
Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 1 -

FILE SYSTEM (g)

PA-1 C600-0l
Section 18 (g)

Issue 1, 10/17/75
AT&TCo SPCS

FILE SYSTEM (g)

NAME
fs - format of file system volume

DESCRIPTION
Caution: this information applies only to the latest versions of the MER T file system.

Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a com­
mon format for certain vital information. Every such volume is divided into a certain number
of 256 word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap pro­
gram, pack label, or other information.

Starting from its first word, the format of a super-block is Block 1 is the super block.

struct {
char
char
struct

int
int
int
struct

*s isize· - ,
*s fsize· { - ,

char
char

} s_ext[64];

"stblk;
"ncblks;

s_ninode;
s_inode[60];
s nupdate;
C
char

/* number of blocks of inodes * I
/* number of blocks in file system * /

/* number of free inodes * I

/* number of update entries filled * /

};

int
} s_update[30];
char s _ flock;
char s_ilock;
char s_fmod;
char s_ronly;
int s_time[2];

"stblk;
nublks;

/size is the number of blocks devoted to the i-list, which starts just after the super-block, in
block 2. Fsize is the first block not potentially available for allocation to a file. This number is
unused by the system, but is used by programs like check (d) to test for bad block numbers.

The free list for each volume is maintained as follows. The in-core free list for each mounted
volume consists of 64 double-word entries. The first word in an entry is the first free block
stblk of the number ncblks of consecutive free blocks described by this extent. The free list for
each volume is also maintained in a bit map kept on the volume starting just beyond the blocks
devoted to the i-list. A number of update entries s_nupdate are kept in the in-core list s_update
to keep the bit map uptodate. These update entries consist of double word entries, a starting
block number and number of consecutive blocks.

To allocate nb blocks, the in-core free list is searched for the best entry to use. The algorithm
used is to search the list for the smallest entry from which nb blocks can be allocated. If there
are not nb free blocks, the largest entry is chosen. If there are no free blocks, the in-core free
list is reconstructed using the bit map maintained on the volume. If there are still no free
blocks, an error is returned. The in-core free list is updated and an entry is put in the update
list. When the update list becomes full, the bit map is updated on the volume using the in-core
update list and the update list is marked empty.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 2 - PA-I C600-01
Section 18 (g)

Issue 1, 10 / 1 7 /7 5
AT&TCoSPCS

FILE SYSTEM(g) FILE SYSTEM(g)

To free nb blocks, the in-core free list is searched according to the following algorithm. The nb
blocks are added to an existing entry if they are contiguous with it. The entry is put in a null
entry if one exists. If there is no empty entry, the smallest entry is replaced by the new entry.
This entry is also put on the update list with a negative block count to distinguish it from an
"alloc" entry. When the update list becomes full, the bit map is updated on the volume using
the in-core update list and the update list is marked empty.

Ninode is the number of free i-numbers in the inode array. To allocate an i-node: if ninode is
greater than 0, decrement it and return inode[ninode}. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into the inode array, then try again. To free an i-node,
provided ninode is less than 100, place its number into inode[ninode} and increment ninode. If
ninode is already 100, don't bother to enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the information as to whether the inode is really free
or not is maintained in the inode itself.

Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value of fmod on disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during
the next periodic update of file system information. Ronly is a flag used to indicate that the file
system is read-only, i.e. no files may be modified.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT).
During a reboot, the time of the super-block for the root file system is used to set the system's
idea of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 64 words
long, so 4 of them fit into a block. Therefore, i-node i is located in block (i + 7) I 4, and be­
gins 128· ((i + 7) (mod 4) bytes from its start. I-node 1 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning. Each i-node represents one file:
The format of an i-node is as follows.

struct {
int flags;
char nlinks;
char uid;
char gid;
char fill;

} ;

int size0;
int size I;
struct {

int *stblk;
int "ncblks;

} extents [27);
int actime [2];
int modtime[2];
int chksum;

/* -t-0: see below * /
/* +2: number of links to file * /
/* +3: user ID of owner * /
/* +4: group ID of owner * /
I* +5: used internally * /
/* +6: high byte of 32-bit size*/
/* +8: low word of 32-bit size*/

/* starting block number * /
/* number of cons. blocks * /

/* +118: time of last access * /
/* +122: time of last modification * /
/* not used * /

The flags are as follows:

100000 i-node is allocated
070000 3-bit file type:

000000 plain file
040000 directory
020000 character-type special file

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 3 -

FILE SYSTEM(g)

PA-1C600-01
Section 18 (g)

Issue 1, 10/17/75
AT&TCo SPCS

FILE SYSTEM (g)

060000 block-type special file
070000 record-type special file.

010000 contiguous file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi­
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first extent
word specifies the type of device; the low byte specifies one of several devices of that type.
The device type numbers of block and character special files overlap.

The extent words of ordinary files and directories contain pairs of starting block numbers and
number of consecutive blocks. As many extents are used as are required to describe the
discontinuous pieces of the file. A contiguous file requires only one extent.

Byte number n of a file is accessed as follows. N is divided by 512 to find its logical block
number (say b) in the file. The physical block number is the b th logical block in the list of
extents. The remainder from the division yields the byte in the block which is to be accessed.

SEE ALSO
check (d)

