UNIX
D.1.2

A Guide to the C Library for UNIX Users
C. D. Perez

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The C language on the UNIXt system has been traditionally provided with a rich supply of
often-used routines formed into libraries selectable at load time. When the interest in portabil-
ity heightened, the C library kept pace with other software being modified, and the library
known as /lib/libS. a superseded the older attempts at portability [1]. This new library (2] con-
centrated on input-output functions that removed the user from close contact with operating-
system features. It also introduced new string functions and some memory-allocation routines.

It is to the advantage of the C programmer to become acquainted with the C library functions

. and to keep up-to-date with new versions. To select routines from the C library is to choose

available code that has been tuned for portability and efficiency. This document is meant to
acquaint the programmer with a selection of functions from the C library that are commonly
used and to point out differences among functions, special features, and occasionally precau-
tions about function usage. The veteran user of the C library will find in this compendium an
update to previously published information about the library.

Section 2 describes the current changes and additions to the contents of Jib/libS.a since the
Ritchie document was published. The bulk of the information appears in Attachment A, which
is intended to be a user’s reference tool. Function descriptions appear alphabetically within log-
ical groupings. Where it seems helpful, examples are supplied. The values returned by the
functions are identified in a way that suggests their use in portable code.

2. UPDATE INFORMATION
2.1 General

The standard library /lib/libS.a no longer exists separate from the rest of the C library; these
routines have been incorporated into the standard UNIX C library, /lib/libc. a This library encom-
passes input-output functions, routines for character type recognition and translation, space
allocation, file status and a few miscellaneous routines of general use as well as many functions
specific to the operating system.

Three files exist with definitions of constants, and macros that are used by many of the C
library functions. Stdio.h contains the definitions of NULL, EOF, FILE, and BUFSIZ. The
standard input file (stdin), standard output file (stdout), and standard error file (stderr) are also
defined there. These are included in a program with #include <stdio.h>. The file
ctype. h provides the macro definitions for the variety of character classifications that is now pos-
sible. Any program using those facilities must contain the line #include <ctype.h>. The
functions that handle signals need to include the signal definitions. This can be done with
#include <signal.h>.

t UNIX is a trademark of Bell Laboratories.

2 A Guide to the C Library

2.2 Space Allocation.

Calloc was designed to be used for acquiring space initialized to zero; malloc is now available to
allocate a chunk of uninitialized space, and realloc to change the size of an already allocated
amount of space. Cfree has been renamed free, and returns space acquired by any of the above
three functions.

2.3 Input-Output Functions

The function fopen may now be supplied with new options that allow updating of a file (r+,
w+, a+). An added routine fdopen acts as a bridge between the low-level UNIX input-output
functions and the ‘“‘standard” technique of opening a stream. Printf provides more versatile
formatting. For operating systems that support the concept of pipes, and the shell, the func-
tions popen and pclose add a facility for creating a pipe between the calling process and a com-
mand supplied as the argument.

2.4 Status

To acquire information about a file, feof, ferror, and fileno have been available. Now a function
named clearerr is added. It resets the error condition indicated by ferror while the stream
remains open.

2.5 Character Types

New macros added to the collection in ctype. h are isalnum (alphanumeric test), ispunct (for
recognizing punctuation characters), iscntrl (to identify certain control characters), isascii (to
find ASCII characters), isgraph (having visible graphic representation), and isxdigit (hexadecimal
digits with either upper-case or lower-case letters). Toascii can be used to translate characters
into ASCII; toupper and tolower are useful in changing the case of a letter.

2.6 Some Conventions

When the overhead of a function call could be substantial, because the routine suggests repeti-
tive use, it is likely to have been implemented as a macro. Getchar is an illustration of this.
Any “‘function’ coded as a macro is noted in its description. In these cases the user should
beware of the hazards of macro expansion on complex arguments. Cases should be avoided
where arguments are automatically incremented or decremented, are evaluated more than once,
contain their own macros or function calls, or whose order of operations is unclear after expan-
sion. In short, only simple arguments are safe to use with macros. In a few cases the C library
provides both a function call and a faster macro version to perform a similar task.

Some function names have changed in order to follow the established convention. To insure
that the uniqueness of function names is preserved even if truncation occurs on some systems,
those functions dealing with entire strings are named str. .. ; those functions that consider only
the first n characters of a string are named strn. . . .

2.7 Other Additions

Software signals are implemented by two functions, gsignal and ssignal, to generate and catch
error conditions respectively [3]. This facility allows the user to raise signals to be handled in
whatever way seems useful; the C Library code will eventually raise signals so that calling pro-
grams, such as UNIX commands, might be enhanced to respond to such signals.

Tmpnam can be used to create a name for a temporary file. Ctermid retrieves the terminal
identifier from the system, while cuserid retrieves the user ID. In each of these three functions,
the user may choose to supply space for the safe storage of that name, or accept an internal
storage place of suitable size.

Tmpfile provides an unnamed temporary file that continues in existence until the termination of
the process that requested it.

‘@

A Guide to the C Library 3

3. ACKNOWLEDGEMENTS
The author is grateful to J. F. Maranzano and L. Rosler for their careful reading of this docu-
ment, and to A. R. Koenig for his help during its preparation. T. A. Dolotta helped to format
this document.
4. REFERENCES

[1] Lesk, M. E. The Portable C Library, Bell Laboratories (May 1975).

[2] Ritchie, D. M. A4 New Input/Odtput Package, Bell Laboratories (May 1977).

[3] Koenig, A. R. A Proposal for Software Signals, private communication (Apr. 14, 1978).

[4] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's Manual—
Release 3.0, Bell Laboratories (June 1980).

4 A Guide to the C Library
Attachment A
COMMON C LIBRARY FUNCTIONS
FILE ACCESS
fclose #include <stdio.h>
int felose(stream)
FILE »stream;
Fclose closes a file that was opened by fopen, frees any buffers after emptying them,
and returns zero on success, non-zero on error. Exit calls Selose for all open files as
part of its processing.
fdopen # include <<stdio.h>
FILE xfdopen (fildes, type)
int fildes;
char »type;
Fdopen is used strictly on UNIX systems and therefore is not a portable function.
Its value is in providing a bridge between the low-level input-output (1/0) facilities
of UNIX and the standard I/O functions. Fdopen associates a stream with a valid
file descriptor obtained from a UNIX system call (e.g., open). Type is the same
mode (r, w, a, r+, w+, a+) that was used in the original creation of a file
identified by £ildes. Fdopen returns a pointer to the associated stream, or NULL
if unsuccessful.
Example:
int £4;3
char *name = "myfile";
FILE *strm;
fd = open(name,0);
if((strm = fdopen(£fd,"r")) == NULL)
fprintf(stderr,"Error on %d\n",fd);
fileno #include <stdio.h>
int fileno (stream)
FILE xstream;
Implemented as a macro on UNIX, (and contained in the file stdio. h), fileno returns
an integer file descriptor associated with a valid stream. Any existing non-UNIX
implementations may have different meanings for the integer which is returned.
Fileno is used by many other standard functions in the C library.
fopen #include <stdio.h>

FILE xfopen (filename, type)
char filename, »type;

Fopen opens a file named filename and returns a pointer to a structure
(hereafter referred to as stream), containing the data necessary to handle a
stream of data. Type is one of the following character strings:

r used to open for reading.
w used to open for writing, which truncates an existing file to zero length
or creates a new file.

A Guide to the C Library 5

freopen

fseek

a used to append, that is, open for writing at the end of a file, or create a
new file.

r+ update reading, which means open for reading and allow writing, posi-
tions the file pointer at the beginning of the file.

w+ update writing, which means open for writing and allow reading, trun-
cates an cxisting file to zero length or creates a new file.

a+ update appending, which means open for writing, positions to the end of
the file and allows for subsequent reads and writes (all writes being
forced to current end-of-file position). If the file does not exist; it will
be created.

For the update options, fseek or rewind can be used to trigger the change from
reading to writing, or vice versa. (Reaching EOF on input will also permit writing
without further formality.) Fopen returns a NULL pointer if £ilename cannot be
opened. On non-UNIX implementations, file names may be different from UNIX-
like names. The update functions are particularly applicable to stream I/O and
allow the creation of temporary files for both reading and writing. The non-UNIX
implementations contain many options other than those mentioned above.

Example:

FILE *fp;
char =file;

if((fp = fopen(file,"r")) == NULL)
fprintf(stderr, "Cannot open %s\n",file);

include <stdio.h>

FILE xfreopen (newfile, type, stream)
char *newfile, *type;

FILE wstream;

Freopen accepts a pointer, stream, to a previously opened file; the old file is
closed, and then the new file is opened. The principal motivation for freopen is the
desire to attach the names stdin, stdout, and stderr to specified files. On a success-
ful freopen, the stream pointer is returned; otherwise, NULL is returned, indicating
that either the closing of stream failed, or the file closing took place and the reo-
pening failed. Freopen is of limited portability; it can not be implemented in all
environments.

Example:

char *newfile;
FILE #nfile;

if((nfile = freopen(newfile,"r",stdout)) == NULL)
fprintf(stderr,"Cannot reopen ¥%¥s\n",newfile);

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE »stream;

long offset;

int ptrname;

Fseek positions a stream to a location offset distance from the beginning,
current position, or end of a file, depending on the values 0, 1, 2, respectively, for
ptrname. On UNIX the offset unit is bytes; other implementations may be
different. (For example, on GCOS the offset is three 12-bit fields of block, logical-
record number, and offset-into-record number.) The return values are 0 on suc-
cess and EOF on failure. Fseek may be used with both buffered and unbuffered
files. As implemented, the function cannot be ported to the 0S/370 environment.

pclose

popen

rewind

setbuf

A Guide to the C Library

Example:
To position to the end of a file:
FILE +stream;

fseek(stream,0L,2);

#include <stdio.h>
int pclose (stream)
FILE wstream;

Pclose closes a stream opened by popen. It returns the exit status of the command
that was issued as the first argument of its corresponding popen, or —1 if the
stream was not opened by popen. The function name pclose means an entirely
different thing in the OS/370 environment.

#include <stdio.h>
FILE *popen (command, type)
char xcommand, »type;

Popen is used to create a pipe between the calling process and a command to be
executed. The first argument is a shell command line; type is the 1/O mode for the
pipe, and may be either r for reading or w for writing. The function returns a
stream pointer to be used for I/O on the standard input or output of the command.
A NULL pointer is returned if an error occurs.

Example:
FILE #*pstrm;

if((pstrm=popen("tr mvp MVP","w"))== NULL)
fprintf(stderr,"popen error\n");

fprintf(pstrm,"a message via the pipe...\n");

if(pclose(pstrm) == =1)
fprintf(stderr,"Pclose error\n");

results in:
a Message Via the PiPe

#include <stdio.h>
int rewind(stream)
FILE wstream;

Rewind sets the position of the next operation at the beginning of the file associ-
ated with stream, retaining the current mode of the file. It is the equivalent of
Jfseek (stream,0L,0);.

#include <stdio.h>
setbuf (stream, buf)
FILE #stream;

char sbuf;:

This function allows the user to choose his own buffer for 1/0, or to choose the
unbuffered mode. Use it after opening and before reading or writing; it reduces
the number of system read/write requests. When buf is set to NULL, I/O is
unbuffered. The default status for all I/O streams is buffered unless the stream is
connected to a communication-line device. When the character routine putc is
used with an output stream that is unbuffered, there will result one system call
per character transferred. On the other hand, when any of the string output rou-
tines printf, fprintf, fwrite, puts, and fputs is used with an output stream that is
unbuffered, buffering will be temporarily and transparently established so that the
resultant output character string will be passed to the system in one system call.

A Guide to the C Library ¥

The choice to buffer 1/O brings with it the responsibility for flushing any data that
may remain in a last, partially-filled buffer. Fflush or fclose perform this task. The
constant BUFSIZ in stdio. h tells how big the character array buf is. It is well-
chosen for the machine on which UNIX is running. (On GCOS the function is
implemented as a null macro, because GCOS does not need such a function.)

Example:
setbuf (stdout, malloc(BUFSIZ));

FILE STATUS

clearerr

feof

ferror

ftell

#include <stdio.h>>
clearerr(stream)
FILE #stream;

Clearerr is used to reset the error condition on stream. The need for clearerr
arises on UNIX implementations where the error indicator is not reset after a query.

#include <stdio.h>
int feof (stream)
FILE *stream;

Feof, which is implemented as a macro on UNIX, returns non-zero if an input
operation on stream has reached end of file; otherwise, a zero is returned. Feof
should be used in conjunction with any I/O function whose return value is not a
clear indicator of an end-of-file condition. Such functions are fread and getw.

Example:

int =x;
FILE #stream;
do
#X++ = getw(stream);
while(lfeof(stream));

#include <stdio.h>
int ferror (stream)
FILE *stream;

Ferror tests for an indication of error on stream. It returns a non-zero value
(true) when an error is found, and a zero otherwise. Calls to ferror do not clear
the error condition, hence the clearerr function is needed for that purpose. The
user should be aware that, after an error, further use of the file may cause strange
results. On UNIX ferror is implemented as a macro.

Example:
FILE +stream;
int #x;

while(!ferror(stream))
putw(#x++,stream);

#include <stdio.h>
long ftell (stream)
FILE #stream;

Ftell is used to determine the current offset relative to the beginning of the file
associated with stream. It returns the current value of the offset; in UNIX it
returns the offset value in bytes. On error, a value of —1 is returned. This func-
tion is useful in obtaining an offset for subsequent fseek calls.

A Guide to the C Library

INPUT FUNCTIONS

fgetc

fgets

fread

fscanf

#include <stdio.h>
int fgetc (stream)
FILE #stream;

This is the function version of the macro getc and acts identically to getc. Because
Jgetc is a function and not a macro,it can be used in debugging to set breakpoints
on fgete and when the side effects of macro processing of the argument is a prob-
lem. Furthermore, it can be passed as an argument.

#include <stdio.h>
char »fgets (s,n,stream)
char #*s;

int n;

FILE =stream;

Fgets reads from stream into the area pointed to by s either n—1 characters or
an entire string including its new-line terminator, whichever comes first. A final
null character is affixed to the data read. It returns the pointer s on success, and
NULL on end-of-file or error. Fgets differs from the function gets in that it can
read from other than stdin, and that it appends the new-line at the end of input
when the size of the string is longer than or equal to n. More importantly, it pro-
vides control over the size of the string to be read that is not available with gets.

Example:

char msglMAX];
FILE *myfile;

while(fgets(msg,MAX,myfile) |= NULL)
printf ("%s\n",msg);

#include <stdio.h>
int fread((char *)ptr, sizeof (*ptr), nitems, stream)
FILE %stream;

This function reads from stream the next nitems whose size is the same as the
size of the item pointed to by ptr, into a sufficiently large area starting at ptr. It
returns the number of items read. In UNIX, fread makes use of the function getc.
It is often used in combination with feof and ferror to obtain a clear indication of
the file status. s

Example:

FILE #pstm;
char mesgl[100];

while(fread((char #)mesg,sizeof(*mesg),1,pstm) == 1)
printf("%s\n" ,mesqg);

#include <stdio.h>

int fscanf (stream, format/, argpir] . ..)
char *format;

FILE *stream;

Fscanf accepts input from the file associated with stream, and deposits it into the
storage area pointed to by the respective argument pointers after conversion accord-
ing to the specified formats. Format specifications are those that appear in the
UNIX User’s Manual [4] entry for scanf(3S). Fscanf differs from scanf in that it can
read from other than stdin. The function returns the number of successfully depo-
sited input arguments, or EOF on error or unexpected end-of-input.

A Guide to the C Library 9

gete

getchar

getw

Example:

FILE #file;
long pay;

char namel 15];
char panl7];

fscanf(file,"%6s%14s%1d\n" ,pan,name,&pay);

if (pay<50000)
printf("$%1d raise for ¥%s.\n",pay/10,name);

If the input data is:
020202MaryJones 15000

the resulting output is:
$1500 raise for MaryJones.

#include <stdio.h>
int getc (stream)
FILE #stream;

Getc returns the next character from the named stream. On UNIX it is imple-
mented as a macro to avoid the overhead of a function call. On error or end-of-file
it returns an EOF. Fgetc should be used when it is necessary to avoid the side
effects of argument processing by the macro getc.

#include <stdio.h>
int getchar()

This is identical to getc (stdin).

#include <stdio.h>
char *gets(s)
char *s;

Gets reads a string of characters up to a new-line from stdin and places them in the
area pointed to by s. The new-line character which ended the string is replaced by
the null character. The return values are s on success, NULL on error or end-of-
file. The simple example below presumes the size of the string read into msg will
not exceed SIZE in length. If used in conjunction with strlen, a dangerous
overflow can be detected, though not prevented.

Example:

char msglsIzE];
char =s;
s = msg;
while (gets(s) l= NULL)
printf("%s\n",s);

#include <stdio.h>
int getw (stream)
FILE #stream;

Getw reads the next word from the file associated with stream. On success it
returns the word; on error or end of file, it returns EOF. However, because EOF
could be a valid word, this function is best used with feof and ferror.

10

scanf

sscanf

ungetc

A Guide to the C Library

Example:
FILE #stream;
int «x;
do
*X++ = getw(stream);
while (l!feof(stream));

#include <stdio.h>
int scanf (format/, argptr] . ..)
char *format;

Scanf reads input from stdin and deposits it, according to the specified formats, in
the storage area pointed to by the respective argument pointers. The correct for-
mat specifications can be found in the UNIX User’s Manual [4] entry for scanf(3S).
For input from other streams than stdin use fscanf; for input from a character array
use sscanf. The return values are the number of successfully deposited input argu-
ments, or EOF on error or unexpected end-of-input.

Example:
long number;

scanf("%¥1ld",&number) ;
printf("%1ld is %s", number, number%2? "odd": "even");

#include <stdio.h>

sscanf (s, format [, pointer/ . ..)
char *s;

char *format;

Sscanf accepts input from a character string s and deposits it, according to the
specified formats, in the storage area pointed to by the respective argument
pointers. Format specifications appear in the UNIX User’s Manual [4] entry for
scanf(3S). This function returns the number of successfully deposited arguments.

Example:

char datestrl[] = {"THU MAR 29 11:04:40 EST 1979"};
char month[4];
char yearl5];

sscanf (datestr,"%+*3s%3s%*2s%#8s%+35%4s8" ,month,year);
printf("%s, %s\n",month,year);

The result is:

MAR, 1979

#include <stdio.h>
int ungetc (c, stream)
int c;
FILE #*stream;
Ungetc puts the character ¢ back on the file associated with stream. One charac-
ter (but never EOF) is assured of being put back. If successful, the function
returns ¢; otherwise, EOF is returned.
Example:
while(isspace (c = getc(stdin)))

ungetc(c,stdin);
This code puts the first character that is not white space back onto the standard
input stream.

A Guide to the C Library 11

OUTPUT FUNCTIONS

fflush

fprintf

fputc

fputs

fwrite

#include <stdio.h>
int fflush (stream)
FILE =stream;

Fflush takes action to guarantee that any data contained in file buffers and not yet
written out will be written. It is used by fclose to flush a stream. No action is
taken on files not open for writing. The return values are zero for success, EOF on
eIToT.

#include <stdio.h>

int fprintf (stream, format/[, arg] . ..)
FILE *stream;

char *format;

Fprintf provides formatted output to a named stream. The function printf may be
used if the destination is stdout. Specifications for formats are available in the
UNIX User's Manual [4] entry for printf(3S). On success, fprintf returns the
number of characters transmitted; otherwise, EOF is returned.

Example:
int #filename;
int o

if(c==EOF)
fprintf(stderr,"EOF on %s\n",filename);

#include <stdio.h>
int fputc (c,stream)
int ¢;

FILE #stream;

Fputc performs the same task as pufc; that is, it writes the character ¢ to the file
associated with stream, but is implemented as a function rather than a macro. It
is preferred to putc when the side effects of macro processing of arguments are a
problem. On success, it returns the character written; on failure it returns EOF.

Example:
FILE *in, sout;
Int .o

while ((¢ = fgetc(in)) l= EOF)
fpute(c,ont);

#include <stdio.h>
int fputs(s,stream)
char *s;

FILE =stream;

Fputs copies a string to the output file associated with stream. In UNIX it uses
the function putc to do this. It is different from puts in two ways: it allows any out-
put stream to be specified, and it does not affix a new-line to the output. For an
example, see puls.

#include <stdio.h>
int fwrite ((char *)ptr, sizeof (ptr),nitems,stream)
FILE #stream;

Beginning at ptr, this function writes up to nitems of data of the type pointed
to by ptr into output stream. It returns the number of items actually written.

12

printf

putc

putchar

puts

A Guide to the C Library

For the GCOS implementation, ptr must be on a machine-word boundary. Like
fread this function should be used in conjunction with ferror to detect the error
condition.

Example:

char mesgl] ={"My message to write out\n"};
FILE #pstrm;

if(fwrite(mesg,(sizeof(*mesg)-1),1,pstrm) 1= 1)
fprintf(stderr,"Output error\n");

#include <stdio.h>
int printf(format/, arg] . ..)
char *format;

Printf provides formatted output on stdour. The specifications for the available for-
mats are given in the UNIX User’s Manual [4] entry for printf(3S). Fprimif and
sprintf are related functions that write output onto other than the standard output.
In case of error, implementations are not consistent in their output. On success,
printf returns the number of characters transmitted; otherwise, EOF is returned.

Example:

int num = 10;
char msgl] = {"ten"};
printf("%d - %o - %s\n", num, num, msg);

results in the line;
10 - 12 - ten;
#include <stdio.h>
int putc (c,stream)
int ¢,
FILE #stream;
Putc writes the character ¢ to the file associated with stream. On success, it returns
the character written; on error it returns EOF. Because it is implemented as a

macro, side effects may result from argument processing. In such cases, the
equivalent function fpute should be used.

Example:
#define PROMPT() pute(’\7’,stderr) /% BEL »/
#include <stdio.h>

int putchar(c)

int ¢;

Putchar is defined as putc (c, stdout). It returns the character written on success, or
EOF on error.

Example:

char #=cp;
char x[sI1zE];
for(cp=x;cp<(x+SIZE) ;cp++)
putchar(«cp);

. #include <stdio.h>

int puts(s)
char *s;

A Guide to the C Library 13

&

sprintf

The function copies the string pointed to by s without its terminating null character
to szdout. A new-line character is appended. The UNIX implementation uses the
macro putchar (which calls putc).

Example:

puts("I will append a new-line");

fputs("\tsome more data ", stdout);
puts("and now a new-line");

The resulting output is:

I will append a new-line
some more data and now a new-line

#include <stdio.h>

int putw(w,stream)

FILE sstream;

int w;

Putw appends word w to the output stream. As with gerw, the proper way to
check for an error or end-of-file is to use the feof and ferror functions.

Example:
iny info;

while(!feof(stream))
putw(info,stream);

#include <stdio.h>

int sprintf(s, format, [, arg/ ...)
char #s;

char »format;

Sprintf allows for formatted output to be placed in a character array pointed to by s.
Sprintf adds a null at the end of the formatted output. See the UNIX User's Manual
[4] entry for printf(3S) for the specification of formats. It is the user’s responsibil-
ity to provide an array of sufficient length. Other related functions, printf and
Jprintf, handle similar kinds of formatted output. Sprinf can be used to build for-
matted arrays in memory, to be changed dynamically before output, or to be used
to call other routines. The comparable input function is sscanf. On success, sprintf
returns the number of characters transmitted; otherwise, EOF is returned.

Example:

char cmd[100];

char #doc = "/usr/src/cmd/cp.c"

int width = §50:

int length = 60;
sprintf(cmd, "pr -w¥d -1%d %s\n",width,length,doc);
system(cmd);

The above code executes the pr command to print the source of the ¢p command.

STRING FUNCTIONS

strecat

char #strcat(dst,src)
char *dst, *src;

Strcat appends characters in the string pointed to by src to the end of the string
pointed to by dst, and places a null character after the last character copied. It
returns a pointer to dst. To concatenate strings up to a maximum number of
characters, use strncat.

14

strchr

stremp

strcpy

strlen

A Guide to the C Library

Example:
char *myfile;
char dir[L cuserid+5] = "/usr/";
myfile = (strcat(dir,cuserid(0)));

The result is the concatenation of the login name onto the end of the string dir.

char xstrchr(s,c)
char =*s;
int c;

Strchr searches a string pointed to by s, for the leftmost occurrence of the charac-
ter c. It returns a pointer to the character found, or NULL if ¢ does not occur in
the string.

Example:
int length;
char =a;
register char «b;
length = ((b=strchr(a,’ ‘)) == NULL?0:b - a);

The resulting length is the number of characters up to the first blank in the
string pointed to by a.

char *stremp(sl,s2)
char 51, *s2;

Strcmp compares the characters in the string s1 and s2. It returns an integer
value, greater than, equal to, or less than zero, depending on whether s 1 is lexico-
graphically greater than, equal to, or less than s2.

Example:
#define EQ(x,y) Istrcmp(x,y)

char +strcpy(dst, src)
char »dst, *src;

Strcpy copies the characters (including the null terminator) from the string pointed
to by src into the string pointed to by dst. A pointer to dst is returned.

Example:

char dstl] = "UPPER CASE";
char srcl] = "this is lower case";

printf("%s\n",strepy(dst,src+8));
results in:

lower case

int strlen(s)
char *s;

Strlen counts the number of characters starting at the character pointed to by s up
to, but not including, the first null character. It returns the integer count.

Example:

char nextitem[SIZEI];
char series[Max];

if(strlen(series)) strcat(series,",");
strcat(series,nextitem);

A Guide to the C Library 15

strncat

strncmp

strncpy

strrchr

char sstrncat(dst, src, n)
char *dst, *src;
int n;

Strncat appends a maximum of n characters of the string pointed to by src and
then a null character to the string pointed to by dst. It returns a pointer to dst.

Example:
char dstl] = "cover";
char srcl] = "letter";

printf("%s\n",strncat(dst,src,3));
The output is:
coverlet
int strncmp(sl,s2,n)

char *sl, *s2;
int n;

Strncmp compares two strings for at most n characters and returns an integer
greater than, equal to, or less than zero as s1 is lexicographically greater than,
equal to or less than s2.

Example:
char filename [] = "/dev/ttyx";

if(strncmp (filename+5, "tty",3) == 0)
printf("success\n");

char +strncpy(dst,src,n)
char dst, *src;
int n;

Strncpy copies n characters of the string pointed to by src into the string pointed
to by dst. Null padding or truncation of src occurs as necessary. A pointer to
dst is returned.

Example:

char buf [mMAX];
char date [29] = {"Fri Jun 29 09:35:44 EDT 1979"};
char sday = buf;

strncpy(day,date,3);
After executing this code, day points to the string Fri.

char #strrchr(s,c)

char *s;

int ¢;

Strrchr searches a string pointed to by s, for the rightmost occurrence of the char-

acter c. It returns a pointer to the character found, or NULL if ¢ does not occur in
the string.

Example:
char reversel] = "NAME NO ONE MAN";
printf(strrchr (reverse,’'M’));
results in:

MAN

16 A Guide to the C Library

CHARACTER CLASSIFICATION
isalnum #include <ctype h>

int isalnum(c)

int c;

This macro determines whether or not the character ¢ is an alphanumeric character
([A-2a-z0-91). It returns zero for false and non-zero for true.

isalpha #include <ctype.h>
int isalpha(c)
int c;
This macro determines whether or not the character ¢ is an alphabetic character
([a-za-z1). It returns zero for false and non-zero for true.

isascii #include <ctype.h>
int isascii(c)
int c;
This macro determines whether or not the integer value supplied is an ASCII char-

acter; that is, a character whose octal value ranges from 000 to 177. It returns zero
for false and non-zero for true.

iscatrl # include <ctype.h>
int iscntrl(c
int c;
This macro determines whether or not the character ¢ when mapped to ASCII is a

control character (that is, octal 177 or 000-037). It returns zero for false and non-
zero for true.

isdigit #include <ctype.h>
int isdigit(c)
int ¢;

This macro determines whether or not the character ¢ is a digit. It returns zero for
false and non-zero for true.

isgraph #include <ctype.h>
int isgraph(c)
int ¢;

This macro determines whether or not the character ¢ has a graphic representation
(that is, is an ASCII code between octal 041 and 176 inclusive).

T
islower #include <ctype.h> 6
int islower(c)
int c;
This macro determines whether or not the character ¢ is a lower-case letter. It
returns zero for false and non-zero for true.

isprint #include <ctype.h>
int isprint(c)
int c;

This macro determines whether or not the character ¢ is a printable character.
(This includes spaces.) It returns zero for false and non-zero for true.

A Guide to the C Library 17

ispunct

isspace

isupper

isxdigit

#include <ctype.h>

int ispunct(c)

int c;

This macro determines whether or not the character c is a punctuation character

(neither a control character nor an alphanumeric). It returns zero for false and
non-zero for true.

include <ctype.h>
int isspace(c)
int c;

This macro determines whether or not the character ¢ is a form of white space
(that is, a blank, horizontal or vertical tab, carriage return, form-feed or new-line).
It returns zero for false and non-zero for true.

#include <ctype.h>
int isupper(c)
int c;

This macro determines whether or not the character ¢ is an upper-case letter. It
returns zero for false and non-zero for true.

#include <ctype.h>

int isxdigit(c)

int c;

This macro determines whether or not the character ¢ is a hexadecimal digit

(upper- and lower-case letters are equivalent). It returns zero for false and non-
zero for true.

CHARACTER TRANSLATION

toascii

tolower

#include <ctype.h>
int toascii (c)
int ¢;

The macro toascii maps the input character into its ASCII equivalent; it usually does
nothing in the UNIX environment. In a non-ASCII environment, it is useful when
one needs to convert into ASCII any characters that are used as indices into tables
that are sorted in the ASCII collating sequence.

Example:
FILE #oddstrm;

if(lisdigit (toascii(getw(oddstrm))))
fprintf(stderr,"bad data\n");

#include <ctype.h>>
int tolower (c)
int c;

If the argument c passed to the function zolower is an upper-case letter, the lower-
case representation of c is returned; otherwise, c is returned. For a faster routine,
use _tolower, which is implemented as a macro; however, its argument must be an
upper-case letter.

Example:

#

if (tolower(getchar()) l= ‘y*)
exit(0);

18 A Guide to the C Library

toupper #include <ctype .h>

int toupper (c)
int ¢;

If the argument c passed to the function toupper is a lower-case letter, the upper-
case representation of ¢ is returned; otherwise, ¢ is returned. For a faster routine,
use _toupper; however, its argument must be a lower-case letter.

Example:

if (toupper (getchar()) 1= ’Y’)
exit(0);

SPACE ALLOCATION

calloc char »calloc(n, size)
unsigned n, size;

Calloc allocates enough storage for an array of n items aligned for any use, each of
size bytes. The space is initialized to zero. Calloc returns a pointer to the begin-
ning of the allocated space, or a NULL pointer on failure.

Example:

char «t;
ant n;
unsigned size;
if(t=calloc((unsigned)n, size) == NULL)
fprintf(stderr,"Out of space.\n");

free [free(ptr)
char *ptr;

Free is used in conjunction with the space allocating functions malloc, calloc, or
realloc. Ptr is a pointer supplied by one of these routines. The effect is to free
the space previously allocated.

malloc char *malloc(size)
unsigned size;

Malloc allocates size bytes of storage beginning on a word boundary. It returns a
pointer to the beginning of the allocated space, or a NULL pointer on failure to
acquire space. For space initialized to zero, see calloc.

Example:

inkt n;
char =»t;
unsigned size;

if(t=malloc((unsigned)n) == NULL)
fprintf(stderr,"Out of space.\n");

realloc char *realloc (ptr, size)
char *ptr;
unsigned size;

Given ptr which was supplied by a call to malloc or calloc, and a new byte size,
size, realloc returns a pointer to the block of space of size bytes. This function
is useful to do storage compacting along with malloc and free. -

A Guide to the C Library 19

MISCELLANEOUS FUNCTIONS

ctermid

cuserid

gsignal

ssignal

#include <stdio.h=>
char *ctermid(s)
char xs;

Ctermid provides a string that can be used as a file name, (/dev/tty), to identify
the controlling terminal for the running process. Unlike the function ttyname it is
disassociated from the machine-dependent concept of a file descriptor. If an argu-
ment of zero is supplied, the string is stored internally and will be overwritten on
the next call to ctermid. A non-zero argument is treated as a pointer to a
sufficiently large storage area where the string is placed.

#include <stdio.h>
char *cuserid(s)
char #s;

Cuserid composes a string representation of the login name of the owner of the
current process. A zero argument results in the string being stored in an internal
area; in this case a pointer to that area is returned on success, and a NULL on
failure. A non-zero argument is assumed to be a pointer to a repository of size
L _cuserid (contained in ctype. h). On failure a null character will be inserted in
place of a string and a NULL is returned.

Example:
puts (cuserid((char ») NULL));

#include <signal h>
int gsignal (sig)
int sig;

Along with ssignal, gsignal implements a facility for software signals. A software
signal is raised by a call to gsignal. Raising a software signal causes the action esta-
blished by ssignal to be taken. The argument sig identifies the signal to be set. If
sig is a value defined in signal.h, then gsignal returns that value. If an action
function was established for sig, then the action is reset to the default value, the
action function is performed with argument sig, and the return value is the return
value of the action function. In any abnormal case, gsignal returns the value 0 and
takes no other action.

Example:

char =xbuf;
if((buf = gets(string))==NULL) gsignal(2);

#include <signal h>
int (* ssignal (sig,action))()
int sig, (*action)();

Ssignal along with gsignal implements a software signal facility. An action for a
software signal is established by a call to ssignal. Sig is the number identifying the
type of signal for which an action is to be established. The numbers currently
defined are found in signal.h. Action is either the name of a user-defined action
function or one of the constants defined in signal. h. Ssignal returns the action pre-
viously established for that signal type; in abnormal circumstances ssignal returns a
default of zero.

20 ‘ A Guide to the C Library

Example:

main() {
int error();
ssignal(2, error);

}

error(x) {

int x;

printf("Software signal %d has been caught.\n",x);
}

system #include <stdio.h>
system(string)
char »string;

System passes the argument string to the operating system as a command line.
It returns the exit status of the command executed.

Example:

if(lsystem ("cmp -s file1 file2"))
printf("The two files are identical.\n");

tmpnam #include <stdio.h>
char stmpnam(s)
char #s;

Tmpnam generates a file name that can be used for a temporary file. If s is zero, it
returns a pointer to a character string containing that name in an internal storage
area. For a non-zero value in s, the file name is stored in a sufficiently large area
pointed to by s (see L_tmpnam in ctype. h) and s is the return value as well.

tmpfile # include <stdio.h>
FILE stmpfile ()

Tmpfile creates a scratch file opened for update. It stays in existence only during
the life of the process issuing the function call and is inherited across forks. It
returns a pointer to the FILE associated with the opened stream. On error, it
returns NULL.

January 1981

