up
yielding better frame rates for the newest game titles.
Finally, if you're a developer and have the cash, the
fastest Pentium 4 you can afford may be your cup of
tea. Quantitatively though, you will be paying about
$300 for a 10% speed increase. One thing to go for on
either platform though is the fastest memory you can
reasonably afford. The benchmarks show us that for a
little extra money you can get about a 5% speed
increase across the board. Also, keep in mind that the
memory in these systems were pushed past specs
quiet easily and if you're running standard memory
you won't get these performance results. My hats off
to Corsair for make some of the most impressive
memory on the market.

As one final note, we would like to mention that these
numbers aren't really what we expected from the Intel
platform. We felt that the extra clock speed and the
addition of a faster FSB would really put the 2.8GHz
Pentium 4 on a new level. After running these tests
multiple times though, we are confident that these
results are accurate. We hope to look at the platform
again soon with different chipsets.

This article is re-printed with permission. The originals
can be found at:

http:/ /www.linuxhardware.org/ article. pl?sid=02/09/
26/172240&mode=thread

AUUGN Vol.23 « No.4 - 52 -

Creating Makefiles

Author: Tedi Heriyanto <tedi_h@gmx.net>

INTRODUCTION

Imagine you are developing a program called foo,
which consists of five headers, that is 1.h, 2.h, 3.h,
4.h, and 5.h, six C-language source code flles named
1.cpp to 5.cpp, and a main.cpp file (Remember: we do
not recommend to use such file naming scheme in the
real life).

Suppose you find a bug in 2.cpp and has fix it. In
order to get a new foo program, you have to recompile
all files, header and source code, even though you
just change one file. This is not a fun job, waiting for
the computer to finished its process compiling your
program. Particularly if you don't have fast computer.

What can you do then? Is there any solution for this
problem ?

Please do not worry my friends. That kind of problem
has already been experienced by our fellow computer
hackers years ago. To tackle this problem, they have
developed a program called make. Instead of build all
of the source codes, this program will only build
source code that has been changed. If you change file
2.cpp, then make will only build it. Isn't it fun?

The followings are several other reasons why we need
make'?:

» A software project which consists of many source
codes, can have complex and long compiler
commands. Using make, it can be reduced.

» Programming project sometimes need specialized
compiler options that are so rarely used they are
hard to remember; with make this can be reduced.

* Maintaining a consistent development
environment.

e Automating the build process, because make can
be called easily from a shell script or a cron job.

Way Do We Neep A MAKEFILE?

Although make is very useful, it cannot do its job
without theinstructions given by us, the programmer.
make instructions is stored in

a text file.

This file is normally named makefile or Makefile. As a
convention, GNU programs named their makefile,
Makefile, because it is easy to see (if you do "Is" then
this file is usually always on the top of the list). If you
give it another name, just make sure you include
option -f to make command in order to let it know
that you use it.

For example, if we have a makefile named bejo, then
the command we use to instruct make to process that
file is :

make —f bejo

December 2002

MAKEFILE STRUCTURE

A makefile consists of target, dependencies and rules
section. Dependecies are things or source code
needed to make a target; target is usually an
executable or object file name. Rules are commands
needed to make the target.

Following is a simple description of a makefile :

AN ExaMPLE OF MAKEFILE

The following is a simple makefile example (line
numbers added for the article):

In the makefile above, dependencies is line contained
client: conn.o, while rules is line contained g++
client.cpp conn.o -o client. Note that every rule line
begins with a tab, not spaces. Forgetting to insert a
tab at the beginning of the rule line is the most
common mistakes in

constructing makefiles. Fortunately, this kind of error
is very easy to be spotted, because make program will
complain about it.

Detail description of the makefile depicted above are
as follows :

* Create an executable file named client as a target,
which depends on file conn.o

* Rules to create the target are in line 2.

* In the third line, to make target conn.o, make
needs files conn.cpp and conn.h.

* The rules to make target conn.o are in line 4

COMMENT

To give a comment in makefile, merely put '#' in the
first column of each line to be commented.

Below is an example makefile that has already been
commented :

Create executable file "client”
client: conn.o
g++ client.cpp conn.o -o client

Create object file "conn.o"
conn.o: conn.cpp conn.h
g++ -c conn.cpp -o conn.o

AUUGN Vol.23 ¢ No.4 - 53 -

Prony Tarcer!

A phony target is a fake filename. It is just a name for
commands that will be executed when you give an
explicit request. There are two reasons for using
phony target : to avoid conflicts with a file with the
same name, and to enhance the makefile
performance,

If you write a rule whose command will not create a
target file, those commands will be executed every
time the target is remade. For example:

Because the command rm will not create a file named
clean, that file will never exist. Command rm will
always be executed every time you called make clean,
because make assume that the clean file is always
new.

The above target will stop working if a file named
clean exists in the current directory. Because it does
not require dependencies, file clean will be considered
up-to-date, and the command 'rm *.0 temp’ will not
be executed. To resolve this problem, you can
explicitly declare a target

as phony, using special target command .PHONY. For
example :

. PHONY clean

In the makefile above, if we give instruction make
clean from the command-line, the command 'rm *.o
temp’ will always be run, whether or not a file named
clean exists in the current directory.

VARIABLE

To define a variable in a makefile, you can use the
following command:

As a convention, a variable name is given in

uppercase, for example :

SOBJECTSmain.o testis’

To get a varible's value, put the symbol $ before the
variable's name, such as :

${VARINAME). " S L8l i L am e

In makefile, there are two kinds of variables,
recursively expanded variable and simply expanded
variable.

In the recursively expanded variable, make will

continue expanding that variable until it cannot be
expanded anymore, for example :

December 2002

ome/tedi/project .
TOPDIR) /src - .

SRCDIR variable will be expanded, first by expanding
TOPDIR variable. The final result is

P P R

But, recursively expanded variable will not be suitable
for the following command :

CCi= gec =0, i
€C = .$(CC) =02
Using a recursively expanded variable, those

command will go to endless loop. To overcome this
problem, we use a simply expanded variable :

The ":=' symbol creates the variable CC and given its
value "gec -0". The '+=' symbol appends "-O2" to CC's
value.

CLosiNG REMARKS

1 hope this short tutorial will give you enough
knowledge to create makefile. Until then, happy
hacking.

BiBLIOGRAPHY

[11 GNU Make Documentation File, info make.
[2] Kurt Wall, et.al., Linux Programming Unleashed,
2001.

Copyright © 2002, Tedi Heriyanto. Copying license
hitp://www.linuxgazette,com/copying.html

First published in Issue 83 of Linux Gazette, October
2002

This article is re-printed with permission. The originals
can be found at:
http:/ /wwuw.linuxgazette.com/issue83/heriyanto.html

AUUGN Vol.23 ¢ No.4

-B4 -

The Story of Andy's
Computer

Author: Andy Lundell <andy@skizzers.org>

[Editor's note: Some light geek amusement for your
festive-season reading ;-)]

Recently 1 got myself a new computer. I bought it as
components because it was cheaper and I've been
telling people that I assembled it myself. However, 1
can no longer live this lie. I must now reveal ...

First, I used my pretend palm pilot to explain to R2D2
what kind of computer I needed.

Then R2 rallied the troops!

December 2002

Of course, it wasn't all work.
When UPS finally delivered my components I didn't

even bother unpacking them myself.

And there were problems along the way.

AUUGN Vo0l.23 ¢ No.4 - 55 - December 2002

Eventually the big brown UPS truck showed up and
delivered my motherboard with it's shiny new Athlon
processor. Not all were equally impressed.

AUUGN Vo0l.23 ¢ No.4 - 56 - December 2002

I always say that you can never have too much RAM!

Of course, not everyone agrees with me.

AUUGN Vo0l.23 e No.4 -57 - December 2002

2

Finally the motherboard was ready and attention About halfway through the assembly we had some
could be turned to the case itself. unexpected visitors.

Not long after the visitors got bored and wandered off
allowing construction to continue.

AUUGN Vol.23 ¢ No.4 - 58 - December 2002

At last, it was complete!

AUUGN Vol.23 e No.4

This article is re-printed with permission. The originals
can be found at:

http:/ /www.skizzers.org/andy/ lego.html

- 59 - December 2002

10% DISCOUNT
TO AUUG MEMBERS
ON OUR COMPLETE RANGE
OF COMPUTER, BUSINESS
AND GENERAL BOOKS

AMERICAN
BOOK STORE

173 Elizabeth St, Brisbane Queensland 4000
Ph: (07) 3229 4677 Fax: (07) 32212171 QId Country Freecall: 1800 177 395
american_bookstore@compuserve.com

Name: Date:

Address:

Post Code:

Phone Number:

Payment Method: U Cheque U Money Order U Amex U Bankcard
U Diners J Mastercard U Visa

Card Number:

Expiry Date: Signature:

Thisisa: (] Special Order] Mail Order 3 Book on Hold

QUANTITY TITLE PRICE
SUBTOTAL § e
LESS 10% DISCOUNT S
POST& PACK $
TOTAL $ o,

POSTAGE AND HANDLING FEES: 1 BOOK $6.00 2-4 BOOKS $7.00
BOOKS OVER $70.00 WE WILL SEND CERTIFIED - PLEASE ADD ANOTHER $1.50 OR WAIVE
CERTIFIED DELIVERY.

FOR SPECIAL ORDERS, PLEASE ENCLOSE $10.00 PER BOOK AS A DEPOSIT.

AUUG Chapter Meetings and Contact Details

We meet at Internode, Level | Contact sa-exe @auug.org.au
3/132 Grenfell St aka 'the old | details.
AAMI building', at 7 pm on the
second Wednesday of each
month.
BRISBANE Inn on the Park For further information, contact the
507 Coronation Drive QAUUG Executive Committee via email
Toowong (qauug-exec@auug.org.au). The techno-
logically deprived can contact Rick
Stevenson on (07) 5578-8933.
To subscribe to the QAUUG
announcements mailing list, please
send an e-mail message to:
<majordomo@auug.org.au> containing
the message "subscribe qauug <e-mail
address>" in the e-mail body.
CANBERRA Australian National
University
HOBART University of Tasmania
MELBOURNE Various. For updated | The meetings alternate between
information See: Technical presentations in the odd
numbered months and purely social
http://www.vic.auug.org.au/ | occasions in the even mnumbered
auugvic/av_meetings.html months. Some attempt is made to fit
other AUUG activities into the schedule
with minimum disruption.
PERTH The Victoria League
276 Onslow Road
Shenton Park
Meetings start at 6:15 pm The NSW Chapter of AUUG is now holding
SYDNEY Sun Microsystems meetings once a quarter in North Sydney in
Ground Floor rooms generously provided by Sun
. Microsystems.
I?IB])SIEiIrothhsérilie (enr Pacific More igformation here:
wy. yaney http://www.auug.org.au/nswauug/

For up-to-date details on chapters and meetings, including those in all other Australian cities, please check the
AUUG website at http:/ /www.auug.org.au or call the AUUG office on

AUUGN Vol.23 » No.3

1-800-625655.

- 61 -

December 2002

€'ON ° £Z'I0OA NODNNV

_Zg-

2007 I2quI2d3(]

Application / Renewal

-L Use this tax invoice to apply for, or renew, Individual or Student
Membership of AUUG Inc. To apply online or for Institutional
e

Membership please use http://www.auug.org.au/info/

Individual or Student Membership
of AUUG Inc.

This form serves as Tax Invoice.
Please complete and return to:
AUUG Inc, PO Box 7071, BAULKHAM HILLS BC NSW 2153, AUSTRALIA

If paying for your membership with a credit card, this form may be faxed to AUUG Inc.
on+612 8824 9522,

Please do not send purchase orders.
Payment must accompany this form.

Overseas Applicants:
© Please note that all amounts quoted are in Australian Dollars.

e Please send a bank draft drawn on an Australian bank, or credit card
authorisation.

¢ Thereisa $60.00 surcharge for International Air Mail

° If you have any queries, please call AUUG Inc on +61 2 8824 9511 or
freephone 1800 625 655.

Section A:
Personal Details

Surname:

First Name: ...
Title:

Organisation: ...,

Address:

Suburb:

State:

Country:

Phone Private:

E-mail:

Membership Number (if renewing):

Student Member Certification

For those applying for Student Membership, this section is required to be completed by a
member of the academic staff.

[hereby certify that the applicant on this form is a full time student and that the following details are correct:
Name of Student:

Institution:

Student Number: ...

Signed:

Name:
Title
Date Signed:

Section B: Prices

Please tick the box to apply for Membership. Please indicate if International Air Mail is required.

Renew/New* Individual Membership $110.00 (including $10 GST) d
Renew/New* Student Membership $27.50 (including $2.50 GST)]
Surcharge for International Air Mail $60.00 (]

* Delete as appropriate.
GST only applies to payments made from within Australia. Rates valid from 1st October 2002.
Section C: Mailing Lists

AUUG mailing lists are sometimes made available to vendors. Please indicate whether you wish your name
to be included on these lists:

Yes 0 No a

Section D: Payment
Pay by cheque
Cheques to be made payable to AUUG Inc. Payment in Australian Dollars only.
OR Pay by credit card
Please debit my credit card for A$

Bankcard (J
Card Number: Expires:
Name on card: SIGNALUTE: ..vveeeeeeeeeoee

Date Signed:
Section E: Agreement

[agree that this membership will be subject to rules and bylaws of AUUG Inc as in force from time to time,
and this membership will run from the time of Jjoining/renewal until the end of the calendar or financial year
as appropriate.

Signed: ...

Date Signed: oo

This form serves as Tax Invoice. AUUG ABN 15 645 981 718

