
Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 1 - PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

o. Preface and Table of Contents

0. Preface 8. Declarations
1. Introduction 8.1 Storage class specifiers
2. Lexical conventions 8.2 Type specifiers
2.1 Comments 8.3 Declarators
2.2 Identifiers (Names) 8.4 Meaning of declarators
2.3 Keywords 8.5 Structure and union declarations
2.4 Constants 8.6 Initialization
2.4.1 Integer constants 8.7 Type names
2.4.2 Explicit long constants 8.8 Typedef
2.4.3 'Character constants 9. Statements
2.4.4 Floating constants 9.1 Expression statement
2.5 Strings 9.2 Compound statement, or block
3. Syntax notation 9.3 Conditional statement
4. What's in a Name? 9.4 While statement
5. Objects and lvalues 9.5 Do statement
6. Conversions 9.6 For statement
6.1 Characters and integers 9.7 Switch statement
6.2 Float and double 9.8 Break statement
6.3 Floating and integral 9.9 Continue statement
6.4 Pointers and integers 9.10 Return statement
6.5 Unsigned 9.11 Goto statement
6.6 Arithmetic conversions 9.12 Labelled statement
7. Expressions 9.13 Null statement
7.1 Primary expressions 10. External definitions
7.2 Unary operators 10.1 External function definitions
7.3 Multiplicative operators 10.2 External data definitions
7.4 Additive operators 11. Scope rules
7.5 Shift operators 11.1 Lexical scope
7.6 Relational operators 11.2 Scope of externals
7.7 Equality operators 12. Compiler control lines
7.8 Bitwise and operator 12.1 Token replacement
7. 9 Bitwise exclusive or operator 12.2 File inclusion
7.10 Bitwise inclusive or operator 12.3 Conditional compilation
7.11 Logical and operator 12.4 Line control
7.12 Logical or operator 13. Implicit declarations
7.13 Conditional operator 14. Types revisited
7 .14 Assignment operators 14.1 Structures and unions
7.15 Comma operator 14. 2 Functions

14.3 Arrays, pointers, and subscripting
15. Constant expressions
16. Grammar revisited.

The following is the text of the C Reference Manual by Dennis M. Ritchie.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSfRUCTION

- 2 -

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

1. Introduction
C is a computer language which offers a rich selection of operators and data types and the abil­
ity to impose useful structure on both control flow and data. All the basic operations and data
objects are close to those actually implemented by most real computers, so that a very efficient
implementation is possible, but the design is not tied to any particular machine and with a little
care it is possible to write easily portable programs.

This manual describes the current version of the C language as it exists on the PDP-11,
the Honeywell 6000, the IBM System/370, and the Interdata 8/32. Where differences exist, it
concentrates on the PDP-11, but tries to point out implementation-dependent details. With few
exceptions, these dependencies follow directly from the underlying properties of the hardware;
the various compilers are generally quite compatible.

2. Lexical conventions
Blanks, tabs, newlines, and comments as described below are ignored except as they serve to
separate tokens. Some space is required to separate otherwise adjacent identifiers, keywords,
and constants.

If the input stream has been parsed into tokens up to a given character, the next token is
taken to include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters I* introduce a comment, which terminates with the characters *I. Comments do
not nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be alphabetic. The
underscore '_' counts as alphabetic. Upper and lower case letters are considered different. On
the PDP-11, no more than the first eight characters are significant, and only the first seven for
external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry
unsigned continue
auto if.

The entry keyword is not currently implemented by any compiler but is reserved for future use.
Some implementations also reserve the word fortran.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 3 - PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

2.4 Constants
There are several kinds of constants, as follows:

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A
sequence of digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The
hexadecimal digits include a or A through f or F with values 10 through 15. A decimal con­
stant whose value exceeds the largest signed machine integer (32767 on the PDP-I 1) is taken to
be long; an octal or hex constant which exceeds the largest unsigned machine integer (0177777
or 0xFFFF on the PDP-11) is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is
a long constant, which, on the PDP-11, has 32 significant bits. As discussed below, on other
machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a sequence of characters enclosed in single quotes '··. Within a charac­
ter constant a single quote must be preceded by a backslash '\'. Certain non-graphic characters,
and '\' itself, may be escaped according to the following table:

BS \b
NL (LF) \n
CR \r
HT \t
FF V
ddd \ddd
\ \\

The escape '\ddd' consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is '\0' (not fol­
lowed by a digit) which indicates the character NUL. If the character following a backslash is not
one of those specified, the backslash vanishes.

The value of a single-character constant is the numerical value of the character in the
machine's character set (Asen for the PDP-11). On the PDP-11 at most two characters are per­
mitted in a character constant and the second character of a pair is stored in the high-order byte
of the integer value. Character constants with more than one character are inherently
machine-dependent and should be avoided.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing. Every floating
constant is taken to be double-precision.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 4 - PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

2.5 Strings
A string is a sequence of characters surrounded by double quotes '11 '. A string has type 'array
of characters' and storage class 'static' (see below) and is initialized with the given characters.
The compiler places a null byte '\0' at the end of each string so that programs which scan the
string can find its end. In a string, the character '11' must be preceded by a '\'; in addition, the
same escapes as described for character constants may be used. Finally, a '\' and an immedi­
ately following new-line are ignored.

All strings, even when written identically, are distinct:

3. Syntax notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and
literal words and characters in sans-serif type. Alternatives are listed on separate lines. An
optional terminal or non-terminal symbol is indicated by the subscript 'opt,' so that

{ expression
0111

)

would indicate an optional expression in braces. The complete syntax is given in §16, in the
notation of YACC.

4. What's in a Name?
C bases the interpretation of an identifier upon two attributes of the identifier: its storage class
and its type. The storage class determines the location and !if etime of the storage associated
with an identifier; the type determines the meaning of the values found in the identifier's
storage.

There are four declarable storage classes: automatic, static, external, and register.
Automatic variables are local to each invocation of a block, and are discarded upon exit from
the block; static variables are local to a block, but retain their values upon reentry to a block
even after control has left the block; external variables exist and retain their values throughout
the execution of the entire program, and may be used for communication between functions,
even separately compiled functions. Register variables are (if possible) stored in the fast regis­
ters of the machine; like automatic variables they are local to each block and disappear on exit
from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the

implementation's character set, and if a genuine character is stored in a character variable, its
value is equivalent to the integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine-dependent. On the PDP-11, characters
are stored as signed 8-bit integers, and the character set is ASCII.

Up to three sizes of integer, declared short int, int, and long int are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either
short integers, or long integers, or both equivalent to plain integers. 'Plain' integers have the
natural size suggested by the host machine architecture; the other sizes are provided to meet
special needs. On the PDP-11, short and plain integers are both represented in 16-bit 2's com­
plement notation. Long integers are 32-bit 2's complement.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is
the number of bits in the representation. (16 on the PDP-11; long and short unsigned quantities
are not supported.I

Single precision floating point (float) quantities, float, precision on the PDP-11, have mag­
nitude in the range approximately 10±3s or O; their precision is 24 bits or about seven decimal

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 5 - PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

digits.
Double-precision floating-point (double) quantities on the PDP-11 have the same range as

floats and a precision of 56 bits or about 17 decimal digits. Some implementations may make
float and double synonymous.

Because objects of these types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Types char and int of all sizes will collectively be called integral
types. Float and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived
types constructed from the fundamental types in the following ways:

arrays of objects of most types;
functions which return objects of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various types;
unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues
An object is a manipulatable region of storage; an lvalue is an expression referring to an object.
An obvious example of an lvalue expression is an identifier. There are operators which yield
!values: for example, if Eis an expression of pointer type, then *Eis an lvalue expression refer­
ring to the object to which E points. The name 'lvalue' comes from the assignment expression
'£1 = £2' in which the left operand El must be an lvalue expression. The discussion of each
operator below indicates whether it expects !value operands and whether it yields an !value.

6. Conversions
A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such
conversions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be
supplemented as required by the discussion of each operator.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a short integer always involves sign extension;
short integers are signed quantities. Whether or not sign-extension occurs for characters is
machine dependent, but it is guaranteed that a member of the standard character set is non­
negative. On the PDP-11, character variables range in value from -128 to 127; a character con­
stant specified using an octal escape also suffers sign extension and may appear negative, for
example ''\214' '.

When a longer integer is converted to a shorter or to a char, it is truncated on the left.

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever a float appears in an
expression it is lengthened to double by zero-padding its fraction. When a double must be con­
verted to float, for example by an assignment, the double is rounded before truncation to float
length.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 6 -
I

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather machine-dependent. On the
PDP-11, truncation is towards 0. The result is undefined if the value will not fit in the space
provided.

Conversions of integral values to floating type are well behaved. Some loss of precision
occurs if the destination lacks sufficient bits.

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer; in such a case the first
is converted as specified in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is con­
verted to an integer as specified in the discussion of the subtraction operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value (on the PDP-11) is the least unsigned integer
congruent to the signed integer (modulo 216). Because of the 2's complement notation, this
conversion is conceptual and there is no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numer­
ically as that of the unsigned integer. Thus the conversion amounts to padding with zeros on
the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the 'usual arithmetic conversions.'

First, any operands of type char or short are converted to int, and any of type float are
converted to double.
Then, if either operand is double, the other is converted to double and that is the type of
the result.
Otherwise, if either operand is long, the other is converted to long and that is the type of
the result.
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is
the type of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of
this section (highest precedence first). Thus the expressions referred to as the operands of +
(§7.4) are those expressions defined in §§7.1-7.3. Within each subsection, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the opera­
tors discussed therein. The precedence and associativity of all the expression operators is sum­
marized in the collected grammar.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler
considers itself free to compute subexpressions in the order it believes most efficient, even if
the subexpressions involve side effects. Expressions involving a commutative and associative
operator may be rearranged arbitrarily, even in the presence of parentheses; to force a particular

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 7 - PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

order of evaluation an explicit temporary must be used.

7 .1 Primary expressions
Primary expressions involving . , - >, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list) opt

primary-lvalue . identifier
primary-expression - > identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below.
Its type is specified by its declaration. However, if the type of the identifier is 'array of ... ',
then the value of the identifier-expression is a pointer to the first object in the array, and the
type of the expression is 'pointer to ... '. Moreover, an array identifier is not an lvalue expres­
sion. Likewise, an identifier which is declared 'function returning ... ', when used except in the
function-name position of a call, is converted to 'pointer to function returning .. .'.

A constant is a primary expression. Its type may be int, long, or double depending on its
form.

A string is a primary expression. Its type is originally 'array of char'; but following the
same rule given above for identifiers, this is modified to 'pointer to char' and the result is a
pointer to the first character in the string. (There is an exception in certain initializers; see
§8.6.)

A parenthesized expression is a primary expression whose type and value are identical to
those of the unadorned expression. The presence of parentheses does not affect whether the
expression is an !value.

A primary expression followed by an expression in square brackets is a primary expres­
sion. The intuitive meaning is that of a subscript. Usually, the primary expression has type
'pointer to ... ', the subscript expression is int, and the type of the result is ' ... '. The expres­
sion 'El [E2]' is identical (by definition) to'* ((El) +(E2)) '. All the clues needed to under­
stand this notation are contained in this section together with the discussions in §§ 7.1, 7.2, and
7.4 on identifiers, *, and + respectively; §14.3 below summarizes the implications.

A function call is a primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions which constitute the actual arguments to the func­
tion. The primary expression must be of type 'function returning ... ', and the result of the
function call is of type ' ... '. As indicated below, a hitherto unseen ·identifier followed immedi­
ately by a left parenthesis is contextually declared to represent a function returning an integer;
thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type
char or short are converted to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all
argument-passing in C is strictly by value. A function may change the values of its formal

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 8 -

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUG UST 1977
AT&TCo SPCS

C REFERENCE MANUAL

parameters, but these changes cannot affect the values of the actual parameters. On the other
hand, it is possible to pass a pointer on the understanding that the function may change the
value of the object to which the pointer points. The order of evaluation of arguments is
undefined by the language; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The

first expression must be an lvalue naming a structure or union, and the identifier must name a
member of the structure or union. The result is an lvalue referring to the named member of
the structure or union.

A primary expression followed by an arrow (built from a '-' and a '> ') followed by an
identifier is an expression. The first expression must be a pointer to a structure or a union and
the· identifier must name a member of that structure or union. The result is an lvalue referring
to the named member of the structure or union to which the pointer expression points.

Thus the expression 'El->MOS' is the same as '(*ED.MOS'. Structures and unions are
discussed in §8.5. The rules given here for the use of structures and unions are not enforced
strictly, in order to allow an escape from the typing mechanism. See §14.1.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-expression:
* expression
& lvalue
- expression
! expression
- expression
++ lvalue
-- lvalue
lvalue + +
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression points. If the type of the expression is
'pointer to ... ', the type of the result is ' ... '.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If
the type of the lvalue is ' ... ', the type of the result is 'pointer to ... '.

The result of the unary - operator is· the negative of its operand. The usual arithmetic
conversions are performed. The negative of an unsigned quantity is computed by subtracting
its value from 2'1, where n is 16 on the PDP-11.

The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the
value of its operand is non-zero. The type of the result is int. It is applicable to any arithmetic
type or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conver­
sions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix '++' is incremented. The value is
the new value of the operand, but is not an lvalue. The expression '++a' is equivalent to

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 9 - PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

'(a += 1) '. See the discussions of addition (§7.4) and assignment operators (§7 .14) for infor­
mation on conversions.

The lvalue operand of prefix'--' is decremented analogously to the ++operator..
When postfix '++' is applied to an I value the result is the value of the object referred to

by the lvalue. After the result is noted, the object is incremented in the same manner as for
the prefix ++operator. The type of the result is the same as the type of the !value expression.

When postfix '--' is applied to an Iva! ue the result is the value of the object referred to
by the !value. After the result is noted, the object is decremented in the manner as for the
prefix -- operator. The type of the result is the same as the type of the !value expression.

An expression preceded by the parenthesized name of a data type causes conversion of
the value of the expression to the named type. The construction of type names is described in
§8.7.

The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by the
language except in terms of the value of sizeof. However in all existing implementations a byte
is the space required to hold a char.) When applied to an array, the result is the total number of
bytes in the array. The size is determined from the declarations of the objects in the expres­
sion. This expression is semantically an integer constant and may be used anywhere a constant
is required. Its major use is in communication with routines like storage allocators and 1/0 sys­
tems.

The sizeof operator may also be applied to a parenthesized type name. In that case it
yields the size, in bytes, of an object of the indicated type.

The construction 'sizeof(type)' is taken to be a unit, so the expression 'sizeof(type)-2' is
the same as' (sizeof(type))-2'.

7 .3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right. The usual arithmetic conversions
are performed.

mu It ipitca rive-expression:
expression * expression
expression I expression·
expression % expression

The binary " operator indicates multiplication. The * operator is associative and expressions
with several multiplications at the same level may be rearranged.

The binary / operator indicates division. When positive integers are divided truncation is
toward 0, but the form of truncation is machine-dependent if either operand is negative. In all
cases it is true that (a/b)*b + a%b = a. On the PDP-11, the remainder has the same sign as
the dividend.

The binary % operator yields the remainder from the division of the first expression by
the second. The usual arithmetic conversions are performed. On the PDP-11, the remainder
has the same sign as the dividend. The operands must not be floating.

7 .4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions are per­
formed. There are some additional type possibilities for each operator.

Bell Telephone Laboratories, Incorporated - 10 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

additive-expression:
expression + expression
expression - expression

The result of the '+' operator is the sum of the operands. A pointer to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an address
offset by multiplying it by the length of the object to which the pointer points. The result is a
pointer of the same type as the original pointer, and which points to another object in the same
array, appropriately offset from the original object. Thus if P is a pointer to an object in an
array, the expression 'P +1' is a pointer to the next object in the array.

No further type combinations are allowed.
The + operator is associative and expressions with several additions at the same level may

be rearranged.

The result of the '-' operator is the difference of the operands. The usual arithmetic
conversions are performed. Additionally, a value of any integral type may be subtracted from a
pointer, and then the same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by divi­
sion by the length of the object) to an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unexpected results unless the pointers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object-length.

7 .5 Shift operators
The shift operators < < and > > group left-to-right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is con­
verted to int; the type of the result is that of the left operand. The result is undefined if the
right operand is negative or larger than the number of bits in the object.

shift-expression:
expression < < expression
expression > > expression

The value of 'El<< E2' is El (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are
0-filled. The value of 'El>> E2' is El right-shifted E2 bit positions. The shift is guaranteed
to be logical (0-fill) if El is unsigned; otherwise it may be (and is, on the PDP-11) arithmetic
(fill by a copy of the sign bit).

7 .6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; 'a <b <c' does not
mean what it seems to.

re/a tiona I-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

The operators < (less than), > (greater than), < = (less than or equal to) and > = (greater
than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed. Two pointers may be compared,
and the result depends on the relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to objects in the same array.

Bell Telephone Laboratories, Incorporated - 11 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

7. 7 Equality operators

equality-expression:
expression = = expression
expression ! = expression

The == (equal to) and the ! = (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus 'a<b ==c<d' is 1 whenever a<b and
c-cd have the same truth-value).

A pointer may be compared to an integer, but the result is machine dependent unless the
integer is the constant 0. A pointer to which O has been assigned is guaranteed not to point to
any object, and will appear to be equal to 0; in conventional usage, such a pointer is considered
to be null.

7 .8 Bitwise and operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arith­
metic conversions are performed; the result is the bit-wise 'and' function of the operands. The
operator applies only to integral operands.

7 .9 Bitwise exclusive or operator

exclusive-or-expression:
expression " expression

The " operator is associative and expressions involving " may be rearranged. The usual arith­
metic conversions are performed; the result is is the bit-wise 'exclusive or' function of the
operands. The operator applies only to integral operands.

7 .10 Bitwise inclusive or operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions with I may be rearranged. The usual arithmetic
conversions are performed; the result is the bit-wise 'inclusive or' function of its operands.
The operator applies only to integral operands.

7.11 Logical and operator

logica I-and-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 other­
wise. Unlike &, && guarantees left-to-right evaluation; moreover the second operand is not
evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always int.

Bell Telephone Laboratories, Incorporated - 12 - -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

7 .12 Logical or operator

logical-or-expression:
expression II expression

The II operator groups left-to-right. It returns 1 if either of its operands is non-zero, and O oth­
erwise. Unlike I, II guarantees left-to-right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non­
zero, the result is the value of the second expression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third expres­
sions to a common type; otherwise, if both are pointers of the same type, the result has the
common type; otherwise, one must be a pointer and the other the constant 0, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

7 .14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an
!value as their left operand, and the type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

assignment-expression:
/value = expression
/value + = expression
/value - = expression
lvalue» = expression
/value I = expression
/value % = expression
/value > > = expression
/value < < = expression
/value & = expression
lvalue > = expression
/value I = expression

Notice that the representation of the compound assignment operators has changed; formerly the
':d came first and the other operator came second (without any space). The compiler contin­
ues to accept the previous notation.

In the simple assignment with ':d, the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment.

The behavior of an expression of the form 'El op = E2' may be inferred by taking it as
equivalent to 'El =El op (E2)'; however, El is evaluated only once. In +=and-=, the left
operand may be a pointer, in which case the (integral) right operand is converted as explained
in §7.4; all right operands and all non-pointer left operands must have arithmetic type.

Bell Telephone Laboratories, Incorporated - 13 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

The compiler currently allows a pointer to be assigned to an integer, an integer to a
pointer, and a pointer to a pointer of another type. The assignment is a pure copy operation,
with no conversion. This usage is nonportable, and may produce pointers which cause address­
ing exceptions when used. However, it is guaranteed that assignment of the constant O to a
pointer will produce a null pointer distinguishable from a pointer to any object.

7.15 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left-to-right. In contexts where comma is given a special mean­
ing, for example in a list of actual arguments to functions (§7.1) and lists of initializers (§8.6),
the comma operator as described in this section can only appear in parentheses; for example,
'f'(a, (t = 3, t +2), c)' has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list01,, ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers.i,
sc-specifier decl-specifiers01,,

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a 'storage class specifier' only for
syntactic convenience; it is discussed in §8.8.

The meanings of the various storage classes were discussed in §4.
The auto, static, and register declarations also serve as definitions in that they cause an

appropriate amount of storage to be reserved. In the extern case there must be an external
definition (§10) for the given identifiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. Only the first few (three, for the
PDP-11) such declarations are effective. Moreover, only variables of certain types will be stored

Bell Telephone Laboratories, Incorporated - 14 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

in registers; on the PDP-11, they are int, char, or pointer. One restriction applies to register
variables: the address-of operator & cannot be applied to them. Smaller, faster programs can be
expected if register declarations are used appropriately, but future developments may render
them unnecessary.

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from
a declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
always extern.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

The words long, short, and unsigned may be thought of as adjectives; the following combina­
tions are acceptable (in any order).

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be
given in a declaration. If the type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names
are discussed in §8. 8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
in it-declarator
init-declarator, declarator-list

init-declarator:
declarator initializer

0
,,,

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage
class of the objects to which the declarators refer. Declarators have the syntax:

Bell Telephone Laboratories, Incorporated - 15 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression }

0/lf

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.
Each declarator contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the
specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

If a declarator has the form

* D
for D a declarator, then the contained identifier has the type 'pointer to ... ', where ' ... ' is the
type which the identifier would have had if the declarator had been simply D.

If a declarator has the form

D ()
then the contained identifier has the type 'function returning ... ', where ' ... ' is the type which
the identifier would have had if the declarator had been simply D.

A declarator may have the form

D lconstan t-expression]

or

D[]

Such declarators make the contained identifier have type 'array.' If the unadorned declarator D
would specify a non-array of type ' ', then the declarator 'D [i]' yields a I-dimensional array
with rank i of objects of type ' '. If the unadorned declarator D would specify an n-
dimensional array with rank i1Xi2X ···Xi,,, then the declarator D[i,,+il yields an (n+D­
dimensional array with rank i1 x i2x · · · x i,,x i11+1•

In the first case the constant expression is an expression whose value is determinable at
compile time, and whose type is int. (Constant expressions are defined precisely in §15.) The
constant expression of an array declarator may be missing only for the first dimension. This
notation is useful when the array is external and the actual declaration, which allocates storage,
is given elsewhere. The constant-expression may also be omitted when the declarator is fol­
lowed by initialization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure
or union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restric­
tions are as follows: functions may not return arrays, structures or functions, although they may

Bell Telephone Laboratories, Incorporated - 16 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

return pointers to such things; there are no arrays of functions, although there may be arrays of
pointers to functions. Likewise a structure may not contain a function, but it may contain a
pointer to a function.

As an example, the declaration

inti, -ip, f (), *fip(), (vpfi) ();

declares an integer i, a· pointer ip to an integer, a function Jreturning an integer, a function fip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is
especially useful to compare the last two. The binding of '*fip()' is '*(fip())', so that the
declaration suggests, and the same construction in an expression requires, the calling of a func­
tion fip, and then using indirection through the (pointer) result to yield an integer. In the
declarator ' (-pfi) () ', the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called.

As another example,

float fa [171, -afp [1 7];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d
is an array of three items: each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions 'x3d', 'x3d[i]', 'x3d[i][j]', 'x Id l i Hj l lk l'
may reasonably appear in an expression. The first three have type 'array', the last has type int.

8.5 Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

structure-or-union-specifier:
struct-or-union { struct-decl-list}
struct-or-union identifier \ struct-dec/-list)
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:
struct-decl-list:

struct-dec/ara tion
struct-dec/aration struct-dec/-list

struct-dec/ara tion:
type-specifier struct-declara tor-list

struct-declarator-list:
struct-dec!ara tor
struct-dec/ara tor , struct-declara tor-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specified number of bits. Such a member is also
called a field; its length is set off from the field name by a colon.

Bell Telephone Laboratories, Incorporated - 17 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

-

struct-dec/arator:
declarator
dee Iara tor constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are
read left-to-right. Each non-field member of a structure begins on an addressing boundary
appropriate to its type. On the PDP-11 the only requirement is that non-characters begin on a
word boundary; therefore, there may be I-byte, unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No field may be wider than a word.
On the PDP-11, fields are assigned right-to-left.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed
field useful for padding to conform to externally-imposed layouts. As a special case, an
unnamed field with a width of O specifies alignment of the next field at a word boundary. The
'next field' presumably is a field, not an ordinary structure member, because in the latter case
the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but imple­
mentations are not required to support any but integer fields. Moreover, even int fields may be
considered to be unsigned. On the PDP-11, fields are not signed and have only integer values.

A union may be thought of as a structure all of whose members begin at offset O and
whose size is sufficient to contain any of its members. At most one of the members can be
stored in a union at any time.

A structure or union specifier of the second form, that is, one of
struct identifier { struct-decl-list }
union identifier { struct-dec/-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list.
A subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the
declaration to be given once and used several times. It is however absurd to declare a structure
or union which contains an instance of itself, as distinct from a pointer to an instance of itself.

The names of members and tags may be the same as ordinary variables. However, names
of tags and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the same
member may appear in two different structures if it has the same type in both and if all previ­
ous members are the same in both. (Actually, the compiler checks only that a name in two
different structures has the same type and offset in both, but if preceding members differ the
construction is nonportable.)

A simple example of a structure declaration is

Bell Telephone Laboratories, Incorporated - 18 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

struct tnode {
char tword[20};
int count;
struct tnode * left;
struct tnode =right;

} ;

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the following declaration makes sense:

struct tnode s, =sp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the
given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s. Finally,
s.right+ >tword [0]

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is pre­
ceded by '~, and consists of an expression or a list of values nested in braces.

initializer:
= expression
= [initializer-list)
= { initializer-list,)

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list)

The '~ is a new addition to the syntax, intended to alleviate potential ambiguities. The current
compiler allows it to be omitted when the rest of the initializer is a very simple expression Gust
a name, string, or constant) or when the rest of the initializer is enclosed in braces.

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in §15, or expressions which reduce to the address of a previ­
ously declared variable, possibly offset by a constant expression. Automatic or register vari­
ables may be initialized by arbitrary expressions involving previously declared variables.

Static and external variables which are not initialized are guaranteed to start off as O;
automatic and register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it con­
sists of a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer con­
sists of a brace-enclosed, comma-separated list of initializers for the members of the aggregate,

Bell Telephone Laboratories, Incorporated - 19 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

P A-1 C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

written in increasing subscript or member order. If the aggregate contains subaggregates, this
rule applies recursively to the members of the aggregate. If there are fewer initializers in the
list than there are members of the aggregate, then the aggregate is padded with O's. It is not
permitted to initialize unions or automatic aggregates. Currently, the PDP-11 compiler also for­
bids initializing fields in structures.

Braces may be elided as follows. If the initializer begins with a left brace, then the
succeding comma-separated list of initializers initialize the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
members of the string initialize the members of the array.

For example,

int x[] = { 1, 3, 5);

declares and initializes x as a I-dimensional array which has three members, since no size was
specified and there are three initializers.

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{3,5,7),

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y [O],
namely y[O][O], y[O][l], and y[0][2]. Likewise the next two lines initialize y[l] and y[2]. The
initializer ends early and therefore y [3] is initialized with 0. Precisely the same effect could
have been achieved by

float y[4][3] = (
1, 3, 5, 2, 4, 6, 3, 5, 7,

};

The initializer for y begins with a left brace, but that for y[O] does not, therefore 3 elements
from the list are used. Likewise the next three are taken successively for y [I] and y [21. Also,

float y[4][3] = {
(1 }, { 2 }, { 3 }, { 4}

};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.7 Type names
In two contexts (to specify type conversions explicitly, and as an argument of sizeof') it is
desired to supply the name of a data type. This is accomplished using a 'type name,' which in
essence is a declaration for an object of that type which omits the name of the object.

Bell Telephone Laboratories, Incorporated - 20 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression

0
"

1
J

To avoid ambiguity, in the construction
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to iden­
tify uniquely the location in the abstract-declarator where the identifier would appear if the con­
struction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int
int»
int *[3]
int (*)[J]

name respectively the types 'integer,' 'pointer to integer,' 'array of 3 pointers to integers,' and
'pointer to an array of 3 integers.' As another example,

inti;

sin ((double) i);

calls the sin routine (which accepts a double argument) with an argument appropriately con­
verted.

8.8 Typedef
Declarations whose 'storage class' is typedef do not define storage, but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.
Within the scope of a declaration involving typedef, each of the identifiers appearing as part of
any declarators therein become syntactically equivalent to type keywords naming the type asso­
ciated with the identifiers in the way described in §8.4.

typedef-name:
identifier

For example, after

typedef int MILES, *KLICKSP;
typedef struct [double re, im;) complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, -zp;

are all legal declarations; the type of distance is 'int', that of metricp is 'pointer to int,' and that
of z is the specified structure. Zp is a pointer to such a structure.

Bell Telephone Laboratories, Incorporated - 21 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

Typedef does not introduce brand new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly the
same type as any other int object.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called 'block') is provided:

compound-statement:
{ declaration-list

0
t>, statement-list

0
v, }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, at which time it resumes its force.

Any initializations of auto or register variables are performed each time the block is
entered at the top. It is currently possible (but a bad practice) to transfer into a block; in that
case the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, external declarations do not reserve
storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is exe­
cuted. In the second case the second substatement is executed if the expression is 0. As usual
the 'else' ambiguity is resolved by connecting an else with the last encountered elseless if.

9.4 While statement
The while statement has the form

while (expression) statement
The substatement is executed repeatedly so long as the value of the expression remains non­
zero. The test takes place before each execution of the statement.

Bell Telephone Laboratories, Incorporated - 22 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

9.5 Do statement
The do statement has the form

do statement while (expression) ;
The substatement is executed repeatedly until the value of the expression becomes zero. The
test takes place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-I ; expression-2 ; expression-3
0111
) statement

OJI! OJI/

This statement is equivalent to
expression- I;
while (expression-2) {

statement
expression-T;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0; the third
expression typically specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied
while clause equivalent to 'while(1)'; other missing expressions are simply dropped from the
expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int.
The statement is typically compound. Any statement within the statement may be labelled with
one or more case prefixes as follows:

case constant-expression :
where the constant expression must be int. No two of the case constants in the same switch
may have the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form
default:

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If no case constant matches the
expression, and if there is a default prefix, control passes to the prefixed statement. If no case
matches and if there is no default then none of the statements in the switch is executed.

Case and default prefixes in themselves do not alter the flow of control, which continues
unimpeded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may
appear at the head of this statement, initializations of automatic or register variables are
ineffective.

Bell Telephone Laboratories, Incorporated - 23 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

9.8 Break statement
The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes
to the statement following the terminated statement.

9.9 Continue statement
The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for (...) {

contin:;
}

contin:;
) while (...) ;

contin:;
}

a continue is equivalent to 'goto contin'. (Following the 'contin:' is a null statement, §9.13.)

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return;
return expression ;

In the first case the returned value is undefined. In the second case, the value of the expres­
sion is returned to the caller of the function. If required, the expression is converted, as if by
assignment, to the type of the function in which it appears. Flowing off the end of a function is
equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto identifier ;
The identifier must be a label (§9.12) located in the current function. Previous versions of C
had an incompletely implemented notion of label variable, which has been withdrawn.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier :
which serve to declare the identifier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any sub-blocks in which the same
identifier has been redeclared. See §11.

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the '}' of a compound statement or to
supply a null body to a looping statement such as while.

Bell Telephone Laboratories, Incorporated - 24 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The
type-specifier (§8.2) may also be empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are declared just as the effect of
declarations persists to the end of a block. The syntax of external definitions is the same as
that of all declarations, except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

function-deft nition:
decl-specifiersj, function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; See §11.2 for the
distinction between them. A function declarator is similar to a declarator for a 'function return­
ing .. .' except that it lists the formal parameters of the function being defined.

Junction-declarator:
declarator (parameter-listi }

parameter-list:
identifier
identifier, parameter-list

The function-body has the form
Junction-body:

declaration-list compound-statement
The identifiers in the parameter list, and only those identifiers, may be declared in the declara­
tion list. Any identifiers whose type is not given are taken to be int. The only storage class
which may be specified is register; if it is specified, the corresponding actual parameter will be
copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max (a, b, c)
int a, b, c;
{

int m;
m = (a> b)? a tb ;
return (m > c? m: c);

Here 'int' is the type-specifier; 'max (a, b, c)' is the function-declarator; 'int a, b, c;' is the
declaration-list for the formal parameters; '(... }' is the block giving the code for the state­
ment. The parentheses in the return are not required.

C converts all float actual parameters to double, so formal parameters declared float have
their declaration adjusted to read double. Also, since a reference to an array in any context (in
particular as an actual parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared 'array of .. .' are adjusted to read 'pointer to .. .'.
Finally, because neither structures nor functions can be passed to a function, it is useless to
declare a formal parameter to be a structure or function (pointers to structures or functions are
of course permitted).

Bell Telephone Laboratories, Incorporated - 25 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

A free return statement is supplied at the end of each function definition, so running off
the end causes control, but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-deli nition:
declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register.

11. Scope rules
AC program need not all be compiled at the same time: the source text of the program may be
kept in several files, and precompiled routines may be loaded from libraries. Communication
among the functions of a program may be carried out both through explicit calls and through
manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical
scope of an identifier, which is essentially the region of a program during which it may be used
without drawing 'undefined identifier' diagnostics; and second, the scope associated with exter­
nal identifiers, which is characterized by the rule that references to the same external identifier
are references to the same object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the file in which they appear. The lexical scope of identifiers which· are for­
mal parameters persists through the function with which they are associated. The lexical scope
of identifiers declared at the head of blocks persists until the end of the block. The lexical
scope of labels is the whole of the function in which they appear.

Because all references to the same external identifier refer to the same object (see §11.2)
the compiler checks all declarations of the same external identifier for compatibility; in effect
their scope is increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including
the block constituting a function, any declaration of that identifier outside the block is
suspended until the end of the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand
and those associated with structure and union members and tags on the other form two disjoint
classes which do not conflict. Typedef names are in the same class as ordinary identifiers.
They may be redeclared in inner blocks, but an explicit type must be given in the inner declara­
tion:

typedef./ioat distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with
no declarators and type distance."

"It is agreed that the ice is thin here.

Bell Telephone Laboratories, Incorporated - 26 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

11.2 Scope of externals
If a function declares an identifier to be extern, then somewhere among the files or libraries
constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same
object, so care must be taken that the type and extent specified in the definition are compatible
with those specified by each function which references the data.

In PDP-11 C, compatible external definitions of the same identifier may be present in
several of the separately-compiled pieces of a complete program, or even twice within the same
program file, with the limitation that the identifier may be initialized in at most one of the
definitions. In other operating systems, however, the compiler must know in just which file the
storage for the identifier is allocated, and in which file the identifier is merely being referred to.
The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an
external data definition without the extern specifier must appear in exactly one of the files.
Any other· files which wish to give an external definition for the identifier must include the
extern in the definition. The identifier can be initialized only in the declaration where storage is
allocated.

Identifiers declared static at the top level in external definitions are not visible in other
files.

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with '#' communicate with this preprocessor.
These lines have syntax independent of the rest of the language; they may appear anywhere and
have effect which lasts (independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

defi ne identifier token-string
(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. A line of the form

defi ne identifier! identifier , ... , identifier) token-string
where there is no space between the first identifier and the '(', is a macro definition with argu­
ments. Subsequent instances of the first identifier followed by a '(', a sequence of tokens del­
imited by commas, and a ')' are replaced by the token string in the definition. Each occurrence
of an identifier mentioned in the formal parameter list of the definition is replaced by the
corresponding token string from the call. The actual arguments in the call are token strings
separated by commas; however commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Text
inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both
forms a long definition may be continued on another line by writing '\' at the end of the line to
be continued.

This facility is most valuable for definition of 'manifest constants', as in

Bell Telephone Laboratories, Incorporated - 27 -
PROGRAM APPLICATION INSTRUCTION

P A-1 C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

deft ne T ABSIZE I 00

int tab/e[T ABSIZE];

A control line of the form
undef identifier

causes the identifier's preprocessor definition to be forgotten.

12.2 File inclusion
A compiler control line of the form

include "filename"
causes the replacement of that line by the entire contents of the file filename:

The named file is searched for first in the directory of the original source file, and then in
a sequence of standard places. Alternatively, a control line of the form

include <filename>
searches only the standard places, and not the directory of the source file.

Includes may be nested.

12.3 Conditional compilation
A compiler control line of the form

if constant-expression
checks whether the constant expression (see §15) evaluates to non-zero. A control line of the
form

ifdef identifier
checks whether the identifier is currently defined in the preprocessor; that is, whether it has
been the subject of a #define control line. A control line of the form

ifndef identifier
checks whether the identifier is currently undefined in the preprocessor.

All three forms are followed by an arbitrary number of lines, possibly containing a control
line

else
and then by a control line

endif
If the checked condition is true then any lines between #else and #endif are ignored. If the
checked condition is false then any lines between the test and an #else or, lacking an #else,
the #endif, are ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the form

line constant identifier
causes the compiler to believe, for purposes of error diagnostics, that the next line number is
given by the constant and the current input file is named by the identifier. If the identifier is

Bell Telephone Laboratories, Incorporated - 28 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. Sometimes the storage class is supplied by the context: in external definitions, and
in declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto. An exception to the latter rule is
made for functions, since auto functions are meaningless (C being incapable of compiling code
into the stack). If the type of an identifier is 'function returning ... ', it is implicitly declared to
be extern.

In an expression, an identifier followed by (and not currently declared is contextually
declared to be 'function returning int'.

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions
There are only two things that can be done with a structure or union: name one of its members
(by means of the . operator); or take its address (by unary &). Other operations, such as
assigning from or to it or passing it as a parameter, draw an error message. In the future, it is
expected that these operations, but not necessarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with. or->) the name on the
right must be a member of the structure named or pointed to by the expression on the left. To
allow an escape from the typing rules, this restriction is not firmly enforced by the compiler. In
fact, any !value is allowed before '.', and that !value is then assumed to have the form of the
structure of which the name on the right is a member. Also, the expression before a '- >' is
required only to be a pointer or an integer. If a pointer, it is assumed to point to a structure of
which the name on the right is a member. If an integer, it is taken to be the absolute address,
in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, one might say

int f();

g(J);

Then the definition of g might read

Bell Telephone Laboratories, Incorporated - 29 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

g (funcp)
int (*funcp) ();
{

Notice that f was declared explicitly in the calling routine since its first appearance was not fol­
lowed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not !values. By definition,
the subscript operator [] is interpreted in such a way that 'El[E2]' is identical to
'*((El) +(E2))'. Because of the conversion rules which apply to +, if El is an array and E2
an integer, then El[E2] refers to the E2-th member of El. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n­
dimensional array of rank i xj x · · · x k, then E appearing in an expression is converted to a
pointer to an (n-O-dimensional array with rank j»: · · · x k. If the * operator, either explicitly
or implicitly as a result of subscripting, is applied to this pointer, the result is the pointed-to
(n-D-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Here xis a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5-membered arrays of integers. In the expression 'x[i]', which is
equivalent to '* (x -ti)', xis first converted to a pointer as described; then i is converted to the
type of x, which involves multiplying i by the length the object to which the pointer points,
namely 5 integer objects. The results are added and indirection applied to yield an array (of 5
integers) which in turn is converted to a pointer to the first of the integers. If there is another
subscript the same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest)
and that the first subscript in the declaration helps determine the amount of storage consumed
by an array but plays no other part in subscript calculations.

15. Constant expressions
In several places C requires expressions which evaluate to a constant: after case, as array
bounds, and in initializers. In the first two cases, the expression can involve only integer con­
stants, character constants, and sizeof expressions, possibly connected by the binary operators

+ - * I % & I " < < > > == != < > < = > =
or by the unary operators

or by the ternary operator
? :

Bell Telephone Laboratories, Incorporated - 30 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-0l
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

Parentheses can be used for grouping, but not for function calls.
A bit more latitude is permitted for initializers; besides constant expressions as discussed

above, one can also apply the unary & operator to external or static objects, and to external or
static arrays subscripted with a constant expression. The unary & can also be applied implicitly
by appearance of unsubscripted arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously declared external or static object
plus or minus a constant.

Bell Telephone Laboratories, Incorporated - 31 -
PROGRAM APPLICATION INSfRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

16. Grammar revisited.

This section repeats the grammar of C in notation somewhat different than given before.
The description below is adapted directly from a YACC grammar actually used by several com­
pilers; thus it may (aside from possible editing errors} be regarded as authentic. The notation
is pure YACC with the exception that the 'I' separating alternatives for a production is omitted,
since alternatives are always on separate lines; the ';' separating productions is omitted since a
blank line is left between productions.

The lines with '%term' name the terminal symbols, which are either commented upon or
should be self-evident. The lines with '%left,' '%right,' and '%binary' indicate whether the
listed terminals are left-associative, right-associative, or non-associative, and describe a pre­
cedence structure. The precedence (binding strength) increases as one reads down the page.
When the construction '%prec x appears the precedence of the rule is that of the terminal x;
otherwise the precedence of the rule is that of its leftmost terminal.

%term NAME
%term STRING
%term ICON
%term FCON
%term PLUS
%term MINUS
%term MUL
%term AND
%term QUEST
%term COLON
%term ANDAND
%term OROR
%term ASOP I* old-style =+etc. *I
%term RELOP /* < = > = < > *I
%term EQUOP /* == !=*/
%term DIVOP /*I% *I
%term OR /* I */
%term EXOR I* ,... */
%term SHIFTOP /* << >>.;
%term INCOP I* ++ --*I
%term UNOP I* ! - */
%term STROP I*. -> *I

%term
%term
%term
%term
%term
%term
%term
%term
%term
%term
%term

TYPE
CLASS
STRUCT
RETURN
GOTO
IF
ELSE
SWITCH
BREAK
CONTINUE
WHILE

I* int, char, long, float, double, unsigned, short *I
I* extern, register, auto, static, typedef *I
I* struct or union *I

Bell Telephone Laboratories, Incorporated - 32 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

%term DO
%term FOR
%term DEFAULT
%term CASE
%term SIZEOF

%term LP /* (4
%term RP I*) *I
%term LC I* { */
%term RC /* } */
%term LB I* [*/
%term RB /*] *I
%term CM I* , *I
%term SM I* ; *I
%term ASSIGN I* =*I

%left CM
%right ASOP ASSIGN
%right QUEST COLON
%left OROR
%left ANDAND
%left OROP
%left AND
%binary EQUOP
%binary RELOP
%left SHIFTOP
%left PLUS MINUS
%left MUL DIVOP
%right UNOP
%right INCOP SIZEOF
%left LB LP STROP

PA-1C600-01
Section 21

Issue l, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

program:

ext def list:

ext def list

ext def list external def
I* empty 4

external def: optattrib SM
optattrib init_dcl_list SM
optattrib fdeclarator function_body

function_body: dcl_list compoundstmt

dcl list: dcl list declaration
I* empty */

declaration: specifiers declarator _list SM
specifiers SM

Bell Telephone Laboratories, Incorporated - 33 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

optattrib:

specifiers:

type:

struct dcl:

type_ dcl _list:

specifiers
/*empty*/

CLASS type
type CLASS
CLASS
type

TYPE
TYPE TYPE
struct dcl

STRUCT NAME LC type_dcl_list RC
STRUCT LC type_dcl_list RC
STRUCT NAME

type_ declaration
type_ dcl _list type_ declaration

type_declaration: type declarator_list SM
struct dcl SM
type SM

declarator list: declarator
declarator list CM declarator

declarator:

nfdeclarator:

fdeclarator:

name list:

fdeclarator
nfdeclarator
nfdeclarator COLON con_e %prec CM
COLON con_e 0/oprec CM

MUL nfdeclarator
nfdeclarator LP RP
nfdeclarator LB RB
nfdeclarator LB con e RB
NAME
LP nfdeclarator RP

MUL [declarator
[declarator LP RP
fdeclarator LB RB
fdeclarator LB con_e RB
LP fdeclarator RP
NAME LP name_list RP
NAME LP RP

NAME
name list CM NAME

Bell Telephone Laboratories, Incorporated - 34 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL

init dcl list: init_declarator 0/oprec CM
init dcl list CM init declarator - - -

init declarator: nfdeclarator
nfdeclarator ASSIGN initializer
nfdeclarator initializer
[declarator

init list: initializer %prec CM
init list CM initializer

initializer:

compoundstmt:

stmt list:

e %prec CM
LC init list RC
LC init list CM RC

LC dcl list stmt list RC - -

stmt list statement
I* empty 4

statement: e SM
compoundstmt
IF LP e RP statement
IF LP e RP statement ELSE statement
WHILE LP e RP statement
DO statement WHILE LP e RP SM
FOR LP opt_e SM opt_e SM opt_e RP statement
SWITCH LP e RP statement
BREAK SM
CONTINUE SM
RETURN SM
RETURN e SM
GOTO NAME SM
SM
label statement

label: NAME COLON
CASE con e COLON
DEFAULT COLON

con e: e %prec CM

opt_e:

elist: e %prec CM
elist CM e

e: e MUL e
e CM e

Bell Telephone Laboratories, Incorporated - 35 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCo SPCS

C REFERENCE MANUAL C REFERENCE MANUAL

e DIVOP e
e PLUS e
e MINUS e
e SHIFTOP e
e RELOP e
e EQUOP e
e AND e
e OROP e
e ANDAND e
e OROR e
e MUL ASSIGN e
e DIVOP ASSIGN e
e PLUS ASSIGN e
e MINUS ASSIGN e
e SHIFTOP ASSIGN e
e AND ASSIGN e
e OROP ASSIGN e
e QUEST e COLON e
e ASOP e
e ASSIGN e
term

term: term INCOP
MUL term
AND term
MINUS term
UNOP term
INCOP term
SIZEOF term
LP type_name RP term %prec STROP
SIZEOF LP type_name RP 0/oprec SIZEOF
term LB e RB
term LP RP
term LP elist RP
term STROP NAME
NAME
ICON
FCON
STRING
LP e RP

type_name:

abst_decl:

type abst_decl

/* empty *I
LP RP
LP abst decl RP LP RP
MUL abst_decl
abst decl LB RB
abst_decl LB con_e RB
LP abst decl RP

Bell Telephone Laboratories, Incorporated - 36 -
PROGRAM APPLICATION INSTRUCTION

C REFERENCE MANUAL

PA-1C600-01
Section 21

Issue 1, 20 AUGUST 1977
AT&TCoSPCS

C REFERENCE MANUAL

This page has been left blank intentionally.

