UNIX
E.7.2

UNIX Remote Job Entry Administrator’s Guide
M. J. Fitton

Bell Laboratories

1. INTRODUCTION
1.1 Purpose

This document is intended to augment the existing body of documentation on the design and
operation of UNIXT IBM RJE!. The reader should be familiar with zje(8), and the UNLX Remote
Job Entry User's Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware configuration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of
this document.

The major topics discussed in this paper are as follows:
e SETTING UP — hardware requirements and RJE generation on the IBM and UNIX systems.

e DIRECTORY STRUCTURES — the controlling RJE directory structure and a typical RJE sub-
system directory structure. '

o RJE PROGRAMS — programs that make up an RJE subsystem.
e UTILITY PROGRAMS — utility programs that are available for debugging or tracing.

e RJE ACCOUNTING — the accounting of jobs done by RJE, and some methods for using this
accounting data.

e TROUBLE SHOOTING — error recovery and procedures for identifying and fixing RJE prob-
lems.

1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred to as B. We also assume that pwba is connected to an IBM 370/158,
referred to as C. The UNIX machine emulates an IBM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OS/VS MVS
JES?2 Logic (S§Y24-6000-1).

2. SETTING UP
2.1 Hardware
To use RJE on a UNIX system the following hardware is needed (one per remote line):

e KMCI11-B Microprocessor — used to drive the RIE line

e DMCI11-DA or DMCI1-FA line unit — the DMC11-DA interfaces with Bell 208 and 209 syn-
chronous modems or equivalent. Speeds of up to 19,200 bits per second can be used. The
DMC11-FA interfaces with Bell 500 A LI/5 synchronous modems or equivalent. Speeds of
up to 250,000 bits per second can be used.

t UNIX is a trademark of Bell Laboratories.

1. In this paper, RJE refers to the facilities provided by UNIX and not to.the Remote Job Entry feature of IBM’s
HASP and JES2 subsystems.

2 UNIX RJE Administrator’s Guide

On the DMC11 line unit, the Cyclic Redundancy Check (CRC) switch should be set to inhibit
automatic transmission of CRC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware, see Terminals and Communica-
tions Handbook, Digital Equipment Corporation, 1979.

2.2 IBM Generation

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and must agree with their counterparts on the UNIX machine:

e Number of printers (NUMPR) — the number of logical printers (up to 7)
e Number of punches (NUMPU) — the number of logical punches (up to 7)
e Number of readers (NUMRD) — the number of logical readers (upto 7)
The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMTS5 S/360,LINE=5,CONSOLE,MULTI, TRANSP,NUMPR =5,
NUMPU=1,NUMRD=5ROUTECDE=5

R5.PR1 PRWIDTH=132

R5.PR2 PRWIDTH=132

R5.PR3 PRWIDTH=132

R5.PR4 PRWIDTH=132

R5.PR5 PRWIDTH=132

R5.PU1 NOSUSPND

R5.RD1 PRIOINC=0,PRIOLIM=14

R5.RD2 PRIOINC=0,PRIOLIM=14

R5.RD3 PRIOINC=0,PRIOLIM=14

R5.RD4 PRIOINC=0,PRIOLIM=14

R5.RDS5 PRIOINC=0,PRIOLIM=14

System pwba is referenced by line 5 (LINE=5), remote 5 (RMTS5). It is defined as having a
console, for the rjestat(1C) command, five printers, one punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line.
The remaining information describes attributes of the printers, punches, and readers.

Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
scparator pages. To prevent transmission of separator pages on printer 1 of the previous exam-
ple, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM sys-
tems can also be told via a console command to cancel transmission of separator pages on
printers. This can be done from the IBM system console, or from the remote UNIX machine

via rjestat. For example, the following JES2 command would cancel separator page transmission
on printer 1:

$TR5.PR1,S=N
2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJECU in the file /usr/include/rje.h is the device to be used for remote dialing.
RJECU is defined to be /dev/dn2 when distributed. To compile and install RJE, the normal
make (1) procedures are used (see Setting up UNLX). Once an RJE subsystem has been installed,
the remote line must be described in the configuration file /usr/rje/lines. This file as it exists
on our hypothetical system pwba is as follows:

UNIX RJE Administrator’'s Guide 3

B pwba /usr/rjel rjel vpmO 5:5:1 1200:512:y
C pwba /usr/rje2 rje2 vpml 1:1:1 1200:512 .

/usr/rje/lines is accessed by all components of RJE. Each line of the table (maximum of 8)
defines an RJE connection. Its seven columns may be labeled host, system, directory, prefix,
device, peripherals, and parameters. These columns are described as follows:

®

host — The IBM System name, e.g., A, B, C. This string can be up to 5 characters long.
system — The UNIX System name (see uname(1)).

directory — the directory name of the servicing RJE subsystem (e.g., /usr/rje2).

prefix — the string prepended to most files and programs in the directory (i.e., rje2).

device — the name of the controlling Virtual Protocol Machine (VPM) device, with /dev/
excised. In order to specify a VPM device, all VPM software must be installed, and the
proper special files must be made (see vpm(4) and mknod(1M)).

peripherals — information on the logical devices (readers, printers, punches) used by RJE.
There are three subfields. Each subfield is separated by **:”’ and is described as follows:

1. Number of logical readers.
2. Number of logical printers.
3. Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

parameters — this field contains information on the type of connection to make. Each
subfield is separated by “*:’". Any or all fields may be omitted; however, the fields are posi-
tional. All but trailing delimiters must be present. For example, in:

1200:512:::9-555-1212
subfields 3 and 4 are missing. Each subfield is defined as follows:

1. space — this subfield specifies the amount of space (S) in blocks that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send(1C) will not submit
Jobs and rjeinit issues a warning when less than 1.55 blocks are available; rjerecv stops
accepting output from the host when the capacity falls to S blocks; RJE becomes dor-
mant, until conditions improve. If the space on the file system specified by the user
on the *‘usr="’ card would be depleted to a point below S, the file will be put in the
job subdirectory of the connection’s home directory rather than in the place that the
user requested.

2. size — this subfield specifies the size in blocks of the largest file that can be accepted
from the host without truncation taking place. The default is no truncation. Note that
UNIX has a default one Mega-byte file size limit.

3. badjobs — this subfield specifies what to do with undeliverable returning jobs. If an
output file is undeliverable for any reason other than file system space limitations
(e.g., missing or invalid ‘‘usr="" card) and this subfield contains the letter y, the out-
put will be retained in the job subdirectory of the home directory, and login rje is
notified via mail(1). If this subfield has any other value, undeliverable output will be
discarded. The default is n.

4. console — this subfield specifies the status of the interactive status terminal for this
line. If the subfield contains an i, the status console facilities of rjestar will be inhi-
bited. In all cases, the normal non-interactive uses of rjeszar will continue to function.
The default is y.

4 UNIX RJE Administrator’s Guide

5. dial-up — this subfield contains a telephone number to be used to call a host machine.
The telephone number may contain the digits O through 9, and the character *“‘—’,
which denotes a pause. If the telephone number is not present, no dialing is
attempted, and a leased line is assumed.

When multiple readers have been specified, jobs that are submitted for transmission to IBM are
assigned to the reader with the fewest cards on it. Each reader gets an equal amount of service.
This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get
assigned to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RJE
subsystem is heavily used for off-line printing (i.e., output does not return to the UNIX
machine), the administrator would want to specify multiple readers, but would not have a need
for multiple printers or punches.

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used by RJE is /usr/rje. This directory contains RJE programs for use
by separate RJE subsystems (e.g., rjel, rje2, rje3), and the shell queuer’s directory. Most RJE
programs existing here have been compiled such that each RJE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

-TWXT-XT-X 2 rje rje 4068 Mar 4 10:42 cvt
“TW-T=--T-- 1 rge rje 42 Apr 10 09:52 lines
-TWXT-XT-X Z2orije rje 15096 Apr 10 13:01 rjedisp
-TWXT-Xr-Xx 2 rje rje 2328 Mar 4 10:21 rjehalt
-TWXI-Xr-X 2 1je rje 10396 Apr 15 10:07 rjeinit
“r-X------ 2:rje rje 785 Apr 8 09:00 rjeload
-TWST-XT-X 2. 1rye rje 5040 Mar 27 09:28 rjeqer
-IWXr-Xr-x 2 rje rje 4072 Apr 1 15:40 rjerecv
-TWXT-Xr-x 2hrje rLje 3888 Mar 27 09:35 rjexmit
-TWST-XT-X 1 root rje 2696 Mar 27 14:42 shqer
-TWXT-XTr-X 2 rje rje 5920 Apr 2 15:47 snoop
drwxr-xr-x 2. 1je rje 80 Mar 25 13:26 sque

RIJE subsystems are generated in their own directory by linking the program names in this direc-
tory to the appropriate names in the subsystem directory. The programs are described in Sec-
tion 4. The file lines is the configuration file used by all RJE subsystems. The directory sque is
used by the Shell queuer (shger). This directory contains:

-TW-T=--T-- 1'r)¢ rje 0 Feb 14 14:04 errors
-TW-T--T-- 1 orje rje 0 Feb 14 14:04 log

When shger has work to do, the files log and errors will be of non-zero length, and temporary
files (tmp=) will also appear here. For a complete description of shger and these files, see Sec-
tion 4.8. : : : : :

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection between pwba and IBM
B, and will be referred to as rjel. The first line of /usr/rje/lines (see Section 2.3) describes
rjel. As noted in this file, rjel runs in the directory /usr/rjel. A snapshot of this directory is
as follows: :

UNIX RJE Administrator’s Guide 5

. W= Fo P~ 1 rje rje 4990 Apr 15 08:30 acctlog
-TWXI-XI-X 2 rye rjec 4068 Mar 4 10:42 cvt
~TW-T=--T-- 1 rje rje 0O Apr 15 04:02 errlog
drwxrwxrwx 2 rje rje 192 Apr 10 09:51 job
-TW-T=--T-- 1 rje rje 194 Apr 15 08:11 joblog
-fW-f--T-- 1l rje rje 0 Apr 15 08:11 resp
-TWXT-XT-X 2. rie rjc 15096 Apr 10 13:01 rjeldisp
-TWXT-XT-X 2 r)e rje 2328 Mar 4 10:21 rjelhalt
-TWXr-Xr-x 2 rie Tje 10396 Apr 15 10:07 rjelinit
“r-X------ 2 rje rje 785 Apr 8 09:00 rjelload
-TWST-XT-X 2 rje rje 5040 Mar 27 09:28 rjelqer
-TWXI-Xr-x 2 1rjc rje 4072 Apr 1 15:40 rjelrecv
i . -TWXT-XTI-X 2 Tie rje 3888 Mar 27 09:35 rjelxmit
drwxr-xr-x 2 rje rje 144 Apr 15 08:30 rpool
-TWXI-Xr-x 2 rje Lje 5920 Apr 2 15:47 snoop0
drwxrwxrwx 2. T]e rije 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje rje 224 Apr 10 13:56 squeue
“TW-T--T-- 1 rje rje 0 Apr 15 10:30 stop
~ITW-T--T-- 1 rje rje 274 Mar 7 20:25 testjob

The programs rjel*, cvt, and snoop0 are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

e acctlog — accounting data is stored in this file, if it exists. This file is the responsibility of
the RJE administrator. For a discussion of its uses, see Section 5.

e errlog — used by rjel to log errors. It can be useful for debugging rjel problems.

O o joblog — used by rjelger and rjestat to notify rjelxmit that a job (or console request) has
been submitted. It also contains the process-group number of the rjel processes. The pro-
gram cvt can be used to convert this file to a readable form.

e resp — contains console messages received from IBM B. These messages can be responses
for rjestat, or IBM responses to submitted jobs (i.e., on reader messages). This file is trun-
cated if it grows to a size greater than 70,000 bytes.

e stop — indicates that rjel halt has been executed. The existence of this file indicates to rjes-
tat that rjel has been halted by the operator.

e testjob — a sample job that can be submitted to test the rjel subsystem. Originally, the job
control statements may have to be changed to suit your IBM system.

When rjel terminates abnormally, the file dead should appear in this directory. This file con-
tains a short message indicating why rjel is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

e job — wused to save undeliverable jobs, if the proper parameter has been specified in
/usr/rje/lines. The sample job described above is also delivered to this directory. This
directory should be mode 777.

e rpool — contains temporary files used to gather output from the remote machine. These
files are named prs (for print output files), and pus (for punch output files). Once a com-
plete file has been received, the file is dispatched in the proper way by rjeldisp.

e spool — used by send to store temporary files to be submitted to the remote machine. This
directory must be mode 777.

e squeue — used by rjel to store submitted files until they are transmitted. The program
. rjelger is used by send to move the temporary files in the spool directory to this directory.

6 UNIX RJE Administrator’'s Guide

4. RJE PROGRAMS

All programs described below, with the exception of rjestat, exist in /usr/rje. These programs
are ‘‘shared text’’ and are linked (except shger) to the proper names in each subsystem direc-
tory. The names described below are generic; the programs in the rje2 directory would be
rje2qer, rjelinit, etc.

Each available RJE subsystem occupies three process slots. The slots are used for rje?xmit, the
transmitter; rje?recv, the receiver; and rje?disp, the dispatcher. One additional process slot is
used for shqger, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqer

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnch(5) format file in the spool directory to the squeue directory.
2. Writes an entry at the end of the file joblog containing:

e the name of the file to be transmitted

e the submitter’s user ID

e the number of card images in the file

e the message level for this job

The file joblog is used to notify rjexmit of work to be done.

3. Notifies user that file has been queued.

Send determines which host system is desired, and invokes the proper rje?qer by getting the
prefix from the lines file (e.g., if sending to IBM C from our machine, rje2ger would be
invoked).

4.2 Rjeload

This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g., rje2load starts rje2). To start the RJE subsystems on our machine, the following com-
mands are executed in /etc/rc when changing to init state 2 (multi-user):

rm —f /usr/rje/sque/log
su rje —c "/usr/rjel/rjelload vpbO kmcOQ"
su rje —c "/usr/rje2/rje2load vpbl kmcl"

The file /usr/rje/sque/log is removed to ensure the correct operation of shger. When invoked,
rjeload performs the following steps:

1. Uses the VPM device from /usr/rje/lines to link the proper devices (see vpmset (1C)).
2. Uses kasb(1) to perform the following:

e reset the KMC

e load the VPM script (/etc/rjeproto)

e start the KMC running

3. Executes rje?init to start the rje? processes (e.g., rje2load executes rje2init).

UNIX RIE Administrator's Guide 7

4.3 Rjehalt

This program is used to halt an RJE subsystem. To halt rje2 on our machine,
/usr/rje2/rje2halt is executed. This should be done in the shutdown procedure for your
machine to ensure graceful termination of RJIE. Rjehalt will allow only those users with permis-
sion to halt an RJE subsystem. Rjehalt uses the header on the file joblog to get the process-
group of the RJE subsystem processes. This group is signaled to terminate. When all processes
have terminated, rjehalt sends a ‘“‘signoff”’ record to the host machine. This signoff record is
taken from the file signoff (ASCII text), if it exists, otherwise a “/wsignoff”’ record is sent. On
completion, rjehalt creates the file stop in the subsystem directory, that causes rjestat to report
that RJE to the corresponding host has been stopped by the operator.

4.4 Rjeinit

This program initializes an RJE subsystem. It is used by rjeload, and can be used to restart a
subsystem if the VPM script has previously been started. Rjeinit should only be executed by
user rje. Rjeinit fails if there are less than 100 blocks or 10 inodes free in the file system. It
issues a warning if there are less than 1.5X blocks, (where X is the first field in the parameters
for that line), or 100 inodes free in the file system. If rjeinit fails, the reason for the failure is
reported, and the file dead is created containing “‘Init failed’’. This will be reported by rjestat
until a subsequent rjeinit succeeds. Rjeinit performs the following functions:

1. Dials a remote host if specified (see Section 2.3).

2. Truncates the console response file resp.

3. Sends a signon record to the host. The signon record is taken from the file signon (ASCII
text), if it exists, otherwise rjeinit sends a blank record as a signon.

4. Sets up pipes for process communication.

5. Resets process-group for RJE subsystem and restarts error logging.

6. Rebuilds the joblog file from jobs queued for transmission.

7. Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.

8. Starts the appropriate background processes (rje?xmit, rje?recv, and rje?disp).

9. Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The
failing process will normally attempt to reboot the subsystem by executing rje?init with a + as
its argument (see Section 7). When rjeinit is executed with + as its argument, this indicates an
attempted reboot, and rjeinit will behave differently (no re-dialing is done to remote hosts,
errors are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to the VPM device. Rjexmit is started by rjeinit and runs in the back-
ground. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1
block from each active reader?, and the console>, { :

2. Reader refers to the logical readers used by RJE. :
3. Console refers to the RJE logical console, which is separate from the logical readers.

8 UNIX RJE Administrator’s Guide

2. Queues files from the joblog according to the first two characters of the file name:

e rde — these files are queued on the reader with the fewest cards. Normal use of the
send command creates these files.

e sq* — these files are queued on the last available reader to assure sequential transmis-
sion. Using the —x option to the send command creates these files.

e co* — these files are queued on the console. The rjestat command creates these files.
All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of job status (see Sec-
tion 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol.

5. Performs the following peripheral control:

e Sends requests to open readers when jobs have been assigned to them. These readers
are not active until a grant is received from rjerecv (via a pipe).

e Halts or activates readers when waits or starts, respectively, are received from rjerecy.
e Sends printer or punch grants when an open request is received from rjerecv.
6. Notifies rjedisp that a file has been transmitted, and unlinks the file.

If rjexmit encounters fatal errors, it creates the dead file with an appropriate message, and sig-
nals the other background processes to exit. If possible, rjexmit will attempt to reboot the RJE
subsystem by executing rjeinit.

4.6 Rjerecy

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the back-
ground. When running, rjerecv performs the following processing:

1. Reads blocks of data received from the host system.
2. Handles data received according to its type. The two types of data are:
e Control information — rjerecv performs the following peripheral device control:
a. Notifies rjexmit of grants to its requests to open readers.
b. Passes wait and start reader information to rjexmit.
c. Passes open requests (for printers and punches) from the host to rjexmir.
e User Information — the three major types of user information received are:

a. Console responses and job status messages. This data is appended to the resp file
for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (pre)
in the rpool directory. When a complete print job has been received, rjerecv
_ notifies rjedisp (via a pipe) that the file is to be dispatched. ,

c. The punch output from user jobs. This data is handled the same as printer out-
put except that the rpool files are named pus.

3. If the console response file resp exceeds 70,000 characters, rjerecy truncates the file.

4. Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below space blocks (space is described in Section 2.3).

UNIX RJE Administrator's Guide 9

. 5. Ryjerecv truncates received files to size blocks (size is described in Section 2.3).

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message, sig-
nals the other background processes to exit, and reboots the RJE subsystem.

4.7 Rjedisp

This program dispatches user information. Rjedisp is started by rjeinit and runs in the back-
ground. When running, rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving
notification of output ready from rjerecv, rjedisp searches for a ‘‘usr="" line in the
received file. The format of a *‘usr="’ line is as follows:

‘ usr= (user,place,level)

Rjedisp dispatches the output according to the place field. See UNLX Remote Job Entry
User’s Guide for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

e Job transmitted — this message is sent to the submitting user when rjedisp reads this
event notice from the rjexmit pipe.

e Job acknowledgement — rjedisp dispatches IBM acknowledgement messages to submit-
ting users. If a job is not acknowledged properly or within a reasonable amount of
time, a ‘““Job not acknowledged’’ message is dispatched.

e Output processing — rjedisp dispatches job output messages according to the options
specified on the ‘““usr="" card. A normal output message indicates the returned file

O name is ready.
Messages can be masked by using the level on the ‘“‘usr="’ card.

3. Whenever output is to be handled by shqger, rjedisp checks that shqer is running. This is
done by looking for the shger log file. If this file does not exist, rjedisp starts shqer.

4.8 Shqer

This program executes user programs when they appear in the place field of the ‘““usr="" line in
a returned output file (print or punch). Shqger is started by rjedisp when the first output file
using this feature is returned. Subsequent files using this feature are logged for execution by
rjedisp. When started, shger performs the following processing:

1. Builds the log file from file names in the /usr/rje/sque dircct(;ry. Each log entry is the
name of a file (tmp?) that contains the following information:

e the name of the file to be executed

e the name of the input file (file returned from IBM)
e the name of the IBM job
e the programmer name

. the IBM job number

e the user’s name from the “‘usr="" line

e the user’s login directory

e the minimum file system space

. 2. Shger uses two parameters. The first is the delay time between log file reads. The second
is a nice(2) factor which is applied to any programs spawned by shger. These values are
defined in /usr/include/rje.h (QDELAY and QNICE).

10 UNIX RJE Administrator’s Guide

3. When each log entry is read, the appropriate program is spawned with the following
characteristics: '

e The returned RJE file is the standard input to the program.

e The standard and diagnostic outputs are /dev/null.

e The LOGNAME, HOME, and TZ variables are set to the appropriate values.
e The arguments to the spawned program, in order, are;

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2:3):

b. the IBM job name.

c. the programmer name.
d. the IBM job number.
e. the user’s login name.

4. After executing each program, the tmp? file and the returned RIJE file are removed.

5. UTILITY PROGRAMS
5.1 Snoop

Snoop is the generic name of a program that can be used to trace the state of a VPM device and
its associated communications line. Snoop depends on the trace(4) driver for its information.
It reads trace entries from /dev/trace and converts them into a readable form that is printed on
the standard output.

The usable name of snoop for a particular RJE subsystem is snoopN, where N is the low order
three bits from the VPM minor device number. If VPM device names adhere to the vpmo,
vpml, ... vpmn naming convention, each snoop name corresponds to its VPM device. In our
hypothetical system, vpmO is used by the rjel subsystem, and vpm1 is used by the rje2 subsys-
tem (see Section 2.3). Therefore, /usr/rjel/snoop0 and /usr/rje2/snoopl are linked to
/usr/rje/snoop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence type information
where:
e sequence specifies the order of trace occurrences. It is a value between 0 and 99.
e type specifies the action being traced (e.g., transfers, driver activity).
e information describes data being transferred and driver activity.

The following table explains the meaning of trace types and their associated information.

type information meaning

CL Closed The VPM device has been closed.
CL Clean The VPM driver is cleaning up for this device.
OP Opened The VPM has been successfully opened.

OP Failed(open) The open failed because the device was already open.

UNIX RJE Administrator’s Guide

0) 3

opP
RR

RX

RD
SC

ST

ST

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

WR

Failed(dev)

Failed(set)
Buf

Buf

num bytes

Exit(num)

Startup
Stopped
Started
R-ACK

S-ACK

R-NAK

S-NAK
R-ENQ
S-ENQ
R-WAIT
R-OKBLK
R-ERRBLK
R-SEQERR
R-JUNK

TIMEOUT
S-BLK

num bytes

The open failed because the device number was out of
range.

The open failed because the KMC could not be reset.

The VPM script has returned a receive buffer to the
VPM driver.

The VPM script has returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by rjerecv.

The VPM script has terminated. The VPM exit code is
num. Exit codes are defined in vpm(4).

The KMC has been started.
The VPM script has been stopped.
The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that
the previous transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A “not-acknowledged’’ (NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received.

A ‘“‘not-acknowledged”” (NAK) character has been
transmitted to the remote system.

A enquiry (ENQ) character has been received from the
remote system.

A enquiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it.

A valid data block was received from the remote
machine.

An invalid Cyclic Redundancy Check (CRC) was
received with a data block.

The block sequence count on a received data block was
invalid.

An invalid data block was received from the remote
system.

The remote machine did not respond within 3 seconds.

A data block has been transmitted to the remote sys-
tem.

Num bytes were written to the VPM device by rjexmit.

11

12 UNIX RJE Administrator’s Guide

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program’s two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of
this section describes these two functions.

5.2.1 RJE Status

When invoked, rjestat reports the status of the RJE subsystems. If remote system (host) names
are specified, only those statuses are reported. Rjestat uses the following rules to report the
status of a subsystem:

e Rjestar prints the contents of the file status if it exists in the subsystem directory. This file
can contain any message the administrator wishes to have printed when users use rjestat.

e If the file dead exists in the subsystem’s directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the con-
tents of the dead file as the reason.

e If the file stop exists in the subsystems directory, the rjehalt program has been used to inhi-
bit that RJE subsystem. Rjestat reports that RJE to host has been stopped by the operator.

e If neither the dead nor the stop file exists, rjestar reports that RJE to host is operating nor-
mally.

Rjestat is supplied as the user’s vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To use rjestat as a status console, the —shost argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RJE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status console features, see rjestat(1C).

5.3 Cvt

This program converts any subsystem’s joblog file to readable form. The first line printed is the
process group number of the subsystem processes. The remaining output consists of entries in
the following form: :

file user-id records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of ‘‘card’’ images, and level is the message level. The records and level fields are
not used if the file name is co= (console request submitted by rjestat).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the acctlog file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem’s direc-
tory. Entries in this file describe RJE line use and are of the following form:

day time file user records

UNIX RJE Administrator’s Guide 13

Each field is delimited by a tab character. The meanings of each field is as follows:

1. day — The day of occurrence in the form mmy/dd.

2. time — The time of occurrence in the form hh:mm:ss.

3. file — The name of the UNIX file. The first two characters identify its type as follows:
e rd/sq — the file was transmitted to the remote system
e pr — the print output file was received from the remote system
e pu — the punch output file was received from the remote system

4, user — The user ID of the user responsible for the transfer.

5. records — The number of records (card images) transferred for this file.

Because acctlog data is not used by RJE, it should not be allowed to grow too large. This can
be accomplished by moving or processing the file during a system reboot (i.e., in /etc/rc before
the RJE subsystems are started). ‘

The following list describes some of the reports that could be generated from the acctlog data.
Implementation of a program to produce accounting reports is the responsibility of the adminis-
trator.

e Periodic Reports — by using the day and time fields in the data, periodic usage reports can
be produced.

e By User Reports — by using the user field in the data, usage-by-user reports can be pro-
duced.

e By Subsystem Reports — by using the /usr/rje/lines file information and each acctlog file,
a usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. TROUBLE SHOOTING

This section deals with RJE problems, and some methods for resolving them. The topics dis-
cussed in this section are as follows:

e Automatic Error Recovery

e Manual Error Recovery ;
e RJE Problems

e KMC/VPM Problems

e Trace Interpretation

7.1 Automatic Error Recovery

RIJE attempts to be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., a crash) RJE will continually try to
restart itself (this action will be referred to as a “‘reboot’’). For example, if an RJE subsystem
is started using rjeload, but the IBM system is not available, a fatal error will occur. The pro-
cess that detects this error (usually rjexmit or rjerecv) will reboot the subsystem by executing
rjeinit with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The rjehalt program can be used to prevent an RJE subsystem from rebooting itself when the
remote system is not available for a known period of time. When the remote system is made
available, the subsystem may be started in the normal way.

14 : UNIX RJE Administrator's Guide

7.2 Manual Error Recovery

In order to manually recover from errors, one must know how to start and stop an RJE subsys-
tem. There are two ways to start an RJE subsystem:

e rje?load — this program loads and starts the VPM script, and executes rje?init.

e rje?init — this program starts the rje? subsystem. In order to use this program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?halt program should be executed. This stops the subsystem
gracefully and will prevent a reboot.

The rjeload program must be used to start RJE for the first time (after a UNIX system reboot).
Subsequently, as long as the script is running, execution sequences of rjehalt and rjeinit will stop
and start RJE.

Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the host machine, the following sequence can ease
identification of the problem:

1. Halt the ailing subsystem.

2. Start a snoop process in the background with its output redirected to a file.
3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The snoop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7.5.

7.3 RIJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generally
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly:

1. IBM description — the description of the remote UNIX machine must be consistent with
the description in Section 2.2.

2. UNIX description — the file /usr/rje/lines must be set up properly (see Section 2.).

3. KMC/VPM setup — the VPM software must be installed and the proper VPM and KMC
devices made. Each VPM device must correspond to the proper KMC device; see vpm(4).

4. Free space — as a general rule, all file systems must have a reasonable amount of free
space. File systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operation.

5. Directories — each subsystem’s directory and the controlling directory should be checked
for the following:

e All needed files exist.
e The proper prefix is on each applicable RJE program.
e The link count is correct for files that are linked.
e All file and directory modes are correct.
‘A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization — peripherals information must be consistent on both systems (see Section
2.3). The line must be started on the IBM system, proper hardware connections made,
etc. '

UNIX RJE Administrator's Guide 15

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an obstacle is found, an error message indicating the obstacle is printed on
the error output. If a problem is encountered during normal operation, the message is logged
in the errlog file. This file, error messages, the output from snoop, and the checklist above
should be used to determine and fix any subsystem problems. Generally, if a subsystem is set
up properly but will not operate, the problem is the way the VPM or KMC has been set up, the
remote system, or the hardware.

7.4 KMC/VPM Problems

This section describes the KMC and VPM uses, and problems that can occur. After installing
KMC hardware and making KMC devices, all VPM software and devices must be made (see
vpm(4)). The program rjeload links the devices to be used by the corresponding RJE subsys-
tem.

The following is a list of items to check when problems occur:

1. Proper hardware — the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the KMC address and interrupt vector are correct.

2. Proper Devices — the major and minor device numbers for the KMC and VPM devices
must be correct. It should also be verified that the rjeload program is called with the
correct KMC and VPM device names.

3. Script runs — verify that the VPM script is able to run. This is done by tracing the proper
VPM with the proper snoop program. Snoop will print ‘‘started”’ entries for both the KMC
and VPM script (see Section 5.1). If no output appears from snoop when rjeload is exe-
cuted, either the KMC is not working properly, or the KMC or VPM has not been set up
properly (see items 1 and 2). Output of any other type from snoop should indicate where
the problem is occurring.

7.5 Trace Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the VPM script. All others are driver traces and indicate the
following:

e CL — activity occurring when the device has been closed.
e OP — activity occurring when the device has been opened.
e RD — read from device occurred.

e WR — write to device occurred.

e RR — a receive buffer has been returned.

e RX — a transmit buffer has been returned.

e ST — start or stop activity.

e SC — script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the “‘+#’’ in trace output. If more than one VPM were run-
ning, sequence numbers might not appear in order. For clarity, example sequences will be in
order. :

16 UNIX RJE Administrator’s Guide

7.5.1 Normal RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENQ). The RIJE subsystem signs on to the
machine, then follows the handshaking protocol (exchanging ACKs).

Tracing vpmO

0 ST Startup * KMC started

1 TR Started * Script started

2 TR S-ENQ * Enquiry byte sent

3 ST Start * VPM Driver start

4 OP Opened * VPM Device open

5 TR R-ACK = Received acknowledgement
6 TR S-ACK * Handshaking

7 WR 84 bytes * Signon record written
8 TR R-ACK = Handshaking

9 TR S-BLK * Sent signon block

10 TR R-ACK = Block acknowledged
11 RX Buf * Transmit buffer returned
12 “FR S-ACK * Handshaking

13 TR R-ACK = :

14 TR S-ACK *

150 R R-ACK =

16 TR S-ACK *

17 IR R-ACK *

18 TR S-ACK * :

19 TR R-ACK # ;

20 TR S-ACK * Handshaking

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RIJE startup—IBM not responding

This example shows trace output when RJE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timeout if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is
detected while starting up, the enquiry byte (ENQ) is retransmitted. This is repeated 6 times
before the script gives up. Other timeout responses will be discussed later.

Tracing vpmO

86 ST Startup * KMC started

87 TR Started * Script started

88 TR S-ENQ = Enquiry byte sent

89 ST Start * VPM Driver start

90 OP Opened * VPM device open

91 WR 84 bytes * Signon record written:
92- - TR TIMEOUT * No response to enquiry -
93.. TR S-ENQ .«# Enquiry byte sent .. :
94 TR TIMEOUT = No response

95 TR S-ENQ = Enquiry byte sent

9% TR TIMEOUT #* No response

97 TR S-ENQ + Enquiry byte sent

98 TR TIMEOUT = No response

99 TR S-ENQ = Enquiry byte sent

UNIX RJE Administrator’s Guide 17

. 0 TR TIMEOUT * No response
1 TR S-ENQ * Enquiry byte sent .
2 TR TIMEOUT = No response
3 RR Buf * Receive buffer returned
4 RD 1 bytes * 1 byte read (error)
5 SC Exit(0) * Script exits normally
6 CL Clean * Cleanup done
7 ST Stopped * KMC stopped
8 CL Closed * VPM device closed

The above sequence will be repeated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat com-
. mand will report that IBM is not responding. When this occurs, either the IBM machine is not
available, down, line not started, etc., or there is a communications problem somewhere from
where the KMC transmits data to where it receives data. The RJE administrator should first
verify that the IBM machine is up, and the communications line has been started. If so, a
hardware trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving
This example shows trace output from the start of job transmission through its return. For

simplicity, only one job is being transmitted and returned.

Tracing vpmO

94 TR R-ACK » Handshaking
95 TR S-ACK * :
96 TR R-ACK * .
(' 97 IR S-ACK * Handshaking
98 WR 4 bytes * Open reader request written
99 TR R-ACK = Handshaking
0 TR S-BLK * Sent open request block
1 TR R-OKBLK = Received block (grant)
2 RX Buf * Transmit buffer returned
3 RR Buf * Receive buffer returned
4 TR S-ACK » Block acknowledged
5 RD 7 bytes * Read 7 bytes (grant)
6 TR R-ACK * Handshaking
7 TR S-ACK * Handshaking
8 WR 481 bytes * First block written
9 WR 470 bytes * Second block written
10 TR R-ACK * Handshaking
11 TR S-BLK * First block sent
12 TR R-ACK = Block acknowledged
13 o RX Buf * Transmit buffer returned
14 WR 470 bytes * Third block written
15 TR ... S-BLK x Second block sent
16 TR R-OKBLK =* Received block (on reader msg)
17 RX Buf " % Transmit buffer returned
ﬁ 18 RR Buf * Receive buffer returned
19 WR 470 bytes * Fourth block written
20 RD 66 bytes * Read 66 bytes (on reader msg)
21 TR S-BLK » Third block sent
i . 22. IR R-ACK * Block acknowledged
23 RX - Buf * Transmit buffer returned

]
=

WR 147 bytes = Fifth block written

18 UNIX RIJE Administrator’s Guide

25 IR S-BLK = Fourth block sent

% TR R-ACK * Block acknowledged

27 RX Buf * Transmit buffer returned
93 TR R-ACK * Handshaking

94 TR S-ACK * Handshaking

95 TR R-OKBLK = Received block (request)
96 RR Buf * Receive buffer returned
97 TR S-ACK * Block acknowledged

98 RD 7 bytes = Read open printer request
99 TR R-ACK * Handshaking

0 TR S-ACK *

1 TR R-ACK *

2 TR S-ACK *

3 TR R-ACK * 3

4 TR S-ACK »= Handshaking

5 WR 4 bytes * Printer grant written

6 TR R-ACK * Handshaking

7 TR S-BLK = Block sent (grant)

8 TR R-OKBLK =+ First block received

9 RX Buf * Transmit buffer returned
10 RR Buf * Receive buffer returned
11 TR S-ACK * Block acknowledged

12 RD 64 bytes » Read first block

13. TR R-OKBLK #* Second block received
14 RR Buf * Receive buffer returned
15 R S-ACK = Block acknowledged

16 RD 505 bytes * Read second block

17 TR R-OKBLK = Third block received

18 RR Buf * Receive buffer returned
19 TR S-ACK * Block acknowledged

20 TR R-OKBLK = Fourth block received
21 RR Buf * Receive buffer returned
22 TR S-ACK * Block acknowledged

23 - 1R R-ACK »= Handshaking

24 TR S-ACK =

25 IR R-ACK * ;

26 TR S-ACK * Handshaking

27 RD 470 bytes * Read third block

28 RD 494 bytes » Read fourth block

29 . TR R-ACK » Handshaking

30 TR S-ACK * Handshaking

Requests and grants are part of the multi-leaving protocol. Appendix B of OS/VS MVS JES2
Logic (5Y24-6000-1) describes this protocol in detail. When jobs are being transmitted and
received simultaneously, as in a busier RJE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allows a block to be returned (this
implies acknowledgement of the received block). The following example shows trace output at
a busy time:

UNIX RJE Administrator's Guide

Tracing vpmO

41 TR R-OKBLK = Received block
42 RX Buf *

43 RR Buf i

44 TR S-BLK = Sent block

45 WR 493 bytes *

46 RD 496 bytes *

47 TR R-OKBLK #* Received block
48 RX Buf s

49 RR Buf @

50 RD 65 bytes *

51 WR 4 bytes *

52 IR S-BLK = Sent block

53 TR R-OKBLK * Received block
54 RX Buf ®

55 RR Buf *

56 TR S-BLK * Sent block

57 WR 493 bytes *

58 RD 7 bytes *

59 TR R-OKBLK = Received block
60 RX Buf *

61 RR Buf *

62 WR 493 bytes *

63 RD 496 bytes *

64 TR S-BLK * Sent block

65 TR R-OKBLK = Received block

Notice that because there is work to be done on both sides, acknowledgements are implied.
7.5.4 Timeout Error Recovery

This example shows activity resulting from timeouts occurring during normal operation. These
timeouts were caused because the remote JES3 system has performance problems, and occasion-
ally does not respond in the required three seconds.

Tracing vpm1

2l IR S-ACK » Handshaking

28 TR R-ACK *

29 IR S-ACK #

30 TR TIMEOUT =* No response

a1 IR S-NAK * Not acknowledged
32 IR TIMEOUT = No response

L S-NAK * Not acknowledged
34 TR R-ACK * Response

35 TR S-ACK * Handshaking

36 1R R-ACK *

54 TR R-ACK * !

55 TR S-ACK * Handshaking

56 TR TIMEOUT * No response

57 TR S-NAK * Not acknowledged
58 IR R-ACK = Response

59 S-ACK * Handshaking

TR

20 UNIX RJE Administrator’'s Guide

The response to these timeouts are NAKs (not acknowledged). RIJE will respond this way up to
six times before giving up and attempting a reboot. At this time rjestat would report that there
are “Line Errors.”” NAK is a request to retransmit the previous response.

7.5.5 Communication Line Errors
This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

Tracing vpml

63 TR S-ACK * Handshaking

64 TR R-ACK *

65 TR S-ACK x -

66 TR R-JUNK * Noise on the line
67 TR S-NAK * Not acknowledged
68 TR R-ACK = Recovery

69 TR S-ACK #

70 TR R-ACK ®

7l TR S-ACK *

72 TR TIMEOUT * Line has dropped
33 TR S-NAK = Attempting to recover
74 TR TIMEOUT =

73 TR S-NAK *

80 TR TIMEOUT =

81 TR S-NAK *

82 TR TIMEOUT =

83 TR S-NAK * .

84 RR Buf » Receive buffer returned
85 RD 1 bytes = | byte read (error)
86 SC Exit(0) + Script exits

87 CL Clean » Cleanup

88 ST Stopped *+ KMC Stopped

89 CL Closed * VPM device closed

The error read in the above sequence causes RIE to reboot and rjestat to report line errors. If
this were to occur frequently, a different method of communication should be used. |

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send a NAK. The only excep-
tion is when starting up (see Section 7.5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. This should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should
be followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line
should be checked for problems.

On some IBM systems, (e.g., JES2), an I/O error is printed at the system console whenever a
NAK is received. These I/O errors can also be helpful in detecting the problem; however, they
will not be discussed here as they vary with the system. It is assumed that someone in IBM
support can assist if needed.

January 1981

