
The Journalof AUUG Inc.
Volume 24 ¯ Number 1

March 2003

Features:

Online Backup using SDS
DNSTRACER: Exploring the DNS infrastructure
’Busy Tone’ for CGI Web Applications
GridBus: A toolkit for service-oriented grid computing
(X) Dialog: Talking Shells
Meeting C# and MONO
Mozilla Dissected
Process Tracing using ptrace part 3
Concurrent Programming - Principles and introduction to
processes
Using the Logical Volume Manager
Intrusion Detection with Debian GNU/Linux
Shielded Processors: Guaranteeing sub-millisecond
response in Standard Linux
Fighting against Spam Mail
Making a Multiple-Boot CD
Why Free Software’s Long Run TCO must be lower

News:

Public Notices
AUUG: Corporate Members
NOIE’s Open Source Seminar
Another Perspective of the NOIE event
AUUG Election Procedures
AUUG: Chapter Meetings and Contact Details

8
10
12
15
17
20
23
27

29
32
35

38
44
48
51

7
10
5
6

58
62

Regulars:

President’s. Column
/var/spool/mail/auugn
This Quater’s CD: OpenOffice 1.0.2
AUUGN Book Reviews

3
4
5
7

ISSN 1035-752 Print post approved by Australia Post - PP2391500002

AUUG Membership and General Correspondence
The AUUG Secretary
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153
Telephone: 02 8824 9511
or 1800 625 655 (Toll-Free)
Facsimile: 02 8824 9522
Email: auug@auug0org.au

AUUG Management Committee
Email: a u u.q execL~a u u_q.orq.a u

President
Greg Lehey
PO Box 460
Echunga, SA, 5153
Bus. Tel (08) 8388 8286, Mobile 0418 838 708, Fax (08) 8388 8725
<Greg.Lehey@auug.org.au>

Immediate Past President
David Purdue
Sun Microsystems
Level 6, 476 St Kilda Road
Melbourne, Victoria, 3004
Phone: +61 3 9869 6412, Fax: +61 3 9869 6288
<David.Purdue@auug.org.au>

Vice-president
Malcolm Caldwell
Bus. Tel (08) 8946 6631, Fax (08) 8946 6630
<Malcolm.CaldwellL’~,ntu.edu.au>

Secretary
David Bullock
0402 901 228
<David.Bullock@auug.org.au>

¯

Treasurer
Gordon Hubbard
Custom Technology Australia Pty Ltd
Level 22, 259 George Street, Sydney NSW 2000
Bus Tel: 02 9659 9590, Bus Fax: 02 9659 9510
<Gordon.Hubbard@auug.org.au>

Committee Members
Sarah Bolderoff
FourSticks
Suite 2, 259 Glen Osmond Rd,
Frewville, South Australia, 5065
<Sarah.Bolderoff@auug.org.au>

Adrian Close
Mobile: +61 412 385 201, <adrian@auug.org.au>

Stephen Rothwell
IBM Australia, Linux Technology Center
8 Brisbane Ave, Barton ACT 2600
Business phone: 02 62121169
<Stephen.Rothwell~auu.q.or_q.au>

Andrew Rutherford
lagu Networks, 244 Pirie St
Adelaide, SA, 5000
Bus. Tel (08) 8425 2201, Bus. Fax (08) 8425 2299
<Andrew.Rutherford@auug.org.au>

Mark White
apviva technology partners
P. O. Box 1870, Toowong QLD 4066
Bus Tel 07 3876 8779, Mobile 04 3890 0880
<Mark.White@..auug.org.au>

AUUG Business Manager
Elizabeth Carroll
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153
<busmgr~auug.org.au>

Editorial
Con Zymaris <auu_qn(~.auu_q.or_cl.au>

To those of us ensconced within the technical realms
of our industry, economics, or the ’dismal science’ as
it’s often belittled, nary merits a moment’s thought
during a day filled with debugging shell-scripts and
scanning log files. However, as I’d like to demonstrate
briefly, this is often to our detriment in understanding
a large part of what makes us use the tools we use
and what shapes the jobs we will be pursuing in years
to come.

The IT industry is quickly reaching a maturation
point whereby most of the hardware and most of the
system-software and tool stacks will be commodities.
Some of this works in the Unix community’s favour,
some does not. Here’s the upside: 23 years ago, after
an aborted mission to meet with DRrs Gary Kildall,
(of CP/M fame) IBM rolled up to a meeting with Bill
Gates to discuss the licencing of MS Basic for IBM’s
forthcoming entry into the PC industry. Gates, upon
hearing that IBM was snubbed by DRI, offered a
replacement OS for the new IBM PC. Gates & Allen
then legally purloined Q-DOS (Quick and Dirty
Operating System) from Tim Patterson of Seattle
Computer Products, for the bargain price of $60,000.

With this acquisition, Microsoft was able to build an
OS hegemony wherein Microsoft increasingly provided
the Intellectual Product while the hardware stack was
abstracted to near irrelevancy. It mattered not from
whom you purchased your underlying hardware, as
long as you purchase your OS from Microsoft. This
process of hardware stack commoditisation has been
relentless, and greatly benefits Microsoft as much as
it usurps all hardware vendors belabouring under its
yoke. How does this benefit our community? Simple,
Linux and Open Source Unix platforms and tools are
now doing to Microsoft’s Intellectual Product stack
what it had in turn done to the hardware. Linux et al
are completely commoditising the system software
and tools stacks. With time, this will likely have two
major effects: it may squeeze Microsoft out of the
mainstream OS platforms space (as too expensive)
and provide respite to the hardware fraternity by
allowing them to build more esoteric and specialised
hardware systems, but which can still interoperate
and run the same apps, as they all rely on the same
core Open Source Unix system and tool stacks.

The first effect of economic commoditisation of the
software stack looks like becoming a reality. A recent
IDC report claims that this year, Microsoft will see its
first real reduction in platform market domination,
ever. The second effect is also becoming reality;
numerous, formerly niche, players are now bringing
out capable entries in specific market segments and
winning business due to their adoption of Open
Source Unix system and tool stacks. Two that I’ve
seen introduced in recent months include Apple’s X-
Serve and SGrs Altix3000. Bull market for our sector!

The downside of this incursion of economics?
Decreasing margins for those who choose not to play
in this new reality. Cheers, Con

AUUGN Vol.24 ¯ No. 1 - 1 - March 2003

Contribution
Deadlines for AUUGN
in 2002

Volume 24 ¯ Number 2 -June 2003:

Volume 24 ° Number 3 - September 2003:
15th, 2003

May 154, 2003

August

Volume 24 ¯ Number 4 - December 2003:
15~, 2003

November

AUUG Incorporated gratefully acknowledges
the support of its corporate sponsor:

AUUGN Editorial Committee

The AUUGN Editorial Committee can be reached by sending email to:
auugn@auu~, or~.au

Or to the following address:
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153

Editor:
Con Zymaris

Sub-Editors:
Frank Crawford, Mark White

Contributors:
This issue would not have happened without the transcription and
editorial efforts of Gary R. Schmidt" <grschmidt~acm.or~l>, Rik Harris
<rik@,kawaja.net>, Raymond Smith <zzrasmit@,uqconnect.net>, David
Lloyd <lloy0076@adam.com.au>, Steve Jenkin <sjenkin@,pcu~q.or_q.au>,
Cameron Strom <c.strom@statscout.com>

Public Relations and Marketing:
Elizabeth Carroll

AUUGN Submission Guidelines

Submission guidelines for AUUGN contributions can be obtained from
the AUUG World Wide Web site at:

www.auug.org.au

Alternately, send email to the above correspondence address,
requesting a copy.

AUUGN Back Issues

A variety of back issues of AUUGN are still available. For price and
availability please contact the AUUG Secretariat, or write to:
AUUG Inc
PO Box 7071
Baulkham Hills BC NSW 2153

Conference Proceedings
A limited number of copies of the Conference Proceedings from
previous AUUG Conferences are still available. Contact the AUUG
Secretariat for details.

Mailing Lists

Enquiries regarding the purchase of the AUUGN mailing list should be
directed to the AUUG Secretariat.

Disclaimer

Opinions expressed by the authors and reviewers are not necessarily
those of AUUG Inc., its Journal, or its editorial committee.

Copyright Information

Copyright © 2002 AUUG Inc.

All rights reserved. Portions © by their respective authors, and released
under specified licences.

AUUGN is the journal of AUUG Inc., an organisation with the aim of
promoting knowledge and understanding of Open Systems, including,
but not restricted to, the UNIX© operating system, user interfaces,
graphics, networking, programming and development environments and
related standards.

Copyright without fee is permitted, provided that copies are made
without modification, and are not made or distributed for commercial
advantage.

AUUGN Vo1.24 ° No. 1 - 2 - March 2003

President’s Column
Greg Lehey <Gre.q.Lehev~.auu~.or.cl.au>

The last quarter has certainly been an interesting
time for AUUG: we have managed to greatly increase
our visibility in the press and the community, and for
the first time since I have been with AUUG, we have
noted an increase in memberships. Things are
looking good.

The big story, of course, was our presentation to
NOIE, the National Office of the Information
Economy, on 22 February. I’ll go into more detail
about it elsewhere in this issue, but I’d like to take
this opportunity to thank the "Open Computing in
Government" committee, but particularly Gordon
Hubbard and Con Zymaris, for their untiring effort in
putting together the presentation for this event.

Apart from that, we also put in a submission to the
House of Representatives Joint Committee of Public
Accounts and Audit Inquiry into the Management and
Integrity of Electronic Information in the
Commonwealth. We don’t have an official reply yet,
but informal feedback has been that the submission
has been well received. By the time you read this the
submission should be on the web site. Thanks to
Michael Paddon and his helpers for getting this
submission out in a surprisingly short space of time.

Talking of the web server, the old and somewhat
asthmatic machine has now been upgraded, which
allows us to migrate more functions to it. In
particular, we’re working towards getting the
membership database on the machine, which should
allow you to update your membership details more
easily. We’re still considering the security
implications, but we expect things to happen fairly
soon.

It’s not a coincidence that AUUG is doing well lately.
As I’ve mentioned, we have a number of dedicated
members who are helping to get and keep things
moving. The number is still too small: AUUG will be
as successful as its members make it. Why don’t you
consider becoming more active? There are plenty of
things to do:

The AUUG Board of Directors determines the
direction of the organization. Along with this issue
you should find an election nomination form.
We’re electing four officers (President, Vice-
President, Secretary and Treasurer) and five
"ordinary" board members. We’re planning to
have ’lob descriptions" on the web site by the time
you read this, but in general as an ordinary board
member you can expect to have to spend one day a
quarter at a board meeting somewhere in
Australia, and respond to mail messages on a
regular basis. It’s a lot of fun, and we’d like to see
more applicants for the positions.

In addition, we run a number of other events over
the year. All of these events need people to help
organize them, particularly people local to the
event. The next one for this year is the systems

administration symposium, which will take place
in Melbourne on 9 April. By the time you read
this, there shouldn’t be much left to do for the
systems administration symposium, though
helpers on the day would be welcome. Contact
Enno Davids <enno. davids@metva, com. au> if you’d
like to help.

We will hold the fifth Australian Open Source
Symposium in Brisbane in July. Contact Mark
White <mark.white@auug.org.au> if you’d like to
help with this.

We had also planned a security symposium in
Adelaide for May, but unfortunately, we had to
postpone it: we discovered that it clashed with the
AusCERT symposium in the same week. In view of
that, we’ve decided to postpone it to November.
It’s not clear that the people who were originally
available at this time will still be able to do it in
November, so we’re looking for a number of people
to help, including potentially the progralnme chair.
Contact me ff you’re interested in helping here.

Membership figures may be recovering, but the
decline in AUUG chapter activity in recent years
has not yet been reversed. The ACT and SA
chapters have shown that this isn’t necessary, and
they’re getting a lot done. The SA chapter held an
Installfest in December, and the ACT chapter has
held two seminars in this time, most recently the
"Open Source in Government" symposium on 1
March. On the other hand, some other chapters
are very quiet. They need people to get things
moving again. If you know your local chapter
committee, talk to them and offer to help. If you
don’t know them, contact Liz Carroll
<busmgr@auug.org.au> or myseK and we’ll do what
we can to help.

The last issue of AUUGN included a call for
papers for AUUG 2003, our annual conference.
You can also find it at http://www.auuR.orR.au/
events/2003/auug2003/cfp.html. The success of
the conference depends greatly on the quality of
the presentations. If you have a good idea for a
paper, please send it to the programme committee
<auug2OO3prog@auug.org.au>. If you’re not sure,
discuss it with the committee.

Finally, this magazine needs contributors. Con
Zymaris has done a fine job of finding interesting
content, but we could do with more contributions
from members. Do you have a good article in you,
or do you think you might, or can you help putting
the magazine together? If so, please contact Con
<conz@auug.org.au> and discuss it with him.

AUUGN Vol.24 ¯ No. 1 - 3 - March 2003

/var/spool/mail/auugn
Editor: Con Zymaris <auugn@auug.org.au>

Where do you go for your Certificate Authority (SSL)
requirements? I’ve found this place, which offers free
certs: http: //www. cacert, or~/ AUUG members
discussed others on the mailing list. Remember, to
join in on such discussions, tall to the mailmar~
http: //www. auu~. or~. au/mailman/listinfo/talk

From: Joel Sing <joel@ionix.com.au>
Subject: [Talk] SSL Certificates

Hi All,

Just a quick query - we’re looking at acquiring an SSL
certificate for use with a client’s website and although
Thawte and Verisign are ’reputable’, they are *way*
over priced for our client’s needs.

InstantSSL (http://www.instantssl.com/), a spin off
of Comodo Networks and QualitySSL
(http://www.qualityssl.com/) both seem to be far
better priced (starting at $49USD per year for a
certificate) - anyone had experience with certificates
from these companies? Any other companies that you
would suggest checking out?

Thanks,

Joel

From: Conrad Parker <conrad@vergenet.net>
Subject: Re: [Talk] SSL Certificates

On Wed, Feb 12, 2003 at 04:19:42PM +1100, Ben
Elliston wrote:
> I’ve often wondered why there isn’t a volunteer-run
> grass roots SSL certificate authority. While not
> completely without flaws, it could work if there
> was a wide enough group of trustworthy individuals
> to perform various levels of identity checking. The
> certificate for the
> certificate authority could be included in major
> open source browsers
> like Mozilla and Konqueror.

ok, how would an organisation (like AUUG, Debian, or
a local LUG) go about implementing this? ie.
assuming we know how to issue certs, and we know
how to sign GPG keys, what levels of identity
checking would be required, how would the CA be
managed, etc.?

ff multiple such groups did this, could they form a
web of trust between them in order to minimise the
number of central/top-level CAs that browsers would
be required to know?

Conrad.

From: Ben Elliston <ble@air.net.au>
Subject: Re: [Talk] SSL Certificates

On Thu, Feb 13, 2003 at 02:07:14PM +1030, Greg
’groggy’ Lehey wrote:

> FWIW, this is one of the membership benefits that
> we have been talking about in the past. I think the
> board is agreed that this is a good idea, but we
> haven’t found anybody to address the details,
> notably the trust issues you mention. There will be
> a board meeting next Saturday (22 February). If
> some volunteer could come up with a concrete
> proposal by then, we could talk about implementing
> it pretty quicMy.

A CA is not ideally useful unless their cert is installed
in browsers by default. Sure, we could send the CA
cert to AUUG members on a CD by postal mail
(probably good enough, IMHO), but this would only be
limited to trusting AUUG and other AUUG members.

The problem I see is that open source browser
projects are only going to be willing to include a
handful of CA certs and if AUUG’s only serves a
couple of hundred users in the antipodes, there will
be strong reluctance to include it.

Cheers, Ben

From: Duane <duane@sydneywireless.com>
Subject: Re: [Talk] SSL Certificates

Hello Andrew,

Currently I haven’t tried to get the root cert included
into mozilla, as others have tried and were asked for
trading histories etc etc etc

I’m still trying to get time to finish the site off, with
the users verifying users thing happening.., it’s been
mentioned on slashdot numerous times and I’ve lost
count of copies of the root cert downloaded in excess
of 30,000 times last time I checked, and so far there
has been almost 250 certificates issued to date...

I created the site because I was sick of paying for
them, even for personal sites, and with blunders from
verisign and verisign jacking the price of thawte certs,
I sat down and replicated their system more or less as
much as I could... Plans for faxed verification in the
pipeline, but there would still be some sort of free
certificates issued based on email verification (which
is what some of the commercial certification issuers
only check, apart from credit card payments)

__

Best regards,

mailto:duane@sydneywireless, com
Duane

AUUGN Vol.24 ¯ No. 1 - 4 - March 2003

This quarter’s CD-R
Greg Lehey <Greq.Lehev~.auu~.org.au>

This quarter your AUUGN comes with OpenOffice
(http: //www. op enoffice, org/) version 1.0.2.
OpenOffice is an open source Microsoft-like office
suite derived from StarOffice. As you can see from
the label, it includes binaries for FreeBSD, Linux,
MacOS X and Solaris, and also for Microsoft. We
don’t intend to continue distributing binaries for
Microsoft--after all, we are a UNIX organization--but
this time we made an exception so that we could
distribute the same CD-Rs at the NOIE seminar
described elsewhere in this AUUGN. In that
connection, I’d like to quote from the "’Open Source"
column in The Australian of 25 February 2003,
describing the NOIE seminar:

Despite the lack of a Microsofl-versus-Linux
showdown, however, Open Source (no relation)
also heard that "’certain people" were not
impressed with copies of OpenOffice being
handed out to everyone who attended.

I have it on good authority that "’certain people"
included at least Steve Vamos, Managing Director of
Microsoft Pty Ltd.

Installing OpenOffice is relatively simple. There are
briefing structions on the CD itself, and more
detailed instructions in the top-level directory. Bring
much space: it emulates Microsoft in its appetite for
disk and memory as well.

NOIE’s Open Source
Seminar, February 2003
Greg Lehey <Gre_c/oLehev~.auu.q. or.~/.au>

On 18 February 2003, the National Office for the
Information Economy held a seminar for the ClOs
and CTOs of Government agencies to discuss the
issues involved with the deployment of open source
technology, notably Linux, in the government. As
Australia’s largest organization representing UNIX
and open source software, AUUG was invited to
present. Gordon Hubbard and Con Zymaris
presented some slides, which you can find at
http: / /www.auug.org.au/ocg/noie-feb2OO3.pdf, and
I participated in the panel discussion.

There’s been a lot of press coverage of this event; see
the links at the end of the article. This article reflects
my own personal view, little of which corresponds
with the press releases.

First up was Mary Ann Fisher of IBM, who presented
a paper which looked so much like ours that you
could almost have thought that we had collaborated.
In fact, it was no longer as similar as our first
attempts. I have to concede to Con and Gordon
that my objections to many of the slides weren’t as
relevant as I thought, since Mary Ann presented
much of the material that I had asked to have
removed. Bottom line was "’open source is good

because it helps to implement open standards",
pretty much the same as what we said later.

Next came Maggie Wilderotter of Microsoft, who put
up a good presentation saying not very much of
substance except that Microsoft was committed to
open standards.

Next were Gordon and Con, who put up our position
pretty well. It’s interesting to see how people see
things differently. Con used Gordon’s laptop to
demonstrate the "’desktop" environment, and in the
process had some minor difficulties. While he did it, I
looked at the attendees and decided that there wasn’t
enough interest to repeat this part of the talk next
time. Later I was talking to Hugh Blemings, and he
volunteered his appreciation for the demonstration
and the way everybody watched with spellbound
interest. Obviously my aversion to "’desktops" is
showing.

During lunch, spoke to Maggie Wilderotter and Steve
Vamos, the latter Managing Director of Microsoft
Australia. I commended them on their intention to
pursue open standards (which we had defined in our
talk as being maintained by industry consensus and
available from more than one vendor), and asked
when they proposed to start. Steve said "’Ah, but we
have started. Do you know about .NET?.". sigh. I told
him that we weren’t too happy with .NET (in fact, it
was in our presentation as an example of a non-
standard system, but Steve had apparently not
noticed that). At this point, Maggie disappeared
and I carried on talking to Steve about it for a while.
I was left with the distinct impression that
Microsoft don’t completely understand why we don’t
consider .NET to be an open standard. Still,
they’re interested in putting their point of view, so we
may ask them to do so at the AUUG 2003 conference.

After lunch, a presentation by Peter Gigliotti of the
Bureau of Meteorology, also an AUUG member, about
what they’re doing with Open Source. It’s interesting,
but not encouraging: much of what they’re doing
has been replacing proprietary UNIX, so the open
standards issue is not touched, and they’re still
planning to migrate to Microsoft, though it’s possible
that might change.

Robin Simpson from Gartner came on next with a
lively discussion full of numbers and probabilities,
but without hard copies of the slides. One of the
most interesting things he said was that, with 0.8
probability, the GPL will prove to be too restrictive by
the end of 2004. I’ll be interested to see ff he’s right
there. He made some other more unlikely claims,
including that forked projects can rejoin at a later
date as long as license issues don’t intervene. That
sounds very unlikely to me. Also, he claims that there
isn’t enough information about TCO over a five year
period to be certain that open source software would
be cheaper than Microsoft. That sounds rather
unlikely as well.

Then another talk about a government project, this
time by Tony Ablong of the Department of Veteran’s
Affairs, describing how they propose to replace their

AUUGN Vol.24 ¯ No. 1 - 5 - March 2003

current IBM infrastructure with a zSeries 8000
running Linux under VM in LPARs. It’s hasn’t been
implemented yet, unfortunately, which rather
detracted from the message.

Then the panel discussion, in which I took part. This
was also the only part where the press was allowed
in. The questions were interesting in the sense that
they showed where the participants were coming
from, and also because they came mainly from non-
Government people. The summary, which was also
printed in "’The Australian", was the uncertainty
about TCO, quite a shame really. I don’t see much
change happening as a result of this seminar; if
there’s more uptake of open source, probably IBM will
be the real motivator.

Another Perspective on the
NOIE’s Event
Jonathon Coombes <ion~.cvbersite.com.au>

The day started with most of the guests in
attendance. The NOIE people were very informed on
what was happening on the day and managed the
proceedings very well. Talking with some NOIE
members after the day they also showed great interest
in pursuing further similar events.

The first speaker was from IBM (Mary Ann Fisher),
and she spoke well and directed regarding IBM and
there approach to open source. It worked in well with
the AUUG presentation as Mary Ann’s approach was
more on the managerial side than the advocacy or
technical side.

Next came Microsoft’s speaker (Maggie Wilderotter),
flown out from the US for this event. Many people
expressed dis-belief initially, and then amazement at
the approach Maggie took with her talk. Unlike
previous seminars from Microsoft, Maggie had a very
balanced approach and let out much of the marketing
and promotion that is often associated with similar
talks. Points presented included Microsoft’s support
for access to code, for open protocols and data format
standards. Much of what Maggie presented was done
in a way that presented Microsoft as supporting the
open source community. The main area of
disagreement was that of intellectual property and
licensing restrictions. Maggie pushed the Shared
Source Initiative as a viable alternative to the GPL
and proposed that some secrecy was necessary for
commercial benefit. The government security program
was to allow the proposed government full access to
the code, protocols and standards, although this is
yet to qualified by other Microsoft team members.

I had the fortune to sit with some people from the
government solicitor’s office during the seminar, and
the lack of legal responsibilities or quirks were a
concern. I had the opportunity to talk with Maggie
and questioned the liability associated with the
Government Shared source initiative. Her response
was that the code is kept very secure and that clauses
were in the contract to account for liability. However,
the extent of the liability was greatly varied depending

upon how the source code was leaked, who was
responsible etc. Maggie referred the question to Steve
Vamos to follow up.

The AUUG presentation was well formulated, but had
quite a lot of information to present. The option of the
demonstration was good, but did really suite the
situation as it turned out. The option was made for
people to test-run the software after the talks. The
actual content of the talk was concise and directly to
the point. The aim of AUUG was to present the
benefits of the open source community both in
support and association, but also in business
economics and management. Overall a well presented
talk.

In the afternoon, following the light lunch, a number
of case studies were presented as a practical
representation of what Linux/OSS could do for the
government. Although this was good in theory,
unfortunately, it did not really live up to its potential.
The first speaker was from the Bureau of Meteorology
who gave a good rundown on what they used Linux
for at the bureau, and how it had helped with one
particular aspect of their work. The other case study
was from the Dept of VA, which was based more
around what benefits they expected to get from Linux,
as they were still very much in the planning stage of
implementing Linux. Both talks were more along
management issues than benefits of open source,
either technically or monetary.

The last main presenter of the day was Robin
Simpson from the Gartner group. This speaker was
presenting Linux/OSS from a market research
prospective and it was obvious in his speech. Any
major point was made with an associated probability.
Generally though, his points were good for open
source, although maybe more long term than the
community hopes. I questioned Robin on some points
he made regarding OpenOffice.org including its lack
of support for templates, incompatibility with MS
Office and lack of options. After talking with Robin, it
turns out he was still in the process of testing the
package, so hopefully we can see a better response
after the testing is complete.

The final event of the day was with the panel. The
panel consisted of all the speakers with Greg Lehey
standing in for AUUG instead of Gordon or Con. The
panel was of excellent make, but unfortunately the
questions given them were not. Due to time
restrictions there were only a few questions asked,
and these were more around marketing and planning
approaches than the open source benefit to
government. I would have preferred to see the panel
given more time, but unfortunately it was not to be
SO,

All in all, a great day and definitely of benefit to all
people present. The only disadvantage was the lack of
time as not all possible areas were covered, and some
could have been covered better. Hopefully this
seminar will be the start of many similar events to
come that will help to raise the awareness of open
source and what benefit it has for government and
business alike.

AUUGN Vol.24 ¯ No. 1 - 6 - March 2003

Public Notices
Upcoming Conferences & Events

AUUG System Administration Symposium
April 9, 2003
Melbourne

USEI~IIX ’03
USENIX Annual Technical Conference
June 9-14
San Antonio, TX

AUUG Australian Open Source Symposium
July 2003
Brisbane

AUUG 2003
September 2003
Sydney

DA TA SA FE
Networked backup archlving device

480GB Unit: $P.O.A (inclusive of GST; unlimited users, unlimited servers)
Can provide 1-3 months of online daily-backups for a large organisation

Web: http:l/www.cyber.com.aulcyber/producfJdatasafel
Mail: info@cyber.com.au

AUUGN Bookreviews
Section Editor: Mark White <mark.white~.auu~.or_cl.au>

TUNING AND CUSTOMIZING A L~NUX SYSTEM
by Daniel L. Morril. Apress 2002 (ISBN 1-893115-27-
5)

Reviewed by Michael Still <mikal@stillhq.com>

I wasn’t expecting much when I received my copy of
Tuning and Customizing a Linux System to review. I
had read the sole review on amazon.com, and it was
very short of being complimentary. Having now
actually looked at the book, I think that reviewer has
completely misinterpreted the intention of the book.
Part of the problem is the title of the book. Many
people I suspect will read the title and think "Ah ha! A
book to help me configure product X to be able to
handle more load / users / gronks per hour". This
isn’t what Tuning and Customizing a Linux System is
about at all -- the book is aimed at introductory to
intermediate Linux users who are interested in
exploring other distributions, and perhaps
understanding a little more about how the operating
system functions.

It is also worth noting that this is the first book of it’s
type I have seen where the author has taken the time
to devote the first 25 pages of the book to attempting
to explain the history of Linux, and the GNU
philosophy. It’s a reasonable attempt as well.

The book then goes on to talk about three
distributions in detail: Red Hat Linux 7.3; Slackware
Linux 8.0; and Debian GNU/Linux 3.0. The book
discusses issues which apply to all Linux users, such
as the kernel numbering conventions, the File system
Hierarchy Standard (see
http://www.pathname.com/fhs/ for more details),
and the Linux Standards Base
(http: //www.linuxbase. org/).

As a long time Red Hat user, the chapter on Red Hat
7.3 contains very few surprises, and didn’t contain
any glaring inaccuracies which would cause me to
wince. It also covered all the things which I would
expect a new user to be told -- for instance how Red
Hat goes about deciding what makes it into a given
release, how to find packages, and how to install
packages once you have found them. It also covers
some basic configuration tasks, such as adding your
own run level scripts. If you are a Red Hat power
user, then there is nothing new to you here. You
should also note that the book does assume that
you’ve already managed to install the system, and
don’t need to be told how to do things like change
directory at a shell prompt.

The book also covers similar details for Slackware 8.0,
and Debian 3.0 Beta (the latest version which was
available at the time of poublication). Again, ff your a
power user, then these sections are of limited use, but
might serve as a good reference. If your a newer user
however, they serve as a very useful introduction to
your chosen distribution. Overall, Daniel L. Morril
devotes 140 pages to discussions of these three

AUUGN Vol.24 ¯ No. 1 - 7 - March 2003

distributions.

Tuning and Customizing a Linux System then goes on
to discuss how to install other software on your Linux
system. It discusses the pros and cons of installing
source downloaded from the Internet versus installing
a package from your distribution vendor. It also
discusses how to build source packages of various
forms, as well. as how to use autoconf and Makefiles.
It even goes as far as describing briefly how to roll
your own packages for your chosen distribution using
downloaded source.

The next hundred or so pages of the book cover how
to install several software packages: OpenSSH,
Pluggable Authentication Modules, the Dante SOCKS
library, Apache, CVS, and Sun’s Java Development
Kit.

Daniel L. Morril then finishes up Tuning and
Customizing a Linux System with three case studies:
how to build a desktop Linux machine; how to build a
software development machine (although it doesn’t
match my personal beliefs about what a development
machine should look like); and how to build a
network firewalling machine. All of these case studies
are based on Red Hat 7.3, and are little more than
lists of what software you should install if you want to
play MPEG movies, surf the Internet, or a variety of
other common tasks. As an example, two pages are
devoted to instructions on what software to install to
be able to play those MPEG movies. There is also
discussion of required hardware for the named task --
for example installing network cards in your firewall
machine. The reality is that a user is probably better
off consulting a HOWTO for this sort of information.

In summary, this is the wrong book to go out and buy
ff you’re expecting to be told how to install a Linux
system from scratch. It is also the wrong book to buy
if you’re a power user looking for high end
configuration and optimization tips. On the other
hand, ffyou’re new to Linux, and want some hints on
how to actually use your new Linux machine once
you have managed to install it, then this book is for
you. It’s also an acceptable reference for what
packages to install to perform common tasks.

Online backup using
SDS
Author: Joseph Gan <joseph._qan~abs._qov.au>

When backing up in Solaris, the file system must be
inactive; otherwise, the output may be inconsistent. A
file system is inactive when it is unmounted or it is
write locked by OS. Although fssnap utility in Solaris
can do online backup, it will fail if the file system
could not be write locked.

SDS on the other hand can be used as a "bridge" to
transfer the data of a file system across to another
partition on the fly. Then the data can be backed up

at anytime.

Using a file system "test" as an example:

1. Creating a metadevice named alOl on the test file
system when it is mounted.

d~O0 with the subm~or d~01 created above,

3. Creating another metadevice d102 on the new
location c0t2dls7. The size of the new partition
should be the same as dl01.

4. Adding the metadevice d102 as the second
submirror to dl00, resync would automatically take
place.

5. After the resync has completed successfully, you
should get the following two way mirrors:

AUUGN Vol.24 ¯ No. 1 - 8 - March 2003

silicon
6. Now you have a file system ready to be backed up
at any time.

7. You can schedule to backup the file system
whenever you decide. Before you start though, you
have to detach the second metadevice d102 or bring it
offline:

8. Remember you can only backup the new partition
c0t2dls7 which includes all the data at the point of
detach.

9. After backup has done, you could clean up all the
metadevices, or you could leave them for using next
time. Before the next backup, all you have to do is

Then wait until resyc has done before starting
backup. The difference between the two is the first
one will take longer to sync than the second one. But
the second one was read only until you bring it
online.

10. For file systems need to be backed up consistent
at the same point, all you have to do is detach all the
second metadevics at the same time. Then they can
be backed up one by one.

info@linuxjewellery.com
ry.com

Latest Thinking: Open
Source Insight
Author: AUUGN Editor <auu~qn~auu_q.or_q.au>

I recently came across an interesting publication
which I thought may be of interest obliquely to
AUUGN’s traditional technical audience, but possibly
of real interest to management and policy staffers
within your organisations.

Open Source Insight is published by an outfit called
Latest Thinking, coming out of Sydney. It’s a weekly
newsletter which discusses in full detail many of the
issues which relate to the adoption of open source
and Unix-related technologies by business and
government.

You can obtain a free trial of the newsletter from here:
http: //www.latestthinkinN. com/ or by emailing:
info@latestthinking, com

AUUGN Vol.24 ¯ No. 1 - 9 - March 2003

AUUG Corporate
Members
as at 1st October 2002

¯ ac3
¯ Accenture Australia Ltd
¯ ADFA
¯ ANSTO
¯ ANU
¯ Australian Centre for Remote Sensing
¯ Australian Bureau of Statistics
¯ Australian Defence Force Academy
¯ Australian Taxation Office
¯ Bradken
¯ British Aerospace Australia
¯ Bureau of Meteorology
¯ C.I.S.R.A.
¯ Cape Grim B.A.P.S
¯ Centrelink
¯ CITEC
¯ Corinthian Industries (Holdings) Pty Ltd
¯ Cray Australia
¯ CSC Australia Pty Ltd
¯ CSIRO Manufacturing Science and Technology
¯ Curtin University of Technology
¯ Cybersource Pty Ltd
¯ Deakin University
¯ Department of Land & Water Conservation
¯ Department of Premier & Cabinet
¯ Energex
¯ Everything Linux & Linux Help
¯ Fulcrum Consulting Group
¯ IBM
¯ ING
¯ Land and Property Information, NSW
¯ LPINSW
¯ Macquarie University
¯ Multibase WebAustralis Pty Ltd
¯ Namadgi Systems Pty Ltd
¯ National Australia Bank
¯ National Library of Australia
¯ NSW Public Works & Services, Information

Services
¯ Peter Harding & Associates Pty Ltd
¯ Rinbina Pty Ltd
¯ Security Marling Services Pty Ltd
¯ St John of God Health Care Inc
¯ St Vincent’s Private Hospital
¯ Sun Microsystems Australia
¯ The University of Western Australia
¯ Thiess Pty Ltd
¯ Tower Technology Pty Ltd
¯ Uniq Advances Pty Ltd
¯ UniTAB Limited
¯ University of Melbourne
¯ University of New England
¯ University of New South Wales
¯ University of New South Wales, Comp. Sci & Eng.
¯ University of Sydney
¯ University of Technology, Sydney
¯ Victoria University of Technology
¯ Workcover Queensland

DNSTRACER -
Exploring the DNS
infrastructure
Author: Edwin Groothuis <edwin@.mavetiu.or_q>

QUICK DNS INTRO

The Domain Name Server system is a globally
replicated and distributed database which primary
translate hostnames (www.auug.org.au) into IP
addresses (150.101.248.57), route mail
(@auug.org.au) to mail-hubs (www.auug.org.au) and
converts IP addresses (66.216.68.159) into hostnames
(www.auug.org.au). Without it, we would have to use
remember the IP addresses of the servers we want to
connect to (telnet 131.155.132.36 4000) and it would
be very hard to send emafls as easy as it goes today
(mcvax!moskvax!kremvax!chernenko).

Normally you don’t have to worry about DNS, you just
get the settings for the nameserver you have to use
via PPP when dialing into an ISP or via DHCP when
connecting to a LAN at a company. They make sure
that their nameservers know where to get the rest of
their data, which are initially the root-nameservers.

The root-nameservers are the 13 (13 logical, but
physical more) most important nameservers on the
Internet. They know where the rest of the DNS servers
can be found.

Furthermore you have master and slave servers for a
domain: the data for a domain is only manually
changed at the master, the slaves transfer the data
via the internal DNS mechanics.

QUICK DNS EXAMPLE

If you’re requesting the IP address of
www.auug.org.au your nameserver will ask one of the
root-servers for it. It will reply that it doesn’t know it,
but that the answer can be found at the DNS servers
for .au and supplies a list with them and their IP
addresses (The list is known as Authority Data, the IP
addresses are known as Additional Data). Your server
will ask the question again at one of the servers
responsible for .au and get a similar answer: it
doesn’t know it, but it hands you a list of servers for
.org.au and their IP addresses. This goes on until
you’re at the servers which are responsible for
auug.org.au, in which case you get the IP address of
www.auug.org.au (Answer Data).

Your server now caches the data for .au, .org.au,
.auug.org.au and www.auug.org.au for a short time
(the Time To Live) so that following requests for that
data doesn’t need to explore so much, it just can do a
quick lookup of in it’s own cache and returns the
answer.

SPOF?

AUUGN Vol.24 ¯ No. 1 - 10 - March 2003

The DNS system is not really a SPOF, it is designed as
a globally replicated and distributed database which
means that if you can’t reach one of the servers, you
can try it at a different one. As there are 13 root-
servers which know where to find the rest, there are 6
servers for the .au domain (6 logical with a total of at
least 8 IP addresses), there are 9 servers for the
.org.au domain and four servers for the auug.org.au
domain. The location of the servers on the Internet
and replication is used to overcome connectivity
problems. Regarding the network, there isn’t much
which can go wrong. Regarding the administrative
side of it, that’s where things go wrong.

APOF!

When you register a new domain, you are asked what
the nameservers are and if necessary also the IP
addresses. Furthermore, these nameservers have to
be configured to answer requests for that new domain
and to exchange information between them. And
actually data has to be served on that domain. Five
places for things to go wrong!

UNKNOWN NAMESERVERS

At the time of writing, one of the domains of a
nameserver for .org.au has expired (for people
interested: optus.net has expired at December 16th
2002 and after half a month it still hasn’t been re-
registered). That means that the IP address of the
nameserver audns01.syd.optus.net can’t be found
and that this server will never be queried (after all, if
you don’t know an IP address you can’t connect to it)

WRONG IP ADDRESSES

Changing the IP address of a nameserver is a pain
and often it will be forgotten on one or two machines
(Remember that switch in the cupboard which got
installed a long time ago? Yes, that one too has the IP
address of the DNS server hardcoded). Or that the
registrar makes it impossible to change the IP address
of the nameserver via their website because of all kind
of internal checks.

LAMr A~D STEALTH SERVERS

Lame servers are servers which are mentioned in the
NS records for a domain but are not authoritative for
that domain. This can happen because of a typo in
the IP address or a change which has never been fully
finished (new server added while it wasn’t ready or old
server data removed but never from the NS records).

Stealth servers are servers which are not mentioned
in the NS records but are authoritative for that
domains. For example servers which have been
removed from the NS records but the configuration of
the server never updated.

OLD DATA ON A SERVER

When data is changed on the master server, the
slaves will have to transfer it from there. But

sometimes they can’t because the master has
disabled it for some reason. In that case the data on
the slaves will get more and more obsolete.

WRONG DATA ON A SERVER

DNS server software has strange habits and one of
them is often that if you end a name without a dot, it
will add the current domainname to it. So if you see a
zonefile with www.auug.org.au.auug.org.au, you
know that they forgot to end it with a dot at the end.

Now WHAT IS DNSTRACER?

Remember the traceroute(8) utility? It shows the path
an IP packet takes when you send it to its destination
IP address. Remember ntptrace(8)? It shows the path
of NTP servers which your NTP client is syncing on.
Dnstracer is something similar, it shows you where a
DNS server will go for its information. So ff you want
to know the path to www.auug.org.au:

AUUGN Vol.24 ¯ No. 1 - 11 - March 2003

Just like expected: the server goes to a root-server,
the servers for the .au domain, the servers for the
.org.au domain and the servers of the .auug.org.au
domains. The answers received are printed at the end
and they all seem to agree on it.

Sometimes it will go wrong, for example when a server
is unreachable or when a lame server is detected:

The difference between "Got answer" and "Got
authoritative answer" is that the first one can be a
cached answer, while the second one is one from a
server which admits that its responsible for that
domain.

WHAT CAN YOU SEE WITH DNSTRACER?

Dnstracer shows you the path from the root DNS
servers to the DNS servers responsible for a domain.
It shows ff there are unreachable servers, lame
servers but doesn’t show servers which aren’t
configured for that domain. It will query for MX
records, SOA records, NS records, normal A/AAAA
and PTR records (and other ones). And at the end, it
will print the results received. But it will not interpret
the results for you.

MoP~ INFORMATION

See http://www.mavetju, org/unix/dnstracer.php for
more information about the dnstracer utility and how
to obtain it. For FreeBSD and OpenBSD, it is in the
ports-collection. For Linux, there is an RPM for it.
Otherwise, just grab the tarball and compile it.

’Busy Tone’ for CGI
Web Applications
Author: Steve Jenkin <s/enkin~,canb.auuq.or~.au>

This was implemented for the Australian
Government’s first large on-line transaction -
Business Number (ABN) registrations. The site served
20 times its normal load for two days and maintained
reasonable service levels for connected users.

Techniques for handling caching or overload of static
pages are well understood. This is a method for
handling CGI based applications.

Busy TONE

The telepone system answers the question, "How do
you economically handle extraordinarily high traffic
loads, such as Christmas day"? With a ’busy tone’ -
"come back later, we’re busy just now".

These traffic peaks are characterised as
unpredictable, unrestrained demand of short
duration, with no tolerance for increased pricing. It is
uneconomic for the service provider to install and
maintain sufficient permanent capacity for a 10- or
20-fold increase over normal loads. Callers/users will
trade overall cost for busy time limitations, preferably
with predictable delays.

This concept is also called "Load Shedding".
The prerequisites are:-

Extreme peaks in demand that can’t be serviced
economically,

¯ user tolerance of limited busy time access,
¯ a usability requirement of reasonable service levels

once connected,
¯ precise and repeatable identification of individual

sessions, allowing user anonymity,
¯ real-time measurement of the primary service level

characteristic, and
¯ the ability for a real-time load shedding response

to system saturation.

ON-LINE ABN REGISTRATION SYSTEM

The on-line ABN registration system
(https://trans.business.gov.au) was deployed in
November 1999. It was expected to serve 5% of a
total 2M registrations. Businesses wishing to claim
GST (Goods & Services Tax) rebates after 1st July,
2000, had to apply for an ABN 2-4 weeks in advance
to allow for Tax Office checks and processing. The
advertised deadline, our "Christmas Day", was 31
May 2000. Figures from Canada suggested 60% of
registrations would occur in the last 3 weeks.

The application consisted of ~20 HTML forms backed
by a CGI script interfacing to an ORACLE database.
Completed applications were transferred by verified e-
mail to the Tax Office system. Security regulations
required the database system be isolated from the
web servers by a firewall. A ’layer 4’ (L4) load
balancer was used to share the load across multiple

AUUGN Vol.24 ¯ No. 1 - 12 - March 2003

web servers, and to provide increased manageability
and availability. All connections were SSL (https)
hence sessions could be identified by the IA switch
and web server without using cookies - a key part of
the privacy policy.

The CGI application could not see this information
and relied on HTTP’s username/password facility to
identify sessions and allow later ’resumption’ of
sessions.

There was a single ’entry’ page where registrants were
allocated a unique session identifier and requested for
a password. This page was used as the ’gate’, either
allowing users access to the registration forms or
delivering a ’busy, please try later’ page.

The site accepted 350,000 ABN applications of 3.3M
total by 1 June 200. Near 50% of sessions lead to
submitted applications. A factor in this was an
application time limit of 36 hours to ’resume’ a held
application.

Registrations grew from a few hundred a day at
launch, to 21,000 on 31st May, 2000. ’Steady state’
traffic became ~650 a day, 4000 a week - probably
half current new registrations. Traffic doubled about
every 3 weeks, excepting the six week school holiday
period over Christmas.

There were consistent daffy and weekly traffic
patterns - two roughly equal peaks during the day,
AM and PM, and an evening peak up to 75% of the
days’. Traffic taffed off quickly after midnight East
Coast time, resuming about 6 AM, and getting busy
about 9 AM. The evening peak was consistently
missing on Friday nights, whilst it took until midday
Saturday for the traffic to rise. Friday is still ’party
night’ in Australia. The Sunday night peak lasted
later than any other day - till past midnight.
Weekend traffic was about 60% normal. Mondays
were always ’slow days’, whilst the busiest day moved
from Tuesday to Thursday.

The web and database servers were all multi-CPU
systems, capable of being quickly upgraded. There
was sufficient system memory to avoid any paging,
except during database backups. The database
server used a hardware disk array giving about a 10
fold performance increase on most disk operations
over the other systems. There was a six week lead
time in purchasing additional CPU’s. For the last of
the ’crunch’ time, the hardware supplier generously
loaned some disks and a CPU board, giving 2 and 4
CPU’s on the two web servers and 6 CPU’s on the
database. Commissioning additional web servers was
investigated, but abandoned due to the relatively low
performance of available hardware and the high cost
and delay in building and configuring ’hardened’
systems.

ORACLE was hired to perform a comprehensive
performance analysis of the database and to tune it.
Another contractor was employed to analyse the
network traffic, identify bottlenecks, and report daffy
on system throughput, response to load, and estimate
system throughput limits. A number of significant

application improvements were made as a result.

Some simple light-weight system monitoring, via
pages of graphs available from the web server, was
set-up with the public domain software, RRD (Round
Robin Database). This became the most powerful and
useful tool for monitoring system health and
performance. It was crucial in explaining
performance to mangers and developers alike. It was
also crucial in tuning and monitoring the ’busy tone’
software when deployed.
A key system overhead, CPU time used by the web
server processing the encrypted SSL connections was
not avaffable. Replaying and timing live traffic
captured after decryption to establish a comparison
was not possible at the time

ABN "BusY TONE" IMPLE1VfENTATION

At the end of February, well before the final deadline
of 31st May, the system hit saturation. At the time
there was no IA switch, a single 2 CPU web server,
and 2 CPU’s in the database server. The peak system
load had been 70% the previous week, allowing about
2 weeks before saturation. A number of system
activities were scheduled to meet this projected
demand in time.

The Tax Office launched its advertising campaign for
the site over the week" end, and traffic roughly
doubled on the Monday. As queuing theory models,
when a resource comes near saturation, service times
explode. Response times that had sat around 2
seconds for months went out beyond 20 seconds, and
a flood of complaints came down the hotline. All
users were unable to get response from the system
with the TCP timeouts. Although the systems were
fiat out, no useful work was done.
This provided the impetus to commission the ’busy
tone’ subsystem and for management approve roughly
doubling CPU capacity. The overload was addressed
in the short term by bringing forward a scheduled
upgrade to the script interpreter used.

The ’gate’ page CGI acted in concert with a monitoring
program that set a busy flag in the database.
Additionally, to cater for faffure of the monitor
program, the ’gate’ page CGI also counted, using the
database, the number of applications started. When
this exceeded a tuneable threshold per period, the
busy page was served.

Because there was a single database and multiple
web servers, the monitor program was only run on a
single web server, that judged to be the busiest. The
IA switch was used to apportion sessions according
to the CPU capacity of the frontends.

The performance target was a per page ’response time’
of 5 seconds. Only the page start time was available
from the web server logs, not the elapsed time per
page. Also, there was no way to separate the server
response time (internal) from the network (external)
delays. Web browser delays (rendering pages) were
also ignored, being completely client dependent and
unmeasurable.

AUUGN Vol.24 ¯ No. 1 13 - March 2003

The response time monitor program read the system
accounting logs each period (settable) and calculated
a mean response time. During overnight database
backups, apparent response times blew out, so a
minimum traffic threshold was added to the monitor.
A huge assumption was made: that the execution
time of the CGI program reflected the server part of
the total response time.

An initial design idea was to model behaviour on
’sendmail’ and set the busy flag based on ’system load
average’, a number that accurately scales with
multiple CPU’s and systems, is very low-cost to
obtain, and does not need a background monitor.
This was abandoned when it was realised that it is a
secondary measure, not primary, and behaves
exceedingly non linearly. By the time the load
average started to rise, the response times would’ve
exceeded the target. Data for load average and
nominal response times still exist and this hypothesis
could be tested.

The IA switch also tested the ’health’ of each of the
web servers by polling a page. If a server failed to
respond before the next health check, the server was
automatically taken out of service. The first time the
database system saturated, all the web servers were
’failed’ as response times uniformly blew out. For the
rest of the duration, the IA switch ’health checks’
wel:e set to ’TCP/IP’ (ping).

The busy tone subsystem was deployed 3 weeks
before the deadline. There was still more than 30% of
the system unused at the time. Apart from testing, it
’fired’ for the first time about 10 days before the
deadline. It was active for most of 2nd last day, and
from about 9 AM until after midnight on the final day.
Due to other commitments on test system resources
and privacy problems with recording and replaying
live traffic, none of the design and implementation
assumptions had been tried before deployment, nor
were system response characteristics known.

Tuning the busy tone parameters, and understanding
the interactions between load, demand, and system
behaviour, proved somewhat ’hit and miss’. A final
set of tuning parameters were settled on that kept
response time ’cycling’ between 3 and 5 seconds, and
the rate of new sessions reasonably constant,
maximising system throughput whilst maintaining
user response times.

The final model was a feedback system with high
inertia - due to the ’gate’ committing the system to 20
or more pages of work over ~30 minutes for each
accepted connection. The monitor cycle time was
initially too high, it provided a ’moving average’ of 5 to
10 minutes, not close to an instantaneous value. The
system showed classic feedback systems ’hunting’
behaviour- cycling between 2 and 15 seconds
response time. The ’undershoot’ significantly lowered
system throughput, causing the subsystem to be
switched off at times. (’Hunting’ is a control system
failure - usually heard in stationary motors where the
speed surges up and down.)

The resources used in running the ’gate’ CGI script

was not monitored, resulting in only about 75% best
throughput of registrations on the final night. The
rest of the system resources presumably were devoted
to serving ’busy pages’.

Unexpectedly, the firewalls became the ultimate
limiting factor. All systems only went to about 80-
90% CPU at the busiest time, whilst a number of
subsystems, such as DNS and e-mail experienced
network connectivity problems.

Other strategies were employed to maximise
throughput over the last two days. The supporting
website and searches were turned off and replaced by
a single static page, e-mailing submitted applications
was rescheduled to the overnight quiet time, and
replicating the database logs, 500 Mb/hour, using the
CPU intensive ’secure shell’ was stopped. A number
of small websites containing mostly static pages were
moved to an unused small system well beforehand.

FURTHER WORK

Whilst the subsystem developed performed
adequately, it only had to survive a single
overwhelming peak. Intensive management and
manual intervention and some extreme trade-offs,
such as stopping rollback log replication exactly when
it was needed most, were acceptable for the last two
days.

For large scale commercial systems that can
reasonably expect ongoing unpredictable
overwhelming loads, moving a number of facilities off
the web servers to dedicated switches or servers
optimised for their tasks would be most useful:-
. SSL servers are now available to lighten server

CPU load considerably.
¯ Definitive response timings, even per server, are

available at the IA switch.

The IA switch, ff it buffers server responses, can
simultaneously calculate both the server and network
delay, and minimise use of kernel resources on
servers by quickly releasing connections.

The IA switch is the perfect place to make the busy
tone decision and return a static busy page with a
short cache life.

IA switches already recognise sessions, allowing busy
tone to be extended from the ’gate’ configuration
described here, to sets of individual CGI pages.

Modifying individual CGI scripts for busy tone
requires considerable redesign and rework. The IA
switch is already a separate, high reliability device
that could provide a consistent, easily implemented
and tuned implementation.

This article is re-printed with permission. The originals
can be found at:

URL: / / www. canb. orq. au/~s[enkin/ bustttone, swx

AUUGN Vol.24 ¯ No. 1 - 14 - March 2003

Gridbus: A toolkit for
service-oriented grid
computing
Authors: Rajkumar Buyya <raj@cs.mu.oz.au> and Srikumar
Venugopal, The University of Melbourne

ABSTRACT

Computational Grids enable the sharing, selection,
and aggregation of geographically distributed
resources (such as computers, data bases, scientific
instruments) for solving large-scale problems in
science, engineering, and commerce. However,
application development, resource management,
scheduling, and supporting end-to-end quality-of-
services (QoS) in these environments is a complex
undertaking. This is due to the geographic
distribution of resources that are owned by different
organizations having different usage policies and
cost models, and varying loads and availability
patterns. This article describes Gridbus, an open-
source framework that addresses those challenges in
support of a distributed computational economy.

The Gridbus project (http://www.gridbus.org) is
engaged in the design and development of open
source cluster and grid middleware technologies for
service-oriented computing. Gridbus emphasizes the
end-to-end quality of services driven by
computational economy at various levels - clusters,
peer-to-peer (P2P) networks, and the Grid - for the
management of computational, data, and application
services.

At the cluster level, the Libra scheduler has been
developed to support economy-driven cluster resource
management. Libra is used within a single
administrative domain for distributing computational
tasks among resources that belong to a cluster. At the
P2P network level, the CPM (compute-power- market)
infrastructure is being developed through the JXTA
community. At the Grid level, various tools are being
developed to support a quality-of-service (QoS) -
based management of resources and scheduling of
applications. To enable performance evaluation, a
Grid simulation toolkit called GridSim has been
developed. GridSim supports the modeling and
simulation of application scheduling on simulated
Grid resources. Finally, to support the accounting of
resource or service usage and enable sustainable
resource sharing across virtual organizations, we
have developed Grid Accounting Services
infrastructure.

GRtOBUS TECHNOLOGIES

Gridbus technologies and their utilization in
deploying real-world applications, such as brain
activity analysis, on Global Grids has been
demonstrated at the recent IEEE/ACM
Supercomputing (SC 2002) conference held in
Baltimore, MD, USA. A high-level interaction between
various Gridbus components is shown in Figure 1.

We briefly discuss some of the key technologies
developed as part of the Gridbus project.

Figure 1: Gridbus at SC2002:

A high-level view of system interaction in a grid-
based computation Visual Parameter Sweep
Application Composer The Gridbus project developed
a Java based IDE, called Visual Parametric Tool
(VPT), for rapid creation of parameter sweep (data
parallel/SPMD) applications. VPT allows users to
parameterize the input data files to transform static
values to variable parameters, and to create a script
that defines parameters and tasks. VPT also allows
the rapid creation and manipulation of the
parameters. While being flexible, it is also simple
enough for a non-expert to create a parameter script,
known as a plan file, within minutes. The parameter
sweep applications composed using VVF can be
deployed on global Grids using the Nimrod-G
resource broker (see Resources). Nimrod-G supports
scheduling based on the user’s quality of service
(QoS) requirements, such as computational deadline,
budget, and optimization preference, and the access
price of resources.

GRIn MAR~T DIR~CTOaY (GMD)

The Grid Market Directory (GMD) (see Resources)
serves as a registry for high-level service publication
and discovery in virtual organizations. It enables
service providers to publish the services which they
provide along with the costs associated with those
services. Consumers browse GDM to find services
that meet their requirements.

GMD is built over standard Web service technologies
such as SOAP (Simple Object Access Protocol) and
XML. Therefore, it can be queried by other programs.
To provide with an additional layer of transparency, a
client API (Application Programming Interface) has
been provided that could be used by programs to
query the GMD without the developers having to
concern themselves with SOAP details. The Gridbus
scheduler interacts with the GMD to discover the
testbed resources and their high-level attributes such
as access price.

AUUGN Vol.24 ¯ No. 1 - 15 - March 2003

GRID SCHEDULER

The Gridbus scheduler, developed as a plugin
scheduler for Nimrod-G, has been used instead of the
default Nimrod-G scheduler, as it has been designed
to utilize the GMD. To support the notion of
application services and pricing based on AO
(Application Operation) instead of vanilla CPU service,
the GMD already allows GSPs (Grid Service Providers)
to publish application services along with their AO
service price. Hence, the Gridbus scheduler can
ut~ize the GMD services and perform resource
allocation based on AO cost model. In this model,
the user is charged a price for executing each job on
the resource. Thus, the resource owner may offer the
application as a service and charge a FLxed price for
executing it.

The Gridbus Scheduler implements three algorithms:
1. Cost minimization
2. Time minimization, and
3. Cost-time optimization

All three algorithms are constrained by two
parameters: the deadline by which the job is required
to complete, and the user’s budget. Time
minimization tries to execute the project within the
shortest time while keeping within the budget. Cost
minimization tries to complete the execution with the
least cost while keeping to the deadline. Cost-time
optimization gives jobs to the cheapest servers but
performs time optimization among those.

G-MONITOR

G-Monitor is a web portal for monitoring and steering
application execution on global grids. It interacts with
Grid Resource Broker (GRB), Nimrod-G in the current
implementation, to provide the user with a GUI
(graphical user interface) to the underlying Grid
framework.

G-Monitor provides a ubiquitous interface that is easy
to use, enabling the end-user to monitor and control
jobs running within the Grid environment. It is
flexible enough to be run from anywhere without the
need for custom client software or network overhead.
G-Monitor is also scalable, and can therefore handle
thousands of nodes and jobs running in a Grid
environment.

GridBank

GridBank (GB) is a secure Grid-wide accounting and
(micro) payment handling system. It maintains the
users’ (consumers and providers) accounts and
resource usage records in a database. GridBank
supports protocols that enable its interaction with
the resource brokers of Grid Service Consumers
(GSCs) and the resource traders of Grid Service
Providers (GSPs). It has been primarily designed to
provide services for enabling a Grid computing
economy; however, we envision its usage in e-
commerce applications as well. The GridBank services
can be used in both co-operative and competitive
distributed computing environments.

The GridSim toolkit supports modeling and
simulation of a wide range of heterogeneous
resources: Single- or multiprocessors, shared and
distributed memory machines, such as PCs,
workstations, SMPs, and clusters with different
capabilities and configurations.

GridSim can be used for modeling and simulation of
application scheduling on various classes of parallel
and distributed computing systems, such as clusters,
grids, and P2P networks. The GridSim toolkit provides
facilities for the modeling and simulation of resources
and network connectivity with different capabilities,
configurations, and domains. It supports primitives
for application composition, information services for
resource discovery, and interfaces for assigning
application tasks to resources and managing their
execution. These features can be used to simulate
resource brokers or Grid schedulers for evaluating
performance of scheduling algorithms or heuristics.

The GridSim Toolkit has been used to create a
resource broker that simulates Nimrod-G for the
design and evaluation of deadline and budget
constrained scheduling algorithms with cost and time
optimizations. It is also used to simulate a market-
based cluster scheduling system in a cooperative
economy environment.

RECENT GRIDBUS RELEASE

In November, 2002, the Gridbus project has released
GridSim 2.0 that provides support for the simulation
of time or space shared, single and multiprocessor
systems (both shared and distributed memory
systems), as well as a new package for creating Grid
model visually.

ABOUT THE AUTHORS

Rajkumar Buyya is founding director of the Grid
Computing and Distributed Systems (GRIDS)
Laboratory at the Department of Computer Science
and Software Engineering at the University of
Melbourne. He is also co-chair of the IEEE Computer
Society’s Task Force on Cluster Computing. He edited
the two- volume High Performance Cluster
Computing: Architectures and Systems (Prentice Hall,
1999), as well as High Performance Mass Storage and
Parallel I/O: Technologies and Applications (With
Tony Cortes and Hai Jin. John Wiley and Sons,
2001.)

Srikumar Venugopal is a doctoral candidate at the
Grid Computing and Distributed Systems (GRIDS)
Laboratory at the Department of Computer Science
and Software Engineering at theUniversity of
Melbourne.

RESOURCES

The Gridbus project home page
http: //www. Nridbus. orK/

AUUGN Vol.24 ¯ No.1 - 16 - March 2003

Rajkumar Buyya. Economic-based Distributed
Resource Management and Scheduling for Grid
Computing. (Doctoral Dissertation, Monash
University, Australia, 2002)
http: //www. cs.mu, oz. au / ~ral/thesis /

The box that appears will look like this:

R. Buyya. D. Abramson. J. Giddy. Nimrod/G: An
architecture for a resource management and
scheduling system in a global computational grid. In
Proceedings of the 4th International Conference on
High-Performance Computing in the Asia-Pacific
Region (HPC Asia 2000). 2000
http: //www.cs.mu.oz.au/~ra|/papers/nimrod~.pdf

The JXTA Community Web site
http: //www.|xta. or~/

Rajkumar Buyya’s home page
http: //www.buyva. com/

(X)dialog: Talking
shells
Katja and Guido Socher <katja(at)linuxfocus.or.q,
fluido(at) linuxfocus, org>

If you use dialog instead of Xdialog (remove the X on
the second line in the script shown above) then you
get a curses based application that runs within the
xterm and does not open a separate window. In some
cases this is more appropriate for a shell script as it
runs just within the terminal window. Especially ff
you want to run it remotely with a number of different
hosts between your computer and the remote host
where direct IP routing is not available. In this case
dialog will work but you will not be able to start an
X11 application like Xdialog.

ABSTRACT

Xdialog and dialog are two classic utilities to enhance
your shell scripts with a graphical user interface.
You will need some shell programming knowledge to
understand the article. To learn about the basics of
shell programming you can read our article on Shell
Programming.

INTRODUCTION

The UNIX shell is a very productive environment in
itself and works well without a graphical user
interface. In a few cases however it makes sense to
have a graphical dialog with the user. An example
would be the installation dialog of a program. You
have a number of options for the features to install
and you can select the target directory

With dialog and Xdialog you can design a graphical
application by writing just a short shell script. Dialog
is a purely terminal based program and Xdialog is a
X11 program

The above was a pretty useless example of
dialog/Xdialog but it shows how easy it is to program
a simple graphical dialog. There are more interesting
dialog boxes. Boxes like calendar, menus,
fflemanager, progess bar, text input, message box,
password dialog You can run

or
Here is an example:

You can type (or copy/paste) the following lines into a
shell window (xterm, konsole): to get a list of the available dialog boxes. Xdialog has

a few more boxes than dialog.

’~’~il i ’;iI HOW IT WORKS

The dialog boxes are configured on the command line.

AUUGN Vol.24 ¯ No. 1 - 17 - March 2003

After typing dialog or Xdialog you have to give the
name of the box you want followed by its specific
parameters.

The yesno box takes 3 parameters. The <height> and
<width> can be set to zero in which case the geometry
of the box will be automatically adjusted to the size of
the text. The result is returned as exit status to the
script in the "$?" variable. If there is more to return
like e.g. the names of selected options then this is
returned on standard error. Standard error is
normally just printed to the screen but can be
redirected with "2>".

A very simple but efficient solution.

REAL APPLICATIONS

Now a real world application where Xdialog/dialog
really provides an advantage over conventional shell
script programs: A menu where you can select
different Internet Service Providers and dial out to
connect to the Internet. This script requires the ppp-
on/ppp-off scripts from the March 2001 article Using
different ISPs for your Internet access. The script is
called pppdialout and displays a different menu
dependent on whether you are online or not.

HOW THE SCRIPT WORKS:

At the beginning we define some functions, error and
help, next we check for commandline arguments then
a name for a temporary file is defined
(/tmp/pppdialout.$$). $$ is the name of the current
process and is a unique number for every computer.

AUUGN Vol.24 ¯ No. 1 - 18 - March 2003

The trap statement is executed if the program
terminates abnormally (like the user presses crtl-C)
and deletes the tempfile in our case. After that we
check if we are already online or not (command:
/sbin/ifconfig I grep ’^ppp’). If we are already online
then we open a yesno-box, the one you have already
seen above, and ask the user if she wants to go
offline. If we are not online then a menu box is
opened. We get all the available ISPs by listing the
files in /etc/ppp/peers (Is /etc/ppp/peers). The
syntax of the menu box is:

The <height>, <width> and <menu height> are again
set to zero (automatic size, see above) and then the
program, expects pairs of strings (<tagl >
<description>). We don’t really have a description so
we set it to something meaningless (== in this case).
The data in the variable isplist will look like this:

The result of the user’s choice is printed by (X)dialog
on standard error. The shell command "2> $tmpffle"
writes it to our tmpffle. The menu box offers also the
possibility to press cancel. Therefore we have to check
$? (exit status) to find out which button is pressed.

Ok, enough theory. Here is how it looks like

... as nice GTK GUI with Xdialog:

.. with the curses based dialog in the terminal:

MORE APPLICATIONS

We have one more application for you. It is called
mktgz and uses the checklist box of Xdialog. The
plain terminal based dialog does not have a checklist
therefore it works only with Xdialog. You can use
mktgz to build tar.gz packages.

This displays all fries of the current working directory
(".") and you can select which ones to include into the
yourpackage.tar.gz package. You can download it
here (mktgz.txt) We will not go through the code line
by line as you should already know enough to read
the script.

Xdialog and dialog come with a directoy called
"samples" where you can find more examples (Redhat
7.3 stores them under /usr/share/doc/Xdialog-
2.0.5/samples). Be careful however as some of them
really do somethingand are not pure demo
applications.

CONCLUSION

Xdialog and dialog offer a number of different dialog
boxes. Not all of them are always appropriate for all

AUUGN Vol.24 ¯ No. 1 19 - March 2003

types of shell scripts. The shell itself is also a very
"powerful" environment. Completing a path with the
tab=key can be a lot faster than searching the
different directories in a GUI and clicking on them.
Especially the possibility to pipeline and combine
commands makes it a very powerful tool. Something
like:

(for those not so experienced with UNIX shells: This
counts all distinct lines in file.txt which contain the
string "somestring")
Such pipeline constructs are possible because all the
commands are controlled by command line
arguments. In other words: they don’t stop and ask
the user how she wants to continue.
There are however applications where graphical
dialogs are really useful. Xdialog and dialog are very
easy to use but of course not as powerful as a real
graphical application. They fill the gap between a pure
ASCII shell script and a full graphical application.

WH~RE TO GET XDIALOG AND DIALOG?

The CDs of your linux distribution are the first place
to look for dialog and Xdialog. It could be that they
are already installed on your computer (ask your
computer: e.g.

Xdialog: http: //www. chez. com/godefroy/
dialog: http: //hightek. org/dialog/

Xdialog documentation:
http: //www. chez. com/godefroy/doc/index.html

This article is re-printed with permission. The originals
can be found at;

http: / / www. Iinuxfocus. org / Englis h/ November2OO2 / a
rticle267.shtml

Programming Bits:
Meeting C# and Mono
Author: Ariel Ortiz Ramirez <ariel.ortiz@,itesm.mx>

INTRODUCTION

C# (pronounced C-sharp) is a new object-oriented
programming language designed to take advantage of
Microsoft’s .NET development framework. It has many
similarities with other popular object-oriented
languages such as C++ and Java, yet it offers some
new goodies.

Linux offers the opportunity to develop C#
applications thanks to a project called Mono. Mono is
an open source implementation of the .NET platform.
In the following sections, I will describe the main

elements of the current implementation of the Mono
system.

MONO PROJECT
At this time, Mono implements two standards: the C#
programming language (Standard ECMA-334) and the
Common Language Infrastructure (Standard ECMA-
335). Both of these specifications were developed by
Microsoft and submitted to ECMA (a vendor
consortium formerly known as the European
Computer Manufacturers Association) on October
2000. They were formally approved on December
2001, and they will probably become ISO standards
(thanks to a "fast-track" agreement that ISO has with
ECMA) some time before the end of next year.

The Mono project is sponsored by Ximian, the same
company that brought us the GNOME graphical
desktop environment. Mexican hacker and Ximian
CTO Miguel de Icaza currently leads the development
of this project. In my opinion, the people involved with
the development of Mono have done a remarkable job
in quite a short amount of time. By the way, the word
"Mono" means monkey in Spanish. These guys at
Ximian really like monkeys.

HELLO MONO WORLD!
Lets follow a simple programming example in order to
understand how C# and the different Mono
components fit together. To see this in action, make
sure you have a working Mono installation (see the
resources section for information on downloading and
installing Mono).

The following figure summarizes the process we will
follow in order to compile and run our C# program:

First, we will create a simple C# source program (the
classical "Hello World!" couldn’t be missing). Type the
following program using your favorite text editor and
save the file as hello.cs:

AUUGN Vol.24 ¯ No. 1 - 20 - March 2003

This program is composed of a class named Hello
which contains a method called Main. This method
establishes the program entry point, in the same way
that the main function is the start of a C/C++
program. In this example, the Main method prints to
the standard output the message "Hello Mono World".

We can now compile the program using the Mono C#
compiler, called mcs. At the shell prompt type:

We now should have a file called hello.exe in the
current directory. But don’t get baffled about the .exe
l~fle name extension. It is not a Windows executable
file, at least not in the way we’re used to. Contrary to
what happens when we compile a program written in
languages like C or C++, the C# compiler does not
generate a machine-specific object file (for example a
Linux ELF x86 object f~fle), but instead generates a
special binary irfle called an assembly, which is made
up of metadata and intermediate language (IL}
instructions. These two together represent a platform-
agnostic translation of the program source code. This
means, of course, that when we actually run the
program contained in the assembly, its intermediate
language code has to be translated to the native code
of the computer where the program is being run. This
last translation phase is carried out by a virtual
machine, whose behavior is defined by the Common
Language Infrastructure (CLI) specification. The CLI
defines an object oriented runtime environment that
supports a base class library, dynamic class loading
and linking, multiple thread execution, just-in-time
compilation, and automatic memory management.
The Microsoft implementation of the CLI specification
is usually referred as the Common Language
Runtime (CLR). We say that the CLR is a superset of
the CLI because the CLR contains some extensions
that are not part of the CLI.

To execute our assembly, we must invoke the
program called mono, which is the Mono virtual
machine. Type at the shell prompt the following:

The output should be:

BEmND THE SCENES

Lets see how to examine the contents of our
assembly. The program monodis (Mono disassembler)
reads the binary information of an assembly and
produces a textual representation of its contents.
Type at the shell prompt:

The disassembler output should be something like
the following:

The first par{ of this output corresponds to the
metadata. It contains information about the current
version of the assembly, any optional security
constraints, locale information, and a list of all
externally referenced assemblies that are required for
proper execution. The rest of the output represents
the IL code. We can spot two methods in this code:
the default class constructor called . ctox:, provided
automatically by the compiler, and our Main method.
As described before, when the virtual machine is
asked to run this code, it uses a just-in-tilne (JIT)
compiler to translate the IL into the native machine
code of the hosting environment. The native code is
not generated until it is actually needed (thus the
name just-in-time). For our example, the following is
the native x86 machine code (in AT&T assembly
language syntax) that gets generated for the Main
method:

Mono also comes with an interpreter called min~:. If
you use this program, the IL instructions are
interpreted instead of being compiled to native code

AUUGN Vol.24 ¯ No. 1 - 21 - March 2003

by the JIT. Actually, our simple program might be a
little bit faster when run under mint because the JIT
compiler will take some time to compile the code of
our program and store it some where in memory. Of
course, subsequent execution of the native code
already in memory is definitely faster than
interpretation. Currently the Mono JIT compiler is
only available for x86 machines. The Mono interpreter
must be used in any non-x86 machine. To see the
interpreter running, type at the shell prompt:

If you’re familiar with Java, you might be thinking
that all this technology sounds pretty much like the
way that the Java platform works. And this is indeed
so. The CLI virtual machine is the key factor for
platform independence. This means that I can write
and compile a program in Linux using Mono, and
then run it in a Windows computer with the .NET
framework. There is no need to rewrite or recompile
the source code. But in contrast to the Java Virtual
Machine, which is tightly coupled to the Java
programming language, the CLI specification not only
allows platform independence, it also allows language
independence. Windows has compilers that target the
CLR from a number of languages. The most important
ones are part of Microsoft’s Visual Studio .NET
development environment: Visual Basic .NET, JScript
.NET, Managed C++ and C#. Other languages
supported, from third party vendors, include APL,
COBOL, Eiffel, Forth, Fortran, Haskell, Mercury,
Mondrian, Oberon, Pascal, Perl, Python, RPG, Scheme
and SmallScript. The Mono project only has a C#
compiler at this time, but we will probably see in the
near future other languages being supported.

Another important element of the CLI is the Common
Type System (CTS). The CTS fully describes all the
data types supported by the virtual machine,
including how these data types interact with each
other and how they are represented as metadata
inside the assemblies. It is important to note that not
all languages available for the CLI support all data
types in the CTS. So there is a Common Language
Specification (CLS), that defines a subset of common
types that ensure that binary assemblies can be used
across all languages that target the CLI. This means
that ff we build a CLI class that only exposes CLS
compliant features, any CLI compatible language can
use it. You could create a class in Eiffel, subclass it in
C# and instantiate it in a Visual Basic.NET program.
Now this is real language interoperabflity.

NONE ADVANTAGES
Using a CLI compliant platform, such as Mono or the
.NET framework, has some important advantages:

¯ Programs can be run without recompiling on any
operating system and processor that supports the
platform.

¯ There is complete multiple language integration.
¯ The system supports important security measures.
¯ A common runtime engine is shared by all CLI

aware languages.
¯ A consistent object model is used by all CLI aware

languages, including a standard API offered by a

single base class library. Once you learn this API,
you can use it in any language supported by the
platform.
There is a simplified deployment model. There is
no need to register a binary unit into the system
registry.
Multiple versions of the same binary library (DLL)
can coexist in harmony on the same computer.

C#, as a programming language, has also some
important features:

¯ It includes constructs such as properties, events
and attributes that ease the construction of
software components.

¯ It does not require the use separate header of
interface definition language (IDL) files.

¯ It has a simplified versioning mechanism.
¯ It’s type safe and has a unified type system. All

data types (including primitive types) derive from a
single base class.

¯ It has automatic memory management, through
the use of garbage collection.

¯ It’s closely integrated to the CLI.

I will discuss these and other C# issues more
thoroughly in later articles.

RESOURCES
¯ http: //www.go-mono.com/

The official Mono home page. The download and
install instructions can be found here.

¯ http: //msdn.microsoft. corn/library/default, asp?ur
l=/library/en-
us/dndotnet/html/deicazainterview, asp
A very interesting interview with Miguel de Icaza
about the Mono project and the use of ECMA
standards.

¯ http: //msdn.microsoft. com/library/default, asp?ur
l=/library/en-us/cscon/html/vcoriCStartPage, asp
Information on the C# programming language at
MSDN.

¯ http: //www. ecma. ch/ecma 1/STAND/ecma-
334.htm
The Standard ECMA-334 C# Language
Specification.

¯ http: //www. ecma. ch/ecma 1/STAND/ecma-
335.htm
The Standard ECMA-335 Common Language
Infrastructure.

This article is re-printed with permission. The originals
can be found at:
http : / / www. Iinuxgazette. com/ issue84 / ortiz, html

AUUGN Vol.24 ¯ No. 1 - 22 - March 2003

Mozilla dissected
Author: Floris Lambrechts <floris~,linuxfocus.orq>

ABSTRACT

After the long waiting time, Mozflla has already
become an old animal. They bread fast in the Mozflla
family: the new generation (1.0.1 and 1.1) has
emerged and when you read this, 1.2 may just be
born. After many hours of testing and fiddling with
the browser capabilities of these youngsters, I
describe my experiences below.

In the first part I take a look at what’s available in the
standard browser, and then I review two of the many
available add-ons.

INSTALLATION

First off, you have to choose a version, l. 0.1 is
actually the ’one and onlyTM’ Mozilla 1.0, but with a
few less bugs and some security issues fixed. If you
prefer stability and compatibility, this is the one for
you. Otherwise you take version 1.1 or later - that’s
where all the new functionality will show up. You can
track the development on the road map
http: //www.mozflla.or~/roadmap.html.

The installation went very smoothly: just choose the
Linux x86 Net Installer on the ’download’ page and
execute it (sometimes also available in other
languages). The Net Installer (less than 100 kB)
allows you to choose which Mozilla components you
like to have - if you take the ’Custom’ installation -
and after that it does its job. They just can’t make it
simpler than this.

By default, it installs in /usr/loeal/raoz±lla, but
you can change the location. It’s possible to install
different Mozilla versions alongside each other - my
/usr/bin/mozilla is just a simple shell script that
goes to the right directory and starts ’mozilla &’.
The different versions are hard to distinguish from
each other - the differences that I noted are explained
in the text below. You can check what version you
are running in the Help menu (Help=>About
Mozilla).

Figure 1: A simple installation process

Tm~ FAT BOY

Mozilla is more than just a browser. In general, it is a
platform for developers and for personal
communication (and the platform is in turn platform-
independent :). There is the browser, the news/mail
client, the chat program, the html editor, JavaScript
debugger, XML tools, the ’interface description
language’ XUL, libraries for downloading and
installing applications and components and so on.

Never forget that in a lot of cases, you just don’t need
stuff like ChatZflla (the IRC chat-client), the
Composer, the Mafler/newsreader or the address
book. If all you want is the browser, it’s a smart thing
to only install what you need (don’t forget to choose
the ’Custom’ install in that case). As a simple, plain
browser Mozilla has of course though competition,
Galeon for example. That one uses the heart of
Mozilla, (the rendering engine Gecko), but everything
else is lighter and smaller. And also Konqueror of
KDE and Opera are still around, both worthy
alternatives.

If you choose to use Mozilla, you’ll have to accept the
fact that it uses a lot of memory. I never found that it
felt ’slow’, and the startup-time also has also
improved since the days before 1.0. But Mozflla still
likes a huge chunk of RAM, just like KDE by the way.
Sad but true. For some older systems a RAM upgrade
is probably something you can consider.

Just a remark: I often hear that ’the Linux
desktop’ is really heavy compared to ’Windows’.
Agreed, KDE is not small, but you have to know
what you’re comparing with! It can do much more
than -say- Windows98. In fact you should
compare a recent Linux with a server edition of
Windows XP (although... ;-). And then it shows:
Linux does a great job. For older systems you just
have to seek out a lighter window
manager/desktop - and your system will be just as
fast. Or just run your desktop on the heavy server
in the network... I also hear that the new Gnome
needs less resources than its predecessor, which I
find a very good development.

A problem with ’alternative’ browsers is that some
sites become unusable. Let it be clear that Mozilla is
not an ’alternative’ browser! There are very few sites
that display errors, or nothing at all. And in that case

AUUGN Vol.24 ¯ No. 1 - 23 - March 2003

you can safely blame the site designer: Mozilla follows
the standards almost perfectly, a very important
accomplishment. Congratulations to the developers!
(and death to all the webmasters that make sloppy
sites on purpose!)

This being said, let’s investigate whether the bells and
whistles of the browser are of any use to us.

Trm BUILT-IN BELLS...

The amount of included features and options is quite
impressive. You get a good idea of the possibilities by
simply browsing the well-structured Preferences
menu (Edit=>Preferences). Below we take a look at
many of these features.

Tabbed browsing
Tabbed browsing is pretty well-known by now. It is a
system that allows you to open multiple sites in a
single window. Each page has its own ’tab’, on which
you can click to ’activate’. It is mainly useful to avoid
having tens of Mozilla windows open at once. I use
and like the tabs, but something bothers me: why
does every application has to invent yet another
multiple document interface?. Mozilla has such a MDI,
Kate the KDE editor, Opera and Galeon too... Each
one with different concepts, and different key
bindings. And then there is KDE itself, which groups
windows of the same program under a single button
in the task bar. Added together, this makes for a very
confusing situation - but in the end I think Mozflla
has one of the better systems. Note that Konqueror
from KDE 3.1 on will also support
http: //mozillaquest.com/News02/KDE Konqueror T
abs_Cominp._Storv01.html tabbed browsing.

Be sure to take a look at the options for tabbed
browsing. I like to ’load tabs in the background’, and
I make sure that clicking the middle mouse button
over a link opens a new tab. You can also make sure
that Control+Enter in the location bar opens a new
tab. The best thing about the tabs are the key
bindings: Control+T opens a new empty tab,
Control+Page Up and Control+Page Down change
between tabs, and Control+W closes the current one.
And finally, just for convenience: Control+L selects
the text. (URL) in the location bar.

Bookmarks
The nice thing about the bookmarks (that come with
an extensive management system) is the ability to
save multiple tabs under one bookmark
(Bookmarks=>File Bookmark, and then choose ’File
as group’). In version i. 1 it can be done even faster:
simply choose Bookmarks=>Bookmark This Group
of Tabs. Very nice to open up a standard set of
news sites for example, or to start surfing in the
morning on the pages you had open the day before. I
only mis a little feature from Konqueror, where you
can not only Add to Bookmarks in the main
Bookmarks menu, but also in its sub-menu’s.But
don’t worry, so far I can still live with it ;-).

The sidebar
With F9 you turn on the sidebar (or, rather, turn it off
:-). By clicking on its border, you can minimise it to a

couple of pixels width. What exactly would make the
sidebar an advantage over a nice simple website is
unclear to me, although I suspect that Netscape uses
them extensively in their browsers. Inside it you can
see tabs like ’search’, ’history’, ’what’s related’ and
’bookmarks’.

Luckily anyone can make their own sidebars, and as
a result many others are available. Some sites offer a
’Netscape sidebar’ to track their news messages. I
tried some that contain information about the tags of
the document formats HTML, XHTML and SVG (from
http://www.zvon.orN/Output/bar list.html, who by
the way do translations of their pages the LF way).
Installation of these sidebars is straightforward: click,
choose ’OK’ and everything will be all right, even
when you’re not root. I personally would like to see a
sidebar that validates the current page with
http://validator.w3.or~. As a lazy but well-meaning
html writer I would really welcome such a thing ;-)

PRIVACY AND SECURITY

This is a domain where Mozilla really shines. There
are lots of features and possibilities regarding cookie
management, pop-up prevention... I recommend the
options that only accept images and cookies from the
same web server that provides the actual website you
read. This can already stop or cripple quite some
Adv. networks. And there is more: you can view and
remove individual cookies, or choose which sites have
permission to ’cookie you’. Mozilla can also just ask
permission for each single cookie, and can remember
your choices at that. Consider whether you need
Java, JavaScript and cookies and turn off as much as
possible (by default Mozilla accepts all cookies and
JavaScript has the right to open pop-ups - turn it off
asap!).

Mozilla is also able to remember passwords and form
data; this is something I turn of immediately. (Yuk, I
just don’t trust it.)

APPEARANCE

You can configure which buttons should be visible in
the toolbar - ’Home’, ’Search’, ’Print’, ’Go’ and
’Bookmarks’ are not necessary in my view. This
yields more space on the screen to display the URL.
Configurable in Edi t=>Preferences=>Navigator.

I do not really like the standard look, the ’Classic’
theme. It resembles the old and grey Netscape 4 and
makes it difficult to recognise the active tab.
Compared with ’Classic’, I find the also supplied
’Modern’ theme a whole lot better. There are several
other themes on the web, so everyone should be able
to find her favourite. For smaller displays I would
recommend a ’tiny’ theme; I myself use the colourful
and small ’Orbit 3m’.

AUUGN Vol.24 ¯ No. 1 - 24 - March 2003

Figure 2: Three themes: Classic, Modern and the
small version of Orbit, ’Orbit 3m’.

SMART BROWSING

Using smart browsing, you don’t always have to type
URLs. In the first place, there are the ’Internet
keywords’, actually a genuine Netscape.com thing.
Certain keywords, such as ’seas’, ’quote’, ’help’ and
’goto’ are recognised when you type them in the
location bar (like ’search linuxfocus’ of ’goto
linuxfocus’). Mozilla will then recognise the
keywords, and opens a certain site with the right
search parameters. The only thing I like about this is
that you can add your own keywords (using
JavaScript) for your favourite sites. Mozilla also has a
setting for a standard search engine (by default
netscape.com, but google.com is also an option),
which is also called when when you type single words
in the location bar. This last feature was not present
in some of the Mozilla versions I tested. All in all, I
never got used to using this ’Internet keywords’ stuff,
so I always turn it off now. Maybe it’s more useful for
people who type very slowly :-) The other part of
smart browsing is the ’location bar auto complete’,
something that most current browsers already have.
I’m not lyrical about it :-)

Type Ahead Find
Mozilla 1.2, of which I was only able to test the alpha
version, contains the new feature called ’Type Ahead
Find’. This is a nice way to navigate without using
the mouse: you just type a part of the link you want
to activate, and Mozilla will select it. Then an ~.nter
will do to follow the link. For example: you want to
follow the first link below this line (Plugins and...), so
you type plu+Enter and Mozilla will take care of the
rest. Once you know enough key bindings, it
becomes very easy to navigate textually without
switching between the keyboard and the mouse. A
nice extra feature is that you can also search regular
text by beginning the search with a /slash. Other
things to remember: Escape cancels the current
search, and with (Sh±ft+)F3 you can search forwards
(or backwards).

Figure 3: Type Ahead Find activates the right link
after typing ’cast’ on the LinuxFocus.org main page.

AND THE WHISTLES

Aside from the standard features, you can get a lot of
extras for the browser. Mozflla’s openness makes it
relatively simple to build extensions for it, and that
has obviously paid off. There are the ’old-school’
plugins (see the article: Plugins and Mozilla 1.0
http: //www.linuxfocus. or~/English/July2002 / article
248.shtml), there are sidebars that start to resemble
complete applications, and then there are the other
add-ons. By lack of time space we can not describe
them all, but there are ad blockers, surf anonymisers,
a calendar, spellcheck, Jabber messenger, a site
downloader Following the links at the bottom:
MozDev lists a lot of add-ons. The following addons
were tested by yours truly.

Mother tongue
Mozilla speaks English of course, but that is not all.
Installing other languages is easy: clicking trough in
Edi t=>Pref erenc es =>Appearance=>Languages/Con
tent will lead you to a page where all the translations
are listed. Clicking will do for the installation, at least
ff you have root rights and your Mozilla version is not
struggling (it once refused the translation, but kept
on working fine as always). In some (or all?)
languages you will see that the keyboard shortcuts
are not translated, which is partly very convenient
and partly annoying. I was told that translating the
shortcuts is a source of conflicts, and no software
exists for Mozilla to detect and to help solve these
conflicts. Also be aware of the fact that not all Mozilla
builds have translations in your preferred language -
you can check that in advance
http: //www.mozilla. orA/proI ects/110n/mlp status.ht
ml#contrib.

If you’re not a native English speaker, don’t forget to
set up your favourite languages
(Navigator=>Languages), as this setting is used by
some sites to automatically show you a translated
version of their pages (e.g. http://www.debian.orp_0.

Mouse gestures
One of the projects I stumbled upon on the
MozDev.org site is called Optimoz. These people
make two of the nicer add-ons: ’Mouse gestures’ and
’RadialContext’. Mouse gestures {also known as
MozGest) is a system for controlling the computer
with the mouse movements you make, not with
buttons or menus. By drawing a ’shape’ on the
screen with a certain mouse button pressed down,
you perform a specific action. The Windows game
Black&White also uses mouse gestures, just like the
Opera browser in its Windows version. You can view
the list with defined gestures at Optirnoz
http: / / optimoz.mozdev, orb/gestures/index.html. In
addition, it is possible to define your own gestures by
editing the dava$cript code.

Figure 4: Optimoz mouse gestures banner...

AUUGN Vol.24 ¯ No. 1 - 25 - March 2003

The installation is smooth as always, provided you
have root rights, I really enjoyed playing with mouse
gestures, but it never made me ’addicted’ to it. Most
often clicking on buttons (or using keyboard
shortcuts) is just as fast, and sometimes a ’gesture’
was mis-interpreted by the software (i.e. I performed
it incorrectly). But the possibility of creating your
own gestures is very promising...

RadialContext
The other part of Optimoz is ’RadialContext’. This is
an implementation of a so-called ’pie menu’, a kind of
round menu system that appears around the cursor.
By moving the mouse in 1 of the 4 (or 8) directions
you make a menu choice. ¯ It is kind of difficult to
explain, but you can see it with your own eyes if you
are using Mozilla: just surf to
http://optimoz.mozdev.orN/piemenus/ and see the
look & feel in action. This is just a demonstration:
the actions you perform will have no effect until you
install RadialContext yourself (simple if you are root,
as always).

Figure 5; A view on RadialContext: the main menu,
the tab menu and the image menu with help text.

In the image you see the standard pie menu
containing four functions in the directions up, down,
left and right. In between are four sub-menus which
are accessed by moving the mouse pointer diagonally
in the corresponding direction without releasing the
mouse button. Top-right, for example, there is the
menu of the tabs (shown in the middle part of the
image). This sub-menu has functions to open or
close a tab, and to go to the next or previous one.
This is pretty convenient to browse without touching
the keyboard. The other sub-menus deal with
functions concerning ’window’, ’tasks’ and ’page’. In
the ’normal’ menu, the four main functions serve to
reload the page, to stop the loading, or to go back or
forth in the history. Used over an image, the four
main directions get different functions, as you can see
in the right part of the image. There you can also see
what happens when you don’t move the mouse for a
while: a little text explanation appears next to the
menu choices. Used over a link, the menu changes
once again, this time providing functions to open the
link in a new window or in a new tab, to copy the link
or to save its target.

A nice overview of the menu contents is at
http: //www. ~amemakers. de/mozilla/radialcontext/fu
nctionalitg.html.

Of course you can configure which mouse button
RadialContext occupies; there is also a key available
to access the ’normal’ use of that mouse button as
well. A little tip: do not use RadialContext together
with MozGest - that only confuses the browser.
Possible improvements (according to me) could be: a

menu that does not move once it’s appeared, and
showing the little help text by default (reducing the
useless waiting time).

I notice that on my system mouse gestures are always
turned off (easy to do in the preferences), and I use
the pie menu a lot. Often enough I don’t even wait for
the menu to appear; I have learned to memorise some
of the actions and a ’wrong’ movement is very rare.
When my hands are on the keyboard I often use
shortcut keys, but if not I find nearly eveI3rthing I
need in the little round menu. I think it’s an
innovative and efficient system and I’m starting to
really miss it in other browsers. Add to that the fact
that RadialContext is updated regularly and the
verdict is clear: I recommend you to try it out yourself
sometime.

ANFSCD*: MOZILLA ~g PRESENTATIONS

"And now for something completely different

Presentation are performed in thousands of ways, and
the software used can vary almost just as much.
Popular programs are, among others, OpenOffice,
KPresenter and PDF- or PostScript readers. Ignoring
these last two, most programs use their own format
(or that of Microsoft’s PowerPoint). As a result the
presentations are not re~dabl.e on all systems, which
is a big disadvantage when you can not use your own
computer.

But actually, HTML fits really well for a solid
presentation, certainly in combination with style
sheets. This ensures that you can display on all
available platforms, and if you can use Mozilla you
can even do it full-screen (under Linux full-screen
only works on l. l and later). Just hit Fll... It’s also
possible to describe your presentation in a home-
made XML language, and display it nicely with CSS -
of course this involves a risk with browsers whose
XML or CSS support is not adequate. But it certainly
works in Mozflla - I’ve tested it.

Are those tiny buttons still distracting your audience
in full screen mode? View=>Show/Hide=>Navicjat:ion
Toolbar solves the problem. With RadialContext you
no longer need menus and buttons! You can still type
an address if you open the location bar beforehand
with Conl:rol+I~. Right, now make sure that your
page is smaller than the display and even the
scrollbar on the side will disappear...

LINKS

¯ http: //Naleon.sourcefor~e.net: Galeon, light
browser based on Gecko, the Mozflla rendering
engine.

¯ http://www.opera.com: Opera, good little browser
for Linux and others.

¯ http://www.mozilla.or~: official site of the Mozilla
developers.

¯ http://www.mozflla.orN/releases/stable.html: here
are the installation programs for the stable
releases. Less stable, newer releases can be found
at http://www.mozilla.orN/releases/.

AUUGN Vol.24 ¯ No. 1 - 26 - March 2003

¯ http://www.mozilla.or~/start/1.0/: default start
page of Mozilla 1.0 has good information.

¯ http://www.mozillazine.org: online magazine ’bout
the moz.

¯ http://www.mozdev.orN: is home to more than 70
Mozilla-related projects

¯ http: //www.mozdev.or~/proiects.html is the
impressive list of projects.

¯ http://optimoz.mozdev.orN: Optimoz,source of
’Mouse gestures’ and ’RadialContext’.

¯ http://www.opera.com/support/operashow/: use
Opera and style sheets to give presentations.

As dutch editor of LinuxFocus I work on the magazine every
week. At this moment I am mostly proofreading other people’s
translations to dutch. In the non-virtual world I was just
recently trying to improve my juggling skills - I do fairly well
now with 3 clubs, but 4 balls at once is still one too much for
me.

Translated to English by Floris Lambrechts
<floris~,l in uxfocus.o rq>

This article is re-printed with permission. The original
can be found at:

http: / / www. linuxfocus, org / Englis h/ November2OO2 / a
rticle262.shtml

Process Tracing Using
Ptrace, part 3
Author: Sandeep S <busybox@,,sancharnet.in>

The basic features of ptraae were explained in Part I
(AUUGN 23.3). In Part II (AUUGN 23.4) we saw a
small program which accessed the registers of a
process and modified them so as to change the
output of that process, by injecting some extra code.
This time we are going to access the memory of a
process. The purpose of this article is to introduce a
methods for infecting binaries on runtime. There are
many possible areas of use for this technique.

INTRODUCTION.

We are familiar with ptraae and know the techniques
of attaching a process, how to trace it and finally to
free it. We also have an idea about the structure of
the Linux binary format - ELF.

Our plan is to fetch/modify a running binary. So we
have to locate the symbols inside the binary. There
we need link map. link_map is the dynamic linker’s
internal structure with which it keeps track of loaded
libraries and symbols within libraries.

The format of link map is (from
/usr/include/l ink. h)

A small explanation for the fields.

1. l_addr: Base address where shared object is
loaded. This value can also be found from
/proc/pid/maps

2. l_name: pointer to library name in string table
3. l_ld: pointer to dynamic (DT_*) sections of shared

lib
4. l_next: pointer to next link_map node
5. l_prev: pointer to previous link_map node

Link-map is a linked list, each item on list having a
pointer to loaded library. What we have to do is, to
follow this chain, go through every library and find
our symbol. Now we have a question. Where we can
find this link_map?

For every object file, there is a global offset table
(GOT) which contains many details of the binary. In
GOT, the second entry is dedicated for the link map.
So we get the address of link_map from GOT[l] and
we go on searching our symbol.

STRAIGHT TO CODE.

Now we have collected the basic information needed
to access the memory. Let’s start now. First of all we
attach the process ’pid’ for tracing. Now we go for
finding out the link map we require. You will find
functions read_data, read_str etc. These are helper
functions to make working with ptrace easier.
Helper functions are self explaining.

The function for locating’the 1 ink__map is:

AUUGN Vol.24 ¯ No. 1 - 27 - March 2003

We start from the location 0x08048000 to get elf
header of the process we are tracing. We get the elf
header and from its fields we can get the program
header. (The fields of headers were discussed in Part
II
http://www.linux~azette.com/issue83/sandeep.html)
Once we get the program header, we go on checking
for the header with dynamic linking information.
From the header/struct with dynamic linking
information, we fetch the location of the information.
Go on searching until we get the base address of
global offset table.

Now we have the address of GOT with us and take the
second entry of GOT (there we have link_map). From
there get the address of the link raap which we
require and return.

We have the struct link map and we have to get
symtab and strtab. For this, we move to l_ld field
of link map and traverse through dynamic sections
until DT_SYMTAB and DT_STRTAB have been found,
and finally we can seek our symbol from
DT_SYMTAB. DT_SYMTAB and DT_STRTAB are the
addresses of symbol table and string table
respectively°

The function resolv_tables is:

entry one by one and check it whether it’s a function
name. (We are interested in finding the value of a
library function). If it is then it’s compared with the
function name given by us. If here also they match
now the value of the symbol is returned.

Now we have got the value of the symbol what we
actually required. What help will the value do for us?
The answer depends upon the reader. As I have
already stated we may use this for both good and evil
purposes.

You might be thinking that everything is over. We
forgot a step that we shouldn’t forget - detaching the
traced process. This may leave the process in a
stopped state for ever and the consequences are
already discussed in Part I of this series
http: //www.linux~azette. com/issue81/sandeep.html.
So our last and final step is to detach the traced
process.

The Ptrace.c program may be obtained from.
http: //www.linux~azette. com/issue85/misc/sandeep
/Ptrace.c.txt
Almost the whole code is self-explanatory.

Compile it by typing

Now we want to test the program. Run some process
in some other console, come back and type. (Here my
test program is emacs and the symbol I give is
s trcpy). You may trace any program that is
traceable instead of emacs and any symbol you want
to inspect.

What we actually do here is just reading dynamic
sections one by one and checks whether the tag is
DT_STRTAB or DT_SYMTAB. If yes, we can get their
respective pointers and assign to strtab and symtab.
Once the dynamic sections are over, we can stop.

Our next step is getting the value of symbol from the
symbol table. For this we take every symbol table

and watch what is going on.

CONCLUSION

So, we come to the end of a series of three articles
which has gone through the basic programming with
ptrace. Once you have understood the basic concept
it is not difficult to make steps by your own. More
details on ptrace and elf are available at
http://www.phrack.or~. One more thing I have to
write is that, we reached here without even
mentioning a major topic. One major feature of
ptrace is its play with system calls. In User Mode
Linux, this feature is used in a large scale. I am busy
with my classes and final year project, and I promise,
if time permits we will continue this series and then
we will have a look at those features of ptrace.

All Suggestions, Criticisms, Contributions etc.are
welcome. You can contact me at
busybox@sancharnet.in (changed since last issue).

Sandeep is a final year student of Government Engineering
College in Thrissur, Kerala, India. His interests include
FreeBSD, Networking and also Theoretical Computer Science.

Copyright © 2002, Sandeep S. Copying license

AUUGN Vol.24 ¯ No. 1 - 28 - March 2003

http: //www.linuxgazette. com/copyin~.html.
Published in Issue 85 of Linux Gazette, October
2002

This article is re-printed with permission. The original
can be found at:

http : / / www. linuxgazette, com/ issue83 / sandeep, html

Concurrent
programming -
Principles and
introduction to
processes
Author: Leonardo Giordani <leo..qiordani~libero.it>
Translated to English by: Leonardo Giordani

ABSTRACT
This series of articles has the purpose of introducing
the reader to the concept of multitasking and to its
implementation in the Linux operating system.
Starting from the theoretical concepts at the base of-
multitasking we will end up writing a complete
application demonstrating the communication
between processes, with a simple but efficient
communication protocol. Prerequisitesfor the
understanding of the article are:

Minimal knowledge of the shell
Basic knowledge of C language (syntax, loops,
libraries)

All references to manual pages are placed between
parenthesis after the command name. All the glibc
functions are documented in gnu info pages (info
Libc, or type info:/libc/Top in konqueror).

INTRODUCTION

One of the most important turning points in the
history of operating systems was the concept of
multiprogramming, a technique for interlacing the
execution of several programs in order to gain a more
constant use of the system’s resources. Let’s think of
a simply workstation, where a user can execute at the
same time a word processor, an audio player, a print
queue, a web browser and more. It’s an important
concept for modern operating systems. As we will
discover this little list is only a minimal part of the set
of programs that are currently executing on our
machine, even though the most "visual-striking".

Tn~ CONCEPT OF PROCESS
In order to interlace programs a remarkable
complication of the operating system is necessary; in
order to avoid conflicts between running programs an
unavoidable choice is to encapsulate each of them
with all the information needed for their execution.

Before we explore what happens in our Linux box,
let’s give some technical nomenclature: given a
running PROGRAM, at a given time the CODE is the
set of instructions which it’s made of, the MEMORY
SPACE is the part of machine memory taken up by its
data and the PROCESSOR STATUS is the value of
the microprocessor’s parameters, such as the flags or
the Program Counter (the address of the next
instruction to be executed).

We define the term RUNNING PROGRAM as a
number of objects made of CODE, MEMORY SPACE
and PROCESSOR STATUS. If at a certain time during
the operation of the machine we will save this
informations and replace them with the same set of
information taken from another running program, the
flow of the latter will continue from the point at which
it was stopped: doing this once with the first program
and once with the second provides for the interlacing
we described before. The term PROCESS (or TASK) is
used to describe such a running program.

Let’s explain what was happening to the workstation
we spoke about in the introduction: at each moment
only a task is in execution (there is only a
microprocessor and it cannot do two things at the
same time), and the machine executes part of its
code; after a certain amount of time named
QUANTUM the running process is suspended, its
informations are saved and replaced by those of
~inother waiting process, whose code will be executed
for a quantum of time, and so on. This is what we call
multitasking.

As stated before the introduction of multitasking
causes a set of problems, most of which are not
trivial, such as the waiting processes queues
management (SCHEDULING); nevertheless they have
to do with the architecture of each operating system:
perhaps this will be the main topic of a further article,
maybe introducing some parts of the Linux kernel
code.

PROCESSES IN LINUX AND UNIX
Let’s discover something about the processes running
on our machine. The command which gives us such
informations is ps(1) which is an acronym for
"process status". Opening a normal text shell and
typing the ps command we will obtain an output such
as

I state in before that this list is not complete, but let’s
concentrate on this for the moment: ps has given us
the list of each process running on the current
terminal. We recognize in the last column the name
by which the process is started (such as "mozilla" for
Mozilla Web Browser and "gcc" for the GNU Compiler
Collection). Obviously "ps" appears in the list becouse
it was running when the list of running processes was
printed. The other listed process is the Bourne Again
Shell, the shell running on my terminals.

Let’s leave out (for the moment) the information about

AUUGN Vol.24 ¯ No. 1 - 29 - March 2003

TIME and TrY and let’s look at PID, the Process
Identifier. The pid is a unique positive number (not
zero) which is assigned to each running process; once
the process has been teI-minated the pid can be
reused, but we are guaranteed that during the
execution of a process its pid remains the same. All
this implies is that the output each of you will obtain
from the ps command will probably be different from
that in the example above. To test that I am saying
the truth, let’s open another shell without closing the
first one and type the ps command: this time the
output gives the same list of processes but with
different pid numbers, testifying that they are two
different processes even ff the program is the same.

We can also obtain a list of all processes running on
our Linux box: the ps command man page says that
the switch -e means "select all processes". Let’s type
"ps -e" in a terminal and ps will print out a long list
formatted as seen above. In order to comfortably
analyze this list we can redirect the output of ps in
the ps.log file:

Now we can read this file editing it with our preferred
editor (or simply with the less command); as stated at
the beginning of this article the number of running
processes is higher than we would expect. We actually
note that list contains not only processes started by
us (through the command line or our graphical
environment) but also a set of processes, some of
which with strange names: the number and the
identity of the listed processes depends on the
configuration of your system, but there are some
common things. First of all, no matter what type of
configuration you gave to the system, the process
with pid equal to 1 is always "init", the father of all
the processes; it owns the pid number 1 because it is
always the first process executed by the operating
system. Another thing we can easily note is the
presence of many processes, whose name ends with a
"d": they are the so called "daemons" and are some of
the most important processes of the system. We will
study in detail init and the daemons in a further
article.

MUTITASKING IN THE LIBC
We understand now the concept of process and how
important it is for our operating system: we will go on
and begin to write mutitasking code; from the trivial
simultaneous execution of processes we will shift
towards a new problem: the communication between
concurrent processes and their synchronization; we
will discover two elegant solutions to this problem,
messages and semaphores, but the latter will be
deeply explained in a further article about the
threads. After the messages it will be the time to
begin writing our application based on all these
concepts.

The standard C library (libc, implemented in Linux
with the glibc) uses the Unix System V multitasking
facilities; the Unix System V (from now on SysV) is a
commercial Unix implementation, is the founder of
one of the two most important families of Unix, the
other being BSD Unix.

In the libc the pid_t type is defined as an integer
capable of containing a pid. From now on we will use
it to bear the value of a pid, but only for clarity’s sake:
using an integer is the same thing.

Let’s discover the function which give us the
knowledge of the pid of the process containing our
program.

(which is defined with pid_t in unistd.h and
sys/types.h) and write a program whose aim is to
print on the standard output its pid. With an editor of
your choice write the following code

Save the program as print_pid.c and compile it

this will build an executable named print_pid. I
remind you that ff the current directory is not in the
path it is necessary to run the program as
"./print_pid". Executing the program we will have no
great surprises: it prints out a positive number and, ff
executed more than once, you see that this number
will increase one by one; this is not mandatory,
because another process can be created from a
program between an execution of print_pid and the
following. Try, for example, to execute ps between two
executions of print_pid...

Now it’s time to learn how to create a process, but I
have to spend some more words about what really
happens during this action. When a program
(contained in the process A) creates another process
(B) the two are identical, that is they have the same
code, the memory full of the same data (not the same
memory) and the same processor status. From this
point on the two can execute in two different ways, for
example depending on the user’s input or some
random data. The process A is the "father process"
while the B is the "son process"; now we can better
understand the name "father of all the processes"
given to init. The function which creates a new
process is

and its name comes from the property of forking the
execution of the process. The number returned is a
pid, but deselxres a particular attention. We said that
the present process duplicates itself in a father and a
son, which will execute interlacing themselves with
the other running processes, doing different work; but

AUUGN Vol.24 ¯ No. 1 - 30 - March 2003

immediately after the duplication which process will
be executed, the father or the son? Well, the answer is
simply: one of the two. The decision of which process
has to be executed is taken by a part of the operating
system called scheduler, and it pays no attention if a
process is the father or the son, following an
algorithm based on other parameters.

Anyway, it is important knowing what process is in
execution, because the code is the same. Both
processes will contain the father’s code and the son’s
one, but each of them has to execute only one of this
codes. In order to clarify this concept let’s look at the
following algorithm:

- FORK
- IF YOU ARE THE SON EXECUTE (...)
- IF YOU ARE THE FATHER EXECUTE (...)

which represents in a sort of meta language the code
of our program. Let’s unveil the mystery: the fork
function returns ’0’ to the son process and the son’s
pid to the father. So it is sufficient to test ff the
returned pid is zero and we will know what process is
executing that code. Putting it in C language we
obtain

It’s time to write the first real example of multitasking
code: you can save it in a fork_demo.c t’fle and
compile it as done before. I put line numbers only for
clarity. The program will fork itself and both the
father and the son will write something on the screen;
the final output will be the interlacing of the two
output (if all goes right).

The main (as always in GNU), returns an integer,
which normally is zero ff the program reached the end
without errors or an error code ff something goes
wrong; let’s state this time all will run without errors
(we will add error control when the basic concepts will
be clear). Then we define the data type containing a
pid (05) and an integer working as counter for loops
(06). These two types, as stated before, are identical,
but they are here for clarity’s sake.

At line (07) we call the fork function which will return
zero to the program executed in the son process and
the pid of the son process to the father; the test is at
line (08). Now the code at lines (09)-(13) will be
executed in the son process, while the rest (14)-(16)
will be executed in the father.

The two parts simply write 8 times on the standard
output the word "-SON-" or "+FATHER+", depending
on which process executes it, and then ends up
returning 0. This is really important, because without
this last "return" the son process, once the loop has
ended, would go further executing the father’s code
(try it, it does not harm your machine, simply it does
not do what we want). Such an error will be really
difficult to find, since the execution of a multitasking
program (especially a complex one) gives different
results at each execution, making debugging based
on results simply impossible.

Executing the program you will perhaps be
unsatisfied: I cannot assure you that the result will be
a real mix between the two strings, and this due to
the speed of execution of such a short loop. Probably
your output will be a succession of "+FATHER+"
strings followed by a "-SON-" one or the contrary. Try
however to execute more than once the program and
the result may change.

Inserting a random delay before every prinff call, we
may obtain a more visual multitasking effect: we do
this with the sleep and the rand function.

this makes the program sleep for a random number of
seconds between 0 and 3 (% returns the remainder of
the integer division). Now the code looks as

and the same for the father’s code. Save it as
fork_demo2.c, compile and execute it. It is slower
now, but we notice a difference in the output order:

necessary libraries (standard I/O, multitasking).

AUUGN Vol.24 ¯ No. 1 - 31 - March 2003

Now let us look at the problems we have to face now:
we can create a certain number of son processes
given a father process, so that they execute
operations different from those executed by the father
process himself in a concurrent processing
environment; often the father needs to communicate
with sons or at least to synchronize with them, in
order to execute operations at the right time. A first
way to obtain such a synchronization between
processes is the wait function

where PID is the PID of the process whose end we are
waiting for, STATUS_PTR a pointer to an integer
which will contain the status of the son process
(NULL if the information is not needed) and OPTIONS
a set of options we have not to care about for now.
This is an example of a program in which the father
creates a son process and waits until it ends

The sleep function in the father’s code has been
inserted to differentiate executions. Let’s save the
code as fork_demo3.c, compile it and execute it. We
just wrote our first multitasking synchronized
application!

In the next article we’ll learn more about
synchronization and communication between
processes; now write your programs using described
functions and send me them so that I can use some
of them to show good solutions or bad errors. Send
me both the .c file with the commented code and a
little text file with a description of the program, your
name and your e-mail address. Good work!

RECOMMENDED READINGS
¯ Silberschatz, Galvin, Gagne, Operating System

Concepts - Sixth Edition, Wiley&Sons, 2001

¯ Tanenbaum, WoodHull, Operating Systems:
Design and Implementation - Second Edition,
Prentice Hall, 2000

¯ Stallings, Operating Systems - Fourth Edition,
Prentice Hall, 2002

¯ Bovet, Cesati, Understanding the Linux Kernel,
O’Reilly, 2000

This article is re-printed with permission. The originals
can be found at:
hap://www, linuxfocus, org / English/ Novernber2002 / a
rticle272.shtml

Using the Logical
Volume Manager
Vinayak Hegde vinayak@.myrealbox.com

Tn~ PROBLEM

One of the biggest problems faced by a linux user is
the problem of estimating and allocating enough disk
space to partitions when setting up a linux box. It
does not matter much whether he is a system
administrator looking after a server farm or an
intermediate/power user of linux who has realized
that he is going to run out of disk space. Sounds
familiar doesn’t it? Then starts the struggle to
overcome the problem. Aha, the user has a brain-
wave and problem is solved (after some sleepless
nights) by using some non-elegant methods (read
dirty hacks) like symlinks spanning partitions or
using some partition resizing tools like parted. But
these are only generally temporary solutions and we
are faced with the same problem again.

How you wish that this problem could be solved!! The
hacker in you wishes that you had a system on which
you can experiment freely regardless of disk space
and you could add or delete disk space as and when
required. If you are a system administrator of a site
with a number of servers which are always connected
to the Internet, the stakes are all the more higher.
Each minute of downtime causes losses. Even the
danger of customers going away from your site. You
can ill afford to reboot the server after you make
changes to the partition table every time this scenario
arises. LVM can be a lifesaver in such situations.

INTRODUCTION TO LVM

The Linux LVM can make your lfe a little easier. LVM
takes a higher level view of storage space as compared
to that of partitions and hard disks. Read on to
discover how. LVM was introduced into the main
kernel source tree from 2.4.x series onwards. Before
we move on to LVM, let us have a look at some of the
concepts and terminology that will be used.

AUUGN Vol.24 ¯ No. 1 - 32 - March 2003

Physical Volume

Physical Volume generally refers to the hard disk
partitions or a device that looks (logically) similar to a
hard disk partition such as a RAID device.

Logical Volume

One or many physical volumes make up a Logical
Volume. In LVM, a logical volume is similar to a hard
disk partition in non-LVM systems. The logical
volume can contain a file-system e.g. /home or/usr.

Volume Groups

One or many such logical volumes make up a Volume
Group. For LVM, a volume group is similar to a a
physical hard disk in a non-LVM system. The volume
group brings together many logical volume to form
one administrative unit.

How LVM WORKS

similar to the partition table for LVM. It is stored at
the beginning at the beginning of each physical
volume.

The VGDA consists of the following information :-

1. one PV descriptor
2. one VG descriptor
3. the LV descriptors
4. several PE descriptors.

When the system boots the LVs and the VGs are
activated and the VGDA is loaded into memory. The
VGDA helps to identify where the LVs are actually
stored. When the system wants to access the storage
device, the mapping mechanism (constructed with the
help of VGDA) is used to access the actual physical
location to perform I/O operation.

GETTING DOWN TO WORK

Let us now see how to use LVM :-

Step I -Configure the kernel

Before we begin to install LVM there are some
prerequisites:- your kernel should have the LVM
module configured.

This can be done as follows:-

Now that we have got a grip on the terminology of
LVM, let us see how it actually works. Each physical
volume is divided into a number of basic units called
as Physical Extents (PE). The size of a physical
extent is variable but same for physical volumes
belonging to a volume group. Within one physical
volume, every PE has a unique number. The PE is the
smallest unit that can be addressed by a LVM on a
physical storage.

Again each logical volume is divided into a number of
basic addressable units called as Logical Extents
(LE). In the same volume group the size of the logical
extent is same as that of the physical extent.
Obviously, the size of LEs is same for all the logical
volumes of a volume group.

Each PE has a unique number on a physical volume
but not necessarily for a logical volume. This is
because a logical volume can be made up of several
physical volumes in which case the uniqueness of PE
IDs is not possible. Hence the LE IDs are used for
identifying the LE as well as the particular PE
associated with it. As has been noted earlier there is
1:1 mapping between the LEs and PEs. Every time
the storage area is accessed the address or the IDs of
the LE is used to actually write the data onto the
physical storage.

under the Submenu:-

enable the following two options:-

Step2 - Check the Amount of Disk Space free on
your drive

This can be done using the following command:-

Step 3 - Create L~ pa~itions on your hard disk

Use fdisk or any o~er pa~ition utfli~ to create ~e
L~ par~tions. The pa~ition ~e of lin~ L~ is 8e.

You might be wondering by now, where all the meta-
data about the logical volume and volume groups isAfter the creation of the Linux LVM partition. Print
stored. As a analogy, the data about the partitions isthe partition table. It will look something like this:-
stored in the partition table in non-LVM systems. The
Volume Group Descriptor Area (VGDA) functions ~e~’.~}i:-i ’~B~gt~ ~.~t:’ ~i~:~ ¯ ~kS:)i:::i:~:i.::,; ~i~i~i~:(:.:~:..,::::)~.i

AUUGN Vol.24 ¯ No. 1 - 33 - March 2003

Step 4 - Create physical Volumes

The above command creates a volumegroup
descriptor at the start of the partition.

Step 5 - Create Volume Groups

Create a new volume group and add the two physical
volumes to it in the following way.

Mount the newly created l’flesystem using the mount
command.

Step 8 -Add entries to/etc/fstab and
/etc/lilo.conf

Add the following entry to /etc/fstab so that the
filesystem is mounted at boot.

Copy the recompiled kernel if you have not replaced
your original kernel with it yet so you have the option
of using LVM or not using it.

This will create a volume group named test_lvm
containing the physical volumes /dev/hda6 and
/dev/hda7. We can also specify the extent size with
this command ff the extent size of 4MB is not suitable
for our purpose.

Activate the volume groups using the command

The command "vgdisplay" is used to see the details
regarding the volume groups created on your system.

After adding the above lines reinstall lilo by using

Step 9 - Resizing logical volumes

Logical volumes can be resized easily using the
lvextend command.

Similarly logical volumes can be reduced by using the
following command

Step 6 - Create Logical Volumes

The lvcreate command is used to create logical
volumes in volume groups.

Step 7 - Create a file system

Now you need to build a filesystem on this logical
volume. We have chosen to make the reiserfs
journalling l’flesystem on the logical volume.

CONCLUSION

As we can see from the above discussion LVM is quite
extensible and pretty straightforward to use. After the
volume groups have been set up. It is pretty easy to
resize logical volumes as per requirements.

RESOURCES

The LVM Homepage
http://www.sistina.com/products ivm.htm

The LVM HOWTO
http://www.tldp.org/HOWTO/LVM-HOWTO/index.html

AUUGN Vol.24 ¯ No. 1 - 34 - March 2003

This article is re-printed with permission. The originals
can be found at:
http : / / www. linuxgazette, corn/issue84/vinayak, html

Intrusion detection
with Debian
GNU/Linux
Author: Jos6 Salvador Gonzblez Rivera <]s.qr~.tec.com.mx>
English Translation: Georges Tarbouriech <.qt~.linuxfocus.orq>

INTRODUCTION

When selecting a Linux Operating Sytem, we must
consider the numerous available distributions. Most
of them are based on RedHat, for instance Conectiva
(Brazil), Hispa source (Spain), Mandrake (France),
SuSE (Germany), Caldera and many others using the
RPM package manager. There is also Slackware,
trying to be closer to traditional Unix only using .tgz
archives. "Almost" all of them are developed by
commercial companies, but this is not true for
Debian. Debian provides a package manager (DPKG)
helping us in updating since it automatically looks for
updates from Internet; it also checks dependencies,
thus making system administration easier and allows
a system to be up-to-date as far as security patches
are concerned.

WHY DEBIAN GNU/LINuX ?

Debian also provides a few important features:
1) It does not have a commercial purpose and does
not follow the dictates of market emergencies.
2) It does have a good bug tracking system, and
problems are solved in less than 48 hours.
3) From the beginning its main priority is to develop a
complete and reliable operating system.
4) It is developed by volunteers all around the world.

Every new version provides new hardware
architecture support; at the moment, there is support
for: Alpha, ARM, HP PA-RISC, Intel x86, Intel IA-64,
Motorola 680x0, MIPS, MIPS (DEC), Power PC, IBM
S/390, Sparc and they are working on Sun
UltraSparc and Hitachi SuperH. It is the Linux
system supporting the highest number of platforms.
Among the existing Debian packages, there are
various real time intrusion detection tools able to
detect hostile behavior towards a connection. There
are two types of tools: the ones monitoring a network
attack attempt and the ones monitoring a specific
host activity..

HOST TOOLS

We use PortSentry to detect portscans, TripWire to
detect system changes and LogSentry for log analysis.
The first one and the last one are part of the TriSentry
suite by Psionic Technologies.

PORTSCAN DETECTION

PortSentry monitors the ports of our system and
executes an action (usually blocking) if it detects a
connection attempt to a port we do not want to be
listened to.

Its home page is at
http: //www.psionic. corn/products/ports entry.html
and PortSentry is available for Solaris, BSD, AIX,
SCO, Digital Unix, HP-UX, and Linux.

On Debian it can be installed typing the following
instruction:

Different activity levels can be selected: the classic
mode, the stealth mode and the advanced mode. The
configuration relies on the
/usr/local/psionic/portsentry/portsentry.conf file

I found the main options in an article from Jos4
Torres Luque in ES Linux Magazine and they are as
follows:

AUUGN Vol.24 ¯ No. 1 - 35 - March 2003

INTEGRITY ANALYSIS

TripWire allows to check the file system integrity; the
home page is at http://www.tripwire.org and it is
freely available for Linux and commercial for Windows
NT, Solaris, AIX and HP-UX. On Debian it can be
installed typing the following instruction: apt-get
install tripwire To store the information two keys are
needed: the first one, the "site key" is used to cipher
the policies and the configuration fries, and the
second one, the "local key" is used to cipher the
information showing the monitored files status. The
configuration is simply done in the
/etc/tripwire/twpol.txt file and once it has been
adapted, you can "install" it typing: twadmin -m P
/etc/tripwire/twpol.txt To create the initial database
containing the present status of the fries, we execute
the command: tripwire -m i 2 To check the integrity
of the file system we type the instruction: tripwire -m
c The configuration file can be deleted to prevent an
intruder from knowing which fries have been changed,
using this command: rm /etc/tripwire/twcfg.txt
/etc/tripwire/twpol.txt To create them if needed,
type the following:

LOGS ANALYSIS

LogCheck is part of LogSentry and allows logs
analysis in a very efficient way since it classifies and
makes reports about activity and errors that require
reading. It provides 4 different logging levels: ignore,
unusual activity, violation of security and attack. Its
home page is at
http://www.psionic.com/products/logsentry.html. It
is available for Solaris, BSD, HP-UX and Linux. On
Debian it can be installed typing the following
instruction: apt-get install logcheck This installs the
logtail program in /usr/local/bin to keep a list of the
already analyzed logs. The following fries are also
installed:

installed typing the following instruction:

It works in three different modes: sniffer, packet
logger and intrusion detector. It can use the following
parameters:

SNORT SNIFFER AND PACKET LOGGER MODES

In sniffer mode, it reads every packet circulating
through the network and displays them on the
console while in packet logger mode it sends the data
to a file in a directory.

Snort -v
Shows IP and headers.

Snort -dv
Also shows the data circulating.

Snort -dev
A more detailed way.

SNORT INTRUSION DETECTION MODE

In this mode, snort informs us about portscans, DoS
(Denial of Service) attacks, exploits, etc. It relies on
rules found in /usr/local/share/snort that you can
download from the website and the server updates
them about every hour. Its configuration is very
simple since it consists in making changes to the
snort.conf file, where we provide our network details
and the working directories.
Just change the IP:
var HOME_NET IP

You can use cron to run logcheck eve~ hour:

NETWORK TOOLS

We use Snort to detect the network attack attempts.
Its home page can be found at http://www.snort.org
and it is available for BSD, Solaris, AIX, Irix,
Windows, MacOS X and Linux. On Debian it can be

The log fries are stored in /var/log/snort where we
can see the IPs of the attackers. This is of course a
very short review of what you can do with snort and I
recommend reading more about it. Most of the
organizations, magazines, security groups consider
this great tool as the best Intrusion Detection system
for any Unix or Windows platform and recommend it.
There is commercial support from companies such as
Silicon Defense and Source Fire and GUIs are
beginning to appear to provide a more attractive
presentation of the results. Sometimes emergency
situations appear requiring a deeper analysis since
there are problems that have not been taken into
account and that must be solved at once. These
problems usually are caused by ill-intentioned people
or intruders trying to access our servers for one
reason or the other, either stealing or altering our
data or attacking other machines from ours, either
installing a sniffer or a rootkit which are sets of tools

AUUGN Vol.24 ¯ No. 1 - 36 - March 2003

allowing an intruder to gain more privileges on any
system.

OTHER USEFUL TOOLS

SNIFFER DETECTION

A sniffer is a tool that changes our network interface
to promiscuous mode with the goal of listening to the
whole network traffic. The ifconfig command provides
us with the full information about the network
interface:

they replace our system binary Fries with different
versions to gain a later access to the system. This is
why we must check if we still have the original ones
using chkrootkit. It can be installed like this:

The website is at www.chkrootkit.org and it checks
the following files:

However, if the ifconfig command has been replaced
or ff the sniffer works from another machine in the
network, you have to check the outside connections,
for instance, sending marl to "strange" accounts or
detecting the logs of the sniffer. There is a tool called
neped, designed by a Spanish hacker group, which
informs us about the interfaces working in
promiscuous mode within our network." It is not part
of Debian but it can be downloaded from
ftp: / / apostols.org/AposTools/snapshots/neped/nepe
d.c Note: this server seems to have been down for a
few weeks.

Executing this program gives a result like the
following:

When sending an IP packet from 191.168.0.1 to
192.168.0.2 we need to know its MAC address. This
is done sending a broadcast packet to the network
asking for the MAC address of the specified IP: all the
machines get the request but the right host is the
only one answering. In this case neped asks every
network IP, however it does not send a broadcast but
uses a non-existent IP address instead. Only the
hosts having their interface .in promiscuous mode will
answer since they are the only ones able to see these
packets. I discovered this program in an article about
spy detection found on the net. It was providing a
similar example. If you know the URL for this article,
feel free to send it to me by marl, since I lost it:-)

ROOTKITS DETECTION

The rootkits provide a means of getting more
privileges than a normal user can have. Generally,

REFERENCES

Reading these programs man pages is recommended.
I provide you with a few references I did use. Please,
feel free to send me suggestions and comments to my
email address.

¯ Alexander Reelsen, Securing Debian How To,
version 1.4, 18 February 2001

¯ An6nimo, Linux MAxima Seguridad, Pearson
Educaci6n, Madrid 2000

¯ Brian Hatch, Hackers in Linux, Mc Graw Hill 2001
¯ Jim Mellander, A Stealthy Sniffer Detector,

Network Security
¯ Antonio Vfllal6n Huerta, Seguridad en Unix y

redes, Open Publication License, octubre 2000
¯ CSI FBI Computer Crime and Security Survey, CSI

Issues&Trends, Vol.7
¯ Who’s Sniffing Your Network?,

http: //www.linuxsecurity. com/articles/intrusion_
detection_article-798.html

¯ Root-kits and integrity:
http://www.linuxfocus, org/November2002/article
263. shtml

© Josd Salvador GonzS_lez Rivera,

http: //www.linuxfocus.or~/common. cop¥.html
LinuxFocus.org

FDL

This article is re-printed with permission. The oriqinals
can be found at:

http : / / www. linuxfocus, or.q / En.qlis h / JanuarLl2OO3 / a~
icle274.shtml

AUUGN Vol.24 ¯ No. 1 - 37 - March 2003

Shielded Processors:
Guaranteeing Sub-
millisecond Response
in Standard Linux
Author: Steve Brosk <steve.brosky@ccur.com>
Author: Steve Rotolo <steve.rotolo@ccur.com>

ABSTRACT

There has been significant progress making standard
Linux into a more responsive system for real-time
applications. The low latency patches and the
preemption patches have allowed guarantees on worst
case interrupt response time at slightly above a
millisecond. These guarantees today are only met
when there is no networking or graphics activity in
the system. The shielded processor concept dedicates
selected processors in a symmetric multiprocessing
system for the real-time components of an
application. This paper will describe the
implementation of shielded processors in RedHawk
Linux and the benefits of shielded processors. It will
also present, the results of benchmarks for both
interrupt response and program execution
determinism. Interrupt response time guarantees are
significantly below one millisecond and can be
guaranteed even in the presence of networking and
graphics activity.

1. INTRODUCTION

Concurrent Computer has had more than a decade of
experience in utilizing the shielded CPU model for
attaining real-time performance under a real-time
version of an SRV4 UNiX-based operating system.
The key benefit of the shielded CPU approach is that
it allows a commodity operating system to be used for
applications that have hard real-time deadlines.
Commodity operating systems like UNIX or Linux
provide a benefit for these applications because they
have large numbers of programmers that are familiar
with the programming API and there is a rich set of
development tools and other application software
available for these operating systems.

Shielded CPUs can provide more deterministic
performance because the overhead of the operating
system is essentially off loaded onto a subset of CPUs
in the system. A shielded CPU is therefore able to
provide a more deterministic execution environment.
In applying the shielded processor model to Linux
several nuances were found which affected the
expected behavior of processes running on shielded
CPUs.

2. THE SHIELDED CPU MODEL

The shielded CPU model is an approach for obtaining
the best real-time performance in a symmetric
multiprocessor (SMP) system. This approach does not
apply to uniprocessor systems. The shielded CPU

model allows for both deterministic execution of a
real-time application as well as deterministic response
to interrupts. A task has deterministic execution
when the amount of time that it takes to execute a
code segment within that task is predictable and
constant. Likewise the response to an interrupt is
deterministic when the amount of time it takes to
respond to an interrupt is predictable and constant.

When the worst-case time measured for either
executing a code segment or response to an interrupt
is significantly different than the typical case, the
application’s performance is said to be experiencing
jitter. Because of computer architecture features like
memory caches and contention for shared resources,
there will always be some amount of jitter in
measurements of execution times. Real-time
applications are defined by the fact that they must
respond to real world events within a predetermined
deadline. Computations that are completed after this
deadline are considered incorrect. This means that
the worst-case jitter that the operating system allows
determines whether that operating system is suitable
for hosting a given real-time application. Each real-
time application must define the amount of jitter that
is acceptable to that application.

In the shielded CPU model, tasks and interrupts are
assigned to CPUs in such a way as to guarantee a
high grade of service to certain important real-time
functions. In particular, a high-priority task is bound
to one or more shielded CPUs, while most interrupts
and low priority tasks are bound to other CPUs. The
CPUs responsible for running the high-priority tasks
are shielded from the unpredictable processing
associated with interrupts and the other activity of
lower priority processes that enter the kernel via
system calls, thus these CPUs are called shielded
CPUs.

It will be shown that a shielded CPU can be used to
guarantee deterministic execution and deterministic
interrupt response times using a modified Linux
kernel that presents a standard Linux API to the user.
The benefit is that real-time applications can be
developed using standard Linux interfaces and
standard Linux debugging tools while still being able
to guarantee very deterministic real-time
performance.

3. IMPLEMENTATION OF SHIELDED PROCESSORS

To create a shielded processor, it must be possible to
set a CPU affinity for every process and every
interrupt in the system. In this way a system
administrator can define which processes and
interrupts are allowed to execute on a shielded CPU.
The Linux kernel already has support for CPU affinity
in the form of a entry in the process structure for
storing the CPU affinity and code in the scheduler
that restricts processes to run only on CPUs that are
a part of their CPU affinity. The only thing lacking in
standard Linux is a user interface for setting a
process’ CPU affinity. Several open source patches
provide this capability. Standard Linux does
supports a CPU affinity for interrupts. In this case,
the user interface is already present via the

AUUGN Vol.24 ¯ No. 1 - 38 - March 2003

/ proc / irq / * / smp_affinity files.

These two CPU affinity capabilities would allow a
system administrator to setup a shielded processor,
but it would require all processes and users in the
system to honor the shielded processor by not
explicitly changing their processor affinity to run on
the shielded CPU. A better mechanism for setting up
a shielded CPU is desirable.

In addition, there are some interrupts that cannot be
assigned a CPU affinity. The local timer interrupt
interrupts every CPU in the system, by default at a
rate of 100 times per. second or once every 10
milliseconds. This interrupt is generally the most
active interrupt in the system and therefore it is the
most likely interrupt to cause jitter to a real-time
application. The local timer interrupt provides
functionality such as the accounting of CPU
execution time, system prolCfling and CPU resource
limits. The shielded processor mechanism allows this
interrupt to be disabled. Some of the functionality,
such as CPU time accounting can be accomplished
via other techniques. Other functionality that is more
geared towards debugging and performance analysis,
such as profiling, is simply lost when this interrupt is
disabled.

A new set of/proc fries were added to a new directory,
/proc/shield, to allow the system administrator to
specify a bit mask of CPUs that should be shielded. It
is possible to shield a CPU from both interrupts and
processes. Separate files control shielding a CPU
from processes, interrupts that can be assigned to a
CPU and the local timer interrupt. It is possible to
shield a CPU from all of these activities or just a
subset.

Since we do want the ability to have some processes
and some interrupts active on a shielded CPU, it was
necessary to create a semantic for the interaction of
process and interrupt affinity with the shielded CPU
mask. In general, the CPUs that are shielded are
removed from the CPU affinity of a process or
interrupt.
The only processes or interrupts that are allowed to
execute on a shielded CPU are processes or interrupts
that would otherwise be precluded from running
unless they were to allowed to run on the shielded
CPU. In other words, to run on a shielded CPU, a
process must set its CPU affinity such that it contains
only shielded CPUs.

When one of the /proc fries that controls CPU
shielding is modified, the shielded CPU is dynamically
enabled. This means that the affinity masks of all
processes and interrupts are examined and modified
accordingly. The processes currently assigned to the
shielded processor, which will no longer be allowed to
run on that processor, will be migrated to other CPUs
the next time that they run. Because the affinity
mask associated with interrupts is also modified; the
shielded CPU will handle no new instances of an
interrupt that should be shielded. The local timer
interrupt is disabled on shielded CPUs that have been
specified by the shield command. The ability to
dynamically enable CPU shielding allows a developer

to easily make modifications to system configurations
when tuning system performance.

4. Rr~HAwx KERNEL

Before describing the test scenarios that were used, it
is necessary to describe the RedHawk Linux kernel,
which was used for running benchmark tests that
show the effect of shielded processors. The RedHawk
kernel used was version 1.3. RedHawk is a Linux
kernel based on kernel.org 2.4.20. Various open
source patches have been applied to this kernel to
augment both real-time functionality and real-time
performance including the MontaVista preemption
patch, Andrew Morton’s low-latency patches and the
Posix timers patches. Other changes have also been
incorporated by Concurrent for improving real-time
performance. This includes further low-latency work
and the implementation of shielded processors. In
addition, support was added for the Concurrent
manufactured Real-time Clock and Interrupt Module
(RCIM) PCI card. The RCIM provides the ability to
connect external edge-triggered device interrupts to
the system and also supports additional high-
resolution timers. It will be shown how the RCIM
driver is an important part of the RedHawk strategy
for supporting deterministic interrupt response under
Linux.

5. DETERMINISM IN EXECUTION

Determinism refers to a computer system’s ability to
execute a particular code path in a fkxed amount of
time. The extent to which the execution time for the
code path varies from one instance to another
indicates the degree of determinism in the system.
Determinism applies not only to the amount of time
that is required to execute a time-critical portion of a
user’s application but also to the amount of time that
is required to execute system service code in the
kernel.

The standard Linux kernel has already addressed
some of the primary causes of non-deterministic
execution. For example Linux supports the ability to
lock an application’s pages in memory, preventing the
jitter that would be caused when a program first
accessed a page that is not resident in memory and
turning a simple memory access into a page fault.
Linux also supports strict priority-based scheduling
so that the highest priority real-time processes are
guaranteed to get as much CPU time as they require
without having their priority eroded by scheduling
fairness algorithms.

Previous experience with creating a real-time variant
of UNIX showed that the primary remaining cause of
indeterminism in program execution would be caused
by interrupts. Because interrupts will preempt the
execution of even the highest priority task, interrupts
are essentially the highest priority activity in the
system. An interrupt can occur at any point in time
because it is asynchronous to the operation of the
programs executing in the system. This means that
interrupts can cause significant jitter to a real-time
application because they cause delays in program

AUUGN Vol.24 ¯ No. 1 - 39 - March 2003

execution at unpredictable points in time.

For this test, the system used was a dual processor
1.4GHz Pentium 4 Xeon with one GB of RAM and a
SCSI hard drive.

Since we are measuring CPU execution determinism,-"
it is desirable to have an application which is CPU
bound for this measurement. The determinism test
simply measures the length of time that it took to
execute a function using double precision arithmetic
to compute a sine wave. The sine function was
called in a loop such that the total execution time of
the outer loop should be around one second in length.
Before starting this loop, the IA32 TSC register was
read and at the end of the loop the TSC register is
again read. The difference between these two high-
resolution times represents that amount of time that
it took to perform this CPU-bound loop. The test
locks it pages into memory and the test process is
scheduled under the SCHED_FIFO scheduling policy.

The base time for the determinism test was based on
the ideal case for running the CPU-bound loop and
was determined by running the test on an unloaded
sy.stem. Both kernels under test were tried in an
unloaded state. The best time was measured under
RedHawk, on a shielded CPU.

Subsequently the test was run under various kernel
configurations with a load on the system. Any run of
the CPU-bound loop that took more time than the
ideal case was considered to have been impacted by
indeterminism in the system. The difference between
the worst-case time it took to run the CPU bound loop
and the ideal case represents the amount of jitter.

To measure worst-case jitter, a strenuous background
workload must be run on the rest of the system. This
workload should have a heavy interrupt load to show
the worst-case performance. Two shell scripts were
used to create Ethernet and disk interrupts. The first
script was run on a foreign system and it copies a
compressed kernel boot image over the Ethernet to
the system that is being tested:

The second test generates disk traffic on the system
by running a shell script that recursively
concatenates files:

Linux kernel (kernel.org 2.4.20-rcl). The graph below
graphs the amount variance from the ideal case in
milliseconds. This means that a deterministic run
would have a graph that has the majority of its data
points on the left hand side of the graph. Also
interesting is the worst-case time that it took to
execute the computational loop. The results for the
kernel.org kernel are summarized in figure 1. The
results are also summarized in terms of minimum,
maximum and the amount of jitter. The jitter
reported is the difference between the maximum
amount of time it took to run the computational loop
and the ideal time it took to run the computational
loop, expressed in both seconds and as a percentage
of the ideal case.

Clearly there was significant variance in the amount
of time that it took to run the computational loop on a
standard Linux kernel when the system is busy with
a load that causes interrupt traffic. In the worst case,
the computational loop, which should have taken
1.15 seconds, took an additional 300 milliseconds to
complete.

The test was next run on the RedHawk 1.3 kernel, on
a shielded processor. Figure 2 graphs the amount
variance from the ideal case with a summary of the
results in the legend below the graph.

As expected, a shielded processor provides a
signficant improvement in the amount of variance
that we see from the ideal case. In the worst case, the
computational loop, which should have taken 1.15
seconds, took an additional 2 lmilliseconds to
complete. This jitter is assumed to be due to memory
contention in an SMP system.

To be sure that the improvement in determinism was
due to shielding and not other differences in the
system, the test was next run on the RedHawk 1.3
kernel, on a non-shielded processor. Figure 3 graphs
the amount variance from the ideal case with a
summary of the results in the legend below the graph.

5.2 DrTv, P.~msM RrS~LTS

The determinism test was first run on a standard

The test confirmed that the interrupt load on an
unshielded processor does indeed cause greater jitter
in the execution time for executing a computational
load.

However, the determinism on a non-shielded CPU was
still significantly better than standard Linux. The
mystery is why were the standard Linux results as

AUUGN Vol.24 ¯ No. 1 - 40 - March 2003

bad as they were? It was theorized that the cause
was the fact that this version of Linux enables hyper-
threading. A final version of the test was run on the
standard Linux kernel with hyperthreading disabled
via the GRUB prompt. Figure 4 graphs the amount
variance from the ideal case with a summary of the
results in the legend below the graph.

This test clearly identifies hyper-threading as the
culprit for even greater non-deterministic execution.
While hyper-threading does offer a performance boost
for a multi-threaded application by enabling
parallelism at the instruction unit level, this chip
feature causes another layer of indeterminism for
real-time applications. This is because with hyper-
threading enabled, the execution unit itself has
become a point of contention between the processes
that are executing on the virtual processors of a
single CPU.

Because real-time applications must respond to real
world events and those events are communicated to
the computer via an interrupt, determinism in
responding to an interrupt is an especially important
metric for a real-time operating system.

There are existing open source patches that address
some of the issues in the standard Linux kernel for
achieving good interrupt response. One such patch is
the kernel preemption patch. This patch allows one
process to preempt another process that is currently
executing inside of the kernel. Prior to this patch
when one process did a system call, no other process
could execute inside of the kernel until that process
either blocked or completed its system call. This has
the potential to lead to very long delays when trying to
wake a high priority process that was awaiting an
interrupt when there is currently a non-preemptible
task executing in the kernel.

Even with the preemptible kernel patch there are
remaining issues with preempting a process that is
executing inside of the kernel. When a process makes
a system call, that process might enter into one of the
Linux kernel’s critical sections. A critical section is
an area of code that accesses a shared kernel data
structure. Because the data structure is shared, it
might be simultaneously accessed by another process
that is executing inside of the kernel. To prevent the
shared data from being corrupted, a critical section
requires synchronization primitives that allow only
one process at a time to access the shared data. The
preemptible kernel patch does not allow a process to
be preempted while it is inside of a critical section,
since the preempting process might then also try to
access the shared data of the pending critical section,
causing the shared data to be corrupted.

Because the kernel’s critical sections cannot be
preempted, the length of the critical sections inside of

the kernel is significant when considering worst-case
interrupt response. Other open source patches
collectively known as the "low-latency patches,"
address the longest critical sections in the kernel by
rewriting the algorithms involved so that preemption
can be disabled for a shorter period of time. The
combination of the preemption patch and the low-
latency patch sets was used on a Red Hat based
system to demonstrate a worst-case interrupt
response time of 1.2 milliseconds [1].

Experience with working with a real-time variant of
UNIX showed that when trying to guarantee how long
it will take to respond to an interrupt, the biggest
problem is the critical sections that disable
preemption. Consider the case where a low priority
process enters the kernel to process a system call and
that process enters a critical section where
preemption is disabled. If a high priority interrupt
becomes active at this point in time, the system will
process that interrupt, but when the intei-rupt routine
wakes the process that is awaiting the interrupt, that
process will not be able to run until the execution of
the critical section is complete. This means that the
worst-case time to respond to an interrupt is going to
be at least as long as the worst-case time that
preemption is disabled in the kernel.

In a Symmetric Multiprocessor system that supports
CPU shielding it is possible to prevent low priority
processes from running on a CPU where a very fast
response to interrupt is required. While this means
that some CPU resources will be under utilized, it
does allow a very firm guarantee for processes that
require a high degree of interrupt response.

6.1 INTERRUPT RESPONSE TEST

To measure interrupt response time, the realfeel
benchmark from Andrew Morton’s website was
initially used. This test was chosen because it would
allow results to be compared between a standard
Linux kernel and a RedHawk system. This test
operates by measuring the response to an interrupt
generated by the Real Time Clock (RTC) driver. This
driver is setup to generate periodic interrupts at a
rate of 2048 Hz. The RTC driver supports a read
system call, which returns to the user when the next
interrupt has fired. The clock used to measure
interrupt response is the IA32 TSC timer. To
measure interrupt response time, the test first reads
the value of the TSC and then loops doing reads of
/dev/rtc. After each read the test gets the current
value of the TSC. The difference between two
consecutive TSC values measures the duration that
the process was blocked waiting for an RTC interrupt.
The expected duration is 1/2048 of a second. Any
time beyond the expected duration is considered
latency in responding to an interrupt. The test locks
it pages into memory and the test process is
scheduled under the SCHED_FIFO scheduling policy.

To measure worst-case interrupt response time, a
strenuous background workload must be run on the
rest of the system. The workload chosen was the
same as that used in Clark William’s paper on Linux
Scheduler Latency [1]. This workload is from the Red

AUUGN Vol.24 ¯ No. 1 - 41 - March 2003

Hat stesss-kernel RPM. The following programs from
stress-kernel are used:

The NFS-COMPILE script is the repeated compilation
of a Linux kernel, via an NFS file system exported
over the loopback device. The TTCP program sends
and receives large data sets via the loopback device.
FIFOS_MMAP is a combination test that alternates
between sending data between two processes via a
FIFO and operations on an mmap’d file. The P3_FPU
test does operations on floating point matrices. The
FS test performs all sorts of unnatural acts on a set of
fries, such as creating large fries with holes in the
middle, then truncating and extending those fries.
Finally the CRASHME test generates buffers of
random data, then jumps to that data and tries to
execute it. Note that while no Ethernet activity was
generated on the system, the system did remain
connected to a network and was handling standard
broadcast traffic during the test runs.

6.2 INTERRUPT RESPONSE RESULTS

The system used for the test was a dual 933MHz
Pentium 3 Xeon with 2GB of RAM with a SCSI disk
drive. Two different kernels were measured under the
same load conditions.

The first kernel used was a standard Linux
(kernel.org 2.4.20-rcl). Note that this kernel does not
contain the low-latency patches or the preemption
patch. After starting the stress-kernel program,
realfeel was run for 60,000,000 samples at 2048 Hz.
The test was terminated before the full eight-hour run
completed because we already had enough data
showing poor interrupt latency on this kernel. Figure
5 graphs the interrupt response for a standard Linux
kernel. Note that the y axis is a logarithmic scale.
This graph is summarized in terms of histogram
buckets below the graph.

While the majority of the responses to interrupt to
occur in less than 100 microseconds, for a real-time
application the most important metric is the worst-

case interrupt response. This graph shows that
standard Linux without the patches that implement
minimal real-time performance gains has very poor
guarantees on interrupt response. At 92
milliseconds, the worst-case interrupt response is
completely unacceptable for a real-time application.
These results are expected.

The second kernel tested was the RedHawk 1.3 kernel
described above. After starting the stress-kernel
program, realfeel was run for 60,000,000 samples at
2048 Hz. This run was approximately 8 hours in"
length. While the length of this run may seem like
overkill, early results showed us that on a shielded
CPU the worst-case numbers might not occur until
several hours into the run.

In this test, CPU 1 was setup as a shielded processor.
The RTC interrupt and realfeel have their CPU affinity
set such that they run on shielded CPU 1. The
stress-kernel test is run without any CPU affinity set.
The results of the interrupt response test for a
RedHawk shielded processor are presented in Figure
6. Again, the results are also summarized in
histogram form below the graph.

The initial tests run under RedHawk on shielded
CPUs showed worse results than expected. The
problems discovered resulted in several additional
fLxes to the Linux kernel to allow us to achieve a more
optimal interrupt response on a shielded processor.
The primary problem was due to critical sections that
are protected by spin locks that do not disable
interrupts. It is not necessary for these spin locks to
disable interrupts because the critical section is never
locked at interrupt level. When interrupts are not
disabled, it is possible for an interrupt routine to
preempt a critical section being protected by a spin
lock. Because interrupt routines are relatively short,
this should not be a big issue. The problem was in
the bottom half interrupt routines that would run on
return from interrupt. These interrupt bottom halves
sometimes executed for several milliseconds of time.
If the process used to measure interrupt response on
the shielded processor attempts to lock the contended
spin lock (which had been preempted by interrupts
and bottom half activity) during the read of dev/rtc
then the response to interrupt could be delayed by
several milliseconds.

Because the/dev/rtc mechanism works via the read()
system call, a process that wakes up after the
interrupt fires must now exit the kernel through
various layers of generic file system code. Embedded
in this code are opportunities to get blocked waiting
for spin locks. The /dev/rtc interface is therefore not
ideal for guaranteeing the time to respond to an

AUUGN Vol.24 ¯ No. 1 - 42 - March 2003

interrupt.

6.4 A SECOND INTERRUPT RESPONSE TEST

While the initial experiment did succeed in reducing
interrupt latency below one millisecond, the results
were not as good as expected for shielded CPUs. It
was theorized that these mediocre results were due to
the the fact that the realfeel test uses /dev/rtc, whose
API is considered less than optimal, as described
above. Therefore a new interrupt response test was
designed. In this test the real-time timer on the Real-
time Clock and Interrupt Module (RCIM) PCI card was
utilized as the interrupt source.

To block waiting for the RCIM’s timer to interrupt, the
user makes an ioctl0 call rather than a read() system
call. In addition, the Linux kernel got a modification
to correct one of the issues found with this interrupt
response test. Linux locks the BKL spin lock before
entering a device driver’s ioctl routine. This is to
protect legacy drivers which are not properly
multithreaded from having issues on an SMP system.
The problem is that the BKL spin lock is one of the
most highly contended spin locks in Linux and
attempting to lock it can cause several milliseconds of
jitter.

A change was implemented to the generic ioctl
support code in Linux so that it would check a device
driver specific flag to see whether the device driver
required the Big Kernel Lock (BKL) to be held during
the driver’s ioctl routine. This allows a device driver
that is fully multi-threaded to avoid the overhead of
the BKL. Since the RCIM driver is multi-threaded, it
does not require the BKL to be locked during its ioctl
routine.

Like realfeel, the RCIM interrupt response test
measures the a_mount of time it takes to respond to
an interrupt generated by a high-resolution timer.
When the RCIM is programmed to generate a periodic
interrupt, the length of the periodic cycle is stored in
the RCIM’s count register. The count register is
decremented until it reaches zero, at which time an
interrupt is generated. When the count reaches zero,
the RCIM will also automatically reset the count
register to its initial value and begin decrementing the
count register for expiration of the next periodic cycle.

The RCIM interrupt response test operates by
initiating a periodic interrupt on the RCIM and then,
in a loop, issuing the ioctl to block until an interrupt
is received. When the test is waked, it immediately
reads the value of the count register on the RCIM.
Because this register can be directly mapped into the
program, the overhead of this read is only about 3
microseconds. The test can then calculate the time
since the interrupt fired by subtracting the current
value of the counter register from the initial value
that is loaded into the count register at the beginning
of each periodic cycle. The test locks it pages into
memory and the test process is scheduled under the
SCHED_FIFO scheduling policy.

In this test scenario the workload was significantly
increased from that used during the realfeel

benchmarking above. The same stress-kernel load
was used, but in addition, the Xl lperf benchmark
was run on the graphics console and the ttcp network
performance benchmark was run, reading and writing
data across a 10BaseT Ethernet connection.

The test was run on a dual processor 2.0 GHz
Pentium 4 Xeon with 1GB of RAM and scsi disks.
The Ethernet controller is the 3Corn 3c905C-TX/TX-
M. The graphics controller is the nVidia GeForce2
MXR.

Because this interrupt response test requires the
RCIM driver, which is not a part of standard Linux,
no numbers were gathered for a standard Linux
kernel. The results for running this test on RedHawk
1.3 are shown in figure 7. Note that the numbers in
this thin bar histogram represent microseconds, NOT
milliseconds. The y axis is a logarithmic scale.

This test demonstrates that the issues seen with the
realfeel test have to do with the multithreading issues
of /dev/rtc. When the RCIM driver is used to
generate a high-resoultion timer interrupt, a shielded
processor is able to provide an absolute guarantee on
worst-case interrupt response time that is less than
30 microseconds.

7. CONCLUSION

It has been demonstrated that processes executing on
a shielded processors on a standard Linux kernel can
achieve respectable determinism in the time that it
takes to execute a user-level application. Enabling
hyperthreading on the Xeon chip causes another level
of contention between the processes that are
executing on the virtual CPUs provided by
hyperthreading and causes a decrease in program
execution determinism.

It has also been demonstrated that when an interrupt
and the program that responds to that interrupt are
run on a shielded processor it is possible to guarantee
interrupt response that is less than 30 microseconds.
This guarantee can be made even in the presence of
heavy networking and graphics activity. This
interrupt response guarantee rivals the guarantees
that can be made by much smaller and much less
complex real-time kernels. There are remaining
multithreading issues to be solved in the Linux kernel
to achieve this level of interrupt response for other
interrupt mechanisms.

REFERENCES

[1] Clark Williams, 2002, Linux Scheduler Latency,
Red Hat web cast.

AUUGN Vol.24 ¯ No. 1 - 43 - March 2003

Steve Brosky and Steve Rotolo
Concurrent Computer Corporation
2881 Gateway Drive, Pompano Beach, FL 33069
{steve.brosky, steve.rotolo}@ ccur. com

This article is re-printed with permission oJ Concurrent
Computer Corp.

Fighting against Spam-
Mail
Authors: Katja and Guido Socher <katja~linuxfocus.or.q>,
,<fluido@linuxfocus. or.q>

WHAT IS SPAM-MAIL.9

Spam-mafl has many names. Some call it UCE
(Unsolicited commercial email) others call it just
Unwanted E-mail but all these names don’t really say
what it is. If you don’t get spam (yet) then take a look
at this collection of spare-mail
(http: //www.linuxfocus.or~/common/src / article279 /
spam samples.html). It’s a random selection of spam-
marl collected over just a few days. Read through the
mails and you will soon understand that it has
nothing to do with commerce or business. These
spalnmers are criminals. No serious business
man/woman would annoy and offend millions of
people to find a few "idiots" who would buy their
tricks.

It is a common misunderstanding of people who have
not much used the Internet to believe that this type of
advertisement can be compared to information they
get from time to time from their local supermarket.
Products sold via spare-mails are often illegal or no
products at all. They are tricks to get your money.

How MucH?

Spammers get your e-mail addresses from webpages,
news groups or domain records (ff you have your own
domain). There are individuals who use robots to
extract the addresses, burn them on CDs and sell
them very cheap to other Spammers. If you write your
e-mail address in clear text onto your homepage
today such that programs can extract it, then you will
have a major problem in a few months time and you
can’t stop it. The problem will be growing every day!

In 1998 the percentage of spam mail sent to
LinuxFocus was less than 10%. As of November 2002
the statistics are as follows:
Our server gets about 4075 mails per week. 3273 are
spare-mail!! => 80% of aH mail is Spam.

That is 80% of the capacity of the mail server and
80% of the network bandwidth is for something that
nobody wants.

Out of these 3273 spam marls about 40% originate in
America (mostly Canada, US, Mexico) and about 30%
in Asia (mostly Korea, China, Taiwan).

WHAT TO DO WITH SPAM

If you look at the spam-mails
(http: //www.linuxfocus. or~/common/src/article279/
spam samples.html) you will notice that almost all
offer a possibility to be removed from the list. Don’t do
it! You are dealing with criminals. None of the
spammers get anything if they maintain a proper
remove list. Why do they still add this possibility? The
answer is simple. It makes a much better impression
on the reader and it’s an excellent statistical tool. The
spammers can immediately check that their mails
arrive. In other words you confirm the reception of
the mail!

There is also a simple technical problem with the idea
of a remove list. LinuxFocus is not a very big site but
we would need 1 person full time to unsubscribe
3273 Spam mails per week and then this person
would need to unsubscribe one mail every minute .
Every spammer uses a different method, it would be
an idiotic task and it can’t work. Remove lists are
nonsense and help only the spammers.

The only right thing to do is: delete it.

SOFTWARE TO HANDLE SPAM

There are many different options to flflter out. spam
and this is good because it makes it harder for
spammers to circumvent them. It’s however an arms
race. The tools to filter spare become more
sophisticated but spammers improve their methods
too.

There are 2 types of filters:
1. Checks directly build into the MTA (Message

Transfer Agent=Marl server). Here you can
usually reject the marl. That is: you don’t even
store the email. You send an error code back
as soon as you recognize that this is spare
during the reception of the email. Typical
tools of this kind are IP based blocklists and
marl header checks. If you don’t have your
own Maflserver then your ISP would need to
configure this.

2. Filtering after the reception of the mail. In this
case the emafl is successfully delivered and
will be f’fltered out later.

We will now discuss the different possibilities in
detail, all of them have advantages and
disadvantages. The best solution to get rid of all spam
is to use several different tools.

REJECTING EMAIL DIRECTLY AT THE MTA

If you reject your mail directly at the mail server
during the reception of the mail then the spalnmer
can get back an error code and knows that this
address does not work. If he is one of the "CD-
makers" then he might take out the address. It can
save network bandwidth because you don’t have to
receive the full message. You can send the error code
back as soon as you find that this is spam.

AUUGN Vol.24 ¯ No. 1 - 44 - March 2003

To do this you need a good and flexible MTA.
Unfortunately the two most common servers,
Sendmail and the one from Bill Gates are not good at
all for this task. Two very good alternatives are Postfix
http: //www.po stfix, or~ and Exim
http://www.exim.or~. If you can’t change your server
then you can put an smtp proxy such as messagewall
in front of the server (smtp = Simple Mail Transfer
Protocol, the Internet mail protocol).

We will now discuss some common filter techniques
and how they work. We will not describe how to
configure them exactly in each MTA. It would make
the al~cle too long. Instead we suggest to read the
documentation that comes with the MTA that you
have installed. Postfix and Exim are well documented.

¯ Realtime Block lists:
These are DNS based lists. You check the IP
address of the mailserver that wants to send
mail to your server against a blacklist of
known spammers. Common lists are
www.spamhaus.org or ordb.org. There is also
a tool called blq (see references) to manually
query such block lists and test ff a given IP
address is listed. You should however not be
too enthusiastic about it and carefully choose
the lists since there are also some which
block entire IP ranges simply because one
spammer had used a dialup connection from
this ISP at one point in time. We personally
would at least enable ordb.org to keep out
mail from poorly administrated servers.
Experience shows that these lists block about
1%-3% of the spare mail.

¯ 8 bit characters in subject line:
About 30% of the spam origins in China,
Taiwan or other Asian countries these days. If
you are sure that you can’t read Chinese then
you can reject mail which has a lot of 8 bit
characters (not ASCII) in the subject. Some
MTAs have a separate configuration option for
this but you can also use regular expression
matching on the header:

/^Subject:.*[^ -~] [^ -~] [^ -~] [^ -~]/

This will reject email which has more than 4
consecutive characters in the subject line
which are not in the ASCII range space to
tilde. If you are not familiar with regular
expressions then learn them, you will need
them (See LinuxFocus article 53
http: //www.linuxfocus.or~/En~lish/July 1998
/aI~cle53.html). Both exim and postfix can be
compiled with perl regular expression support
(see www.pcre.org). Perl has the most
powerful regular expressions.
This method is quite good and keeps out 20-
30% of the spam-mail.
Lists with "From" addresses of known
spammers:
Forget it. This used to work back in 1997.
Spammers today use faked addresses or
addresses of innocent people.
Reject non FQDN (Fully Qualified Domain
Name) sender and unknown sender domain:
Some spammers use non existent addresses

in the "From". It is not possible to check the
complete address but you can check the
hostname/domain part of it by querying a
DNS server.
This keeps out about 10-15% of the spam and
you don’t want these mails anyhow because
you would not be able to reply to them even if
they were not spam.

¯ IP address has no t~R record in the DNS:
This checks that the IP address from where
you get the mail can be reverse resolved into a
domain name. This is a very powerful option
and keeps out a lot of mail. We would not
recommend it! This does not test if the system
administrator of the marl server is good but ff
he has a good backbone provider. ISPs buy IP
addresses from their backbone providers and
they buy from bigger backbone providers. All
involved backbone providers and ISPs have to
configure their DNS correctly to make the
whole chain work. If somebody in between
makes a mistake or does not want to
configure it then it does not work. It says
nothing about the individual mail server at
the end of the chain.

¯ Require HELO command:
When 2 MTAs (mail servers) talk to each other
(via smtp) then they first say who they are
(e.g. mafl.linuxfocus.org). Some spam
software does not do that. This keeps out 1-
5% of the spam.

¯ Require HELO command and reject unknown
s ervers:
You take the name that you get in the HELO
command and then you go to DNS and check
if this is a correctly registered server. This is
very good because a spammer who uses just a
temporary dialup connection will usually not
configure a valid DNS record for it.
This blocks about 70-80% of all spam but
rejects also legitimate mail which comes from
sites with multiple mail servers where a
sloppy system administrator forgot to put the
hostnames of all servers into DNS.

Some MTAs have even more options but the above are
quite commonly available in a good MTA. The
advantage of all those checks is that they are not CPU
intensive. You will usually not need to update your
mailserver hardware if you use those checks.

FILTERING OF ALREADY RECEIVED MAIL

The following techniques are usually applied to the
complete mail and the marl server who sends the mail
does not notice that the mail could not be delivered. It
means also that a legitimate sender will not get a
failure report. The message will just disappear.
Having said this we must also say that this is not
totally correct because it really depends on the
filtering possibilities of the mail server. Exim is very
flexible and would allow you to write custom filters on
messages.

¯ SpamAssassin (http://spamassassin.or~/):
This is a spam filter written in perl. It uses
carefully handwritten rules and assigns
certain points to typical spare phrases such
as "strong buy", "you receive this mail

AUUGN Vol.24 ¯ No. 1 - 45 - March 2003

because", "Viagra", "limited time offer".... If
the pointsare above a given level then the
marl is declared as spam. The problem with
this filter is that it is very heavy in terms of
memory and cpu power. You will probably
need to upgrade your marl server hardware
especially if the server is already 2-3 years
old. We would not recommend to use it
directly on the mail server. Spamassassin
comes with a spamd program (spamd=spam
daemon + spamc=client to connect to the
daemon) which will reduce the startup time of
spamassassin and reduce the cpu
consumption but it is still a very resource
demanding application.

To filter the mail you need to create a
.procmailrc file (and .forward) similar to this
one:

The installation is easy and spamassassin will
filter more than 90% of the spam.
procmail (http: //www. procmafl, or~:
Procmafl is not a spare filter on its own but
you can use it to write yourself one. procmafl
is also very light weight as long as you limit
the number of rules to something reasonable
(e.g. less than 10). To use it you create a
.forward file in your home-directory and add
there the following line:

Some people recommend to use

but this creates new problems with an extra
process being created which does not run
under the control of the mailserver any
longer. Secure mail servers like postfLx or
exim will have no problems with the .forward
file as shown above.

Procmail is especially useful in an
environment where you normally
communicate just in a closed group. E.g. for
people in a company where most of the mail
should come from your colleagues and some
known friends. Here is an example for
"mycompany. corn":

This makes itmuch easier l~0 delete spam and
you don’t find the ugly spam between your
normal mail.

Procmafl is very flexible and can also be used
for other tasks. Here is a totally different
example:
Procmafl comes with a "reply to sender"
program called formail. This can e.g. be used
to send a message back to people. A major
plague are those e-mails with word
documents inside. If you are a Linux
developer using e-mail to exchange
information about your projects or Linux in
general then you are for sure not interested in
people who write text into a word document
and attach it to mails. Viruses can easily be
spread that way. They don’t usually infect
Linux but it’s a bad idea in general to use MS-
word for sending text to other people as it
requires MS word with the same version on
the receiver side to read the text. There are
open formats such as RTF or HTML which do
not spread viruses, are cross platform, and do
not have such a version problem.

The text file 7home/guido/reject-text-msword
should contain a text explaining that msword
documents can spread viruses and ask the
sender to send the document e.g. in RTF
format.

AUUGN Vol.24 ¯ No. 1 - 46 - March 2003

How to use procmafl and what all these
strange letters in the configuration file mean
is very well explained in the "procmailrc" man
page.
bogofilter
(http: //www.tuxedo.or~/~esr/bo~ofilter):
Bogofilter is a Bayesian spam filter. It is
entirely written in C and it is very fast
(compared to SpamAssassin). A Bayesian
filter is a statistical filter that you have to
train first to learn what is spam and what is
not spam. You need about 100 training
messages (sorted into spam and not spam)
until the filter can work efficiently on new
messages.

Bogofilter is fast but it does not work from
day one as SpamAssassin. After a while it will
be as efficient as SpamAssassin and filter
more than 90% of the spam.

¯ razor (http://razor.sf.net/):
This is a distributed, collaborative, spam
detection system. Checksums of known spam
messages are stored in a database. If you get
a new mail you compute the checksum and
compare it with checksums in the central
database. If the checksum matches then you
can discard the message as spare, razor
works because special e-mail accounts have
been spread over the Internet only for the
purpose of getting into the address lists of all
the spammers. These accounts catch only
spam and no normal mail. In addition people
can of course send mails to razor for marking
it as spam. There is a good chance that the
marls are already known as spam before they
arrive in your mailbox. The system filters
about 80% of the spam. razor has one
characteristic that none of the other post
processing and filtering techniques has: razor
detects almost no false positives. That is: the
number of mails which are not spam but still
declared spam is very low with razor.

There are many more possible solutions to fight
against spare. We believe that the above covers the
most important ones.

The best solution is to use checks in the MTA as a
first stage and then kill the remaining spam in a
second stage with a post-processing filter.

HTML MAILS

A particularly dangerous form of e-mail are spam
mails in HTML format.

Most spammers use the "unsubscribe possibility" to
see how many of their marls arrive. HTML formatted
mail offers a much better form of feedback: Images.
You can compare this system with the visitor
counters as found on some webpages. The spammer
can exactly see when and how many of the mails are
read. If you study Spam carefully you will see that in
some cases the URL for included images contains a
sequence number: The spalnmer can see exactly who
looks at the mail and at what time time. An incredible
security hole

Modern marl reader programs will not display images
which are downloaded somewhere from a URL.
However there is hardly any modern and secure
HTML mail reader. Kmail and the very latest version
of mozilla mail offer the possibility to disable images
from external sources. Most other programs will
generate nice statistics for the spammer.

The solution? Don’t use a html mail capable program
or download the mail first then disconnect from the
Internet and then read the mail.

WHERE DOES THE SPAM COME FROM?

Never trust the sender address in the "From" field of
spam mails! These are either non existent users or
innocent people. It is very rare that this is the mail
address of the spammer. If you want to know where
the mail comes from then you have to look at the full
header:

Here an unknown host with IP address
120.210.149.87 who claims to berly-
xl05.dohuya.com sends the mail to
symail.kustanai.co.kr, symail.kustanai.co.krsends
this message further on.
The spalnmer is hiding somewhere behind
120.210.149.87 which is probably just a dynamic
dialup IP address.

In other words the police could find this person if they
would go to the owner of kustanai.co.kr and ask for
server logs and a printout of connections from the
local telephone company. You have very little chance
of t’mding out who that was.

It could also be that the first part is faked and the
spammer is really behind dsl-200-67-219-
28.prodigy.net.mx. This is very likely since there is no
good reason why symafl.kustanai.co.kr should send
the mail to msn.com via the dsl dialup connection
(dsl-200-67-219-28.prodigy.net.nix). The
maflserver.of.your.isp (symbolic name) is the server of
your Internet Service Provider and is the only part
from this "Received:" line which is reliable.

It is possible to find the spammer but you need
international intelligence and police forces to go to
prodigy.net.mx.

CONCLUSION

If spare continues to increase at the current rate then
the Internet will soon transport a lot more Spare than
real e-mail. Spam is transported at the cost of the
receiver. More bandwidth is needed and often the mail

AUUGN Vol.24 ¯ No. 1 - 47 - March 2003

systems need to be upgraded to handle the Spare.
Laws in many countries do little to protect people
against criminal spammers. In fact some countries
have laws which restrict only honest people (digital
rights management etc) and help the criminals
(e.g. to get nice statistics about the spam-mafl).

Join the Coalition Against UCE!

http: / / http: //www. euro. cauce.or~/en /

http://www, cauce, or~/

Internet Service Providers should check their marl
systems. No unauthenticated access to mail servers
must be given and the amount of marls that one user
can send per minute must be limited.

REFERENCES

¯ http://spamassassin.or~/: spamassassin
homepage

¯ http://www.procmafl.orN/: procmail
homepage

¯ http://www.spambouncer.orN/:
spambouncer: a procmail based spare t’flter

¯ http://www.postfix.or~/: homepage of the
postfix MTA

¯ http://www.exim.or~/: homepage of the exim
MTA

¯ http://messaNewall.org/: homepage of the
messagewall smtp proxy

¯ http://www.unicom.com/sw/blq/: the blq
perl script to query DNS based block lists

¯ http://www.ordb.or~/.: DNS based open relay
block list

¯ http://www.spamhaus.org: DNS based block
list

¯ http://www.samspade.orN/: Where does the
spam come from?

¯ http://www.dnsstuff.com/: various blocklists
and DNS based tools

¯ http: //www.Neektools. com/cNi-bin/proxy, c~i:
geektools Whois proxy

¯ http: //www.tuxedo.orN/~esr/boNofflter /:
bogofilter marl filter

¯ http://razor.sf.net/: razor
¯ http://pyzor.sourceforNe.net: razor

implemented in python
¯ http://lwn.net/Articles/9460/: Linux weekly

news article comparing bogofflter and
spamassassin.

This article is re-printed with permission. The originals
can be found at:

http: / / www. Iinuxfocus. org / English/January2003 / art
icle279.shtml

Making a Multiple-Boot
CD
Author: Juraj Sipos<xvudpapc@savba.sk>

INTRODUC~ON

I noticed that the issue of making a multiboot CD is
not very much covered on the Internet, and if so, only
sparsely. Commercial Windows vendors include some
possibility to create bootable CD’s in their software,
but I haven’t yet seen an option to create a multiboot
CD in their packages. For me creating a bootable CD
in Linux is much easier than in Windows. There are
also many free utilities that help you create a Linux
bootable CD, but having a multiple boot CD is a
delicacy. You can have several versions of Linux boot
images on the CD - versions with support for
journaling file systems, repair utilities, various breeds
of Linux or BSD, or even QNX, Plan9 and more.

Why do I thing this may be good for you? Imagine you
use Linux and FreeBSD simultaneously, you have
more Linux distributions installed on your hard disk,
but something happened to your system - there is no
way to access the data anymore. Either you use a
bootable diskette (but there may be many obstacles ff
you work with a specific system like XFS journaling
file system, for example, or encrypted files system,
and you find that you must have at least 5 Linux
bootable diskettes to suit you), or you create a
multiboot CD on which you put various breeds of
Linux kernels and utilities. A little CD with 10
operating systems on it is redemption from the
illusion of this world that makes you believe that
something is always wrong.

I want this article to be easy, practical and intelligible
for beginners, too, and I’d like to avoid too technical
language that is not understood by many of us. This
will help attract readers of various sort.

A bootable CD is based upon the so-called E1 Torrito
standard - but there are other sites that explain this.
Visit, for example,
http://www.cdpaNe.com/Comoact Disc Variations/d
anaboot.html
An important information for us will be that we may
have up to 10 bootable operating systems on a CD
that we may boot anywhere where the boot ability is
supported by BIOS. The bootable ISO image file may
be created with 1.44MB diskette emulation, 2.88MB
diskette emulation, or hard disk emulation.

Now FOLLOWS THE PRACTICAL GUIDE ON HOW TO

PREPARE A MULTIBOOT CD

First, you must have a bootable DOS or Linux
diskette image file. An image is a file that contains the
contents of a disk or diskette. There may be many
types of image fries - if you dd (disk dump) your Linux
partition with a command (let’s suppose that your
Linux partition is on the/dev/hdal partition):

AUUGN Vol.24 ¯ No. 1 - 48 - March 2003

a file my_image.file will appear in your file system.
Not every image file is bootable - it depends on its
contents, so a good idea would be to prepare some
Linux or BSD diskette image files. The simplest way
would be to download such image files from the
Internet. Here is the link:

http: //www.ibiblio. orb/pub/Linux/system/recovery/

The Ibiblio archive is very good. The image files you
may download from the above URL are prepared in
such a way that they are bootable, so you don’t need
to care much about building your own image.
However, if you want to make your own image, at the
above URL you may also find some utilities like
Bootkit, CatRescue, SAR, disc-recovery-utfls, etc.,
which will help you create your own bootable
diskettes (or bootable image files).

The files we will need for our work, in order to make a
multiboot CD, are fbsd-flp-l.0.3.bin (a bootable
FreeBSD 2.8 MB diskette image), tomsrtbt, or you
may create your own images from the diskettes you
already have. Put your DOS or Linux diskette in the
diskette drive and type the following command:

A good idea would also be to visit
http://freshmeat.net and search for a keyword
"mini", so you will find even some esoteric mini Linux
distributions you normally don’t hear about.
The site
http://www.ibiblio.orp~/pub/Linux/system/recovery/
contains (I deleted some stuff):

¯ Bootkit- 1.01.tar.gz
¯ CatRescue 101E.tgz
¯ SAR-2.25.tar.gz
¯ banshee-linux.0.61.tar.bz2
¯ brd-2.0.tar.gz
¯ disc-recovery-utfls- 1.0.tgz
¯ tbsd-iso-l.0.3.bin.gz
¯ fspace.tgz
¯ genromfs-0.5.1.tar.gz
¯ mulinux-5r0.1sm
¯ mulinux-5r0.tgz
¯ picoboot-0.95.tar.gz
¯ rescue02.zip
¯ resque_disk-2.3.99-pre9-A.tgz
¯ rip- 10.exe
¯ rip-51.iso.bin
¯ sash.tar.z
¯ tomsrtbt-2.0.103.E1Torito.288.img.bz2
¯ tomsrtbt-2.0.103.dos.zip
¯ trccs-0.8.1r2.iso.bz2
¯ trccs-0.8, lr2.tar.bz2
¯ trccs-0.8, lr2_boot_disk.img.bz2
¯ yard-2.1.tar.gz
¯ yard-prefabs-2.tgz
¯ zdisk-2.14.tar.gz

Some other good sites where you can download
bootable diskette images:

LIAP (http://www.liap.eu.org/): LIAP is a Linux in a
Pill - the site contains many 1.44MB diskette images

with various utilities and kernel breeds suitable for
recovery of various types of disasters.

LEKA RESCUE FLOPPY
(http://leka.muumilaakso.or,g/): Leka Rescue Floppy
is a small 1.44Mb distribution.

TOMSRTBT (http: //www.toms .net/rb/): Tomsrtbt
(Tom’s Root Boot) is a rescue utility, a very good one.
You may also download the 2.88MB image file from
the above site.
You can also download bootable DOS images. Visit,
for example, http: //www.bootdisk.com and download
DOS images if you do not have them available. The
site contains DOS 5.00 to 6.22, Win 95/98/Me
Bootdisks, DOS/Windows 9X/2000/XP bootdisks,
Win 95/98/ME - NT4/NT5 bootdisks, DrDOS 7.X
disk for Bios Flashing Basic, etc. You may also create
a FreeDOS boot diskette.

First, some terms. Let’s see a difference between a
bootable image file of a diskette or disk and an ISO
image file to be burned on a CD. What we must have
are bootable diskette image fries from which we will
create one ISO image file.

1) You may prepare your bootable diskette images
from diskettes you already havewith the
command:

dd if=/dev/fd0 of=/my_image.img

2)

3)

or you may download some bootable diskette
image fries from the Internet (see the links). Make
a directory in your Linux box, for example - /CD,
and copy the images to this directory (remember,
you may have not more than ten bootable images).
Make sure you keep the 8.3 format for file names -
8 characters for the file name and 3 characters for
its suffix - this maximum is only for the
compatibility issue with the DOS makebt.exe
program we will later use).
If you want to make use of the space on the CD
(ten images of bootable diskettes would only
require about 14MB), place some other utilities in
a subdirectory, for example, /CD/Soft. An
information how to access the CD is included at
the bottom of this article.
Run the following command from the/CD
directory:

mkisofs -b image.img -c boot.cat -J -I -R \
-r-o/cd.iso/CD

4)

The "boot.cat" or "boot.catalog" file will be
automatically created, so you don’t have to have it
in your /CD directory - just type the command as
you see it - you can type the name of any image
file, as long as its name corresponds with the
names of image fries placed in the /CD directory.
The image file included in the above command will
be the one you will boot your CD from. The image
files must have the size of 1.44MB or 2.8MB.
A cd.iso file will be created in your / directory
(/cd.iso). When you check this file and mount it
(mount /cd.iso /mnt -o loop), the contents of the
ISO file should be seen in the directory where you

AUUGN Vol.24 * No. 1 - 49 - March 2003

mounted it. This ISO image, if we burn the CD
with it, will be bootable but only one image to boot
from will be available.

5) So we must edit the ISO image to make a multiple
boot CD, thus we will get other images to be
included in the menu (0, 1, 2, 3, etc.) we will see
when we boot the CD (we will be welcomed by a
multiple boot menu with options for 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10. By pressing the chosen number
we will boot the desirable operating system.

6) After editing it, we may now burn the CD.

Since I don’t have the time and effort to create a Perl
script that would edit the ISO image for me and
because the editing of the ISO image file may appear
complicated for some (I want this article to be as
simple as possible), it would be a good idea to use
some free programs available on the Internet. One of
such free programs is makebt.exe. Some time ago, I
found this free program on some sites, but now I was
unlucky to find it on the net, so I put it on my website
http://www.tankred.sk/-|uro/freebsd/makebt.zip
where you can download it from.
You may run makebt.exe in DOSEMU, BOCHS
emulator (http://bochs.sourcefor~e.net), or you can
download DOS system diskette images available at
http://www.bootdisk.com, or make a FreeDOS
bootable diskette and boot your PC with it in order to
run the makebt.exe utility. If you don’t have a DOS
partition, the best idea would be to use DOSEMU
emulator - DOSEMU can also access Linux partitions,
where you may have your CD.ISO file waiting to be
"grasped in your clever hands".
When you run MAKEBT.EXE at the DOS prompt, it
will ask for the full path and filename of the ISO file
to be modified: you will type the name of the ISO file
with multiple boot diskette images in it, for example,
CD.ISO, and you will see the following screen:

BC stands for Boot Catalog. You just write boot.cat
and don’t worry about it anymore, as you already
used this string in the above mkisofs command (it is,
however, important that the ISO image file contains
the string "boot.cat" in it). Now you carefully type the
names of the images. You have to type the name of
images in the DOS 8.3 format (this is a DOS
restriction for file names - the file may have only 8
characters and suffix 3 characters maximum).

In the middle of the screen you will choose from
1.44MB floppy emulation, 2.88MB floppy emulation,

hard disk emulation, or no emulation. We will only
use 1.44MB and 2.88MB emulation (if you want to
make a hard disk emulation, make a 650MB Linux
partition and copy there the filesystem of your Linux
system you booted your hard disk from -
experiment...) Use the right keyboard arrow to select
between the types of emulation. On the right of the
screen you have to choose one bootable image as the
default one by pressing "Y".

When you are finished, press F1 (you may try this
several times, as the program may not respond
everytime). The program is intelligent - if you typed
the image file name incorrectly, you will receive a
warning message (after pressing F1). Do not include
any descriptions for boot images in the menu that
follows after pressing F1, as this feature is mostly
exploitable in SCSI CD-ROMs and I haven’t studied it
very much.

That’s it. Now you may burn your CD.

cdrecord -v speed=8 dev=O,O,O/cd.iso

When you boot the CD, you will not see descriptions
for operating systems, only numbers. The first and
the second number will (0,1) usually stand for the
same operating system. I had not much time to
experiment with this issue, but a good idea would be
to write down the number, so that you know which
operating system you are going to boot from.

We deal here with diskette images and emulation, so
ffyou boot your images with the multiple boot CD you
just created, you may access your CD-ROM by typing
"mount /dev/hdc /rant", for example, and have also
access to your /Soft directory, where you may have
other utilities you plan to work with later. In case of a
DOS system disk, you should include drivers to
access the CD-ROM.

If you want to study or make a Linux program to
patch the ISO file, you can compare an ordinary ISO
image file with one boot possibility only with the ISO
file patched by the makebt.exe utility. A good binary
patcher is a dfff utility by Giuliano Pochini. Bdiff is a
simple and small program for making what the very
common utilities "dfff’ and "patch" do with text fries,
but also works withbinary fries. It may be
downloaded from:
http: //space.vir~ilio.it/¢l pochini@virgilio.it/. -
however, both ISO files must be identical. The dfff
utility (for comparing files) will show you the place
(offsets) where the information with a multiboot flag
was written. It is sector 17 (Boot Volume Descriptor)
and the Boot Catalog Sector.

I created many multiboot CD’s with the above
information and I have never experienced a problem.
But first, in order to avoid writing unusable CD-Rs - I
had some problems making my own OS/2 images -
burn the ISO image on rewritable CD-RW disks.
Enjoy!

This article is re-printed with permission. The originals
can be found at:
http: / / www. Iinuxgazette. corn/issue85/sipos, html

AUUGN Vol.24 ¯ No. 1 - 50 - March 2003

Why Free Software’ s
Long Run TCO must be
lower
Author: Brendan Scott <brendanscott@optusnet.com.au>

[Editor’s note: Brendan Scott i.s an ICT lawer for a well known
law firm. Brendan and I were"formerly columnists for
Australian Internet World. I’ve reprinted-Brendan’s piece in full,
as it provides a somehwat different perspective on the
economics of modern software than the ones generally
acknowledged.]

Abstract

This paper argues that the long run total cost of
operations (TCO) for a suite of proprietary software
must necessarily be greater than that for an
equivalent suite of free software, with the TCO
benefits maximised in the case of the GPL and GPL-
like free software. The total cost of operation of a suite
of free software is the price determined by a
competitive market for a bundle of goods and services
associated with that suite. Because the source code is
open and not subject to limitations on development or
distribution, the market for services relating to that
code will be perfectly competitive. A rational vendor
will use a proprietary route for a program only where
releasing that program in that way will allow them to
increase their profit above that which would be
returned to them by the operation of a competitive
market. This result should be hardly surprising, given
that the express objective of copyright law is to
mandate a market failure and permit software
creators to extract above market rents as an incentive
for the creation of that software.

Customers attempting to evaluate a free software v
proprietary solution can confine their investigation to
an evaluation of the ability of the packages to meet
the customer’s needs, and may presume that the long
run TCO will favor the free software package. Further,
because the licensing costs are additional dead weight
costs, a customer ought to also prefer a free software
solution with functionality shortfalls where those
shortfalls can be overcome for less than the licensing
cost for the proprietary solution.

1. DEFINITIONS

Within this paper we make use of two key terms - free
software and proprietary software. The "free" in the
term free software is the "free as in ’speech’ not the
free as in ’beer’"[l] (although the "free beer" meaning
is often also relevant). As we will see, another non-
beer meaning of "free" in this context is "’free’ as in
’market’ not free as in "beer’". There are two key
definitions in this area - a relatively loose one of free
software (available from
http: //www. gnu. org/philosophy/free-sw.html)
developed by the Free Software Foundation definition
and another of the similar (but more comprehensively
set out) concept of open source developed by the
Open Source Initiative www. opensource, org/
(available from

www.opensource.org/docs/definition.html). The key
characteristics of these definitions are that that
software is freelydistributable, that the source code
must accompany the distributions and that everyone
is permitted to modify and distribute modifications of
that code on the terms of that license. Free software
licenses do not require distribution of the modified
code. However if it is distributed, the source code
must accompany it. The final characteristic is the
requirement as to the license which must be used if
modifications are distributed. In the bare Open
Source Initiative definition, the license must allow
modifications to be distributed on the basis of the
original license, but does not require it. Contrast this
with the GNU GPL (the main free software license
endorsed by the Free Software Foundation) which
requires that if redistribution occurs, that
redistribution must be on the terms of the GPL. As we
will see later, the GPL gives stronger total cost of
operations results than other free software licenses
because of its requirement to impose the GPL for any
modifications which are distributed. We therefore
draw a distinction between "GPL free software" (that
is, free software, such as, but not only, the GPL which
impose free software licensing requirements on
distributions) and non-GPL free software.

A definition of proprietary software is harder to arrive
at. Indeed, it is better to identify by reference to the
level of control over the source code for the software
which is asserted by its author. In effect, proprietary
software is software which is not free software. The
conclusions in this paper rely on the assumption that
there is sufficient market power held by the person
controlling the software so as to be able to extract
above market rents. As a general rule this power is
founded on the legislative monopoly of copyright.
There may be instances where that power is
exercisable through other means (such as patents,
lack of interoperability and network externalities).
However, for convenience in this paper we will
assume that copyright is its source. The fact that no
license fee is charged for a given application - as is
often the case with internet desktop browsers for
example, does not, by itself, make it free software.
This is because there is no access provided to the
source code. As the customer has no access to the
source code, it would still be proprietary software.
Indeed, even where the software is provided for free in
conjunction with access to the source code for that
software, the software is proprietary software ff access
to the source code is provided subject to restrictions
on the ability to modify or distribute that code. For
example, software under Microsoft’s "Shared Source"
program nevertheless remains proprietary software.

2. TCO vs TCNO?

TCO is often referred to as the total cost of
"ownership" rather than of operations, as used in this
paper. It has traditionally been used as a means of
measuring the impact of certain strategies on a
business. A canonical example is that of deciding
whether to buy a cheap printer which requires
expensive proprietary consumables. While the cost of
acquiring the printer can be significantly lower than
that of acquiring a competing printer, its cost to use

AUUGN Vol.24 ¯ No. 1 - 51 - March 2003

may in fact be much higher because of the need to
pay higher prices for consumables going forward. In
order to address this difficulty a manager can cost a
given printer by taking the buy price of the printer
and adding the total cost to make all of the prints it is
expected to make during its lifetime. Other factors
may also be added, such as the cost of its
maintenance or an apportionment of the Salaries for
people employed to administer the printer over its
lifetime. Thus managers can arrive at a single figure
which better reflects the real cost of a printer’s
acquisition than its mere buy price. This gives
managers an objective basis on which to make
comparisons of different printers against a common
metric and thus aids decisions about printer
purchasing. Now, while ownership is a concept
making perfect sense in the context of printers it is
rather more problematic in relation to software. In
relation to neither free software nor proprietary
software does a user acquire "ownership" per se of the
software in question. That said, the term "ownership"
does describe the rights of a user of free software
relatively well - the main right of "ownership" that a
free software user does not enjoy is the right to
exclude others from the use of the software and to
prevent modification to or distribution of that
software.

On the other hand, user "ownership" of software as a
concept is anathema to proprietary software, the
fundamental assumptions of which revolve around
ownership of the software by the vendor. It is
therefore odd to discuss the total cost of "ownership"
in relation to, for example, a copy of the Windows 95
operating system because users have no such
ownership. The user will, at best, have some form of
(often extremely restrictive) license. Indeed, some
might argue that a significant (and often uncosted)
component of the cost of "ownership" of proprietary
software is that users don’t own it at all.

Ironically, the additional expenses incurred in relation
to proprietary software are actually costs which arise
from a purchaser’s failure to own the software in
question. As we will see, they are largely costs of non-
ownership. Main among those costs of non-ownership
are the monopoly rents that non ownership allows
vendors to extract over and above the price that
would be determined by the market. Free software
vendors may object that the adoption of an existing
acronym (TCO) which obscures the existence of these
costs of non-ownership implicitly aids proprietary
software vendors. However, for the purposes of
convenience, we retain the acronym TCO in this
paper. We use it to mean the total cost of acquiring
and operating a given suite of software over its
lifetime, rather than of "owning" that suite.

3. THE BUSINESS MODEL FOR PROPRIETARY

SovTw~

The cornerstone of proprietary software is the grant of
monopolies by the legislature to private individuals.
These monopolies, most commonly effected through
copyright legislation, take rights (notably the right to
copy) away from citizens generally and vest them in

the monopoly holder for a given work.

Originally, the reason for this was to ensure that the
State in Stuart and Tudor England could censor the
publications of all private individuals (it is no
coincidence that free software principles are strongly
related to free speech principles). The State granted a
monopoly right over printing to the Stationers’
Company in return for the Stationer’s Company
acting as the State’s censors. This had the side effect
of creating vastly profitable publishing enterprises for
the printers who administered this censorship. With
the Glorious Revolution in England in the late 1600s,
the State sought to reconcile the various political
bodies within England at the time and, as part of that
reconciliation (indeed, one of parliament’s conditions
for permitting William and Mary to ascend the throne)
was a relaxation of the laws in relation to censorship.
Around this time saw the emergence of a different
justification for the granting of these private
monopolies (the beneficiaries in practice of these
monopolies remained unchanged). This new theory
was expressed in the economic concepts of incentives
and protection from competition.

The theory is, effectively, this: that the act of printing
costs nothing, or next to nothing, however the act of
creating a literary work requires substantial effort. If
other printers (at the time it was printers from
Scotland threatening to compete With English printers
as a result of political union in the early 1700s) are
able to print and distribute copies of a work without
restriction, then they will be able to undercut a
printer who invests their time and money in creating
a market for that work. This would mean that there is
no incentive to make such an investment. Ultimately,
it would mean a decline in the production of literary
works. In other words, the unregulated operation of
the market will render the printing business non-
viable. This is undesirable, therefore the printing
business ought to be protected and the most
appropriate form of protection is the grant of private
monopolies to prevent this form of free riding.
Thus the State has a role in protecting printers from
competition. This allows them to extract rents above
what the operation of a free market would return to
them. This has the socially desirable goal of
promoting the printing business and, through it, gives
an incentive to "learned men" to create "useful works"
(to borrow the wording from the Statute of Anne 1709,
the first copyright statute).

This theory has remained largely unchanged since the
early 1700s. When implemented in the copyright
clause in the Constitution it was modified to say that
the right vests in authors, rather than printers,
although the fact that these rights can be sold has
led, in practice, to their being held and exercised by
printers and publishers (the software industry is no
exception in this regard, with most copyright in
commercially marketed software vested in companies
rather than individuals). However, the copyright
clause still clearly states that copyright is only a
means to an end. The object expressed in the
Constitution is that the monopolies are granted for
the "progress" of "science" and the "useful arts".

AUUGN Vol.24 ¯ No. 1 - 52 - March 2003

In practice, the copyright legislation creates a
framework to permit the conversion of services
(computer programming)into products (the software
created from that programming). The theory is that
this conversion encourages investment in such
programming by allowing the investment to be
amortized over the sale of each copy of the ultimate
product. Arguably, in the absence of such legislation,
the creator of a work would need to recoup their
investment and make a profit during their lead time
to market before others begin distributing copies of
their work at much lower prices (others can sell at
lower prices as they are not carrying the cost of
development, only of distribution).

To summarize, therefore:

(a) A creator of software is unlikely to bother to
develop their programs ff they are not protected from
free competition in the market.

(b) The State protects potential creators from
competition as a means of encouraging the
production of software.

(c) The State grants this protection through taking
rights away from the balance of the population and
vesting them in the author of the program by way of
monopoly.

(d) The State, in doing so, is attempting to balance
the interests of authors against the interests of
consumers and achieve socially desirable goals (in
this case, increased production of software).

In short, the State regulates the market and
legislatively mandates the failure of the market in
order to promote the creation of software.

4. TI~ FREE SOFTWARE BUSINESS MODEL

If proprietary software is an example of mandated
market failure, free software is the market’s response
to that failure. In some respects the free software
movement can be regarded as the market self
correcting for the market failure mandated by
Congress. The free software business model leverages
off two key characteristics of software - that it is both
non-rival (use by A does not inhibit use by B) and
durable (in theory software does not wear out) - to
ensure its creation through the aggregation of a
number of individual small contributions. To quote
another analogy in this area - each person
contributes a brick, but ultimately each person
receives a house in return. As software is nonrival it
is possible for each person to take the full benefit of
the whole. Further, as it is durable, substantial value
can be aggregated from minor contributions over a
long period. It is as if everyone receives a full house
when they have only contributed a brick.

Early free software modes did not include obligations
in respect of the redistribution of modified code. This
led to some of the software produced under this
model being incorporated into commercial products.
Contributors contributed their brick, but didn’t get a
house back. As the development model for free

software is an incremental and community oriented
one, this incorporation into commercial products
acted as a disincentive to participation. Contributors
contribute their brick in the expectation that, in the
long term, a mansion will be returned to them (as the
result of aggregation of individual contributions). If
contributors expect to be required to reacquire
modifications of their own code they are helping to
create a mansion for someone else. They effectively
make an investment (denominated in code) but
receive no return’on that investment. The
requirement that modified code be returned as free
software is therefore an important incentive in the
creation of free software. That said, what is the most
appropriate approach to free software is a
philosophically contentious one and subject to much
debate within the free software community. In the
proprietary model, the incentive to create software
arises from creators seeking to act as vendors of code.
It is very much a vendor centric model. Free software
on the other hand is a customer centric model. In the
free software model, the assumption is made that
necessity forces customers to create code for
themselves (that is, development of free software is
driven by the use value of the software). Free software
provides a resource to assist that creation on the
condition that any software which results from the
use of that resource which is also distributed must be
contributed back to the resource for others to use.
The incentive to create code is different for different
players in the market - a hardware vendor might
promote the creation of free software code in order to
bundle software with their hardware, thereby
increasing the value of their hardware (known as
"widget frosting"). End users create code in order to
fulfill their own needs. An independent programmer
might code to create a market for consulting or
maintenance services. To extend the analogy
introduced earlier, that there is a house returned
does not mean that everyone who contributed to it did
so to live in that house.

One of the argued benefits of the proprietary software
mode is that it allows "big bang" developments to
occur. It may be that there is a market for mature
software with specific functionality, but no market for
immature software. Without a plan no one will
contribute bricks. In this environment incremental
development championed by the free software
paradigm may not be appropriate as there is no
critical mass to kick start the development. So how
does free software arise?

Experience shows that free software is primarily
seeded through two pathways - which we will refer to
in this paper as "strict free software seeding" and
"repurposing". Under strict free software seeding a
program emerges in an organic manner from nothing
other the support of the customer community. Many
individual programmers each have an "itch to
scratch" and their communal scratching produces a
valuable result. The Linux kernel, the gcc compiler,
the GIMP (image manipulation - a free version of
Photoshop), and Apache (the most popular web server
in the world) and text formatting programs like TeX
are examples. However, there are significant free
software applications, including Open Office (an office

AUUGN Vol.24 ¯ No. 1 - 53 - March 2003

suite), and Netscape/Mozilla (browser/email client)
which have been seeded from a different pathway.
These programs are the remnants of commercial
ventures which have been beaten in the marketplace,
were repurposed by their makers as free software
then adopted and perfected by the application of the
free software method.

Their creators, sensing their inability to successfully
take the software to market, released the kernel of
each of these projects as free software. While these
owners are entitled to claim some level of altruism,
their actions are a standard marketplace response to
competitive threats. In particular, identify those
product lines where your competitor is extracting the
most premium and spoil that market[2]. For example,
by releasing cheap products into that market to make
it impossible for anyone to profit in those areas. This
permits the competitor to convert a previous market
for value added products from which they could not
make profit into a market for commodity products
from which no one can extract profit ("ff I can’t have
it, then nobody can"), thereby shifting the basis of
competition to a different market (and one less
favorable to the current incumbent). This increases
their competitiveness while decreasing that of the
market incumbent. Thus, Sun and IBM, who
otherwise have no prospect of gaining market share
on in desktop systems or applications have become
significant contributors to initiatives such as Java
and GNU/Linux, thereby opening up markets for
themselves in service, support, training and
consultancy which were previously closed to them.
This behavior is exactly what is expected of a rational
economic actor. While there are elements of it in non-
software markets, its progress in the area of software
has been more marked because software is non-rival
and durable as mentioned above. It has minimal
transport and holding costs, and minimal
deconstruction costs to extract valuable elements.
The long term play for a free software contributor is
effective code ownership (except, as we noted above,
for the right to exclude others). Free software also
invokes the market to solve difficult problems relating
to the efficiency of resource allocation. Inefficient
development resources - that is programs for which
there is insufficient demand - are bred out of the code
base by lack of support from the user community.
Indeed such projects are likely to die in vitro. This is
in contrast with proprietary software which will
continue to be funded until the venture capital
backing it has been consumed. Conversely,
successful software is self selected - code will not
mature ff there are no users willing to adopt and
support it. If there exists a mature free software
program performing certain functions it is almost a
necessary consequence that there is a market for that
software.

COMPONENTS OV TCO TO BE CONSIDERED

A July 2001 MITRE Corporation report[3]
lists the cost elements to be considered
considering a software business case.

when

Table 5 of that report lists those elements as:

A Direct Costs
I. Software and Hardware

i.i Software

(a) Purchase price

(b) Upgrades and additions

(c) Intellectual property/licensing fees

1.2 Hardware

(a) Purchase price

(b) Upgrades and additions

2. Support Costs
2.1 Internal

(a) Installation and set-up

(b) Maintenance

(c) Troubleshooting

(d) Support tools (e.g., books,
publications)

2.2 External

(a) Installation and set-up

(b) Maintenance

(c) Troubleshooting

3. Staffing Costs
3.1 Project management
3.2 Systems engineering/development
3.3 Systems administration

(a) Vendor management
3.4 Other administration

(a) Purchasing
(b) Other

3.5 Training
4. De-installation and Disposal

B. Indirect Costs
I. Support Costs

i.i Peer support
1.2 Casual learning
1.3 Forma! training
1.4 Application development
1.5 Futz factor

2. Downtime

To this list there are also other indirect costs arising
from the use of proprietary software which are related
to administration of licensing requirements. These
include the tracking of software usage (costs of
creating and administering procedures and of
acquiring software) and, in some cases, conducting
software audits. This list does not appear to
anticipate switching costs where a business is moving
from one system to another (although these can be
accounted for indirectly through headings such as
"installation and set up" or "training"].

6. ANALYSIS OF MARKETS

To the extent that there is demand for any of these
elements, a market will emerge to satisfy that
demand. This is true of both free software and
proprietary software. The long term price in the
market will be determined by a number of factors,
revolving around the degree to which competition is
available in that market. In any given market each

AUUGN Vol.24 ¯ No. 1 - 54 - March 2003

means of excluding competition available to the seller
of free software is also available to the seller of
proprietary software. In addition the seller of
proprietary software has additional exclusions that
they can apply - in particular the exercise of their
State sanctioned monopoly over distribution and
modification. The lowest cost to customers will arise
where competition is maximized. Therefore as
additional exclusionary mechanisms are used by the
seller of proprietary software in relation to one of
these markets so the cost to customers to make
acquisitions in that market will rise. If the seller was
not able to extract these above market rents by
relying on these exclusionary mechanisms, the seller
would not release the software as proprietary
software.

The long run price in any of these given markets, (in
the absence of cross subsidy), can therefore be
broken into two components - the competitive market
price for those services plus an additional monopoly
premium that can be extracted. In the case of free
software the competition in each market is at its
highest, so the long run monopoly premium is zero.
Because the long run monopoly premium in the case
of proprietary software must be greater than zero, in
any of these markets the long run TCO of proprietary
software must be greater than that of equivalent free
software. This result should hardly be surprising. It
is, after all, the express purpose of the copyright
legislation.

6. I Transient Effects

The discussion above has deliberately confined itself
to long run costs. It is easy to construct short run
examples where this TCO result is reversed. For
example, many contemporary analyses of business
case costs take a snapshot approach. That is, they
take empirical observations as to the state of any one
of these markets and aggregate calculated costs
which result from those observations. While this
information is of value to managers needing to make
short term decisions it is inadequate for strategic
planning purposes, which may need to anticipate a
lifetime for a technology platform in excess of five or
seven years. For example, as at the date of this paper,
operating systems such as Windows and the
Macintosh OS have been mature systems for several
years and, in that time, a number of ancillary services
have emerged to complement each of them. Their free
software equivalent, Linux, has not enjoyed the same
period of maturity and has therefore not had the
same period of time to refine efficiencies in business
processes supporting each of these markets. It should
not be surprising therefore to expect free software
markets to produce higher costs for a given category
based on current circumstances using this form of
analysis f a sufficiently short enough evaluation
window is manufactured for the purposes of the
study.

6.2 Monopolies in particular submarkets

The argument can be applied equally where the anti-
competitive effect of release of code as proprietary
software is limited to only a few of the mentioned

submarkets. In those submarkets where it is unable
to affect competition in the market, the price set will
be the same as the free software market price for that
component. Of course, in relation to the balance, the
aggregate price for those components must exceed
that of the free software market for those
components.

However, in the long term, when the costs across
each of these separate submarkets are aggregated,
the cost of free software in an open market must be
less than that of equivalent proprietary software.
While proprietary software may loss leader in some
submarkets in order to leverage greater returns in
others, overall this leverage must be profitable for the
company selling proprietary software - if it wasn’t the
vendor would not engage in the practice. A vendor will
not rely on the copyright path to ensure returns below
that which could be returned to them by the market.
Release of code as proprietary software will only occur
where such a release can increase the vendor’s
returns in aggregate.

6.3 Examples of monopoly premiums

These increased returns express themselves in rents
through a number of pathways. For example, the
monopoly over modifications to software protects a
vendor from competition in relation to both their time
to implement modifications and their cost to
implement those modifications. It may also use this
monopoly to leverage into ancillary submarkets such
as training, documentation or maintenance. Thus an
operating system monopoly could be used to leverage
into specific submarkets for applications running on
that operating system, especially where the operating
system (whether by design or oversight) is or becomes
incompatible with competitors’ applications in that
submarket.

Further, each of these costs can be compounded by
the exclusionary effect of proprietary software. Thus,
because proprietary software does not allow reuse of
source by other programs, the skills that individuals
gain through developing or supporting proprietary
software are less portable. This lack of portability
leads to a greater training premium when developing
or supporting other software, again pushing up
development and support costs. It also leads to
replication of effort.

Thus where a programmer developing free software
has seen a module to perform a specified function
before, they can locate the existing version of that
module and incorporate it into their current
development. However, in the proprietary software
world they must recreate that module from scratch -
technically not relying on their knowledge of the
existing module (to avoid it being a derivative work) -
greatly increasing the development costs through
repeated reinvention. File formats are a good example
of this phenomenon. As vendors of proprietary
software are unable to use code for other proprietary
software’s file formats, they are practically required to
create their own custom versions (some argue that
proprietary formats are also used as an anti-
competitive tool) or reverse engineer the proprietary

AUUGN Vol.24 ¯ No. 1 - 55 - March 2003

format. This translates directly into increased prices
to the customer (they must not only pay for the added
function provided by the third party provider in
relation to files in that format, but also for their
reverse engineering costs involved in accessing the
format). This in turn increases the minimum to play
for any would be entrant into the market, increasing
barriers to entry and consequently reducing
competition.

6.4 Cross subsidies from external markets

This analysis is not strictly valid where one or more of
the mentioned submarkets is subject to subsidies
from an external market. That is, a market other than
one of the mentioned submarkets. This means that
customers in that market are paying more in order
that customers in the subsidized market can pay less.
However, given that we are concerned with long run
costs, it is open to question how long such a subsidy
can continue in the face of competition in that
external market. Further, large customers, such as
government, are more likely to be acquiring in that
external market so would not be quarantined from
the increased costs.

6.5 Reliance on Functional equivalence

The key assumption in this analysis is that the free
software suite is functionally equivalent to the
proprietary suite and that there is sufficient demand
for that suite (although we suspect in practice that
this is implied by the first). Functional equivalence in
this context does not mean that the functional
characteristics of both suites are the same. Rather, it
means that each of the suites can meet the functional
requirements of the customer. Thus, two suites might
meet the customer’s requirements, and one might
have additional functionality, but it is additional
functionality which is irrelevant to the customer. This
surplus functionality is not taken into account by this
analysis. As we noted above free software is self
selecting, so the existence of a market for that
software might be implied from the existence of a free
software equivalent.

6.6 Indirect costs

The analysis above assumes that for each of the cost
components, money is the driver for the development
of the market. However, in the case of some of the
indirect costs listed, this is not the case. For example,
peer support is something which is decoupled from
pricing mechanisms in the other markets, even
though it may have an effect on the cost base4. There
is no reason to suspect that these indirect costs will
favor one method or another in the long term.
Intuitively one would expect that the greater openness
permitted by free software will reduce costs in the
peer support category. There is also the
counterintuitive result that, in the short term, lack of
applications running on a particular free software
platform can actually yield cost benefits through futz
factor savings. As diversionary applications are
simply not available, time lost using them is equally
reduced.

Switching costs seem to be a class of cost which is
immune to a market analysis. Effectively an
organization which has an existing proprietary
solution must write off the time investment in that
software when moving to a free software equivalent. It
is not clear the extent to which this is a real cost in
the general case. For example, there is no reason a
priori why free software can not provide a seamless
transition path from equivalent proprietary software.
However, experience to date indicates that these costs
are non trivial. Nor is it clear that that investment.o

would not have to be written off in any event. With
each new release of software, users are required to
retrain.

7. THE UNREASONABLE EFFECTIVENESS OF THE
GPL ~N TCO.

7.1 Strong and weak results

A deeper analysis reveals that the argument in
relation to markets is at its strongest where
development forks or versions in the code must
themselves remain free software. If a fork is permitted
to go proprietary, then that fork will lead to a higher
TCO along the lines of the argument above. Except to
the extent a fork actually increases the number of
consumers for the suite it must cannibalize some of
the existing free software consumers, reducing
demand. As demand decreases free software suppliers
may leave the market, reducing competition and
consequently increasing prices. In the extreme case a
proprietary software vendor may engage in predatory
pricing (for example by providing free support or
maintenance services) to destroy the markets
supporting the free software forks with a view to
cornering those markets and subsequently extracting
monopoly rents. In any case, where proprietary forks
are permitted, the TCO result will be suboptimal5.
Conversely proprietary suites which have free
software forks will have a lower TCO than purely
proprietary ones because customers can leverage off
the more efficient markets of the free software forks.

As this paper is concerned with long run TCO, the
result in relation to licenses which do not require the
use of a free software license in the event of
distribution of modifications must be taken with some
degree of caution. The GNU GPL is a well known
example of a free software license which requires the
use of the GPL when (and iI) redistributing
modifications to GPLed free software. On the analysis
above there is actually a spectrum of results:

(a) Proprietary software provides the worst option
(from the point of view of long run TCO) because it
minimizes competition, consequently maximizing long
run TCO. Again, we note that this result is primarily
due to the fact that the legislative monopoly granted
over software is specifically designed to increase the
return of the vendors of proprietary software in order
to create an incentive for the creation of that software.
In short, the legislature distorts the market for the
purpose of protecting the proprietary software
industry.

AUUGN Vol.24 ¯ No. 1 - 56 - March 2003

(b) Non-GPL free software which permits
proprietary forking may or may not result in lower
TCO in the long run. Whether it does or does not
depends on the net effect of proprietary forking on
demand in the relevant submarkets. At one end of the
scale no proprietary forking in fact occurs and the
result is the same as for GPLed free software. At the
other end of the scale a proprietary fork can
cannibalize the entirety of each market for the suite,
resulting in a long run TCO equal to proprietary
software (subject perhaps to a discount for the period
in which it remains free software). It is conceivable
that the long run TCO may actually be as high for
non-GPL free software as for the most expensive
proprietary software (in the event that a proprietary
software vendor follows predatory pricing with price
gouging subsequent to the diminution of competition).
The likely outcome is something in the middle, with
proprietary forks reducing demand somewhat but not
entirely. We refer to this as the "weak TCO result".

(c) GPL free software maximizes demand in markets
by excluding market capture by proprietary forks.
These licenses therefore maximize competition in the
long run, and consequently result in the lowest TCO
in the long run. We refer to this as the "strong TCO
result".

7.2 Dangers of source code "sharing~’

Source code sharing arrangements where the source
code for proprietary software is made available but
not on a free software basis, are dangerous for users
because of the viral nature of proprietary software.
What makes proprietm3r software so dangerous in this
regard is the privileged place accorded to it by
copyright law. In the absence of an agreement to the
contrary, the monopoly rights in modifications carried
out by users after access to the source code will vest
by default in the vendor of the proprietary software,
even where theterms of access to the code are silent.
Thus, the viral nature of proprietary software poses a
threat to the intellectual property of any organisation
that has access to shared source unless explicit (and
often expensive) steps are taken. This exclusion by
stealth can be contrasted with, for example, the GPL,
in which the terms of use and redistribution are not
only explicitly stated, but that explicit statement must
accompany each copy of the source code.

As this default monopoly vesting is hidden in the
copyright law and not necessarily explicitly made
clear to users, the unwary user could find access to
shared source to be a poison pill. They may end up in
the position of creating modifications for free for a
vendor without taking the benefit of the work of other
users performing similar fixes. Indeed, they may not
technically be permitted to use even their own fixes.
As such, the potential for damage that such access
allows cannot be understated.

This viral nature of proprietary software means that,
in order to safely access the source code to such
software, a user will require management oversight
and nontrivial monitoring of that access. Independent
of the software provider’s views on the confidentiality
of their source code, a user must either have (a) an

agreement, preferably in writing, which clearly and
unambiguously permits that user (and, as
appropriate, their employees, agents and contractors)
to make modifications and to distribute those
modifications; or (b) strict accessibility controls in
place to prevent access to or use of that source.

8. STRATEGIC IMPLICATIONS FOR PURCHASERS.

The lessons that potential purchasers should take
from this paper are:

(a) The short term costs of proprietary systems may
be lower than those of free software systems.
However, free software systems hold the advantage
over the long term;

(b) while free software effectively provides code
ownership, the main costs of adopting a proprietary
software solution are actually costs of non-ownership;

(c) These TCO advantages are both most pronounced
and more certain for GPL free software licenses,
which mandate free software license terms for the
distribution of code modifications. Non-GPL free
software poses a significant risk of proprietary forking
in the future and therefore yields only a weak TCO
result, although one likely to be better than that for
proprietary software.

(d) Source code sharing arrangements are no
substitute for the code ownership provided by free
software. The viral nature of proprietary software
means that such sharing arrangements pose
potentially serious risks to a user if not strictly
managed.

(e) Making purchasing decisions on a 1, 2 or even 3
year window will have the effect of locking a
purchaser into higher total cost of operations over the
longer term. Purchasers must "bite the bullet" if they
want to maximize real long term savings and access
them sooner. This will be particularly pronounced
where major purchasers, such as government, delay
entry into the free software market thereby inhibiting
the development of ancillary markets for the support
of free software;

(f) Strategic decisions in relation to the choice
between free software and proprietary software should
come down to one of evaluation of fit to functional
requirements, with long run total cost of operations
presumed to favor the free software. Fit to functional
requirements can include such things as network
externalities. As between free software variants GPL
free software should be preferred to minimize long
run TCO.

(g) Where there appears to be an ongoing market for
the free software in question, the organization should
consider whether any shortfall in functionality can be
made good at a price equal to or less than the
licensing costs of the equivalent proprietary suite.
That said, without demand a free software solution is
unlikely to have reached sufficient maturity to
present as a viable alternative. Its mere presence can
of itself be indicative of the existence of an ongoing

AUUGN Vol.24 ¯ No. 1 - 57 - March 2003

market.

We note that these conclusions are independent of
the fact or amount of any license fees charged in
relation to the proprietary software. Of course, where
these costs are substantial they will make a further
contribution to the TCO of the suite. Also, free
software advocates argue that the lifecycle of free
software programs is much longer than of their
proprietary equivalents. If this is true, the need to
replace a proprietary system more often will also
increase the TCO for the proprietary suite.

I welcome comments on and criticisms of this paper. I
would like to thank Karl O. Pinc for his comments on
earlier drafts of this paper.

REFERENCES
[1] Attributed to Richard Stallman.

[2]Some of the examples given in this paragraph are
of the "commodization of complements". That is a
business attempts to reduce the status of goods and
services which are complementary to its own to that
of commodity. In so doing they are able to increase
the demand for their own goods or services.

[3] Kenwood, C., A Business Case Study of Open
Source Soft~are, June 2001,
www.mitre, org/support/p~pers/tech_papers_01/ken
wood_software/index.shtml

[4] Individuals who are able to resolve issues through
peer support do not place a strain on support
resources. It is open to debate whether peer support
is a real cost saving if, for example, resources are
actually being drawn from other functions within the
organisation - in this case a peer support saving is
simultaneously a futz factor cost.

[5] At the risk of laboring the point, the theory behind
such an increase is that the higher TCO results from
increased returns to software vendors as an incentive
for them to create software which would not otherwise
be created.

This article is re-printed with permission. The originals
can be found at:
http://members.optushome.com, au/brendanscott/p
apers/freesoftwaretco 150702.html

Brendan’s home-page, where other articles
written are available, is located here:
www.members, optushome, com. au/brendanscott.

he’s

AUUG Election
Procedures
These rules were approved by the AUUG Incorporated
Management Committee on 14th December 1994.

1.NOTICE OF ELECTION

The Returning Officer shall cause notice of election to
be sent by post to all financial members no later than
15th March each year.

2. FORM OF NOTICE
The notice of election shall include:
a) a list of all positions to be elected, namely:
¯ President
¯ Vice President
¯ Secretary
¯ Treasurer
¯ Ordinary Committee Members (5)
¯ Returning Officer
¯ Assistant Returning Officer

b) a nomination form;
c) the date by which nominations must be received
(in accordance with clause 21 (2) of the Constitution,
this date is 14th April);
d) the means by which the nomination form may be
lodged;
e) a description of the format for a policy statement.

3. POLICY STATEMENT

A person nominated for election may include with the
nomination a policy statement of up to 200 words.
This word limit shall not include sections of the
statement stating in point form the nominee’s name,
personal details and positions held on, or by
appointment of, the AUUG Management Colnmittee
and chapters. Policy statements exceeding the word
limit shall be truncated at the word limit when
included in the ballot information. The Returning
Officer may edit policy statements to improve
readability, such edits being limited to spelling,
punctuation and capitalisation corrections and
spacing modifications. Use of the UNIX wc program
shall be accepted as an accurate way to count words.

4. RECEIPT OF NOMINATIONS

In accordance with clause 21 (2) of the Constitution,
nominations shall be received by the Secretary up
until 14th April. A nomination shall be deemed to
have been received by the due date if one of the
following is satisfied:

¯ it is delivered by post to AUUG Inc’s Post Box, the
AUUG Secretariat’s Post Box or the AUUG
Secretariat’s street address no later than 2
business days after 14th April and is postmarked
no later than 12 midday on 14th April;

¯ it is delivered by hand to the Secretary or the
AUUG Inc Secretariat no later than 5pm on 14th
April;

¯ it is transmitted by facsimile to the Secretary or
the AUUG Ine Secretariat no later than 5pm on
4th April.

5. REQUIREMENT FOR A BALLOT AND DUE DATE

In accordance with clause 21(5), no later than 1st
May, the Secretary

¯ shall advise the Returning Officer of all valid
nominations received;

AUUGN Vol.24 ¯ No. 1 - 58 - March 2003

and ff a ballot is required, shall advise the
Returning Officer of a date no later than 15th May
for the ballot for all contested election.

In accordance with clause 42(3), the due date for
return of ballots shall be 4 weeks after the date
advised above.

6. FORM OF BALLOT PAPER

The ballot paper shall contain:
¯ details of all positions for which the number of

nominations exactlyequals the number of
positions to be filled;

¯ for each position for which a ballot is required, the
names of all persons seeking election to that
position,

¯ except those already elected to a higher position,
with a square immediately to the left, for the
elector to place a voting preference;

¯ instructions on how to complete the ballot paper;
¯ instructions on how to return the ballot paper;
¯ a brief description of how the ballot is to be

counted.

The ballot shall not contain any identification of
existing office-bearers.

The ballot shall be accompanied by a copy of all policy
statements submitted by all persons nominated,
including any persons elected unopposed.

These policy statements may be truncated or modified
as outlined in 3.

7. METHOD OF VOTING

Voting for each position shall be by optional
preferential vote. The number "1" must be placed
against the candidate of the elector’s first preference,
and a number other than "’1" against any or all of the
other candidates.

Preferences shall be determined by the numbers
placed against other candidates, which must be
strictly monotone ascending to count as preferences.
A vote shall be informal if:
¯ it does not have the number "’1" against exactly

one candidate.

8. SECRECY OF BALLOT

The ballot paper shall be accompanied by two
envelopes, which may be used by the elector to
ensure secrecy.

On completion of the ballot paper, the paper may be
placed inside the smaller envelope. This envelope is
then placed inside a second envelope. The elector
must then sign and date the outer envelope, making
the following declaration:

member-number
declare that I am entitled to vote in this election on
behalf of the voting member whose membership
number is shown above, and no previous ballot has

been cast on behalf of this voting member in this
election."

9. RETURNING BALLOT

To be considered to have been returned by the due
date, the ballot paper together with declaration as
above must be returned by one of the following
means:

¯ it is delivered by post to AUUG Inc’s Post Box, the
AUUG Secretariat’s Post Box or the AUUG
Secretariat’s street address no later than 2
business days after the due date and is
postmarked no later than 12 midday on the due
date;

¯ it is delivered by hand to the Returning Officer or
the AUUG Inc Secretariat no later than 5pm on the
due date.

10. METHOD OF COUNTING

Where there is an election for a single position, the
votes shall be counted by the preferential method.
Where there is more than one position to be Idled, the
votes shall be counted by the modified preferential
Hare Clark system described in schedule 1.

11. METHOD OF ELECTION

A person may be elected to only one position.
Elections shall be counted in the order of positions
described in 2(a). When counting ballots, any person
previously elected shall be deemed withdrawn from
that election, and all ballot papers shall be implicitly
renumbered as though that person was not included.

12. NOTIFICATION OF RESULT

In accordance with clause 42(7) of the Constitution,
the Returning Officer shall advise the Secretary in
writing of the result no later than fourteen days after
the due date. The Returning Officer shall advise all
candidates for election of the result no later than
fourteen days after the due date. The Returning
Officer shall advise the AUUGN Editor in writing of
the result no later than fourteen days after the due
date. The AUUG Editor shall include the results in the
first issue of AUUGN published after receiving the
results from the Returning Officer.

13. PUBLICATION OF THESE RULES

The Returning Officer shall advise the AUUGN Editor
of the current rules, and the AUUGN Editor shall
cause the current rules to be published on or after 1 st
January each year. Where no issue of AUUGN has
been posted by 28th February in any calendar year,
the Returning Officer shall cause the current rules to
be distributed with the notice of election.

14. OCCASIONAL VARIATION FROM THESE RULES

Subject to the Constitution, the Management
Committee may authorise occasional variations from
these rules. Such variations shall be advised in
writing to all members at the next stage in the

AUUGN Vol.24 ¯ No. 1 - 59 - March 2003

election process in which information is distributed to
members.
15. EXECUTION

Where these rules require the Returning Officer to
carry out an action, it shall be valid for the Returning
Officer to delegate execution to the Secretariat from
time to time employed by the Management
Committee.

16. REWENTION OF BALLOT PAPERS

The Secretary shall retain ballot papers and member
declarations (as specified in 8) until the AUUG AGM
of the calendar year following the year of the election,
unless a general meeting of AUUG directs the
Secretary to hold them for a longer period.

SCHEDULE 1

1. Each ballot paper shall initially have a value of
one.

2. The value of each ballot paper shall be allotted to
the candidate against whose name appears the
lowest number on the paper among those
candidates not elected or eliminated. If there is no
such candidate (i.e. the ballot paper is exhausted)
the ballot paper shall be set aside.

3. A quota shall be calculated by dividing the number
of formal votes by one more than the number of
positions remaining to be elected, and rounding up
to the next whole number.

4. If any candidate is allotted a total value greater
than the quota, that candidate shall be declared to
elected, the ballot papers allotted to that candidate
shall be assigned a new value by multiplying their
previous value by the excess of the candidate’s

.

.

vote above the quota divided by the candidate’s
total vote. This new value shall be truncated
(rounded down) to 5 decimal places. Ballot papers
that subsequently have a value of zero shall be set
aside. Steps 2 and 3 shall then be repeated.
If no candidate is allotted a total a total value
greater than the quota, the candidate who is
allotted the lowest total value among those
candidates not elected or eliminated shall be
eliminated. Steps 2 and 3 shall then be repeated.
Where two or more candidates are declared elected
at the same stage of counting according to Step 4
have an equality of votes, and it is necessary to
determine which is deemed elected first, or a
candidate is required to be eliminated under Step
5, and two or more candidates have an equally low
vote, the Returning Officer shall return to the
immediately preceding stage of counting and in the
case of candidates elected, deem first elected the
candidate with the highest vote at the immediately
preceding stage, and in the case where a candidate
is to be eliminated, eliminate the candidate with
the lowest vote at the immediately preceding stage.

Where an equality of votes still exists at the
immediately preceding stage, the Returning Officer
shall continue proceeding to preceding stages until a
result can be determined. In the event that
candidates have maintained an equality of votes
throughout the ~ntire counting process, the
Returning Officer shall determine which candidate is
to be determined first elected or to be eliminated by
lot in the presence of the Assistant Returning Officer.

AUUGN Vol.24 ¯ No. 1 - 60 - March 2003

AMERICAN
BOOK STORE

173 Elizabeth St, Brisbane Queensland 4000
Ph: (07) 3229 4677 Fax: (07) 3221 2171 Qld Country Freecall: 1800 177 395

american_bookstore@compuserve.corn

Name:

Address:

Phone Number:

Payment Method"

Card Number:

Expiry Date:

This is a:

[~] Cheque

[] Diners

Special Order

~ Money Order

[] Mastercard

Signature:

Mail Order

Date:

Post Code:

Amex

Visa

~ Bankcard

Book on Hold

QUANTITY TITLE PRICE

SUBTOTAL

LESS 10% DISCOUNT

POST & PACK

TOTAL $...

POSTAGE AND HANDLING FEES" 1 BOOK $6.00 2-4 BOOKS $7.00
BOOKS OVER $70.00 WE WILL SEND CERTIFIED - PLEASE ADD ANOTHER $ I .50 OR WAIVE
CERTIFIED DELIVERY.

FOR SPECIAL ORDERS, PLEASE ENCLOSE $10.00 PER BOOK AS A DEPOSIT.

AUUG ChapterMeetings and Contact Details

!!~!~i~i!~!~ ~i!~i~!~!~i~i~i!~.~ ~i~!~!i~!

ADELAIDE We meet at Internode, LevelContact sa-exec@auug.org.au for further
3/132 Grenfell St aka ’the olddetails.
AAMI building’, at 7 pm on the
second Wednesday of each
month.

BRISBANE Inn on the Park For further information, contact the
507 Coronation Drive QAUUG Executive Committee via email
Toowong (qauug-exec@auug.org.au). The techno-

logically deprived can contact Rick
Stevenson on (07) 5578-8933.

To subscribe to the QAUUG
announcements mailing list, please
send an e-mail message to:
<majordomo@auug.org.au> containing

the message "subscribe qauug <e-mail
address>" in the e-mail body.

CANBERRA Australian National
University

HOBART University of Tasmania

MELBOURNE Various. For updatedThe meetings alternate between
information See: Technical presentations in the even

numbered months and purely social
http: //www.vic. auug. org. au/ occasions in the odd numbered months.

Some attempt is made to fit other AUUG
activities into the schedule with
minimum disruption.

PERTH The Victoria League
276 Onslow Road
Shenton Park

The NSW Chapter of AUUG is now
SYDNEY Meetings start at 6:15 pmholding meetings once a quarter in

Sun Microsystems GroundNorth Sydney in rooms generously
Floor 33 Berry Street (cnrprovided by Sun Microsystems. More
Pacific Hwy) North Sydney information here:

http: //www.auug. org.au/nswauug/

FOR UpmTO-DATE DETAILS ON CHAPTERS AND MEETINGS~ INCLUDING THOSE IN ALL OTHER AUSTRALIAN CITIES~

PLEASE CHECK TH~ AUUG WEBSITE AT HTTP://WWW.AUUG.ORG.AU OR CALL THE AUUG OFFICE ON

1-800-625655.

AUUGN Vol.24 ¯ No. 1 - 62 - March 2003

o
0

Use this tax invoice to apply for, or renew, Individual or Student
Membership of AUUG Inc. To apply online or for Institutional
Membership please use http://www.auug.org.au/info/

This form serves as Tax Invoice.

Please complete and return to:

AUUG Inc, PO Box 7071, BAULKHAM HILLS BC NSW 2153, AUSTRALIA

If paying for your membership with a credit card, this form may be faxed to AUUG Inc.
on +61 2 8824 9522.

Please do not send purchase orders.
Payment must accompany this form.

Overseas Applicants:
¯ Please note that all amounts quoted are in Australian Dollars.
¯ Please send a bank draft drawn on an Australian bank, or credit card

authorisation.
¯ There is a $60.00 surcharge for International Air Mail
¯ If you have any queries, please call AUUG Inc on +61 2 8824 9511 or

freephone 1800 625 655.

Section A:

Personal Details

Surname:

First Name:

Title:

Organisation:

Address:

..................................... Position: ..

Suburb:

State:

Country:

Phone Private:

E-mail:

... Postcode: ...

.. Phone Work: ..

.. Facsimile: ..

Membership Number (if renewing): ..

Student Member Certification

For those applying for Student Membership, this section is required to be completed by a
member of the academic staff.

I hereby certify that the applicant on this form is a full time student and that the following details are correct:

Name of Student:

Institution:

Student Number:

Signed:

Name:

Title

Date Signed:

Section B: Prices

Please tick the box to apply for Membership. Please indicate if International Air Mail is required.

$110.00 (including $10 GST) []

$27.50 (including $2.50 GST) [-!

$60.00

Renew/New* Individual Membership

Renew/New* Student Membership

Surcharge for International Air Mail

* Delet~ as appropriate.

GST. only applies to payments made from within Australia. Rates valid from 1st October 2002.

Section C: Mailing Lists

AUUG mailing lists are sometimes made available to vendors. Please indicate whether you wish your name
to be included on these lists:

Yes [] No []

Section D: Payment

Pay by cheque

Cheques to be made payable to AUUG Inc. Payment in Australian Dollars only.

OR Pay by credit card

Please debit my credit card for A$..

Bankcard [] Mastercard [] Visa []

Card Number: ..Expires: ..

Name on card: ..Signature: ...

Date Signed: ..

Section E: Agreement

I agree that this membership will be subject to rules and bylaws of AUUG Inc as in force from time to time,
and this membership will run from the time of joining/renewal until the end of the calendar or financial year
as appropriate.

Signed: ...

Date Signed: ...

This form serves as Tax Invoice. AUUG ABN 15 645 981 718

