
Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 1 - PA-1C600-01 
Section 14 (c) 

Issue 1, 10/1/77 
AT&TCo SPCS 

INTRO(c) INTRO(c) 

INTRODUCTION TO INTERPROCESS MESSAGE FORMATS 

Section C of this manual describes the formats of all of the messages used in interprocess communica­ 
tion. A message consists of a 6 word header and up to 106 words of data in the body of the message. 
Messages may be sent from a kernel process or a supervisor process to any other kernel or supervisor 
process. The message header is defined by the following structure: 

struct msghdr { 
int "rnslink; 
int msfrom; 
int msto; 
char mssize; 

char mstype; 
int msident; 
char msstat; 

char msseqnum; 

/* link to next message on input queue * / 
/* process from which message was received * / 
/* process to which message is to be sent * / 
/* bits 0-2size in multiples of 16 words 
bit 3: allocated bit 
bit 4: acknowledgment bit 
bit 5: iolock bit 
bit 6: capability bit 
/* message type * / 
/* message identification word only used by sender * / 
/* status byte set either by sender of message or by the kernel 
*/ 
/* message sequence number * / 

If the message is a capability message, the message header is followed by a capability structure: 

struct cp _ clist { 
int cpm_num; 
int cpm_owner; 
int cpm_cap; 

} ; 

/* capability number * / 
/* capability owner * I 
/* capability * / 

The sender need only fill in the capability number cpm _ num; the kernel sendcpmsg EMT then fills in the 
capability owner and the value of the capability in the other two words of the structure before sending 
the message onto the msto process. It is the receiver's responsibility to validate the capability. 

The data in the body of the message must be filled in directly by the sender of the message and varies 
with the message type as well as the receiving process. Normally the sender need. only fill in the msto 
and mstype fields of the message header. 

In the case of a kernel process "sender", an a/ocmsg(nwords) EMT call is required to alocate space for 
the message in the kernel message buff er pool. This call fills in the appropriate "size" and "allocate" bits 
in the mssize field of the message. The msfrom field must also be filled in by the "sender". The msident 
field may be filled in by the "sender" only if he wishes to recognize the acknowledgement to this mes­ 
sage. The kernel process may then fill in the body of the message and send it to the intended receiver 
by means of the queuem or queuemn (no acknowledgement expected from receiving process) EMT calls. 
The kernel queues the message on the input queue of the receiving process using the ms/ink word. The 
kernel also fills in the msseqnum byte, which is used strictly as a debugging aid. The msstat field of the 
message is filled in by the receiving process to pass back error status. The value of -1 is reserved by 
the kernel to indicate that the receiving process does not exist or received an abnormal termination. 



Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 2 - 

INTRO(c) 

PA-IC600-0l 
Section 14 (c) 

Issue 1, 10/1/77 
AT&TCo SPCS 

INTRO(c) 

In the case of a supervisor process "sender", the mssize field must be filled in. Here the mssize field is 
now the number of words in the body of the message excluding the header. The complete message is 
formed in a message buff er in the supervisor address space. This message is sent to the intended re­ 
ceiver using the "sendmsg" EMT call. The kernel allocates space for the message in the kernel message 
buff er pool and copies in the message from the supervisor address space, converting the mssize word to 
the appropriate bit field in so doing. The ms/ink and msseqnum words are filled in by the kernel as in 
the case of a kernel process. In addition the kernel fills in the msfrom word in the message header. 

Upon sending a message, the receiver is sent a message event to inform it of the presence of a message 
on its input queue. In the case of a kernel process receiver, no copy of the message occurs; a "de­ 
queuem" or "dqtype" EMT call returns a pointer to the message buffer, allowing the receiver to directly 
access the body of the message. In the case of a supervisor process, a call to getmsg or gettype will ini­ 
tiate the copy of the message from the kernel message buff er pool to the supervisor buff er provided by 
the receiver, freeing up the space used by this message in the kernel message buffer pool in the pro­ 
cess. The receiver need only fill in the maximum size message which he expects to receive. 

This section of the manual details all message types for the processes sending and receiving messages. 
In each case the 6 word header is identical. Only the contents of the body of the message varies. The 
processes discussed include: 

File Manager 
Process Manager 
Memory Manager 
Scheduler 
1/0 Processes 

Message types are discussed according to what types of messages each process is willing to accept. 


