UNIX
E.7.4

Release 2.0 of the UNIX Virtual Protocol Machine

P. F. Long
C. Mee, 111

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This memorandum describes the second release of the UNIXt1 Virtual Protocol
Machine (VPM). VPM is a general-purpose synchronous UNIX communications
interface that allows link-level protocols such as BISYNC and HDLC to be imple-
mented on the KMC11-B (a DEC microcomputer) in a high-level language. The
VPM software consists of a protocol compiler, a UNIX driver, an interpreter that
executes in the KMC, and several utility programs.

The first release of VPM supports a class of byte-oriented half-duplex protocols
collectively known as BISYNC. The present release adds support for bit-oriented,
full-duplex protocols such as the international standard High-Level Data Link
Control (HDLC). Other features of Release 2.0 include:

1. An increase in the number of buffers that the interpreter can accept at one
time.

2. Additional debugging facilities.

3. Provisions for interprocess communication between the protocol script and a
UNIX driver or a user process.

4. A cleaner separation of functions in the UNIX driver to facilitate tailoring of
VPM to particular applications.

The procedures for adding VPM Release 2.0 to a UNIX 3.0 system and testing it to
ensure proper operation are given.

Introduction

This memorandum describes the second release of the UNIX Virtual Protocol Machine (VPM).
The first release was described in a previous memorandum [1], which should be read as back-
ground for this memorandum. See also the UNIX User’s Manual [4] entry for vpm(4).

VPM is a general-purpose UNIX interface for synchronous communications lines. VPM allows
link-level protocols such as BISYNC and HDLC to be implemented on the DEC KMC11-B micro-
computer in a high-level language. The hardware required to support VPM is a PDP-11/70, /45,
or /34, or a VAX-11/780 host computer, a KMC11-B microcomputer, and a DMC11-DA, -FA,
or -FD synchronous communications interface. All of the above items are manufactured by
DEC. The use of the KMC microcomputer allows the VPM to perform direct-memory-access
(DMA) transfers to and from main memory. The link-level communications protocol is exe-
cuted by the VPM interpreter running in the KMC microcomputer. This implementation tech-
nique leads to a portable protocol representation and efficient protocol execution.

The VPM software consists of a protocol compiler, a UNIX driver, an interpreter that executes
in the KMC, and several utility programs. The compiler, which executes in the host computer,
translates a protocol described in a high-level language into a load module for the KMC. The
load module contains the VPM interpreter and a compiled representation of the protocol. The

T UNIX is a trademark of Bell Laboratories.

2 VPM Release 2.0

interpreter executes the protocol, communicates with the UNIX driver in the host computer,
and controls the communications line interface.

The first release of VPM supported a large class of protocols collectively known as BISYNC.
These protocols are distinguished by the use of control characters to provide framing and tran-
sparency. At the frame level, these protocols operate in a half-duplex manner, although they
sometimes use full-duplex communications facilities to reduce the time required to reverse the
direction of transmission.

Release 2.0 of VPM adds support for bit-oriented, full-duplex protocols. This class of protocols
includes IBM’s Synchronous Data Link Control (SDLC) and the international standard High-
Level Data Link Control (HDLC). LAPB, a subset of HDLC which is the link-level protocol
specified in the BX.25 Bell System Standard, has been implemented using VPM and is available
with this release [2,3]. The interpreter used for bit-oriented protocols is different from that
used for character-oriented (BISYNC) protocols. The appropriate interpreter is selected by
means of a compiler option. :

Other features of Release 2.0 include:

1. An increase in the number of transmit and receive buffers that the interpreter can accept
at one time.

2. Additional debugging facilities.

3. provisions for interprocess communication between the protocol script and a UNIX driver
Of a USer process. v

4. A cleaner separation of functions in the UNIX driver to facilitate tailoring of VPM to par-
ticular applications.

Support for Bit-Oriented Protocols

The capability to use bit-oriented protocols such as HDLC is provided by a new set of communi-
cations primitives. These primitives are frame-oriented and non-blocking, whereas the BISYNC
primitives are character-oriented and blocking. The new primitives are fully described in the
manual entry for vpmc(1C). An overview of these primitives follows.

The VPM interpreter maintains a set of queues for transmit buffers and another set of queues
for receive buffers. When a transmit buffer is passed to the KMC by the UNIX driver, the
buffer is appended to the unopened-transmit-buffer queue. The protocol script in the KMC
obtains a transmit buffer from the unopened-transmit-buffer queue by means of the getxfrm
primitive; the buffer is then said to be open. In order to get (open) a transmit buffer, the script
must provide a transmit-sequence number. This sequence number must be in the. range 0-7
and must be distinct from the sequence number currently assigned to every other currently-
open transmit buffer. This sequence number is used to identify the buffer for subsequent calls
to the xmtfrm and rnxfrm primitives. The xmifrm primitive initiates transmission of the
specified buffer, using the control information specified by a previous setctl primitive.
Transmission proceeds asynchronously. The script can test for completion of an output transfer
by means of the xmtbusy primitive. Open transmit buffers can be transmitted any number of
times. When the script decides that a buffer has successfully been received at the destination,
it notifies the interpreter by means of the rtnxfrm primitive. This causes the buffer to be placed
on the transmit-buffer-return queue; the buffer is then no longer considered to be open and the
sequence number can be reused. The driver is notified as soon as possible that the buffer has
been closed. The buffer is then removed from the transmit-buffer-return queue.

When a receive buffer is passed to the KMC by the driver, the buffer is placed on the empty-
receive-buffer queue. When the first byte of a new frame arrives, an empty receive buffer is
obtained from the empty-receive-buffer queue and the incoming characters are placed into the
buffer as they arrive. An incoming frame will be discarded if the frame is too short (less than
four bytes including CRC), if the frame is too long to fit in the receive buffer, or if the CRC is
incorrect. If a frame is received successfully, the buffer is placed on the completed-receive-

VPM Release 2.0 3

frame queue, otherwise the buffer is returned to the empty-receive-buffer queue. When the
script executes a rcvfrm primitive, the buffer at the head of the completed-receive-frame queue
is removed from that queue and becomes the current receive buffer. If the script subsequently
exccutes a rtarfrm primitive before executing another rcvfrm primitive, the current receive
buffer is placed on the receive-buffer-return queue. If the script executes a revfrm primitive
before executing a rtnrfrm primitive, the current receive buffer, if any, is returned to the
empty-receive-frame queue. Buffers on the receive-buffer-return queue are returned to the
driver at the first opportunity.

If the empty-receive-buffer queue is empty when the first byte of a new frame is received, the
first five bytes of the frame are retained in a staging area and the remainder of the frame is dis-
carded. This allows a protocol script to receive a control frame (up to seven bytes including
CRC) when no data buffer is available. When the next rcvfrm primitive is executed, the script
will receive the information in the staging area along with an indication that the remainder of
the frame has been discarded. If another frame arrives while the staging area is thus occupied,
the new frame is discarded entirely.

A count is kept of the number of frames discarded for each reason. These counters may be
read and reset from the host computer.

The VPM Split Driver

Because the VPM interpreter and a protocol script generally use most of the memory of the
KMC, any higher levels of protocol that are required must be executed by the host CPU. The
purpose of the VPM split driver is to provide a framework in which higher-level protocols can
be implemented conveniently using low-level routines in the VPM driver to communicate with
the interpreter in the KMC.

A set of functions has been written that provides a general-purpose interface to the link-level
protocol being executed by the interpreter in the KMC. Their capabilities include a means to
queue transmit and empty receive buffers for use by the protocol script in the KMC, to start and
stop the script, and to send commands to and receive reports from the script. A means of get-
ting a copy of and resetting the VPM interpreter’s error counters is also provided. These func-
tions will be referred to as interface functions or collectively as the interface module. Appen-
dix 1 contains a description of each of these routines.

To implement higher levels of a protocol as a UNIX device driver, a set of routines must be
written to implement the standard UNIX system calls: open, close, read, write, and ioct! as well as
the required protocol. These routines will be referred to as protocol functions or collectively as
a protocol module. The standard VPM driver does not implement 4 higher-level protocol but
instead provides a transparent user interface that can be used by applications that supply their
own higher levels of protocol. This driver can be used as an example for those interested in
writing a different protocol module. Appendix 2 contains a description of these routines.

At least two other protocol modules have been written thus far. They are the Synchronous
Terminal Interface (see st(4)) and the BANCS THP Interface.

Release 2.0 of VPM allows up to four different VPM protocol modules to be executing simul-
tancously. One KMC and one interface-module minor device! are required for each protocol
being executed. Any number of protocol modules may be implemented, but no more than four
can be in use at any one time because no more than four KMCs are supported. In general, each

i

1. Strictly speaking, the interface module is not a driver and therefore does not have minor devices; however, the
minor device number in this case selects an element of the data-structure array associated with the interface module
in the same way that the minor device number associated with a driver selects an element of a data-structure array.

4 VPM Release 2.0

protocol module can have up to 256 minor devices. The VPM Release 2.0 protocol module,
however, can have at most 16 minor devices; this restriction is due to the fact that the minor
device number of the VPM protocol module is used not only to specify the VPM minor device
but also to specify the interface-module minor device and the KMC minor device. The low-
order four bits of the protocol-module minor device number determine the protocol-module
minor device; the next two bits determine the interface-module minor device; the next two bits
determine the KMC minor device.

Transmit buffers and receive buffers are passed between the VPM interpreter, the interface
module, and the protocol module by means of pointers to data structures known as buffer
descriptors. The buffer-descriptor structure is defined as follows:

struct vpmbd {

short c_ct; /* Buffer size =/

short d_adres; /* Low-order 16 bits of buffer address #*/
char d_hbits; /* High-order 2 bits of buffer address #/
char d_type; /* Protocol-dependent */

char d_sta; /* Protocol-dependent */

char d_dev; /* Protocol-dependent */

struct buf =d_buf; /* Pointer to system buffer descriptor */
int d_bos; /* Index of next byte in buffer =/

int d_vpmtdev; /* Minor device number =/

}

For empty receive buffers, ¢_ct must be equal to the buffer size in bytes; for transmit buffers,
c_ct must be equal to the number of bytes to be transmitted. When a receive buffer is returned
to the protocol module, ¢_¢f is equal to the number of data bytes in the buffer. D_adres and
d_hbits must contain an 18-bit UNIBUS-mapped buffer address; the low-order 16 bits must be in
d_adres and the high-order two bits must be in the low-order two bits of d_hbits. D_type, d_sta,
and d_dev are protocol-dependent; when using the BISYNC interpreter these three bytes may be
read and modified by the protocol script. See the discussion of getxbuf, getrbuf, rtnxbuf, and
rtnrbuf in the manual entry for vpme(1C). D_buf contains a pointer to a system buffer descrip-
tor; this is used to return the buffer to the system buffer pool. D_bos is the index of the first
byte in the buffer not yet returned to the user. D_vpmdev is the minor device number of the
protocol-module minor device to which the buffer is allocated.

The Trace Driver

The trace driver provides a means by which a user program can receive trace information gen-
erated by the VPM driver and the protocol script to aid in debugging new protocol modules and
protocol scripts. It may also be used to debug other drivers or system code not related to the
VPM driver. This driver can be configured to have a number of minor devices. Each minor
device provides a means by which a user program can read data generated by functions within
the operating system. This data is recorded by calls to trsave as described in Appendix 3. Each
call to trsave generates a unit of data known as an evemt record which consists of a channel
number (one byte), a count (one byte) and count bytes of data. The channel number can be
used to multiplex up to 16 data streams on each minor device.

Associated with each minor device of the trace driver is a clist queue which is used to save
event records provided a user program has that minor device open and has enabled the channel
to which the event records were written. Channels may be enabled in any combination, using
the ioctl command VPMTRCO. See the manual entry for trace(4). While a minor device read
queue is full, event records for that minor device are discarded. Appendix 3 contains a descrip-
tion of each trace-driver routine.

Minor device 0 of the trace driver is used by the VPM driver to record a variety of debugging
information generated within the VPM driver and also to record the data generated by the trace

VPM Release 2.0 5

primitive in a protocol script. Minor device 1 of the trace driver is used to record the informa-
tion generated by the snap primitive in a protocol script. The vpmtrace and vpmsnap commands
are available for reading and formatting the data passed via these two minor devices. These
two commands are described in the manual entry for vpmstart(1C). Appendix 4 contains a
description of the VPM driver event trace.

Miscellaneous Improvements

Two new primitives have been added to the protocol language to allow communication between
the link-level protocol script in the KMC and a higher-level protocol implemented in a user pro-
gram or a VPM protocol module. The getemd primitive allows the script to receive a four-byte
command from a user program or a protocol module. The standard VPM protocol module
allows a user program to pass a command to the script via an ioct/ system call. Other VPM pro-
tocol modules can pass a command to the script by calling the vpmemd routine in the VPM
interface module. The rtnrpt primitive allows the script in the KMC to send a four-byte report
to a protocol module or to a user program. The standard VPM protocol module allows a user
program to receive a script report by means of an ioctl system call. A protocol module can
receive reports from the interface module by calling the vpmrpt routine of the VPM interface
module.

The trace primitive of the protocol language has been augmented to allow two arguments. The
form with one argument is still supported; if only one argument is given, the second argument
is assumed to be zero. A snap primitive has been added. This primitive causes four bytes of
data from the script followed by a four-byte time stamp to be placed on the read queue for trace
driver minor device 1.

The timeout primitive provided in Release 1.0 has been supplemented by a new timer primitive
that allows a script to initialize a timer or test its current value. If the argument to fimer is
non-zero, the timer is initialized with the value of the argument. The timer is decremented ten
times a second until the timer reaches zero. If the fimer primitive is called with an argument of
zero, it returns the current value of the timer. This value is zero if the timer has expired, oth-
erwise non-zero.

In release 1.0 of VPM, the interpreter would accept at most one transmit buffer and one receive
buffer at any given time. In Release 2.0 the interpreter will accept up to four transmit buffers
and four receive buffers at a time. This applies to both the character-oriented (BISYNC) inter-
preter and the bit-oriented (HDLC) interpreter.

For applications with requirements for monitoring the integrity of the computer hardware and
software, a form of cross-checking between the UNIX driver and the KMC has been imple-
mented. Every three seconds the VPM interpreter in the KMC sends an *“I’'m-OK’’ report to the
host; the host responds by sending an *‘I'm-OK’’ command to the KMC. If either the host or
the KMC does not receive the “I’m-OK’’ signal within a reasonable time period, an error termi-
nation occurs.

Appendix 5 contains detailed instructions for adding VPM Release 2.0 to a UNIX 3.0 system.
Appendix 6 describes a number of test programs and procedures that may be used to check the
VPM hardware and software and to gain familiarity with the system.

Acknowledgements

We would like to thank our supervision, especially R. C. Haight and G. W. R. Luderer, for
their support of the Virtual Protocol Machine. L. A. Wehr provided the initial idea of inter-
preting protocol descriptions with the KMC and helped us with debugging and useful advice
from time to time. R. V. Baron of Department 9362 suggested a number of new features that
became part of this release. R. M. Ermann of Department 5251 wrote the protocol script for
the LAPB protocol and suggested several improvements in the HDLC primitives.

6 VPM Release 2.0

References

[1]1 Long, P. F. and Mee, C., IIl. Release 1.0 of the UNIX Virtual Protocol Machine, Bell
Laboratories.

[2] Ermann, R. M. Formal Specification of X.25 Comipatible Link Protocol, Bell Laboratories.
[31 Ermann, R. M. Portable Implementation of BX.25 Level 2, Bell Laboratories.

[4] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's
Manual —Release 3.0, Bell Laboratories.

VPM Release 2.0 7

Appendix 1: The VPM Interface Module

The VPM interface functions provide a general-purpose interface between a higher-level proto-
col implemented in a VPM protocol module and the link-level protocol script executed by the
VPM interpreter in the KMC. The KMC driver is used by the interface functions to pass com-
mands to_and receive reports from the VPM interpreter. When reports are received by the
interface module that must be passed on to the protocol module, the protocol module’s
receive-interrupt routine (vpmtrint in the case of the standard VPM protocol module) is called.

This appendix describes each interface function. Dev is an argument to many of the interface
functions and has the same meaning for all but two of them: the low-order four bits of the dev
argument are not used by the interface functions; the next two bits determine the interface
module minor device number; the next two bits determine the KMC minor device. Although
dev is declared as an int, only the low-order eight bits are meaningful at this time. In calls to
the vpmtrace and vpmsnap routines, dev need not be a minor device number because it is just
saved as part of the event record. The definition of dev will not be repeated for each function.

vpmcmd (dev, emd)
int dev;
char scmd;

This function passes a command to the script. Cmd is the address of a four-byte array. The
four bytes are passed to the VPM interpreter, which saves them until the protocol script exe-
cutes a getemd primitive. Only the most recent four bytes passed by a vpmemd call are saved by
the VPM interpreter.

struct vpmbd =vpmdeq (clp)
struct clist =clp;

This function removes the buffer-descriptor pointer at the head of the queue pointed to by clp
and returns it to the caller. If the queue is empty, a null pointer is returned.

vpmemptq (dev, bdp)
int dev;
struct vpmbd =bdp;

This function is used to pass an empty receive buffer for use by the interpreter in the KMC.
Bdp is a pointer to a buffer descriptor or null. If bdp is not a null pointer, the buffer descriptor
is appended to the empty-receive-buffer queue for the interface module specified by dev. If the
VPM interpreter currently has room for another empty receive buffer, the buffer at the head of
the queue is removed and passed to the KMC. The sum of the number of buffers on the
empty-receive-buffer queue and the number of receive buffers the VPM interpreter has in its
queues is returned to the caller. If bdp is a null pointer, the above sum is returned and nothing
else is done.

vpmxmtq (dev, bdp)
int dev;
struct vpmbd =bdp;

This function is used to pass a transmit buffer to the interpreter in the KMC. Bdp is a pointer
to a buffer descriptor or null. If bdp is not a null pointer, the buffer descriptor is appended to
the transmit-buffer queue for the interface module specified by dev. If the VPM interpreter
currently has room for another transmit buffer, the buffer at the head of the queue is removed
and passed to the KMC. The sum of the number of buffers on the transmit-buffer queue and
the number of transmit buffers the VPM interpreter has in its queues is returned to the caller.
If bdp is a null pointer, the above sum is returned and nothing else is done.

8 VPM Release 2.0

vpmenq (bdp, clp)
struct vpmbd sbdp;
struct clist =clp;

If bdp is a null pointer, the number of buffer-descriptor pointers on the clist queue pointed to by
clp is returned. If bdp is not a null pointer, the buffer descriptor pointed to by bdp is appended
to the clist queue pointed to by clp and the number of pointers currently on that queue is passed
as the return value.

char »vpmerrs (dev, n)
int dev, n;

This function is used to read and reset the error counters in the VPM interpreter. The function
passes a GETECMD command to the VPM interpreter and blocks until the interpreter responds;
this command causes the interpreter to copy its error counters to an array in the interface
module and send a completion report to the driver. After the copy operation is completed, a
pointer to the error-count array is passed to the caller as the return value. The second argu-
ment is not currently used.

char svpmrpt (dev)
int dey;

This function is used to receive a script report from the KMC. When the protocol script exe-
cutes a rfnrpt primitive, four bytes of data are passed to the interface module. If a rtnrpr has
been executed by the protocol script since the last call to vpmrpt, a pointer to the four bytes
passed by the most recent rtnrpt primitive is returned; otherwise zero is returned.

vpmsave (type, dev, wordl, word2)
char type, dey;
short wordl, word2;

This function creates an event record with the following structure:

struct {
short c_seqn; /* Sequence number */
char c_type; /* Argument type =/
char c_dev; /* Argument dev #/
short c¢_wordl; /* Argument wordl */
short c¢_word2; /* Argument word2 =/
}

This event record is passed to the trace driver using trsave.

vpmsnap (type, dev, wordl, word2)
char type, dev;
short wordl, word2;

This function is similar to vpmsave. The only difference is that a time stamp (long s_lbok) is
added to the event record after word2. A protocol script may generate a time-stamped event
record by executing the snap primitive.

VPM Release 2.0 9

vpmstart (dev, type, rint)
int dev, type; :
int (=rint)();

This function must be called on the first open of the protocol-module minor device associated
with the interface-module minor device and KMC identified by dev. Type is a number that
identifies the program running in the KMC and must agree with the value specified when the
KMC load module was loaded into the KMC. For VPM interpreters, fype is conventionally 6.
Rint is the name of a protocol-module routine to be called by the interface module when it
needs to return a transmit buffer, a receive buffer, a script report, or an error-termination code.
See the description of vpmitrint in Appendix 2 for an example of such a routine. Vpmstart sends
a RUN command to the VPM interpreter which causes it to begin execution of the protocol
script. If the interface module identified by dev is not configured, ENXIO is returned. If the
module is already running, i.e., vpmstart has been called and vpmstop has not been called, or if
the KMC is not running or was loaded using a different magic number, EACCES is returned. A
return value of zero indicates a normal completion.

vpmstop (dev)
int dev;

This routine is called to halt the execution of the protocol script by the interpreter. The routine
waits until the last transmit buffer has been returned by the protocol seript, or until five seconds
have elapsed, and then sends a HALT command to the VPM interpreter which causes the inter-
preter to stop executing the protocol script. When the interpreter acknowledges the HALT
command, or after five seconds, any transmit or receive buffers still enqueued on the interface
module’s transmit- and empty-buffer queues are returned to the protocol module. This does
not include buffers contained in the interpreter’s queues. Generally, when the protocol script is
halted normally, the interpreter will have one or more empty receive buffers. If the interpreter
or protocol script terminates in error, some transmit buffers may also remain unaccounted for.
The upshot of this is that a protocol module must keep a record of all buffers in use for each
particular minor device, so that these buffers can be returned to the pool of available buffers
when that minor device is closed.

10 VPM Release 2.0

Appendix 2: The VPM Protocol Module

This appendix gives a detailed description of the functions that make up the standard VPM pro-
tocol module. The description may be useful as a guide in writing other VPM protocol
modules. The dev argument to the following routines is declared as an int; however, only the
low-order eight bits are meaningful at this time. The low-order four bits are used to determine
the minor device of the protocol module; the next two bits determine the minor device of the
interface module; the next two bits determine the KMC minor device.

vpmopen (dev, flag)
int dev, flag;

This function opens the protocol-module minor device specified by the low-order four bits of
dev. Flag contains the option bits specified on the open system call. Exclusive or non-exclusive
opens are permitted. If the driver is opened for both reading-and-writing, the open is exclusive,
i.e., no further opens are permitted. If the device is opened for reading only or for writing only,
the open is non-exclusive and subsequent opens for reading only or writing only are permitted.
If this device is not open when this function is called, it obtains a number of non-addressable
system buffers to be used as receive buffers and passes them to the VPM interpreter using the
interface routine vpmemptq. Vpmopen also calls the interface routine vpmstart if the minor dev-
ice was not already open.

vpmclose (dev)
int dev;

This function closes the minor device specified by the low-order four bits of dev. It calls the
interface routine vpmstop, flushes the receive queue for the specified minor device, releases its
buffers, and reinitializes its data structure.

vpmwrite (dev)
int dev;

This function implements the write system call. If the transmit queue is not full, the function
obtains a non-addressable system buffer, copies up to 512 bytes of the user’s write data into it,
and enqueues the buffer on the level 2 transmit queue using the interface function vpmxmug.
These steps are repeated until all of the user’s write data has been copied. If the transmit queue
is full when this function is called or if it becomes full while the function is executing, the cal-
ling process is blocked until there is room in the queue for more transmit buffers.

vpmread (dev)
int dev;

This function implements the read system call. When it is called, the calling process is blocked
until the receive queue is non-empty. As data is received by the VPM interpreter, it is placed
into an empty receive buffer. When the protocol script decides that the data contained in a par-
ticular buffer is valid, it executes a rtnrbuf (BISYNC) or rinrfrm (HDLC) primitive which causes
the buffer descriptor pointer to be passed to the interface modules interrupt routine. The inter-
face module then passes the buffer descriptor pointer to the protocol module by calling the pro-
tocol module’s interrupt routine. The protocol module enqueues the buffer descriptor pointer
on the receive queue and wakes up (unblocks) the reader(s). The number of bytes requested,
or the data in one buffer, whichever is less, is copied to the user process; the number of bytes
copied is passed as the return value. Any bytes remaining in a buffer are used to satisfy subse-
quent read requests. '

VPM Release 2.0 11

vpmioctl (dev, cmd, arg, mode)
int dev, cmd, mode;
char #arg;

This function implements the ioctl system call. Cmd determines the function to be performed
as follows:

VPMCMD — Pass a command to the protocol script. The first four bytes of the array
pointed to by arg are passed to the VPM interpreter which saves them and passes them to
the protocol script the next time it executes a getemd primitive.

VPMERRS — Get and reset the VPM interpreter’s error counters. The eight-byte array con-
taining the VPM interpreter’s error counters is copied to the user array pointed to by arg.
The interpreter’s copy of the error counters is then set to zero.

VPMRPT — Get a report from the protocol script. If the protocol script has executed a
rinrpt primitive since the last time this ifoct/l command was issued, the script report (four
bytes) is copied to the user array pointed to by arg and one is passed as the return value;
otherwise, zero is passed as the returned value.

The mode argument is not used. The values for VPMCMD, VPMERRS, and VPMRPT are
defined in file /usrfinclude/sysfvpm.h.

vpmtrint (dev, code, bdp)
int dev, code;
struct vpmbd *bdp;

The address of this function is passed to the protocol module using the vpmstart function
described in Appendix 1. This routine is called from the interface module to return transmit
buffers, receive buffers, script reports, or error termination codes. It is usually called at inter-
rupt priority and therefore must not sleep or do unnecessary work. Code identifies the purpose
of the call and determines the meaning of bdp as follows:

RRTNXBUF — Bdp is a pointer to the buffer descriptor for a transmit buffer. This call is
made when the protocol script executes a rtnxbuf (BISYNC) or a rtnxfrm (HDLC).

RRTNRBUF — Bdp is a pointer to the buffer descriptor for a receive buffer. This call is
made when the protocol script executes a rtnrbuf (BISYNC) or a rtnrfrm (HDLC).

RRTNEBUF — Bdp is a pointer to the buffer descriptor for an empty receive buffer. This
call is used to return empty receive buffers when the interface module is stopped by calling
vpmstop. :

ERRTERM — Bdp is the error-termination code passed to the interface module by the VPM
interpreter when it halts the protocol script because of an error condition. The meaning of
these error codes is given in the manual entry for vpm(4).

The values for RRTNXBUF, RRTNRBUF, RRTNEBUF, and ERRTERM are defined in file

Jusrfinclude/sysfvpm.h.

12 VPM Release 2.0

Appendix 3: The Trace Driver

The trace driver provides a means by which a user program can receive trace information gen-
erated by the VPM driver, a protocol script, or some other driver. See the manual entry for
trace(4).

A description of each routine of the trace driver follows.

tropen (dev)
int dev;

This function opens the minor device specified by dev exclusively.

trclose (dev)
int dev;

This function closes the minor device specified by dev. It discards any data on the read queue
and initializes the data structure associated with the minor device.

trread (dev)
int dev;

This function implements the read system call; it sleeps until at least one event record is avail-
able on the read queue associated with dev. It then copies records to the user until the user’s
read count is less than the number of bytes in the next event record or until the read queue is
empty. The number of bytes copied is passed as the return value.

trioctl (dev, cmd, arg, mode)
int dev, cmd, arg, mode;

This function implements the ioct! system call. Cmd indicates the operation to be performed.
The driver has one command:

VPMTRCO — Enable a trace channel. In order for data to be saved on the read queue for
minor device dev, the device must be open and the channel to which it is written must be
enabled. This command enables channel arg, which must be in the range 0 to 15. Any
combination of channels may be enabled by repeatedly calling this function with different
values of arg. All channels are disabled when the minér device is closed.

trsave (dev, chno, buf, ct)
char dev, chno, =buf, ct;

If minor device dev of the trace driver is open and channel chno of that minor device is
currently enabled then chno and ct, followed by ¢ bytes starting at address buf, are copied onto
the read queue associated with dev, provided the read queue for that device has room for the
complete event record. If there is not room for the complete event record, the record is dis-
carded.

VPM Release 2.0 13

Appendix 4: The VPM Event Trace

Calls to the interface routine vpmsave have been placed strategically throughout the standard
VPM protocol module (vpmt.c) and the VPM interface module (vpmb.c) to provide an event
trace for debugging new protocol modules and/or protocol scripts. A protocol script may gen-
erate an event record by executing a trace primitive. All such event records are discarded
unless some user program has opened minor device 0 of the trace driver and enabled channel 0
of that minor device. The command vpmtrace(1C) opens this device and enables channel 0,
then reads event records and prints them on the standard output as they are received. Each
kind of event record that is generated by the VPM driver will be described by giving the
vpmsave function call as it appears in vpmt.c or vpmb.c, followed by an example of the line
printed by vpmtrace as a result of this call. Following this, the context of the vpmsave call and
the definition of the parameters passed will be given. The definition of a parameter that
appears in more than one call will not be repeated. The first five calls to vpmsave occur in the
source file vpmt.c; the remaining calls occur in vpmb.c.

vpmsave (‘p’, dev, ec, 0)
243 p 100 15 0

Called if vpmstart returns an error code. The first field of the printed record contain a sequence
number assigned by vpmsave. The remaining four fields contain the four remaining arguments
to vpmsave in the same order as they appear in the call to vpmsave. The first argument to
vpmsave, in this case a ‘p’, identifies the record type. Dev is the minor device number as
defined earlier; ec is the value returned by vpmstart.

vpmsave (‘0’, dev, vp—>>vt_state, 0)
244 0 100 1 0

Called just before the normal return point of vpmopen. The variable, vp—>vi_siate, contains
the state bits for the protocol module. Refer to the source file, vpmt.c, for the definitions of
the state bits.

vpmsave (‘c’, dev, vp—>vt_state, 0)

245 ¢ 100 13 0

Called from vpmclose just before the state bits are initialized.
vpmsave (‘w’, dev, ct, dp)

246 w 100 1000

Called just before putting a buffer-descriptor pointer on the transmit queue in vpmwrite. Cris
the number of bytes in the buffer. When executing on a PDP11, dp is the pointer to the buffer
descriptor; dp is not meaningful when executing on a VAX because pointers are four bytes on a
VAX and the argument corresponding to dp is declared as a short.

vpmsave (‘r’, dev, cnt, dp—>d_bos)
247 r 100 500 500

Called from vpmread just after cnt bytes have been moved to the user’s read buffer. The
parameter dp— >d_bos is the number of bytes remaining in the current receive buffer.

vpmsave (‘s’, dev, vp—>vb_state, 0)
248 s 100 401 O

Called just before the normal return from vpmstart. The parameter vp—>vb_state contains the
state bits for the interface module. For the definitions of the state bits, refer to the source file
vpmb.c.

14 VPM Release 2.0

vpmsave (‘t’, dev, vp—>vb_state, vp—>vb_xbkmc)
249t 100 0 0

Called just before the normal return from vpmstop. The parameter vp—>vb_xbkme is the
number of transmit buffers currently held by the VPM interpreter. It can be non-zero if the
protocol script or interpreter terminates in error.

vpmsave (‘X’, dev, vp—>>vb_xbkmec, 0)
250 X 1001 0

Called from vpmbrint, the interface module’s receive-interrupt routine, each time the VPM
interpreter returns a transmit buffer.

vpmsave (‘R’, dev, vp—=>vb_vrkme, 0)
251 R 10010

Called from vpmbrint each time the VPM interpreter returns a receive buffer. The parameter
vp — >vb_rbkmc contains the number of receive buffers currently held by the interpreter.

fpmsave (‘T?, dev, seld, sel6)
252 T 100 370 21 34

Called from vpmbrint when a trace report is received from the interpreter. This occurs when the
protocol script executes a frace primitive. Sel4 contains the value of the script location counter
(plus two) at the time the trace primitive was executed. By referring to the assembly-language
listing of the protocol script generated by the —/ option of vpmc, the point in the protocol script
at which the trace was executed can be determined. The value of the location counter is two
greater than the location of the trace instruction as shown in the assembly-language listing. Sel6
contains the byte or bytes passed by the trace primitive. Vpmtrace prints these two bytes in
separate fields.

vpmsave (‘E’, dev, seld, sel6)
253 E 244 21

Called from vpmbrint when an error-termination report is received from the interpreter. Seld
contains the script location counter at the time execution of the script was terminated. Sel6
contains the termination code. For an explanation of these codes see the manual entry for

vpm(4).
vpmsave (‘P’, dev, seld, sel6)
254 P 100 2105 1055

Called from vpmbrint when a script report is received from the interpreter. This occurs when
the protocol script executes a rtnrpt primitive. Seld and sel6 contain the four bytes transferred
by this primitive.

vpmsave (‘F’, dev, seld, sel6)
255 F 100 3 0

Called from vpmbrint when an error-count report is received from the interpreter. Sel4 and sel6
do not contain any meaningful data for this event type.

VPM Release 2.0 15

vpmsave (‘S’, dev, seld, sel6)
256 S 100 401 0 '

Called from vpmbrint when a start-up report is received from the intcrﬁretcr. The low-order
eight bits of sel4 contain a parameter defining the maximum number of transmit buffers the
interpreter can accept; the high-order eight bits contain a parameter defining the maximum
number of receive buffers. Sel6 contains the options supported by the interpreter.

vpmsave (‘C’, dev, vp—>>vb_state, bp —>vb_xbkmc)
257 C1001 0

Called from vpmclean just before the data structure associated with dev is initialized.

ypmsave (‘0’, dev, vp—>vb_state, 0)
258 01001 0

Called from vpmok if the interpreter should fail to indicate its sanity by issuing an “I’'m-OK”
report within the prescribed time limit.

16 VPM Release 2.0

Appendix 5: Adding VPM to a UNIX Release 3.0 System

The UNIX Release 3.0 distribution tapes contain VPM Release 2.0. This includes the compiler,
drivers, interpreters, utility commands, protocol scripts, and test programs.

The makefile vpm.mk found in fusr/src/emdfvpm may be used to make and install all VPM com-
mands.

To add the VPM and trace drivers to a UNIX 3.0 system, do the following:
1. Make sure that the following two lines appear in the file /etc/master:

vpm 0 37 206 vpm 0O 0 15 16 5
trace 0 35 206 tr 00 16 4 1

2. Add the following line to the file /usr/src/utsps/cflcfigpa (or its equivalent):
vpm 0 o 0 n
where 7 is the number of minor devices required. The * represents either pdpll or vax,
3. To the same file add the following line for each trace minor device:
trace 0 @ 0 n

where n is the number of minor devices required. Minor device 0 is used by the vpmtrace
command and minor device 1 is used by vpmsnap.

4. If KMCs are being added to the system, add the following line to the same file for each
KMC:

kmecll vector address priority

where vector is the interrupt vector location (octal), address is the device address (octal),
and priority is the bus request level (normally 5).

A special file must be created in /dev for each KMC, VPM, and trace device. To make these
special files, use mknod(1M) as follows:

For KMCs:
/etc/mknod /dev/kmc? ¢ X ?

where X is the major device number of the KMC driver as printed by config —t (see the manual
entry for config(1M)/4/) and ? is the minor device number that must be in the range 0 to 3.

For VPMs:
/etc/mknod /dev/vpm ¢ Y Z

where vpm is a unique device name; Y is the major device number of the VPM driver; and Z is
a decimal or octal number whose binary representation is defined as follows: the low-order four
bits specify one of up to 16 minor devices of the standard VPM protocol module; the next two
bits specify one of up to four VPM interface-module minor devices: the next two bits specify
the minor device number of the KMC to be used for this special file.

For trace devices:

/etc/mknod /dev/trace ¢ Y 0
/etc/mknod /dev/snap ¢ Y 1

where Y.is the major device number of the trace driver.

VPM Release 2.0 17

Hardware Installation and Switch Settings

The KMC11-B microprocessor and DMC11-DA, -FA, or -MD line unit must be installed in adja-
cent slots of a PDP-11 or VAX-11/780 backplane. Care should be taken not to exceed the DC
power capacity of the cabinet in which the items are installed. The microprocessor and line unit
are interconnected by a one-foot ribbon cable. The DMC11-DA or -FA line unit is connected to
a suitable synchronous modem by a DEC-supplied modem cable. If the HDLC interpreter is
used, the modem must be optioned for full-duplex (four-wire) operation; at speeds above 1200
bits per second this will normally require a private line. The DMCI11-DA has an RS-232 inter-
face that is suitable for connection to data sets such as the 208 and 209. The DMC11-FA has a
CCITT V35 interface. The DMC11-MD has an integral 56 KB modem; this unit must be con-
nected by a pair of coaxial cables to another DMC11-MD. The device address and interrupt
vector address switches on the KMC should be set for the selected addresses. The KMC should
also be wired for the selected bus priority (normally 5). All switches and jumpers on the DMC
line unit should be in the normal configuration prescribed by the relevant DEC maintenance
manual, but with one exception: the NO CRC switch (switch S2 in switch pack number 1)
should be in the ON position. The purpose of this switch setting is to inhibit hardware CRC
generation. Hardware CRC generation is not used with the VPM software for this device.

If the KMC is a Revision E, a DEC field change (ECO number NU0O7) is required before it can
be used with the VPM or DZ/KMC software. If the change has already been installed, the capa-
citor that controls the KMC internal clock (capacitor C40, located four IC’s over from the right
edge of the KMC hex board—component side facing you, fingers down) will have a value of
4700 pF.

18 VPM Release 2.0

Appendix 6: Testing VPM

During the course of developing and testing VPM, a number of programs and test procedures
have evolved which may prove useful to those adding VPM to a system or using VPM for the
first time. These programs and procedures will help to check the correct installation and opera-
tion of the hardware and software as well as help a new user of VPM to gain familiarity with the
package. These programs may be found in Jusr/src/emdfvpm/demo and Jusr/srcjemdfvpmscripts.

Decbin

Decbin is a simple KMC program that exercises enough of the KMC memory and instruction set
so that a correct result provides reasonable assurance that the KMC is functioning properly. It
does not exercise the interface between the KMC and the DMCI1 line unit.

To run this test, you must compile file dechin.k in directory fusr/src/emdfvpm/demo. This can be
done as follows:

/lib/epp /usr/src/emd/vpm/demo/decbin.k | kasb

You must then load and run the resulting a.our and then dump the KMC and its registers. The
following sequence of commands will accomplish this:

kasb —d /dev/kmc?
.reset

Joad

.run

.reset

.dump

.regs

The .regs command to kasb will produce a register dump similar to the following:

CST: a0 U0 oD 00 G 020
lur: U= 2000401 0 397377 53
reg: 0326 42 64 0276 0 46
reg: 142 73 321 71 156 61 116 356
io: 311 317.317 377 311 311 371 3771
npr: 0 20 O brg: 356 0 mem: 61

If the value of r5 (the sixth number in line three of the register dump) is not 276, something is
wrong with the KMC hardware or the software used to load and execute programs in it.

Tset

Tset is a C program that opens a particular vpm device (/dev/ypm0) and writes a string of charac-
ters to it. It then reads the same device and compares the string of characters received to the
string sent. If the two strings match, the program prints the string followed by the message “‘It
worked!!!!1.”” This program will work only when a loop-back script such as loop.r has been
loaded into the KMC. To run this test:

1. Compile tset.c:
cc —o tset tset.c
2. Compile loop.r:
vpmc —o loop.o loop.r

3. Load loop.o into the KMC:

/etc/vpmstart /dev/kmc? 6 loop.o

VPM Release 2.0 19

4. If testing the VPM event-tracing capability, execute vpmtrace:
/etc/vpmtrace > t& '
5. Execute tset:
tset
6. Printr:
cat t
Sr

Sr opens /dev/ypm0 and forks to create a send process and a receive process. The send process
reads up to 512 bytes at a time from its standard input and writes them to /dev/ipm0. The
receive process reads /dev/ypm0 and writes the received data to its standard output. This pro-
gram may be used with the protocol script loop.r. The procedure for running sr is similar to
that used with rser. Steps 2, 3, and 4 need not be repeated if the interpreter and vpmtrace are
still running.

To execute sr:
sr < infile > outfile

The send process exits after it has read and transmitted the last data block of the file. The
receive process goes into a loop that sets an alarm and reads /dev/ypm0. If the alarm goes off
before the read completes, the process exits.

Tcemd

Temd.c when used with the protocol script tcmd.r tests several new features of Release 2.0 of
VPM: communications between a user program or a protocol module and the protocol script,
reading and resetting the interpreter’s error counters, and the time-stamped tracing capability.
To execute temd, follow the procedures given for the first test using temd.c and temd.r in place
of tset.c and loop.r. Execute vpmsnap instead of or in addition to vpmtrace.

Lapb.r

Lapb.r is the protocol script for BX.25 Level 2. To install this script in a particular KMC,
proceed as follows:

cp /usr/src/cmd/vpm/scripts/lapb.r .
cp /usr/src/cmd/vpm/scripts/const .
cp /usr/src/cmd/vpm/scripts/tconst .
vpmc —mi hdlc —o lapb.o lapb.r
/etc/vpmstart /dev/kmc? 6 lapb.o

Testing this script requires two KMCs, which may be on different host computers. The KMCs
must be connected by a pair of full-duplex synchronous modems or by a full-duplex synchro-
nous null modem.? Sr should be executed simultaneously on both machines to read and write
the VPM device associated with each KMC. If both KMCs are on the same host machine, it will
be necessary to edit and compile a copy of sr.c so that it opens /devfypml instead of /dev/ypm0.
The original and modified versions of sr can’then be executed simultaneously to exercise the

two KMCs.

2. A suitable null modem is the Avanti 300, which is manufactured by Avanti Communications Corporation,
Newport, RI.

20 VPM Release 2.0

To obtain maximum efficiency from this script, it may be necessary to modify the values of
some of the parameters in the const file. ' The appropriate values for these parameters depend
on the link speed and maximum frame size. Guidelines for adjusting these parameters are
given in [3].

Lapbt.r

This script is identical to lapb.r except for some additional frace statements. It may be tested in
the same manner as /lapb.r. Vpmitrace may be used to display the trace information.

Itr.r

Itr.r is a simplified version of lapb.r. Unlike lapb.r and lapbt.r, this script can be exercised in a
loop-back mode. To run a loop-back test, attach a DEC H-325 test connector to the end of the
modem cable for the DMC11-DA line unit that is connected to the KMC11-B to be used for the
test. Then compile itr.r and load the resulting a.our into the KMC using the procedure
described above for lapb.r, substituting itr for lapb. A loop-back test can then be run using tset
or sr.

January 1981

