UNIX
E.6.2

A Tutorial Introduction to the Graphics Editor
A. R. Feuer

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Ged is an interactive graphical editor used to display, edit, and construct drawings on Tektronix
4010 series display terminals. The drawings are represented as a sequence of objects in a token
language known as GPS (for graphical primitive string). GPS is produced by the drawing com-
mands in UNIXt Graphics [1] such as vioc and plot, as well as by ged itself.

The examples in this tutorial illustrate how to construct and edit simple drawings. Try them to
become familiar with how the editor works, but keep in mind that ged is intended primarily to
edit the output of other programs rather than to construct drawings from scratch. A summary
of editor commands and options is given in Section 3.

As for notation, literal keystrokes are printed in boldface. Meta-characters are also in boldface
and are surrounded by angled brackets. For example, <cr> means return and <sp> means
space. In the examples, output from the terminal is printed in roman (normal) type. In-line
comments are in roman and are surrounded by parentheses.

2. COMMANDS

To start we will assume that you have successfully entered the graphics environment (as
described in graphics(1G) of [2]) while logged in at a display terminal. To enter ged type:

ged <cr>

After a moment the screen should be clear save for the ged prompt, =, in the upper left corner.
The = tells you that ged is ready to accept a command.

Each command passes through a sequence of stages during which you describe what the com-
mand is to do. All commands pass through a subset of these stages:

1. command line

2. text

3. points j
4. pivot

5. destination

As a rule, each stage is terminated by typing <cr>. The <cr> for the last stage of a com-
mand triggers execution.

2.1 The Command Line

The simplest commands consist only of a command line. The command line is modelcd after a
conventional command line in the shell. That is: :

command-name [— option(s)] [filename] <er>

? is an example of a simple command. It lists the commands and options understood by ged.

To generate the list, type:
*? <er> ~ (you type a question mark followed by a return)

¥ UNIX is a trademark of Bell Laboratories.

2 Graphics Editor Tutorial

A command is executed by typing the first character of its name. Ged will echo the full name
and wait for the rest of the command line. For example, e references the erase command. As
erase consists only of stage 1; typing <cr> causes the erase action to occur. Typing
<rubout> after a command name and before the final <ecr> for the command aborts the
command. Thus while

serase <<cr=>
erases the display screen,
serase <rubout>
brings the editor back to =*.

Following the command-name, opfions may be entered. Options control such things as the
width and style of lines to be drawn or the size and orientation of text. Most options have a
default value that applies if a value for the option is not specified on the command line. The
set command allows you to examine and modify the default values. Type:

sget <cr>
to see the current default values.

The value of an option is either of type integer, character, or Boolean. Boolean values are
represented by + for true and — for false. A default value is modified by providing it as an
option to the set command. For example, to change the default text height to 300 units type:

*set —h300 <cr>

Arguments on the command line, but not the command-name, may be edited using the erase
and kill characters from the shell. (Actually, this applies whenever text is being entered.)

2.2 Constructing Graphical Objects

Drawings are stored as GPS in a display buffer internal to the editor. Typically, a drawing in ged
is composed of instances of three graphical primitives: are, lines, and text.

2.2.1 Generating Text. To put a line of text on the display screen use the Text command. First
enter the command line (stage 1):

*Text <cr>
Next enter the text (stage 2):

a line of text <cr> :
And then enter the starting point for the text (stage 3):

< position cursor> <<cr>

Positioning of the graphic cursor is done either with the thumbwheel knobs on the terminal
keyboard or with an auxiliary joystick. The <cr> establishes the location of the cursor to be
the starting point for the text string. The Text command ends at stage 3, so this <<cr> initiates
the drawing of the text string. '

Text accepts options to vary the angle, height, and line width of the characters, and to either
center or right justify the text object. The text string may span more than one line by escaping
the <cr> (i.e., \<er>) to indicate continuation. To illustrate some of these capabilities, try
the following:

Graphics Editor Tutorial 3

*Text —r <cr> (right justify text)

top\<cr> ‘

right <cr>

< position cursor> <cr>

*Text —a90 <cr> (rotate text 90 degrees)

lower\<<cr>

left <cr>

< position cursor> <<cr> (pick a point below and left of the previous point)

top
right

lower
left

'Figure 1. Generating text objects

2.2.2 Drawing Lines. The Lines command is used to construct objects built from a sequence of
straight lines. It consists of stages 1 and 3. Stage 1 is straightforward:

xLines possible options <cr>>
Lines accepts options to specify line style and line width.

Stage 3, the entering of points, is more interesting. Points are referenced either with the graphic
cursor or by name. We have already entered a point with the cursor for the Text command.
For Lines it is more of the same. As an example, let us build a triangle:

xLines <cr>

< position cursor> <sp> (locate the first point)

< position cursor> <sp> (the second point)

< position cursor> <sp> (the third point) ;

< position cursor> <sp> (back to the first point)

<cr> (terminate points, draw triangle)

Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point with an
integer and adds the location to the current point set. The last point entered can be erased by
typing # . The current point set can be cleared by typing @ . On receiving the final <cr> the
points are connected in numerical order.

The points in the current point set may be referenced by name using the $ operator. $n refer-
ences the point numbered n. Using $ we can redraw the triangle above by entering:

*Lines <cr>

< position cursor> <<sp>

< position cursor> <sp>

< position cursor> <sp>

$0 <cr> (reference point 0)
<cr>

4 Graphics Editor Tutorial

second point

first point entered
fourth point third point

Figure 2. Building a triangle

At the start of each command that includes stage 3, points, the current point set is empty. The
point set from the previous command is saved and is accessible using the . operator; . swaps
the points in the previous point set with those in the current set. The = operator can be used
to identify the current points. To illustrate, let us use the triangle just entered as the basis for
drawing a quadrilateral:

*Lines <cr>
(access the previous point set)

- (identify the current points)
(erase the last point)

< position cursor> <sp> (add a new point)

$0 <cr> (close the figure)

<cr>

Figure 3. Accessing the previous point set

Individual poin>ts from the previous point set can be referenced by using the . operator with §.
We will build a triangle that shares an edge with the quadrilateral:

Graphics Editor Tutorial 5

. +Lines <cr>

$.1 <cr> ' (reference point 1 from the previous point set)
$.2 <cer> (reference point 2)
<sp> (enter a new point)
$0 <cr> (or 8.1, to close the figure)
<ecr>
point 1 from previous point set ;?new point

point 2 from previous point set

A point can also be given a name. The > operator allows you to associate an upper case letter

I Figure 4. Referencing points from the previous point set
with a point just entered. A simple example is:

*Lines <er>

< position cursor> <<sp>> (enter a point)

>A (name the point A)
< position cursor> <<sp>

<cr>

In commands that follow you can now reference point A using the $ operator, as in:

xLines <er>

$A

< position cursor> <sp>
<cr>

2.2.3 Drawing Curves. Curves are interpolated from a sequence of three or more points. The
Arc command generates a circular arc given three points on a circle. The arc is drawn starting
at the first point, through the second point, and ending at the third point. A circle is an arc
with the first and third points coincident. One way to draw a circle is thus:

*Arc <cr>

< position cursor> <sp>
< position cursor> <sp>
$0 <cr>

<cr>

2.3 Editing Objects

. 2.3.1 Addressing Objects. An object is addressed by pointing to one of its handles. All objects
have an object-handle. Usually the object-handle is the first point entered when the object was
created. The objects command marks the location of each object-handle with an 0. Type:

6 Graphics Editor Tutorial

*objects —v <er>
to see the handles of all the objects on the screen.

Some objects, Lines for example, also have point-handles. Typically each of the points entered
when an object is constructed becomes a point-handle. (Yes, an object-handle is also a point-
handle.) The points command marks each of the point-handles.

A handle is pointed to by including it within a defined-area. A defined-area is generated either
with a command line option or interactively using the graphic cursor. As an example, try delet-
ing one of the objects you have created on the screen.

*Delete <cr>

<position cursor> <sp> (above and to the left of some object-handle)

< position cursor> <<sp> (below and to the right of the object-handle)
<er> (the defined-area should include the object-handle)
<cr> (if all is well, delete the object)

The defined-area is outlined with dotted lines. The reason for the seemingly extra <cr> at the
end of the Delete command is to give you an opportunity to stop the command (using
<rubout>) if the defined-area is not quite right. Every command that accepts a defined-area
will wait for a confirming <cr> . Use the new command to get a fresh copy of the remaining
objects.

Notice that defined-areas are entered as points in the same way that objects are created. Actu-
ally, a defined-area may be generated by giving anywhere from zero to 30 points. Inputting
zero points is particularly useful to point to a single handle. It creates a small defined-area
about the location of the terminating <<er> . Using a zero point defined-area, the Delete com-
mand would be:

*Delete <cr>

< position cursor> (center the crosshairs on the object-handle)
<ecr> (terminate the defined-area)
<ecr> (delete the object)

A defined-area can also be given as a command line option. For example, to delete everything
in the display buffer give the universe option to the Delete command. Note the difference
between the commands Delete —u and erase. ¢

2.3.2 Changing the Location of an Object. Objects are moved using the Move command.
Create a circle using Arc, then move it as follows:

*Move <cr>

< position cursor> <cr> (centered on the object-handle)
<er> (this establishes a pivot, marked with an asterisk)
< position cursor> <<cr> (this establishes a destination)

The basic move operation relocates every point in each object addressed by the distance from
the pivot to the destination. In this case we chose the pivot to be the object-handle, so
effectively we moved the object-handle to the destination point.

2.3.3 Changing the Shape of an Object. The Box command is a special case of generating
lines. Given two points it creates a rectangle such that the two points are at opposite corners.
The sides of the rectangle lie parallel to the edges of the screen. Draw a box:

Graphics Editor Tutorial 1

*Box <cr> ;
<position cursor> <sp>
< position cursor> <cr>

Box generates point-handles at each vertex of the rectangle. Use the points command to mark
the point-handles. The shape of an object can be altered by moving point-handles. The next
example illustrates one way to double the height of a box.

*Move —p+ <cr>

< position cursor> <sp> (left of the box, between the top and bottom edges)
< position cursor> <<cr> (right of the box, below the bottom edge)

< position cursor> <<cr> (on the top edge)

< position cursor> <<cr> (directly below on the bottom edge)

two points for Box

/

pivot

e canssssasnnaay

destination

L

.
.
.
:
.
il
i
[
1
0
.
.
.

two points for defined -area
Figure 5. Growing a box

Because the points flag is true, the operation is applied to each point-handle addressed. In this
case each point-handle within the defined-area is moved the distance from the pivot to the des-
tination. If p were false only the object-handle would have been addressed.

2.3.4 Changing the Size of an Object. The size of an object can be changed using the Scale
command. Scale scales objects by changing the distance from each handle of the object to a
pivot by a factor. Put a line of text on the screen and try the following Scale commands:

xScale — 1200 <cr> (factor is in percent)

< position cursor> <<cr>- (point to object-handle)
<position cursor> <<cr> (set pivot to rightmost character)
<cr>

*Scale —f50 <cr>

. <er> ; (reference the previous defined-area)
< position cursor> <<cr> (set pivot above a character near the middle)
<cr>

8 Graphics Editor Tutorial

* : pivot for Scale -f50
A LINE OF TEXT

A LINE W—pivot for scale -f200

original line
of text

Figure 6. Scaling text

A useful insight into the behavior of scaling is to note that the position of the pivot does not
change. Also observe that the defined-area is scaled to preserve its relationship to the graphical
objects.

The size of objects can also be changed by moving point-handles. Generate a circle, this time
using the Circle command:

*Circle <cr>
< position cursor> <<sp>> (specify the center)
< position cursor> <cr> (specify a point on the circle)

Circle generates an arc with the first and third point at the point specified on the circle. The
second point of the arc is located 180° around the circle. One way to change the size of the cir-
cle is to move one of the point-handles (using Move —p).

The size of text characters can be changed via a third mechanism. Character height is a pro-
perty of a line of text. The Edit command allows you to change character height as follows:

sEdit —hheight <cr> : (height is in universe units, see Section 2.4)
< position cursor> <cr> (point to the object-handle)
<cr>

2.3.5 Changing the Orientation of an Object. The orientation of an object can be altered using
Rotate. Rotate rotates each point of an object about a pivot by an angle. Try the following
rotations on a line of text:

*Rotate —a90 <cr> (angle is in degrees)

< position cursor> <cr> (point to object-handle)

< position cursor> <<cr> (set pivot to rightmost character)
<er>

*Rotate —a—90 <cr> :

. <er> (reference previous defined-area)

< position cursor> <<cr> (set pivot to a character near the middle)
<cr>

Graphics Editor Tutorial 9

original text

ANOTHER LINE OF T
=

&

ANOTHER I.g E OF TEXT
x pivot for Rotate -a-90

:

ivot for Rotate -a%90

Figure 7. Rotating text

2.3.6 Changing the Style or Width of Lines. In the current editor objects can be drawn from
lines in any of five styles (solid, dashed, dot-dashed, dotted, long-dashed) and three widths
(narrow, medium, bold). Style is controlled by the s option, width by w:

*Lines —wn,sdo <cr>

< position cursor> <sp>
< position cursor> <sp>
<cr>

creates a narrow width dotted line.

+Edit —wb,sdd <cr>
< position cursor> <er> (point to object-handle of the line)
<cr>

changes the line to bold dot-dashed.
2.4 View Commands

All of the objects we have drawn lie within a Cartesian plane, 65,534 units on each axis,
known as the universe. Thus far we have displayed only a small portion of the universe on the
display screen. The command:

sview —u <cr>
displays the entire universe.

A mapping of a portion of the universe onto the display screen is called a window. The extent
or magnification of a window is altered using the zoom command. To build a window that
includes all of the objects you have drawn, type:

*ZOOm <Cr>

< position cursor> <sp> (above and to the left of any object)
<pesition cursor> <cr> (below and to the right, also end points)
<er> ; R (verify)

i

Zooming can be either in or out. Zooming in, as with a camera lens, increases the magnification
of the window. The area outlined by points is expanded to fill the screen. Zooming out
decreases magnification. The current window is shrunk so that it fits within the defined-area.
The direction of the zoom is controlled by the sense of the out flag; o true means zoom out. !

10 Graphics Editor Tutorial

The location of a window is altered using view. View moves the window so that a given point in
the universe lies at a given location on the screen.

*view <cr>
< position cursor> <<cr> (locate a point in the universe)
< position cursor> <cr> (locate a point on the screen)

View also provides access to several predefined windows. We have already seen view —u. view
—h displays the home-window . The home-window is the window that circumscribes all of the
objects in the universe. The result is similar to that of the example using zoom given earlier.

Lastly, using view you may select to window on a particular region. The universe is partitioned
into 25 equal sized regions. Regions are numbered from 1 to 25 beginning at the lower left and
proceeding toward the upper right. Region 13, the center of the universe, is used as the default
region by drawing commands such as plot and vroc (see [1]).

2.5 Other Commands

2.5.1 Interacting with Files. To save the contents of the display buffer copy it to a file using the
write command:

*write filename <<cr>

The contents of filename will be a GPS, thus it can be displayed using any of the device filters
(e.g., td [1]) or read back into ged.

A GPS is read into the editor using the read command:
sread filename <er>

The GPS from filename is appended to the display buffer and then displayed. Because read does
not change the current window, only some (or none) of the objects read may be visible. A
useful command sequence to view everything read is:

*read —e— filename <cr>
sview —h <cr>

The display function of read is inhibited by setting the echo flag to false; view —h windows on
and displays the full display buffer.

The read command may also be used to input text files. The form is:
read [—option(s)] filename <er> ‘

followed by a single point to locate the first line of text. A text object is created for each line
of text from filename. Options to read are the same as those for the Text command.

2.5.2 Leaving the Editor. Use the quit command to terminate an editing session. As with the
text editor ed, quit responds with ? if the internal buffer has been modified since the last write.
A second quit forces exit.

2.6 Other Useful Things to Know
2.6.1 One-Line UNIX Escape. As in ed, ! provides a temporary escape to the shell.

2.6.2 Typing Ahead. Most programs under UNIX allow you to type input before the program is
ready to receive it. In general, this is not the case with ged; characters typed before the
appropriate prompt are lost.

2.6.3 Speeding up Things. Displaying the contents of the display buffer can be time consum-
ing, particularly if much text is involved. The wise use of two flags to control what gets
displayed can make life more pleasant: the echo flag controls echoing of new additions to the
display buffer; the text flag controls whether text will be outlined or drawn.

Graphics Editor Tutorial 11

‘ . 3. COMMAND SUMMARY

In the summary, characters actually typed are printed in boldface. Command stages are printed
in italics. Arguments surrounded by brackets are optional. Parentheses surrounding arguments
separated by ‘“‘or’ means that exactly one of the arguments must be given. For example, the
Delete command (Section 3.2) accepts the arguments —universe, — view, and points.

3.1 Construct commands:

Arc [—echo,style,width] points
Box [—echo,style,width] points
Circle [—echo,style,width] points
e Hardware [—echo] text points
Lines [—echo,style,width] points
Text [—angle,echo,height, midpoint,rightpoint,text, width] text points
3.2 Edit commands:
Delete ¢~ (univ\erse or view) or points)
Edit [—angle,echo,height,style,width] (— (universe or view) or points)
Kopy [—echo,points,x] points pivot destination
Move [—echo,points,x] points pivot destination
Rotate [—angle,echo,kopy,x] points pivot destination
(‘ Scale [—echo,factor,kopy,x] points pivot destination

3.3 View commands:

coordinates points

erase

new

objects (— (universe or view) or points)

points (— (labelled-points or universe or view) or points)

view (— (home or universe or region) or [—x] pivor destination)
x [—view] points

zoom [—out] points

3.4 Other commands:

quit

read [—angle,echo, height, midpoint,rightpoint,text,width] filename [destination)

set : [-nhglc;who,factor,heiéht,kopy,midpo'ihf;pbints,rightpbint,stylc,text,width,x]
write filename

Ycommand

?

12 Graphics Editor Tutorial

3.5 Options:

Options specify parameters used to construct, edit, and view graphical objects. If a parameter
used by a command is not specified as an option, the default value for the parameter will be
used. The format of command options is:

—option [,option]

where option is keyletter[value]. Flags take on the values of true or false indicated by + and —
respectively. If no value is given with a flag, true is assumed.

Object Options:
anglen Specify an angle of n degrees.
echo When true, changes to the display buffer will be echoed on the screen.
factorn Specify a scale factor of n percent.
heightn Specify height of text to be n universe-units (0 =n<1280).
kopy The commands Scale and Rotate can be used to either create new objects or

to alter old ones. When the kopy flag is true, new objects are created.
midpoint When true, use the midpoint of a text string to locate the string.
out When true, reduce magnification during zoom.
points When true, operate on points otherwise operate on objects.
rightpoint When true, use the rightmost point of a text string to locate the string.

styletype Specify line style to be one of following types:

so solid

da dashed

dd dot-dashed
do dotted

ld long-dashed

text Most text is drawn as a sequence of lines. This can sometimes be painfully
slow. When the text flag is false, text strings are outlined rather than drawn.

widthzype Specify line width to be one of following types:
n narrow
m medium

b bold

X One way to find the center of a rectangular area is to draw the diagonals of
the rectangle. When the x flag is true, defined-areas are drawn with their
diagonals.

Area Options:

home Reference the home-window.

regionn Reference region n.

universe Reference the universe-window.

view Reference those objects currently in view.

4. ACKNOWLEDGEMENTS

Ged borrows freely from the ideas and code of the gex program by D. J. Jackowski. The first
version of ged was written by D. E. Pinkston.

Graphics Editor Tutorial 13

. 5. REFERENCES

[1] Feuer, A. R. UNIX Graphics Overview, Bell Laboratories (1979).

[2] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User’s
Manual —Release 3.0, Bell Laboratories (June 1980).

14 Graphics Editor Tutorial

APPENDIX: Some Examples of What Can be Done

1. Text Centered Within a Circle
*Circle <cr>

< position cursor> <sp> (establish center)

< position cursor> <cr> (establish radius)

*Text —m <cr> (text is to be centered)

some text <cr>

$.0 <cr> (first point from previous set, i.e., circle center)
<cr>

Graphics Editor Tutorial 15

. 2. Making Notes on a Plot
+! gas | plot —g >A <cr> (generate a plot, put it in file A)
sread —e— A <cr> (input the plot, but do not display it)
sview —h <er> (window on the plot)
xLines —sdo <<cr> (draw dotted lines)

< position cursor> <sp>
< position cursor> <sp>
< position cursor> <sp>

<er> (end of Lines)
*set —h150,wn <cr> (set text height to 150, line width to narrow)
*Text —r <cr> (right justify text)
e threshold beyond which nothing matters <<cr>
< position cursor> <cr> (set right point of text)
*Text —a—90 <cr> (rotate text negative 90 degrees)
threshold beyond which nothing matters <<cr>
< position cursor> <cr> (set top end of text)
*X <cr> (find center of plot)
< position cursor> <sp> (top left of plot)
< position cursor> <cr> (bottom right)
*Text —h300,wm,m <cr> (build title: height 300, weight medium, centered)
SOME KIND OF PLOT <cr>
< position cursor> <cr>> (set title centered above plot)

SOME KIND OF PLOT

e ,,

jeeesssre s s nn. an s st v

é.aaunw Buiyjou yoym puokaq ploysatyl

...
L
o

s
g

10

(6]
o b—
<)
@
o

16 Graphics Editor Tutorial

3. A Page Layout with Drawings and Text

+! rand —s1,n100 | title —v"seed 1" | qsort | bucket | hist —r12 >A <ecr>
(put a histogram, region 12, of 100 random numbers into file A)
+! rand —s2,n100 | title —v"seed 2" | gsort | bucket | hist —r13 >B <er>
(put another histogram, region 13, into file B)
»! ed <cr> (create a file of text using the text editor)
a <cr>
On this page are two histograms <cr>
from a series of 40 <cr>
designed to illustrate the weakness <cr>
of multiplicative congruential random number generators. <cr>

.pl \n(nlu <cr> (mark end of page)

. <cr>

wC <cer> (put the text into file C)

156

q <cr>

+! nroff C|yoo C <cr> ~ (format C, leave the output in C)
*view —u <cr> (window on the universe)

sread A <cr>

xread B <er>

s*read —h300,wn,m C <cr> (text height 300, line weight narrow, text centered)
< position cursor> <cr> (center text over two plots)

xview —h <ecr> (window on the resultant drawing)

17

Graphics Editor Tutorial

¢ 433as

€66°'0 2S8'0 L1L'0 1LS'O £p'0 6820 6410 L82000

peafeccce -

fe e el oo =

hecccsccnw

® w ¢ N O

SITEEE TTEITE cmee- Ll it b= -4
lllllll - - ccnechccce=boad
|||||||||||| e T T PTraere e
lllll mefecamcafoccanadeccens e
|||||||||||||||||||||||| L ccccmdeccn o
R - el =
cecccaflecccnncennaccfocncan T LETTERY TR
coflom B e ELELLLTY TR

ch
v
o
8l
o2

2c

€860 L¥80

} 0335

LL'O 4S°0 BEP'O HOE'0 G910 18200

o B BEGe R SRR SEERAC St A |
D e B : (e SRR EEeen FUN, S
S Rt e SES SRR e SRR o
R e B Edan RIS il B e e
S Eee T B L G B Bea e st (SR
]~ $onnns s
R SRR e Lenaliny R e R

Sl s ae s et b el o
SR ee LR S G s : vt
S S e

b A LR G s A

oz
22

*sJoyDiauab Jaqunu
WopuDJ [DuUanIBbuod aAlDIIdI}INW JO SSBUNDAM By} 34DJsn||l O}
paubisap O+ JO salias D wou) swoiboysiy omy aio abod sy uo

v

January 1981

