UNIX
F.1.2

FSCK —The UNIX File System Check Program
[T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

and repair program. Fsck uses the redundant structural information in the UNIX
file system to perform several consistency checks. If an inconsistency is detected,
it is reported to the operator, who may elect to fix or ignore each inconsistency.
These inconsistencies result from the permanent interruption of the file system
updates, which are performed every time a file is modified. Fsck is frequently
able to repair corrupted file systems using procedures based upon the order in
which UNIX honors these file system update requests.

. The UNIXY File System Check Program (fsck) is an interactive file system check

The purpose of this document is to describe the normal updating of the file sys-
tem, to discuss the possible causes of file system corruption, and to present the
corrective actions implemented by fsck. Both the program and the interaction
between the program and the operator are described.

1. INTRODUCTION

O When a UNIX operating system is brought up, a consistency check of the file systems should
always be performed. This precautionary measure helps to insure a reliable environment for
file storage on disk. If an inconsistency is discovered, corrective action must be taken. No |
changes are made to any file system by fsck without prior operator approval.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies. It
first describes the updating of the file system (the calm before the storm) and then describes
file system corruption (the storm). Finally, the set of heuristically sound corrective actions
used by fsck (the Coast Guard to the rescue) is presented.

2. UPDATE OF THE FILE SYSTEM

£l

Every working day hundreds of files are created, modified, and removed. Every time a file is
modified, the UNIX operating system performs a series of file system updates. These updates,

@ when written on disk, yield a consistent file system. To understand what happens in the event
of a permanent interruption in this sequence, it is important to understand the order in which
the update requests were probably being honored. Knowing which pieces of information were
probably written to the file system first, heuristic procedures can be developed to repair a cor-
rupted file system.

There are five types of file system updates. These involve the super-block, inodes, indirect
blocks, data blocks (directories and files), and free-list blocks.

. 2.1 Super-Block

The super-block contains information about the size of the file system, the size of the inode
list, part of the free-block list, the count of free blocks, the count of free inodes, and part of

/ . the free-inode list. |

t UNIX is a trademark of Bell Laboratorics.

_

2 . FSCK

The super-block of a mounted file system (the root file system is always mounted) is written to
the file system whenever the file system is unmounted or a sync command is issued.

2.2 Inodes

An inode contains information about the type of inode (directory, data, or special), the number
of directory entries linked to the inode, the list of blocks claimed by the inode, and the size of
the inode.

An inode is written to the file system upon closure! of the file associated with the inode.
2.3 Indirect Blocks

There are three types of indirect blocks: single-indirect, double-indirect and triple-indirect. A
single-indirect block contains a list of some of the block numbers claimed by an inode. Each
one of the 128 entries in an indirect block is a data-block number. A double-indirect block
contains a list of single-indirect block numbers. A triple-indirect block contains a list of
double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been modified and released?
by the operating system.

2.4 Data Blocks

A data block may contain file information or directory entries. Each directory entry consists of
a file name and an inode number.

Data blocks are written to the file system whenever they have been modified and released by
the operating system.

2.5 First Free-List Block

The super-block contains the first free-list block. The free-list blocks are a list of all blocks that
are not allocated to the super-block, inodes, indirect blocks, or data blocks. Each free-list block
contains a count of the number of entries in this free-list block, a pointer to the next free-list
block, and a partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been modified and released
by the operating system.
3. CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. The most common of thes¢ ways are
improper shutdown procedures and hardware failures.

3.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are not observed, e.g.,
forgetting to sync the system prior to halting the CPU, physu.ally write-protecting a mounted
file system, or taking a mounted file system off-line.

File systems may become further corrupted if proper startup procedures are not observed, e.g.,
not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a
corrupted file system to be used (and, thus, to be modified further) can be disastrous.

1. All in core blocks are also written to the file system upon issue of a sync system call.

2. More precisely, they are queued for eventual writing. Physical I/O is deferred until the buffer is needed by UNIX or
a sync command is issued.

FSCK 3

3.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk
pack, or as blatant as a non-functional disk-controller.

4. DETECTION AND CORRECTION OF CORRUPTION

A quiescent® file system may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant data is either read from
the file system or computed from other known values. A quiescent state is important during
the checking of a file system because of the multi-pass nature of the fsck program.

When an inconsistency is discovered fsck reports the inconsistency for the operator to chose a
corrective action.

Discussed in this section are how to discover inconsistencies and possible corrective actions for
the super-block, the inodes, the indirect blocks, the data blocks containing directory entries,
and the free-list blocks. These corrective actions can be performed interactively by the fsck
command under control of the operator. '

4.1 Super-Block

One of the most common corrupted items is the super-block. The super-block is prone to corr-
uption because every change to the file system’s blocks or inodes modifies the super-block.

The super-block and its associated parts are most often corrupted when the computer is halted
and the last command involving output to the file system was not a sync command.

The super-block can be checked for inconsistencies involving file-system size, inode-list size,
free-block list, free-block count, and the free-inode count.

4.1.1 File-System Size and Inode-List Size. The file-system size must be larger than the number
of blocks used by the super-block and the number of blocks used by the list of inodes. The
number of inodes must be less than 65,535. The file-system size and inode-list size are critical
pieces of information to the fsck program. While there is no way to actually check these sizes,
fsck can check for them being within reasonable bounds. All other checks of the file system
depend on the correctness of these sizes.

4.1.2 Free-Block List. The free-block list starts in the super-block and continues through the
free-list blocks of the file system. Each free-list block can be checked for a list count out of
range, for block numbers out of range, and for blocks already allocated within the file system.
A check is made to see that all the blocks in the file system were found.

The first free-block list is in the super-block. Fsck checks the list count for a value of less than
zero or greater than fifty. It also checks each block number for a value of less than the first
data block in the file system or greater than the last block in the file system. Then it compares
each block number to a list of already allocated blocks. If the free-list block pointer is non-
zero, the next free-list block is read in and the process is repeated.

When all the blocks have been accounted for, a check is made to see if the number of blocks
used by the free-block list plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the free-block list, then fsck may rebuild it, excluding all blocks in the
list of allocated blocks.

3. That is, unmounted and not being written on.

4 FSCK

4.1.3 Free-Block Count. The super-block.contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of blocks it found free within
the file system. If they don’t agree, then fsck may replace the count in the super-block by the
actual free-block count.

4.1.4 Free-Inode Count. The super-block contains a count of the total number of free inodes
within the file system. Fsck compares this count to the number of inodes it found free within
the file system. If they don’t agree, then fsck may replace the count in the super-block by the
actual free-inode count.

4.2 Inodes

An individual inode is not as likely to be corrupted as the super-block. However, because of
the great number of active inodes, there is almost as likely a chance for corruption in the inode
list as in the super-block.

The list of inodes is checked sequentially starting with inode 1 (there is no inode 0) and going
to the last inode in the file system. Each inode can be checked for inconsistencies involving
format and type, link count, duplicate blocks, bad blocks, and inode size.

4.2.1 Format and Type. Each inode contains a mode word. This mode word describes the type
and state of the inode¢. Inodes may be one of four types: regular inode, directory inode, special
block inode, and special character inode. If an inode is not one of these types, then the inode
has an illegal type. Inodes may be found in one of three states: unallocated, allocated, and nei-
ther unallocated nor allocated. This last state indicates an incorrectly formatted inode. An
inode can get in this state if bad data is written into the inode list through, for example, a
hardware failure. The only possible corrective action is for fsck is to clear the inode.

4.2.2 Link Count. Contained in each inode is a count of the total number of directory entries
linked to the inode.

Fisck verifies the link count of each inode by traversing down the total directory structure, start-
ing from the root directory, calculating an actual link count for each inode.

If the stored link count is non-zero and the actual link count is zero, it means that no directory
entry appears for the inode. If the stored and actual link counts are non-zero and unequal, a
directory entry may have been added or removed without the inode being updated.

If the stored link count is non-zero and the actual link count is zero, Jsck may link the discon-
nected file to the lost+found directory. If the stored and actual link counts are non-zero and
unequal, fsck may replace the stored link count by the actual link count.)

&

4.2.3 Duplicate Blocks. Contained in each inode is a list or pointers to lists (indirect blocks) of
all the blocks claimed by the inode.

Fsck compares each block number claimed by an inode to a list of already allocated blocks. If a
block number is already claimed by another inode, the block number is added to a list of dupli-
cate blocks. Otherwise, the list of allocated blocks is updated to include the block number. If
there are any duplicate blocks, fsck will make a partial second pass of the inode list to find the
inode of the duplicated block, because without examining the files associated with these inodes
for correct content, there is not enough information available to decide which inode is cor-
rupted and should be cleared. Most times, the inode with the earliest modify time is incorrect,
and should be cleared.

This condition can occur by using a file system with blocks claimed by both the free-block list
and by other parts of the file system.

If there is a large number of duplicate blocks in an inod:,A this may be due to an indirect block
not being written to the file system.

FSCK b

Fsck will prompt the operator to clear both inodes.

4.2.4 Bad Blocks. Contained in each inode is a list or pointer to lists of all the blocks claimed
by the inode.

Fsck checks each block number claimed by an inode for a value lower than that of the first data
block, or greater than the last block in the file system. If the block number is outside this
range, the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to an indirect block not
being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.5 Size Checks. Each inode contains a thirty-two bit (four-byte) size field. This size indi-
cates the number of characters in the file associated with the inode. This size can be checked
for inconsistencies, e.g., directory sizes that are not a multiple of sixteen characters, or the
number of blocks actually used not matching that indicated by the inode size.

A directory inode within the UNIX file system has the directory bit on in the inode mode word.
The directory size must be a multiple of sixteen because a directory entry contains sixteen bytes
(two bytes for the inode number and fourteen bytes for the file or directory name).

Fsck will warn of such directory misalignment. This is only a warning because not enough
information can be gathered to correct the misalignment.

A rough check of the consistency of the size field of an inode can be performed by computing
from the size field the number of blocks that should be associated with the inode and compar-
ing it to the actual number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode by dividing the number
of characters in a inode by the number of characters per block (512) and rounding up. Fsck
adds one block for each indirect block associated with the inode. If the actual number of blocks
does not match the computed number of blocks, fsck will warn of a possible file-size error.
This is only a warning because UNIX does not fill in blocks in files created in random order.

4.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in indirect blocks directly
affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by another inode and block
numbers outside the range of the file system.

For a discussion of detection and correction of the inconsistencies associated with indirect
blocks, apply iteratively Sections 4.2.3 and 4.2.4 to each level of indirect blocks.

4.4 Data Blocks

The two types of data blocks are plain data blocks and directory data blocks. Plain data blocks
contain the information stored in a file. Directory data blocks contain directory entries. Fsck
does not attempt to chcck thc vahdlty of the contents ofa plam data block

Each dlrcctory data block can bc checked for mconsxstencws mvolvmg dxrcctory modc numbcrs
pointing to unallocated inodes, directory inode numbers greater than the number of inodes in
the file system; incorrect directory inode numbers for *“.”” and *..”’, and directories which are
disconnected from the file system. In addition, the vahdlty of the contents of a dlrcctory s data
block is checked.- o ; ; ;

If a dlrectory entry inode number points to an unallocated mode then fsck may remove that
directory entry. This condition probably occurred because the data blocks containing the direc-
tory entries were modified and written out, while the inode was not yet written out.

6 FSCK

If a directory entry inode number is pointiflg beyond the end of the inode list, fsck may remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for *“.”” should be the first entry in the directory data block.
Its value should be equal to the inode number for the directory data block.

The directory inode number entry for *“..”” should be the second entry in the directory data
block. Its value should be equal to the inode number for the parent of the directory entry (or
the inode number of the directory data block if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them by the correct values.

Fsck checks the general connectivity of the file system. If directories are found not to be linked
into the file system, fsck will link the directory back into the file system in the lost+ found direc-
tory. This condition can be caused by inodes being written to the file system with the
corresponding directory data blocks not being written to the file system.

4.5 Free-List Blocks

Free-list blocks are owned by the super-block. Therefore, inconsistencies in free-list blocks
directly affect the super-block.

Inconsistencies that can be checked are a list count outside of range, block numbers outside of
range, and blocks already associated with the file system.

For a discussion of detection and correction of the inconsistencies associated with free-list
blocks see Section 4.1.2.

ACKNOWLEDGEMENT

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and Rick B.
Brandt for adapting fsck to UNIX.

REFERENCES

[1] Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. The Bell System
Technical Journal 57, 6 (July-August 1978, Part 2), pp. 1905-29.

[2] Dolotta, T. A., Olsson, S. B, and Petruccelli, A. G., eds. UNIX User’s Manual —Release
3.0 (June 1980).

[3] Thompson, K. UNIX Implementation, The Bell System Technical Journal 57, 6 (July-
August 1978, Part 2), pp. 1931-46. >

FSCK 7

APPENDIX: FSCK ERROR CONDITIONS

1. CONVENTIONS

Fsck is a multi-pass file system check program. Each file system pass invokes a different Phase
of the fsck program. After the initial setup, fsck performs successive Phases over each file sys-
tem, checking blocks and sizes, path-names, connectivity, reference counts, and the free-block
list (possibly rebuilding it), and performs some cleanup.

When an inconsistency is detected, fsck reports the error condition to the operator. If a
response is required, fsck prints a prompt message and waits for a response. This appendix
explains the meaning of each error condition, the possible responses, and the related error con-
ditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed under initializa-
tion.

2. INITIALIZATION

Before a file system check can be performed, certain tables have to be set up and certain files
opened. This section concerns itself with the opening of files and the initialization of tables.
This section lists error conditions resulting from command line options, memory requests,
opening of files, status of files, file system size checks, and creation of the scratch file.

C option?

C is not a legal option to fsck; legal options are —y, —n, —s, —S, —t, —r, —q, and —D.
Fsck terminates on this error condition. See the fsck(1M) manual entry for further details.

Bad —t option

The —t option is not followed by a file name. Fsck terminates on this error condition. See the
fsck(1M) manual entry for further details.

Invalid —s argument, defaults assumed :

The —s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck assumes a
default value of 400 blocks-per-cylinder and 9 blocks-to-skip. See the fsck(1M) manual entry

for more details. -
&

Incompatible options: —n and —s

It is not possible to salvage the free-block list without modifying the file system. Fsck ter-
minates on this error condition. See the fsck(1M) manual entry for further details.

3

Can’t fstat standard input

Fsck’s attempt to fstat standard input failed. This should never happen. Fsck terminates on
this error condition. See a guru.

Can’t get memory

Fsck’s request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

8 FSCK

Can’t open checklist file: F

The default file system checklist file F (usually /etc/checklist) can not be opened for reading.
Fsck terminates on this error condition. Check access modes of F.

Can’t stat root

Fsck’s request for statistics about the root directory *‘/*’ failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can’t stat F

Fsck’s request for statistics about the file system F failed. It ignores this file system and contin-
ues checking the next file system given. Check access modes of F.

F is not a block or character device

You have given fsck a regular file name by mistake. It ignores this file system and continues
checking the next file system given. Check file type of F.

Can’t open F

The file system F can not be opened for reading. It ignores this file system and continues
checking the next file system given. Check access modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the file system X, or there
are more than 65,535 inodes in the file system. It ignores this file system and continues check-
ing the next file system given. See Section 4.1.1.

Can’t create F
Fsck’s request to create a scratch file F failed. It ignores this file system and continues checking
the next file system given. Check access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck’s request for moving to a specified block number B in the file system failed. This should
never happen. Sec a guru. <

«

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message ‘“‘Fatal 1/0
error’’.

NO terminate the program.

b v i viin PN A k] WK T RaAae N AMLIATL A

/\\

FSCK 9

CAN NOT READ: BLK B (CONTINUE)

Fsck’s request for reading a specified block number B in the file system failed. This should
never happen. See a guru. !

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message ‘‘Fatal 1/0
error’’.

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck’s request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message ‘‘Fatal 1/O
error’’.

NO terminate the program.

3. PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This section lists error conditions resulting from
checking inode types, setting up the zero-link-count table, examining inode block numbers for
bad or duplicate blocks, checking inode size, and checking inode format.

UNKNOWN FILE TYPE I=I (CLEAR)

The mode word of the inode I indicates that the inode is not a special character inode, special
character inode, regular inode, or directory inode. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLO-
CATED error condition in Phase 2 for each directory entry pointing to this inode.
NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated iﬁodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of
the file system. A second run of fsck should be made to re-check this file system.
If another allocated inode with a zero link count is found, this error condition is
repeated.

NO terminate the program.

10 FSCK

B BAD I=I

Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I has
too many block numbers outside the file system range. This error condition will always invoke
the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.4.

EXCESSIVE BAD BLKS I=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in the
file system associated with inode I. See Section 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

B DUP I=I

Inode I contains block number B which is already claimed by another inode. This error condi-
tion may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode I has too
many block numbers claimed by other inodes. This error condition will always invoke Phase 1b
and the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.3.

EXCESSIVE DUP BLKS I=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See
Section 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more room. Recompile
fsck with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of
the file system. A second run of fsck should be made to re-check this file system.
If another duplicate block is found, this error condition will repeat.

NO terminate the program.

POSSIBLE FILE SIZE ERROR I=I

The inode I size does not match the actual number of blocks used by the inode. This is only a
warning. See Section 4.2.5. If the —q option is used, this message is not printed.

FSCK 11

. DIRECTORY MISALIGNED I=I
The size of a directory inode is not a multiple of the size of a directory entry (usually 16). This
is only a warning. See Section 4.2.5. If the —q option is used, this message is not printed.
PARTIALLY ALLOCATED INODE I=] (CLEAR)
Inode I is neither allocated nor unallocated. See Section 4.2.1.
Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.
. 4. PHASE 1B: RESCAN FOR MORE DUPS §

When a duplicate block is found in the file system, the file system is rescanned to find the
inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

B DUP I=I

Inode I contains block number B which is already claimed by another inode. This error condi-
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condition
in Phase 1. See Section 4.2.3.

§. PHASE 2: CHECK PATH-NAMES

O This phase concerns itself with removing directory entries pointing to error conditioned inodes
from Phase 1 and Phase 1b. This section lists error conditions resulting from root inode mode

and status, directory inode pointers in range, and directory entries pointing to bad inodes.
ROOT INODE UNALLOCATED. TERMINATING.
The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate. See Section 4.2.1. |
ROOT INODE NOT DIRECTORY (FIX) !
The root inode (usually inode number 2) is not directory inode type.. See Section 4.2.1.

Possible responses to the FIX prompt are:

@ YES replace the root inode’s type to be a directory. If the root inode’s data blocks are
not directory blocks, a VERY large number of error conditions will be produced.
NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1. or Phase 1b have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system. See Sections 4.2.3 and 4.2.4.

° Poésible resp’ons"es to the CONTINUE prompt are:

YES . ignore the DUPS/BAD error.condition in the root inode and attempt to continue to
run the file system check. If the root inode is not correct, then this may result in a
large number of other error conditions.

k. NO terminate the program. : |

12 FSCK

I OUT OF RANGE I=I NAME=F (REMOVE)

A directory entry F has an inode number I which is greater than the end of the inode list. See
Section 4.4.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.
UNALLOCATED I=I OWNER=0 MODE=M SIZE=S MTIME=T NAME=F (REMOVE)

A directory entry F has an inode I without allocate mode bits. The owner O, mode M, size S,
modify time T, and file name F are printed. See Section 4.4. If the directory entry is a non-
empty directory, the REMOVE prompt will not appear, because fsck does not permit the remo-
val of non-empty directories. The prompt will appear if the entry is not a directory and is non-
empty. If the file system is not mounted and the —n option was not specified, the entry will be
removed automatically if it is empty, regardless of whether or not it is a directory.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.
DUP/BAD I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry
F, directory inode I. The owner O, mode M, size S, modify time T, and directory name F are
printed. See Sections 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.
DUP/BAD I=1I OWNER=0 MODE=M SIZE=S MTIME=T FILE=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner O, mode M, size S, modify time T, and file name F are printed. See
Sections 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are: P
YES the directory entry F is removed.
NO ignore this error condition.

BAD BLK B IN DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T

A bad block was found in DIR inode I. This error message indicates that the user should, at a
later time, either remove the directory inode if the entire block looks bad, or change (or
remove) those directory entries that look bad. The block is checked to see whether it is a DUP
block; if it is, fsck will print “IT’S A DUP BLOCK -- CLEAR MANUALLY".

N
N\

FSCK 13

6. PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists
error conditions resulting from unreferenced directories, and missing or full lost+found direc-
tories.

UNREF DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of directory inode I are printed.
See Sections 4.4 and 4.2.2. Fsck will force the reconnection of a non-empty directory unless a
bad block was found on that directory in Phase 2.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 3 if there are
problems connecting directory inode I to lost+found. This may also invoke the
CONNECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a directory in lost+found. This will always invoke the UNREF error condition
in Phase 4. Check access modes of lost+found. See fsck(1M) manual entry for further details.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the
file system; fsck ignores the request to link a directory in lost+found. This will always invoke
the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found or make
lost+found larger. See fsck(1M) manual entry for further details.

DIR I=I1 CONNECTED. PARENT WAS I=I12

This is an advisory message indicating a directory inode I1 was successfully connected to the
lost+found directory. The parent inode I2 of the directory inode Il is replaced by the inode
number of the lost+ found directory. See Sections 4.4 and 4.2.2.

14 FSCK

7. PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This
section lists error conditions resulting from unreferenced files, missing or full lost+found direc-
tory, incorrect link counts for files, directories, or special files, unreferenced files and direc-
tories, bad and duplicate blocks in files and directories, and incorrect total free-inode counts.

UNREF FILE I=I OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

Inode I was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode I are printed. See Section 4.2.2. If the —n
option is not set and the file system is not mountcd empty files will not be reconnected and
will be cleared automatically.

Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 4 if there are
problems connecting inode I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a file in lost+found. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the
file system; fsck ignores the request to link a file in lost+found. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of lost+found.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. See
Section 4.2.2.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by
zeroing its contents.
NO ignore this error condition.

LINK COUNT FILE I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD
BE Y (ADJUST) .

The link count for inode I which is a file, is X but should be Y. The owner O, mode M, size
S, and modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.
NO ignore this error condition.

FSCK 15

LINK COUNT DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD
BE Y (ADJUST)

The link count for inode I which is a directory, is X but should be Y; The owner O, mode M,
size S, and modify time T of directory inode I are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:
YES replace the link count of directory inode I with Y.
NO ignore this error condition.

LlNK COUNT F I=1 OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE
Y (ADJUST)

The link count for F inode I is X but should be Y. The name F, owner O, mode M, size S,
and modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of inode I with Y.
NO ignore this error condition.

UNREF FILE I=1 OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a file, was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of inode I are printed. See Sec-
tions 4.2.2 and 4.4. If the —n option is not set and the file system is not mounted, empty files
will be cleared automatically.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

UNREF DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a directory, was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of inode I are printed. See Sec-
tions 4.2.2 and 4.4. If the —n option is not set and the file system is not mounted, empty
directories will be cleared automatically. Non-empty directories will not be cleared.

Possible responses to the CLEAR prompt are: G

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

BAD/DUP FILE I=I OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with file inode I. The
owner O, mode M, size S, and modify time T of inode I are printed. See Sections 4.23 and
4 2 4

Possnble responses to the CLEAR prompt are:’

. 3 A S
ki ¢

"YES ': de-allocate inode I by zeroing its contents.
NO 1gnore this error condition.

16 FSCK

BAD/DUP DIR I=1 OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory inode
I. The owner O, mode M, size S, and modify time T of inode I are printed. See Sections
4.2.3 and 4.2.4.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the super-block of the file sys-
tem. See Section 4.1.4. If the —q option is specified, the count will be fixed automatically in
the super-block.

Possible responses to the FIX prompt are:
YES replace the count in the super-block by the actual count.
NO ignore this error condition.
8. PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This section lists error conditions resulting
from bad blocks in the free-block list, bad free-blocks count, duplicate blocks in the free-block
list, unused blocks from the file system not in the free-block list, and the total free-block count
incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks with a value
less than the first data block in the file system or greater than the last block in the file system.
See Sections 4.1.2 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of fsck. This error
condition will always invoke the BAD BLKS IN FREE LIST error condition in Phase
5

NO terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks claimed by
inodes or earlier parts of the free-block list. See Sections 4.1.2 and 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of fsck. This error
condition will always invoke the DUP BLKS IN FREE LIST error condition in Phase
3.

NO terminate the program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less than zero. This error con-
dition will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

FSCK 17

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first data block in the file
system or greater than the last block in the file system. This error condition will always invoke

the BAD FREE LIST condition in Phase 5. See Sections 4.1.2 and 4.2.4.

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found in the free-block
list. This error condition will always invoke the BAD FREE LIST condition in Phase 5. See
Sections 4.1.2 and 4.2.3.

X BLK(S) MISSING :

X blocks unused by the file system were not found in the free-block list. This error condition
will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the super-block of the file system.
See Section 4.1.3.

Possible responses to the FIX prompt are:
YES replace the count in the super-block by the actual count.
NO ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the free-block list, or
blocks missing from the file system. See Sections 4.1.2, 4.2.3, and 4.2.4. If the —q option is
specified, the free-block list will be salvaged automatically.

Possible responses to the SALVAGE prompt are:

YES replace the actual free-block list with a new free-block list. The new free-block list
will be ordered to reduce time spent by the disk waiting for the disk to rotate into
position.

NO ignore this error condition.

18 FSCK

9, PHASE 6: SALVAGE FREE LIST
This phase concerns itself with the free-block list reconstruction. This section lists error condi-
tions resulting from the blocks-to-skip and blocks-per-cylinder values.
Default free-block list spacing assumed
This is an advisory message indicating the blocks-to-skip is greater than the blocks-per-cylinder,
the blocks-to-skip is less than one, the blocks-per-cylinder is less than one, or the blocks-per-
cylinder is greater than 500. The default values of 9 blocks-to-skip and 400 blocks-per-cylinder
are used. See the fsck(1M) manual entry for further details.

10. CLEANUP

Once a file system has been checked, a few cleanup functions are performed. This section lists
advisory messages about the file system and modify status of the file system.
X files Y blocks Z free
This is an advisory message indicating that the file system checked contained X files using Y
blocks leaving Z blocks free in the file system.
ssess BOOT UNIX (NO SYNC!) ##sss

This is an advisory message indicating that a mounted file system or the root file system has
been modified by fsck. If UNIX is not rebooted immediately, the work done by fsck may be
undone by the in-core copies of tables UNIX keeps.

*s22+ FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current file system was modified by fsck. If this
file system is mounted or is the current root file system, fsck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by fsck may be undone by the
in-core copies of tables UNIX keeps.

FSCK 19

i
INDEX OF MESSAGES
((Alphabetically within each section)
i
INITIALIZATION
Bad ctoplion” 0 oo e i e e e e 7
Coption]. 0 ns L e ie e e D e S R G R L 7
CANNOFT READ BEK B ICOMSPINUEEY - o e n ol g e lie b el oo il e S iR Tl il ot 9
CAN NOT SEEK: BLK B (CONTINUE) e e s e R e 8
CAN'NOTWRITE: BEKBICONTINUE) . o o e e e s i s, el 9
@ fanitcraate l oo R Rl e L e R s s e S D e e 8
Can tfstat spdard anput -« o et s ate e Sl i Bl et L el e e s i e e 3
CANTESERMTEINOR - o e D S e e e e R O IR S e 7
Cant opeh checkhist flerB 000, Lo s i i Sl L e s S 8
antepen s 0 o oeeone Rl i e e I D S e AR G D s R T 8
Canibguat 0 o o0 LD Lot e b S R ST e e R e S el 8
Cantaiatannl v oo e s e G o Dl e U e i R e e i e e 8
iz not ablock orehupmoterdivies: 0« o000 DR e R e S L G SR e R 8
Incoampatibie options: ——nand =8 00 o T D i L RGeS s e BRSO i ',
Invalid ==s arpument. defaulis atsumed ooue vl GRS e e L S 7
Srze eheck dsize Xpgize Y ol o v Ll e mn s it D DG it i S s el st g HER Sl et S 8 i
PHASE 1: CHECK BLOCKS AND SIZES !
BoBAD e 2 oiat s e S BN e e e e e e s e S 10
BDUP =] o e e e S e e i e LB e el LGl s 10
DIRECTORY MIBALIGNER sy o0 0 -0 i i i iy e e S i 11
a BLP-TABLE OVERELOW (CONSTNIEY =t o ool et il o SodaslE s nil o i Ll sl i s e 10
EXCESSIVE RAD BIKS T (CONTINUIBY -z aaic an ol s b il B e s e i s e 10
EXCESSIVE DUPBLES T=F(CONTUNTLIE) = 0 a0y g ea e St Sle il s cn g W et s 10
LINK COUINT TABLE OVERFIOW (CONEBINUE) - . 00 el s el L e e D st on Sl B 5 9 |
PARTIALLY ALLOCATED INODE s (CLEAR) © . . 0 0, s s el sl e e el 11
POESIBIE FILERIZE ERBOR Il . o000 o0 by it s S0 Sal s S et el gl s e i ol 10
ERENOWN PHE TYPRImI TR . 0 oo S e T 9
PHASE 1B: RESCAN FOR MORE DUPS
BEPUP Pl 0 o0 sl Dl el S e e e e e s e L s e e T o L 11
PHASE 2: CHECK PATH-NAMES .
BAD BLK B IN DIR I=1 OWNER=0 MODE=M SIZE=S8 MTIME=T et o e 12
DUP/BAD I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE) 12
DUP/BAD I=1 OWNER=0 MODE=M SIZE=S MTIME=T FILE=F (REMOVE) 12
DUPS/BAD INEOOT INODE (CONTINUEY. . 0 e i Donel oo s i i sl s 11
TOUT-OF RANGE =] NAMEmE (REMOVE) - .. 00 gt el e bl o0 s sl sl e 0 og 12
ROOT INODE NOT DIRECTORY (FIX) o0 oo ai i, e G i ol e gl i e o el s s 11
ROOT INODE UNATLOCATED. TERMINATING o 00 s 0o el gl i is it s ol s 11
UNALLOCATED I=1 OWNER=0 MODE=M SIZE=S MTIME=T NAME=F (REMOVE), 12
PHASE 3: CHECK CONNECTIVITY ;
DIR T=11.CONNECTED: PARENT WAS [sl2c . 0oi onin s itan, i, 0 it o D it il e et 13
SORRY NOSPACE INlost tTound DIRECTORY /"0 oo i i D b s i 0 D 13
e SHERY Bb MGl BBECRORY . e s R 13
UNREF DIR =1 OWNER=0 MODE=M SIZE=$ MTIME=T (RECONNECT) 13

® el &

20 FSCK

PHASE 4: CHECK REFERENCE COUNTS

BAD/DUP DIR 1=I OWNER =0 MODE=M SIZE=S MTIME=T (CLEAR) . . S S R S 16
BAD/DUP FILE I=I OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR) 15
TR s e e e el B L B D R v e e 14
FREE INODE COUNT WRONG INSUPERBLK (FIX)0 0 v v vttt vt i e 16
LINK COUNT DIR I=I OWNER =0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y (ADJUST) . . 15
LINK COUNT FILE I=I OWNER=0 MODE=M SIZE=~S MTIME=T COUNT=X SHOULD BE Y (ADJUST) . 14
LINK COUNT F I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT~X SHOULD BE Y (ADJUST) . . . 15
SORRY. NOSPACE IN lost-+Hound DIRECTORY v ¢« o o s o s o o 0 v s o o s o o o un s v 14
SORRY NO Iat+faund DIRECTORY . . ol it o s Ll S aist 00 ot e e el e ta e 14
UNREF DIR I=1 OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR) 15
UNREF FILE I=I OWNER=0 MODE=M SIZE=S MTIME~T (CLEAR) 15
UNREF FILE I=1 OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT) 14
PHASE 5: CHECK FREE LIST

BAD FREELISTSALVAGE) . . 5 S0 bisanindio nrnll Caiana i aieambo b s b e flind asie 17
BADFREEBLE COVINT .. i i i i s e i e ety o 1 Jubi s e e SR HE miscprtar ool b e e dicle 16
EXCESSIVE BAD BLKSIN FREE LIST (CONTINUE)+« 4t bt v v o o v m o n oo s an 16
EXCESSIVE DUPBLKSIN FREELIST(CONTINUE)« sttt v v v v v o v o0 s o s a0 16
FREE BLK COUNT WRONG INSUPERBLOCK (FIX) v 0 v v v v v vt e e it e a e 17
RBADBIESINEREELIST . . » 0 o ot e e s a e L R Sl e 17
XBEEREMISSING 0 oo i e i s e e S L D e e 17
EDUEBRSINEFREELIST 0.0 o o a e i o s i i teia v et e b alin T o LRGSR 17
PHASE 6: SALVAGE FREE LIST

Dcfault free-block list spacingassumed 0oL oLl Ll e e e 18
CLEANUP

saeen BOOT UNIX (NOSYNCIH®SEE - . . ol o0 e e e i el s il e o 18
sy 1] ESYSTEM WAS MODIFIED ™% - . L e dniiena i lile i Sl aiie 5 L Wiinee oo 18
Yflen ¥llooks Zfeee 0 e aani B U L e S TR b SRR S e 18

January 1981

