UNIX
E.7.3

Release' 1.0 of the UNIX Virtual Protocol Machine

P.F. Long
C. Mee, 111

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This memorandum describes the initial release of the Virtual Protocol Machine
(VPM), a new UNIX% synchronous communication subsystem. The VPM is built
around the KMC11, a small, high-speed microcomputer that connects to the
UNIBUS of a PDP-11 or VAX-11/780. The VPM is a software construct for imple-
menting link protocols on the KMC11 in a high-level language.

A compiler, vpme, is provided to translate a high-level description of a protocol
(protocol script) into the instruction set of the virtual machine. ¥pmc supports
C-like control-flow constructs, a modest subset of C-like statements and expres-
sions, and a set of communication primitives that permit implementation of byte-
oriented protocols such as BISYNC. (Primitives that support bit-oriented protocols
such as HDLC have been defined and will be available in a later release of VPM.)
An interpreter is provided that runs in the KMCI1 and interprets the virtual
machine instruction set. A UNIX driver, vpm.c, provides the interface between
the user process’s open, close, read, and write calls and the protocol script being
executed by the interpreter. Besides providing the benefits of a high-level
language implementation of protocols, the VPM approach permits portable proto-
col implementations.

The VPM software consists of five components:

1. vpmc: a UNIX compiler for the protocol description language.
VPM interpreter: the KMC11 program that controls the overall operation of
the KMCI11 and interprets the protocol script.

3. vpm.c: the UNIX driver that provides the interface to the VPM.

4. vpmstart: a UNIX command that copies a load module into the KMC11 and
starts it. :

5. vpmtrace: a UNIX command that prints an event trace for debugging while
the protocol is running.

The procedures for installation and use of the VPM commands and the VPM driver
are described; the pertinent manual entries are attached.

INTRODUCTION

The Virtual Protocol Machine (VPM) is a new UNIX synchronous communications subsystem
built around the KMC11 microcomputer. The KMCI11 is a small, high-speed, 8-bit microcom-
puter manufactured by DEC. It connects to the UNIBUS of a PDP-11 or VAX-11/780 and can
become UNIBUS master, thus giving it direct memory-access capability (DMA), as well as the
ability to control other UNIBUS devices. While other DEC communications devices provide
direct-memory access, the KMC11 is the only one that is also fully programmable. Thus the
KMCI1 can provide most of the CPU power and some of the address space required to do data
communications, thereby relieving the main CPU of these burdens. All is not roses, however:

t UNIX is a trademark of Bell Laboratories.

2 VPM Release 1.0

the KMC11 must be programmed in an unfamiliar and somewhat awkward assembly language.
This, together with a requirement to provide several varieties of the BISYNC protocol and with
a need to support, in the future, other link protocols such as HDLC, was the motivation for the
development of the VPM.

The VPM is a software construct for implementing link protocols on the KMCl11 using a high-
level language. A compiler, vpme, is provided to translate a high-level description of a protocol
(protocol script) into the instruction set of the virtual machine. Vpmc uses a variant of Ratfor
[1] as a front end to provide control-flow constructs such as if-else, for, while, switch, and
repeat-until, as well as other benefits. Vpmc supports a modest subset of C-like statements and
expressions, plus a set of communications primitives that permit succinct and easily-understood
implementations of byte-oriented protocols such as BISYNC. These primitives allow the proto-
col scripts to reflect the essential structure of the protocol, while hiding details that arise from a
particular hardware-software environment. (Primitives that support bit-oriented protocols such
as HDLC have been defined and will be available in a later release of VPM.) An interpreter is
provided that runs in the KMC11 and interprets the virtual machine instruction set. This pro-
gram also controls the communications line and provides the interface to the UNIX host
machine. The compiled protocol script is loaded with the interpreter into the KMC11. A UNIX
driver, vpm.c, provides the interface between the user process’s open, close, read, and write calls
and the protocol script executed by the interpreter in the KMC11. (The UNIX kmc driver is
used to implement this interface.) For a pictorial overview of VPM, see Figures 1 and 2.

Besides providing the benefits of a high-level language implementation of protocols, such as
case of programming and maintainability, the VPM approach permits portable protocol imple-
mentations. Portability can be achieved in several ways. First, because the interpreter and the
compiled protocol script execute in the KMCI1, they are the same regardless of the software
running in the main CPU or, for that matter, regardless of the CPU itself. For example, the
same interpreter and compiled protocol script can be used for UNIX/RT on a PDP-11 or for
UNIX on a VAX-11. More general forms of portability are also possible. The instruction set of
the virtual machine can be translated into almost any assembly language using one of the UNIX
macro processors, such as m4 [2]. This does nor require that the assembler for the target
machine have a macro expansion capability. (We may use this approach in the future to
translate protocol scripts into KMC11 assembly language, thus gaining speed over the present
virtual machine interpreter.) Another possibility for portability arises because Ratfor is used as
a front-end; by limiting a protocol script to a statement and expression syntax acceptable to a
Fortran compiler, the protocol is portable to machines that support Fortran in a suitable real-
time environment. Finally, minor changes to a protocol script will yield a C implementation of
the protocol. With any of these methods, the functions provided by the primitives (including
the interfacing with communication devices and the execution environment) must be supplied
by suitable library routines or system calls.

RELEASE1.0

Release 1.0 of VPM is restricted to byte-oriented, half-duplex protocols such as BISYNC. A
separate KMC11-B is required for each communications link. Each KMCl1 running VPM must
be equipped with a suitable DMC11 line unit. A DMC11-DA line unit is required for operation
at speeds up to 19.2K bits/sec; a DMC11-FA or DMC11-MD is required for operation at speeds
of 56K bits/sec. The modem control available on the DMC11-DA line unit permits both inward
and outward dial-up communication. :

{11 B. W. Kernighan, RATFOR— A Preprocessor for a Rational Fortran, Bell Laboratories.
[2] B. W. Kernighan, The M4 Macro Processor, Bell Laboratories.

VPM Release 1.0 3

This release of the VPM software is intended for use with UNIX Edition 1.1 or later. Operation
with other versions of UNIX has not been tested. The VPM software consists of five com-
ponents:

1. vpmec: UNIX compiler for the protocol description language.
VPM interpreter: the KMC11 program that controls the overall operation of the KMCI1
and interprets the protocol script.

3. vpm.c: the UNIX driver that provides the interface to the VPM.

4. vpmstart: a UNIX command that copies a load module into the KMC11 and starts it.

5. vpmtrace: a UNIX command to print a debugging event trace.

Manual entries for vpme(1C), vpmstart(1C), vpmirace(1C), and vpm(4) are attached to this
memorandum. A release tape containing the VPM software and manual entries is available
from the authors. Installation procedures are described in the appendix to this memorandum.

Acknowledgements

The idea of using the KMCI11 to interpret a protocol description was suggested by L. A. Wehr.
He also offered useful suggestions and criticisms as the project implementation progressed.

E VPM Release 1.0

APPENDIX

Hardware Installation and Switch Settings

The KMC11 microprocessor and DMC11 line unit must be installed in adjacent slots of a PDP-11
or VAX-11/780 backplane. The microprocessor and line unit are interconnected by a one-foot
mylar cable. The line unit is connected to a suitable modem by a 25-foot modem cable. The
device address and interrupt vector address switches on the KMCI1 should be set for the
selected addresses. All switches and jumpers on the DMCI11 line unit should be in the normal
configuration prescribed by the relevant DEC maintenance manual with one exception: the NO
CRC switch (switch S2 in switch pack number 1) should be in the ON position. The purpose of
this switch setting is to inhibit hardware CRC generation. Hardware CRC generation is not used
with this release of the VPM software.

Installing the VPM Software on a UNIX System

In order to read the release tape, change to the directory into which the vpm software is to be
read (say, vpmdir), then execute:

cpio —iBdv </dev/rmt0

The executable programs, shell procedures, manual entries, and examples of protocol scripts
will be read into the current directory and the following six subdirectories will be created and
loaded: wtil, plsrc, ratsrc, bisynch, drvsrc, and demo. Util will contain some processors that may
be needed: awk, cpp, kas, kasb, kunb, kun, and m4. (These processors are provided in case
the versions on your system are not compatible with the release tape.) Plsre will contain the
source required to make p/, the main pass of vpme. Ratsre will contain the source required to
make vratfor, a modified version of Ratfor used as a preprocessor for pl. Bisynch will contain
the VPM interpreter source for the the KMC11-B. Drvsre will contain the source required to
make the UNIX driver, vpm.c, and the command vpmtrace. Demo will contain demonstration
programs and programs for checking the operations of the KMC11 and the VPM software.

Installation of the VPM Driver and Commands
To add the VPM driver to a UNIX Edition 1.1 system, do the following:
1. Add the following line to the file /etc/master:
vpm 0 36 6 vpm 0 0 15 1 5

2. Add the following two lines to the file Jusr/srcjuts/cficfigpa (or its equivalent) for each VPM
line to be added: ¢

vpm O 0 0
kmcll vector address priority

If the KMCl1s that are to be used have already been configured, the lines immediately
above relating to KMCl11s should not be added. See config(1M), master(5), and Setting up
UNIX for more information.

3. To make a UNIX system that includes the VPM driver, copy vpmmkdrv, found in vpmdir,
to /usr/src/uts/cp or its equivalent. Check the defines at the beginning of vpmmkdrv to verify
that the directories used are appropriate for your system. Then execute:

vpmmkdrv sysname dfile

where sysname is the name to be given to the system and dfile is the file modified in step
2 above. Dfile must be a simple file name (not a full path name).

VPM Release 1.0 3

4. To install the VPM commands, check the defines at the beginning of the shell procedure
vpmmbkemds to verify that the directories used are appropriate for your system. Then exe-
cufe:

vpmmkcmds
5. Use mknod(1M) to create a node for each VPM line and each KMC11:
/etc/mknod /dev/vpm? ¢ major minor

where major and minor are both octal; major is determined by vpm’s position in the cdevsw
table and minor defines the KMC11 and VPM as follows: the two most significant bits
denote the KMC11 number (0-3) and the three least significant bits denote the VPM
number. For example, if KMCl1s 2 and 3 are to be used for VPM, then the minor device
numbers should be 0200 and 0301, respectively.

Compiling Protocol Scripts

The manual entry for vpme(1C) describes the protocol description language. See also the
examples of protocol scripts included on the release tape: demo.r, demo.c, hasp.r, and mod40.r.

When checking a protocol script for syntax errors, the —e option may be used.
Syntax errors detected by ratfor are noted as follows:
wiwokkF ratfor:syntax error, line n, file filen
The line number » is in file filen.
Syntax errors detected by pl are noted as follows:
=+#++ pl: syntax error, input line n.
To examine this line, a temporary file must be created as follows:
vpme —m —r filen >temp
The temporary file can then be inspected using ed. The line number n refers to this file.

When all syntax errors have been eliminated, a KMC11 load module can be created by omitting
the —c¢ or —r options on the vpmc command.

Testing Protocols

When a load module suitable for testing has been made using vpmc, vpmstart may be used to
load the file into the KMC11 and to start the interpreter. To view and record the trace records
simultaneously execute: '

vpmtrace | tee eventfile

A high-speed CRT terminal is best if you wish to get an impression of what is happening in real
time. When a user program opens the VPM device, interpretation of the protocol script begins.
Script interpretation ends if the VPM device is closed. Various error conditions can also ter-
minate the script; they are described in vpm(4).

January 1981

VPM Release 1.0

wpiboid
Il DN 8)qDINdex3

|>

Jojeidiaju|
pup
uoydii1aseq
1000}04d PoJDjSUDIL

f\/

$S200.4d uoljojidwo) |020}0.id

il

824n0S Ja3}aadiaju)|
+AiDiqin WdA

| ainbi4 :
924n0S :
J9|1dwo) |>
uoljdiiaseq
e owdAa —— il
10904044 8)!|-3

Bl e

VPM Release 1.0

S90DJJ3jul pup sjuauodwiod WdA
2 ainbid

‘XYA 94} uo unJ OS|D ||Im2 wmuo_om**r
“1ipjswda kQq pepoojumop 8 Jwa Aq paonposd woiboad [1OWN 3|qDINJ3XT + #

PR *§10}d140S8p 49}}NQ }ILLUSUDI} PUD BAIBI3Y +
' N
2o0dg "1jsu|
3
d -
v 1010.1d SpJNg jwx SHIM
3 yaadiaju) * _ . _
] -— T i
3 g +SPING A2 ppau
I (" | |
B
i Iﬁ ﬁllll - sya0dal 3s0p0
: SNAINN | |
3 il i gisgen (_ SPUDWWOJ uado
N uol}di1osaq
__ {020}0id p@8}D|subil
JaAlig A9ALIQ ssaooud
aopds pjpd OWH WdA Jasn
LINN
NI L OWA f.:._:. dad
L 1ONA

