@

- UNIX
F.3.1

A Stand-Alone Input/Output Library
S. R. Eisen

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
1.1 Motivation

Most stand-alone programs that are supported under UNIXT conform to no input-output stan-
dard. They implement their own I/O routines and their own nomenclature for accessing data
stored on I/O devices. This library was written with the objective of creating a set of functions
that would be used to simulate standard C library functions [1] for a program that is loaded
stand-alone into a Digital Equipment Corporation 11-family computer.

1.2 Environment

1.2.1 Compilation and Execution. Normally, a stand-alone program is written in C, using stan-
dard library functions found in Sections 2 and 3 of [1]. The program is compiled and the object
file is link-edited with the stand-alone library instead of the standard UNIX C library. The
resulting single object file is loaded by using either the command interpreter that is described in
Section 6.2.1 (denoted below by {6.2.1}), or any other standard UNIX bootstrap program.

1.2.2 System Functions. All required services that are usually performed by the operating sys-
tem, such as input/output, are taken care of by the functions loaded from the stand-alone
library. Thus 1/O drivers are included in stand-alone executables without any additional work
on the part of the user.

Functions such as fork, pipe, and exec, that would simulate system calls that make no
sense outside of an operating system environment are excluded from the stand-alone library,
even to the extent of signifying an error condition. The complete list of excluded functions
may be found in {4.3}. Of the routines that were substituted for UNIX system calls, all take the
same arguments and return the same values as their UNIX counterparts, except as noted in
{4.1-4.2}. These functions set the external variable errno when an error occurs, so that the C
library routine perror may be used by stand-alone programs.

The user may call any global functions in the library, including those that would normally be
found in an operating system proper, but would not be available to the user in an operating sys-
tem environment. All such routines, however, have been ‘‘disguised’’ by prefacing their
names with the underscore character.

1.2.3 User Interface. UNIX-like file names need not be used, although their use is encouraged.
All user functions that require file names, such as MKNOD {2.1.2}, mount {2.1.3}, and open
{2.1.4} first pass their file-name arguments through a filter that converts them to a standard
form: each element of the path name is separated by a single slash, with a leading slash used
only if the file name is non-null.

From the point of view of the user-level program, the environment that is created by the
stand-alone library is close enough to a UNIX environment that a large class of UNIX programs
may be compiled for stand-alone execution with little or no revision. Another class of programs that
includes boot programs and other programs that need to be relocated can also be written using
the stand-alone I/O library. Specific instructions for compiling and executing programs using
the library may be found in {6}.

t UNIX is a trademark of Bell Laboratories.

2 Stand-Alone I/O Library

2. I/O PHILOSOPHY

The stand-alone I/O library was designed to provide an environment that is as close to UNIX as
possible, while maintaining the generality necessary for the composition of bootstrap programs,
disk formatters, and the like. Disk I/O drivers have the capability of handling UNIX file sys-
tems, but retain the generality necessary to manipulate disks with other data on them. Because
UNIX accesses 1/0 devices through the file system, and there is no guarantee that a file system
(UNIX or otherwise) exists, access to I/0 devices must be handled in a special way.

2.1 Block I/O Data Structures

2.1.1 The Configuration Table. All 1/O routines operate without interrupt processing; also, the
stand-alone implementation of file descriptors differs from the UNIX implementation. The
open, close, and strategy (read and write) routines for devices therefore do not strictly resemble
the corresponding UNIX routines. The method used to access these routines, however, is very
similar; it employs a configuration table that has the form:

struct devsw {

int (#dv_strategy) ();
int (#dv_open) ();
int (#dv_close) ();

(7

The position of ‘a certain device within the devsw table is the device number for that type of
device. The notion of a device number is analogous to the notion of a major number for a
UNIX device.

2.1.2 The Device Table. Each family of devices is associated with UNIX-type names by use of a
second structure:

struct dtab {

char #dt name;
struct devsw #dt_devp;
int dt unit;
daddr _t dt_boff;

)y

The dtab structure associates a device name with a pointer to the devsw structure for that
type of device, the unit number of the physical device, and the block offset within the unit at
which the logical device should start. The name, in fact, can be any string; by convention,
however, a UNIX-type file name, such as /devfrk! or /dev/mi4, is used.

Entries in this table are created by using the MKNOD function. Note that although the function
of the MKNOD routine is similar to the that of the UNIX mknod routine, the arguments passed
to each routine are not at all alike. MKNOD is called using the following synopsis:

MKNOD (name, devno, unit, boff)
char =name;

int devno, unit;

daddr _t boff;

MKNOD associates name with the logical device beginning bof £ blocks into the given unit of
the device whose device number is devno. The value —1 is returned if an illegal argument is
passed, the dtab table is full, or the given name already exists in the table.

2.1.3 The Mount Table. For mounted file systems, there is yet another structure:

struct mtab {
char +mt_name;
struct dtab #*mt_dp;

Stand-Alone I/O Library 3

The mtab structure associates a name with a pointer to the dtab structure for a device on
which a UNIX file system resides. References to the name will refer to the root file on that
device. Entries in this table are created by using the mount function. The following synopsis
applies: :
mount (devname, mntname)
char sdevname, *mntname;

Mount announces that a file system has been mounted on devname, and that its mounted
name will henceforth be mntname. Devname must be a valid entry in the dtab table, and
mntname must not exist in the mtab table. If either of these conditions is not met, or if
there are no more empty slots in the table, mount returns the value —1.

A mount table entry may be deleted by the umount function, whose synopsis is the same as
the corresponding UNIX routine.

2.1.4 The I/O Block. Each open file is associated with a numerical file descriptor. At the start
of program execution, the file descriptors numbered 0, 1 and 2 are each open for reading and
writing to the system console, and all other file descriptors are closed (not assigned). File
descriptors greater than 2 are available to be assigned to either block devices or UNIX files that
reside on mounted file systems by using the open function described below.

Each block file descriptor is associated with a structure of the following form:

struct iob |

char i flgs;
struct inode i _ino;
time t i atime;
time t i mtime;
time t i ctime;
struct dtab *i_dp;
off ¢ i offset;
daddr_t 1 .bns
char #i maj;
int i_ccj
char i bufl(5121;

i

The I/0 block contains a data buffer and a block number counter for the device whose dtab
structure is pointed to by the I/O block. For open UNIX files, the offset within the file and a
copy of the inode are included in the 1/O block. For open block devices, the inode structure is
only partially filled in.

A file descriptor is allocated and an entry is created in the I/O block by the open function.
The synopsis of the stand-alone open function is identical with that of its UNIX counterpart.

Open searches the dtab table for the given string, and if it is not found, the mtab table is
searched for the longest path name starting at the beginning of the given string. For example,
if open is passed the argument /ab/cd/ef/gh, it will first look for the argument itself in
both the dtab and mtab tables, then search for /ab/cd/ef in the mtab table, then
/ab/ed, and so on.

If the string is found in the dtab table, then the named device will be opened for the

. appropriate operation. If the string or one of its substrings is found in the mtab table, the dev-

ice pointed to by the mtab table entry is searched for the remainder of the path name. If
found, the file is opened. :

At present, files on mounted file systems may only be opened for reading. The reason for this
has to do with memory size requirements for a writing capability, the amount of time it would
take to implement this capability, and the danger of corrupting file systems unnecessarily. It is
likely that the capability of writing files will be included at some time in the future.

4 Stand-Alone I/O Library

The creat (name, mode) function is identical to open (name, 1). The mode argument
is ignored.

The close function deallocates the I/0 block associated with the named file descriptor.

2.1.5 Summary. The following list contains the definitions of all of the data structures dis-
cussed in this section, as they appear in the stand-alone library source code:

struct devsw _devswl];
struct dtab _dtab[NDEv];
struet mtab _mtab[NMOUNTI;
struct iob _iobuf [NFILES];

These structures and the corresponding table sizes are all defined in the file
/usr/include/stand.h.

2.2 Reading and Writing

The read and write functions are the most primitive I/O routines normally available to the
user. The file descriptor argument may refer to either the system console or a block device.

3. I/O DEVICES AND DRIVERS

As was mentioned earlier, file descriptors 0, 1, and 2 all refer to the system console device.
The console is the only character device supported. A spectrum of block devices may be
defined in the device table by the MKNOD function.

3.1 The System Console Driver

The driver for the console terminal is a modified, scaled-down version of the UNIX #y driver.
Input lines may be up to 255 characters long and there is no read-ahead (i.e., input will not be
accepted until the program calls for it). The driver supports programmable options and erase
and kill characters. End of file may be generated in “‘cooked’’ mode by typing CTRL-D.

The stty and gtty functions are implemented and refer to a structure identical with that
which is used by UNIX. The only options that have any effect are RAW, CRMOD, XTABS,
ECHO, and LCASE. Initially, the erase and kill characters are the standard UNIX # and @,
respectively, and the options set are CRMOD, XTABS, and ECHO.

The isatty function returns true if the file descriptor argument is in the range 0 to 2.

If, while output is being printed on the console, the ASCII DEL character is typed, a subroutine
call to the _exit function is immediately effected.

The actual input and output are performed by the functions in the following table:

System Console Driver Routines
Synopsis Description
_ttread (buf, n) Reads n characters from the console into the
char #buf; area pointed to by buf.
intn;
| ttwrite (buf, n) Prints n characters on the console from the
char sbuf; : area pointed to by buf.
int n;

The external buffer _ttstat contains the current copy of the structure referred to by stty
and gtty. Its synopsis is: :

include <stand.h>
struct sgttyb _ttstat]

Stand-Alone 1/O Library 5

3.2 Block Device Drivers

Block input and output are performed in the stand-alone library in the same manner as physical
1/0 is handled under UNIX; that is, only raw devices are supported.

A particular I/O driver routine is looked up in the devsw table and called by one of the follow-
ing:
_devopen (io) _devclose (io) _devread (io) _devwrite (io)
struct iob «io; struct iob #*ioj; struct iob *io; struct iob #*io;

The external integer variable _devcnt contains the number of devices in the devsw table.

3.2.1 Disk Drivers. The stand-alone library supports the following disk devices and their
equivalents:

RP04/05/06 and RMO5(gd) RP11/RPO3(rp) RK11/RKOS5(rk)

Disk device drivers can support file systems that do not start at the beginning of the physical
unit. Such file systems are defined by using the MKNOD function {2.1.2}.

The physical I/O operation for disks causes reads and writes to always be started at the begin-
ning of the physical block in which the offset designated in the 1/0 block {2.1.4} falls. Also, 1/0
operations that reference a disk address outside of the bounds of either a logical or physical disk
will not cause an error to occur.

The synopsis of each of the disk driver functions has the form:

_devstrategy (io, func)
struct iob #io;
int func;

where dev may be gd, rp, or rk.

3.2.2 Tape Drivers. The stand-alone library supports the following magnetic tape devices and
their equivalents:

TM11/TU10(zm) TU16(ht)

For both the tm and ht drivers, logical units 0 through 7 refer to four 800 bpi magnetic tape
transports. For the ht driver only, logical units 8 through 15 refer to the corresponding 1600
bpi magnetic tape transports. In each block of eight logical units, the first four units are desig-
nated normal-rewind on close, and the other four are no-rewind on close.

Lseek is ineffective for tapes. Each read or write function call reads or writes the next
record on the tape. The dt_boff entry in the device table is ignored for magnetic tape dev-
ices.

The synopses of the tape driver functions have the following forms:

_devopen (io) _develose (io) _devstrategy (io, func)
struct iob «io; struct iob #*io; struct iob =xio;
int func:

where dev may be either ht or tm.

4. NON-1/O RQUTINES
4.1 Revisions

Several of the system calls that are not required for I/0, but would, however, be useful in a
stand-alone environment are included in the library. The operation of some of these functions
may differ slightly from the UNIX implementations. These functions, together with the 1/0
functions described above, form a firm enough basis that the remainder of the C library may be
used without modification.

6 Stand-Alone 1/O Library

4.1.1 Stat and Fstat. The stat and fstat functions require the use of an I/O block. In
order to execute either one of these functions, the file on which it is operating must be open
because the information needed is copied out of the 1/O block. For fstat, the file is already
open, but when the stat function is used, first the file is opened, £stat is called, and then
the file is closed again before returning. Thus, if all I/O blocks are occupied (the maximum
number of files are open), stat will return an error.

If the argument to stat or £stat refers to a file that resides on a mounted file system, then
the inode is copied verbatim and the routines are completely compatible with the UNIX ver-
sions. If the argument refers to a device, the buffer is filled with a reasonable approximation of
what may be expected.

4.1.2 Access. The access function also requires an open file. If the open succeeds, and
either the file is a device or the mode of the file matches the specified mode argument, the
value 0 is returned; otherwise, the value —1 is returned. In any case, the 1/0 block is freed by
closing the file before returning.

4.1.3 Time. Because the real-time clock is not supported, the best that can be done is for the
time function to return the value that was set by the last call of the stime function. If
stime has not been called, time returns the value 0.

4.1.4 Break. The brk and sbrk functions may be used as they are in UNIX. Because
memory management is not used, there is no way of detecting if the upward-expanding allo-
cated memory has collided with the downward-expanding stack. The return is therefore always
successful, even if the memory allocation request was too large.

4.1.5 Ustat. The ustat function takes as its first argument the offset of the device within the
dtab table. This value is returned by stat and f£stat, when given a device argument, in
the st_dev and st_rdev buffer entries {4.1.1}. The stand-alone ustat returns the same
information as the UNIX version.

4.1.6 Chdir. The global character pointer _cdir is set to the given string, which is prefixed to
all file names not beginning with a slash. The string need not be a valid directory name, so
chdir always returns successfully.

4.1.7 Lseek and Tell. There are no differences between the execution of these stand-alone
functions and the operation of the corresponding UNIX routines.

4.1.8 Exit. The functions exit and _exit have the same meanings as they do in UNIX.
The _exit function will attempt to return to the bootstrap program directly, and the exit
function will call the _cleanup function first. The user may define his own _cleanup
function or use the standard _cleanup that would be loaded from the library.

4.2 Null Functions

Several functions are included in the stand-alone library that only return zero or error values.
These functions were included in the library to resolve external references in some C library
functions. The functions that return a value of 0 are:

getgid getegid getuid geteuid nice umask
The chmod function returns an error.
4.3 Deletions

The following is a complete list of those C library modules that have not been included in the
stand-alone library:

Stand-Alone I/O Library 1

acct.o execvp.o maus.o sema.o sync.o
alarm.o fentl.o mktemp.o setgid.o syscall.o
Cerror.o fork.o msg.o setpgrp.o system.o
chown.o fp.o oldmsg.o setuid.o tempfile.o
chroot.o getpass.o pause.o signal.o times.o
dup.o getpid.o pipe.o sleep.o ulimit.o
execl.o getppid.o plock.o smclose.o uname.o
execle.o ioctl.o popen,o smfree.o unlink.o
execv.o kill.o profil.o smget.o utime.o
execve,o link.o ptrace.o Smopen.o wait.o

Several of these functions may, indeed, be faked rather than excluded; it is likely that the size
of this list will be decreased in the future.

5. UTILITY FUNCTIONS

The functions described in this section do not have equivalent functions implemented in the C
library.

5.1 User Functions
The following routines are included in the stand-alone library for the convenience of the user.

5.1.1 Getargv. The user has the option of having his stand-alone program invoked by a com-
mand interpreter program {6.2.1}, or by another standard UNIX bootstrap program. When a
stand-alone program is not invoked by the command interpreter program, there can be no argu-
ments specified on a command line and, consequently, no arge, argv, or environment are
available to be passed to the program. In this case, the start-up code loads a value of 1 into
argc, a null string into argv[01, and a pointer to a null environment list into envp.

The getargv functions allows the program to pick up arguments after execution of the main
routine has begun. The synopsis is:

getargv (cmd, argvp, ff)

char *cmd, *(#argvpll);

FAt £
A prompt and the cmd argument are printed on the console and one line is read from the con-
sole. The space and tab characters are considered to be delimiters, and the single quote and
double quote characters are properly understood. The arguments are stored in argv-format,
with cmd as argv[0], and the value of argv itself is stored into the address pointed to by
argvp. The value of argc is returned.

Note that the area of memory used for the argv list is allocated by calling the malloc library
function. A non-zero value for £f causes getargv to call the £ree function for argvp
before calling malloc. The value of the ££ argument would normally be zero on the first and
only the first call.

If a typing error is made as the command is being entered, and the kill character is typed with
the intention of retyping the line, there is a certain temptation to retype not only the argu-
ments, but the command, too. Caveat.

5.1.2 Init. Before the main routine is called by the start-up code, the _init function is
called. Normally, this function does some standard MKNODs and mounts, but the user can
define his own _init, if he does not want the standard one to be loaded. The synopsis is:

“indt ()

8 Stand-Alone I/O Library

5.2 System Functions

The following external functions form that part of the kernel of the stand-alone “‘system’ that
were globally defined for the purpose of communication within the modules of the system.
Several may be useful to the user, but most will not be, and are included here for the sake of
completeness:

System Utility Functions
Synopsis Description

_cond (istr, ostr) Converts istr into the form described in
char =istr, xostr; {1.2}, prepends the string given to chdir, if

any, and places the result in the buffer pointed

to by ostr.
ino t Returns the inode number of the proper path
_find (path, io) name pointed to by path on the file system
char spath; described in io, and fills the appropriate parts
struct iob #io; of the io structure.
_openi (n, io) Fills the inode structure in io with a copy of
ino_t n; the disk inode whose number is n on the file
struct iob #io; system described in io.
_prs (str) Prints the simple character string str on the
char sstr; console immediately.
daddr_t Returns the number of the physical block
_sbmap (io, bn) corresponding to the logical block bn of the file
struct iob *io; on the device described in io.
daddr t bn;
_trap (ps) Prints the type of trap that has occurred, based
int ps; on the passed value of ps.

6. COMPILING AND EXECUTING STAND-ALONE PROGRAMS
6.1 Compilation

Programs are normally prepared for stand-alone execution by the UNIX scec command. The
syntax of this command is a superset of the standard cc command:

scc [+[b1 1 [option 1 ... [file]

The option and file arguments may be anything that can legally be used with the cc command;
it should be noted, though, that the -p (profiling) option, as well as any object module that
contains system calls, will cause the executable not to run.

Scc defines the compiler constant, STANDALONE, so that sections of C programs may be
compiled conditionally for when the executable will be run stand-alone.

The first argument to scc specifies an auxiliary library that defines the device configuration of
the computer for which the stand-alone executable is being prepared. On the PDP-11, lib may
be either one of the following; on the VAX-11/780, lib may only be A:

A RP04/05/06 disk (also, RMOS5 disk on the VAX) and TU16 magnetic tape, or equivalent
B RKII/RKOS disk, RP11/RPO3 disk, and TM11/TU16 magnetic tape, or equivalent

If no +lib argument is specified, +A is assumed. If the + argument is specified alone, no
configuration library is loaded unless the user supplies his own. A manual entry for the scec
command may be found in [1].

&

Stand-Alone I/O Library 9

The user may define his own configuration library by loading an object module that defines
_devsw to be an array of devsw structures {2.1.1}, _devent to be the number of structures
in the array {3.2}, and init to be a function that is to be called before the main routine
{5.1.2}. If the user only wishes to define his own _init and not _devswand _devent, or
vice versa, he may do so, but the configuration library must also be loaded in order to resolve
the other external reference(s).

6.2 Execution

6.2.1 Sash. Stand-alone programs are normally loaded using a command interpreter which
passes the arguments that it reads after its prompt into the loaded program’s argv list. This
command interpreter is called sash (for stand-alone shell). Its implementation is described
here, and its use is described more completely in the Appendix.

Sash relocates itself up 64K words on a PDP-11, and 320K words on a VAX-11/780. This
enables a stand-alone user program to use all of memory below it.

Normally, only programs with execution modes 407 and 410 may be executed (see a.out(5) in
[1]). On the PDP-11, sash turns on memory management in order to relocate itself, and then
executes the high-memory copy of itself in user mode. It loads the user’s program into low
memory, copies the argument list to the upper limit of addressability for a non-separate
instruction/data space program, sets up a small program beneath the argument list that inter-
faces from the user’s program (which runs in kernel mode) to sash and sets the kernel stack
pointer to its initial value, which is just underneath the small interface program; sash then
manages to begin execution of the user’s program in kernel mode at physical location 0. The
interface program enables the user’s program to return (exit) back to sash by a simple rts
instruction. The use of memory management normally allows the user’s program about 55.6K
words for text, data, and bss segments. If the user wishes to set up his own bss segment, then
only text and data are limited to 55.6K words. It should be noted, however, that because
memory management is enabled at the outset, the user’s program must turn memory manage-
ment off before changing any memory management-related registers.

To load mode 411 (separate instruction and data space) files, sash loads the data and bss seg-
ments at physical address 0 (set to be kernel data), and the fext segment is loaded at the next
64-byte boundary (set to be kernel text). Sash then turns off memory management, and
assumes that the program will restructure itself. It cannot be run without restructuring because
the program break can only expand onto the rext segment, and the stack pointer may contain an
address that is in the middle of the fext segment.

The address space of the VAX-11/780 is sufficiently large that memory management need not
be used, and the user’s program may be started by a simple subroutine call, and exited by a
return from that call.

6.2.2 Other Bootstrap Programs. Alternatively, a stand-alone program may be loaded into
memory by some other UNIX bootstrap program. If this is done, the start-up code senses that
an argument list is not available, so argc will be set to 1, and argv[0] will be set to a null
string before execution begins, and may be reassigned by getargv.

6.3 Reclocatable Programs

The stand-alone I/O library may be used with programs than need to relocate themselves at
some point during execution. Although this is never a simple task, it is quite a bit easier to do
so on the VAX-11/780 than the PDP-11, and somewhat easier on the PDP-11 if memory
management need not be used. The user who is considering writing a relocatable program is
referred to the source code of the machine-dependent (assembler language) part of the sash
program {Appendix} for hints.

On the VAX-11/780, the -T option may be given to the 1d program to do the relocation. On
the PDP-11, no special processing by 14 is necessary:

10 Stand-Alone I/O Library

7. OVERHEAD AND PERFORMANCE

On both the PDP-11 and VAX-11/780, a null program will compile to produce an executable
object module that has a rext segment that is slightly larger than 6K bytes, and data and bss seg-
ments that add up to about 8K bytes. This is a good rule-of-thumb calculation for the
minimum size of a program that is compiled with the stand-alone library.

Because stand-alone programs run (by definition) without competing against other processes for
CPU time, and are never swapped out of memory, a stand-alone program’s execution is faster
than that of the same program running under UNIX. However, if that program does some I/O
operations, it will not benefit from some of the short-cut operations that are implemented in
UNIX, such as disk read-ahead, and will therefore actually run more slowly stand-alone than
under UNIX.

Acknowledgements

The stand-alone I/0O library was originally based on a library written by Charles Haley whom I
would like to thank for his comments and suggestions during the course of my work. I would
also like to thank Larry Wehr for his explanations of the workings of the UNIX system and dev-
ice drivers, as well as Ted Kowalski for his help in debugging several stand-alone programs and
his suggestions of practical extensions to that which already existed.

References

[1] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G., eds. UNIX User’s Manual —Release
3.0. Bell Laboratories, June 1980.

[2] UNIx Time-Sharing System: UNIX Programmer’s Manual—Seventh Edition. Bell Labora-
tories, January, 1979.

[31 UNIX/32v Time-Sharing System: UNIX Programmer’s Manual —Version 1.0. Bell Labora-
tories, February, 1979.

[4] Peripherals Handbook. Digital Equipment Corporation, 1978.

[5] PDP 11/70 Processor Handbook. Digital Equipment Corporation, 1976.

[6] VAx 11/780 Architecture Handbook. Digital Equipment Corporation, 1977.
[7] VAx 11/780 Hardware Handbook. Digital Equipment Corporation, 1978.

Stand-Alone I/O Library 1

Appendix: The Stand-Alone Command Interpreter

The stand-alone command interpreter is called sash (for stand-alone shell). It is a glorified
UNIX boot program. Sash is begun running through whatever means available. It relocates
itself up to high memory and executes there. When it is running, it prompts with $8.

Sash accepts three types of commands. The most common type is the program execution com-
mand. Here the user types the name of the stand-alone program to be executed, followed by
arguments to be passed to the program. The program name and arguments are separated by
spaces or tabs, and the single-quote and double-quote characters are properly understood (for
arguments containing special characters within them). For example, if /stand/1s is a
stand-alone program that does the same as the UNIX 1s program, then in order to get a long
listing of the contents of the directory /tmp, the user would type:

$% /stand/1ls -1 /tmp

UNIX itself may be booted by using this method:

$$ /unix

The second type of command is the cd command. Sash has a notion of its current directory.
All programs that are called with names that do not begin with a slash (/) are searched for rela-
tive to the current directory. When sash is begun executing, the current directory is the root
directory (/). Thus, in the previous paragraph, UNIX could have been booted by typing:

$$ unix

If the cd command is invoked with an argument, then the argument becomes the current
directory. The following sequence is equivalent to the 1s command discussed above:

$% cd /stand
$$ 1s -1 /tmp

The current directory is local to the sash program. It is remembered from one sash com-
mand to the next. It is not, however, passed on to the invoked program. Arguments that are
passed to programs must therefore be relative to the root directory.

If cd is invoked with no arguments, the value of the current directory is printed.

Sash has a default notion of the disk type and unit number for the root file system, as well as
for a /usr file system. These are generally slices 0 and 1, respectively, of unit 0 of the
RP04/05/06 disk. (The defaults may be easily changed by recompiling the sash source.) To
change sash’s ideas of disk type and unit number, the set command may be used. There are
two basic forms of the set command: set unit and set disk. Their synopses are:

set unit {/l/asx) {0011 .2 17}
set disk {/1/usr} {rk05izp03izrp04}

where {...1...} indicates a mandatory choice. On the VAX-11/780, the rk05 and rp03
choices do not exist. For example, in order to execute a stand-alone program in
/usr/steve/saprog where /usr is the file system on slice 1 of RP0O3 unit 2, the user may

type: ;

$% set disk /usr rp03
$$ set unit /usr 2
$3 /usr/steve/saprog

The notions of disk type and unit number are, like current directory, local to sash, and are
not passed to the invoked program, which has its own idea of where /usr (if any) and the
root file system are located.

January 1981

