i

UNIX
E.9.1

The Implementation of the LP Spooling System
J. R. Kliegman

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

LP is a system of commands that performs diverse spooling functions under the UNIXT operat-
ing system. Because its primary application is off-line printing, this paper focuses mainly on
spooling to line printers. LP allows administrators to customize the system to spool to a collec-
tion of line printers of any type and to group printers into logical classes in order to maximize
the throughput of the devices. Users are provided the capabilities of queuing and canceling
print requests, preventing and allowing queuing to and printing on devices, starting and stop-
ping LP from processing requests, changing the configuration of printers and finding the status
of the LP system. This memo describes the implementation of LP and suggests how it can b

used as a general purpose spooler. :

The remainder of this paper is organized as follows: Section 2 presents an overview of the
features of LP and defines terms that will be used throughout the memo. See [1] for a detailed
description of the role of an LP Administrator. Section 3 tells how to build an LP system. Sec-
tion 4 describes the LP directory structure and file formats. The internals of the LP scheduler
are outlined in Section 5. Section 6 addresses the issue of using LP for general purpose spool-
ing, Section 7 discusses possible extensions to LP and the last section summarizes the features
that separate LP from other spooling systems.

2. OVERVIEW OF LP FEATURES
2.1 Definitions

We will define several terms before presenting a brief summary of LP commands. LP was
designed with the flexibility to meet the needs of users on different UNIX systems. Changes to
LP’s configuration (see below) are performed by the lpadmin(1M) command. (A parenthesized
number immediately following a command name refers to that section of the UNIX User’s
Manual.)

LP makes a distinction between printers and printing devices. A device is a physical peripheral
device or a file and is represented by a full UNIX path name. A printer is a logical name that
represents a device. At different points in time, a printer may be associated with different dev-
ices. A class is a name given to an ordered list of printers. Every class must contain at least
one printer. Each printer may be a member of zero or more classes. A destination is a printer
or a class. One destination may be designated as the system default destination. The Ip(1) com-
mand will direct all output to this destination unless the user specifies otherwise. Output that is
routed to a printer will be printed only by that printer, whereas output directed to a class will be
printed by the first available class member. :

Each invocation of /p creates an output request that consists of the files to be printed and
options from the I[p command line. An interface program which formats requests must be sup-
plied for each printer. The LP scheduler, Ipsched(1M), services requests for all destinations by
routing requests to interface programs to do the printing on devices. An LP configuration for a
system consists of devices, destinations and interface programs.

t UNIX is a trademark of Bell Laboratories.

2 LP Implementation

2.2 Commands
2.2.1 Commands for General Use

Lp(1) is used to request the printing of files. It creates an output request and returns a
request id of the form:

dest —segno

to the user, where segno is a unique sequence number across the entire LP system and dest is
the destination where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as returned by /p or
printer names, in which case the currently printing requests on those printers are canceled.

Disable prevents Ipsched from routing output requests to printers.
Enable (1) allows Ipsched to route output requests to printers.
2.2.2 Commands for LP Administrators

Each LP system must designate a person or persons as LP Administrator to perform the res-
tricted functions listed below. Either the super-user or any user who is logged into UNIX as
“Ip>’ qualifies as an LP Administrator. All LP files and commands are owned by Ip, except for
Ipadmin and Ipsched, which are owned by root. -

Lpadmin(1M) modifies the LP configuration. Many features of this command cannot be used
when Ipsched is running.

Lpsched(1M) routes output requests to interface programs which do the printing on devices.

Lpshut stops Ipsched from running. All printing activity is halted, but the other LP commands
may still be used.

Accept (1M) allows Ip to accept output requests for destinations.
Reject prevents Ip from accepting requests for destinations.

Lpmove moves output requests from one destination to another. Whole destinations may be
moved at once. This command cannot be used when Ipsched is running.

3. BUILDING LP

All LP commands are built from source code that resides in the /usr/src/emd/lp directory
including the make file, lp.mk. All structures and constants that are mentioned below are
defined in the header files lp.h and Ipsched.h in the same directory. Unless some of the
definitions in lp.mk are changed, LP may be installed only by the super-user. Before installing
a new LP system, make sure there is a login called Ip on your system and that the spool direc-
tory, /usr/spool/lp, does not exist. Lp’s login directory may be /usr/spool/lp for convenience.
To install LP, perform the following:

cd /usr/src/cmd/lp
make —f Ip.mk install

This builds all LP commands and creates the directory structure which is described in the next
section. The initial LP configuration produced by the preceding commands consists of no
printers, classes or default destination. LP must be configured by an LP Administrator using
the l[padmin command in order to create a useful spooler.

In addition, add the following code to /etc/rc:

LP Implementation 3

rm —f /usr/spool/lp/SCHEDLOCK
/usr/lib/Ipsched '
echo “‘LP scheduler started’’

This starts the LP scheduler each time that UNIX is restarted.

Several variables in lp.mk may be changed before installing LP to customize the system:
Variable Default Value Meaning
SPOOL Jusr/spool/lp spool directory

ADMIN Ip logname of LP Administrator

GROUP bin group that owns LP commands and data
ADMDIR /usr/lib administrator commands reside here
USRDIR /usr/bin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be
rebuilt from scratch, make sure that Ipsched is not running and perform the following as super-
user:

1. Make copies of any interface programs that are not standard LP software. DO NOT make
these copies underneath the spool directory. The path name for printer p is
/usr/spool/lp/interface/p.

2. rm —fr /usr/spool/lp

3. make —f lp.mk new
This recreates the bare LP configuration described above.

WARNINGS:

1. Some LP commands invoke other LP commands. Moving them after they are built will
cause some commands to fail.

2. The files under the SPOOL directory should be modified only by LP commands.

3. All LP commands require set-user-id permission. If this is removed, the commands will
fail.

4. DIRECTORY STRUCTURE AND FILE FORMATS

The LP directory structure, as depicted in Figure 1, shows all directories and files that are under
the spool directory, /usr/spool/lp. Section numbers in Figure 1 refer to the section numbers
in this memo in which the appropriate file is described. The notation <x> means ‘‘zero or
more files of type x’’.

4.1 FIFO

FIFO is a fifo (named pipe) special file where all commands send messages to [psched. Any of
the LP commands may write to FIFO, but only Ipsched may read it. A subroutine named
enqueue sends a message and its arguments to Ipsched on FIFO. The usage of enqueue is:

enqueue(msg, arglist)
char msg;
char #arglist;

All messages are defined mnemonically in the LP header file, Ip.h. Arglist is a (possibly null)
blank-separated list of arguments associated with the message msg. Enqueue returns non-zero
if Ipsched is running and zero if not. Table 1 lists the legal messages to Ipsched.

4 LP Implementation

File Name Section
spool directory 4.
<lock files> 4.3
<log files> 4.3
FIFO 4.1
class 4.9
<class files>
default 4.2
interface 4.10
<Zinterface programs> :
member 4.11
<member files>
model 4.12
<model programs>
outputq 4.4
pstatus 4.5
gstatus 4.6
request 4.13

<request directories>
<request files>
< data files>
seqfile 4.7

Figure 1. LP Directory Structure

4.2 Default

The default file contains the name of the system default destination terminated with a new-line.
If this file is absent or empty, the system has no default destination.

4.3 Log Files

The log file is a record of /psched errors and printing activity since the time when Ipsched was
last invoked. Oldlog contains the same information from the previous invocation of /psched.

The first (last) line of the log indicates the time that Ipsched was started (stopped). Error mes-
sages have the form:

Ipsched: error-message

For each output request that has printed (or is currently printing) there is a line with the fol-
lowing tab-separated fields: request id, logname of requester, printer which serviced the request
and the date and time when printing began. There is more than one entry in the log for
requests that were restarted after they were partially printed.

4.4 Outputq

The binary file outputq is a queue of output request entries that are made by the /p command
and have the form shown in Figure 2. There is one entry for each pending or partially printed
request in addition to the ‘‘deleted”’ entries for output requests that have been serviced since
Ipsched was last invoked. The requests for each printer are serviced strictly on a first in first out
basis. Outputq entries are marked ‘‘deleted’’ by the cancel, disable and I[psched commands and
may be modified by the Ilpmove, disable and Ipsched commands.

LP Implementation

TABLE 1. Messages Recognized by Ipsched on FIFO

MESSAGE
F_ENABLE pr

F_NOOP
F_DEV pr path
F_STATUS

F_DISABLE pr

F_CANCEL dest seqno
F_NEWLOG

F_REQUEST dest scqnd user

F_QUIT

F_MORE pr
F_ZAP pr

MEANING TO LPSCHED

Printer pr has been enabled. Pending requests (if
any) will be printed on pr.

No-op to check if Ipsched is running.
New device for printer pr is path.

This causes Ipsched to dump internal status to the
log file (see Log Files).

Printer pr has been disabled. If it is busy, print-
ing on pr will stop. If another printer can service
the aborted request, then it will start printing it in
its entirety.

Request id dest—seqno has been canceled. If it
is currently printing, then printing will stop.

This causes Ipsched to create a new log file (see
Log Files). The old log file is renamed oldlog.

Output request id dest—seqno has been made by
user. If there is a printer than can service it, it
will be printed immediately.

This causes /psched to stop running. All printing
is terminated.

Printer pr is ready to print more requests.

Busy printer pr has been disabled and its request
has been canceled.

struct outq {

|5

/* Value interpretation for o_flags: */

char o_dest[DESTMAX +1];

char o_logname[LOGMAX +1];

int o_seqno;
long o_size;
char o_dev[DESTMAX+1];

time_t o_date;
short o_flags;

#define O_DEL 1
#define O_PRINT +2

4.5 Pstatus

The binary file pstatus contains one entry of status information for each printer. Printer status
entries are detailed in Figure 3. Entries are added and removed by the lpadmin command and

/* output queue entry */

/* output destination (class or member) */

/* logname of requester #/

/* sequence # of request »/

/* size of request —— # of bytes of data */

/# if printing, the name of the printer.
Otherwise, "—". %/

/* date of entry into output queue */

/* See below for flag values »/

/* Request deleted */
/* Request now printing */

Figure 2. Outputq Entry

are modified by the cancel, enable, disable and Ipsched commands.

6 LP Implementation

struct pstat { /* printer status entry %/
char p_dest[DESTMAX +1]; /* name of printer x/
int p_pid; /* if busy, process id that is printing, otherwise 0 */
char p_rdest DESTMAX +1]; /* if busy, the destination designated
by the user to Ip, otherwise "—" »/
int p_seqno; /* if busy, seq # of printing request */
time_t p_date; /* date last enabled or disabled %/
char p_reason[P_RSIZE]; /* if enabled, then "enabled", otherwise
the reason the printer has been disabled. */
short p_flags; /* See below for flag values */
L
#define P_ENAB 1 /* printer enabled */
#define P_AUTO 2 /* disable printer automatically */
#define P_BUSY 4 /* printer now printing a request */

Figure 3. Pstatus Entry
4.6 Qstatus

The binary file gstatus contains one entry per destination which tells if the [p command is
accepting requests. Qstatus entries have the form shown in Figure 4 and are added and
removed by the [padmin command and modified by the accept, reject and lpmove commands.

struct gstat { /* queue status entry */
char q_dest[DESTMAX+1]; /* destination =/
short q_accept; /* TRUE iff Ip accepting requests for dest,
otherwise FALSE.*/
time_t q_date; /* date status last modified */
char q_reason[Q_RSIZE]; /* if accepting then "accepting”,

otherwise the reason requests for dest are
being rejected by Ip */
b
Figure 4. Qstatus Entry
4.7 Seqfile

The file seqfile contains the sequence number (terminated by a new-line) of the last request id
that was assigned by the /p command. This number is incremented by Ip for each request.
When it reaches a maximum (defined in Ip.h) it is reset to 1. If this file is missing then Ip will
create a new file containing the number 1.

4.8 Lock Files @

Several lock files are maintained in order to guarantee LP commands exclusive access to data

files. They are binary files which contain the process id of the locking process. A list of lock

files and their associated data files follows:
|
|

Lock File Data File
OUTQLOCK outputq -
PSTATLOCK pstatus %

QSTATLOCK gstatus
SEQLOCK seqfile

LP Implementation 7

Lock files “‘expire’ after a given time interval and may be unlinked by any LP process. Thus,
commands that lock a data file for longer than this interval must update the modification time
on the lock file. The creation, updating and unlinking of lock files is handled automatically by
the LP low level file access routines.

Another lock file, SCHEDLOCK, is present while Ipsched is running to ensure that only one
invocation of Ipsched is active. Unlike other lock files, SCHEDLOCK has no expiration time.

Caution: any processes that need to concurrently lock more than one lock file should lock them
in the following order to avoid deadlock:

OUTQLOCK, PSTATLOCK, QSTATLOCK, SEQLOCK
Failure to release a lock file may also cause deadlock.
4.9 Class

The class directory contains one file per LP class which lists the members of the class, one per
line. The name of the file is the same as the class name. Each class member is an LP printer
and may not be an LP class. Every class must always have at least one member. Class files are
created, modified and deleted by the Ilpadmin command.

4.10 Interface

The interface directory contains one executable program per printer with the same name as the
printer. When Ipsched chooses an output request, dest—seqno, that was requested by user log-
name, to be printed on printer pr, it invokes interface program pr in the following way:

pr dest—seqno logname title copies options file ...

where
copies is the number of copies requested
title is the optional title supplied to /p or null
options is a blank-separated string of options requested by the user to /p or null
file is the full path name of a file to be printed

The interface program is invoked with its standard output and standard error output directed to
the printer’s device. If file access modes permit, the device is opened for reading and writing.
The interface’s standard input is taken from /dev/null. Interface programs may be shell pro-
cedures or compiled C programs. They may be supplied by an LP Administrator or selected
from a set of model interface programs (see Model below). Intcrfacc programs are supplied by
LP Administrators via the [padmin command.

4.11 Member

The member directory contains one file per LP printer with the same name as the printer. The
first line of the file is the full path name of the device associated with the printer. Following
lines (if any) are the names of classes to which the printer belongs. A printer need not belong
to any classes and may belong to more than one. Member files are created, modified and
removed by the lpadmin command. i

4.12 -Model ..

The model directory contains several printer interface programs that are distributed with the LP
system. The names of these files bear no relationship to LP printers and class names. Copies
of these programs may be customized by an LP Administrator to be used as printer interface
programs. No new model interfaces can be added to the system.

8 : LP Implementation

4.13 Request

The request directory contains one directory for each LP destination with the same name as the
destination. Each destination’s request subdirectory holds information pertaining to pending
requests for that destination.

Each request subdirectory contains request files and data files. These files are created by the /p
command to pass information to Ipsched and are deleted by the cancel, disable and Ipsched com-
mands, and may be moved by the /pmove command.

The name of the request file for output request dest—seqno is r—seqno. It has entries of the
form:

flag value

where flag is a single character in column 1, column 2 is blank and an optional value starts in
column 3. Legal flags, as defined mnemonically in Ip.h, are summarized in Table 2. The order
of entries in a request file is the same order that they are listed in Table 2. The R_TITLE,
R_COPIES, R_OPTIONS and one or more R_FILE entries are mandatory.

TABLE 2. Request File Entries
FLAG VALUE
R_TITLE Optional title supplied to Ip or null

R_COPIES Number of copies requested

R_OPTIONS Printer- and Class-dependent options separated by
white space

R_FILE Name of data file to be printed; any file name not
beginning with *‘/”’ is assumed to be in the
request subdirectory along with the request file

R_MAIL Logname of person to send mail to after request
has been printed

R_WRITE Logname of person to write to after request has
been printed

A request file is associated with zero or more data files. Data files for request dest—seqno have
the name dn—seqno, where n is a non-negative integer. These files contain data to be printed.

Examples:

1. $ pr file | Ip
request id is x—50 (standard input)

The directory request/x will contain the request file r—50 and the data file d0—50 which
is a copy of the standard input to /p. File r—350:

R_TITLE
R_COPIES 1
R_OPTIONS
R_FILE d0—50

LP Implementation 9

2 $ Ip —c filel file2
request id is x—51 (2 files)

The —c option causes Ip to copy files before returning to the user. The directory
request/x will contain the request file r—51 and the data files d0—51 (a copy of filel) and
d1—51 (a copy of file2). File r—51:

R_TITLE
R_COPIES 1
R_OPTIONS
R_FILE d0-51
R_FILE d1-51

A $ Ip file
request id is x—52 (1 file)

The directory request/x will contain the request file r—582. If file can be linked to this
directory it will be named d0O—52. In this case, file r—52 contains:

ROTITLE
R_COPIES 1
R_OPTIONS
R_FILE d0—52

On the other hand, if file can’t be linked, no data file is created and file r—52 contains:

R_TITLE
R_COPIES 1
R_OPTIONS
R_FILE fullfile

Fullfile is the full path name of file.

5. LP SCHEDULER INTERNALS
5.1 Overview

The LP scheduler, Ipsched, services requests in the output queue, outputq, first come first
served, invoking the appropriate interface program to print each request. It is the only demon
in the LP system and runs continuously unless it is stopped by the /pshut command or the com-
puter system is stopped. It is present even when there are no pcndmg output requests, in
which case it sleeps awaiting a message on FIFO.

5.2 Interaction With Other LP Commands

Because it would be inefficient for Ipsched to perform file I/O each time it needed to know the
relationships between printers, classes, requests and devices, Ipsched maintains its own struc-
tures which provide this information more easily. This burdens LP commands by requiring
them to inform /psched (on FIFO) of changes to LP data in addition to updating the data files.
The former step is required in order to keep the file structure consistent with Ipsched’s in-
memory data. It is this duplication of mformatwn that allows LP commands to be used even if
Ipsched is not runmng ' /

As an example, let us consider how the [p command works. When a request is made to Ip it
builds the request and data files, locks OUTQLOCK, adds the new request entry to outputq,
writes an F_REQUEST message to Ipsched on FIFO which describes the new request and then
unlocks OUTQLOCK. The time during which OUTQLOCK is locked is a non-interruptible criti-
cal section, so signals are ignored. Most LP commands follow this pattern of:

10 LP Implementation

lock one or more lock files

modify one or more data files

e B o)

send a message to Ipsched on. FIFO ‘
4. unlock the lock files J
5.3 Data Structures

When Ipsched is started it internalizes the information in the LP data files in an in-memory net-
work of circular double-linked lists. Subsequent messages read from FIFO cause this network
to be updated so that the lists are kept consistent with the files. The main component of
Ipsched’s lists is the dest node shown in Figure 5. There is one of these structures for each des-
tination giving its name and type (class or printer). Nodes that are printers also indicate status
(busy or idle, enabled or disabled) as well as information concerning the currently printing

request.

struct dest { /* destination node =/
char #d_dname; /#* name of destination */
int d_status; /* status of destination —— see below #/
char #d_device; /# full path name of device for printer */
int d_pid; /* process id of busy printer »/
struct outlist *d_print; /* output request currently printing */
struct dest *d_dnext; /* next destination */
struct dest #d_dprev; /* previous destination */
struct dest *d_tnext; /* next destination of same type */
struct dest *d_tprev; /* previous destination of same type */
struct destlist *d_class; /* class list for printers, member list for classes */
struct outlist *d_output; /* list of output requests for dest */

i

/* The following flags are used to interpret dest.d_status =/

#define D_PRINTER 1 /* destination is a printer »/
#define D_CLASS 2 /* destination is a class */
#define D_ENABLED 8 /* printer is active */
#define D_BUSY 16 /# printer is busy »/

Figure 5. Destination Node

Three global dest nodes serve as list heads to ease the traversal of the network:
dest links all destinations in the d_dnext and d_dprev fields :
printer links all printers in the d_tnext and d_tprev fields
class links all classes in the d_tnext and d_tprev fields

Each printer node contains a linked list of destinations indicating which classes it belongs to.
Class nodes have lists of the same format showing which printers are members. Destination
lists, as shown in Figure 6, point to dest nodes. :

LP Implementation 11

struct destlist { ‘ /* destination list node */
struct dest #dl_dest; /* pointer to destination */
struct destlist »dl_next; /* pointer to next destination »/
struct destlist #dl_prev; /* pointer to previous destination in list */

Figure 6. Destination List Node

Because output may be directed to classes or printers, every destination has an associated out-
put request list. Each list is ordered according to the time the F_REQUEST messages were
received by Ipsched from Ip. The format of output request lists is shown in Figure 7.

struct outlist { /* output request list node =/
int ol_segno; /* sequence number assigned by Ip #/
char *ol_name; /* logname of requester */ :
int ol_time; - /= time request was received by lpsched */
struct dest *ol_dest; /* pointer to request destination */
struct dest *ol_print; /* if printing, a pointer to the printer =/
struct outlist xol_next; /* next output request in list */
struct outlist *ol_prev; . /* previous output request in list */

A
Figure 7. Output Request List Node

5.4 Printing a Request

Lpsched is ready to print a request when one of the following messages is received and when
one of that message’s associated conditions is met:

Message Conditions
F_REQUEST dest seqno user 1. dest is an enabled, idle printer

2. dest is a class which contains an enabled,
idle printer

F_MORE pr 1. there is a pending request queued for pr
2. there is a pending request queued for a
class which pr belongs to

F_ENABLE pr 1. there is a pending request queued for pr
2. there is a pending request queued for a
class which pr belongs to

F_DISABLE pr pr is busy and the request it is currently print-
ing is queued for a class which contains pr and
a member of that class is enabled and idle

When a request is ready to be printed, Ipsched forks so that its child may do the printing and
the parent can continue scheduling other requests. It is the child that executes the interface
program and waits for its completion. A non-zero exit status indicates that the interface
encountered errors while printing the request. If errors occurred or if the user requested
notification of the completion of ‘the printing, mail is sent or a message is written to the
requester’s terminal. The outputq entry is deleted and the request and data files are removed.
The parent is informed that the printer is ready to print another request via an F_MORE mes-
sage on FIFO and the child exits.

Several processes are concurrently active during the printing of a request. Because UNIX sys-
tems are typically configured to impose limits on the number of concurrently active ‘processes

12 LP Implementation

per user id (except for root) and because most LP programs must be owned by user Ip and
because they require set-user-id permission, the number of printers that LP can support is
affected. Unless the LP system is owned by root (this is not encouraged) there is a limit on the
number of LP printers that may be printing simultancously. The number of active processes
per print request includes the child of the scheduler and the interface program and any of its
children. Model interface programs, for example, are shell procedures that usually have the
form:

commands

(

commands
) | filter
exit

Each request that is printed by a model interface creates two invocations of the shell, an invo-
cation of a device filter and a process to execute a command within the parentheses in addition
to a child of the scheduler. With a limit of 25 active processes per user, for example, an LP
system with an LP administrator other than root would be able to support up to four line
printers using typical model interface programs.

5.5 Cancellation of Requests that are Partially Printed

When a partially printed request is canceled via the cancel or disable command, the process id
found in the pstatus entry is signaled with SIGTERM. This is the process id of the interface
program itself, not the immediate child of the scheduler. It is up to the interface to clean up
and then exit. The child of the scheduler waits for the death of the interface and exits. The
scheduler then waits for the death of its child.

When lpsched is stopped by the Ipshut command or when it is signaled with SIGTERM, it broad-
casts this signal to all of its children, which, in turn, terminate the execution of the interface
programs. Lpsched then removes SCHEDLOCK and exits. When printing is terminated this
way or by disabling a busy printer (without canceling the request), the requests that were
aborted will be reprinted in their entirety.

6. USING LP AS A GENERAL PURPOSE SPOOLER

Although the documentation and commands refer to LP as a line printer spooling system, it
was designed with general purpose spooling in mind. Several features allow LP to be custom-
ized for a variety of spooling applications. The /[p command never makes any assumptions
about the kind of files it is supplied. No pagination is added and no checks are made for non-
ascii input. Thus, Ip can pass command files, nroff/troff input files, binary data files, executable
files, ascii text files, etc. to arbitrary interface programs. Lp also allows users to pass options
from the Ip command line to interface programs using the —o key letter. It is up to the LP
Administrator to supply interface programs to perform the desired functions on input files. The
devices associated with printers need not be line printers. They must be writable by LP and
may be any type of file (even /dev/null). By designing interface programs and by placing new
interpretations on destinations and devices LP can perform many diverse functions.

Example: fant ' e :

Many installations use special purpose software to batch nroff requests so that they can limit the
number of concurrently executing nroff commands. LP can be used for batch processing of this
and other commands that place a heavy load on the system. Each ‘‘printer’’ can be thought of
as a command processor. Input files (built by a front-end interface to Ip) are shell procedures
which contain nroff command lines and environment information. The role of the interface
program is to execute the nroff command in the user’s environment as of the time Jp was
invoked. The output may be directed to a file or a printer designated by the user. The devices
associated with the processors could be log files or line printers. By grouping n of these

LP Implementation 13

processors in a class, users are limited to n concurrent executions of frequently used, heavy
load commands. Furthermore, queuing to these destinations and the running of the command
processors are under the control of the accept, reject, enable and disable commands.

7. EXTENSIONS

It is hoped that any future enhancements to LP will not take away from its generality. It would
have been easy, for instance, to add dozens of printer-specific options to the [p command. This
was not done because LP makes it easy for LP Administrators to add these options in printer
interface programs and for users to take advantage of them by sliding them past [p. On the
other hand, there are enhancements that could make LP even more useful while retaining its
generality.

Lpsched services requests on a first come first served basis. This may be undesirable when
there are a limited number of printers and it is desirable to schedule small print jobs ahead of
larger ones. Care must be taken to avoid penalizing the larger requests too severely. Lpsched
could be enhanced to enforce such a scheduling discipline. User-assigned priorities could be
added to the Ip command in order to affect Ipsched’s scheduling algorithm. Another useful
feature is to allow users to inhibit requests from printing while leaving them queued. Subse-
quently, the held requests could be released or canceled. Another enhancement to LP would
allow different queues to build for the same destination in order to implement the idea of
*“‘peak period’’ or ‘‘overnight’’ queues.

The Ipadmin command requires that Ipsched must not be running before it is going to attempt to
alter the LP configuration. This restriction was imposed to simplify the initial version of
Ipsched. In cases where a configuration is frequently undergoing changes it is a nuisance to
have to shut the scheduler before using Jpadmin. Shutting the scheduler, of course, means that
all printing stops.

The above features were not considered absolutely essential and would have greatly increased
the complexity of the initial version of the package. The author believes that it would not
require a major effort to add these new capabilities to LP. The design would not need to be
radically changed to introduce these enhancements.

8. SUMMARY

To the best of the author’s knowledge, LP is the only centrally supported spooler under UNIX
which offers all of the following features in a single package:

e Printers may be grouped into classes.
e Each printer may belong to several or no classes.
e The spooler may be reconfigured to meet the needs of specific users.

e The spooling function is separated from the printing function. Any device or writable file
may be spooled to by a user-supplied interface program.

e LP can be used for off-line printing as well as for other spooling functions.

RE#ERENCE
[1] Kliegman, J. R. LP Administrator’s Guide, Bell Laboratories.

January 1981

