

 [image: cover]

Table of Contents

		Preface

	Al Aho

	Lorinda Cherry

	Joseph H. Condon

	Stuart Feldman

	A.G. (Sandy) Fraser

	Brian Kernighan

	M.D. McIlroy

	Sam Morgan

	Bob Morris

	Dennis Ritchie

	Berk Tague

	Ken Thompson

	Peter J. Weinberger

 An Oral History of Unix

 Michael S. Mahoney

 DRAFT

 2016-01-01T16:02:56Z

 01-preface.html
 aho.html
 cherry.html
 condon.html
 feldman.html
 fraser.html
 kernighan.html
 mcilroy.html
 morgan.html
 morris.html
 ritchie.html
 tague.html
 thompson.html
 weinberger.html

 Preface

 This is a compilation of interviews conducted by Michael
 S. Mahoney, Professor of the History of Science at Princeton
 University. The interviews were recorded on tape during the
 summer-fall of 1989 & transcribed later by various people.

 The original files from which this ebook was constructed were
 taken from Professor's website at

	http://www.princeton.edu/~hos/Mahoney/unixhistory
 .

 Al Aho

The interview date is unknown

Aho: I have a question that I have - maybe you've already uncovered the
 answer to this - and that is... How did it get started? Do you have, at
 this point, a feeling of, "What was it that sparked the idea, in Ken's
 mind?"

MSM: I have a general idea what sparked Ken's mind. I want to know more
 about it. In order to know more about it, I have to know more about
 the circumstances surrounding Multics. My sense of it is that Ken
 liked working on CTSS, liked working on Multics. He liked the machine
 on which he could continue to do that. And the question was how does
 one go about getting hold of that machine and developing that system.

Aho: I had joined the Labs in, I guess, early 1967, and Thompson and
 Richie had their office right across the hall from mine. Yeah, there
 was another graduate student I had met at Princeton in the
 registration line, a person by the name of Jeff Alman, and we got to
 know one another quite well at Princeton. And then, upon graduation,
 he came to Bell Labs; I came to Bell Labs. We were working on various
 aspects of formal language theory, the automata theory - theoretical
 computer science at that time. I used to go up into the attic, into
 the sixth floor, where there was this machine that Thompson, and then
 shortly a few others, were working on, and I was interested in writing
 papers. So, very quickly I discovered that this was a much nicer way
 to write papers than the old traditional way that we used to have of
 giving handwritten notes to the secretary.

MSM: Let me back you up a bit. You got your Ph.D., you finished your
 dissertation in '67?

Aho: Yup.

MSM: On indexed grammars?

Aho: Yup.

MSM: And who's your dissertation advisor at Princeton?

Aho: That was interesting; I was an undergraduate at the University of
 Toronto and I had done my senior thesis in the area of minimization of
 Boolean functions. And I did a lot of reading of research papers, and
 I noticed there was a person by the name of McClusky, whose name was
 on a number of these papers. And then when it became time to think of
 what graduate school to go to... I didn't know where I really wanted to
 go, so I thought that MIT might be a safe place to apply. And then, I
 saw this person at Princeton. So I said, well, I might try applying to
 Princeton. No, I had sort of tentatively accepted MIT. Except McClusky
 kept sending me these very warm personal letters, saying, "Wouldn't
 you like to come to Princeton and work on a small campus. We can do
 great things together." And all I ever got from MIT were form letters.
 So after a while I said, "This is crazy! Why do I want to go to an
 impersonal school when I can get all this personal attention from this
 professor at Princeton?" Well, shortly after, I arrived at Princeton.
 Then McClusky said, "I am going off to Stanford." But it was a fair
 exchange - Stanford sent a young assistant professor, by the name of
 John Hopcroft, to Princeton, and he inherited McClusky's students. And
 there were two students that McClusky had from the year I had come.
 And, fortunately, Hopcroft only had one Ph.D. research problem, so he
 gave it to this other student. That problem is still open; it hasn't
 been solved. And he left me to my own devices. So, I spent a lot of
 time groping around for what would be an interesting thing to write a
 thesis on; but, actually, that groping around was, I think, a very
 valuable experience 'cause, once you learn how to find problems, it's
 a very valuable skill for later in life. After you graduate, nobody
 gives you problems.

MSM: Now when you went to Princeton's electrical engineering...computer
 science...was it called it then or was it still...

Aho: It was just called electrical engineering. But there was...there were
 several options that you had in the department - one of them was the
 computer science option. You could also...there was a solid-state
 electronics option, a communications theory option...that...those were the
 three main things that students took. You had to specialize in one of
 these areas. And then, at that time, I guess in the - I don't know if
 they still do it in the department - for the general examinations, you
 had to take one major area and two minor areas. An option for one of
 the minor areas was mathematics. So, a lot of students took computer
 science as a major, and communications theory and mathematics as a
 minor.

MSM: Is that what you did?

Aho: Yes.

MSM: What did you go to get from the mathematicians?

Aho: My graduate education at Princeton consisted of a great number of
 forces from the math department. The electrical engineering department
 didn't have very many computer courses at that time. So...

MSM: I was going to say, "How did you know what computer science was? How
 was computer science then?"

Aho: There was hardly any. Probably the most influential thing that took
 place was, one summer Jeff Alman went and worked for Seymour Ginsberg
 out in California, and Ginsberg was very active in formal language
 theory at the time. So when Alman came back, he essentially taught
 Hopcroft, and me, formal language theory. And that's how I slowly
 started getting interested in this area of language theory. And at
 that time, the Chomsky hierarchy of grammars was very popular. People
 had the type zero to type three grammars. And, I had some interest in
 the compilers at that time, and I noticed that with the context-free
 grammars, the type two grammars, the Chomsky hierarchy, you couldn't
 express certain constructs of programming languages. So I said: What
 you really need to add to a grammar to get constructs like, "You have
 a string, and then you would have a repetition of that string, so you
 can, say, declare integer string, and then you can use string as an
 integer variable in some expression." That repetition construct is
 sort of one of the classical constructs that people used to say that
 languages of that form cannot be generated by a context-free grammar.
 So the idea of index grammars came out of, "What kind of mechanism
 would you like to have, or need, to be able to express constructs of
 this?" So, one way of viewing index grammars is that they are context-
 free grammars with certain symbol table information attached to the
 non-terminals of the grammar, and then it's very easy to generate
 constructs of the form "wnw" (?). What was kind of interesting was
 that, in this work, I discovered that...and I didn't discover it at the
 time I was working on my thesis but shortly thereafter...that indexed
 languages - those languages generated by index grammars - were the
 first in an infinite hierarchy of languages that exist between the
 context-free and the context-sensitive. You start off with the regular
 sets, you have the context-free languages, you have the index
 languages, and then, the other languages in this hierarchy are
 obtained by essentially putting a "duplicate" operator on memory that
 one can view, just as with context-free languages. There's an
 equivalent way of defining the same class of languages with push-down
 automata, so that any language that's recognizable by a push-down
 automaton can be described by a context-free grammar, and vice versa.
 There is this duality, likewise with index grammars, that any language
 that is generated by an index grammar, you can define an automaton,
 called a nested stack automaton, which is capable of recognizing that
 language, and vice versa. This is sort of one of the key results of
 the thesis. One way of viewing a nested stack automaton is that it is
 a push-down automaton with a duplicate operator that you can duplicate
 the stack, and then start working on the duplicated stack, and then
 you can duplicate the duplicated stack, and so on.

MSM: In the beginning it is almost a power set of push-down automata.

Aho: Well, you can get a stack of stacks, basically. And the nested stack
 automaton has sort of an efficient way of implementing the stack of
 stacks, and you can think of it as sort of almost like a cactus.
 That's why some people are calling it cactus automata, at the time.
 But then, going up to the next level of generalization had these
 nested stack languages. You can then duplicate a stack of stacks in
 one operation, so you can have stacks of stacks, and now you can see
 what the generalization is going up in this hierarchy. And the
 interesting part of it was that these...all the languages generated by
 these mechanisms had the same kind of decidability and closure
 properties. And, a little later, the Europeans... The work in Europe in
 particular, in language theory, went to biologically motivated
 examples of languages people were looking up - what phenomena could
 account for the striations on snail shells. And, they looked at
 grammatical mechanisms for being able to generate patterns of this
 form. These grammatical mechanisms were called Lindenmayers systems,
 and it turned out that there was a close relationship between certain
 kinds of Lindenmayers systems and indexed grammars. So, for a while,
 this was very popular as a certain sub-field of language theory. So,
 it was...very interesting...part of my life, a very interesting
 experience. And in fact there are still people who write papers once
 in a while on various aspects of index grammars and languages. And,
 this family of languages was shown to be an example of what was called
 the "Super Apple" (?). Some work that Ginsberg and Greibach had done,
 subsequently looking at automata theory for various classes of
 automata in a very general setting, a very algebraic setting. It's a
 very elegant, beautiful theory, and it was a nice way to get started
 on scientific career.

MSM: Okay! Well that leads...obviously to the next question - which is what
 was the appeal of Bell Labs to someone who was...a work of such a
 decidedly theoretical...

Aho: Well, I mean Bell Labs had a great reputation. And, also, McClusky
 had consulted for Bell Laboratories, and he had brought some of his
 graduate students on tour to Bell Labs. So we saw some of the work
 that was going on. Even when I was at Toronto, I took engineering
 physics as an undergraduate, and in our senior year we had a field
 trip, that we would go and visit various American research
 institutions. So, I went on this - in fact I organized - this American
 research visit in my senior year. We visited, amongst other places,
 Bell Laboratories. We also went to Brookhaven and GE, just to see what
 an industrial research lab was like. And, certainly, if one looked at
 the scientific literature, there were a number of papers--key papers--that
 had been co-authored by Bell Labs scientists. So it had a good
 reputation as a place to go and do research. The other attractive part
 of it was that Jeff Alman had just joined Bell Labs, too, and John
 Hopcroft had a close connection. He was working here for the summer,
 at that time, so that wasn't that much different from going from
 Princeton to Bell Labs in terms of the people that I knew. I had
 also...when I came interviewing...I was very impressed with Doug McIlroy,
 who was my boss for many years. And he was just a peach of a person to
 work for. He understood everything that I was working on, with just
 the most fragmentary descriptions. And...he had...he essentially taught me
 to write too, I think he's one of the finest technical writers that I
 know of. He has a flair for language, and a flair for economy of
 expression that is remarkable.

MSM: So you came in '67... At that time, if I understand correctly, Doug
 and Ken and Dennis and Joe Osanna were working on the Multics project.

Aho: Yup.

MSM: And what was...what you people you...if I understand the way things work
 here, you were told to look around and find something to work on...

Aho: Well...

MSM: How'd you go about that process?

Aho: What Doug McIlroy did in terms of introducing me to the people in
 this department...he just said, "Oh, here is Jeff Alman sitting across
 the hall from you." And, Jeff and I worked very closely together for
 the first few years that I was at Bell Laboratories. We were writing
 four or five papers a year on various aspects of language theory and
 automata theory.

MSM: So essentially laying down the content of the books...

Aho: What we were doing was trying to develop a theory that would account
 for certain kinds of computational behavior. We were exploring what
 kind of power various kinds of automata-representative devices had. We
 were also very interested in algorithms, and studying algorithms from
 the point of view of, "How fast can you make them. What are upper and
 lower bounds on the speed with which certain problems could be solved
 using various models of computation." And, more interestingly, we were
 also trying to see if there were some general classes of techniques
 that could be used to solve problems. And, there were sort of two
 prongs to the work initially - there was the work in formal language
 theory - and we had a certain view that a number of these techniques
 could be applied to compiler design. So, in the early '70s, we wrote
 this two-volume sequence, Theory of Parsing, Translation and
 Compiling, that attempted to distill the essence of automaton language
 theory with applications to the process of compilation. And, I think
 this was one of the interesting demonstrations of putting a
 theoretical foundation onto an important practical area of computer
 science, that people in programming languages and compilers are, I
 think, an indigenous part of computer science. What language and
 automata theory did was they provided a theoretical foundation that
 could be used to design algorithms for the translation process. And,
 more importantly, people could then construct tools to help build
 components of compilers. A few years later, in the early '70s, I had a
 very interesting experience with another colleague, who was in the
 computing science research center at that time. This person had gotten
 his Ph.D. from Columbia under Eilenberg; he was a category theorist.
 His name was Steve Johnson. But then he had come to Bell Laboratories
 to work; he had developed a fascination with computers and computing.
 One time I remember he came into my office waving a book written by
 Elgot and Eilenberg, entitled Recursiveness, and what he said to me
 was, "I understand you know what the theorems in this book mean, but
 you don't understand the notation." He says, "I understand the
 notation but I don't know what the theorems mean - why don't we read
 this book together?" So we very quickly read the book, and discovered
 that it said well-known things in a well-known notation, namely,
 theorems of recursive function theory, couched in category theory.
 But, a more interesting part of that interaction was Steve asked me,
 "Well, what are you working on?" And I was saying, "Well, there are
 these things called grammars, and there are these things called
 automata, parsing methods for various classes of languages." And, he
 was interested in writing a C compiler at that time. And, he said,
 "Well, could you make a parser for C for me?" And I said..."using these
 techniques"...and I said, "Why sure!" And, I foolishly decided to
 construct the parser by hand, implementing one of these LR parser
 construction techniques. And I had a huge sheet of paper - big piece
 of cardboard - on which I carried out the sets of items construction -
 usually while I was watching television, 'cause it is such a trivial
 and mind-numbing task. And of course I didn't get it right. And I gave
 this piece of cardboard to Steve, and Steve would then encode it into
 his computer program. After a while he become so frustrated with me,
 that I couldn't get it a hundred percent right, he wrote a program
 that automated this parser construction technique. And that how the
 tool yacc was born. And yacc had an interesting experience in those
 early days that there were the people who understood how to write
 compilers - people like Dennis and Ken. And, I guess back in the '50s
 there was a feeling that the real programmer knows where every bit is,
 and there was some mis-chewing of higher level languages, because we
 couldn't get the same kind of efficiency. On the other hand, people
 who were newer to the game, and also people who weren't so concerned
 with extracting every iota of efficiency out of the machine,
 gravitated to higher level languages - FORTRAN, in particular. In the
 late '50s and early '60s, the same kind of experience took place with
 yacc that people quickly discovered that you could very easily
 construct a parser for a language by writing down the grammar, and
 then yacc would translate the grammar into a parser. A few years ago,
 writing a parser for a language was considered worthy of a Ph.D.
 thesis. So here came along this device that sort of automatically did
 what you used to be able to get a Ph.D. thesis for. And there were
 some people who recognized the potential of constructing special
 purpose languages for various application areas. And, one of them in
 particular was Brian Kurnighan. Brian's office was right next to mine.
 And, he had been interested in computer typesetting. This is a field
 that Joe Osanna had pioneered. And Joe had written this text formatter
 which got to be known as troff. There was an ASCII version of it in
 roff, prior to that. Brian wanted to extend the capabilities of troff
 to handle other specialized constructs - equations - and, later,
 various kinds of graphical constructs. But, I kept saying to him,
 "Well, it is very easy to write a grammar that describes the
 structure, the syntactic structure of mathematics that appears in
 documents. So, why not write a yacc generated parser for this?" So
 then he and Lorinda Cherry developed this troff preprocessor that got
 to be known as eqn. And this became again one of the standard tools in
 our typesetting arsenal, when a lot of people are writing mathematical
 oriented papers around here. And eqn made the typesetting of
 mathematics, or the printing of mathematics, just as easy as speaking
 mathematics. Kernighan had this philosophy that language should be
 like what a professional uses to communicate, the description of those
 objects over a telephone. So you could write "'a' sub 'i'" - that's a
 way of describing the mathematical expression "a" with the subscript
 "i." And also, looking at some of these application areas... In
 mathematics if you write "'a' sub 'i' squared" or "'a' sub 'i' suit
 2," this can be written in three different forms: You could have "a"
 with the subscript "i" squared. You could have "a" sub "i" raised to
 the power of "2." And many people who do professional typesetting
 often like to put the superscript "2" above the subscript "i." And...it
 was...at that time...Johnson, Alman, and I were looking at techniques for
 being able to parse ambiguous grammars. And, it turned out that having
 the ability to use ambiguous grammars allowed one to put in syntactic
 constructs for special cases. These syntactic constructs for these
 special cases would make the grammar ambiguous, 'cause there was a
 general mechanism in the grammar for already specifying it, so you
 added another production which specified the special case construct.
 And then we added a parsing action conflict rule to yacc saying that,
 if you could take the choice of reducing by several productions, then
 choose the one that you have designated as the special case construct.
 So you could automatically optimize certain kinds of language
 processing by first very quickly writing a grammar for the general
 case, and then as you saw the special cases that needed to be done,
 you could insert productions into the specification. The semantic
 rules for processing, and then as a consequence, the human interface
 improved to a number of the special purpose languages, because there
 were constructs for dealing with some of these special cases. And you
 got the kind of output that you wanted. And this was a development
 that took place in the early '70s. So many people became quite devoted
 to the various compiler construction tools. There is another colleague
 of mine, at that time, by the name of Mike Lesk, who had a great deal
 of interest in special purpose languages, as well as various kinds of
 information processing and information retrieval mechanisms. In a
 compiler, one of the first things - tasks that you perform - is you
 take the sequence of input characters, and you chop them up into
 words, the lexical units that make sense. So if you write an
 identifier like "floors," those letters are to be grouped together and
 treated as a lexical unit. The task, or the part of the compiler that
 combines sequences of characters into lexical units, is often called a
 lexical analyzer or scanner. And, since we had developed a parser
 generator, I had been interested in pattern matching techniques of
 various kinds, and Mike had come over to me and asked, "Could I use
 one of your finite state machine approaches to doing lexical
 analysis?" And I was amazed at how quickly Mike could program any
 application. So, within a period of a few weeks, he had created this
 first version of lex, which had taken one of these pattern matching
 algorithms that I had used in some other UNIX programs, namely egrep,
 and encapsulated them into a lex program which could be used in a very
 convenient way with yacc, so that the automation of the front end of
 the process, the front end of the compiler, the analysis part, was now
 virtually complete...that you could automatically...you could specify the
 lexical constructs of a language using the notation of regular
 expressions - another formalism from formal language theory. You could
 specify the syntactic structure using a context-free grammar. By the
 combination of these, then you could design a front end that would map
 a stream of symbols into the intermediate representation, from which
 then the code generation work could take place. The work on pattern
 matching...

MSM: Can I interrupt for a second?

Aho: Sure.

MSM: This all fits together so well, and I recognize what you're doing,
 'cause I have used lex and yacc in code generation. I sat in on Ravi
 Sethi's compiler course, at Princeton, in '83, and have done that
 little PASCAL exercise at the end of the Dragon Book. So, it is
 interesting to hear you talking about these tools. And, it all fits
 together so nicely that it seems almost the obvious way to go. But it
 wasn't at the time, when you came. It wasn't the way people went about
 things. And what I hear as you describe it is...you said...you used a
 phrase earlier, "provide a theoretical foundation for compiler
 construction." And there are two ways in which one provides
 theoretical foundations for things. One is to come in and watch the
 way in which people are doing things, and then say, "Okay let's...let's
 formalize what you are doing." And another is to come in and watch the
 way people are doing things, and say, "No, there is another way to do
 this that will put you on firmer theoretical foundations, and in the
 end make your job easier." How clear was it that would make the job...
 There is an attitude of almost meta-programming that seems to lie...be
 part of UNIX. And, I am beginning to wonder whether that grew up here
 first or whether this is something that emerged here at Bell Labs,
 whether it is something that people brought with them and consciously
 tried to institute, or implement. Am I making...

Aho: Yup. All work occurs in a vacuum. And, as I had mentioned, when I
 first came, I was quite theoretically oriented, but the work was
 motivated by various kind of language processing. Chomsky, what he
 defined, is families of grammars. His initial motivation was to find
 some kind of syntactic representation for natural languages. Although
 there is some debate at this point of, "Did he really want to do
 that?" But...and when I was at Princeton, I had taken a course from
 the...I believe it was the physiology department...it is tough to know
 where some of these professors are actually housed...

MSM: And that's the nice thing about Princeton...

Aho: But, we talked about Chomsky's work - transformational grammars. The
 first two languages - programming languages that I learned - were
 Snowball 4 and IPL 5. And IPL 5 was taught by this person from...I
 believe it was the psychology department...

MSM: Who's in it?

Aho: I don't remember the name at the moment. It goes so far back. But,
 when I came to Bell Labs, the structure of languages became much
 clearer to me, and one of the things that I had worked on were various
 formalisms for translation - syntactic directed translation schemes of
 various kinds. And this was again work that I had done jointly with
 Jeff Alman. And, by studying some of these devices, you could see the
 power of certain formalisms for being able to specify a translation.
 Now if you look at a compiler, one way of abstracting it is that it's
 just an input-output device - you put in a source program at one end,
 and what comes out at the other end is a target language program. Even
 if you open the lid of a compiler and look in at, you see that the
 compiler consists of a composition of phases. And each phase in itself
 is a translation of a certain kind. There is a translation that takes
 place in the lexical analyzer going from the stream of tokens, as they
 are inputted - as a sequence of characters into a stream of tokens -
 then the parser takes that stream of tokens, and checks to see that it
 has a certain syntactic structure, and then produces some kind of
 intermediate representation as output. And then the subsequent phases
 take that intermediate representation and map it into object code. So,
 one of the things that we noticed was that a translation mechanism
 based on regular expressions or finite state machines could be used
 for the lexical analysis - modeling what a lexical analyzer did. What
 a context...what the syntax analyzer did could be modeled by a syntax-
 directed translation, where you write a grammar, and associate with
 each production a semantic rule. Well, that was a notion syntactic
 directed translations were known. But the key insights that we
 obtained were how to make this process go efficiently. In the mid
 '50s, Knuth had published a paper that essentially defined a large
 class of grammars called the LR(k) grammars. What people had done
 prior to that were defining various kinds of parsing strategies, and
 people had defined various precedents schemes - operator precedents,
 wheat precedents, mixed strategy precedents, and so on. And then there
 were certain kinds of bounded context - kinds of parsing strategies -
 but Knuth, I think, in a stroke of genius, said, "This is the natural
 class of grammars that you've all been groping for... And here is its
 definition. Not only that, but if you restrict yourself to this class
 of grammars, then here is the procedure for being able to construct a
 parser from that grammar." Now the problem with Knuth's paper was that
 the parsers that you got out of it were enormous. And then, work took
 place in the late '60s and early '70s of how to make that process more
 efficient. One of my colleagues at Princeton had done work on a
 certain restricted class of LR(k) grammars. In fact these were the
 simple LL grammars. This is work that he had done jointly with
 Hopcroft.

MSM: Who is this?

Aho: Al Kornjack.

MSM: Okay.

Aho: So, the talk of parsing methods and searching for a class of grammars
 that was big enough to describe the syntactic constructs that you were
 interested in, but yet restricted enough so that you could construct
 efficient parsers from it, was the name of the day. And, the methods
 that are used in yacc were a refinement of the methods that had come
 out from Knuth's paper on. There was a student at MIT, by the name of
 Drimmer, who defined the simple LR grammars. And one of the things
 that what we discovered when we wrote the theory of parsing book...what
 we discovered was that the literature - the scientific literature, if
 you could call it that - was very inaccurate. These objects were so
 new, and the techniques for dealing with them were so incomplete, that
 many of the claims that were made and published about various parsing
 methods were just wrong. The proofs did not hold. So one of the things
 that Jeff and I did was to attempt to understand what kind of
 techniques could be used to analyze these formalisms, and also to put
 a clear picture into the scientific literature - what was true and
 what wasn't. So that was a very interesting project, writing that
 book. And I discovered subsequently that that book came to be one of
 the hundred most referenced books in computer science and
 mathematics--although we certainly did not write it from that
 point of view, at
 that time. But it did give, at least me, a good foundation for talking
 about algorithms - reasonable algorithms that could be used in devices
 like lex and yacc. There was another event that took place in the
 early '70s... I had mentioned I was working on algorithms. Hopcroft and
 Alman and I had entered into a second...into a writing project. Hopcroft
 and Alman had written a language theory book, earlier. And I had
 written this book with Alman on the theory of parsing, so we decided
 that we'd enlarge the class of co-authors, and write a book on design
 and analysis of computer algorithms. I was very interested in
 algorithm design techniques at the moment, at that particular time.
 And, one time I happened to be giving a talk on techniques that could
 be used for constructing algorithms. Before, people tended to look at
 problems in isolation. But, the same technique could be used for many
 different problems. And, it became convenient to say, "Well, there's a
 general algorithmic design technique - divide and conquer. Take a big
 problem, break it up into chunks, try to find solutions for the
 chunks, and then combine these solutions into a solution to the
 problem as a whole." It's a technique that has been used since
 antiquity. But, just calling it "divide and conquer" is good enough
 because I can say to you, "Have you tried 'divide and conquer' on your
 problem?" It saved an enormous amount of conversation. Likewise, in
 pattern matching, algorithms in the area of looking for patterns in
 text, you could construct very efficient algorithms by using certain
 kinds of automata. When I had joined the Labs, I had mentioned that
 Doug McIlroy was my first boss. He had a passion for words, and we'd
 often talk about very unusual words, like, "What's the longest word in
 English...that has no repeated letter?" Or, "What's the longest word in
 which the letters goes up in alphabetically increasing order?" With
 certain formal methods, it was a bit trivial to specify these kinds of
 patterns. And, I guess I was also interested in crossword puzzles at
 that time, so I decided to implement one technique for constructing a
 regular expression pattern matcher that would very quickly look for
 regular expression patterns. The reason this is particularly effective
 for crossword puzzles is that, if you know that you have the third,
 the fifth, and the seventh letters of the word are such and so, then
 with regular expressions you could very quickly search the dictionary,
 and find all words that have that combinations of patterns. Regular
 expressions also allow you a much richer class of patterns than those.
 But that seemed to be one good motivation for it. And my idea was to
 use a certain technique for constructing deterministic finite automata
 from the regular expression, and then use that deterministic automaton
 to do the pattern matching. It was very similar in style to what yacc
 had done, that yacc takes a description, in this case a context-free
 grammar, and transforms its into an automaton that does the
 processing. So, this two-step style of pattern matching - you take the
 pattern, then you construct from the pattern, a recognizer, then use
 the recognizer to do the analysis - is a very potent one.

MSM: And this work was done after yacc?

Aho: It was contemporaneous because this is basically the idea in lex.
 And, I am very poor at remembering the exact dates at which things
 took place, and I really didn't keep a log in those days of when I did
 these things. So, I don't know exactly when these ideas occurred. But
 when I did the first version of this regular expression
 matching...pattern matching program...Doug McIlroy in the previous year
 had had a summer student who had taken a classical algorithm for
 constructing a deterministic automaton from a regular expression, and
 look for these patterns. And it was written in machine language. I was
 astonished to discover that the program that I had written ran several
 times faster that what this machine language program did. And, in
 fact, this sort of became an avocation of mine for a number of years
 subsequently, and the improvement in performance of that program has
 gone up by almost two orders of magnitude. Most recently what Andrew
 Hume had done...he put a technique called the Boyer-Moore Algorithm into
 the grep programs. And now we can search an 800-page book, looking for
 any key word or phrase, in a fraction of a second, with these fast
 patterns matching techniques. The early versions of these programs
 would have taken almost a hundred times faster to look for these
 patterns. And, also now that we have the new machines, the combination
 of better algorithms and faster machines has been just dramatic. But I
 was going to mention a story that... When I was working on the
 algorithms book, I was giving a talk on algorithm design techniques.
 There was a woman in the audience who worked for the technical
 information libraries, and she had written a bibliographic search
 program. They used to get a tape from the government that had various
 citations on it, and bibliographers could then specify some kind of
 search prescription consisting of Boolean functions of key words and
 phrases. And then the program would look for all citations that
 satisfied that search. Sort of the night before, some gun-ho
 bibliographer had a search prescription that had had over a hundred
 key words and phrases, and there was a six hundred dollar limit on the
 program of how much time it could consume. So, after using up that six
 hundred dollars, it had not yet finished printing out all the titles
 that satisfied the search. So she mentioned this story to me, and I
 said, "Oh, why don't you, with your set of key words, construct a
 pattern matching machine, and then the pattern matching machine will
 look for all of these key words in parallel. And by the way, here is
 an efficient technique for constructing this pattern matching
 machine." So, a month or two later, she came back to me and said,
 "Remember that program I had written? Now, it costs twenty-five
 dollars to do the search. In fact, every search costs twenty five
 dollars - that's the cost of reading the tape." So what had been a I/O
 bound...er, process bound problem, had become I/O bound, the way it
 should be. And also, at that time, I took that algorithm and
 implemented the UNIX program fgrep with it. And, there was a lot of
 interest in words. Lorinda Cherry was interested in writing, and I
 think this interest came from Doug McIlroy, who treasured good
 writing, good diction. So, she wrote a program called diction which
 would look for instances of questionable words and phrases in one's
 writing. If you used constructs like "irregardless" or "emotional
 feeling," it would flag every sentence that contained an instance of
 one of these questionable dictions. The fgrep algorithm was ideally
 suited to that kind of application, as well, where you could take a
 set of key words and look for instances of these key words. So, this
 kind of technology that was based on language and automata theory had
 a variety of applications. And, these applications are still
 unfolding--the
 most recent application of these string pattern matching ideas
 took place in a program that was written by a summer student who came
 here from Stanford. As I had mentioned, back in, I think it was '84, I
 had spent a sabbatical at Stanford, and had taught the course on
 advanced compilers, and there was this bright graduate student in the
 audience, by the name of Steve Chang, who subsequently came to Bell
 Labs for a summer. And, during the summer period, he developed a
 program called twig, which did for the back end of the compiler what
 lex and yacc did for the front end. That with twig one could take
 essentially a tree rewriting scheme...no, generalize the notion of the
 syntactic units to be trees, and one could view the process of code
 generation as taking an intermediate representation in the form of a
 tree, and then wallpapering it with little templates that correspond
 to machine instructions, or sequences of machine instructions.
 And...what twig did was...it would take a intermediate representation, and
 see if it could decompose this machine...this intermediate
 representation...to a collection of subtrees. And it used a dynamic
 programming code generation algorithm that Steve Johnson and I had
 developed in the mid-'70s. This is an algorithm that was the
 foundation of one of the PCC compilers. And, in fact, if I may take a
 digression on that... The portability of UNIX stems from several
 factors: one is that it was soon written in a high level language, C,
 which Dennis Richie had devised. I had mentioned Steve Johnson had
 this interest in C compilers, and then tools for automating
 construction of compilers. One of the things that Steve and I did,
 after we had done yacc, was to look at algorithms for code generation.
 And we had developed a dynamic programming technique which would allow
 one to take a tree representation and map it into an optimal sequence
 of output code for a machine. And we developed the theory of, under
 what conditions would the output code be optimal. And we tried to
 extend the class of machines for which this kind of code generation
 technique could be used. And it turned out that it fit a large class
 of machine architectures.

MSM: Is this the reason for Steve's interest in a C machine? Joe Condon
 had been telling me that Steve had been used to architectures for a
 machine optimized for C.

Aho: Well, it's again...what interesting technology...what you could do once
 you had these technological tools available. We had published this
 paper on code generation - optimal code generation - I guess at one of
 the theoretical conferences, and then it was published in the JACM.
 But most importantly, the PCC 2 compiler had used this, say, code
 generation mechanism, and it became possible to re-target this
 compiler to other machines fairly easily - all you had to do was
 specify new code generation tables that corresponded to the new
 architecture, and then you would have a compiler that would translate
 C into that new architecture. Since the UNIX operating system was
 written in C, it could then be moved very quickly to this. And both
 Dennis and Richie and Steve Johnson were very interested in
 portability, at that time. Well, now that we had this tool of being
 able to re-target a compiler to a new architecture, people in the mid
 '70s started looking at the question of, "Well, what would a good
 machine be for executing C programs?" I think this was a question that
 Sandy Fraser had also been interested in initially. Steve Johnson
 looked at it in depth. And, there was a young researcher here at the
 time, by the name of Dave Ditsel, who was consumed with this question
 of what would a good architecture for running C programs be like. So
 what people did was they would search a space of architectures for one
 that would be effective in running C programs. And they were able to
 do this in a much more scientific way by taking a C compiler, re-
 targeting it to this hypothetical architecture, and since we had a
 body of real C programs we could look at...these were the ones in usr
 bin. We could take those programs to see how well they would run in
 that new architecture. So they repeated this process of looking at an
 architecture, how good it was, then iterating. And the reduced
 instruction set computer that we called CRISP was born in this
 particular fashion. So the time CRISP came out in the early '80s, it
 was well-honed for running C programs. At least in the AT&T
 environment, we had an enormous investment in C programs, at that
 time. So, it was a particularly effective engine for running C
 machines. And, now, as you are well aware, the RISC machines have
 produced a dramatic increase in price-performance, in terms of what
 one can buy. And, this work arose out of compiler technology, to
 some...to a great degree. When I was at Stanford, there was a professor
 there, by the name of John Henessey, who was very interested in
 compilation techniques...to be able to take advantage of RISC
 architectures, and he had been involved with the MIPS company that
 makes one of the very efficient RISC chips at this time. So again, all
 of that work I view as stemming from the availability of a certain
 kind of technology. And this technology is in some sense rooted in a
 formalism that gives it a degree of efficiency that you might not have
 with more ad hoc methods. Well, with ad hoc methods you can do
 anything, but...at least my point of view is that, if you have a
 scientific base on which you can measure performance, and you can
 iterate and improve your algorithms with this scientific
 understanding, and then build an engineering design theory on that,
 you are going to be unassailable in the work and some of the compiler
 construction tools. Pattern matching algorithms seems to give some
 evidence to this. The other aspect of this is that it improves
 software quality in a significant way, and productivity in a
 significant way, 'cause you can write a compiler much more quickly
 using these tools, than if you had to do it from scratch: none of
 these stories that the first FORTRAN compiler took dozens of staff
 years to produce. Whereas now you could construct a compiler - a
 significant compiler - as part of a classroom project in an
 undergraduate computer science course.

MSM: Of course you are writing it on a machine that has, to all intents
 and purposes, unlimited memory. The first FORTRAN compiler had to go
 into a fairly small...

Aho: That's true, and it is still true that constructing compilers - good
 compilers - for languages like ADA are substantial efforts. But on the
 other hand, coming up with a preprocessor, or, a little language, is
 an activity that in many cases can be done over the course of a
 weekend.

MSM: 'Cause one of the things that struck me right from the beginning was
 when I first learned something about UNIX and its relationship to C as
 a function of...that you can stay out of assembler...as independent of the
 machine as you possibly can. Learning that UNIX was running on VAXes,
 or two-thirds of the VAXes out there were running UNIX. And then
 taking the VAX architecture handbook. Because even though we weren't
 supposed to write in assembler, it was a good idea to at least know
 what assembler was about. And see this instruction set on a VAX-11. It
 was an assembler's dream. Evaluate a polynomial: that's an assembly
 language instruction. And I thought, "Wait a minute... It doesn't fit!
 And then there's a discussion about the push toward, and the way in
 which RISC architectures had turned out to be the ones that work best
 with C. It seemed to make sense. Just let the compiler do the work."

Aho: Well, when I was doing this work with Steve Johnson, Johnson used to
 go around and saying he should get the language designer, compiler
 writer, and the machine designer into the room at the same time,
 because the system will be so much better. The tradition, up to that
 point, had always been: some engineer went off and designed the
 machine, and then some committee went off and designed a programming
 language, and then there was this poor compiler writer that had to
 spend an enormously frustrating experience of mapping that programming
 language onto that machine architecture. Certainly if one looks at the
 popularity, or lack thereof, of ADA, there are constructs of ADA which
 are very difficult to compile. If one had done a prototype
 implementation at the time the language was being defined, then it
 would perhaps have been a...different in certain aspects. FORTRAN...the
 lexical structure of FORTRAN is very difficult to analyze using lex,
 or any of these automated tools. The newer languages are much easier
 to lexically analyze and to syntactically analyze. So, from one point
 of view, the technology has shaped the structure of today's languages
 to some degree. PASCAL was defined so that it could be easily
 compiled. In fact, one of...I think one of the reasons for the enormous
 popularity of PASCAL was its availability. It was easy to construct
 compilers and to move compilers to a lot of machines. So the ubiquity
 of the language stems from the fact that you were able to obtain
 compilers for it.

MSM: So that language design ought indeed to keep implementation in line
 is what you want to say. 'Cause there was a school of thought in the
 '60s that, especially among European designers, that you design the
 language and not worry about the implementation.

Aho: That's very true. And some of that philosophy still persists in the
 specification of protocols these days. That protocols are being
 designed by committees without keeping an eye out for performance or
 implementation considerations. And, that may be too much of a purest
 attitude to get the kind of efficiency or perhaps interoperability
 that one would like to have. One of the great things about... Well, you
 talked about UNIX being a spirit. The one way that I view it is that
 there's a great deal of Darwinism in UNIX. If one looked at how
 certain commands and languages came into being, it was because someone
 had an idea. Say like Kernighan and Cherry for this language for
 typesetting equations. They got a rudimentary form of the language
 processor to be up and running, and then they let their friends use
 it. Then the language evolved on the basis of usage patterns. That, as
 users gained more experience with the language, they would be able to
 say, "I'd like to have these additional features." Or, "These are some
 awkwardnesses in the language." So there was a Darwinistic evolution
 of the language, and, in fact, of the UNIX system itself. That it is
 satisfied a certain user's needs, and there was enough time to refine
 the system so that it satisfied those needs - I thought, quite
 efficiently and quite elegantly. There is this "European approach," if
 you want to use that term, or this more dogmatic approach to language
 design, where you have some august committee that meets for a period
 of several years to come up with a language specification. They...write
 a document. Compiler writers work off that document for several years
 to produce a compiler, only to discover that there may be some
 infelicities in the language design. And, the process is much more
 cumbersome. Natural languages evolve, and I think, "Why shouldn't
 programming languages?"

MSM: But two things...there are two things that I want to pursue further.
 Back up a little bit, and then I want to get back to this business of
 languages... I want to confirm whether I heard correctly. Essentially,
 when you arrived during those early years starting in '67, and you
 established your presence here... And you and Jeff Alman established
 your presence. How long was Jeff here?

Aho: He was here for three years.

MSM: So you were both around when UNIX got started. At least for that
 first year you were both around. What I hear is that...you have people
 like Ken and Dennis who are interested in this new operating system.
 Dennis is interested in languages, interested in getting this into a
 high level language. You are a resource for a body of theory, of which
 people are becoming ever more awares. And, is that how the connection
 is made, that is...? Dennis and Ken haven't brought anything like this
 theoretical background to their work, out of there own background.

Aho: No...well, Dennis had worked with...his doctoral dissertation with Albert
 Meyer, who was a distinguished theorist at MIT. So he certainly had an
 appreciation for, and understood theory. My initial interactions with
 UNIX, and were those as of a user, and I really didn't interact with
 Ken and Dennis on a technical front. Except I would always be in the
 UNIX room using the system, and I would watch their process of
 development. There was a great spirit in that UNIX room, in the early
 days, of a lot of camaraderie and discussion. The real catalyst, I
 think, for getting, injecting these ideas in...these theoretical ideas
 into UNIX, I think came out of my interactions with Steve Johnson, and
 also the... I suspect the insights that I gained from Doug McIlroy, who
 used some of the early versions of the programs that I had...I was
 interested in experimenting with some of these pattern matching ideas.
 So, he had been very much of an early user of these programs as I was
 developing them. If I had appreciated the significance of what yacc
 would have done, I would have written the program back in the late
 '60s, rather than waiting for Steve to do it in the '70s. Because it
 made an enormous difference.

MSM: But you can...that was a difference after the fact.

Aho: Yes. And, I really didn't appreciate the significance of what you
 could do with it, at the time, in the '60s. And I don't think anyone
 did, because the...what made a lot of this philosophy...a lot of these
 tools go was the framework that UNIX provided. That you could have
 pipes on which you could take the output of one program, and transmit
 it as input to another program. So that the notion of filters was
 something that evolved during the '70s. And these...I said I was very
 interested in formalisms for translation. What you could then do was
 you could compose these translations along.

MSM: The pipes were really an implementation of that notion of
 translations...

Aho: Yes. Doug McIlroy, though, I think is probably the author of
 translation...of pipes. That he had written, I think, this unpublished
 paper when he at Oxford back in the '60s. I don't know whether you
 have seen it or not.

MSM: No I haven't. Because I have talked to him about pipes, but he didn't
 mention a paper. I'll have to get it from him.

Aho: You should read this paper because it's UNIX pipes. One of the
 interesting things about Doug is that he has had these great, seminal
 ideas which not everyone knows about. And whether his standards are so
 high that he doesn't publish them...or what? But it's remarkable, the...

MSM: He's emerging as the gray eminence.

Aho: Yup. No, I...UNIX would not be the way it is today without Doug. And,
 also, I don't think the work that I would have done would have had the
 encouragement, had it not been for someone like Doug. For example,
 this algorithm for bibliographic search... If I remember, on some
 Friday afternoon, I went into Doug's office, as I said, "Here's
 something that looks kind of cute." And I only had about two minutes
 in which to describe the essence of how you construct this pattern
 matching automaton from the sets of key words. There is a slight
 technical detail that you have to appreciate on this, the construction
 of this failure function - which has some, actually, deep mathematical
 implications on properties of patterns and strings. But, I just
 mentioned it in the most cursory fashion imaginable. I discovered a
 week or so later that Doug had given a talk on the basis of this two-
 minute discussion. And he had the most wonderful set of viewgraphs
 constructed for this talk - which I subsequently used. So, Doug's
 abilities to comprehend work on a broad front, and also to appreciate
 the economy of expression that theoretical models gave to the work, I
 think was very supportive.

MSM: I think that one of the continuing themes of this manifest...in the
 range of tools that are in UNIX (?)...the order in which the tools were
 developed. But it is also manifested in the way people think. Is this
 notion a language? Sure, when Brian was describing...talking about eqn,
 he said that mathematical typesetting had really been an exercise in
 finding the right language. And I had always thought of it as a
 problem with graphics on the page. And Lorinda said, "No, no. The
 graphics is easy. It was a just a question of language." You said,
 earlier on, I talked about Brian wanting to design it the way people
 talk. And, you talked about the continuing interest in the printed
 word, or, the lexical word - orthography in language as written down.
 It's a view of the world. It's a language synergy of the world, which
 is quite different from the view of the world that we talk about
 mathematicians not talking to one another, but pointing to things, or
 moving things, or, visual images. Has UNIX - I don't want to say
 ignored, but... Has UNIX tended to emphasize that linguistic turn and
 leave aside questions of more visual patterns of thinking? Has this
 been conscious among people, or...?

Aho: Well, I think you have to bear in mind, when UNIX was born, the input
 device was a teletype machine. That...and what people were searching for
 were dictions by which one could use that kind of human interface to
 the machine. So, taking abstractions that represent various aspects of
 human endeavor, and translating those into ASCII strings was the
 question of the day. When one entered a document, one had to take two-
 dimensional limitations like that of mathematics and find a
 linearization for it. The common denominator, in UNIX, for information
 is the file - a sequence of bytes. And, the byte stream has, as
 Thompson puts it, the nice property that you can compose functions on
 a byte stream. Take a byte stream as input, and produce a byte steam
 as output. It's very easy to construct a filter. That is just a
 sequence of byte stream to byte stream mappings. Um, well, people have
 searched for what is the two-dimensional analog of the byte stream.
 And, I think a Turing Award could be won for getting the right
 abstraction - something that is as ubiquitous as the byte stream for
 one-dimensional input - what should that two-dimensional
 representation be? And, what seems to be happening is that there are
 many two-dimensional representations if you go off into the area of
 CAD, the design of tools for VLSI design. The circuit can be looked at
 at many different levels of abstraction. You might be interested in
 the logical properties of a circuit, or the electrical properties of a
 circuit, or the layout properties of a circuit. In each case, you want
 to have different dictions for talking about these different levels of
 abstraction. It is the common denominator that links them. Files on
 UNIX are universal, but they might not be the most efficient
 representation. So what we are seeing is, I think, a mention of
 abstractions for dealing with different application areas. But the
 abstractions that are used to talk about electrical circuits are quite
 different than the abstractions that are used to talk about chemical
 structure diagrams, which are quite different from the abstractions
 that people use to talk about music. And, it may be the case, and, in
 fact, I feel it's the case, that what we are seeing with computers is
 just a mirror of human activity, and that information comes in many
 different sizes and shapes. These sizes and shapes represent the
 different aspects of human endeavor.

MSM: So UNIX began as...with the teletype as the major interface, with the
 file as a stream of bytes. You used a Darwinian image before. Is UNIX
 wedded...so wedded to these forms of data that it won't...it can't adapt
 to, let us say, a more visual way?

Aho: No, in fact, far from it. I think UNIX has an enormous amount of
 flexibility. I don't know whether you've talked to Dennis about the
 evolution of the UNIX system, per se, but version 10 UNIX that we run
 today is significantly different from the early versions of UNIX. What
 became very clear, very early in the game, is that computing is a
 worldwide fellowship. Computing is not done in isolation. We like to
 have access to other people's ideas, programs, information. We like to
 have it conveniently accessible from whatever appears on your desktop,
 or whatever you have on your phone. And, you'd like...at least my view
 is that you'd like to have what appears on your desktop to be very
 much like the telephone, in that you have access to the same services
 no matter what telephone you use, and, that it has a human interface
 that's easy to understand, and gives you the connectivity that you'd
 like, to both other people and to information and computing resources,
 and whatever other kinds of information resources that you want. There
 is a lively debate going on of what kind of graphical user interface
 do people want. And, it may be the case that there is no single
 graphical user interface that's going to be good for everyone. On the
 other hand, I suspect there are going to be common elements that
 everybody should understand so that, or, at least the basic functions
 people can use this tool productively in their lives. Text is going to
 be around for the foreseeable future. So no matter what kind of
 graphical user interface that you're dealing with, you are going to
 have to be able to deal with the word, as it appears - certainly as we
 know it today, as it appears in books and papers. And UNIX is very
 well suited for that. So you are going to need that kind of mechanism,
 which is, I think, well represented in UNIX. But, I suspect we are
 going to have our different user interfaces that one can overlay on
 the basic computational model that UNIX presents, depending on what
 kind of application are you are interested in. Certainly, people are
 visually oriented, and I think that being able to manipulate
 computation and resources in visual forms is going to be important.
 But, from another perspective, these are just...just manifestations of
 language - more complex languages than we've had in the past. But, we
 are dealing with different kinds of syntax; but there is a syntax
 there, and there is a semantics there. The basic principles that we
 have understood in terms of syntax and semantics still apply, except
 that we have to use more powerful mechanisms to describe them. And,
 the semantics are more complicated, especially when you are now
 dealing with issues such as concurrency - objects that can appear at
 different times or simultaneous times. Arriving at the terminal, you
 have to have some mechanisms for being able to cope with that. From
 one perspective, that's just a mirror of society, that society has set
 up certain protocols for guiding interactions; as we are having this
 conversation, there's a certain implicit protocol that we follow. If
 there were five people in this room, we...we'd exercise a certain
 protocol.

MSM: Yeah, there is...there are certainly protocols that we follow. And
 there are exchanges on the one hand, that the overt manifest
 exchanges. The way the exchange of words... We also, of course, give a
 lot of signals off to one another. We have both been maintaining
 fairly intense eyeball to eyeball communication here. Watching one
 another's gestures, and that's been part of the conversation. How we
 steer the conversation, of course, is not being caught on that tape at
 all, and therefore will never be caught by the transcript, and, yet,
 we'll be [MISSING SEGMENT] a full understanding of it. I am not
 suggesting that...you know...obviously...we have the faintest idea of how
 one captures that...

Aho: Yes.

MSM: ...record of language, record of that language, or whether it's...one
 wants to try to get computers to do that.

Aho: Well, I think the great challenge today is to improve the ease of
 use, and the effectiveness of use of the machine. And, if one can find
 successful ways of harnessing two-dimensional inputs and, in fact,
 other forms of input - why can't we combine voice?

MSM: That's been a longstanding dream of the Labs, hasn't it? You know we
 can talk to these things, and get them to talk back.

Aho: Yup. And, in fact, if you look at some of the work in Jim Flannigan's
 lab, it's remarkable what progress has been made in terms of speech
 synthesis and recognition. The big trick, and there is also another
 development that is taking place, and this is optical character
 recognition. We can put devices...paper into scanners, and have that
 automatically be translated into forms that can be manipulated by the
 machine. We can deduce the lexical structures of what's on a sheet of
 paper. But the thing that's really required to make both speech
 understanding and OCR fly is to harness semantics, and that's going to
 be a long time in coming. That if you want to resolve the ambiguities
 that are present in our language or interactions, which humans do
 naturally as a matter of course, you have to understand what's being
 said. And I suspect...you know it's rather remarkable that all I have to
 do is say a few sounds, and you immediately recognize my voice. Why is
 that?

MSM: I thought you were about to say that all it takes is a few words and
 we communicate. But the thing is that the two of us walk into this
 room, with the world, each with our own experience of the world. And
 it's an experience that at various points is intersected. Not that
 we've intersected one another, but, rather, that the world we've
 experienced has been in some cases the same world - reading the same
 books, meeting the same people, being in the same places. That has
 also aided communication. Both aids it and also can block it - lack of
 communication because of the false cognates.

Aho: I think of it as a symbol table. We have a large shared symbol table.

MSM: Okay.

Aho: Did...it might be interesting, in fact, this is a view that I have, and
 it's clearly shaped by what my background was. What is the view that
 you've gotten from the other people who were involved in UNIX in the
 early days?

MSM: Well, what I'm getting is the shared view - that people do tend to
 think in terms of languages. They do tend to think in terms of tools.
 There is this property of UNIX that struck me from the first time I
 encountered it. As someone interested in the origins of the so-called
 software crisis, I knew the problems of programming, and someone who
 had been pulled back to the subject by Joe Weizenbaum's book, and the
 marvelous view of a hacker, and this whole notion of people's sitting
 and hammering away at this machine, and writing code that works almost
 as a black box, and needs a black box for the person that wrote it.
 Now you encounter something like UNIX, which on the one hand
 represents really extremely sophisticated and clever programming. And
 then, on the other hand, if not theory driven, at least rooted in
 theory, and sensitive to theory. Programmers' development tool, yeah,
 but, also, it seemed to me a reflection of explorations in applied
 computer science. What I've been trying to get at in these interviews,
 among the many things that I've been trying to get at, is how that...do
 you...seem to be. The problems with programming elsewhere make it clear
 that it's not natural. This is the sort of thing that may just happen,
 it may be managed, it could be a question of place and time, and so
 on. I'm getting glimpses at it, but the phenomenon seems to be clearly
 there.

Aho: I'll certainly be interested in your insights as you digest more and
 more of this material and accumulate more and more of this material.
 Could UNIX have happened at some other place...? Or did it take a place
 like Bell Labs, which had a tradition of hiring people who have both
 breadth and depth, and a mathematical proclivity?

MSM: That's a good question, and it's one of the ones that has to give
 answers. There is an obvious...as I have been thinking about this...in
 what form will all of this take? There's some obvious contrasts. One
 of them is prompted by the recent book, Fumbling the Future, which is
 about the failure of Xerox to go with Alto. If one wanted to think
 about comparisons of environments - that research environments were
 supposed to be unhurried. "Let's get a lot of bright people together
 and give them time to figure out what they'd like to do, and see what
 comes out of it." That, you know, Xerox PARC is the obvious place or
 comparison that I'm about to make. And an interesting conversation
 with the person that did the first paintbrush program. He was
 demonstrating up at SIGGRAPH over a reception at the computer museum.

[BREAK IN THE TAPE]

Aho: The math center has long had a mission of doing work in fundamental
 areas. Starting off with the work of Shannon, and there's also a
 certain consultive aspect to the work that the math center used to do
 that we would be treated as consultants by the rest of the company,
 who could be called upon to help out, to help understand phenomena
 that was important to the telephone company. But, they were given a
 charter in which there were no holds barred in how they solved those
 particular problems, and some very innovative solutions came out of
 that. I think that kind of tradition was inherited by the computing
 science research center. And I think it's a good tradition to have.
 That...there were also very high standards for the work and the people,
 that, no matter who came in, you were expected to be the forefront of
 your field, and be able to interact with the forefront of your field.
 There was probably also an implication that the real contribution was
 not just writing the paper, or, in fact, in many cases papers were
 never written. But, the real contributions were the ideas, and the
 refinement of the ideas, and showing people how to use these ideas, to
 solve problems of interest. I think that attitude still persists:
 people are interested in solving problems, but solving them in ways
 that no one ever thought of before.

MSM: And in sharing the solutions with each other. A fairly small group
 that has a remarkable longevity.

Aho: Yes, um...

MSM: One doesn't see that kind of stability outside of an academic
 department. Think of the people who were involved. Here I am, twenty
 years after the event, coming in and working my way down a hallway,
 and getting most of the actors who were involved in it - and have been
 involved with it over the intervening twenty years. I can't think very
 easily of another situation in which that would be the case.

Aho: I think its freedom, the focus, and the stability, and also, I guess,
 the funding that supports this kind of activity, that there's a
 catalyst that takes these ingredients together and, once in a while,
 produces remarkable innovation. Datakit, I think, has also been, if
 one were to use the embodiment of Datakit, the fundamental idea is
 virtual circuit packet switching. This is what Sandy Fraser has his
 fundamental patent on. It was an idea, and then there was some chance
 to show what you could do with that idea. In the Karmarkar's
 algorithm, I guess, is another example of, "Here's an idea, and then
 there's an opportunity to show what you can do with that idea." First
 and foremost you need the idea.

MSM: But there's also...it seems to me there are certain ideas that emerge
 in this environment, and those that are not likely to do so - because
 of an internalization of the institution's mission and goals.

Aho: That's undoubtedly true. And, we're certainly not going to produce
 innovations in Chaucerian poetry.

MSM: Also...is there...I think Lorinda noted...not particularly enthusiastic
 about AI either.

Aho: I guess I have two views of that. A lot of the work that we do, and a
 lot of the work that Lorinda has done, many people, and many people in
 the AI community, would also call AI. But, there's more of a bent that
 we are interested in solving problems than, perhaps, putting the fancy
 buzzwords on what we're really doing. And I guess, also, people here
 tend to be somewhat jaundiced in terms of making claims before the
 experiment that demonstrates the results has been done. I think
 there's a great tragedy in a lot of work in certain areas where people
 make claims that can't be justified by scientific experiment. I give
 AI people a great deal of credit for attacking problems that most
 scientists just wouldn't go near. But, I also feel that the field may
 have done itself a disservice by making unsubstantiated claims, which
 one wouldn't do in a more scientific tradition. One of the
 publications, I think it was, perhaps, the American Math Monthly,
 talked about, "Was it necessary for AI to be able to make these
 outrageous claims for the survival of the field?"

MSM: I want to see that...

Aho: Umm...and, there you go... Sure, find it in the library. I found it a
 rather interesting perspective.

MSM: Well, there's...there's an article of an issue of Daedalus, which is
 the journal of the American Association of the Advancement of
 Sciences...no, no...I'm...I am sorry, that's wrong. What do they call
 themselves, that outfit in Boston? Anyway, it's about the artificial
 intelligence...well...the state of the field, the debate going on. An
 article by Pappert, about, in essence...

 Lorinda Cherry

The interview date is unknown

MSM: Well, how did you get into Unix? When did you first get involved in
it?

Cherry: Well, Unix didn't exist, I don't think, when I left for
Kwajalein. And at that point I was to resolve with Nolton. And, as I say,
I was gone for about a year, maybe a little more than a year. I went and
did like six months in Whippany, four months in Kwaj and then back, took
another couple months to escape from Whippany. And when I came back, Unix
existed in some very, very early action [inaudible]. I remember Doug
sitting me down at a teletype and telling me to type. A big, old, clunky
teletype. And I think the idea at that point of what they thought I was
going to do was build Unix systems, that was the assembly version used at
Unix. And each system had to be hand-crafted with the proper device drivers
and stuff like that. And I did build a couple of systems, one that we,
I've forgotten for what group they were for. But I did build a couple of
them.

MSM: Now when was this, can you give a date?

Cherry: '72? '73? So that was a job with assembly-language Unix

MSM: Yeah, I think it went over to C in '73.

Cherry: So this was '72 then. And I ended up working with, still doing
lots of text stuff. All of text tools were developed. And with Bob Morris
and Lee McMahon, doing the Federalist papers from this paperback, all of
them, taking turns typing.

MSM: What was this, to redo Mosteller's stuff?

Cherry: This was to see if we could confirm or deny who wrote which
papers.

MSM: Yeah, this is Mosteller's statistical analysis of authorship.

Cherry: We never did come to any conclusions, I don't think, but we
developed lots of tools for processing text in the process. And this led
to some other statistical stuff that led to typo, which is one of the early
spell-checkers, really was a typo checker. It worked based on trigram
statistics. And there was some compression stuff based on trigram
statistics also. And I can't remember which came first, whether typo came
before the compression or if the compression made life to typo. Way before
spell, again I could find a year on that. When spell got good, typo got
dropped, although it still turned out to be a somewhat useful program.

MSM: For other reasons or other applications? The serendipity factor in
Unix seems to be quite high.

Cherry: Yes, it is. Very high. And there was this flavor, other people
probably talked about this, but it was group dynamics all going on up
there. We were all up in the sixth floor. Although I think I worked
mostly in my office and visited the sixth floor with questions, [inaudible]
the sixth floor. But there was this attitude, there were all these little
tools built, and it was the idea of pipes that just kinda, of stringing
things together, that was all neat and wonderful. And there was this
attitude that he who touched it last owned it. So if you needed pr to do
something pr didn't do, and you went and added it, you now owned pr. And
so if some other part of it broke, you owned it.

MSM: You were now pr's support.

Cherry: You were pr's support. Yeah, so a lot of the programs floated
from person to person because somebody would add a feature to sort, and
they owned sort. Somebody else would add a feature to sort and then they
owned sort.

MSM: Actually, let me back up a bit, because you talked about coming back
from Kwajalein, breaking away form Whippany and then said they put you in
front of teletype. But how did you know about this at all. I mean, did
you seek to join the group or were you looking around for another
assignment?

Cherry: Oh, see, well, I transferred from, the Kwajalein experience
was, I really loved my job and I was not thrilled with it, going into
Kwajalein in the first place. And my husband had done two tours of
Kwajalein and really wanted to go, and the chances of coming back with what
at that time seemed like a large amount of money, 'cause he didn't pay
taxes at Kwajalein. And we would be a two-salaried couple at Kwajalein and
there's almost no expenses in Kwajalein; their housing's free, your
entertainment's free. You buy food and you shop. You buy things and you
store money away.

MSM: Not a lot of shops in the quarter-mile area.

Cherry: You did a lot of mail-order. Everybody bought crystal and
china and the best electronics. Go and you name it, they had it there. No
car to support and actually there were only about four technical women on
island, that whole experience. It was interesting in itself. They didn't
know what to do with us, there were various perks that they didn't feel one
couple should have twice and I figured I worked for it too. That was the
way it went. I fought a fair number of battles, going out there, but I had
transferred, I had worked for Nolton but in Flannigan's area for about a
year and I finally managed to get transferred into this area. I took
myself to see Morgan, but don't print that. And so I had been, I guess, in
this group for about a year when we got the opportunity to go to Kwaj. And
I extracted from Mr. Morgan a promise that when I came back from Kwaj I
could come back here. Now I didn't know if whether he'd still be here or
whether he'd remember his promise. And then we were supposed to do a 18-
month tour of Kwajalein and my husband had an ulcer that kicked up after
two-and-a-half months and they were not willing to let him go to Honolulu,
have the surgery and come back. They just said "out." And so we were
there basically two-and-a-half months, actually. And we hadn't sold our
house and it hadn't rented, so we had a place go back to live. But we'd
sold our cars and he'd sold a boat, and all the stuff you do when you go
abroad for eighteen months, we'd done. We shipped off all our household
goods a month before we were supposed to go, and everything you consider
essential, you can't live without, you pack it all up in a box and ship it.
 Well there was a strike on the West coast and so our box went from New
Jersey to the West coast. We lived without our stuff for a month, we got
to Kwajalein, there was a strike. The stuff got to Kwajalein a week before
we were due to be shipped back and so everything we considered essential to
life was in transit for about six months. Just unbelievable. I mean we
opened the container to shove some stuff in that we bought, and we left
stuff there, we left the dishwasher there with the bicycles and stuff. It
was a very traumatic experience.

MSM: It must have been.

Cherry: And I got back to Whippany, and they wouldn't let me escape. I
mean, they had done all this personnel and who was shuffling where and
whatever, and they wouldn't let me escape for a couple months. But as soon
as they let me escape I was back here.

MSM: What attracted you here, to this group in the first place? What were
you going to work on?

Cherry: I had been doing support programming, FORTRAN programming for
Flannigan and Schroeder, who were down there. Almost exclusively FORTRAN
programming and after about a year-and-a-half's worth of FORTRAN
programming, I realized that this could be speech signals or soy beans, it
didn't matter what it was. And it was very boring for programming
somebody else's ideas and that time I wanted to do systems work and
couldn't get transferred inside and actually sent resumes outside to a
bunch of places and was overqualified for all of those jobs. It was in the
days when everybody was training their own. They'd bring you in green and
train you on their programming language 'cause they'd bought the system
with no software so they had their own unique system. And so it wasn't
easy to be mobile back then, not like it is now. So I hung out there a
while and I managed to, I don't know how I ended up working with Ken. That
was real interesting work that led to those pictures behind your head
there: 3-D ball and stick models of atoms.

MSM: So you were working with Ken Thompson?

Cherry: Ken Nolton on graphics. We did E-flicks and we did the atom
stuff, those were the two main projects. I'd done some graphics and some
other stuff. I can't remember how I got in with Nolton, except we did some
signed processing with Manfred Schroeder also back in those days similar to
this stuff. I believe that [indicating a photograph on the wall] was done
by Leon Herman. But Schroeder and I did a similar picture, maybe even
before Herman did, I'm not sure now, that was used in the Experiment in
Arts show at the Brooklyn Museum that had some [inaudible]. I believe
that's the first time I met Herman, and we did the cover of the program in
this style with a picture of the Brooklyn Museum but with a text of the
dates and name of the show and that whole business. But the same idea.
And we'd done some other picture processing, I think it was an offshoot of
Speech. And that's probably how I ended up working with Ken. Also Jim
__ was not happy doing what I was doing. So he was like, let me loose to
something else but don't quite let me loose, that kind of thing.

MSM: So you got involved in Unix essentially as a programmer, assembly
language programmer.

Cherry: And did bunches of several little tools, most of which have
since totally disappeared. There was a form letter generator and form
letter editor. Either Bob or Doug was one of the ACM editors, so we did
this thing for all their correspondence and stuff. It died 'cause no one
was interested in rewriting it in C when everything went to C. dc, the
desk calculator, and the storage applicators were translated into C. And
every now and then we still find bugs in them. It's been fifteen years and
we still. About a year ago, we still have the assembly version around
here. I can go to the assembly when I got a bug report. I went back and
it was in the original design. It wasn't one I'd created in changing
everything to C. Divide, it's always the divide element. It does digit-by-
digit long division and getting it right used to be very hard.

MSM: I'd mentioned how people found their projects. You get a good person
and then give her a chance to find her project?

Cherry: They don't give projects here. You invent your projects. Now I
was promoted to MTS in '76 and so before '76 I was almost always
collaborating with someone and it was mostly me doing the programming,
although we certainly it. I mean, Brian and I both did programming on eqn
and that was a real collaboration. I think a lot of the stuff I had with
Morris was more an honess to his programming, and then from '76 on I was a
full member of staff and it was a somewhat different kind of collaboration.
 The compression project, I did all the work on that. I came with a phone
company. They had this giant phone book and it had this wonderful
possibility for compression and the way it was stored you could compress
pieces of it and store it in little blocks and they had major update
problems and a bus schedule to meet and all sorts of other stuff. So it
was like, how can we compress this cheaply but save ourselves a bunch of
disks? And that was where some of the ideas for the trigram stuff, to take
the largest strings based on trigram statistics.

MSM: What are trigram statistics?

Cherry: Three-letter combinations. The way that worked was if you had
a word ten letters long you do a running three-letter statistical
computation and you get ... and you can go off and grab the statistical
string that had the greatest payoff in terms of compression and...

MSM: And they get compressed by what?

Cherry: You take the whole string, if your ten-letter work had maybe a
trigram that was six letters long that had a high enough count to be
worthwhile, you pick that entire six-letter string off and store it in a
dictionary and replace it with a byte and then with an index into the
dictionary. And then we further Huffman-encoded it. There were several
levels of compression, and I don't remember all the details anymore, it was
a long time ago. But the thing that was so unique about it was using
trigram statistics to pick the strings 'cause this stuff, as I remember,
had data as well as ASCII, I think a thing that ordinary compression
techniques that were known at the time, it didn't work. We wanted to see
if we could compress strings that were longer, you know, as long as
possible. I think trigram statistics worked well for that. I think typo
must have grown out of that, as opposed to the other way, now that I think
about it. I think that trigram compression stuff came first, then I think
the we said "aha, I bet we can use that for finding typos." I would have
to go back and look at something and see which way, which was the chicken
and which was the egg, on that one.

MSM: You then got involved in Tech preparation?

Cherry: Yeah, eqn came about right after Hannah got troff [inaudible].
You could do this stuff, but how could you do them. As I remember, Brian
had a summer student who worked on the problem for a couple months. And he
left and it was still good so the two of us picked up and started working
on it. Brian may remember that differently than I do.

MSM: I talked to him about eqn, we started to talk about [inaudible], a
problem in language, I didn't think about it as a problem in graphics.

Cherry: No, the graphics is easy. The hard part is getting a language
that you can teach to a math typist that will just flow off her fingertips
to complicated graphics. I think the language part of that is what was
neat about it. It's still what's neat about it. The graphics part of it,
I think Tech is still better as far as what EQN does and what Tech does.
From a mathematical standpoint I think you'll find Tech better, but I don't
think Tech stuff is anywhere near as natural to work with. That may be
very prejudiced, I don't have a...

MSM: As a historian, well I don history of math so it has a certain amount
of math typeset in there. So I'm used to EQN. I must say it's good enough
that I'm not tempted to go through the work of learning Tech and make the
transition.

Cherry: Yeah, I've had to learn Tech in the latest thing I've been
working on and I've found it very painful.

MSM: You said you got your Masters at Stevens. Is it in math or computer
science?

Cherry: Out of the math department, but in computer science.

MSM: Did you have to design that program yourself?

Cherry: No, it was in place. I finished that in '69.

MSM: Did you find that curriculum by and large supportive of what you're
doing here? Was Stevens' idea of computer science was and this research
groups' idea of what computer science was, the same thing?

Cherry: No, the computer science aspect of what I took at Stevens,
things like Turing machines and numerical analysis, which I didn't care for
even as much as I love math, I could not get into that. But there wasn't
really a compiler course. It was very early in their computer science. So
although it had computer science leanings, it wasn't much of a computer
science curriculum really. Much more heavily in math. When I started that
I was in Flannigan's area and that was quite appropriate 'cause I was
working with all the engineering, quark models, and differential equations,
and simulations stuff. And so it dovetailed into that perfectly. And no,
it didn't fit here at all. But I don't know where you could have gone for
a curriculum that would have fit here. In fact, I'm not sure that anyone
who was here at that time was really a computer scientist. I think
everyone's training was in something else - it was in math or engineering.
It was sort of a pre-advanced degree of computer science. Programming
courses, yeah, but not a lot with theory out there beyond the Turing
machine.

MSM: So the theory sort of caved the group while you were here working.

Cherry: I think so, yeah.

MSM: Did you notice it slipping in the door? Did you see it coming?

Cherry: Certainly, a lot of the compiler theory and stuff. I think it
sort of came __. Compiler theory's gotten very strong and I don't think
it was back in those days. I'm not a real good theory person, I'm a
practitioner. I'm off to write programs with any excuse or any activity.
A lot of the things I'm involved in outside of here still end up involving
programming. Maybe that comes from working here.

MSM: Oh really?

Cherry: When I was showing Dobermans, I did statistics on judging,
published articles on some of the, did publications on who did what to whom
and whether judges seem to have color biases, whether judges would put up
puppies or they would only give points to the adult dogs. Some very angry
people, if you show them what the statistics said.

MSM: The reason I was asking that was that one of the things that struck
me from the beginning about Unix was that on the one hand the elegance,
professionalism. The coding, on the one hand, really clever coding. On
the other hand, the way in which everything seems to have, if it's not
driven by theory it at least has some theoretical point to it or at least
some theoretical foundation to it. So that it's highly disciplined and has
a purpose.

Cherry: There's certainly some discipline in what's allowed to hang
around and what isn't. One can watch that in whatever manual is produced
and Doug starts throwing programs or people start, rather than document
this file were going to remove it. It's not really necessary, there's
another way to do it.

MSM: But what constitutes documentation? I mean, does a documentation have
to be of a certain , does one have to justify in terms of
practicality? I can find a use for it therefore it stays?

Cherry: That's hard to say. If you look at the Berkeley Unix system
and some of the commands that are similar, the same in Berkeley as what we
have here but you look at the Berkeley manual they've added 85 flags to the
Cat command or something. It was a very simple elegant thing that did a
very simple job. I guess we've always had the attitude that it has to be
really useful to be worthwhile putting in. Maybe just 'cause it was a
smaller group than at Berkeley or maybe people in Berkeley, everybody needs
to find a niche so they've got to put a flag on something, I don't know
what the environment is there. But I think it was here to prevent
featurism. I think that's the difference between the two systems. And I
think that undoubtedly has to do with the university environment where
everybody has to do something as opposed to the environment where in some
sense everybody had to justify what it is they were doing to your cause.
And there is also some hesitancy 'cause it you touched it you owned it, you
thought hard about whether you needed to add that flag or whether there was
some other way around it. Whether there was some program. You said "I'll
find some other way to do this 'cause I don't want to own this program."

MSM: How long did that continue? Owning?

Cherry: Gee I don't know when that went away. It persisted a while
after things were in C. {} It was certainly the attitude. And that did
give you pause. [laugh]

MSM: It seems like a {} marvelous, marvelous way. I've got to think of
some way to impose that on my colleagues. You teach the student you own
her. [laugh] she's your responsibility. The text preparation program, if I
understand correctly, was some thing that got started up as a joint venture
with human...

Cherry: I thought it was with the patent department

MSM: my understanding was that the patent department took over the device
but that it originally started with something {McMahon} and Max Matthews.

Cherry: That may be how they got Lee, {John Degrew} who did a lot of,
as I said, statistical stuff and things of that nature, but Lee I can't
remember exactly when He came on the scene. Um, may be on line somewhere
because we put together some stuff for him {} and some dates and things.
So I may have been on line. It was um all done from people's memories.
Although some of it certainly from the employment records and when he
actually switched cause he was, he was department head in {ops} center for
a while he did the snake there and I think he came to us from there
although he may have made he may have gone through Max's area on the way to
this area. I'm not certain.

MSM: How did this, the um statistical analysis of text was this a research
interest that people had or was it written by some practical ...

Cherry: I think it was research sort of the attitude back then at least
my attitude and what I thought was sort of the prevailing attitude um and I
still consider it, its still an attitude, um if asked what it is I do I see
what kind of neat new things I can make the computer do and in those days
the computer wasn't doing a lot, but it was super-interesting and there was
a lot more stuff you could make it do. And things just kind of evolved
from sort of that attitude. Oh, we've got all these new tools what can we
do with them? One thing we can do is some statistical analysis of text and
see where that leads us and we can do it on gobs of text now instead of the
hand-counting text that had been done Now that computers had upper and
lower case that's another thing that changed with UNIX but um was the case
recognition. DOS still doesn't recognize case in some sense. DOS {} its
command line which is upper case you can type lower at it and it will type
upper at you. But there's the case distinction I think we've been ah
something was new and that lets you do different kinds of text analysis or
statistics that then had been done before. Interestingly enough I had a
call from somebody from Adobe um about a month ago looking for some text
statistics. Because they took out {} their caching stuff on the on the ah
printers. Bob {lianov} had {} our own text statistics in {ATT} tech um
you know that accounted for punctuation and blank space and upper/ lower
case things of that nature.

MSM: Is this {writer's} workbench or were you involved in that project?{}

Cherry: I'm certainly grandmother of that project. Um That was another
serendipity Um project um that all evolved from um a program I wrote for
finding part of speech running English text. And part of speech project
started because um {Brent} Aker had the office next door to me and he had
just gotten the um the votrex machine and there was some um I think Doug
wrote the speak program that ah {} through that machine and there was
interest in adding proper intonation um {} intonation to emphasis ah to
speak and {Brendan} was working on that and you need part of speech to do
that properly you need it for syllabic stress perfect and perfect and that
whole class of words that's stressed differently depending on {part of
speech} and you need to know the part of speech to know which word in the
sentence to stress um and so Brendan was working on the stress part of it
and I was working on the part of speech part of it and ah he left to go
teach at Michigan before the stress part of it uh ever materialized and I
had this part of speech program languishing for something to do. And Doug
talked to ah a guy who was actually working at Princeton Bill Bestry {} in
the English department and one of the things he had his students do was
count parts of speech in things. {} we can do that automatically and so
part of speech program that turns out a few, there are various things you
would count and look at using parts of speech to decide whether you've got
a compound or compound sentencing sentences types, so the part of speech
program turned into the style program. We added some readability stuff
{from the books down the hall}and we read as many things as it made sense
to count and at that time um there was a human factors group in Piscataway
um to which Nina McDonald was a member and I think she worked here maybe
for a summer while she was {} before she finished her degree and her
husband worked here and one of the things that they were suppose to do was
um one of their main jobs actually was look at documentation and decide
whether it was reasonable from a human factors standpoint. {} They were
interested in funding some way to ah getting all this stuff um you know
what can we do we analyze this stuff and decide. And so we ended up
working together. By {} for them and they put this layer on top of style
and diction um and the whole thing turned into writer's workbench and that
was sort of a back and forth with this development group and they'd do
things and I'd take it and send it back did a {very much extended year
probably} maybe more than that kind of back and forth with them. Gee what
new thing can we measure or what new thing can we find um it never really
did check grammar because you need a you need a real parser to check
grammar. And so it does as much as it can with out having a real parser.
There's the problem of having a real parser that's going to parse incorrect
English anyway. That's not a problem I think is going to get solved in a
big hurry {} Somebody has one that's using {} and a dictionary that does a
fair job at some kinds of grammatical {} That was a fun project because
Lance Miller at IBM was developing epistle at the time we were developing
writer's workbench. The two projects paralleled and we'd go to we'd go to
conferences and give talks and he'd give his epistle talk which was based
on a real parser written in LISP, it took three minutes to parse a sentence
and I would give my writer's workbench for style and diction talk and at
that time part of speech program was running at something like three words
a second on a rolling seventy and so it was feasible to parse even on 1170
it was feasible to run this on a reasonably large paper. And it wasn't
feasible to run a real parser on reasonably large paper and everything's
gotten faster um probably the part of speech program wouldn't have been
developed at {} cause it was very constrained and design requirements from
where it got its basis name when it was part of this small string of
programs that was learning to speak to the {vocoder}. Um and what was what
turned out to be interesting the parallel continued and writer's work bench
went to Colorado State for a sort of a beta test in their English
department and they use it and loved it and you know it has sort of since
become a project {its..} its out there in English departments um IBM did
their beta test I think at Chicago and it fell on its face because it was
presented with this incorrect grammar that the students were writing and
the parser couldn't cope with it um and I think the whole thing ended up
getting canned [phone] and parts works because its got a press-on-
regardless attitude it's going to assign some part of speech and go on and
it may not be write, but statistically across the paper it will be. And
its that press-on-regardless instead of taking ah building this tree that's
got twenty different possibilities that you know a real parser ends up
having to do um that just doesn't fly in the face of ah student text.

MSM: Is writer's workbench being used?

Cherry: I believe its being used. About every six months they try to
resurrect a group um or they assign somebody else to it so it must be still
out there lost track of it and ah the person who's in charge of it seems to
be a moving target the actual technical person who owns it but I believe
its out there in {} being sold in {} and some high school and college
English departments. I haven't talked to Colorado recently to find outs
what's happened, they are still writing papers about it so that must say
they're still using it.

MSM: We talked when we were going through having {} how we were going to
spend the big IBM grant for computerization at Princeton back in 1984. The
idea was gee we ought to get writer's workbench. It turns out when people
think about computers and education today first off, the scientist and
engineers know exactly what they want to do

Cherry: Right, the humanities folks do not

MSM: And the humanities folks don't

Cherry: And they're afraid

MSM: {} To use it as ah writing as a tool for teaching writing and then
the question well what tools have we got for doing that and ah that's where
it sits right now. I was wondering if other schools were {} I ran my own
stuff through style the other night so

Cherry: Uh-huh, at the time we were working on style and diction Andy
Tannenbaum was here and he was across the hall working on a book and
they're some interesting human factors, things about diction in particular
um he had done the first couple of chapters. And he ran the program on the
first couple chapters and it gave him all this output and it worked and
what happens if you use the tools and you're in a large writing project at
any rate is the kind of wordiness that it points out to you. You stop
writing=2E So it self-destructs. By the time you write the last chapter,
you're not writing that kind of prose anymore. My feeling about a lot of
those tools is there value in education um is as much pointing out to
people who are learning to write that they have choices and make choices
when they do it. They don't think of a writing task as making choices per
se. Once they get it on paper they think it's cast in stone. So it makes
them edit.

MSM: Yeah, that and computers exacerbated that problem. I've f{ough}t a
like {mad} against the proliferation of laser printers on campus. The
computer people all want them in there and my attitude has been, "Look, you
keep telling them to use the word processor because they can then treat
their writing tentatively and they can go back and make corrections and re-
write and re-write um and let's set aside the whole problem of yes its
easier for us to re-write but its not any easier for us to re-read

Cherry: Yes

MSM: Um but when you put a laser printer there they get it off the laser
printer and it looks so good it...

Cherry: must be okay yes it must be okay cause it looks pretty.

MSM: That's right {} from my point of view I'm getting the same junk

Cherry: The same garbage, only it's pretty [laugh]

MSM: But it does, the hardest thing with students is getting them to
appreciate a sense of voice, that is, you talk to different people
different ways, you gotta have an audience in mind, you got to choose what
you say on{}, you're not writing for me. This paper doesn't sound like
you, have you ever tried reading to your roommate and asking your roommate
if it sounds like you [laugh by O]. "No, I've never thought of ever
reading my paper out loud." Not even to yourself, I bet. "No, not even to
myself" Well, why don't we start there. And you know so fundamental

Cherry: Yeah

MSM: Then we'll start working on writer's workbench. When we've got you
with some sense of audience then we can talk about what readability index
might mean or we'll talk about variety of sentence length

Cherry: Yeah readability indexes are real iffy, questionably things the
reason writer's workbench computes readability um first of all, they wanted
it in there and I said, "Okay we will put four different readability. I
grabbed every readability index I could and put all four in there, because
it's obvious when a it computes four different ones that it's a moving
target. And when they put the section in {} prose, um they were going to
report readability to the decimal place. "No decimal places, just give 'em
rate." Cause you get supervisors around here who will say, "No I want at
this readability index." So I made them give a range or at least not
report it, report it in such a way that it's a questionable number. I
think it says something about text um but I don't think you can write to
one. {} Nor do I think you can go back and revise to one. It has to do
with voice and audience, word choice - you can choose monosyllabic words
that everybody understands and get a high readability index and you can
pick small words that nobody understands and get a low readability index
and you're going to have the opposite effect on whether people can
understand the document.

MSM: Did UNIX lend itself particularly to this kind of work, er, was this
the sort of thing one could have put on any system?

Cherry: It lent itself to the kind of work because it was time-sharing.
 You could do stuff in the background. It's hard to remember not having
multiple windows and multiple things and so it's hard for me to step back.
Computing today is a lot different from what it was then but computing then
it was my first experience with a time sharing system. I didn't do very
much on the Honeywell system {} um but it was still slow and um maybe part
of that whole UNIX thing was that there were just a few of us on this
machine and response time was pretty quick and you could think about doing
things that would take forever and they wouldn't charge you or wouldn't
take forever but{} some other environment There was no charging so you
didn't think twice about running something which used to happen if you had
a computing budget there was no computing budget involved with UNIX. We
were inventing ways to use all these cut little programs that would string
together. That was all in the concept. Um {} using other programs, very
special, specially developed programs that do their own little task very
well, adding to that, that pipeline. I can't remember when I didn't think
that way, but there was a time I didn't think that way I know it [laugh].
And that kind of thinking sort of came along.

MSM: Yeah, {} that's happened with {}. Basically laid down my question.

Cherry: And so, yeah I think all those nice little pieces if you wanted
to sort something you didn't have to think about writing sort, sort
existed. And you could think about may be using "said" to call out exactly
what it was you wanted to sort um. Just the concept of putting all these
pieces together was new. Those kinds of programs didn't exist except as
big monolithic things. And so I think that did lead to a lot of the
interest in doing some of the other text stuff that hadn't been done before
and things like that.

MSM: {} Textual flavor to UNIX.

Cherry: yes.

MSM: It's just sort of built into its basic design.

Cherry: {} because we were all editing programs. We wanted to it, the
editors and things all came about they were off shoots of other editors um
{}. Maintaining programs is maintaining text. {} of a group that's
maintaining and writing programs which we view as text and publishing
papers um I think that's where a lot of it came from. They were tools that
we were gonna use ourselves. And that's different than writing a system
for somebody that where you don't plan to use it. It's not part of your
day to day living. Also it's a funny group. I've had a friend who works
in acoustics now and talked to later. It was a McLaren a real, live
McLaren seven liter. [laughter] {What a thrill [from somewhere else]} You
got it. I had a ride around a race track in a seven liter McLaren two
weeks ago and I'm still walking around {} hot. Um in some sense it's a
very tolerant group from a computing standpoint. Um {} down the hall who
use computers in a different way. Um would not tolerate a lot of what we
would tolerate and that's because we all belong to the programs and if
you're intolerant of somebody else' program they're {} going to come back
to you when they find your bug. Um {}the person that lent most to a lot of
the flavor of um maybe not the flavor of the programs, but the robustness
of the programs is Bob Ross. I was asking Doug if he wouldn't {} talk to
him. I think you should. Bob was a person that if you thought you had a
program that worked you went and said, "Bob, I think this program works."
And if it was expecting ASCII text he would feed a {core} dump to see what
it would do. He would do the absolute unexpected to your program and you
would end up going on and making sure your program survived whatever it was
could be feed. And he just had a tendency to break things intentionally.
That's his specialty, just like security's now a specialty, breaking
programs is now a specialty. [laughter about son] He did not fall far
from the tree.

MSM: I thought it was so ironic. I re-read {} came to talk to Ken I re-
read his Turing ward lecture and I thought how ironic that it should be
about Morris' son who...

Cherry: No, it's absolutely appropriate, absolutely appropriate. Just
the kind of {} nut, really the kind of thing I don't. Morris Sr. wouldn't
have had the bug in it.

MSM: [laughter] Okay.

Cherry: He would have tested it enough to not have the bug in it. This
is the next generation computing you're looking at here.

MSM: [laugh] I didn't think there was entropy in every situation

Cherry: Right. But no Bob had this unique ability to be able to break
things and he'd break 'em and they'd get fixed. I really think that's one
of the reasons that the tools are so powerful because they're so good. And
they're so good because they're very, very robust. And ah you feed them
things they don't expect and they at least

BREAK IN tape, switch sides

Cherry: The 11/45didn't have hardware protection. So you'd write a
program, and this was where some of the inter-communications stuff came
from I think um. Before you typed 'a.al" to try that program you
broadcast I'm going to type "a.al" because you might bring the system down.
 You never typed "a.al" from home because you might have to go in and flip
the switches to restart the machine. {laughter from M} And you know when
you were editing something it was a write early and often. It was
somebody's going to try something that's going to bring the system down,
and ah that added to the interaction a lot. You have to interact with
everybody. You had to tell 'em you're about to run your new program that
may well bring the world down.

MSM: Well also that ah gets backs on the notion of tolerance to though
because

Cherry: Yep, you had to be tolerant {} you looked I mean you did a lot
more I mean programming then was very different because you really eye-
balled that thing before you typed "a.al" in hopes that it wouldn't bring
the system down. Cause it was an embarrassment to bring the system down
three or four times in an afternoon. You got a reputation, you didn't want
that reputation. Um so there were some group dynamics that worked there ah
I think the ah fact we all had terminals at home or shortly might have
terminals at home {} without things like the UNIX write command you needed
the write command anyway to tell everybody you were about to crash the
system maybe [laugh] ah but there was a fair amount of dialog that was pre-
mail um there was a fair amount of dialog that went back and forth. You
had a question and you'd write to somebody and they'd write back.

MSM: So they started talking to each other...

Cherry: Talking to each other through the machine. Very early {} Very
early on. Um I mean it was a necessity because you could bring the world
down. But it did change the, it added group dynamics that wouldn't have
been there in other systems {}

MSM: You never worked on a system like CTSS

Cherry: No. {} No, we had TS setup in the GECOS time-share system and
worked on that. {} I don't remember just {} that was down there and that
was working on your own project and when you were {} there was no real
reason to communicate.

MSM: But the reason here was in part just because you had to let people
know you were about to try something.

Cherry: That's right.

MSM: Well that's another way of being hard{} determined, when you talk
about the extent to which the hardware has given shape to it.

Cherry: Yeah um and things in the operating system changed as a result
of typing things. If you remember typing split, so that some huge file
could {} papers I don't remember how long it was but I had this huge file
that was too big to edit. The editor wouldn't take it. So{} split it up
into pieces or maybe I was splitting it up into pieces for something else.
Meant to type split 100, split it into a hundred files, and I typed split
1 ran it in the background, hit return, and went home. [snicker] Got home
and I now had this directory full of files named with unprintable
characters that I couldn't delete. And I couldn't, I couldn't use the wild
card characters, that's vocabulary coming from MSDOS bite my tongue, I
couldn't us * and ? cause it produced lists that were too long and it took
me all night I think to get rid of that mess that I created and I think I
crashed the system in doing that as I remember. The system ran at a I node
{} something {} changes. But you know there were various things like that
that happened and you said, "Whoops we need to change that or we need to
test that or whatever." And part of that again was this group of people
pounding on these programs in ways that I think programs are usually not
pounded on um.

MSM: {} bout the tolerance. It's also a UNIX way of doing things.

Cherry: O yeah.

MSM: {} ethos

Cherry: There's a UNIX attitude.

MSM: a UNIX attitude and ah, do you have a sense that that's blocked
people from following other lines that ah does UNIX hold people back?

Cherry: Gee, I don't know. I think in UNIX. [laughter] So it's hard
to say. But it is an attitude. I {} the number of times I've wanted to be
able to grep a newspaper or a book for something I know is in there. But
there is no physical version of grep [laugh] {} vocabulary um. I don't
think it blocks. In that the basic concepts, the thing that make UNIX
UNIX, at least to me, is the notion of building blocks and breaking things
into small pieces, divide and concur type thing and having those small
pieces do a specific job very well. I don't think that's blocking ah,
somehow that makes more sense than writing a monolith which is the other
side of it that I keep encountering. I just bought my mother a new PC.
I'm having to learn some MSDOS, which I did not want to do. I keep hitting
these monolithic programs which I can't get out of and I can't make them do
what I want to do. And I don't think MSDOS, I think differently, I don't
think PC, my instincts aren't there, and I don't want to read the
manuals=2E [laugh] I want to be able to sit down and do what I want to do
and I can't do that. It's very frustrating.

MSM: That's funny because though I, I learned UNIX and CMS before I ever
learned, before I ever had a personal. I nonetheless went the IBM route
and I'm glad I did. Um, but it's always struck me the reason for that is
that DOS, I feel more comfortable using DOS because of the UNIX.

Cherry: Well, it's UNIX-like. It's UNIX flavor and it's UNIX-like, but
its not enough UNIX-like um. The idea that . is an idiom and doesn't
mean star dot, the dot is not literal. The idea that that's an idiom
offends me.

MSM: I see.

Cherry: You got a real meaning in UNIX. Um there are lots of little
things like that ah that are just backwards. I can't get pipes to work on
it.

MSM: That's why I like it.

Cherry: And well, then I must have it set up wrong. {} I can't get it
to find the second command in the pipes without having a full path name in
it. Don't know how I {} talked to some people who say, "Well, people don't
use pipes in DOS."

MSM: I use it all the time.

Cherry: No as I say, I might have it set up wrong. I've only had this
machine for a couple days to myself.

MSM: What I've done is to go get Polytron's PC version of AWK.

Cherry: That's what I need is AWK.

MSM: Okay. It's nice, you can get it for 85 bucks. And it follows the,
in fact what they do they say its 85 bucks if you don't need the manual.
If you already have the manual you get it at a lower price cause the manual
is the manual.

Cherry: Yes, okay.

MSM: And ah, so you can do things. For instance DOS doesn't come with a
um way of finding out how many bytes are in a directory. It'll give you
total number of bytes on the disk, but not in a directory. Turned out
that's a very simple program, if you pipe it from directory.

Cherry: Oh yeah, I program in AWK lots. I program in SED also which is
a little strange

MSM: It, it did respond well to a UNIX mentality which is well I'll just
take the output for directory and now I'm going to have to strip off the
first two lines. But I'm going to get this text and therefore this column
is going to work...

Cherry: As I say I may have the configuration table setup wrong it's
entirely possible. But I couldn't get it to recognize more at the end of a
pipeline without giving it a full path to it. I was very annoyed. It
would recognize it with a full path and it would recognize it if it were
the first command but not if it was in the pipeline. So I don't know what
I've done wrong. At any rate that's a diversion. Except one of the things
that blew me away when I bought this machine. I bought {} the 1200 with a
hard disk. And it's the size of your case, in fact your case looks very
much like it's a carrying case

MSM: Yeah, now I have. I have an 1100+

Cherry: That's why the case looks familiar.

MSM: My 1100+ case fits right next to it.

Cherry: Right, but it would fit in it. {} That machine is so much
bigger and so much more powerful than the 11/45we started on. It took up a
whole room. That just blows me away. It just blows me away. [laugh] It
weighs ten pounds and its got a hard disk, a twenty meg hard disk. And it
costs two thousand dollars. I just can't believe it. Not all that long
ago we were announcing to the world we were about to type "a.al" because
there was no protection on the hardware. And I think the biggest program
you could run was 64K or something crazy like that. So it's, it's changed
so much.

MSM: My daughter just got rid of her PC from several years ago. Bought
one of these two-floppies to take back to school. She'd like to{} rather.

Cherry: The other thing that boggles my brain is that it's battery
powered. I'm trying to learn how to use this thing and{} I'll just take
this thing in the living room, sit on the couch and play with it. [laugh]
That concept still blows me away also.

 Joseph H. Condon

The interview date is unknown

MSM: How did you get involved? When did you encounter UNIX?

Condon: I don't know. I mean I guess I was in. I moved out of
 physics and moved into a project for Hank MacDonald. Local area
 switching, and that was in room 13. It was in this hallway on
 the fourth floor. That was one of the systems used on some of
 the computers. Later on there were other people who had small
 operating systems running on Honeywell 516s. It didn't really
 do any real numerical computing. It was just an operating
 system that somebody else provided that had the right properties
 and was easy to use. I've never been much interested in the
 operating system. When I finally did join this group, which
 were really because of political personality problems with Hank
 MacDonald in Division 13, I came over and asked Sam Morgan for
 a place to sit and something to do. From there Sam found
 problems. So I was learning UNIX at that time with commands
 that were there.

MSM: When was that?

Condon: I don't know, maybe fifteen years ago.

MSM: The early 70's.

Condon: Yeah, the early 70's. Anyway, Bob Moore who was in the group
 would come around and say, "How do you understand what these
 commands do? The manual pages aren't all that clear." He would
 say, " What do you think is the reasonable thing to do?" Try
 some experiments with it and find out. I think that was a very
 interesting clue. At least his philosophy and some of the other
 people's philosophy, of Dennis's also, of how system commands
 should work. It should work in a way that is easy to
 understand. It shouldn't be a complex function. Which is all
 hidden in a bunch of rules. The field of cognitive engineering
 with the idea, I think the concept of cognitive engineering is
 in later or was independent of these guys. The idea is that
 people form a model. You present them with some instruments,
 tools, like a facet, electric stove or something like that and
 demonstrate how it works. They then form in their heads a model
 that shows how it works inside to help them remember how to use
 it in the future. It may be a totally erroneous model of what
 is going on inside the black box. What in fact is going on
 inside, I think Bob Morrison is telling me, I know he felt this
 way, is that the black box itself should be simple enough. Such
 as when you form a model of what is going on in the black box
 that's in fact is going on in the black box. Write a program to
 try and outwit and double guess what they're going to want to
 do. You should make it such that it is clear about what it does.
 Nobody's ever talked about it. As far as I know, I'm the only
 one that's ever discussed it.

MSM: Maybe other people will.

Condon: You tell me.

MSM: It's interesting. It's of a piece of what people have been saying.
 Indeed a piece of what myself felt as I've encountered it. This
 notion of people forming models and things. In an idea some
 engineers grasp it whether they verbalize it or not and others
 don't. A fellow, Don Norman was doing this.

Condon: Yeah that's exactly cognitive engineering.

MSM: Talking about the design [interrupted]

Condon: Most of it's bullshit but there is a core of good ideas you
 have to pay attention to.

MSM: It's funny because I was thinking of Don Norman as I was driving up
 here today. I heard him give a talk last year. I went out to
 dinner with him and one of the things that bothered me about the
 talk was that I somehow felt I knew all this. I wasn't being
 surprised and I wasn't being told anything that brought me up
 short. Now, to some extent because, when I do the history of
 technology, I am conscience of the models people use and one of
 the themes in my course is to get students to learn to read the
 artifacts around them. Some sense these are statements. Any
 piece of engineering design is a statement. By the designer
 without the user. What is it going to be used for? Who's going
 to use it? What does that person have to know? What can that
 person learn? Who is it going to be used with? Is the person
 going to be using it alone or in conjunction with other people?
 These are all embodied in an engineering design. They, maybe a
 lot of them, default assumptions and they may be wrong. But,
 they are there. Maybe it's because I tend to think about this.
 Although, I must say in a couple of cases there are objects that
 tell you what they do and there are objects that don't. A door
 and its got a handle and you can grasp it. It already tells
 you, you're going to open the door towards you. You just have
 to play with it. You have to push away. If its got a twist
 handle on either side you're not getting any information out of
 it. That I found an interesting notion. There is a problem of
 user interface. How much can a machine tell you about the user?
 One of the things that Bob Morris remarks that what you think
 is reasonable. What you expect the reasonable thing to do is
 play around.

Condon: Go play with it yourself. Natural phenomena that I'm trying to
 figure out. He has a certain way in mind of how programs could
 be constructed. Because, I have no problem with doing
 experimental physics and trying to figure out what god intended
 and because he does things in simple ways. Einstein said God
 isn't malicious. Hokum's Razor doesn't work. Most programmers
 on the other hand are malicious. Doesn't work unless the guy
 who wrote the program write ID==. (Laughing)

MSM: Doug Ross says, somewhere in one of his writings, "Nature has no
 problems. It's only humans who have problems understanding
 nature." (Laughing) None the less there's a shared, well like
 Bob Morris says something like, do what's reasonable. What's
 reasonable depends on a community of people. One community will
 find one set of things reasonable and another will find another
 set reasonable. He was making assumptions about what you would
 take to be reasonable behavior on the part of the computer. The
 basis for that is that people at Bell Labs tends to think about
 problems the same way. Did you, for example, have the same
 expectations as other people? Let me phrase it in another way.
 When you started using computers what was your model?

Condon: I understand mostly what goes on in that black box all the way
 through wave equations through the circuitry. My problem was to
 abstract away the detail. Literally, yeah I know what goes on.
 How the servos work to run the arms of the disk drive, coding.

MSM: There's a jump from knowing at that level to interacting with the
 model of computing that the machine presents as opposed to its
 physical characteristics. What model of computing did you
 bring with you?

Condon: The assembly language code on the 650. As a kid I even worked
 with serial mercury delay lines. (Laughing)

MSM: You go back that far.

Condon: As a kid.

MSM: Where was that?

Condon: (not clear) We lived on the grounds and we could see them just
 over a hundred yards. (Laughing)

MSM: So you grew up with these machines?

Condon: Yeah, but more of electronics in general. Computing was just
 another branch of electronics engineering.

MSM: You say you came over here from area 13.

Condon: Yeah.

MSM: Why did you choose area 11?

Condon: No, no. All that's...

MSM: You came in this as twenty...

Condon: No, no. At some time we added the, ten or twelve years ago,
 we added the extra digit and everything began with two ones. It
 was called eleven. It used to be called one. The old system 13
 became the new system 113. (Laughing) When I first came to Bell
 Labs I was in metallurgy. Fifteen, one-fifteen, ok. I came at
 about the same time as the split. It used to be physics,
 metallurgy and chemistry all under one executive director.
 Pysics became one executive director. Chemistry and metallurgy
 became the other executive director. I did solid-state physics
 and metals at low temperatures for about five years. Got
 interested more in the electronics engineering. The project of
 how we should do telephone switching in the local area network.
 What is happening in the sixties was in the decades prior to
 that. Technological advances made great strides in reducing the
 costs of transmission. Which meant that we were making money
 hand over fist in transmission. We just could not walk up to
 the FCC fast enough and get them to get the rate reductions fast
 enough. So that in fact we were not doing eight percent, nine
 percent on our money. As we were supposed to be doing. If
 opposed to doing twenty five percent even though every time we
 came closer to a rate reduction to get it back. But,
 technological progress was much faster than political progress
 (Laughing). We were forced to make all this money. (Laughing)
 A lot of that money was turned back toward research and
 development of transmission systems. What was going on in the
 local area to get it from the central office out to the home and
 what was going on in the home and the new local central office
 building has changed since the mid forties. Even that
 technology most of which had been done prior to the Second World
 War. Most of the design of the No. 5 Crossbar was done prior to
 the Second World War and wasn't reviewed much or anything, sort
 of pressed in. Manufacturing techniques were updated and pressed
 into service in a hurry after the Second World War. It hadn't
 been changed until now. There was work on ESS no. 1, which was
 viewed as a high features and of metropolitan market out for
 suburbia. So, it was taking a look at what could be done in a
 central office-switching department for that part of the company
 that hadn't been looked at. There was nobody developing since
 it didn't make money.
 So, we found some things and what the major thing that we
 found was that you had to look at the whole problem. The
 traditional way of cutting up between local and on premises
 equipment and main distribution frame and switching and what
 not, had to all be looked at. Which got nowhere in this company.
 Outside plant was done at Palmdell and local area switching was
 done at the Indian Hill and there were some outside plant things
 done in Merrimack Valley and the instruments themselves were
 done at Columbus and Chicago. The lines had been drawn and you
 could not go back and look at them again. But, we had no
 difficulty when we were done publishing a few papers because the
 guys at the Indian Hill said, "Let em publish, let em lead the
 competition astray." (Laughing) We had great influence in
 Telecom and Northern Telecom and whatever Western Electric is
 called now. Great run for the money on ESS No. 5.

MSM: Northern Telecom has just installed a telephone system for Princeton.
 Keep our fingers crossed. Those of us who have single lines can
 make connections with the computer, as of the beginning of this
 week, nobody with a multiple line unit could make contact with
 the computer. They make contact, but they couldn't get the
 signal back.

Condon: Yeah.

MSM: You are supposed to be able to take everything off the jack in our
 office. I want to see it. (Laughing)

Condon: Yeah. Those change-over things are really severe. Really
 severe problems. You hire special people. I remember ten years
 ago, Fitzgerald did something. He had been promoted to a
 rather grand office in front of the new building. I had known
 him because he had been interested in something about aids for
 the handicapped. Which was also a nasty problem inside the Bell
 System or what's left of the Bell System. A friend of mine Dave
 Hagglebacher was up there with him. He was glad to have somebody
 to talk to. He's a pretty big guy now. It turns out, he was
 official spokesman for software XYNZ and a few other things. He
 had nothing to do. Doesn't go to any meetings, doesn't get any
 memos, he can get right up there and say, "I'm not aware of any
 such plans." (Laughing) I know nothing of that sort. That's
 what his job was. He had three years to go before retirement.
 Spending all his spare time playing the stock market out of his
 office.

MSM: Imagine having a job where it is a job not to know anything.
 (Laughing) When you came over from 13 to 12, got into this group
 as you put it to find friends in the project. Why did you pick
 this group? Was it just because you knew Sam or did you have
 something in mind by coming over here?

Condon: Well I'm much more involved in hardware. Understanding the
 analog, the digital and the digital analog conversion problems,
 all those filters and determine if the right current is flowing
 or not flowing through the customers line. It's sort of a
 system to understand the hardware system that I am interested
 in. It was the only other group in research that was doing this
 sort of thing. The other option was to stay in 13 and move to
 Holmdel. The nature of the problem was management of 13. It was
 real trouble. MacDonald was the assistant director and the
 director was about to retire. Stay in 13 and stay in that
 laboratory and move to Holmdel. I was moved, although I hadn't
 experienced engines myself there were a number of people around
 to say that it was eventual. I was the fifth or sixth
 department head to work for. I was there for three or four
 years. A good finishing point.

MSM: This was switching systems.

Condon: Switching systems.

MSM: I never thought of this area as being, at least from what you're
 saying now, as being particularly hardware.

Condon: No, It's not. In fact the only guy who was doing it was Sandy.
 In fact, when Sandy came and started doing data communications I
 lent him my technical assistant. Who was in the second quartile
 of technical assistants that were in my group. I had a large
 number of TA's, STA's.

MSM: Did you bring your group with you?

Condon: No.

MSM: You came over by yourself and set up the group?

Condon: That was one of the other things I felt was wrong. Is that the
 Hat project of big hardware project, research type of thing ran
 into the same type of thing that the stories you hear about the
 pyramid. Up near the top of the pyramid, you can't use all of
 your people. So, the only other thing to do was to start
 another pyramid. (Laughing) I had this army of people that
 keep busy and when it comes time to write up the project, really
 what did we prove, and what did we find and all that sort of
 stuff. There are twelve guys out there who can't contribute to
 that. They have to be kept busy. The right way to do research
 is to build the intrastructures such as to make it such that
 people could do their hardware project and then use it. Sandy
 had done a very interesting thing to it. He started out, he
 called it the draw package. Steve Wong picked up and called it
 UNIX Design Systems. So as to get the computer to do a lot of
 the trunk work, helping you design something, designed something
 and get it through the wire map stage. I had tried to export
 that. I had seen it and tried to have it picked up at Denver
 Labs. Just couldn't get the ideas across. Sandy had put it
 together. In those days the Tetronix 4014 terminals had storage
 units eleven by seventeen inches. Landscape and he used that as
 the graphics input, and those cost 15 or 17 thousand dollars
 back then. So, it's quite an expensive terminal. Yet, it's
 cheap compared to an STA. So, Sandy's idea was that the
 designer himself sits as Sandy did at the terminal to manipulate
 the knobs and do that type of thing. But out at Denver the NDS
 level designers scribbled on a piece of paper and handed it to a
 STA to make a modification to his drawing. What they did was
 replace the paper work with the STA, and went to the sign up
 sheet and signed up for the 4014 terminal. (Laughing) It was
 still not clear what the feedback mechanism was, whether the
 hardcopy came out of the computer and went back to the MTS for
 checking. It was still the old structure. Just the SDA's using
 this new tool which was meant for Sandy himself to use. It was
 built because Sandy wanted me to build hardware and so with
 being in this division and Sam Morgan's laboratory. There were
 no TA's. The TA had reported into my department. Later he was
 transferred over. I guess at the same time he was promoted to
 MTS. Switched over to Sandy's lab. It seems to be the other
 Sandy picked up on that. People write programs around here
 because they want to use them. Can hold an existing operating
 system on the PDP7 because it had operating system in order to
 run the programs. The PDP7 actually belonged to me. When I was
 a (unclear)

MSM: But it's yours

Condon: Yeah, but I got rid of it fast.

MSM: Had that PDP7 been used or what? It was a graphics workstation but
 it wasn't running Sandy's programs.

Condon: That's right. That was before Sandy even worked here. PDP7
 was bought for graphics or something or other that Bill Minkey
 wanted to build. Bill Minkey was one of those guys (unclear).
 The PDP7, Kent and Dennis kept fooling around with it. That was
 something that they did. There was another PDP7 that we had
 enacted. That was a connector. It was called STARE. Xerox LDX
 long distance xerography. It was a facsimile system and was
 really quite impressive. You had to have these private wire
 things that did several hundred kilohertz bandwidth. Hank had
 this idea of a specialized machine to do the raster conversions.
 That was actually contracted out to Xerox to develop that.
 They were interested because of the product. They never did
 make it into a product. Since Xerox had IBM machines they built
 this thing with an IBM connector. This PDP-7 acted like a
 connector with one end acting like a TE635 tape system, acting
 like an IBM 360 tape system, and the PDP-7.

MSM: When you took over as department 13. Dick Cannon, and Dennis were
 already working on that PDP-7? How does one end up working on
 another department's machine? Do you say, I'd like to use your
 machine?

Condon: Well, I don't know.

MSM: They were on it.

Condon: Yeah, fancy graphics stuff.

MSM: But, your department maintained it?

Condon: You know, begger's market.

MSM: It's not always the case.

Condon: You do if the budgets are really tight it tends to get that
 way. You know, when things aren't tight, not a problem.

MSM: And they came all the way to 12? Did you look for a project in 12's
 area?

Condon: Yeah, cause I knew that I was interested in special purpose
 projects and one of the first things they did was take a look at
 project with Al Aho's stuff. Possibly the use of a special
 purpose machine to pattern recognize, GREP. Those things don't
 fit into UNIX. You got the problem in multi processing and the
 same in restoring the state of those machines. You have an
 extra piece of hardware. It has to be enough for the few
 registers in the floating point. There will continue to be
 problems in the co-processors. The microprocessors now delete
 induced instructions that machines tend to have a large register
 set. All operations are done between registers. So, there's a
 tremendous amount of internal states associated with a process.
 Which then needs to be tucked away when you do a process swap.
 Floating point tubes are separate in it own set of registers.
 If you are going to do anything complex you want a double
 precision floating point registers, sixty-four bit things that
 move across the bus in addition to 32 bit things. It's getting
 to look like we're turning around in a circle once again. Where
 in fact, multi processing systems will be made, such that there
 may be fewer of your micro processors and your multi processor,
 physical processor. Which are actually doing the time sharing
 type of thing. Swapping and changing processors and it's often
 batch for the other pool of fax machines over there. Just won't
 do the thing. Nothing happened to them. Then I worked with Ken
 on Chess where its not a problem. Because there be one chess
 game going on at one time. It's not practical to make the rule
 that there is only going to be one search of the dictionary at a
 time. The first chess machine did not make much significant
 improvement in chess. It violated the rules of UNIX. It was one
 that touched the hardware directly.

MSM: It doesn't help their creditability?

Condon: It doesn't help on the CHAOS creator, and a tape unit and it
 crashes and it never gets anded back. That's the real reason why
 user code goes through system calls to get to hardware devices.
 Either the whole system crashes or it kept track of the
 resources. Some days we had ashes but most of the time we kept
 track of the resources. That's the real reason why user code
 goes through system calls to get to hardware devices. That adds
 enough extra cycles that you don't want it to. You know it was
 Camden who made the rules, it was Ken Broker who made the first
 piece of chess hardware.

MSM: What implications does this system set for hardware design? Is
 there, there's LISP and then there was a LISP machine. Is there
 a kind of UNIX machine?

Condon: I'm really not the person to talk to on that. But, there were
 some starts in that direction. Steve Bourne thought that it
 would be interesting to specialize design of a machine that knew
 about C, not about UNIX. That would make it easy to compile. I
 don't think that turned out too much different. PDP-11, C is
 nothing but an assembly language for PDP-11.

MSM: It was the nicest assembly language he's ever programmed. (Laughing)

Condon: For a PDP-11, certainly not for an IBM machine which has six
 bit characters, pack six bits per word. It's not a language for
 a 709 or a 7894.

MSM: We have it up and running on our 370. Have you ever tried that IBM
 requirement version? I have no idea what was happening.

Condon: But then Steve was unhappy with the computer aided design tools
 that Sandy had built.

MSM: Why was that?

Condon: That they just were not powerful enough until he got off onto
 working on the design tools themselves and never did much on
 building the machine, the C machine. Steve did a very good job
 of improving the design package. He added three things, they
 were all in circuit design macros, CDM's. It was a macro
 capability, you could define a page of schematic diagrams as a
 macro and substantiate it on another page where it looked like a
 box like any other chip. He did a library look-up with a method
 that retains the library private to change PIN mnemonic names
 into the actual physical numbers that the physcial side needs.
 Then he introduced arrays of names such that you could have a
 single line of a name which expanded out to 32 names and then
 you had a 32 bit address and that could be wired into a single
 box with four names on it and ray of 10's on that that would
 expand out eight ways. All this would expand out 32 ways to
 match the 32 names of the signals coming in. It automatically
 generated it down to the physical level such that everything was
 connected up. A lot of the older hardware people still refuse to
 do that. They will draw the whole thing out. You can't do that
 without introducing error.

MSM: So your happy your using the tool.

Condon: Yeah, yeah I am happy. Part of the problem was when you come
 around to debugging the circuit, you get the scope probe onto
 searching a key number. It doesn't do much good to have the
 schematic diagram with mnemonic. Clock pin on this chip here.
 So the documentation is a bit harder to deal with. But I think
 I have found my own method to handle that.

Condon: There's a steel cabinet nearby, in the lab someplace. So, all
 the schematic diagrams and a catalog of the names and number
 translations, but only for the parts that I am using on that
 job. And that's a standard thing all written in a Shell script.
 Find out what chips you're using for that job, make the catalog
 on pieces of paper which then get laid out flat on magnets and
 that steel door. My lab is down this hallway. I had a big
 project where the two steel cabinets were not in a convenient
 place. So, I had a ten foot white board installed across the
 hallway from my lab. Across the hallway is the graphics side.
 So, I used the white wall, the wall had lights installed.
 Floodlights in the ceiling that would point down to it and get
 illumination. Steve did the design package. But then never did
 build the machine. Then I believe that Steve Johnson started
 off doing something about a C machine. But, it was about that
 time the 68000 chip came out so he got off working on his old
 deal, working on compilers. The portable C compiler was always
 slow and produced bad coding. I don't know what went on. I
 think the idea was he made this common machine. You figure out
 a machine which has the operations that you find in all machines
 before it becomes a fairly minimal machine.

MSM: Yeah.

Condon: Then you compile for that. That generates code for the
 specific machine. Sort of like reducing your problem to the
 idea of the Turing machine and then emulating the Turing machine
 in your real machine. It is just going to lead to slow, bad
 code. But, that's his field and somebody else's feeling and I
 really shouldn't be commenting on it.

MSM: Well, it's interesting to how it looks, well after all, it comes back
 to this notion of what's reasonable?

Condon: Yes. (Laughing)

MSM: That I think there is a theme behind it that Ken talked about during
 lectures. During the lecture Ken talks about software that can
 code and write a program that will write itself. He said the B
 compiler was essentially written in B. The C compiler was
 written in C. UNIX is not written in UNIX , it's in C. And the
 idea I gather is to get down to the absolute minimum and wind up
 writing them all in assembly language emulator to get the whole
 thing to bootstrap itself. What struck me when I first
 encountered UNIX and C was that it seemed strange it should be
 running on a VAX-11. That's the one we are using down at
 Princeton. Because the whole philosophy of UNIX seems to stay
 out of assembler. Get a VAX handbook, look at it, magnificent
 structures. The assembly line which programmers dream. But how
 many of those calls will any C compiler ever call on these
 assembly language routines and solve a problem? That's what I
 had in mind when I asked about it. The C machine, the UNIX
 machine, in my sense the RISC machine.

Condon: It's not clear what RISC is. RISC is a term like artificial
 intelligence. It's a jargon word that tends to get used for
 everything. Because the VAX has three address instructions and
 most of the project what you call RISC now only deal with
 operations between two registers or three registers, and
 certainly not with the memory locations. Then Johnson started
 out with and dropped it. Then we got the young summer student
 Dave Dixel and the young tiger was ready to take on the world
 and he was going to design the computer. He worked for Steve
 Horn for awhile. I don't know I wasn't involved with him. But,
 then later he came and worked with us and worked with Ray and
 made the CRISP chip, all that's left has gone to SUN
 Microsystems. We were having a difficult time following up on
 the CRISP project. I don't think we found the correct team to
 work together. It's a single chip microprocessor with quite
 impressive speed. You know, technology keeps advancing such
 that it's outdated now. However, there is a, they do have
 several concepts in there and I would really do a disservice
 trying to remember it. The basic idea is that they have caches.
 First one is that they have a cache which holds it in decoded
 instructions. A full Ninety six or a hundred bits of micro code
 and the mechanism by which small loops just stay inside that
 cache and execute out of that cache. So that it doesn't have to
 decode those instructions. There's the in front of that,
 prefetch and decode unit. I get a kick out of it, down inside
 that level it looked like a 650 because part of the micro code
 instructions were the next micro code instructions. (Laughing)
 We were going at that Full width. My goodness we have seen that
 before! (Laughing) Then there's another cache, called the stack
 cache and that's what makes it a B machine if anything because
 of the way C uses the stack. The idea is that a certain region
 of the stack is kept in this cache on chip. It is a certain
 block.

MSM: Sam is pushing very hard.

McIlroy: If you are at all interested in the technology transfer part
 of this thing you
 can meet those people.

MSM: Thanks, Doug.

Condon: Yeah that's fine. So think of the stack as a big long piece of
 paper with quotations on it. There's this little window which
 it you can slide up and down and what's in the window is on chip
 memory. Most of the time you're going in up and down on the
 stack if the cache is big enough you just stay on chip. But
 then there is a set of special instructions and automatic stuff
 such that if you actually start down further than the window, it
 automatically moves down there, flushes out the stuff that's on
 chip and the main memory and then, VAC is always before read
 anyway. So, there are some special instructions there to help
 out on Stack management. There are variants on that whether you
 have two stacks, one for the user and one for Kernel space.
 There are some real subtle tricks that you l have to do about
 process swapping. System calls and process swapping. Now the
 advantage of this is the difficulty with most of the RISC
 projects which have large register sets on chip, is that as
 technology improves you get a finer line and you are able to put
 more on a chip, but you're not able to put more on chip. They
 can't put more registers on chip because they don't have any way
 to talk about it unless you change the width of the machine too.
 Or you're reserving for the future. Where is this concept of
 these caches. Just make the caches larger and then you have
 less transfers to off the memory.

MSM: Is there a point at which you had to think about computer design as
 opposed to start to think about computer design? The sorts of
 things you are talking about sound like the sort of thing that
 would go on. Whole line of Microprocessing research got started
 up at a certain point. Was it going on when you came over here,
 or was it always a part?

Condon: Yeah, it was going on here. I think that's the way you manage
 research. At least around here it is that you sought people and
 you bet on them and also if they wanted change too. Steve Horn
 decided that at one point learning hardware design and learning
 how to do the hardware to build up special purpose processor to
 do a special processor for C was the correct thing to do. Never
 finished that, but he did a good job on introducing new concepts
 into computer aided design. What you do to change the direction
 of research you want it to go into to is by the type of people
 you hire. Sometimes we have had announcements from the top,
 look more in that direction. Some people sort of pick up the
 change, start studying in that direction and start moving in
 that direction. Mainly it's what people themselves want to do.

MSM: How has this influenced your own choice? You say it's okay to catch
 your breath, but then stay.

Condon: Yeah, and I'm interested in hardware design and I am still
 interested in that kind of thing of how to put together the
 infrastructure and what should the infrastructure be that you
 have to create in order to get some hardware project done. What
 you need to do without having to have a hundred people on your
 staff. So, that you can still do it with the eye level of MTS.
 Only a very few support people here. Because, when you start
 going in those directions it's chaos out there as far as
 computing goes. It's like, how do I transfer my data to you.
 Write it on this piece of paper and kick it with a steam hammer.
 (Laughing) We will enter it in our computer. How should I put
 it on a piece of paper, this piece of paper looks like a FORTRAN
 coding form.

MSM: It is interesting because if I hear you right you were looking for
 the sort of thing in a hardware design, and a software design.

Condon: That's right.

MSM: Which is a shared environment.

Condon: That's right and I'm still trying to work on what Steve Horn
 started to do. I mean he had come through and he knew what to
 do. Behold, to expand out names was exactly like the shell.
 The same guys so it's that concept of thinking about how you
 want to set things up so that you will get the work done. Which
 are an important thing to do and an important thing to try and
 to get the younger guys to step back and do the metal level.

MSM: Okay.

Condon: Very few people do that. They get in there and do the work.
 There are very few that think about what is the tool you want to
 make in order to get it to work. They're used to doing that at
 the (not clear)

MSM: Certainly that is what struck me.

Condon: Even as a kid. It wasn't by my father, it was by other people.
 Even as a little kid I was taught, there was a guy, instrument
 maker, who taught me to think, you want to make a tool to do the
 job. So, there was one time when a data kit went bad and what
 it was a power supply that went out. First time in ten years or
 so, data kits had a power supply that went bad and they just
 couldn't and so now how do we change our power supply? We have
 gotten this new power supply and there is a bunch of guys
 standing around and there was no screw driver which we'd reach
 down in there and I said "Oh yeah, I know what to do". Went
 upstairs to where Max Matthews had a wood shop, took a big old
 file with wooden handle on the end and went over to the grinder
 and ground down a cold chisel point and reached in their with a
 hammer and whacked off the edge of the screw and boosted out the
 power supply. (Laughing) Gee, what a wizard Joe is. But
 everyone does it around here at the some level, but at getting a
 screw out Joe is a wizard.

MSM: This is fascinating because we're back to models of thinking and what
 has struck me is the software tools concept. Its seeming roots
 in the machine tool industry. When I asked Doug, whose paper on
 mass produced software was one of the papers that got me going
 on this question. With all this software crises around, what
 are these production models people are using. So, when I was
 talking to him about it in June I said, "what images did you
 have in mind." Thinking in terms of a screw cutting machine,
 but you have to develop the tool. And when I was thinking of
 mass-produced software designing tools that would allow us to
 turn out models of varying ways. It was a good thing, it didn't
 work. There is that tool making model that seems to underline
 dealing with humans. That it is a toolkit. What you do working
 on UNIX is crafting tools. It looks like the machine tool
 industry. One of the...

Condon: Well no, it's got to be the instrument maker. Because, the
 machine tool industry is also all tied up and going out and
 doing market surveys and seeing how big the business will be. If
 you do that, I don't know what happened to that file that was
 ground into a cold chisel, come back into the bin of files.
 Only used once. Removed the power supply, if you had to do the
 marketing survey to find out it never would have gotten done.
 But, we would still be standing around that cabinet taking the
 whole thing apart and doing it with the tools out of the stock
 room.

MSM: One of the interesting models from the 19th century was the growth of
 the American Tool Industry. How do you start off with a machine
 tool industry as of 1845. Each factory had its own machine
 shop. Design machines for their particular factory. By the end
 of the century you have an American machine tool industry that
 numbers some 500 concerns. As he investigated he found the
 phenomenon known as convergence and that is that the sewing
 machine Company came to one of these machine tool companies and
 said, "Well we need to drill a hole, I need to reproduce those
 twist drills." The machine tool industry designs a special
 grinding machine that grinds out twist drills. That machine
 company has learned how to build a generic machine tool for
 grinding out twist drills in various sizes which than the sewing
 machine people pick up, and the bicycle people pick up and so
 what comes out it is generic, generic product. But, then leads
 to rapid defusions of this particular technology. By and large
 it seems to be what the software industry has lacked. Some
 mechanism for getting generic experience, generic tools out of
 special solutions. The UNIX seems to be one of the areas that
 have succeeded.

Condon: Yeah, it's how you get rid of things too. Ask Doug, I don't
 know what the answer is. But, I'm sure there must have been.
 Every system has it. Something to bring the file on the screen.
 Some place or other somebody discovered that the command to
 catanate two files into a third file name when you left off the
 file names defaulted to your terminal with only one file. You
 didn't need the special command any longer. You threw out the
 old command that just listed a single file onto your terminal.
 (Laughing) Right now, Doug has some news item on the computer
 saying it is getting too thick and proposes throwing these
 things out. I don't recognize a one. (Laughing)

MSM: It's time to clean out the cellar, the garage. What do you use this
 tool for, I haven't the faintest idea. The way you described it
 though, I take it you still haven't got your headquarter
 equivalent of the UNIX environment.

Condon: No, and it has to be one of those continuing things. The
 manufacturing technologies that are out there keep changing what
 you want to do. They change their interfaces too.

MSM: Unix has never seemed to be a visually oriented system. Is that a
 part of the problem?

Condon: Yeah, it was a hot topic fifteen years ago. Editable graphics
 packages. Talked and talked and talked up the idea and nothing
 ever happened. There is no such thing and everything is so
 dependent upon the device. I really don't feel that a pen
 plotter, where you change the pens and what not and Sony
 Trinitron tube where you have to lay it down in raster scan
 order, fills colors and the pen plotter draws these little fine
 lines. Subtract away the differences between the two.
 (Laughing) I never believed in this and I still don't. Nobody
 gives papers on it any longer and I certainly don't see any
 commonality. What I just spoke of was just output devices,
 when your talking about interactive graphics type of thing.
 That, I don't know if anything will ever shake out.

MSM: Over here you write, the problem is finding a language to describe
 the process of design. So you can talk about designing language
 even though talking about is ultimately a two or even three-
 dimensional layer.

Condon: Yes.

MSM: I am surprised that Brian and Day talk about typesetting as a problem
 with language. They did ultimately was to devise a language to
 talk to others. Is it correct that engineers are searching for
 a language to talk about, talk about circuit design?

Condon: I think that's what we know what Sandy did was a good job and
 what Steve did and it has evolved and I think we're in fairly
 good shape of our own type of things. I see standards committees
 about this information go in this column and this information
 goes in that column. Committees that are meeting this year, it
 seems sort of strange to me. (Laughing) But, that's what
 they're trying to bang out, a standard by which it can transfer
 a formal standard, to transfer information format from one
 manufacturer to another. Because the existing ways are just
 absolutely terrible. The Gerber language which is pretty
 standard for the circuit work. Originally this machine ran with
 stepping motors and you could do horizontal, vertical sweeps,
 forty-fives only. We had this set of optical apertures and some
 of them you could have an incandescent arm so it was a brush you
 drew with. It has these wonderful commands done in its level
 and changed to apertures so and so. Later they got fancier and
 had to fill spines. It was getting pretty unwieldy because it
 all grew out of the original language for the stepping motors.
 Very interesting numerical notation where the units were
 thousandths of an inch. Since you are making circuit boards
 everything comes out in multiples of a hundred. So, naturally
 it's a numeric system where you could strip trailing zeros but
 you can't strip leading zeros. Because the biggest unit we that
 we could talk of was 99.99. Five nine thousands of an inch, if
 you talk about one inch your going to put (Laughing) Any more
 trailing zeros to strip than leading zeros then they have to
 carry that across historically and in everything else they do.
 That's one of the standard languages that allows you to double
 expose or do things together and cut away anything that was
 already there. Ever Gerber doesn't use the language built
 around that stepping motor technology. But, they don't even
 make their film exposures that way. Everybody wraps the film on
 a drum and does a raster scan conversion in the computer and
 then uses a little laser on a screw thread moving down to expose
 the film. That's the technology that's taken over some. If you
 want real precision, you keep the film flat rather than wrapping
 it on the drum. Real precision is better than a thousandth of
 an inch. That's a thousands of an inch film six feet on a side,
 that's one big raster scan conversion which they do it and lots
 of maps are made with that technology these days. Even when you
 get to the half tone shading on the map a half tone. Another
 graphics exchange is that all language that was used to drive a
 44T raster display, or not raster but vector command language.
 That flattens the world, there's no structure. You're handed
 one of those things on the computer, the only thing you could do
 is plot it out and let a human being sit down and figure it out
 what the structure is and re-enter it. That's what that world
 looks like. (Laughing)

MSM: That's the one your trying to get around?

Condon: Yeah, so I essentially shipped film.

MSM: What time is it? It's one o'clock.

Condon: Yeah.

MSM: Go to lunch.

 Stuart Feldman

Saturday, September 9th 1989

[...]

Feldman: They'll take care of themselves.

MSM: When did you join up with Bell Labs?

Feldman: That's actually a complicated question. I think I used to hold
the record on summer jobs. My first summer job at Murray Hill was in 1965.
Basically I've had either summer jobs or consulting agreements or
even term time jobs. Continuously until 1973 when I got my Ph.D and
decided to go to work in cellular labs.

MSM: Where did you get your Ph.D?

Feldman: MIT in 1973 applied mathematics, theories of galaxies.
Essentially no computing in the thesis, computing is a side interest.

MSM: When you worked for Bell Labs summers, was it computing jobs?

Feldman: All my jobs were in Center 127 and its various incarnations.

MSM: How did you get there in the first place in '65? You were only a
sophomore?

Feldman: Well, actually it was much weirder than that. The connection
actually came through Stan Brown, who was at that point a department
head in mathematics and later in computing when that formed. He came in
to a careers day at a prep school I was attending at the time and so
the connection was made. So I just visited and sort of go on what's
called a industrial lab type visit. I liked a lot they invited me to
come back. They tried offering me a job the first time and that didn't
work, because of child labor laws. (Pause) When I turned sixteen, they
were able to hire me. That was the end of my freshman year at
Princeton.

MSM: Where had you learned computing? You obviously knew it then.

Feldman: I probably represent the first generation of computer brat. I
took my first computer course when I was either eleven or twelve. There
was a NSF sponsored program at Columbia University for high school kids
basically called the Science Honors Program which for curious reasons I
ended up applying for. I was in eighth grade and taking a summer course
and I just decided I love computers. I dropped chemistry, which was my
previous scientific interest. I took a bunch of computer courses and
sort of wondered around there weren't actually computers to play with
in those days.

MSM: You did this. You loved them. You did this during your summers.

Feldman: This is when I was in the eighth grade.

MSM: In the eighth grade? But you didn't concentrate in it in college
or grad school?

Feldman: No, I got a respectable degree instead- in the real science
astrophysics at the time. I spent a lot of time at the comp center.
Most of computing I learned was basically learned informally in the
gutter. Ah Three AM at the comp center at Princeton was a wonderful
place to talk to people and I just did that a lot computer nerd, if you
wish. I did a lot of programming in computing associated with academic
courses. But there really wasn't much of a computer science curriculum
available. I think I took one other graduate course at Princeton that
was computer related. I happen to been taught by my first Bell Labs
mentor Jay Goldstein. A wonderful man. I guess the only other computer
related course I took was one graduate seminar in automata

MSM: Hopcroft?

Feldman: No, this is at MIT. Papert and Minsky. It was an amusing
course.

MSM: Was this Minsky's course on which the book on automata, finite and
infinite

Feldman: No. This was actually a graduate seminar relating to
perceptions at the time. Their book was just coming out. It was an
amusing course because it could be summarized as Seymour Papert would
come in with a new false theorem each Monday night. The purpose of the
course was to fix it or place it. I don't know if this is pedagogic
device or simply ill-founded speculation. But, it was interesting, but
not my sort of thing. I am a programmer at heart. Rather than a
theorist. Other than that, the only academic background that I have in
computing is that I taught computer science courses at Berkeley and
Princeton.

MSM: Did the computing scene at MIT attract you at all?

Feldman: Only a bit I actually had a moderate amount of knowledge about
that part of that scene, because I had actually worked on the Multics
project. When Bell Labs was part of it.

MSM: You had worked on one of them?

Feldman: When I was an undergraduate a bit more weird personal history.
I believe I had the first time sharing terminal at Princeton installed
by Bell Labs for my use.

MSM: You had it. That's marvelous.

Feldman: It was installed during my junior year. They installed one at
the computing center I used. Basically they did it because the comp
center didn't have any time sharing access of its own at that point. I
was actually using Project MAC at MIT. They had to drop a tie line to
Princeton. The tie line and the computer cost far more than I did. I
seem to remember I was paid three dollars an hour. Ah They put it in
the comp center partly to keep the comp center happy and partly because
of, I believe, private worries that I might just drop out from computer
woes. There was actually no danger of that, and I graduated perfectly
expectedly in astrophysics. By senior year, they allowed me to move
into my dorm room.

MSM: Now what were you doing on Multics?

Feldman: I was actually specifying part of the I/O system a weird thing
for an undergraduate to be doing. I learned an awful lot about systems
and systems ideas, by doing it all of a sudden. I had absolutely no
basis for it, but of course neither did anyone else in the world, so
that was fair. The stuff I did I don't think it ended up in the final
version, but it was actually in the intermediate versions. I was
involved in a large number of discussions on the I/O system.

MSM: So, you already

Feldman: So I already knew a fair number of people at Tech Square.
Separately I was also the project I worked on when I was a grad
student, and for which I was originally brought in, was algebraic
manipulation. The work that Stan Brown had concentrated on. The ALTRAN
project. I actually wrote the first math and execution library for
that. And therefore, we had a lot of discussions and so forth with Joel
Moses and friends at Tech Square.

MSM: Working on MACSYMA?

Feldman: Yeah, he's the author of MACSYMA. Therefore, I had also had
those random personal connections. So, I knew a little bit (Pause) more
of what was going on. But I was never actually interested in the LISP
or depacker school anyway. I did a bit of LISP programming as part of a
course. But I never really spent a serious amount of time on that as a
grad student. I actually spent most of my academic time worrying about
galaxies. (Pause) This history means that I have a sampling of what was
going on at Bell Labs starting in the mid sixties. But, this is a view
of a non-career student who was sort of like a bad penny keeps showing
up Notices what's going on but doesn't necessarily know flows. Any of
the politics, that sort of thing is that they don't effect non-
permanent people.

MSM: No, but

Feldman: I was also too green to know to notice if there was a fight
going on.

MSM: But you must have been sensitive to change - to malignant changed
atmospheres.

Feldman: That I could probably tell you about. I was just putting in
this disclaimer that you are getting the twenty-year old memory of
someone who wasn't watching very carefully.

MSM: I'm also getting the memory of someone who came in at quantum
intervals, and might even be more sensitive to changes than people who
were there.

Feldman: Yeah, I would show up at Christmas and for the summer to
complete... plus odd days talking to friends. So therefore I warn you
that I am not the best witness. I may have longer tenure than many
people involved. But I wasn't hardcore.

MSM: What was happening toward the late sixties?

Feldman: Well Multics had clearly folded. Multics was a brilliant
project. It had some wonderful ideas. It's almost time to bring them
back. Many of them have reappeared. But as a corporate investment per
se, it was a disaster in that it did not provide the service that was
promised. Various people who thought they were going to be able to use
it, of course didn't. The fundamental problem was that Multics was too
ambitious for the hardware, and to some extent the software technology
of the Multics era. Multics simply cannot run satisfactorily on a
fraction of a MIPS computer. And that's what the hardware we were going
to be using was. Um So therefore, that had tailed off many of the real
Multics people had actually dispersed. Ah It's something I only noticed
a little later when I look back. It was probably obvious to the people
who had been involved. But again, career moves are not the sort thing I
noticed anything about. Ah two people who had been extremely peripheral
to Multics, who are Kent Thompson and Dennis Ritchie. Kent had been
involved, I think, in doing some of the I/O stuff. You know he
implemented one of the first working printer confines. Dennis had been
interested in some of the compiler stuff, but I don't think he had done
anything at that point. They were sort of around, caught up in the
maelstrom. They were real interested in computers. There was also a
sort of move to start doing something else using operating systems, and
to get a good system. There were a bunch of requests for I seem to
remember a long set of arguments, and I can't place the time at all. It
may have been after I had gotten there, but I'm not certain. __
versus a PDP, maybe a ten or eleven, and I don't remember

MSM: At first they wanted a PDP-10 on a sigma seven.

Feldman: Okay, thank you, that's the discussion I am incorrectly
remembering. And this was basically, 'Let's get back into this business
and do something interesting' And just for us no promises of providing
comp center service, or a bit of organizational confusion that the
computer center originally was part of127, from where it came from. And
then it was split and put into area 88. At the time, I think 82 was its
number. But, our director, Sam Morgan, another prince, by the way, was
given the unenviable job of wearing two hats. And the Multics support
group was going to be somehow part of that whole deal, I believe, and
the original plan and by the time it was split, basically the Multics
machine was being run gelded, as GECOS machines. Providing perfectly
usable, utterly uninteresting service. Now there's an awful lot of cute
things that the computer science research group did on that machine
that made it a very interesting environment. But as a operating system
environment it was vanilla. How so, it would be a major digression to
go on to other great things that were done. So that machine was
running, so there was service available. But there was nothing
adventurous, there was nothing interesting

MSM: Well, you'd lost control of the computers

Feldman: And also, as you're quite right, it wasn't ours. It was the
nice service of actually running things which let no one say bad things
about (it). I, too, may have used one of these computers. However so, I
was actually running cheerfully on GECOS when I started working there,
for example, because I actually had some things that I wanted to be
working on.

MSM: Now what were you doing at that time?

Feldman: When I first started I guess I continued my ALTRAN efforts and
basically I wandered around for a number of years doing a little bit
this and doing a little bit of that with no particular direction or
major reward or hassle looking for different things to work on.

MSM: This was starting

Feldman: Starting '73. I started full-time in September '73.

MSM: Let me back up you a little bit. During the time that Ken and
Dennis were putting together this new operating system they were
playing with how conscious were you of that?

Feldman: Certainly I knew about it. It wasn't (not clear) lunchtime
conversations had a lot of this stuff in it. It is an important
socialization thing you should know about probably relevant to your
discussions. There were, and until recently, still continued to be, two
lunch groups in the computer group. There was the eleven fifteen and
there was the one o'clock.

MSM: And I've interviewed both of them. (Laughs)

Feldman: A remarkable continuing grouping basically the one o'clock
tended to be the systems group. That was the latest you could eat in
the dinning room. And that was driven by the fact that for half the
people in the group it was breakfast because they showed up at eleven
or twelve fifty-five. And then there's the other lunch, which was, you
know, people who actually started work at more classic times like eight
and nine, and that bunch tended to be starting around eleven fifteen,
and the tables would be begin to filling at eleven thirty.

MSM: Largely theoretical

Feldman: No, that was the everybody lunch. That was the default lunch.
But there was nothing exclusive about these. If you showed somewhere
between eleven fifteen and eleven thirty at a particular table in the
cafeteria, you knew that's where the computer people would be. And if
you lined up for lunch at twelve fifty or so, they would wait until a
large group to form so they could build the right tables for us. I
think we were not a trivial part of their income. Then you were in that
lunch group. This was in no way selective, no way exclusionary. It was
just that certain people almost always went to one or the other,
perhaps based more on stomach grumblings than on scientific segment. If
you went to the later one, you were likely to be in the middle of all
kinds of weird discussions. Then of course there were just the informal
ones at lunch today. 'Like what's going on?' I remember some
fascinating speculations about Ken Thompson in the late sixties about
the right way to build a time-sharing system instead of the way Multics
was. These observations had nothing to do with the way UNIX worked,
either. They were based on some absolutely clever observations about
how to drive a machine that had a wonderful drum. (Pause) So therefore
I was vaguely aware of all this stuff, but only peripherally and during
its early period. I actually saw Space War being played in the closet,
for example which is the real war UNIX.

MSM: You mean this Space Wars when they had Space Wars up on that
seven, they also used UNIX too?

Feldman: Well, that is where Ken got sick and tired of not having UNIX.

MSM: I see. Trying to bring Space Wars up.

Feldman: Well, he was writing Space Wars and he got sick and tired of
having no support. So, he built a few things. That is, I believe, the
origin where UNIX came from. Because he built a few things, and they
looked kind of reasonable and then a real computer was gotten. It was
the PP-9 originally.

MSM: Well, where did this concern for the file system come from? Was
that a topic of discussion?

Feldman: Well, remember the file systems were not an original idea.
(Pause) Even just forget the fact they're in the literature, for the
moment. But just current experience, Project MAC had a rather weird,
not really tree-structured, two deep file system. For every name also
had a two complement identifier. Multics had a very complex file
system, which went the opposite end from this, and had a very messy
directory structure in which you could represent a remarkable number of
important things in the directory structure. Very complicated access
control, very complicated linking control. The ability to close a fault
the first time your file was accessed. All kinds of wonderful things.
All this list of wonderful things caused the system to sink into the
mud. Of course everything costs programming effort, and everything
requires you to program around it. Everything takes cycles. Many of
these ideas have reappeared in other forms. So, in some sense UNIX, the
UNIX file system was the reaction to both of these, if you look at it.
It had the flexibility. It had the essential tree flexibility of
Multics. But a real dirty idea for implementation, which was to say
that the file space was flat and then there was a simple name
conversion above it, and if the directory structure had nothing in it.
The directory structure consisted of, 'here's a name and here's a file
number.' Whereas the file structure for Multics, if memory is correct,
was probably a full page. The PL/1 structured declaration.

MSM: Right.

Feldman: And of course, there was zero, but this a full general multi
deep, and it even had a weak link mechanism with a nice cheap idea of a
hard links. Which falls out of the implementation, of course. But, it's
in some sense a reaction to the annoyance and weight of dealing with
Multics type things. Whereas the full recognition that two deep isn't
enough. Anybody who built a project on Project MAC, quickly found out
that they were losing track of things, because they didn't have an easy
way to have multiple directories. So, I don't remember any discussion,
it just happened between visits, more or less

MSM: Okay. So, you joined in '73, looked around for project

Feldman: Things that were interesting to work on that sort of came by.

MSM: Was there any sense of direction with the group at that point?

Feldman: No. As always, it was a highly fractionated group. They were
people doing things. So, there were a few of us still working on ALTRAN
at that point there were interests in just getting there was a
numerical analysis group that was heavily FORTRAN, and still is heavily
FORTRAN-oriented. I had a lot of friends there, because I'm actually
interested in science and scientific computation, going back to my
other interests. Also, I was never a numerical analyst, but I actually
did several times in my career, do numerical computations for which I
wanted the answers some of them while I was an undergraduate at
Princeton. Also, of course, as a graduate student. And there was a
theoretical group of a few people who tended not to be interested ever
in programming if they could help it. Unfair statement, but that was
sort of an appearance. Then there were the people who like making
machines do things. There was no top-level management direction that I
could see that said: 'Alright, you eighteen guys are to do this.' First
of all, overall the group was small. It was actually, I believe, under
some significant management pressure to shrink or die or something
after Multics left such a bad aura. I have no idea of how the managers
managed to keep things on an even keel. That they did is amazing, and
of course extremely lucky. That is the sort of thing that I didn't
notice anything about. I was one of the last hires for many years.
There was basically a hole in hiring as Bell Labs went through a bad
patch, involving ABM and such. And also, computer science was not
actually in good aroma. But there was no Various managers subtly and
unsubtly would suggest you ought to do something interesting and would
point to interesting projects. I would look at them and decide whether
I cared or not. But nobody said, 'it's your job to work with so and
so', perhaps they ought to have - they didn't - luckily, from my point
of view

MSM: They claim it's part of the ethos that you don't do that sort of
thing, you let people strike their own

Feldman: So, I did a bunch of weird and random things (Phone rings) And
some of them I did on GECOS. Then there was this other stuff coming by,
which looked like a more fun environment to work in. So, I asked if I
could get a login.

MSM: Namely UNIX?

Feldman: Yep. And UNIX was sort of a service at that point. Not a real
public service, but you could get access if you asked.

MSM: And this was the research?

Feldman: Yeah. This was running on the 1120, I think, when I joined it.
Which meant, of course, you had to be not interested in having a lot of
file space, since it didn't have any. It was a five or ten meg disk,
among other things, and so forth. We've gone through that size three or
four times in my life time already. Some things just never change. But
I just started using it because it seemed a nice place to work. I had
gotten used to using things like run-off and QED, back on Project MAC
days, so I wasn't used to editors and typesetting. My handwriting's
illegible. So, I've always wanted things that proofed things. And my
typing's error filled, so a fast but high error rate. So, nobody could
benefit more than I from the advent of editors and text formatters. So,
I've become sort of addicted and dependent as an graduate already to
their use. So, it's natural to follow the evolution, as those things
became available, courtesy of Osanna and McIlroy, I guess, on UNIX. So,
I sort of wandered on to there. And, of course, you've got a lot better
service and you didn't have to beg for money, because it was our own
machine. So, when I did some other projects, I did it there.

MSM: I see. (Pause) When did you start to make your own contributions
to it?

Feldman: Well, I never really wanted to make my own contributions to
it. It was just sort of, you did things and they worked and they
appeared. This was a completely open environment. You told the people
you've done something, and they were either interested or they weren't.
You just sent mail to people or talked in the hallways. So, my probably
most interesting thing is a little program called make.

MSM: Have you used it?

Feldman: The history of that is very straightforward. I was actually at
one point I can look it up in memos, but I assume around '75. I was
helping out a guy in materials science, I believe. They were having
some problems. There was a lunch time discussion about how it was
impossible to use this computer program which took forever to run on a
time-sharing system in Holmdel. And it was written in PL/1, and it
didn't run very well, and it gave bad answers and it gave them slowly.
And I, based on no information and just sort of pure lack of humility
or something, said: 'I'll rewrite it for you in the next day or two.
Where is it?' And, you know, the bad news is they sent me a copy.

MSM: (Laughs)

Feldman: Okay. It was a 750 line PL/1 program. It was one of the worst
programs I had ever at that time seen. It had examples of all the worst
programming style you could have. But, I translated it into Ratfor
through great pain. I was actually the first getting Ratfor, among
other things I had done.

MSM: For your own computing purposes?

Feldman: Yeah, and then I took a look at the algorithm being used and
my jaw dropped. It wasn't surprising the thing didn't work. It
shouldn't have.

MSM: (Laughing) There are structural reasons for failure.

Feldman: It was using one of the least plausible ways of minimizing a
function onto MAT. Take three values out of a hat and see which one you
like. (Laughs) That's not the best root finder you might encounter. So,
anyway I ended up getting sucked into writing a program which could
actually be used for (calibration). This was beta ray stack scatter, a
technique for measuring the thickness of films. They would do a
calibration in the morning. This was not a theoretical device. This was
something they used at Western Electric. But and Bell Labs people were
trying to make it work right. Anyway I ended up providing computer
support for it, because I was one of the few people around who knew
enough vague physics and enough vague mathematics and enough vague
computer science, and it was at loose ends anyway. So, I found myself
actually writing a three thousand or four thousand line Ratfor program.
This was not a heroic project we're discussing. However, it was tricky
and there were various things that kept going wrong. So, I was actually
banging away for a number of months. I found myself in a standard
situation when I would go home for dinner at six or so. I would simply
do an rc. no __. In other words, recompile the whole world in the
background, shut up, and then drive home. It would take through the
drive home and through dinner for anything to happen. But this is
because I kept making the classic error of debugging a correct program
because you'd forget to compile the change. And, this is getting
annoying. Then one day Steve Johnson came storming into my office in
his usual way. This wasn't the big trip, he's going to take you all
over, saying basically: 'Goddamn it, I just spent the whole morning
debugging a correct program, again. Why doesn't anybody do something
like this' and we would be talking about dependency and __ in
another context. I said, 'Yeah, I think I might do that too.' Then I
sort of just did it. He pushed me over the edge over something I was
sort of subliminally annoyed about, that I kept making this error. I
ought to do something about it and this meant recompiling everything,
every evening. Although, on our case strategy didn't save you a bunch
of time, when you've already made the same error. So, he's coming in
storming about that I started writing on the board: How about if it
looked like this? I had an absolutely abysmal idea. He said, 'no, it
needs more details. Thank God most of those disappeared. One of the
reasons make was so simple was that It was only supposed to solve my
problem, and help Steve too. So, I did it. I found it very useful for
my little problem. But, very rapidly, I found myself adding junk. After
a week or two, I rewrote the entire thing after an idea that I would
include macros. I'd occasionally give a lecture on the origins of make
one of the things I __ is that I woke up at three in the morning,
saying macros, got out of bed, turn on a terminal and did it. And if
I'd only gone to bed before, I might have done it better (phone rings)
It's got the worst network processor known to man (phone rings). It
suffered for a decade for my stupidity. But anyway, so I did it. I
remember giving a computer science show and tell on it, you know, one
of the obligatory things Other people started using it. And since
everybody has the same problem, it took off. I added bells and whistles
and fixes as various people came by. Dot __ got added specifically
after Ken Thompson wiped out a very complicated link structure by
accident, and he asked for it. I said: 'That seems ugly. I'll put it
down anyway.' Obviously I was going to oblige Ken, an old friend.

MSM: How long did you own it? In that sense of having to support it?

Feldman: Forever. One thing that basically the people who wrote things
owned them pretty much. So, make was just mine. Since it's a fairly
small program, there was no big deal. Various versions of make got done
by other people, starting maybe a decade later. Or maybe six or seven
years later. make itself, I guess, is around 1976, give or take one...
The paper is in the late '70's, but that was a very good thing that I
published the paper - it's a heavily referenced paper. It came about
because somebody said, 'Would you be interested in publishing this
report as a paper in S, P and E?' I'm rambling on

MSM: No you're not.

Feldman: This is purely I'll tell you one or two simple stories about
it to give you an idea of the environment. After a few months of its
being used locally it spread around to other UNIX systems. UNIX was
already in use lightly throughout the company. Somebody came up from
the first floor support group; they decided to try using make to
support their system releases. And somebody came into my office saying,
'I'm having trouble with this make file.' And they dropped this 1500
page make file on my desk, you know a thirty page listing. My jaw
dropped. I said, 'Goddamned it works on that.' Of course, I'd never
used a make file longer than about 15 to 100 lines. It was never a
designed to do anything

MSM: So, you never had, like, a source control system in mind?

Feldman: No, I'd never planned it for maintaining UNIX. And what they
had was _, which is the worst case, of course, but it just rattled
on and on and on and my second thought was that I was glad I had a
symbol table, which I had done only out of pride of craftsmanship,
since there was no need to It's embarrassing to not have a hatchet
symbol table and just do a linear search. Pure guild rules, that it's
just creepy to do it that way if you might ever want a big one. But I
never really pictured somebody coming in with a symbol table with a
thousand items. Pure example of the tool took off and because it took
off so fast, I never went back and fixed many of the design errors
because I didn't want to screw up my fifteen person user community.

MSM: Your reference to guild rules interests me. Here you take up

Feldman: Obviously I'm baiting an historian.

MSM: It's that guild that I'm finding most interesting in the course of
these conversations, because it struck me right from the beginning when
I first encountered UNIX several years ago. What you have here is a
system that on the one hand contains some really clever and ingenious
coding a certain hacker quality to it. On the other hand, if it's not
theory-driven, at least as theory sensed, and as the works quite
evidently in some cases have been working out. Some fairly fundamental
and profound and theoretical ideas.

Feldman: Oh yes.

MSM: And that's a rare combination in computing.

Feldman: The glory of the system is, people wanted cleanliness and
simplicity. Can ___, and it was their ability to say 'no', or
'that's wrong' that causes the system to be what it is in the early
days and disappeared when it turned out not to be useful. The Einstein
line of everything should be as simple as possible, but no simpler. It
was probably a guiding implicit rule. You alluded in passing to a
custom in the UNIX room of the last person that touches it, owns it.

MSM: Yeah.

Feldman: make was the one I sort of kept, because I was sort of fond of
it anyway, and people would just come to me to fix it anyway. Whereas
the mailer kept moving around because nobody liked it. Every time a new
person

MSM: That was the hot potato.

Feldman: Every time somebody would join the group, they would say mail
doesn't work right, and, 'I'm going to fix it', and everyone would say
'good.' Especially the current person who had the tar baby. No one has
ever been happy with the mailer before. This is a fact. This is a
matter of twenty year's history. The guild rules, that was sort of we
ought to do things right. A linear search list, which is one of the
things UNIX gloried in for decades. The directory structures were
linear and all that. make was clearly doing a compiler-type activity
internally. And therefore, it ought to do certain compiler-type data
structures. And therefore, before I sent it out, I ripped out the
linear searches I was using, and I put in the extra ten lines to
___ as if dumb hashing takes a lot of smarts. Also, hashes was one
of the first things people knew about the first major hashing paper
came to Bell Labs, as it turns out, but

MSM: Were you conscious of its being a sort of Bell Labs way of doing
things? Were you sensitive to a contrast with what the guild rules were
at Murray Hill, as opposed to everywhere else in the world?

Feldman: No. Let me there are several answers I should give there.
First, I was not terribly well traveled at the time, as were the
scientists, as well, in the CS community. So all the computing I really
knew, I picked up in the gutters at Murray Hill. And therefore, I
represent one of the flowers of that particular culture. I've attempted
to look around a lot later. At that time, much of that I picked up.
But, this is also not just a computing atmosphere, but the scientific
atmosphere of Bell Labs. This is sort of the tail end of the golden age
that people think about. Of course, it's always the golden age if it
gets old enough the relatively free environment and all that good
stuff. But I really had picked that up. I'd had the amazing
opportunity, because I started basically the end of my freshman year at
Bell Labs to be able to compare several institutions of magnificent
renown. Murray Hill, Princeton, Cambridge and I didn't see that Murray
Hill came in third in quality of staff or in quality of atmosphere. I'd
had dealings with Princeton, with the math department and the
astrophysics department and the computing center. Since I'd spent as
much time as possible in each of them. So, it was an interesting
atmosphere. The guild rules are just sort of you ought to do things
right, and if you're writing a computer science program you ought to
write it that way. I just sort of said, 'Aw shucks, maybe if someone
will ever want the symbol to get big and having everything take
quadratic time in the main loop is going to be embarrassing. So, maybe
I'll hash it.'

MSM: You talk about obligatory show and tell. What were the show and
tells like?

Feldman: Well, they were obligatory. They were simply scheduled
alphabetically, manually. A carried-over tradition from the math
center, I believe.

MSM: That at least once a year, you had to have something interesting
to show people

Feldman: Yeah. Well no, you had to give a talk anyway.

MSM: (Laughing) Well, your expectation was that it would be interesting

Feldman: The purpose was to increase communication, and also to make
sure everybody did talk about something. It was the manager's
responsibility to make sure you were doing something at all, but the
assumption was The original intention was that they were to be three,
easy, unprepared people __. And sometimes you could just use them
for random discussions, so I scheduled shortly after I did make, so I
just talked about it. I remember using another session, probably did me
no good managerially, but it was technically helpful. Say I'm stumped
on how to do I/O and the EFL language anybody got any ideas? more or
less any suggestions how to go about it? Attendance was widely
variable. Some speakers always got a high attendance, Mike Lesk, for
example, always gave wonderful talks to people who'd attend anyway,
whether or not they were sure what Mike was up to. Other groups would
be attending more coteries; when the theorist talked, typically the
audience was mostly theorists plus the people who always go to talks
anyway. When the analyst talked, usually only the NA type people plus
me would show up. However, it was completely variable just on Tuesdays
at two, I guess, and you just show up. They ranged anywhere from dull
presentations to highly combative slinging matches. I'm afraid our
center picked up a reputation for knifing speakers in the back. At one
point Sam Morgan actually called us together and basically said we had
to be nicer to people.

MSM: In the back row it was just that you were combative

Feldman: Oh, no, no. In the front also. It wasn't we didn't assault
after they left. We assaulted them while they were talking. Wrong
idiom.

MSM: No. I'm just associated with two colloquiums at Princeton, one the
Davis Center colloquium, which is the historical research seminar and
then the program in the history of science. Grad students have this
reputation for raking speakers over the coals, both groups. If you
really want your work exposed, you come and present it to those groups
and hope you come out with something.

Feldman: Well, we got a reputation for being too rough red flag for
excessive roughness. I remember Sam Morgan actually in a center meeting
actually saying we had to do something about this. But you know my
style happens to be like that, so I was perfectly happy. (Pause) So,
there's obvious care. You didn't hit a summer student over the head.
(Pause) Women, children, infants don't get assaulted. But, through the
club it was fair game to argue, and argue back of course.

MSM: Yeah.

Feldman: Interesting affairs. And arguments would continue.

MSM: make was your major

Feldman: That's probably the smallest thing I ever did, but probably
the best thing I'm known for. Similarly, I ended up doing a FORTRAN
compiler and I did EFL. Each one of them looked sort of accidentally
interesting and they took a lot longer than I'd hoped. I had fair
amount of FORTRAN expertise. I can dream in FORTRAN. I was handed a
copy of the FORTRAN draft standard, and was utterly and completely
appalled by it, and wrote a since we printed __ on the first draft
which caused me to end up being consultant the FORTRAN standard
committee. I ended up it started to be super Ratfor, and I took it over
and it's the first compiling thing I'd ever done. Internally, it's a
real mess. It's actually got some slick and cute things, which have
actually come back to haunt me, recently even. And then, since at this
point I was sort of the complete FORTRAN-er. When it was decided to do
the UNIX port, there were two justifications being used for buying a
machine other than the 1170. One to actually port UNIX and to actually
have UNIX service on another machine. UNIX was looking important
corporately, and also it looked like an interesting problem;
separately, the machine was supposed to provide service to the NA
people. It was observed that that was fine, except that the fc was an
interpreter that didn't forward and had no use outside of the PDP/11
and it wasn't very fast enough to use anyway and we needed a FORTRAN
compiler. I said, 'Oh, I'll write one.' FORTRAN 77 as a language was
just being codified and I wrote, I believe, the first full scale
compiler.

MSM: For f77

Feldman: Yes. f77 is there's an argument about who wrote the one just
before. I believe mine was the first truly complete one. I've never
looked at the date; I've received a couple of letters. It was written
to be portable first version. Ran on (Pause) I think on the interdata,
and then it took me a month to port it back to the 11, then it took
four or five days to put it up on the nascent VAX. So, for that reason,
I have to be one of the first ten login ID's on the VAX? This is
relevant because for a while I had a login on every UNIX VAX in the
world. Because, it came distributed with the first ten user ID's, and I
have to be number nine.

MSM: I see.

Feldman: And most people forgot to clean out their login files. The
good old innocent days.

MSM: (Laughing) So, FORTRAN has always been part of you?

Feldman: Well, when it was needed, Ken put together fcvery early just
because somebody had a FORTRAN program.

MSM: Every system had to have it?

Feldman: FORTRAN was sort of the standard language. That's part of
life. UNIX has done more than anything else in the world to quash that
attitude that FORTRAN is the standard language. Now, if you ask
somebody, 'what language are you going to write this in? for almost any
of this, C is the default answer all over the world. C can be viewed as
the FORTRAN of the 70's. In 1965, the standard answer would be FORTRAN.
Very recently, based on my compiler, a converter from FORTRAN to C was
finally written. Partly supervised by me, partly supervised by David
Gay. A rather weird inter-corporate project.

MSM: Well, I was engaged at Holmdel on a project that AT&T was not
successful in. It was AWIPS, advance weather interactive processing
system. Part of my job was to look into software development
environments. Part of the concern facing this was that the government
contractor called for roughly 1.2 million lines of government furnished
code, and what we gathered was about seven different versions of
FORTRAN seven different machines. A simple requirement was functional
equivalence. Part of the thing we were facing if we got the contracts
how are we going to unpack all of that FORTRAN?

Feldman: Well, actually that wasn't quite as bad a job as you thought,
because FORTRAN had been partly standardized by the efforts of ___.
A young man, Andy Hall, was around, and got hooked on that one, you
now, early incarnation.

MSM: (Expresses agreement)

Feldman: So FORTRAN, which is a completely disreputable language, with
all the negative attributes you might ask, redolent of the Victorian
era. It Is part of my bones also, so alas there. How I just happen to
you know, a number of these projects more or less happened due to
lunchtime conversation, as you'll notice. Similarly, I agreed to do
f77, but I said I wasn't going to touch the I/O library, which I knew
was going to be too awful, and it would be too hard and Peter
Weinberger, who was not a part of o27 at that moment, who will transfer
a little later said he'd do that, and the treaty was signed over a
french fry, more or less.

MSM: (Laughing)

Feldman: He kept his bargain, I kept mine. Every so often we'd have a
discussion.

[Side B]

MSM: What thin line is between collaboration and trying to help the
people you want to help? So, where were we?

Feldman: We were discussing FORTRAN, I guess, and how these things sort
of happen through informal treaties. (Pause) Management was not deeply
involved. I think Elliot _'s the only one who suggested someone go
write a FORTRAN compiler, but no one had actually thought or suggested
that I should be telling you how to do it, which sort of struck me as
an interesting challenge. I did everything else in FORTRAN, so I did it
 and the compiler was a lousy compiler. But, it's also still in use
after a decade. It's part of UNIX and you have to pay money for the
other ones, and it's essentially correct. Little bugs are found only
now and then, but nothing drastic.

MSM: How long were you there, a part of 127?

Feldman: Until divestiture. I was never in any other organization, not
counting the fact that the number changed underfoot a bit. I moved
around from department to department at management whim. But I was
always an odd ball. I was peripheral to everything, so I remember one
day I was called in and was told that I was being reassigned instantly
because of someone else's problem.

MSM: You mean someone else's problem

Feldman: Sandy Fraser had just been promoted, and Steve Bourne, who was
Denny's brother-in-law or something, was going to report to him and
that wasn't admittedly any good. So, he had gotten rid of me and I was
the exchange piece.

MSM: (Laughing)

Feldman: Approximately I believe there was more intelligence underlying
it, Sandy Fraser was my department head for several years. Since my
interests tended to be weird and various, and I wandered around

MSM: Is there a pattern to those interests as you look back? Has there
been a theme?

Feldman: If there's one theme in everything I've been interested in
it's been glue. Everything I've done has been pasting over errors of
other people and connecting up tools. So, make is a way of getting
around the fact that the command structure didn't doesn't solve the
problem of keeping track of what you're doing. And make is a much
better way than shell files, even if you aren't doing most things, even
if you aren't interested in it's concurrency updating issues. EFL was a
way of making FORTRAN look like C. f77 was possible because I could
steal the code generator from the C compiler. I'd get portability that
way. So, I was actually one of the early people to ride the portability
wave of C. But, I was basically gluing the FORTRAN world onto the UNIX.
FORTRAN had been used on UNIX, but it had never been sort of inherent.
I put it in the way you could mix FORTRAN and C. That was actually one
of my underlying goals to make everything look portable and clean. And
many of the things I've done have been in this way of bridging the two
different worlds with hacking in between, as I like programming.

MSM: (Expresses agreement)

Feldman: So, that's probably the if I have to say there's a strand to
the technical things that I've done and that I'm interested in now,
it's that of how do you use one technology to get you out of the
trouble of another one? (Pause) And I've been quoted more than once on
the line that one of the great things about UNIX is that it lets you
get out of the trouble s it puts you into.

MSM: Well, you can fix it yourself.

Feldman: Yes. Precisely and granted, many of the bugs problems you got
into could have been fixed by a system that was smarter. But, on a
system that was smarter, if you'd gotten into a similar problem, you
couldn't have gotten out of it. So, make was possible, because you
could ask the file system a dumb question, and it would answer, and if
you wanted to run a command, you would just run a command. You didn't
have to plan it in advance, you didn't have to allocate anything, you
didn't have to get Gods permission you just did the damn thing.
Therefore, I just put it together without thinking. (Tape skips) So, if
you would observe. Still, you could write a compiler without telling
people that I was going to write the official initial FORTRAN compiler
for UNIX

MSM: You just wrote it?

Feldman: Yeah. I just wrote it. I got stuck with it.

MSM: Did the mood change at all once the USG got started and the thing
began to become a standard for the company?

Feldman: At this point I should be very careful. The ___ was
generally summarized around the Thanksgiving animal. From our point of
view, you know, the lords on the hill, we never quite saw what they
were doing or why. And therefore, these answers are appallingly unfair,
and so forth, and I should be careful about insulting the former
employer. But somehow, we never saw anything good coming out of it.

MSM: Yeah, he understands that. (Laughing) Good luck at it __?

Feldman: So and therefore, it wasn't relevant to anything. We did
things and eventually they picked them up because they were there.

MSM: So you guys just continued to build the system you wanted?

Feldman: Yeah. During the period you're talking about USG started off
in the mid-70's and so they would answer phone calls and things, and
that was good, because you can only answer the phones 24 hours a day.
(Pause) But, as an influence on what was really going on rather than a
retarding force, I don't think there was any real attitude. We didn't
expect good things per se to come out of them. We just hoped they would
be helpful. Again, this is completely unfair and out of school, as it
were, and I had no administrative interests. I had no idea who was
fighting whom for what turf, or what the corporate benefits were and
all that. I only saw a small number of people that I cared about. And
indeed there were some okay people in the group. There were turkeys,
not a uniform appellation, it was just sort of a general assumption.
The full bureaucratization of UNIX didn't happen until the '80's. At
that point things were that was getting stiff. Of course, I left at the
time divestiture, at which point things were getting much stickier. The
ABI and ADDIS were being set up in the early eighties, and there were
enough troubles there. The FORTRAN saga I have my files somewhere; a
long list of attempts to get FORTRAN transferred out my hair to USG and
so forth. The only way I ever got rid fully of FORTRAN was leaving the
company. The first time I got rid of it half-way was leaving for a year
at Berkeley.

MSM: UNIX is a way of (Tape skips) computing. It's a view of what
computing is about and how (Tape skips) It includes certain things, but
it also excludes certain views. What does UNIX exclude? Or do you miss
anything about, or did you miss anything about?

Feldman: Well, UNIX is a sparsely furnished or spartanly furnished
home. It lacks all the plush conveniences of professional operating
systems. The bad news is that over the years, it has picked up much of
the plushness and the lousy handling switch metaphors. It was I'm not a
car expert, but it was sort of the MG of operating systems in the early
days. It had just enough to get you from here to there. It was fun to
play with. It didn't have the handling of a Buick or a Cadillac , nor
did it have the performance of a Ferrari. It was fun. And if you wanted
to do something, you did it. This openness went, however, with the fact
that things were going to change under your feet. More than once, the C
compiler died with me as its only user at two in the morning, because
Dennis is a late night person also. And at one thirty, he might install
a small bug. He was actually extremely good at this. More than once, I
was the first person to be hit. And the good answer was that at two
thirty, it would be fixed. That's sort of the UNIX ethic. We were
living in a high-risk, fun, changing place. That hasn't been true, of
course, for a decade, since it became an official product, and a major
force in the universe. With all the problems of annual releases and two
year bug recycles. The technical things that were missing all of the
closed system properties that you got out of let's say MAC LISP
assuming you wanted to be a list programmer. Like good, you got all
kinds of weird services. UNIX has gotten by with the world's dumbest
loader and pretty offensive debuggers because nobody was going to build
anything intrinsic. I'm talking about sort of my neck of the woods,
which is compilers, programming languages, environments. Ditto the
image what makes the system universal is that the bytes dream and the
simple file system [...] of what it works on. It's not so easy to make
this thing work beautifully in a Window environment. It's been done
remarkably well. Pipes just aren't simple un-typed byte streams aren't
the right unit. Ditto, the file is not the perfect object. The Multics
file system, in some ways, is much better at representing objects,
because of its possibility of having invisible objects, and the
possibility of having information associated with them. So, from my
weird historic view I view some of those ideas poking back through
objects. I suspect the small talk people will disagree completely, but
I know [...]

MSM: It's an interesting observation, because the _ came around to
show us their machine last year and they were talking about, this was
UNIX with a friendly face, easy to use. And I said, well, UNIX to me
means pipes and macros. Are you telling me that you can pile icons on
top of one another and make macros ___? Oh, no, no, no we don't
have _. They said, but you can open a command window and type a
line. I said, well, I can do that in DOS.

Feldman: Yep. So, basically there's a simple attitude that you could
get superposition, you could get connectivity, and so long as you're
willing to operate at a relatively dumb level of characters and lines,
things work beautifully. Bitmaps and stuff would have been a hard
battle to make first class citizens, because they're not part of the
world view. And you can't be everything.

MSM: Never.

Feldman: But if your view of the world is that you have a teletype and
a computer and a disk, UNIX is a superb fit to that world. And it turns
out that that isn't such a bad model all the way up to CRAY and all the
way down to the PDP-11. And there aren't any PC's wimpier than the
PDP-11.

MSM: I guess not.

Feldman: The market.

MSM: Okay.

Feldman: So, therefore that's not a fully fair product view. I mean
UNIX is simply a superb, simple but it's a time bound concept. Computer
science takes a very long time to change to pick from one installed
base to another.

MSM: Thank you sir.

Feldman: Okay.

MSM: I hope you'll give me a chance to come back if I have some more
questions.

Feldman: Sure, feel free.

 A.G. (Sandy) Fraser

The interview date is unknown

Fraser: ... programming business and probably a few years before that.
 So, I'm a latecomer to the scene. I 'm really not a good source
 for you. But, I'll happily provide what I can provide..

MSM: I'm gonna resist the temptation to talk to you about commerce. At
 some time I want to talk to you about, talk to as many people as
 I can. See if we can recreate or I can get some sense of what
 was going on there.

Fraser: Well, it's a long interesting story associated with leading up
 towards that.

MSM: I gather there was.

Fraser: Anyway, so I came here in '69. May of '69.

MSM: At about the time UNIX was started.

Fraser: Before UNIX. And as an MTS, I sat in the corridor - I don't
 know where that is now - and sort of heard various discussions
 going on. But, I really had nothing much to do with the
 evolution of UNIX. I was more of an observer. I had worked for
 a number of years in a file system and I don't know whether any
 of my inputs had any impact on the UNIX system.

MSM: What did you come here to do?

Fraser: Incidentally, I arranged to come here. I thought we were
 working on Multics.

MSM: (Laughing)

Fraser: I was interested at the time in trying to build a distributed
 operating system.

MSM: Uh huh.

Fraser: At that time nobody had ever done that. There were no such
 things locally networked or anything. I've done some, I've
 just written the file system for the Atlas computer operating
 system of the Atlas computer, which is England's first time
 sharing system. I had done some arithmetic which led me to
 think that distributed operating system might be whim. In order
 to do that sort I would model it first using Multics. On my way
 over here. I bumped into Peter Neuman who told me that Multics
 had just left and so I walked into this building and to find it
 in somewhat of a disarray and certainly very down. It had
 appeared I was the newcomer to the scene. It was quite clear
 that we were in the course of fairly traumatic change for a lot
 of people. In end of the '60's you may recall there was - ah -
 a time of change for all universities where it used to be that
 the computing science research communities as often as not used
 to run the computing centers for the university. As the buckets
 grew - and soon it became less and less practical in the end of
 the '60's - the universities one by one started moving the
 computers from the responsibility of the computer centers into
 the administrative area. That's what happened when Multics
 departed. With Multics here as I understand it, it was
 expected that it would become the vehicle for computing service.
 And at that time, responsibility was held in the computing
 science research organization. So, not only did they lose their
 research project, but, they also lost the budget and the
 responsibility that goes along with management comp center. I
 can alert you to the need to explore the dynamics of that
 occasion, but I'm not the person to really tell you about it.
 But, I would say the mood here occasionally was fairly important
 to what happened... at that time... what carried over with the
 Multics and what didn't. Who stayed around and didn't. A number
 of people left and so on...

MSM: How did you respond when you found there was no Multics around?

Fraser: I set about building my own. It was obvious that what I needed
 to do was build a model that I could build a distributed system
 with. At that time there were beginning to be a small number of
 mini computers - Honeywell 516 was one of them around here. The
 AP224 and the PDP-10 hadn't yet arrived. I'm sorry to say that.
 I would make a network, a ring network as a matter of fact, to
 link together a number of these mini computers. I would use
 that as a vehicle to put a file system... My first idea was to
 have one file system in a computer all by itself, and then a
 number of number crunchers. The idea was to build a ring, which
 would have this file system on it and then a number of mini
 computers on it. That took me from ... til about 1972 to finish
 that. By which time Multics had become real. So, we're co-
 inhabitants of the building. But, you can't really say I had
 much to do with those early days. I was an observer at the
 scene - perhaps.

MSM: What was going on in UNIX ?... influencing your own design?

Fraser: Not really, not really. The file system ended up being
 probably the first file system that I made - a file server was
 an early version of UNIX which I modified, so that I could
 build a new (not clear) on it. That was the only way UNIX
 influenced it that time. Um... After that, maybe I contributed a
 little bit on the UNIX front when I started with Paul Jensen.
 He and I worked on the circuit design aids package. Which was
 used (not clear) inside MSI circuit boards. At that time it was
 very much a hand process. We mechanized it. Since then there
 had been many such systems of course. I'm sure that I'm a real
 um really the right person. Maybe I can give you some pointers
 on how. If it well help.

MSM: Most ...What are the things that um... What Ken Thompson had finished
 talking about was um. I asked him if he had any - looking back
 on it now - if he wishes he had done anything differently now.
 One of the things he said was, he wished he'd thought more in
 terms of distributing systems from the outset. When it came
 time...time to make UNIX part of his distributing system, was it
 readily adaptable to that?

FRA. Well what has happened I would say that the UNIX is remarkably
 adaptable but not particularly attuned to be distributed and
 UNIX, UNIX is seems to me that UNIX is not entirely, but very
 much a file system. The file system wasn't designed to be
 distributed. You have UNIX systems that hooked together. You
 could see one another's file systems. That's the way it appears
 to be. It's only recently I think that a effort has been made
 to make it feel like the file system conveys the network as an
 entity. Its a planned effort that is underway there now. There
 are mechanics of networking that over the last four or five
 years have been systematically tackled and I think it's
 substantially improved. Which helped... most of the
 implementation of the distribution system with network in
 general, then it was just (unclear) streams. Dave was on his
 connection server. Those were the two main starting points. All
 that's very recent stuff.

MSM: Back to what you were doing in the '60's. Before you came here, were
 you working?

Fraser: ...at...at...Cambridge. It was a project known as Atlas 2, or more
 pertinently as Titan. Um... Atlas 1 was made at Manchester
 University. Fairly expensive activity funded by Ferranti for
 whom I worked originally.

MSM: I see

Fraser: At Cambridge, they wanted to make this time sharing system.
 They didn't really have all the funds that were available for
 the Atlas 1 project. So, they had a 'cheap man's' Atlas. They
 also had different ideas about architecture. Much of the
 technology is the Atlas technology, but the architecture was
 somewhat different. Different emphasis anyway. And a very much
 stronger emphasis on software. So, this slightly different
 Atlas computer arrived at Cambridge at about the same time I, or
 a little bit before, I arrived there. They were in the process
 of trying to figure out how to make a operating system for it.
 At the time I arrived at Cambridge, it was because of my history--I
 I knew a little bit about file systems. So, I took on the job
 of building a file system, the files, the dumping system,
 archiving system as a whole complex of uses.. and uh... There was
 just a single machine thing that did lead to these thoughts
 about how much traffic flowed between the different parts of the
 system and whether it made sense to cut off the piece of the
 system and put it in another machine. Um, um

MSM: How did people think about an operating system at that time? Was the
 idea get maximum use out of the machine or to make maximum use
 of programmers time? Maybe I should put that in content. In
 thinking about this, trying to map out some general themes. It
 occurred to me that during the '60s' most of these operating
 systems had been aimed at maximizing the machines. Making the
 machine efficient. They were expensive items. Corporations that
 bought expected them to be doing the work of the corporation.
 Programmer was viewed as someone who serviced the machine and
 worked off to the side. The idea that you would design an
 operating system to be a programming environment, it was a
 rather strange notion. How did... was that on target?

Fraser: I think the situation was a bit of... Yes, the operating system
 was a device which would allow the person to use the machine
 efficiently. I would say that um. There's a person named
 George Feld at Ferranti who I think was a very strong influence
 over the early days evolution of operating systems. Ferranti
 which certainly influenced... a number of people in the United
 Kingdom, certainly when it came to the Atlas type of operating
 system. It wasn't for programmers who were incidental to the
 business. The users were the... the programmers were the users.
 Yes, there was a concern to use the machine efficiently, but
 there's a great deal of concern to make it, also make it a human
 one, convenient software productivity or something was not a
 word that was used at that time. But, the notion was implicit in
 (unclear). That goes back to George Felton and the ORION
 operating system that Ferranti had. Where for example, there
 were quite lengthy discussions over the uh... both the instruction
 set and the operating system for the machine. Looking at it from
 a point of view of what is the easiest thing to compute.
 (unclear) for the programmer to do, not only what is the most
 cost effective thing for the engine to do. There were a lot of
 things in the Atlas operating system I think that helped with
 that . That also built upon the day that we learned, you know,
 David Wheeler and Maurice Wilkes were at that time working on
 that set too. Which was the first micro programmed machine.
 There was also a machine which had its subroutine... had a really
 quite advanced subroutine library. Maybe they were pioneers at
 that.

MSM: I think they were. Because the EDSAC 1 had it out then.

Fraser: Then that was not there, because of the most efficient way of
 doing it. It was done, because it was the most easy way, the
 most convenient way doing it from the point of view of the
 users. I think, they had been thinking about how to structure
 programs and make them manageable and so on for quite some
 while. Although interestingly they had not... that crew had not
 really paid a lot of attention to the higher level languages.

MSM: Just about to ask...

Fraser: Of course Stretch? was there around that time, I've been
 working on programming languages before this.

MSM: Um, um.

Fraser: It worked with Christopher with various things. He didn't
 manage to influence that group, and eventually he went off and
 had his own place in (unclear) Rd. in Oxford. Established his
 own line of research on the CP/M languages generally. Cambridge
 stayed pretty much more interested in structure but less in
 language. For some reason, I don't really understand, for quite
 a number of years. Maybe that was a concern about efficiency. I
 don't know.

MSM: Was that all split between, those who were mathematically interested
 in computing as opposed to those who understood the machine?

Fraser: That could be.

MSM: Making a system work?

Fraser: Yes. Uh...there was no computer science department at Cambridge
 all the time I was there. It was quite recent phenomena. It
 wasn't a respectable discipline in some sense. It was on the
 corner of the Cavendish very definitely a latter arrival. It
 was called the University Mathematical Laboratory. It gained it
 first origins with a differential engine - difference engine.

MSM: Hartree's?

Fraser: Think so. I guess Miller was one of the key drivers at that
 and Miller was asked numerical methods. Instilled that interest
 in most students that came through the place. The biggest users
 were crystallographers. Definitely a machine for mathematicians.
 Even for people who did other types of activity. I wrote a
 checkers program - the first thing I did for EDSAC. It was
 looked upon as a frivolous activity. Not as a research
 activity. I think

MSM: What had been your background?

Fraser: Very varied. I'm a aeronautical engineer. Who is interested
 in computers. Although I didn't know it in high school. Didn't
 know what they were. That I invented a machine that had
 computer like attributes. Burroughs used some of that stuff to
 say "Hey guy here are some things around why don't you come and
 get involved in it?" So, I got interested in computers, but
 there's no way you can get an education in that. So, I took up
 aeronautical engineering education, as being the most
 mathematical of the engineering discipline at the time. Then I
 went to work on summer jobs working with computers. Numerical
 mathematical course with...uh, Miller and co. at Cambridge for a
 year. It was the nearest thing to a degree in computing that
 you could get. Then I went to work for Ferranti - wrote an
 operating system for a small computer. I became responsible for
 a language which was competitive to COBALT. We worked on that
 for a number of years. It was a major project for engineering.
 Of course...that's where I got in touch at...where I was in touch
 with Atlas. Eventually I was given some responsibility with
 respect to the compilers on the Atlas, although I really didn't
 do very much. I came to know both Tony Brooker, Derek Morrison
 and also Christopher Strachey, Peter Landin, working originally
 at Cambridge and then Oxford. I got involved in writing
 compilers for a while. Did... I think I've made some
 contributions in the early days of compilers. The work at
 Cambridge I was just talking about...

MSM: Is that compiler work theory driven at all?

Fraser: No.

MSM: More on lines of fortunes trying to get something in the machine that
 will do the job?

Fraser: Yeah. At that time for Ferranti was just beginning to sell
 large machines to commercial establishments.
 What was clearly needed was something that
 combined the file system and the programming language. So, for
 example, when an insurance company could... didn't have to solve
 the problems of file management and the like, that could have
 that done for them. Could express their algorithms or whatever,
 in a language at some reasonable level - at some FORTRAN-like
 level. But, very about concerned about efficiency, particularly
 data representation. Um, um. In the those days everything was
 done on tape to tape processing. So, when one wanted to have
 reasonable compressed data representation. One was concerned
 with having fields which were bits and bytes. Packing things
 down. So, we're really (not clear) compiler. Probably there are
 few that had such a broad spectrum of challenges to try to go
 for. We did it with very little knowledge. It was strongly
 influenced, the mechanism was strongly influence by I guess two
 things: by Tony Brooker's compiler - we used something that
 would derive from that. And, by a determination on my part.
 That the Ferranti software should be written quote a 'higher
 level' language. In fact, we invented the language for that
 purpose, called COMPL, C-O-M-P-L, which we used to write the
 compiler. That I think influenced our thinking greatly. It was
 the only thing that ever got used for anything else. But, it
 allowed us to contemplate more elaborate tasks, then we would
 otherwise have contemplated, and thereby hang ourselves.

MSM: The iron 3... [laughing]

Fraser: Yes, that was right. I have a pretty varied background. Even
 before I arrived there. I've written the..., they had a small
 computer they called the Serious. I had written the operating
 system for that. Called 'The Monitor' actually. We didn't call
 them operating systems in those days. I wrote the subroutine
 library for that machine. That was in the days, when you
 couldn't get it into 256 words. It was too big. Squeezing into
 a small amount of space was the sort of thing that you were
 doing at that time. I think what I might do is just come more
 directly onto the UNIX front for a minute. Doug hasn't already
 told you. I think it is important to know the relationship of
 the UNIX activity to the way that (Ariel Eaton? - not clear) was
 managed at the time. You probably know how that was managed
 then and it's not a whole lot different, but there were some
 particular things. Particularly as it came (break) was Multics.
 There were a few key players. Were not in the management
 structure anymore. You probably - if you want to do a complete
 job, you probably need to talk to them. Um, um. The person who
 had this job was Ed David. He was quite instrumental in making
 Multics happen. I don't know whether he was instrumental at all
 in making UNIX happen. But, he certainly created the
 environment that lead to UNIX. By default. By first of all
 what he did with Multics, by the series of things that happened
 in it's demise. By a discussion that was taking place when I
 arrived in which Ken and Doug and Jason and various people were
 trying to buy people a PDP-10 which Ed David eventually had
 turned down. Um, um. The rationale for that was (bell ringing)
 was going to assume responsibility (bell ringing) for a fairly
 large piece of equipment, than it had to do with any operating
 system concept. They just came out spending a lot of money on a
 large piece of equipment gone wrong as a research project. Ed
 David could probably explain to you why we didn't get the PDP-10.
 But, I guess that very strongly influenced the course of
 events. Because it was after that they turned down the PDP-10
 and came and built this thing on the PDP-7.

MSM: Is there any sense that labs have try to get involved in the large
 designing a large system and got itself burned eventually in the
 business?

Fraser: I don't whether he shouldn't be in that business. But, I would
 say that he got burned. It may well be that these
 juxtapositions of these different events were sufficiently close
 that the proper assessment of what had gone on had not yet
 materialized. They didn't stay around a lot longer of course.
 But, it certainly had something to do with that environment.
 The...uh...Ken's activities as far as I know, were not supported by
 his management for a little while.

MSM: That's what I gather.

Fraser: That might be explainable. Another person to talk to is Sam
 Morgan.

MSM: Yeah we talked with him.

Fraser: He happened to be director in 1127 at that time. I think had a
 great deal to do with the evolution of 1127 at that time. I
 think that the way UNIX turned out had a lot to do with the type
 of person who had been hired.

MSM: That's where I was hoping we could head...in this way...(unclear)
 background.[pause] What it is about the Bell Labs environment
 that attracted you here, or how congenial you found it when you
 got here. In terms of the kinds of problems people were taking
 up, the kinds of models they had in mind,... for what computing
 ought to be.

Fraser: I'm an oddity, not going to help. Sorry. The reason is that I
 came here for two reasons. Three reasons. None of which had
 anything to do with computer science development at Bell Labs.
 One reason was when I was at Ferranti I had this theory that
 which says that Ferranti really ought to have a research or
 exploratory development software activity. I had tried to talk
 them into doing that. In the process of doing that I learned
 something about Bell Labs and come to admire it from a distance.
 More from a point of view of where it managed and relayed the
 research to the rest of the company.

MSM: Um

Fraser: So, I had that in my head. Secondly, the scene in England was
 declining rather rapidly. It was fairly clear to me and not
 only to me that the ... that the, uh,...initiative for research and
 networking and computing - two things which were clearly in my
 future. The funding and the opportunities were going to be on
 this side of the Atlantic. The third thing, neither of those, I
 wouldn't have moved for either of those two if my wife hadn't
 died and I needed a change.

MSM: Ah, I see...

Fraser: A combination of the three things that put me in this place.
 When I got here, I guess I was a little unusual. In fact,
 most of the people here were hired straight out of college. I
 have this very varied background, managing a fairly large
 organization, being involved in research. Teaching for awhile.
 So, I think I had a slightly different perspective and sort of a
 broader interest in the role of the research organization, than
 many people come here with. Um, um.

MSM: But, you came as a MTS, not as a manager.

Fraser: Oh yes indeed. An MTS [coughing].I didn't come with a
 preconception of, I didn't know what I was going to do in
 reality.

MSM: Especially since there was no Multics. [chuckling]

Fraser: Yeah, I just don't have the vaguest idea of (unclear).

MSM: What struck you when you arrived? As far as computing?

Fraser: They were in this transient state. The toy had gone. The
 computer room was empty. People were just despondent. Some
 people were leaving. There was a clear lack of momentum. People
 working other subjects. I remember there were a whole bunch of
 people, Al Aho and others, who were working on bubble automata.
 Um, um. Which would have never gotten very far at Cambridge, I
 must admit. Even though I think they were of some value.
 Morostov used to make comments along the line that industrial
 researchers had to do things of a more theatrical nature in
 order to prove that researchers in universities didn't have any
 such hangups, I think was the expression [Laughing] that he had.
 He tended to encourage things which had a practical, if not
 commercial, flavor to them. There was rather more of the
 theoretical here. Secondly, at that time almost nobody in the
 company was taking any notice as far as I could tell, of the
 computing science research center. Which is a blessing as well
 as a disadvantage. I shared an office with a Paul Jensen who
 was a intern that Doug McIlroy had brought in, a person whose
 who was given the assignment of studying the ESS1 system and
 trying to make certain suggestions about how it might be
 improved, or what languages might be used on it. Paul had a
 varied influence on some of the things that I did and we shared
 an office with him for awhile. But, I don't think anybody else
 in the corporation and anybody else on the ESS1 banquet cared...
 could have cared less about what the computing science
 organization thought of what they were doing. At that time,
 maybe I misread it, but I was very quite surprised to see how
 disconnected such activity was with the rest of the company.

MSM: Yet the company retained it.

Fraser: Oh yes. They have (not clear) strong, strong concurrent of
 long term investment in belief in hiring people. Making more
 aware of what's needed and leaving them to make decisions about
 what's the appropriate branch computer science is to pursue. In
 order to produce what's needed. Maybe I didn't say that quite
 right. A lot of individual autonomy, hiring process, in the
 hiring process one can steer the course of the company. But, I
 think particularly for the computing research science center at
 that time, a lot of emphasis has been put on getting...simply
 getting good people. Regardless of it, they didn't know much
 about switching or anything. There wasn't too much software.
 The switching business, you must remember that, of what... twelve,
 fifteen years before that. They had a agreement with the
 Justice Department not to get into the computer business.
 That's something you probably need to understand.

MSM: Um, um.

Fraser: It had a very broad impact on Bell Labs position in 1969 and on
 its treatment of UNIX.

Fraser: The Consent Decree, the '69 Consent Decree was relinquished
 only as a result of the divestiture agreement of '84 or '83. In
 that interval, we had agreed that we wouldn't engage in certain
 activities. Which basically meant that we would selling
 computers.

MSM: Did that incentive Consent Decree exclusively keep Bell Labs out of
 software development only? In 56 what a computer meant, and
 what being in the computer business meant.

Fraser: You should read the Consent Decree.

MSM: I should.

Fraser: Okay. But, let me tell you two things. First of all, the 456 -
 and I don't know this, all of this, this is just history. I just
 have a smattering of it. - Western Electric was in all sorts of
 businesses. We made tape decks. We made televisions. We made
 just a whole variety of different things. I guess there was
 some real concern that telephone revenues would be used to
 subsidize some of these other commercial products. Generally,
 rip off the consumer in some way. So, a anti-trust case was
 brought and the result was that we agreed to stay to our case,
 stay to our meeting.

MSM: Um, hum...

Fraser: I think that was more the emphasis. Corporate lawyers have
 very strong incentive to be conservative. They gain nothing
 from taking risks, they can lose their jobs if they lose their
 risks and so, as my interpretation, my reasoning,... my
 interpretation of why it seemed that we as a company took a
 ...took a very self constraining view of the Consent Decree. To
 give you an idea of that, the first packet switch that I built
 in 1970 was a minicomputer programmed like many other
 minicomputers have since been programmed to behave like packet
 switches. There were long debates in AT&T about whether that
 was legal. Whether it was legal for us to make and install a
 minicomputer that behaved like a switch. In fact, strong
 feelings that it wasn't legal, even later than that. So you can
 imagine that anything that looked like UNIX operating system was
 hardly regarded by anybody as a legitimate product of the
 corporation. We did make software, of course, for inclusion in
 our own systems. The operation supports systems were of that
 nature, but um they were strictly connected with managing the
 network and somehow they were more legal than a packet switch.

MSM: [chuckles]

Fraser: You can remember the days, I'm sure, when the FCC was debating
 whether protocol translation within the network was legitimate -
 in fact, it wasn't. And now the question arises, what is
 protocol translation. You have characters coming in on an RS232
 line and you've got to feed them onto a screen - is that
 protocol translation? All sorts of things like that, well
 lawyers and all sorts of people were preoccupied with such
 minutiae at that time. And anything as gross as an operating
 system or a compiler or a language were just clearly out of
 court. Had a lot to do, I think, with the companies attitude
 towards UNIX. What we did and indeed, with its success um...
 Well, the...the way it actually went to universities..

MSM: I see.

Fraser: Had a lot to do with....

MSM: You mean free?

Fraser: Yes. [Laughing] And both pluses and minuses of all of that .
 There was no great strategy associated with it. It was a more
 of a question of responding to something which seemed to be
 irrelevant. I would say. Or something we couldn't make money
 from. So it wasn't (unclear), there was no cleverness in my
 view to what we did. Others may have followed suit and thought
 that our giving away UNIX to universities was our masterstroke -
 our bread and butter - but that was no such thing. It was just
 a response to some very [laughing] (unclear) views.

MSM: Now the other side of that, as I understand it, and I wasn't involved
 at the computing scene at Princeton University at all at the
 time, was the attitude of the central computer facility, which
 was an IBM installation. But if the engineers wanted to go off
 and bring home this strange operating system from Bell Labs,
 well then they could damn well maintain it themselves and I
 wanted not part of it...

Fraser: Yes, yes I...

MSM: So the university first drew no great advantage from bringing it in
 here and

Fraser: The computer science department is like that.

MSM: They like it for its own sake and they would have to absorb the
 responsibility, take on the responsibility of maintaining it.

Fraser: I think you have to understand the legal environment...had a lot
 to do with what the company did and didn't do.. had a lot to do,
 perhaps had a lot to do with... the amount of support that was
 given to UNIX, or not given to UNIX in the early days. Given
 that we had just spent a lot of money on an operating system
 that had produced ah... that had come to a rather unhappy end.
 That operating systems, per say, weren't clearly in the future
 of the company. I don't know what was going through people's
 minds, but I think that it is worth understanding...

MSM: I'm...I'm very much trying to understand...

Fraser: I think that Sam Morgan might be able to help you with that.
 The uh department heads, who influenced this thing the most
 Doug McIlroy and Elliot Hickson. And Elliot is no longer at the
 company, he is an MTS in this building. His role in there, I'll
 let you discover, I don't think he'd consider himself a key
 member of that group, but he did have some of the people
 reporting to him. I think he did influence some of the forces
 that were in play at the time. Doug's involvement is one that I
 would hope that you can uh... that you can divine...uh. I... I'll
 give you a hobby horse of mine... I think Doug's contribution to
 the computing science research center here and to UNIX in
 particular is uh.. substantially under-rated. It's not been
 recognized by any public bodies that I know. It is by and large
 not recognized in internal documentation. I think that it is
 enormous. He was a disclaimer of his own contributions.

MSM: I had this sense in talking to him personally, this (unclear)

Fraser: You have to learn a bit about Doug to understand what I'm
 saying. You may have the time to do that. Doug used to be a
 (unclear) that he no longer is.. he's department head for twenty
 years. He decided twenty years was enough. He is a mentor -
 probably the best mentor we have. Of his strengths and
 weaknesses as a department head, he was not a strong bureaucrat,
 but an absolutely first class mentor. He had the subject all
 over his hands and (unclear). It is my impression, without any
 real data, Doug has a great deal to do with the climate that
 made UNIX happen. And the course of events, not because he
 instilled any particular course of events - Doug doesn't take
 decisions like that - but what he does do is involve himself in
 the conversation and insert a certain level of understanding
 into the conversation that may not have been there before,
 perhaps from the juxtaposition of other things that he knows
 about. And as a result, steers the thing that is evolving,
 without any clear identifiable contribution. But it was
 certainly my impression, listening to the tone of the
 conversation, and so on, that the clarity of thought that led to
 the cleanness of UNIX, had a lot to do with Doug McIlroy. If
 I'm right, I would really appreciate some explanation of that,
 because I've had a really difficult time getting people to
 understand that.

MSM: Some explanation of it in ...?

Fraser: His role.

MSM: Of his role..

Fraser: In trying to get...all the credit is going to the creators of
 UNIX and I think that a little bit of it should have spread
 across to Doug, but getting acceptance of that is a little
 difficult.

MSM: Um hum. It seems to me that something of that sense (unclear) amidst
 every work that is said, there is a little bit of Doug McIlroy
 sticking in it. Underneath the surface.

Fraser: Yes, you see Doug is a facilitator. He had a great deal to do
 with the nature of the group, the sorts of discussions they had,
 the sorts of things they did. He had a lot to do specifically
 with the manual. Now you may think of that as a terrible job,
 but don't think of it that way. The manual was, the fact that
 there was a manual. That he insisted on a high standard in the
 manual, meant that he insisted there was a high standard in
 every one of the programs that was documented. When they say if
 they have just done to produce the next edition of the manual...
 the work that had gone into producing the manual.. had involved
 re-writing all sorts of programs in order that they should meet
 the same high standard. And then added to all of that, it was
 probably the first manual that ever had a section with bugs in
 it. That's a level of honesty you don't find. It wasn't that
 they documented the bugs but were too lazy to fix them, they
 fixed a lot of bugs - but some of them weren't so easy to fix,
 or there were uncertainties as to what they would do - so they
 documented that. I think a level of intellectual honesty was
 present in that activity that was rare. Most people gloss over
 the (unclear) of their system's research activities, they are
 not true scientists. Doug is a true scientist.

MSM: Do you think the fact that, that this was a - heaven knows how to
 choose the adjective here - underground operation or unapproved
 operation led to - I don't want to say led to it, but
 contributed to that intellectual honesty. That is, here is
 something that we can't ever market, here is something that we
 are doing for ourselves: we might as well be honest about what
 we are doing?

Fraser: Well, maybe, but there are plenty of other things that are done
 under the same uh with the same lack of commercial pressure, but
 I don't see any of them with a bugs page. It was more than that.
 But the fact that the Consent Decree existed, that it implied
 that operating system was not a product of AT&T in some way and
 that .. that the activity was not frowned on. I think that it
 was probably not funded at the level that (name) wanted it to be
 funded at because its future role was not clear.

MSM: I get some difference of you...some from the literature, some from the
 few conversations I've had that its something that I want to
 pursue more. About whether it was frowned on or not..

Fraser: Well...

MSM: They feel it wasn't frowning, but others were seeing frowns there.

Fraser: Well, OK, that may be an interpretation, but I tell you another
 person to talk to if you get the chance... You probably have to do
 it sooner rather than later, is Max Mathews. Max Mathews was the
 director of 1122, organizations (unclear) Flannigan now heads,
 which is a sister organization to computer science. Max in fact
 1122 was primarily involved with wave form processing one way or
 another. Max was in innovator in the use of minicomputers for
 his work. He was interested in these things. Max paid for the
 first PDP-11 that UNIX ran on. Even though the work was being
 done in the computer science research center. He simply thought
 that somebody ought to encourage this activity. So ah, it isn't
 that that money was put up by somebody with an agenda, other
 than supporting interesting things. It wasn't even his
 laboratory - he just put up the money. There are many people
 who ah, will do there best to recognize good science and support
 it. Nobody's nose was put out of joint for that, that is the
 nature of the business. And, I think it is fairly well
 recognized that uh you get uh three or four scientists in a
 room, all of whom work on the same subject, that they can have
 different views about the value or likelihood of a particular
 line of research. And accepts that. It isn't completely out of
 the question that Max and his speech research activities might
 look over at what was going on in the operating systems arena
 and say 'Hey that looks interesting. I think that I'll put some
 dollars that way.' That's how it happened. It wasn't a
 recognized upline project that got authorized...

MSM: This, I gather, do you recall when it was that people generally
 become aware that they had something here...taking off?

Fraser: Oh, I think that even the science research center knew that
 they had something real interesting even in (unclear) days.

MSM: How about the rest of the company?

Fraser: [quietly] Oh, it took a while. Don't know about it now.
 [louder] But there are people, things grow slowly. Max Mathews
 obviously though that it was interesting. He had one person,
 Lee McMahon - who recently died - who was working with these
 folk, and maybe Lee was the person who go Max interested...

MSM: [Under his breath] I'd like to talk to Max.

Fraser: [quietly and reserved] It is really unfortunate. Um [pause]
 ya...Bell Labs tries to maintain within the research area, we try
 to maintain a balance between things which people simply think
 are good and interesting science and things which point at
 reasons for their application. And we hope that by having a
 balance that we will- it is like investing some your money in
 guaranteed interest and some of it on the stock market. Its
 probably a good policy to have a mixture of them, if you go one
 way too much and take too many risks you can end up not getting
 any return for your bucks, and on the other side if you are too
 conservative you're not going to get your UNIX's.

MSM: Has (unclear) changed that much?

Fraser: No, don't think so. There are a number of things. I would say
 the (break) emination [?] of the Consent Decree has changed a
 great deal. Which is part of the

[END OF SIDE ONE]

Fraser: the end of that he makes a statement of work. Um that maybe
 the circumstances of UNIX may never be repeated. And in
 particular he worries that today, even here, the circumstances
 would not allow so much neglect of such a promising activity.
 And without that neglect the polishing and redesign that went
 into making it what it was, would never have happened. Today
 and it is true that there is so much hunger for new technology,
 for getting it into the pipeline, that it takes a great deal of
 self restraint to give people the time to do a good job. And in
 that sense the circumstances have changed. Of course now,
 computing, in very many facets, is clearly much more urgently
 related to the product line - the potential product line is much
 broader. What the corporation decides to do is of course still
 evolving, but uh, it is quite clear that operating systems and
 compilers and all these things are now legal tender. We have
 very much more interaction now then we used to with the rest of
 the corporation. I would say we are much more towards the
 center of the focus of attention than we were. It isn't because
 of UNIX. It is because of divestiture and opportunity - the
 demise of the '56 Consent Decree, which makes that the case.
 Whether you can stand by and watch something of great promise
 slowly evolve through a really quite inefficient and
 understaffed um but high qualified staff, see that happen and
 let it happen at the pace that it has to happen in order to be
 done excellently. Whether you can do that or not is the
 question, the open question that I think Dennis raised, and I
 don't think yet that we can say clearly that we know how to do
 that. We are definitely struggling with that balance or how to
 balance exploitation of mind neglect, or not neglect, but um -
 let the artist finish the painting.

MSM: Um huh. So that's your perspective on it. Your association with it
 came directly (unclear).

Fraser: Well the first thing was the, the file store that I built. And
 I think it had no influence whatsoever on the future of UNIX.
 It may be, I think it probably was the first file server that
 anybody ever built. It was a modified version of the UNIX file
 system. Really, I mean slightly modified. But it had no real
 impact on the course of UNIX. And the second thing that I ever
 had any significant thing to do with was this design (unclear)
 system - designing integrated circuits. Which did, which was an
 unusual application of the operating system. At the time it did
 have some influence. In particular, it let to other circuit
 design H systems and now widely used by the company. That was
 at a time when we had just acquired some Tektronix 4014's. Do
 you know what a 4014 is? Its got this great big..

MSM: Screen you throw up...pipelines...

Fraser: And you've got a cursor um, two little wheels that you turn -
 that moves the cross-hairs. You can point to a piece of the
 screen that way. A rather clumsy process. You can draw pictures.
 And it was an attempt to allow us to directly enter the
 schematics of circuits and gates...gates and all the rest of
 it...representations for the chips, pieces of chips and then a
 series of software packages that processed the data from that
 input to give us as much as possible without human intervention,
 a fabricated board. It was a little dream driving it - which is
 that it was possible to push buttons until a little board popped
 out of the wall - all made. Just a fantastic dream in those
 days, because it was an incredibly intense human activity at
 that time. So the schematic input. I guess I did it about the
 same time that there was this, that a similar thing was done at
 Stanford. Sort of in parallel. We purchased a semi-automatic
 ware machine and hooked it up to UNIX. Up to the operating
 system. That gave us our way of making the circuit board.
 Indeed, we got it so that the placement, routing, checking all
 the processes that you need to do to make a circuit card were
 done. And the model for that was troff, believe it or not.
 There had been other design aids, there was a design aids system
 running at Bell Labs at that time running on the mainframe - not
 interactive - there were no schematic capture, and you didn't
 hook the (unclear) on the output director. But there were
 programs for doing parts of the job. And they tended to be sort
 of model (unclear) data-based things. I noticed that they
 didn't evolve - the software got stuck. I noticed that the
 troff, the text processing stuff, was evolving nicely. The EQN
 preprocessors and so on and so forth. And that having the
 files, the intermediate files, be ASCII strings even thought
 that wasn't a very efficient representation, (break) rather than
 data-base, working off a data-base, seemed to be the key. So I
 think the thing that characterized the UNIX (unclear) design aid
 system we built, was it was a bunch of little processors that
 passed string to one another, by and large. And it has turned
 out, indeed, to be a remarkably versatile structure. Not the
 world's most successful, uh, uh, efficient, but its evolved
 immensely. We have a tremendously varied capability in this
 thing now for uh designing communicatorial circuits inside the
 read-only memories and designing PLA's and doing layout and uh,
 fabrication of multiwire circuits and quick connect circuits,
 wire-up circuits and so on and so forth. All this great
 menagerie of capabilities has blossomed mainly because the
 interconnection between them is a very simple mechanism - namely
 the passage of strings. And a language that I came up with at
 that time which was in fact modeled on troff. You could have
 sublanguages buried inside the whole language, I mean, it could
 for example - troff - with a macro package using dot and a
 couple of letters or something to signify a command. All of the
 programs are written to ignore the commands they don't
 understand, just pass them straight through. So EQN will
 recognize 'dot' eq and 'dot' en, but 'dot' t or something 't',
 'tb' or whatever they are 'ts' which come from tables, they pass
 straight though. And the designed this package to do exactly
 the same thing, ripped off the idea from troff. So each of
 these packages just interprets stuff that the package
 understands.

MSM: I see.

Fraser: Turned out to be very powerful. So... I think it was really quit
 a successful uh ...we only spent a few years on it and it took
 off. I'm sorry, I'm not much help to you.

MSM: Oh, no, on the contrary, you're doing, doing...(unclear) helping in
 part in creating that helping to recreate the atmosphere.

Fraser: I'll tell you another person, if you want to understand the
 atmosphere, I'm pointing you off to other people that are hard
 to get, I'm sorry to do that but they are not all around - Peter
 Dennis. He is somewhere around, he lives in the neighborhood.
 Doesn't work here anymore. I would think that Flannigan's
 secretary could find him. He's left Bell Labs and consults - I
 know he consults for Nynex and so on. He worked for Max
 Mathews, was the proud owner of two DDP 224's, at that time, and
 probably represented the person that was most interested in the
 minicomputer business, in 1970. And although he probably, it
 was some while before he paid any attention whatsoever to using
 UNIX. I think he could explain the attitude towards
 minicomputers at that time quite well, which was part of the
 environment here. Bell Labs was one of the leaders, I would
 say, in the use of minicomputers. Starting in the late 60's,
 there were quite a lot of them here. And in fact, the one that
 Ken used, the PDP-7 he used, was a castoff minicomputer that had
 been used for graphics. Something of the flavor of computing in
 that time - I think Peter could give you a reading on it. Very
 strong influence, particularly on ..I think, Max Mathew's
 attitude that you could use these little machines to do a great
 deal. With lots of autonomy and so on. A lot of the flavor
 that was present there and is sort of characteristic of many
 views you get of UNIX. One... sort of aspires to the simple
 direct practical approach rather than the grandiose ... (unclear)
 sledgehammer. I think that in part, that in part grew out of
 the use of minicomputers around here.

MSM: Interesting thought...It's ironic that ... I hear about all of these
 groups that had minicomputers and then I hear a story about a
 central group that couldn't get a minicomputer for the longest
 while.. [Laughing]

Fraser: They had one - it wasn't a minicomputer. It was a GE 645. And
 they blew a bundle on it. Eventually caused enough of a
 cuffuffle around here...I mean the conceptor really failed to
 deliver to his customers. At that time the research
 organization was running the comp center and they failed.

MSM: Multics was their responsibility within the company?

Fraser: Yes, sorry, I didn't make that clear. Prior to that, the
 computer science research was running the comp center at Murray
 Hill. And they had decided that what they should do is build
 this new time sharing system - Multics - on the GE 645. And
 that would be the next generation, all modern, wonderful,
 computing service. The people and the physicists who simply
 wanted to crunch numbers had to wait until that happened. I'm
 inferring that they failed to deliver and eventually someone
 pulled the plug. And the result of pulling the plug was, the
 comp center was separated out, budget moved away from computer
 science research, and the computer scientific research guild
 became small in number - all the others left or moved into the
 comp center or something, and the small number had to find their
 own future. And that was the point in time at which I arrived.
 They (unclear) very definitely. Bell Labs is not going to
 harbor any grudge, that bright people are going to be doing any
 experiments. However, people that thought...allowing any
 responsibility for something...do have a responsibility that they
 have to own up to. I think that it was correctly recognized
 that this was an ambiguous situation having aligned
 responsibility with a research organization which had not
 managed to handle the line of responsibility really. So I think
 the correct thing was done to separate it out. But I am sure
 there were a lot of raw edges immediately after that happened.

MSM: I um until you said it hadn't thought about that question, of living
 with the responsibility of that. Also given what, given
 generally celebratory tones surrounding Project MAC and Multics.
 So it is hard to put to recreate a time when that would have
 looked like a failure.

Fraser: Bell Labs...of course you see there was another issue which is
 that Bell Labs was one third of that project. MIT and GE were
 the other two pieces. And we pulled out. That is not good for
 your relationships with your colleagues. A lot of reasons for
 sore nose.

MSM: I should guess so.

Fraser: It was a very complex time.

MSM: 1969 was just one hell of a year. [Laughing]

Fraser: Let me tell you, one other thing that you might... to my
 amazement when I arrived, the computing science research center
 as a result of this debacle did not have a lab. The absolutely
 did not have any equipment to speak of apart from a few
 teletypes. They used to have all this real-estate, which the
 comp center was in. And it had all moved to the comp center,
 and they wouldn't have had anywhere to put it really that had
 one. They had a situation for example where they had Max
 Maxwell doing experiments in speech acoustics research,
 minicomputers coming out of his ears and the computing science
 research organization had mathematicians and no lab space. Some
 of them weren't mathematicians, they where interested in systems
 and they wanted their own computer. So when eventually they did
 get their own machine, the next thing of course was to find some
 space to put it. That's not the easiest thing in the world to
 achieve. It was stuck up in the attic. That gave it a certain
 character. I think the organization regards itself - 1127 -
 regards itself as being something apart. A smile upon the
 stupidities of the bureaucracy. Poke fun at it - they don't
 stand and salute it. Having your thing be in the attic is
 somehow consistent with that. (Laughing)

MSM: Bohemian

Fraser: Most definitely. You might to learn and I really don't want to
 publicize too many of these things. There is a offbeat nature
 to this organization. Has gone back to the Multics state. Ken
 had a little alligator or something, for example, in the jar.
 The story was what happened when the alligator got free?
 (Laughing) They have done all sorts of things that are, have
 tested the bureaucracy. I happened to do that.

MSM: Could you classify them, at least some of them, as a community of
 hackers?

Fraser: I don't know what a community of hackers is. But, I would say
 there were. Hackers are people who write programmers and think
 afterwards. They are very, very few of them and they are not
 tolerated. A hacker is a person who writes programs, because
 he's tired of his program. There is... there is...

MSM: There's another definition of hacker, which I had in mind.. A person
 who likes to explore computing systems and refuses to accept
 closed doors.

Fraser: There is some of that. But, there's very strong sense of
 responsibility. It could be that both of these are originally
 from Doug's value set. Doug was one of the people. Who in the
 early days, wished out loud that there were a process and
 standards associated with the publication of computer programs
 that were comparable with the publications of literature. That
 is to say people were expected to read it. Writers would
 expect it to be read. They would be embarrassed if it wasn't
 readable. So on and so forth. I've never been in a
 organization that was able to write literature of that nature.
 But, I think there is a ethic, which says that the programs you
 write, should be well conceived and defendable. Although you
 may write a few programs that aren't that way, you're not proud
 of it. So, in that sense they're not happy. So, in that sense
 they're not hackers. If the hacker is the opposite of that.

MSM: I didn't have (name)'s hacker as much as I had Minsky's hacker, which
 is a person that does creative things, because one turns blind
 eye to the probing that is going on.

Fraser: There is a great deal of programming. The knapsack protocol
 and uh a lot of work in encryption here. We've had some
 attention from the NSA from our efforts as people did. We have
 some outstanding mathematicians here. I would say that the
 level of education, of interest, broad interest of the
 programmers here is pretty good, I suppose. Which is not at all
 common. So, lunch time conversation will center around all sorts
 of subjects, from what's going on some strange moon and the
 planet someplace, to encryption problems. Whether something
 works or how you can make it work differently and so on and so
 forth. However, there is a fairly strong sense of
 responsibility, social responsibility, which might be
 contributed to Doug. I don't know whether it comes from him,
 but it might. It basically says that you don't hurt people. So,
 they have not only do they have they been very effective in
 discovering ways of breaking into systems. But, they have led
 the charge within this company, towards finding middle ground
 between constraints which limit peoples ability to do things,
 and protection which limits people's access to your information.
 You have to find a middle there. You can either lock things up
 so firmly that nobody can do any business with you or leave
 yourself wide open. And I... Doug was chairman of Bell Labs
 committee, that was the first major effort organized to define
 the security policy at Bell Labs. And they found a very nice
 middle ground. I think they've done a fine job. And largely,
 because of what had been done here. Fred Ramp for example wrote
 a program, which would run around and find the loopholes in your
 version of UNIX and tell you what to fix. So, they enjoyed doing
 all sorts of nice things like that. Very clear and capable of
 driving holes in things. I don't think there's I.. I spend a
 lot of time trying to make sure that the other members of
 management don't go putting really secret stuff on their
 computer. Because, I know there are programs around that which
 will decrypt them, if they are encrypted. There I know that
 there are people around who find their way into things they want
 to. So, I wouldn't want to feel that the information is not
 secure. On the hand, many of the people who possess those tools
 are also very responsible with them. So, I don't have any
 serious concerns. That both sides of it are present here. Fred
 Graham is the only person we have at the moment who is firmly in
 charge of that. He has a lot to do with helping the rest of the
 company deal with crisis, when we find that people are invading
 (unclear) or something.

MSM: I remember when I was in Holmdel. Whether it was a break in or an
 attempted break in...

Fraser: Fred was the guy who they consulted about that. I think by and
 large everybody has adopted a responsible attitude, even a
 playful attitude. Playful but responsible attitude most of what
 is done. I tend to do things a little off the wall. I think
 all of them, well nearly all of them. There have been things
 that were done, which were harmful in some way. And they by and
 large are shouted down. A guy put an (unclear) bomb outside
 somebody else's door, which had liquid nitrogen in it or
 something, but those sort of things are fairly rare. More often
 than not I think, making fun of the stupidities of the
 corporation. In all these corridors there is a little shower
 head. The reason the shower head is there is that some part of
 this building they use for chemical research. There use some
 dangerous chemicals some of which can get pretty lethal. Any of
 it gets on you, you want to wash it off in a real hurry.
 Before you get hurt. So, they have these shower heads as we
 call them and it's sort of stupid to put one in a software
 research organization. But the bureaucracy says that if you
 should put one in one place, then you should put one everywhere.
 So, the first thing they did was put towel out there and a bar
 of soap. A lot of that goes on. [laughing]

MSM: I was re-reading Ken's Turing Award lecture last night. I was
 struck by how sobering a talk that was. I was also thinking of
 the ironies of it, given last year's break-in. Is there
 anything else I should know?

Fraser: No. That's it.

 Brian Kernighan

The interview date is unknown

MSM: Since we were talking about translations, and since you have watched
this book be translated, I suspect you're one of the people that
translators come back to when C goes into another setting-let's
say into another language. It struck me, the more I converse
with people-I want to get to this-that Unix is as much an ethos
as it is a programming system. It's a way of thinking about
computing. Have people had trouble with that aspect of the
translation of Unix? What has been the response when people
have tried to adopt Unix into other environments?

Kernighan: I hate to give a non-answer to the question, but, in fact, I
have had relatively little feedback from any of the translators,
with about three exceptions, I think. The guy who has
translated several books into German really does program for a
living. He writes; although he's a professor in the university,
he seems to enjoy writing really grimy books on how to do
things, and so he and I have technical arguments about things at
one time or another. I don't think he has any trouble
translating from English into German, or vice versa. He does
his own translation of German words into English. So, there's a
non-barrier there, if you like.

There are two people that I know, not as well, who have done the
translations into Japanese of different books. The guy who's
done them into-particularly the Unix book and a C book, is-runs
the computer center at the University of Tokyo. Although he
probably doesn't program on a day-to-day basis, I think he
genuinely understands what's going on. My guess is that he
doesn't have a heck of a lot of problems tanslating. Although
one Japanese lifestyle, culture, or whatever, is enough
different in some areas, that maybe it makes a difference. My
bet is that it doesn't make a heck of a lot of difference. I
suspect the computing aspects are pretty close to the same
there, as they are here.

MSM: Let's take the English-actually, let me rephrase the question,
because I had in mind more of an aspect of the portability of C.
 You wrote the books, and I suspect-maybe the premise is
wrong-that people or institutions have tried to go over to you
to adopt Unix; that you're one of the people to whom they come
back and say, "I don't quite understand how this works." The
queries came to you, or have come to you. Am I right on that
premise? Have there been a sort of set of difficulties people
have encountered when they tried to go over from one system into
Unix? Has Unix proved difficult to port as a way of doing
things, as opposed to simply a piece of software?

Kernighan: I think in a way it has, although memory grows dim. A lot of
this stuff is something that I don't think about much anymore.
Fortunately, I'm not involved in it as much. But I think there
has always been a problem when somebody new comes to the system.
 There's a set of shared, I don't know, conventions; things
that, because they work the same throughout all the Unix
operating system and its programs, tend not to get written down.
 They're just like folklore; they're customs. Like keeping to
the right as you drive almost. Everybody knows that kind of
thing, and therefore, it tends not to be written down as part of
 every single description. It's in one place and then
forgotten. People who come new to this system don't know that
that sort of particular behavior is pervasive, and therefore,
they are perhaps befuddled by it; they don't expect that it will
work. And you could see lots and lots of examples of it. Oh,
fairly narrow technical issues, but for example, the fact that
most programs read from a list of files, or there are no files
from the standard input. And I still remember seeing somebody
who had taken one of my programs-ratfor, the FORTRAN pre-
processor-reproduced the manual page, and had added a bug
section which says that if you just type ratfor nothing happens,
not realizing that if you type ratfor it's waiting to read the
standard input. Okay, so there's an example of somebody who
just had missed totally an important aspect.

An analogous one which is probably more modern: If you look at
DOS, MS-DOS, the notion of wildcard characters for filename
expansion, is part of DOS, but in a very strange way. It's
really not done by the command interpreter, COMMAND.COM or
whatever, the way it would be in Unix, by a shell. But, rather,
it's a service provided by individual programs, and that means
that its properties-some programs don't have it, its properties
might be somewhat different from one program to another, whereas
in Unix it's known that it's done by a single program, in a
single place, and therefore its properties are somewhat more
uniform. That notion that there's the right place to do things
is something that you maybe take for granted in Unix; it doesn't
quite come up the same in other systems. And so explaining that
to people, maybe is difficult.

Another area that I remember endlessly, when we were doing in
what I will best describe as popularizing Unix, back in the mid
and late '70's: People would come in and they'd say, "Yeah,
this is nice, but does the system do X?" for some X, and the
standard answer for all of this was, "No, but it's easy to make
it do it." Unix has, I think for many years, had a reputation as
being difficult to learn and incomplete. Difficult to learn
means that the set of shared conventions, and things that are
assumed about the way it works, and the basic mechanisms, are
just different from what they are in other systems. Incomplete
means, because it was meant as a program development
environment, it doesn't have all the finished products
necessarily. But, as a program development environment, it's
very easy to build a lot of these things. It's sort of like a
kit. And if you want a new thing, you can take the pieces out
of the kit and assemble them to make your new thing, rather more
rapidly than you would be able to do the same thing in some
other kind of environment. So, we used to say that. "Does it
do X?" "No, but it's real easy. Do you want one by tomorrow?
I'll give you one by tomorrow." Every once in awhile, someone
would call your bluff. (Laughing) Sometimes that was fun, and
sometimes it wasn't.

MSM: In what you just described, you used the term "kit," which could be
expanded to "toolkit." And existing notions of tools, and Unix
as a set of tools, where did that image come from? Doug credits
you for it in the collection of research manuals.

Kernighan: I honestly don't know where it came from. It was in the air in
several different ways. I think maybe Plauger and I were the
people who put a name on it, and maybe some coherence, when we
wrote this off our tools book, and tried to take ideas out of
Unix and put them somewhere else. But I think the ideas had
been kind of floating around anyway. Doug, of course, had
published these two papers, in the-I don't even know where they
were papers in, the Garmisch, and wherever else software
engineering conferences in the late '60s, '68 or '69, that kind
of time-where he was talking about things; not quite tools, but
components. If you're going build components, you need tools,
so that's part of it there. I have a vague notion that Bob
Morris was talking about those kinds of things too, because I
remember him giving us a fairly coherent talk at one of the
spring or fall joint computer conferences fairly early. Beyond
that, I don't know. I think that I started giving talks about
tools, and combining programs, and so on, fairly early. '73,
'74 more likely, that kind of time. And then Plauger and I
started to work on the software tools book. And it was, well,
what are we talking about? These are the tools you use when you
write programs. And that came out in early '76. So,
presumably, we were working on that in '74 and '75. I might
conceivably take credit for the name, but probably not the real
intellectual idea underneath it anyway.

MSM: Is this something you learned when you got here?

Kernighan: I think probably yes. I had spent the summer of 1966 working
at MIT, in the group that was the MIT component of the Multics
effort. I spent a summer there, working ostensibly for Corby,
but practically for-I don't even know for who, officially, but,
you know-I was there and I was working on something, and in
fact, it was a tool that took stuff from the CTSS machine, the
7090, and made a coherent tape which you could then load on the
645, which had just arrived, and actually run it as a sort of
Multics-y kind of job, although Multics didn't really do
anything. I've forgotten, it was the merge editor or something;
it was basically just, take a bunch of stuff from here and put
it over there. So, I got used to both CTSS as an environment
and some of the noise that was in the air about Multics,
although I didn't actually have much to do with the pure Multics
side of it.

Then I came back and spent the summer of '67 and '68 here at
Murray Hill, first summer working for Doug, and I built
myself-typical summer job, I think-Doug suggested an idea and I
got sidetracked into the tools that were underneath the idea, or
might have been helpful in building the idea, and I never went
off and did anything. He wanted to investigate storage
allocation algorithms, and I started to build myself some list
processing stuff and never finished that. That was much more
fun than (laughing) trying to figure out the properties of
storage allocation algorithms. I think that beyond that, the
notion of tools, or languages, or anything like that, did not
show up in my consciousness until noticeably further on,
probably when Unix was actually running on the PD11, which would
be '71, '72, that kind of time. And even there not really.

MSM: Before or after Doug did pipes? Was pipes a trigger for this notion?

Kernighan: I think it probably was the capstone or whatever. I'm not sure
what the right image is, but it's the thing that makes it all
work, in some sense. It's not that you couldn't do those kind
things, because I had already written redirection; it predates
pipes by a noticeable amount. Not a tremendous amount, but it
definitely predates it. That's an oldish idea. That's enough
to do most of the things that you currently do with pipes; it's
just not notationally anywhere near so convenient. I mean, it's
 sort of loosely analogous to working with Roman numerals
instead of Arabic numerals. It's not that you can't do
arithmetic, it's just a bitch. Much more difficult, perhaps,
and therefore mentally not-more constraining. But all that stuff
is sort of now squashed into such a narrow interval that I don't
even know when it happened.

I remember the preposterous syntax, that ">>" or whatever
syntax, that somebody came up with, and then all of sudden there
was the vertical bar, and just (snaps fingers) everything
clicked at that point. That was the time, then, I could start
to make up these really neat examples that would show things
like doing, you know, running who, and collecting the output in
a file, and then word counting the file to say how many users
there were, and then saying, "Look how much easier it is with
the word count. With the who into the word count, and running
who into grep," and starting to show combinations that were
things that were never thought of, and yet they were so easy
that you could just compose them at the keyboard and get them
right every time. That's, I think, when we started to think,
probably consciously, about tools, because then you could
compose the things together if you had made them so that they
actually worked together. And that's when people went back and
consciously put into programs the idea that they read from a
list of files, but if there were no files they read from the
standard input, so that they could be used in pipelines. People
went back and did that consciously in programs, like sort.
Sort-an example of a program that cannot work in a pipeline,
because all the input has to be read before any output comes
out-it doesn't matter, because you're going to use it in a
pipeline, right? And you don't care whether it piles up there
briefly; it's going come out the other end. It's that kind of
thing, where we say, "Hey, make them work together. Then they
become tools." Somewhere in there, with the pipes, and maybe
somewhere the development of grep-which Ken did, sort of
overnight-the quintessential tool, as I guess Doug refers to it.
 A thing which, in a different environment probably you don't
see it that way. But, in the Unix environment you see it as the
basic tool, in some sense.

MSM: There are several directions to go here. One that this brings to
mind is, do we take grep and yacc and get awk?(not clear)

Kernighan: As a bit of an oversimplification, yeah. I'm not sure that
yacc is the right model. I think in fact sed is the right
model. That-because the patterns are much simpler, and there's
less of a sort of-there's a more sequential structure to the
processing in awk which is much closer to match to way that sed
works than to yacc. Yacc has mystical properties; I mean,
certainly it's patterns and actions, but the patterns sort of
spring into action, as it were, out nowhere. Whereas, it's
really obvious what's happening in sed and in awk. So, I think
that's a fairer example, or a fairer path of evolution. It's
much closer. Because, I've been interested-having seen sed, I
was kind of interested in the notion of a programmable editor,
because there were lots of things people were doing that
required text manipulation, and we didn't have on Unix a
programmable editor. We had this thing called qed which came
originally from Peter Deustch, I guess, or somebody like that,
at Berkeley-but Ken had made it work on Multics and then I think
Dennis made it work on the GE machine that we used. It was a
programmable editor, but it was programmable in some formal
sense. It was just awful, and yet it was the only thing around
that let you manipulate text in a program without writing a
hell of a lot of awkward code. So I was interested in
programmable editors, things that would let you manipulate text
with somewhat the same ease that you can manipulate numbers. I
think that that was part of my interest in awk.

The other thing is-that I remember as a trigger for me-was a
very, very specialized tool that a guy named Mark Rochkind
developed. He was in group that was doing, you know, genuine
telephone-related stuff, and he had a program that would let you
specify basically a sequence of regular expression and
message-regular expression and message-and then it would create
a program such that, if you pass data through this program,
when it's on instance of the regular expression, it would print
the message. And we'd use it for data validation. And I
thought, what a neat idea. It is a neat idea. It's a really
elegant idea. It's a program that creates a program that then
goes off and validates data, and you don't have to put all the
baggage in; some program creates the baggage for you. The only
problem with it was that it was specialized, this one tiny
application. And so my contribution to awk, if you like, is the
notion that you can generalize this. Technology of making
regular expressions work, to this day, remains (not clear) and
many of the database, and general feeling of data processing
that you might get out of (not clear) repeater, I think that
holds much of the first-cut implementation. I don't remember a
lot of that stuff. Again, it's pretty blurred now.

MSM: It's hard for you to remember just-I mean, how did the three of you
get together?

Kernighan: Well, we got together in, typically, in my office. We'd argue,
and invent something in real time, and that, (laughing) that has
been with us ever since. We'd throw stuff in. Peter is a very,
very fast implementer. He can build things much faster that I
can or Al can; and so we would get some idea and he would
typically have it working almost immediately. Then over the
years, I would go back and clean it up. Sometimes, we-he
implemented things and we ultimately threw them out and probably
should have left them in. For example, right at the earliest
times he had a version of awk that would generate C instead of
being an interpreter. That was something that didn't resurface
again for almost ten years. He had in it several different
regular expression machines, one of which would do one of these
very, very fast regular expression searches, if the set of
things that you were looking for was just key words, without
metacharacters. The basic yacc-grep algorithm. He had
implemented that, that kind of stuff. Over the years, I had
tried three or four different internal mechanisms for the
interpreter machine. You try a stack machine and see how that
works, and you try quads or triples or something like that, and
see how that works. You try interpreting the parse tree and see
how that works; that's the one we stabilized on. So, I
personally have used awk, probably excessively, as a vehicle for
experimenting with various kinds of half-baked ideas, both in
implementation and also in language design.

MSM: Let me back up to the beginning. You were up at MIT in '66.

Kernighan: Correct.

MSM: And there working with Corbatmoving from the 7090 to the 645.
Conscious of Multics, but not part of it?

Kernighan: In some sense, yeah. I don't think I realized quite what it was
all about. I mean, I had some notion that this was interesting.
 I was using CTSS; that was the first time that I had used a
substantial time-sharing system. I had played very, very
briefly with Dartmouth BASIC, and you know, it's kind of nice to
have the computer talk to you. But CTSS by comparison was very,
very polished. You could really do nice things with it, and in
addition you were right center of the universe of CTSS; all of
the experts were there. It's very like this is the center of
Unix expertise. There it's the center of the CTSS expertise, and
so they could make it do wondrous things which you would have
never found if you weren't nearby. So, I was interested in that
aspect of it, and then there were some interesting application
programs as well. Like, ELIZA was there; Joe Weizenbaum worked
down the hall. Now, he was away, I don't think I've ever met
him.

But-so, you know, I'd meet an interesting girl, I'd bring her in
to talk to the doctor. (Laughing) But, it was just an incredibly
fun place to be. But, the Multics aspect of it, I had
relatively little to do with. What I was doing was writing a
program that ran on the CTSS side, and it created a output that
was usable by somebody else. But I didn't actually care much
about the output side of it. It was just a simple data
processing problem; let's just collect inputs in some sense or
other and put it together in a stylized sort of way. But, it
involved list processing, and it was written in MAD, which was
kind of a neat language. Much better than FORTRAN, which would
have been one of the other choices.

MSM: MAD's the Michigan-

Kernighan: Yeah. Right.

MSM: It was Bruce Arden's, wasn't it?

Kernighan: Yes. Arden, Galler, I don't know who else. That group.

MSM: You came here in '67, '68. Were your projects part of Multics
projects?

Kernighan: No. When I came in '67, as I mentioned earlier, Doug had this
notion of working on figuring out what were good storage
allocation algorithms, for ML, basically, that kind of thing;
how do you provide quick access to storage and then release it
again. That remains a good problem, to this day, and Doug
continues to work on it to this day. But I didn't get turned on
to by it. But, what I did was to go off and say, well, if
you're going to provide storage allocation-let's say in a
FORTRAN program, which at the time FORTRAN was kind of the
universal language for most people-it would be nice if you
could-I had spent time at MIT working on list processing kinds
of things. There was a list processor called MAD Slip, which
was basically just a bunch of routines that you call from a MAD
program that let you do-you know, create a arbitrary size block
of storage and then link it to some other arbitrary block of
storage and so on-so you could do list processing in a
conventional algorithmic language. And that was kind of neat,
and so what I did that summer of '67 here, was sort of take
Doug's vague idea of storage allocation and go off and build
myself a bunch of routines that would let you, from a FORTRAN
program, do list processing. You know, create a block of
storage this big, link blocks together, walk along lists and
stuff like that. And in a fit of absolutely misguided craziness
I spent much of the summer trying make it run absolutely as fast
as possible on this specific machine. So a lot of it was
assembly language programming. It was-except for a learning
experience, I think ultimately a total waste of time. But it
was fun.

Then the second summer, I came back, the summer of '68-I spent
that summer working genuinely on my-on stuff that would be
related to a thesis. I worked with Shen Lin on graph
partitioning, which is just unrelated to any of the above. I
mean, it did require going out and writing substantial FORTRAN
programs and doing experimenting and so on, but it had nothing
to do with any of the sort of system-y stuff. It was pure
combinatorial experimentation. I did that, and then when I got
back to Princeton they, in their wisdom, said, "Your money is
going to run out in January. Maybe you better write a thesis."
I said Ah! (laughing) So, I wrote a thesis.

MSM: What did you write it on?

Kernighan: Graph partitioning.

MSM: Graph partitioning. I was going to look it up, but I didn't get a
chance to go to the library.

Kernighan: Anytime you want to hear about graph partitioning, I will be
glad to tell you what I know about graph partitioning. It
remains a standard problem. I think it's an interesting
problem, because it shows up in a variety of guises in real
life. In circuit design, which is one of the reasons that
people here were kind of interested in it, and it's still part,
a fundamental part, of a lot of circuit layout problems.
Because, basic idea is to take the components of a circuit and
cluster them-in some sense so that you don't have too many wires
running from here to way over there; rather, most of the wires
are short. But there are constraints on the size of clusters,
because the things you are clustering together have to fit on
something, like a chip, or a substrate, or a circuit board, or
whatever. It's a plausible model. Quite a few real problems.
I actually worked on that off and on for probably the next four
or five years, when I got here, and other combinatorial problems
with Shen. But, I gradually drifted out of that stuff, after
two or three years.

MSM: When did you come here in '69?

Kernighan: Real early. February probably. I graduated. I escaped from
Princeton in January of '69.

MSM: It's the only way to describe getting out of grad school.

Kernighan: Yes. (Laughing) You understand completely. I really enjoyed
Princeton as a graduate student. It was in some sense the peak
of income and the minimum of responsibilities, and except for a
horrific-probably eight to ten months, while I anguished over
what the hell am I going do to for a thesis, I can't get out of
here without a degree. Other than that, it was idyllic, it
really was. Just a lovely place to be.

MSM: Yeah. I kid, but I actually had a good time as a grad student there.
 I was married at the time, but when we'd come back from living
in a one room apartment in Germany, this Butler tract looked
absolutely palatial. (laughing) But, it was like the situation
my third year. An NSF fund, and I was teaching a couple of
sections. I don't think I ever had so much disposable income.

Kernighan: Yep. Exactly. (laughing)

MSM: The rent was forty eight dollars a month.

Kernighan: Yeah. I remember.

MSM: What did you come here to do? Were you hired into the computing
research group?

Kernighan: Oh, yeah. The same group that I'd been in all along. It's
interesting, I had so much fun here in '67 and '68-just, you
know, the people. It was just such a good collection of people,
and I've enjoyed it. I never interviewed anyplace else; I never
even thought of any other place. I simply said I'd like to work
here. And Sam Morgan, in his wisdom, said, "We don't want any
Ph.D. dropouts, so you have to get your degree finished. But,
other than that, sure, we'd love to have you." That was it, and
I came early in '69 and the charter, or my instructions, were-as
they are for everyone else-non-existent. Do what you want. The
hope is that the combination of people around you, doing things
that are interesting-and perhaps ultimately relevant, but not
instantaneously relevant, I don't even know-but the combination
of people around you doing interesting things, and getting their
jollies, I think, from having their interesting things affect
other people, means that there's this sort of gentle
gravitational pull towards doing the same kind of thing
yourself. It's clear the reward mechanism ultimately favors
those people who have an impact on the local community, impact
on the Bell Labs community, impact on AT&T, impact on the
scientific community, in some combination.

MSM: So, it's a question of, "Do what you want, but when we come to salary
review, performance review, come talk about what the impact of
what you've done has been."

Kernighan: Impact is, I think, ultimately the criterion, but there's quite
a long view taken, and quite a broad view of what impact is.
So, somebody who does purely theoretical work-but whose
theoretical work affects the community in some sense, either
because other people take it and produce artifacts, or because
that person is able to shape a field, or something like
that-that's fine. That's good work. That has impact. It
doesn't mean that you can see it in a telephone or anything like
that; it means that it has had an effect, a positive effect, on
something of substance.

MSM: Now, when you arrived, one of the things going here was Multics.
Were you that involved in it?

Kernighan: Yeah. I was conscious yes, involved no. I remember watching
Ken and Dennis and a couple of others stroking this giant this
giant machine that sat probably just around the corner here, or
maybe it was one floor down, and sort of being intrigued, but
from a distance. I never actually, I think, ran on it or did
anything on it. At the time I came, it must have been within a
few months of disappearing. I don't remember specifically.
But, for all I know, it disappeared between one summer and when
I came permanently. I don't know the date of that. But I never
had anything to do with that. At the time, I was doing this
combinatorial stuff with Shen Lin. When I first came, I
continued to work on graph partitioning and, you know, I also
got interested in the traveling salesman problem again. He'd
been interested for a long time, and I got sucked into that. We
were writing FORTRAN code for that, and I don't think there was
a FORTRAN compiler on the Multics machine. So, we ran it on
the standard GE machine, where there was a perfectly fine
FORTRAN compiler and, you know, operators and all the other
things that you needed to get the job done. So, for the first
couple of years that I was here I spent essentially all my time
doing combinatorial kinds of things and running right just
vanilla FORTRAN programs.

MSM: So, that's why The Elements of Programming Style is basically about
FORTRAN programming?

Kernighan: Well, that's not why it was. It's because FORTRAN was the
dominant language, and-it really was the dominant language of
scientific computation, and the only other language that you
could pick on that had any overlap with it, really, was PL/1,
because it had this sort of side of it that was used for
scientific computation, and there was a hope that PL/1 would
replace FORTRAN for scientific computation, which of course
never came about.

MSM: Were you around when Multics was canceled?

Kernighan: I guess so, yeah, as I said.

MSM: Do you get any memories of that?

Kernighan: I really don't. I just don't know-

MSM: Sense of mood or-

Kernighan: I just don't remember. It's completely gone. You know, I-my
guess is that the people who were involved were probably
somewhat disappointed, maybe bitterly disappointed. If nothing
else, they had invested a lot of time in it. On the other hand,
I think the handwriting must have been extremely clear on the
wall for quite some while, that this thing was not living up to
its promises. The promises made had been totally unrealistic,
but it just wasn't living up to anything.

MSM: When did you find out what Thompson and Ritchie were up to?

Kernighan: I don't know. I remember long discussions right across the
hall there--which I think at the time that may have been Rudd
Canaday's office, I don't remember now-when they would sit and
draw pictures on the blackboard, file systems, different kinds
of pictures and talk about it. I wasn't paying very much
attention to that. I remember some distant-well, I certainly
remember the PDP-7 and 9, because of the great graphics display,
and you could play Space War on it. It was the best Space War,
and still one of the best video games ever invented. But then
Ken started to do serious computation, this Unix-related stuff
on it, and at some point he put together a system. I think it
was Doug who probably first pointed out that this was actually a
useful thing, that you could do interesting work on it, but I
still didn't actually do anything with it, certainly not while I
was on the PDP-7. And I did not-I think that I, in some ways,
got involved only peripherally through the B interpreter,
which-B was the language that they had used to experiment in one
way or another. Steve Johnson made a version of the B
interpreter that ran on the Honeywell machine. I started to
play around with that, and got interested, and wrote with Steve
a sort of introduction to B for people, so that people could
write B, presumably on the PDP-whatever-at that point I don't
remember whether it moved to 11 or not-but also on the
Honeywell. So, I wrote this little tutorial on B, and I wrote a
couple of B programs, and I found it, you know, easier. It was
like going back into MAD from FORTRAN. It was just easier,
because a lot of-it was easier to manipulate characters, textual
kinds of things, you didn't have to worry about goddamn labels
and continue statements and so on. I mean I still use goto's,
but it was just cleaner. You didn't have to worry about card
boundaries, all that kind of nonsense. It was just nicer. In
some sense, maybe that's how I got into it, through the language
side. Then, at some point, the PDP-11 came along. There was an
actual useful machine there, and.... I literally don't know what
I-how I got in, or what I did first. I must have been pretty
early in the game, because I have a single-digit user ID, as do
Ken, Dennis, and Doug.

MSM: Low serial number?

Kernighan: Low serial number. (Laughing) Mine is 9. It's the last of
them. But, there's got to be some cachet in having a single-
digit user ID on the lineal descendant of the original Unix
machine.

MSM: Absolutely.

Kernighan: Ossanna, I don't know, was 4, maybe, and Robert Morris was 5,
and that was it. I mean, Ken was 6, Doug was 7, Dennis was 8, or
something. You know, that kind of thing. So, I was 9. So, I
must have been in, in some way, fairly early, and I don't know
how I achieved that.

MSM: You don't remember what you were doing, what got you on?

Kernighan: I don't. I really don't. It may have been that I said, "Gee,
I'd like a login or some way to use this machine," and maybe
never did anything with it. That I don't remember.

MSM: What were you working on at that time?

Kernighan: Probably, still these combinatorial kinds of things, because
Shen and I worked on graph partitioning and traveling salesmen,
and I worked on a variety of circuit-related things, circuit
design related things, with a guy named Dan Shweichert, that
were also combinatorial, and so on, in that period of time.
Those were predominantly FORTRAN programs running on the GE
machine, because that was the general-purpose computing
environment.

MSM: What was your first major project on Unix, and when did it start to
become part of your research program?

Kernighan: The first substantial thing I can remember was eqn, which
Lorinda and I did, and that, I would guess, was '73 or early
'74. The initial development was very, very short, but you
could probably date it almost exactly. It was written in C, so
there had to be a working C compiler, which was presumably put
in in '72 or '73. There had to be a working yacc, because, you
used the yacc grammar. It was done-in fact, I could find out
from this-there was a graduate student named Wayne Hunt who had
worked on a system for doing mathematics, but had a very
different notion of what it should be. It basically looked like
function calls. And so, although it might have worked, he a)
didn't finish it, I think, and b) the model probably wasn't
right. I remember, he and Lorinda had worked on it, or she had
been guiding him, or something like that. I looked at and I
thought, "Gee, that seems wrong, there's got to be a better way
to say it." I mean, then suddenly I drifted into this notion
of, do it the way you say it. I don't know where that came
from, although I can speculate. I had spent a fair length of
time, maybe a couple of years, when I was a graduate student at
Recording for the Blind at Princeton. I read stuff like
computing reviews and scattered textbooks of one sort or
another, so I was used to at least speaking mathematics out
loud. Conceivably, that trigged some kind of neurons. I don't
know.

MSM: EQN was the-

Kernighan: That certainly was the first substantive thing that I did that
ran on Unix; was purely, specifically, only a Unix program.

MSM: Was that the point at which Unix was being developed on the grounds,
on the basis, of being a text processing system?

Kernighan: It must have been well into that, because at that point troff
existed, we had typesetter-because this stuff wouldn't be
interesting if you didn't have a typesetter-so we had a
typesetter, and Ossanna had a working version of troff. So,
all of us had had this interest in text formatting for a long
time. When I was at Princeton, I wrote a program to format my
thesis, because I couldn't stand the idea of paying somebody a
couple of dollars a page to type the stuff, because I knew I was
going to do it over and over again. I hated just writing stuff
out by hand, and I couldn't use a typewriter very effectively;
it was just too tedious. So, I wrote a text formatter at
Princeton, which was sufficiently successful that, for a decade
later, there was a student roff agency.

MSM: I don't remember the student roff agency, but I do remember, back in
the mid '70s, when I first became conscious there was a course
on computers and society that was being taught by a guest
brought in from Rutgers because no one at Princeton wanted to
teach the course. It has since disappeared as a course; I keep
threatening to bring it back. It would actually be a good
course; I'd have no trouble getting 1500 students in for a
course like that. But, I remember that the students were asked
to roff their text. I remember about that time, one of my
students, the first of my graduate students in the history of
science, discovered script. He started using green bar paper,
and then never did write a proper thesis, because he thought
editing meant going in and responding to my margin area on the
line, and that's not what I had in mind.

Kernighan: So, I was interested in formatting. I'd done this formatter,
Joe Ossanna had done a formatter. I think it was either-it may
have Ken, it was probably Ken, but it might have been
Dennis-that had done a little formatter that ran on Unix, and
that was the genesis of the patent department stuff. But,
Ossanna took it over, I think, and made it big. I may be making
that up, you'd better check with some of the protagonists. Doug
was interested in formatting, and had built quite a
sophisticated one for the Honeywell or GE machine-somewhere in
there, it became Honeywell. So, there were a lot of us who had
our hands in on formatters, and it was one of those topics that
everybody was intrigued by. But, the eqn thing was the
first-something that sat on top of, or in front of, a formatter
to genuinely broaden what you could do with them. That was the
first thing.

MSM: One of the things that I find quite interesting there, is-I can
understand people's being interested in formatters, because you
get the idea that you're going to have a system that you can
type onto, and using a teletype to do it. You say, "Look, this
is a typewriter, if I can get stuff into it, I ought to be able
to be able to get stuff out of it, and I ought to be able to get
it out in any form. Why not use this as a way of editing? Why
not stop this silliness of having to count lines and footnotes
as I encounter them, and keep a record of them off to the side?"
and so on, and so forth. But, eqn and tbl and the others go
beyond formatting, to typesetting. It's going to get you into
the printer's art. I think of Don Knuth, who was in the midst
of writing this marvelous bible of programmers, and then, all of
a sudden, off he goes and gets into a decade of close studying
of the formation of letters. He still hasn't gotten back to
Volume 4. There seems to be an allure. (laughing) What is
that?

Kernighan: Well, I will say for Knuth, I think it's in a large part, a
waste of great mind for him to spend a decade on TeX. It's not
that TeX is bad, but it's a waste of Knuth. I mean, he's
capable of much more. I think I understand it. It's seductive
because-first the output is actually appealing. I mean, you can
actually see its utility, and you get a chance to change
something and see how it improves it. So, it's really appealing
in that sense. The input/output relationship is really quite
intriguing. The other thing is that-I think that in some sense,
the problem area is a microcosm of everything you ever wanted to
do with computers. It really has all of the interesting
problems, but they're there on a somewhat smaller scale, so that
one person can encompass it. It's relatively self-contained,
and if you do anything useful, people are just really
enthusiastic; they love to have it.

MSM: Were you learning things, as you were setting up this text processing
system, about computing?

Kernighan: Yeah. You learn-

MSM: Or were you just saying that that had theoretical interest?

Kernighan: Well, yeah, theoretical is not the right word. But, it
genuinely had computering science kind of interest, because
what you're doing is, you're building compilers, right? But
you're building small compilers. You're building them for
relatively simple languages, which means that you don't have to
face, in your language, all of the problems that may get
difficult to build a compiler for a real, conventional
mainstream language. For example, a compiler for eqn is several
orders of magnitude smaller than the compiler for something
like C, or FORTRAN, or something like that. So, the job is
intrinsically simpler; there are a lot more things that you
don't have to worry about. Yet at the same time, retains most
of the interest. I think maybe that's part of it. Then the
other thing is that it's kind of like many other things in
computing; you get to go off and invent your own rules for the
game. Especially if you're building languages, which is a lot
of what I've done over the years. If you're building a new
language for something, well, you can invent the rules. It's
not like-if you want to go out and build yourself a new C
compiler, you can't invent the rules. They're already defined
for you. I think that's boring. So, but if somebody says "We
need a new language to make it easy to talk about, you know,
the way that medieval manuscripts have been illuminated," or
something or like that. Well, gee, define your own rules,
because nobody else has done it before. That, I think, is part
of the charm as well. Before you set out to play the game, you
get to define the rules, and if you don't like the way the game
turns out, then you change the rules. That's always been part
of the charm in computing, I think, building something out of
nothing.

MSM: That's a mathematician's approach.

Kernighan: Well, in some sense, yeah. But it's different from at least
pure mathematicians; there is, in addition, the reward of
utility if you do it well. People come along and say, "Hey,
look what I did." Maybe mathematicians don't get any jollies
when somebody says, "Oh, I used your theorem." But I think
people who write programs do get a kick out of it when somebody
comes along and says, "Hey, I used your program." I know I do.

MSM: I think mathematicians-certainly when a mathematician's result
unlocks someone else's problem for them, there's got to be an
immense sense of gratification.

Kernighan: That's right.

MSM: Plus a validation that what one has developed is a profound theorem,
when it begins to unlock other people's problems.

Kernighan: None of these things are profound, but, you know, they make
life easier for people. They make it easier for somebody to get
something done. So, I personally enjoy that.

MSM: Actually, one of the things you were talking about, that I hadn't
thought about, is--typesetting things, which one tends to think
of as graphical, is really about languages. Small languages.
It's a question of how to capture a description.

Kernighan: The input side is small languages. There's a continuing debate
between: is it better to have a linguistically, textually-based
description of things, or is it better to have a visually,
graphically-based description of things? People who have
WYSIWYG editors will tell you it's much better to have it right
there on the screen before you, and people like myself, who've
grown up with, and are comfortable with, the textually-based
tools, will tell you there are lots of things you can do with
text that you can't do with the pictures. The truth, of course,
is that it's a combination of both; each has its good and bad
points. I think we started to make significant progress in a
lot of these things when we started to think that what we were
doing was building languages, because then you could start to
think of using the tools that were around for constructing
mainstream languages in these other areas. In addition, the
artifacts that we built with these tools themselves, were in
some sense cleaner and better, because they were linguistically-
based. They became less of a collection of features and more
implementation of a relatively coherent grammar and set of
rules, and so they were easier. Early mathematics-there had a
variety of people, I found out afterwards, who had built tools
that were intended to make it easy to typeset mathematics, and
they were always full of restrictions, like there shall be at
most three levels of subscripts, and two of these and four of
those. And the reason was that...

[END OF SIDE 1]

Kernighan: ...to build yourself a language, that a lot of these funny
restrictions don't happen, because the recursive structure that
that tool encourages you to use means that you tend to get
things that just go. So, if you need seventeen levels of
subscript on something, well, you know, it's no different than
two levels of subscript. It's just more than one. And so a lot
of these arbitrary, capricious restrictions, that showed up in
things where somebody was building a program, sort of go away
when somebody's building a language with an appropriate set of
tools, because the grammar does not really make it easy to talk
about restrictions-well, one or two or three-but encourages you
to think of just an arbitrary number. It's not that you can't
have an infinite number of subscripts; you'd run out of
something after a while. But, it's not in the structure of the
language.

MSM: Little languages: when did you start learning little languages?

Kernighan: I believe it was--I've forgotten his name, but in Le bourgeois
gentilhomme the gentleman who realized he'd been speaking prose
all his life. (laughing) I should remember his name, but I
can't. In some sense, it's the same phenomenon. Somewhere,
somebody asked me to give a talk. I looked back and realized
that there was, in some way, a unifying theme to a lot of the
ways that I had been fooling around over the years, which is
that I had been building languages to make it easy to attack
this, that, or the other problem. In some way, make it easy for
somebody talk to the machine. I started to count them up, and
gee, there were a lot of things there that were languages. Some
of them were absolutely conventional things, some of them were
pre-processors that sat on other things, some were not much more
than collections of subroutines; but, you know, you could sort
of call them languages. And they were all characterized by
being relatively small, as they were things that were done by
one or two people, typically. And they were all not mainstream;
 I never built a C compiler. They were attacking sort of off-
the-wall targets. So, I said, gee, well, they're little
languages. Then, once you see that, you can start to look for
further targets of opportunity. Over the years, that's what
I've done. You can push that arbitrarily far, probably too far.

MSM: The way you were describing it before, when you were talking about
yacc, and about, when you see these things linguistically, but-I
forget exactly what words you used-but, what it triggered in my
mind was the sense that, what's come out this research group as
a whole is a body of theory that seems particularly adapted to
precisely this design of languages. This is the textbooks on
the subject of language design, theory based language
design-combinations of three things taken two at a time.
(Laughing) I should say eight or nine things taken two at a
time. But that all fits together, and on the one hand we say
"Yes, of course." But, on the other hand, "No, not of course."

Kernighan: I think that there's-you could see the roots of it. The theory-
based part of it goes back to Al Aho, I think, starting
here-having just finished a thesis at Princeton on a particular
class of formal languages, having worked with John Hopcroft,
having had Jeff Allman as best friend all the way through
graduate school-when the analysis of formal languages was the
hot topic in computer science. Computer science didn't really
exist in those days, but that was the topic. People were
studying the properties of languages. So, when Al got here, he
was still interested in that, and I suspect that there were
times when his management would wish that he'd get off this damn
language stuff and do something that mattered. Fortunately, in
the best tradition, he never did. Then when he and Steve
Johnson got together, and realized that it was possible-I guess
they weren't the first people to make compiler compilers-But
they were-

MSM: They were back in books-

Kernighan: Yeah. And the fact that Steve called it yet another compiler
compiler suggests that this was again in the air. The
difference was that this thing was sufficiently well-engineered
that it was a practical thing for other people to use. It was
not the personal research vehicle of Steve Johnson or Al Aho,
but rather was something other people could use. And
furthermore, that there were these collection of weird people
around who actually wanted to use it, who were willing to use
it, and stress it in ways that hadn't been thought of, and
therefore make it a better tool. If you look back, maybe it was
yet another compiler compiler. I'll bet you can't name another
compiler compiler. That's the only one that has survived. It's
still used, still used extensively, continuously. All kinds of
people, lots of people still discover it, because the job
sufficiently well done.

I think the reason was well done is, aside from the intrinsic
brightness of the people involved, and the fact that they picked
good algorithms and continued to define them over the years-I
think it's the milieu of other people sort of banging against
it, and trying things with it, and building things with it-build
up sort of a collection of things, where you could look at it
and say, "Yeah, this is actually useful stuff." It's not a
academic exercise. It's genuinely a better way to do things
than what you might have had before. So, this collection of
people-enough critical mass, if you like-to actually prove the
concepts, and prove them in the in addition to working the rough
edges off them, and getting them to point were they genuinely
practical tools. We use our own stuff, and I think that's a
critical observation about this group here. We do not build
tools for other people. We do not build anything for other
people. I think it's not possible to build things for other
people, roughly speaking.

MSM: In the sense that, you just sit and have other people lay out their
specs, and then you build the tool?

Kernighan: Right. If I build something for you, even if you spend a lot
of time describing to me what you want, and why it's the way it
is, it's not going to be as successful as something where I
personally face the problems. Now, I may live with you long
enough that I start to understand what your problems are, and
then I'll probably do a better job, but I think that we have
historically done the best on building things that address
problems that we face ourselves. That we understand them so
well because we face them, either directly-you know, I face that
problem myself-or it's the person in the next office.

MSM: This is probably one of those, either "chicken or the egg," or "a
little bit this, a little bit of that" questions. What drives
this, in essence, is that you're working on your own project,
developing your own stuff, but you're also constantly calling on
what other people are doing. So, as a result, you tend to
reinforce one other's work and you're your own best critical
audience. Criticism in the best sense, because you have a
stake, not only in finding, but in making stuff work. Therefore
when you find problems that are genuine problems-that block
you-you want them fixed.

Kernighan: Yep.

MSM: One can see all sorts of things coming together now. You've got to
have the right people. Those people have to be working on the
right set of problems. And they have to establish a way of
working with one another; one can image that happening of
itself, or one can have a sense of its somehow being directed.
Now, what is it that makes it work here? What is it that was
making it work, back in the early '70's?

Kernighan: I don't think it was directed, or least if it was directed, it
was done in an incredibly deft and unobtrusive way. Maybe
management will tell you that that's worse....(laughing)

MSM: Surely.

Kernighan: If that is true then it is to their eternal credit. Now, I
think, in a sense-I mean, Doug was management of at least some
part of that. I guess Ken technically was in Doug's department,
and Doug is superb that kind of stuff. Insofar as he manages
it, he does by superlative constructive criticism at the right
time, and by going out and trying your stuff and finding out
where it works and where it doesn't work, and then telling you
what was good about it and what didn't work. To a lesser
degree, I suspect that, in some sense, we all do that. I don't
think that this was done by any direct management, so we can
dispose of that part.

Part of it is a confluence of really good people with reasonably
good taste. Particularly Ken and Dennis, who, as far as I can
tell, genuinely have truly deep insight, and at the same time,
good taste, and at the same time, essentially very close to
parallel taste, so that they don't get going in opposite
directions. Part of it is happy coincidence, that technology
had gotten just about the right point where you could get
hardware-a machine to work on-where you didn't have to, in some
sense, be beholden to other people. You didn't have to use that
machine their way because they paid for it, or something like
that; that you could have something that's sort of your own, so
you could furnish your computing world the way you wanted it,
the way you are comfortable with it. If I want to go off and
run on a big IBM machine, there's no way I'm going to be able to
do that, because I can't afford it. I'll have to do it the way
which is provided by somebody else, because they paid for it,
they call the shots. But, if it's a machine that's my own, then
I could run it the way I wanted to, assuming I have the
technical background to actually make it work. It's some
combination of those things, and it would be nice to know
precisely what makes it work so that you could clone it. But,
my guess is that it's-in a sense, almost an accident. You could
see other places that have had that same kind burst of stuff. I
think Xerox PARC went through a phase like that, in roughly in
the early seventies, where they produced a bunch of really,
really good stuff, with a different working style, to some
extent, but again, it was a combination of things that led them
to produce genuinely innovative stuff that's had a effect on
everybody.

MSM: You know, I was talking with Shedell. The guy that did the Paintbrush
program, the first Paintbrush program. I just happened to meet
him at a reception at the computer museum at Boston. We started
talking about Xerox PARC: how did you get your assignment and
what was your mission? You know, there was a great deal of
similarity. Well, it was sort of a general mission to do
interesting things and hope they work out, but look around for
something interesting to do and get going on it. He said he was
given two years to find something to do. He sat there and he
played with Paintbrush, which he had done back in '73, and it
was brilliant.

When did you become the group's scribe?

Kernighan: I think at some point fairly early in game, I started writing
tutorials. Sort of, how do you use it? Gerry Markey, who is
now Sandy Fraser's secretary, said to me one day, "I don't
really understand how to use qed," which was the text editor,
and I said, "Well why don't I write down something that will,
sort of, tell you how to use it." And I wrote a tutorial on
qed. Now, I don't know if it ever did Gerry any good or not,
but a lot of people found it useful. It was a sort of, here's
how you get started on this kind of stuff, and it was a
particular style of writing that nobody that else seemed to be
interested in doing. Which was sort of-not a manual, but a "how
to do it" tutorial. No better word.

I had already written one of those for my little formatter at
Princeton, in fact, so it wasn't the first time I had done it,
but this was, I guess, the first time I, sort of, consciously
did it. I did several like that. I did one on B; the one on B
mutated into the one on C, which then mutated into a C book.
And, you know, a variety of others. I did a "cave guide" to the
Murray Hill computer center, an underground guide to the Murray
Hill computer center, which was (laughing) sufficiently against
the received wisdom that they didn't want me to publish it. But
I published it anyway. Which was, sort of, one of the useful
programs, as opposed to the ones you will find in the manual.
That kind of stuff. I guess, from there it's not too big a step
to writing things that describe what's good about the operating
system, or the environment, or the way of doing things-these
sort of pseudo-philosophical papers that explain what you could
do when you connect programs together, and what you could do
when you had a programmable shell, and that kind of stuff,
which, where I took basically one paper and probably wrote it
about fifteen times. But that kind of thing. So, I think
that's part of where this writing came from.

The other aspect was book writing, which in the long run is much
greater effect. I think you have much more impact if you have a
successful book. I still remember quite clearly how I got
started in that. I was enormously lucky when I came here the
first summer to be in the office next door to Dick Hamming. I'd
heard of Hamming codes because I had taken a course in coding,
error-correcting codes at Princeton. I was sitting in my office
the first day, as we are sitting here, and this guy came in from
next door at eleven o'clock and he said to me, "Hi, I'm Dick
Hamming, let's go to lunch." I said, "Well, okay," and he
dragged in Vic Vyssotsky, who was right across the hall from me,
and we went off to lunch. Later on I discovered, this was the
famous Hamming of Hamming codes, and the numerical analysis
book that I had used the year before. I think a lot of people
had trouble with Dick because, he was one of these guys who was
absolutely outspoken, and not afraid to give you an opinion on
anything, and usually sort of a controversial, rock-the-
foundations kind of opinion. But, I didn't mind. That was
fine, and he was a nice guy.

One of things that he was fond of saying was that programmers
don't know how to write programs. The way we teach programmers
how to write programs is we give them a grammar and a dictionary
and we say, "Okay, kid, you're a great writer." That's the way
programming was taught according to Hamming, and there's a grain
of truth in it. He said, "What we really need is a book of
style; here's how to write well." I don't remember in detail,
but his idea of how to write good programs was, I think, pretty
half-baked at that point. But, one day he came into my office
and he handed me a book and said, "Look at this!" (searching
for book) I don't think I still have it down there. I used to
have it. It's probably down there somewhere. He handed me this
book, and he said, "Look at this! This is awful!" It was a
FORTRAN program. It went over two pages. What he was talking
about was the numerical analysis in this thing, but what I saw,
when I looked at it, was this horrible piece of code, which is
the first example in the Programming Style book. I looked at
it, and said, "Jesus Christ!" I wrote on it in green, "Jesus
Christ" (laughing) and then it occurred to me. I know what I
can do, because I had somewhere stumbled across Strunk & White,
which is basically an "awful, good, awful, good," you know, side
by side. You could make a book out of that. You go off and you
find awful examples and you show how to do them right. Bill
Plauger at the time was in the next office, and he kind of got
intrigued by the idea. So, we went off and we hunted the
libraries, all the libraries, all of Bell Labs' libraries, and
any other place that we went. Bookstores and everything. And
we found awful examples, and it was easy to find them. There
were just zillions of awful examples, because every programming
textbook was awful. We went off and wrote-basically just
collected these, tried to get them in a coherent form, where an
example would illustrate some principle or guideline on how to
write well. Then we just threw it all together and wrote a
book. It was, I think, certainly a fun book to write.
(Laughing) My wife said to me, "You found your ecological
niche."

MSM: I've been looking for a copy. I can't find it anywhere.

Kernighan: I'll find you one. I can probably do that. (searching for
book) I'm sure I have one down here, somewhere. Fun book to
write, and I think that's how got I started in book writing, at
least. Then Plauger and I wrote the Software Tools book shortly
thereafter, and then I browbeat Dennis into working on the C
book with me.

MSM: You just found you like to write?

Kernighan: I like to write-ultimately, it was deemed to be good thing at
the labs. I think when I first wrote that book, it was deemed
to be neutral. It wasn't like a positive thing, but I'd only
spent about three to six months on it, so it wasn't a bad thing
either. It was just a neutral thing, and it was only sort of
retroactively that it was deemed to have been a good thing. I
think Plauger got fired for writing it.

MSM: I want to talk about where he went in a second, but there's an
obvious question. When someone takes other people's style and
says, "This is the way to do it," and when you talk about its
being relatively easy to find examples of bad code writing-where
did you learn to write programs? Where did Plauger learn to
write programs, that your style is good style?

Kernighan: (laughs) Well, it's not clear the style is good style; it was
better than a lot of the programs that we found in textbooks.
All of the examples came from textbooks, and they were-I mean,
we clearly picked on the bad ones. It was embarrassingly easy
to find bad ones, because a lot of these things clearly had
never been thought of. Many of them have never been executed.
I think a lot of them, the professor wrote the book and said to
some of his students, "Why don't you write programs that will
answer these exercises?" and then stuck them in the back of the
book and never looked at them, and a lot of those were just-they
couldn't possibly work, and others were just really bad. You
didn't have to look very hard to realize what was bad, and from
that, you could start to infer what might be good. I don't
think our rules of style are very deep or anything like that.
But, we gradually evolved a set of-well, rules, not in any
formal sense, but little detailed rules that corresponded to
getting your commas in the right places when you write
sentences, and realizing between "which" and "that," those kinds
of things-and move up to grander things, that relate to the
structure of programs.

MSM: Was Strunk & White more than just an inspiration, or was this-did you
read through Strunk & White, think in terms of Strunk & White
when you were doing this? You just used an example from it.

Kernighan: Yeah. I think that Strunk & White was an excellent example of
something that we didn't consciously-I think we must have
consciously taken them as the model, because, the sort of side-
by-side, "Here's a good one, here's a bad one, here's a good
one," and what did we do to get from one to the other, is
definitely what we did there. It's not the same, because
English is not the same as writing programs. But there's an
awful lot of commonality. I still reread Strunk & White every
couple of years just to refresh my memory, what they think about
good writing, because that's still the best English style book
I have read. The other thing we tried to emulate was the
brevity, because I think long books are not necessarily better
than short books. In fact, they are sometimes worse.

MSM: Try and convince my grad students of that.

Kernighan: There's lots of reason to believe that short is better.
(laughing) If nothing else, even if it isn't better, there isn't
so much of it.

MSM: You started out using FORTRAN, the old FORTRAN, which is not a
structured language. You spent time optimizing, writing an
assembler. Ultimately you made a transition to what might be
called structured programming, and Plauger went off to work for
a company that is probably the standard bearer of the structured
approach to things. Was that a conscious transition for you?
Or, did you think of it as a transition? Was there a time in
which Dijkstra was on the shelf here?

Kernighan: Yeah. It was-structured programming, and programming without
goto's and all that stuff was definitely very much a topic of
discussion at the time when Bill and I were working on this
book, and noticeably before. Quite a bit before. We wrote a
couple of papers before we got into the book, or concurrently
with the book, I guess. I remember, somebody or somewhere, I
was introduced to the notion that you could write a program
without goto statements if you had the right kind of language,
and B was the first example that I really used where that was a
possibility. And so I set myself the task of writing a
particular program-something that just reported on job status on
the Honeywell machine or GE machine-I set myself the task of
writing that program without any goto statements. I said that
this would be my test case, and it was a program that ultimately
wound up with, I don't know, six or seven hundred lines of code.
 I would write it without goto statements, and I found it an
incredible bitch of a job. I finally got it down to three, and
I was quite proud of myself. In hindsight, you know, fifteen,
twenty years later, I cannot image what the problem was; how
could it be so difficult? Because I just don't do that anymore.
You know, it's like training yourself so that you always get
"which" and "that" correctly. You don't think about it anymore,
and you don't realize it's an issue, you just do it correctly.
In that sense it was conscious for me. I had to work very hard
to get to a particular level, where then, after a while, it
became completely unconscious. And there were other kinds of
programming, things that go along with-

MSM: But you were rather persuaded by the virtues of doing so?

Kernighan: I think so. The first big program I ever wrote, truly big, was
a COBOL program. COBOL programs are sort of the antithesis of
structure; in fact, the only way you could write a COBOL program
is basically to make it unstructured. It's just awful. And I
still remember, the way that I wrote that program was, every
time I had to make a decision about something-is this bigger
than this?-then I'd say goto, I'd invent a label, and I had
this steadily increasing frontier of things I hadn't figure out
how to do yet. (laughing) The program just grew without
bounds, and I never finished the damn thing. In retrospect,
it's the kind of program that I could probably have written in a
hundred lines in a decent language, and it was just-it was
literally over ten thousand lines at the point where I quit, at
the end of the summer. So, in that sense, I was convinced that,
at least, just pouring in these goto statements was wrong.
Looking at some of the examples in the textbooks, it was clear
that was wrong. I'm not sure that I believed Dijkstra in any
pure sense. I really don't remember when I first read his
famous letter to the editor; it was probably well after I had
been doing this kind of stuff for a while. A lot of that's just
blurred.

MSM: I started doing this going back to school in '82. I was taking a
Pascal course, and I learned to program directly, in machine
language, or-I guess we had alphanumeric-no, it was 074, it was
clear and out. You just had to know what the codes were. I
remember the first time we were supposed to have a branch
decision, having to search out, have to go see, and I said,
"Where's the goto?"

Kernighan: (Laughing) Yeah. Right.

MSM: They said there is none. You're not supposed to use it. And then,
they explained what this was all about, and then I remember
getting Wirth's book, and looking at it, and it's got goto's.
It usually has goto's, at least to the error, so he gets all his
errors together. So, here's the ultimate structured programming
language, and there's the author of it using goto's. Like most
truths, it lies somewhere in the middle.

Kernighan: There's a great line in Strunk & White about, you know, you'll
find places where the rules are broken, but you'll find some
compensating merit to make up for it.

MSM: Well, there's Winston Churchill's remark about prepositions, that
it's nonsense up with which I were.

Another aspect of structured programming, at least the approach that you
were talking about before, is this use of recursion. I remember
when I was reading the proceedings of the Garmisch and Rome
conferences, and I remember now, someone saying something like,
everybody recognizes the virtues of recursive procedures, and
yet, no operating system, no large software system program, uses
them. And it was in Holmdel, someone handed me a-rules for
programmers from another project, and one of the rules was no
recursive procedures. And yet, the Unix systems were-seemed to
take-what was going on there?

Kernighan: I think that there was, for a long time, a conception-perhaps
originally based on fact, but laterally not at all-that
recursion was in some way expensive, and therefore you couldn't
use it; that a recursion procedure, if nothing else, it was
another procedure call, and therefore procedure calls were more
expensive and therefore you couldn't use it. Now, it wasn't a
issue in FORTRAN, where you couldn't recurse, but it was in
PL/1, where you could recurse, and PL/1 function calls were
notoriously expensive because of the language design; it sort of
forced you to carry around incredible baggage to actually say
what the arguments were as you went along. So I suspected it
came from that fear that, when you-any extra function call was
going to cost you a lot, and recursion was intrinsically
function calls in place where you didn't have to use them, and
therefore it was a bad idea.

MSM: Was call by value in C? C's calls are very spare. Was that it was
there for? To support recursion more easily?

Kernighan: I not sure it was to support recursion. I think it's simply to
support function calls, because functions, breaking up the job
into smaller pieces, I think is necessarily a better way to do
things. But, if you're going to that, you want to make sure
that they are efficient. I think in part it was a reaction to
the PL/1 stuff, where functions were so expensive that people
tended to avoid them. And they don't have to be expensive, they
can be quite cheap. In fact, there was a lot of effort devoted
over the years to various ways to make the function calling
inexpensive so that people would be encouraged to use it. C
compilers to this day go to some effort to do that. And
furthermore, a lot of that is reflected in the machine
architecture, where the machines themselves drive the subroutine
call, mechanism cheap. Part of it was just the machine. A
machine like, say the IBM 360's, 370's, the subroutine calling
mechanism was actually intrinsically expensive; it was badly
designed in the machine. The machines like PDP-11's and their
derivatives, the function call mechanism is actually well-
defined, and it's comparatively cheap, because basically, the
machine supports the notion of a stack in some way-the auto-
incremental structure is one, manipulated stack made it easy to
get in and out, and there's even a-A del had a subroutine
instruction; the question is, what do you have to do before and
after it? The DEC machines just did it right, and IBM machines
just did it wrong.

MSM: Have the, just following along those lines-you said earlier something
along the lines that, it was the right moment, the hardware was
coming along. Is there an extent to which this development,
maybe its timing, or its pace, has been hardware determined? To
what you had available? Or has it reached the point where it's
now beginning to influence hardware design?

Kernighan: Certainly the original development and pace, I think, was very
strongly affected by the hardware. The PDP-11, I never
programmed it in assembly language, so I can't speak intimately
of that, as Ken or Dennis could. But, my belief is that, from a
programmer's standpoint, as a dream machine-that's really a
very, very nice machine. And from an economic standpoint, it
was kind of a dream machine too. It would fifty thousand
dollars fifteen years ago, and that was manageable. That was
something where a group of ten people could justify spending
that much money. It was an order of magnitude cheaper than
existing machines that you could buy and you could use for
something So, I think-and furthermore, it was available from a
real manufacturer, somebody who existed, who was in some ways
comparatively easy to deal with, certainly much easier to deal
with than with IBM; and a manufacturer that, perhaps, because of
its origins, made it easy to connect interesting widgets to the
machine. A lot of things combined together to make the 11 a
very attractive machine. IBM always played it very close to the
chest about what you connect to their machines; you had to have
these elaborate channel things. It was just horrible. DEC
machines, you could just plug in stuff. It was a whole industry
of weird things you could connect to DEC machines, all of which
made it substantially more interesting. And the fact that it
was small enough that a university department could buy it-it
made it spread. So, it got to the point where, the combination
of the attractiveness of the hardware and the fact that there
was this attractive software that you could get, almost for
free, to go on it, meant that large numbers of university
computer science and related departments would go off and buy
the things, and run them. I think the VAX carried on the
tradition, although the VAX is probably, today, excessively
pricey for what it does. But, I think what we're finding now is
that the portability aspect of Unix mean that in some sense the
hardware is almost irrelevant. There are certain kinds of
hardware where Unix and C are not going live comfortably. But,
for the most part, the hardware is almost irrelevant. I think
that, in some sense, is a giant leap forward.

When I first got into computing, and for the first ten or so years, up
until the mid '70s, at least, the arrival of a new computer-you
were going to go from GE to IBM, or from UNIVAC to Data General
or something-that was just a trauma beyond words. It would
months--it would take years-to make that adaptation. It doesn't
happen that way anymore. Things are-I mean, you still spend a
lot of time as you move from one machine to another. But, it's
a different-it really is a different order of magnitude. We've
slipped in several new machines locally, and a lot of the
software, you just compile it and it runs, and the operating
system environment is essentially identical. You type the same
commands, they behave the same way, the shell is the same; it's
the same. That, I think is a tremendous step forward. I don't
know whether that relates to your original question, which I've
now managed (laughing) to lose from my neurons, but-

MSM: No, actually, it's always seemed to me it's sort of-a bit of a
contradiction that, the most popular host machine for Unix,
during this period of rapid spread, was the DEC PDP-11, or the
VAX, which is just an extension of the 11. You can look at the
manuals, and it's one of the richest instruction sets, I think,
that's ever been put on a machine. I mean, you've got an
assembly language routine for evaluating polynomials, and all
the packed array, decimal packed array stuff--it's fun to go and
play with it. Sort of an assembler programmer's playground. I
can see the attraction of doing it.

But also, the ethos of Unix is you stay out of assembler. You don't
program in assembler. You use C, and you try to keep the
assembler kernel down to just what's necessary to get things up
and running. If I understand it correctly, it's right there in
the bootstrap command. From there on in, you address it in C,
and though I haven't looked at the C compiler, my sense is that,
for portability concerns, if for no other, one would say they're
a pretty restrictive set of assembler routines, and that in many
ways the RISC architecture is better suited in the Unix system,
than this extra rich instructions set. That's what led to-the
instruction set on the VAX says, wasted if you run Unix. And
the irony is that two-thirds of the VAXes are run on Unix.

Kernighan: Yep. Absolutely.

MSM: (Laughing) That was meant to be a question; obviously it failed.

Kernighan: Well, I believe what you say. I don't think that people write
assembly language on most machines that run Unix, except for
some tiny thing that they can't get at any other way. I have
not written an assembly language program in eons, fifteen years
probably, and never to expect to again; I hope never to have to.
 You're right; most machines provide a very, very rich set of
instructions, most of which are inaccessible from your favorite
high level language, whatever it is. Now, packed decimal is
presumably there for the benefit of COBOL, right?

MSM: I don't know, (Laughing) I never could understand what that's for. I
simply took Peter Huntington's challenge once, to do something
in packed decimal arithmetic. Pain in the neck.

Kernighan: But, you're right. There's no compiler in the world that's
going to generate the Horner's rule instructions. It just isn't
going to happen. Poly-q or whatever it's called; it's just not
going to happen. So a lot of the effort that goes into to
building that kind of complicated architecture is totally
wasted. The RISC architecture is, insofar as they are uniform,
are a better match to what you likely want out of your favorite
compiler.

MSM: I've run out of questions for now.

Kernighan: What are you doing for lunch?

MSM: Nothing.

 M.D. McIlroy

Friday, August 18th 1989

MSM: I was looking over some of the literature and one of the things that
 struck me as I was looking back at Ritchie's retrospective and other
 retrospectives of it, are the circumstances under which it got
 started. I gather that the name UNIX came from Brian and it came in
 '70 and it was a play on MULTICS. And the more I read the
 literature the more MULTICS looms behind UNIX, both positively and
 negatively. What was the relationship there?

McIlroy: Ritchie, Thompson and Osanna, and Peter Neumann, and I were all
 in on the MULTICS project from the time Bell Labs joined. Ed David,
 who was Executive Director of (ocean? --not clear) sciences, I guess
 it's called. And Later on went to be Nixon's science advisor.

MSM: Go ahead.

McIlroy: Was really pushing for this MULTICS project but (it was) the
dream of the computer utility that just grabbed him. And he alerted
people to join in and meet with MIT and start laying plans and early
people doing that where including Masowski. Osanna and Neumann were
particularly turned in on the project and devoted time to it. I
would say the rest of us were in on the project and dove in with a
will and did a lot of design work.

But, perhaps were not quite as confirm believers that this was the
wave of the future. Nevertheless, we devoted an awful lot of time
to it. When MULTICS began to work, the very first place it worked
was here. We had our GE 645 machine. MIT, had one too. But, they
were doing their development on another machine, carrying tapes
across and just taking measurements, making tests on the MULTICS
machine. As soon as we got a tape, we tried to run it as a
computing home. Thompson, so in the day, we would have a MULTICS
machine running. Fitfully. It was amazing how three people could
absolutely overload this giant room full of equipment. And that was
because MULTICS actually changed the way people worked. The MULTICS
user was not the same as a user of previous time sharing systems.

And the principle reason was that he could do multiple things at a
time and that he could be typing ahead of where he was working.
Previous ones had been strictly half duplex. You typed for awhile
and then you waited for the computer to respond. MULTICS went full
duplex. It was amazing how this one tiny little change, absolutely
permeated the way you use the system. And that and the fact that
you could very easily set things going in the background. So, any
one user could start several things going, and when the machine was
slow, that's exactly what you would do. Your mind would be racing
way ahead of the machine. And that just brought it down even worse.

So, MULTICS was clearly... once it was running was not the boon, that
was going immediately solve our need for computing cycles. Three
people could bring it down. Also there developed a wonderful
Multics system programmers manual. An eight foot shelf or
something. I don't recall how long it was. Nobody here had a
complete copy. Volume after volume of design documents. Very
daunting. Thompson and Ritchie and Rudd Canday, who was an intern
in my department for a year, were talking about, well, how could we
do this in a less massive way? And, there were many afternoons
spent across the hall there. Working at the blackboard. Working
out the design of the MULTICS file system. I'm sorry, the UNIX
file, what became the UNIX file system. If we were to make a file
system, what would it look like?

MSM: Let me interrupt you for a second? What is it. Was it the file
 system that made that MULTICS so big and daunting?

McIlroy: It was the... The real reason for the... one already knew why
 time sharing was such a boon. It wasn't that it allowed many people
 to share the cycles in the machine. It was, that it allowed many
 people to work in the same huge pot of data and it was this synergy
 of sharing data, to be able to quickly look at other people's files,
 pass messages around and so on, that was the best thing that time
 sharing had to offer. The other was merely a economic advantage,
 but the one of sharing was a qualitatively different way of using
 the machines. So, the file system was the heart of the matter. And

MSM: Oh, so it was the idea of sharing?

McIlroy: Yes.

MSM: And, making it easy to share?

McIlroy: Yes. And make it easy to find; to store away and retrieve
 information. The UNIX system owes much to the MULTICS file system,
 most notably the directory tree ID.

MSM: How many of these design features of MULTICS, had sprung from you
 people in the first place? Or did you ...?

McIlroy: The basic concepts of MULTICS really come from MIT. We joined
the project after they got started. And it was going to be the
follow on to their CTSS and talked about it for a long time. One
significant design thing for MULTICS came from Vyssotsky. MULTICS
had these two ideas; the file system, and the segmented address
space for processes. And they were separate. You would do IO from
files into the address space. Vyssotsky said, "Why don't ..., why are
not files exactly the same as segments? And there is no...; an IO
disappears. Well in fact FORTRAN programs still have read and
write. But, when you open a file, all you're doing is putting a
segment in your address space. MULTICS really worked that way.

And our later systems have backed off from that wonderful unifying
idea. There was, in the working out of the idea, there was a great
deal of overhead. The other big thing of MULTICS was the idea of
dynamic linking. And what that imposed upon the rest of the
architecture, was, I'm sorry, I should say dynamic linking and the
so called ring structure for memory protection. The various layers
of access permissions. All the collection of those things together,
the hardware was conceived to support those, but it was our first
cut. The collection of them together turned out to be take a great
deal of implementation to make them work. One of the surprises late
in the project was.... So you got automatic... (back up). The way
the shell worked. When you invoked a program, what it did was
simply link the program into your address space and run it right
there. Suppose you recompile the program. It's already in your
address space and you run it again, and you run the old one.

And, how to undo. There is lots design effort that went into the
binder. Then. Then nobody thought about unbinding, which turned
out to be something that had to be put in later on. And unbinding
turned out to be quite a big monster. Especially, to have unbinding
occur in any... people really didn't like this idea. So, I rewrote
the program and I got the old one and you would like that to happen.
 You get the latest version automatically. It took a great deal of
implementation. This kind of thing, mushroomed and the system got
huge.

MSM: What did MIT look to get from Bell Labs in that project? ... what was
 your role?

McIlroy: Why was Bell Labs part of it?

MSM: What were the expectations in both directions?

McIlroy: MIT had the basic vision of the computer utility, in those words.
And Bell Labs certainly was a window into getting that out of the
academic world. I suspect that would be the principle motivation
for having Bell Labs in. Of course Bell Labs too, had a good
reputation for having built interesting operating systems for many
years. When, for example, IBM came out with a 709/7090, which had
data channels. We. It was in the market for well over a year,
before we got one. Probably a couple of years. But, we built our
own operating system for it. Similar to the one we'd built for the 704.
We used the data channels and it did asynchronous I/O. None of
the software that came from IBM used the data channels any way...

Although the hardware was there, but it didn't exploit the software.
So, we were in there exploiting the hardware and the data channels
interrupts all that. First, when the disk drives were announced as
a product. Lots of people put them on. But, we were the first
people to put them into a file system where you could leave your
files. So, Bell Labs did have plenty of background in creation of
operating systems.

MSM: Where you part of that?

McIlroy: Yes. I was not part of the 704 operating system, which was built
 before I came to work here. But, the 7090 operating system, was I
 certainly was. Although the two principal players were, Ron
 Drummond and Gwenn Hanson.

MSM: So, what you joined was a continuing tradition of building your own
 operating systems?

McIlroy: ...of building our own operating systems, absolutely. And this
 was... everybody agreed that operating systems could do multiple
 things at a time, were the next step and MULTICS was let's hope in
 that direction. It was multiple in every sense. As its name
 indicated.

MSM: And the Labs hoped to get a share on that?

McIlroy: Well, the Labs was looking for... to move to a new generation of
equipment and a new way of using it, and here was a way. It looked
like that might be a very big undertaking, because operating
systems, although they had been built by two people here, back in
1968 uh '58. You found more and more people when you looked outside
at the ones that were built around '64 and you find that there were
fifty people building them. Maybe too much to be doing in the
corner of the math department.

Of course, what UNIX showed after that ,was that two people could
still build a operating system if they had the right model. So, we
had MULTICS in the background. Ken Thompson, very quietly, in the
wee hours, would take the machine when nobody was on. Would take
the machine down, was building his own operating system, for the
giant 645, starting from scratch. He got to the point, where
actually he came up to the console and said log-in or something like
that. I do not know, what the architecture of that operating system
was.

MSM: He was just doing it to explore operating systems?

McIlroy: Yes. He felt he could do it with far less fuss and bother than
 the megabytes that had been written for MULTICS.

MSM: So, you really were disappointed as a group in the way MULTICS
 ended?

McIlroy: I think that's true in most of us. Yeah.

MSM: And so it just petered out?

McIlroy: No. We were still working. But, (pause) the computer centers
 had been put up the money for the machine. The computer centers by
 now were, separate from research... that happened some time during
 the MULTICS projects. The computer centers, hoping to get something
 out it, and with big budgets research had never had computers of
 their own. Computers always belonged to the Computing Center, which
 once belonged to research. The computer centers move away, research
 is left as clients. Only no hardware and no capital budget. Well,
 the computer center began to see that this was not going to provide
 the cycles that they were going to need in the next couple of years.

MSM: No. I see three people can bring it down. This is not the answer to
 their needs.

McIlroy: They needed computing cycles. They were selling them. They had
this million dollars worth of equipment up in the attic, that was
sitting there being played with by three folks and the day that it
was going to make into the comp center. We did have some fairly
interesting assessments of what it could do. I think, I still have
those up on the shelf. Where various people predicted when MULTICS
might become useful and how useful it would be. You'll find
positive and negative things written about it. I could get that
kind of stuff out for you if you're interested. It's MULTICS, its
not UNIX.

So, it became clear that we were a drag on the computer center's
budget. We were not going to pull them out of their hole. You
know, in the near future. They were going to have start buying
hardware and go with whatever was in the market at the time for
operating systems. And the project was, it was a clean sharp
decision made to get out. The project did not wind down, it just
stopped.

MSM: When was that?

McIlroy: It was in 1969. I forget what month, and the astonishing thing
 is that we had a visit from the President, Bill Baker himself. To
 tell us about the turning off of the project. And he poured
 wonderful vacarian oil upon the waters.

MSM: I've seen him in charming action (Laughing)

McIlroy: As we still often proposed, in Vietnam, he declared a victory and
 retreated. (Laughing) The research value of MULTICS was declared
 to have been... the research potential of the MULTICS project was
 declared to have been exhausted. So, we would get out of it as a
 research project.

MSM: I gather it was about the same time the research group got split
 into two halves, mathematicians and computer research?

McIlroy: That had happened about '67 or so.

MSM: Had that split come simply because things were getting too big?

McIlroy: Yeah. I think so. There were two degrees of split. First split
 was, computer research left math and kept the comp center. And
 fairly shortly thereafter, the comp center left research entirely
 and went over to a more operational department.

MSM: You were computing research, but you didn't have any computers?

McIlroy: That's correct. Visual and acoustics research had computers and
 they had them for some time. They were really, they wanted to
 listen to signals in real time and make digital filters. Simulate
 digital filters and stuff like this, and they could eat up all
 cycles of a machine. So, they started getting little, they were the
 pioneers of minicomputers at Bell Labs. They had some that were
 stuck on the side of our 7090. The Packard Bell 250 was the first
 one they had. This guy could reach in and grab cycles off the 90,
 or run a collection of interesting acoustic gear on the side.
 Gather digitized tapes which would then be moved immediately to the
 90 and processed. Perhaps, that was the first workstation, I think
 the Rand Corporation had some more or less at the same time frame,
 the early sixties. As more minicomputers became available, visual
 and acoustics research kept getting them. Now, we would look at
 their... there was interesting observation back and forth. They had
 nice hardware, and we would look how inefficiently they were using
 their cycles. You know, do a little improvement in your software
 and you wouldn't have to have all these machines. They broke the
 ice for minicomputers. And, because they really didn't like making
 software, instead when things got tough, they would just buy another
 machine. And if things got a little faster, the machines got a
 little faster, they would just throw out the old one and that was
 the origin of the PDP7, which ...

MSM: Where is this famous PDP7? Does it still exist?

McIlroy: Long gone. That was a graphics engine, put together by Bill
 Nidke and Ed McDonald, Ed Setarp and some others. It was a graphics
 engine with a really very nice display on it. A display with a
 program display list, so that you could have graphics subroutines...
 and it was more, it had been displaced by an improved graphics
 engine, which was sitting idle and that's what Thompson grabbed on
 and built, finally built... fairly soon after the UNIX shut off, and
 I think he was happier doing that than he was, trying to make the
 GE645 do its thing.

MSM: Now, you people must have been in something of a bind? When you
 were a computer research group. You haven't got computers. Were
 you looking around for a mission? Did you have a mission?

McIlroy: Oh. We had, we still could work on the... We had always been
 associated with the comp center. We still had good times with the
 comp center. If we produced interesting compilers the comp center
 would install them. So, we had the computing cycles down there in
 principle. But, they were not at your fingertips, the way we got
 used to after having CTSS at MIT available to us for some years.
 From '66 on, we were connected to CTSS from here. This little
 machine came up and Thompson brought up his operating system, and
 Ritchie joined in, and I saw that it was a neat thing and I was the
 department head, so I muscled in, and they turned it from a one user
 to a two user system.

MSM: What were you doing at the time when this caught your interest?

McIlroy: Well, I had been the languages person for MULTICS. Bob Morris
 and I wrote the PL/1 compiler, and MULTICS was all written in PL/1.
 That came about, because I was on the IBM share PL/1 committee. So,
 I had. We were looking for higher level language to program MULTICS
 in. This was not a first. Boroughs had programmed the B5000 in
 some dialect Algol. But, that pretty well. That wasn't good enough
 for. It really wasn't too well suited to nit picking algorithms
 that go into a operating system. The PL/1 had everything you
 needed, and a lot more.

MSM: Did you like PL/1?

McIlroy: The answer is, not very much. Even I helped design it. It was a
 neat idea to put everything that was known about programming
 languages into one pot. (Laughing) Almost everything. But, they
 didn't melt together very well. And I have only written one PL/1
 program, in my life, after having designed it and built a compiler
 for it. Which says something about the language. The compiler was
 built in TMG compiler writing system, that I had taken over from Bob
 McClure of Texas Instruments, and then improved a good bit. The two
 of us built a very large portion of PL/1. We left out all the I/O,
 which turns out to be half, if you look at the grammar of PL/1,
 half of the grammar is about I/O, so that really cut off a lot. We
 left out the I/O. We left out parallel processing, and we left out
 almost nothing else, including some very elaborate data structure
 handling. Self describing structures and so on, which IBM didn't
 have in their first release. Uh, compiler. The compiler, the two
 of us built in about a year and it was used for several years before
 finally being replace with a real one. This compiler had two
 diagnostics. The syntax error and the other was
 redeclaration. (Laughing)

MSM: Sounds like BASIC. (Laughing)

McIlroy: But, to build the compiler, we had this TMG compiler writing
 system and that one being a huge language, stretched into its limit
 and we kept, every once in awhile we'd fill up all of the memory and
 now there were two choices. You would work on the compiler. Or,
 you would work on the compiler compiler. And we had both at our
 disposal. Went back and forth, squeezing out one or the other and
 out of this, I got an idea of how TMG really ought to work and
 that's what I did on the PDP-7. The first thing I brought up was
 from absolute scratch. We had an assembler only. I brought up a
 compiler writer, a compiler compiler. Written in its own language.
 Bootstrapped it up.

MSM: Now, is that TMG or did you do that in B?

McIlroy: It was TMG. TMG was a gun in itself. There was no B. There was
 no C. There was an assembler.

MSM: One of the sources talks about roff having come from run off.

McIlroy: Yes.

MSM: Which you did for MULTICS?

McIlroy: No, roff was done by Jerry Salzer and MULTICS, he invented it.
 I'm sorry for CTSS.

MSM: And you got up roff here?

McIlroy: I wrote roff for MULTICS, yes that's true. That's correct. And
 I wrote that in BPCL.

MSM: You got BPCL?

McIlroy: Dennis Ritchie had brought BPCL up on our machines.

MSM: He brought that in?

McIlroy: Mm. Hm. (yes)

MSM: Was B ever used in MULTICS?

McIlroy: No.

MSM: So, that history of BCPL, to B to C, is it all here?

McIlroy: All here.

McIlroy: And TMG fed into that too. Some of things like the two address
 assignment operators were in TMG here first and then were adopted by
 B, and by C. I can't say I invented them because they were also on
 Algol68 at the same time. B is where the unusual declaration syntax
 of C came from. That was Ken's invention, that the declaration
 should look like... should have the same syntax as an expression.

MSM: Since we're on C. One of the... I'll ask Dennis this when I get to
 it, but one of the features is, that struck me about C was when I
 was writing a LISP interpreter form, in it. This property of C, of
 always... of any statement bringing back a value, in the type, so
 that all operators have values and so I found that at a certain
 point my core C list was beginning to look like LISP expressions and
 at a certain point it just seemed automatic to go over to a LISP
 library. Because, I was just stacking parenthesis in C. Where did
 that come from? Is that part of B? Or... the notion that all
 operators have values?

McIlroy: Yeah. It was also in Algol68. In BCPL, which came out of CPL,
 they had the very, very strong distinction between notions and
 commands. An assignment was a command. So, they did not have... I
 do not think the assignment was an operator in the expression. But,
 it was a Algol68. So, that was in... So that happened sort of
 everywhere at the same time. In fact, the first place I saw it was
 McClure's proposal called Linear C, which was way before the
 language C. Just liked it because it sounded nice. Like after
 Linear A and Linear B.

MSM: Oh I see, I see

McIlroy: It was an obscure looking language and it was linear, because you
 wrote tremendous long expressions.

MSM: Must have placed you on the borderline between a procedural and
 functional list?

McIlroy: Yes. It did. In roughly speaking what it had was a break in the
 continue statement. Continue simply went back to the last
 parenthesis, and Break simply jumped over to the next one, and those
 were the major contributors, plus an IF of course, those were the
 major controls in a language. So, there wasn't an actual key word
 FOR. Just the fact that you said Continue, meant you would jump
 back.

MSM: Let's jump ahead for a second.

McIlroy: Yeah.

[some chat about whether the machine is recording, red light, etc.]

MSM: I was talking to my daughter, who's a computer science/music major
 at Harvard, before I came up here. She said, "What's the name of
 this project?" Well, it's the oral history of UNIX. She said,
 "That's not particularly jazzy." (Laughing) "Can't you think of a
 jazzier name?" and she said, "Who are you going to talk to?" and I
 said, "Doug McIlroy." And she said, "Well, what did he do?" I
 said, "Well, he had something to do with pipes." She said, "Why
 don't you call it Pipe Dream?"

MSM: I do want to talk about pipes, because Ritchie says in his
 retrospective that, not only was it your suggestion, but indeed, he
 suggests, at your insistence.

McIlroy: That is one of the only places where, I very nearly exerted
 managerial control over UNIX, in pushing for those things. Yes.

MSM: Why pipes?

McIlroy: Why pipes?

MSM: Where did the idea come from?

McIlroy: Goes way back. There was... in the early sixties, Conway wrote
an article about Co-routines. Sixty-three, perhaps in the CACA, I
had been doing macros, starting back in '59 or '60. And if you
think about macros, they mainly involve switching data streams.
You're taking in your input, you suddenly come to a macro call, and
that says, stop taking input from here, go take it from the
definition. In the middle of the definition, you'll find another
macro call. So, macros... even as early as '64... Somewhere I talked
of a macro processor as a switchyard for data streams. Also, in
'64, there's a paper that's hanging on Brian's wall, still. He
dredged out somewhere, where I talked about screwing together
streams like garden hoses.

So, this idea had been ironed on in my head for a long time. On
MULTICS, Joe Osanna, who was actually beginning to build a way to do
input-output plumbing. Input-output was in interpreted over this
idea of the segmented address space in the file system, really...
files were really just segments of the same old address space.
Nevertheless, you had to do I/O, because all the programming
languages did it. And he was making ways of connecting programs
together. They were fairly kludges and no one really exploited
them, because you had to explicitly say connect this to that, and
that to that. Nothing so nice as to piping operator in the shell
appeared. And, at the same time that Thompson and Ritchie were, on
their blackboard, sketching out their file system. I was sketching
out on how to do data processing on this blackboard, by connecting
together cascades of processes and looking for a kind of prefixed
notation language for connecting processes together, and failing
because... it's very easy to say "cat into grep into... or who into
cat into grep, and so on. It was very easy to say that, and it was
clear from the start, that that was something you'd like to say.
But, there are always side parameters that these commands have.
They don't just have input and output arguments, but they have the
options. And syntactically, it was not clear how to stick the
options into this chain of things written in prefix notation, "the
cat of grep of who?"

Syntactic binders... didn't see how to do it. So, I had these very
pretty programs written on the blackboard in a language that wasn't
strong enough to cope with reality. So, we didn't actually do it.
Nevertheless, I tried to get, who was it...? somebody was playing
with... was getting into the I/O system of the GE635 that the comp
center had. We got that in anticipation of replacing it with the
645 the minute MULTICS was working. I asked them, could you make...
I've got this wonderful I/O system... where you can... relatively
device independent. By and large, you wrote the same way on tapes,
as on disks, as on printers... in fact, that was true back in ESYS-
3, the operating system that was built here for the 7090. Largely,
device independent I/O calls, like many other operating systems.
So, that device independence was something that was around here for
a long time. It was clearly a beautiful mental model, this idea
that the output from one process would just feed in as input to
another. There was syntactic difficulty in talking about that mental
model and I have a co-routine paper written in 1968 that was never,
never printed, because, it was always a little too ugly, struggling
with syntax.

MSM: I understand that one time you were thinking of an infix notation.
 According to Ritchie's article, you were going to use your pipe...
 we see these piping as form of operator, linking two arguments, it
 would be an infix notation.

McIlroy: Yes, yes. Well, we finally... or a filter, a whole filter process
was going to be an operator between two arguments... and I... over a
period from 1970 til '72, I would, from time to time, say how about
making something like this... and I would put up another proposal,
another proposal, another proposal. Then one day I came up with a
syntax for the shell, that went along with the piping and Ken said,
"I'm gonna do it." He was tired of hearing all this stuff... and
that was certainly what makes it... that... you read about it
several times I'm sure. That was absolutely a fabulous day, the
next day too. "I'm gonna do it." He didn't do exactly what I had
proposed for the pipe system call. He invented a slightly better
one, that finally got changed once more to what we have today. He
did use my clumsy syntax and we simply this is passing it through...
this is going to be another process. He put pipes into UNIX. He
put this notation into the shell, all in one night. The next
morning we had this... people came in, people came in... Oh, and he
also changed a lot of... most of the programs up until that time,
couldn't take standard input. Because, there wasn't the real need.
They had file arguments. Grep had a file argument, Cat had a file
argument. Thompson saw that that wasn't going to fit into this
scheme of things, and he went in and changed all those programs in
the same night. I don't know how. In the next morning we had this
orgy of "one liners." Everybody had one liner. Look at this, look
at that.

Nroff had a program called OV, Overlay. It was to make multi-column
output. What you did was (writing on blackboard), out of nroff,
you produced a series of pages like this. One page had stuff over
here. The next page had stuff over here and then OV would OR these
two pages together. Then it was into nroff, into OV, into OV, into
the printer. Four column output. All that happened. However...
and if you go back look at the UNIX manual we wrote about this,
discussion of how to use pipes in the shell goes on for a whole
page. It clearly had not yet been internalized. Because, now... Is
this much in the shell manual that describes what pipes are all
about?

One of them had to explain the syntax. How you recognize which
"greater than" is to the file. And you also had "less than." Which
were really funny. Less than a process.

When Thompson was to give a talk on UNIX at a meeting in London. We
all said, what you really want is function decatenation, and we
would write informally a little function decatenation symbol.

MSM: Yeah.

McIlroy: To prepare this talk. Thompson said, "Let's take it simple one,
 and took that one, and distinguished it from the "greater than" for
 files, and then he could give a respectable talk. I can remember
 giving a talk at WG2.3, just two weeks after pipes were up, and
 apologetically talking about this. Folks are not reticent with
 their criticism of 2.3. They said that's ridiculous, "you gotta
 have better intake," and the better intake did come a few months
 later.

MSM: This is my get that, because I haven't got a video camera on this.

McIlroy: I think that notation is somewhere in Dennis' paper.

MSM: It's in Dennis' paper.. What's not in Dennis' paper is the story
 about the meeting of Ken (Thompson) and you.

McIlroy: Cleaning up of something so you can talk about it is really quite
 difficult. Every time a manual, another edition of a manual would
 be made, there would be a flurry of activity. When you wrote down
 the uglies, we'd say; "We can't put this in print." Take features
 out, or put features in, in order to make them easier to talk about.
 The virtue of being in a research center... you don't have to keep
 any old software running.

MSM: Incompatibility is a human function?

McIlroy: Right. Incompatibility is just a terrible burden born by IBM and
 Bell Labs selling facility. We're trying make production. They
 have users who have code out there that works and probably nobody
 even who knows how to repair the code if any syntax or semantics are
 changed. So everything is competing... the burden of history is with
 them.

MSM: I was talking with... when I was working with Charlie Stenard down in
 Holmdel, we came up to see Carolyn Childs. I think it is. We were
 talking to her about the problem of maintenance of software, and the
 problems of trying maintaining it when you don't have documentation.
 So, what kind of documentation would you like most of all? She
 said, "We would like some record of the decisions... of the things you
 didn't do." "The decisions you made not to do something. Because...

[END OF SIDE A]

MSM: (It was a version of SREM -- not clear)...which is now called RDD 100,
 says that one of the values of that way of designing is that you
 can keep a record of your previous designs. And, in form of version
 control, go back and just archive that. You can always go back and
 see why it was you didn't do something. Because, you got this
 problem here and this problem there.

McIlroy: That kind of stuff disappears, when the personnel... Well, in
 fact, it even disappears out of your own mind after three years.
 Somebody wrote me mail the other night, saying, "Why is such and
 such an option in diff?" I knew I put it in. And, as far as I knew
 it had no use. (Laughter) It was twenty four hours, before I
 realized it was special feature in there, just for the special
 benefit of one other program that used diff. Perhaps, I should
 have never perturbed diff. I should have put this glue outside,
 instead of in the program.

MSM: One of the lovely features of pipes is the way it reinforces the
 notion of the tool box.

McIlroy: Not only reinforced, almost created.

MSM: Well, that was my question. Was the notion of the tool there
 before... (interrupted)

McIlroy: No.

MSM: pipes... or did pipes create it?

McIlroy: Pipes created it.

MSM: UNIX looked different after pipes.

McIlroy: Yes. The philosophy that everybody started putting forth. This
 is the UNIX philosophy. Write programs that do one thing and do it
 well. Write programs to work together. Write programs that handle
 text streams because, that is a universal interface. All of those
 ideas, which add up to the tool approach, might have been there in
 some unformed way prior to pipes. But, they really came in
 afterwards.

MSM: Was this sort of your agenda? Specifically, what does it have to
 do with mass produced software?

McIlroy: Not much. It's a completely different level than I had in mind.
 It would nice if I could say it was. (Laughter) It's a
 realization. The answer is no. I had mind that one was going to
 build relatively small components. Good sub-routine libraries, but
 more tailorable than those that we knew from the past, that could be
 combined into programs. What has... the tool thing has turned out to
 be actually successful. People just think that way now. Fast
 providing programs, that work together. And, you can say, if you if
 stand back, it's the same idea. But, it's at a very different
 level. A higher level than I had in mind. Here, these programs
 worked together and they could work together at a distance. One day
 they can write a file, and tomorrow they can be able to read the
 file. That wasn't what I had in mind with components. I had in
 mind, the car would not be very much use if its wheels were in
 another county. They were going to be an integral part of the car.
 Tools take the car and split it apart, and let the wheels do their
 thing and then let the engine do its thing and they don't have to do
 them together. But, they can do them together if you wish.

MSM: Yeah. I take your point. If I understand it correctly, and think
 about it. A macro based on a pipeline is a interesting thing to
 have in your tool box. But, if you were going write a program, to do
 it, you wouldn't just take the macro, you'd have to go and actually
 write a different program. It wouldn't be put together out of
 components. In that sense.

McIlroy: So, when I wrote this critique a year or two ago of Knuth's web
demonstration. Joan Bentley got Knuth to demonstrate his web
programming system. Which is a beautiful idea. You write a program
in an order that fits the exposition of the program. rather than the
order that fits the syntax of the programming language. And then
you have a processor which takes the program written in expository
order and turns it into a Pascal program and files it. The
expository order not only contains program fragments, it contains
lots of text right with it.

The declarations are stuck in at the point were you need them,
rather than up at the head of the block. And then they're moved by
the web processor to the right place to compile the run. Really
elegant, and he calls it, Knuth calls it literate programming. And
Bentley asked him to write a demonstration literate program for
Bentley's' Programming Pearls column. I wrote a critical report
about Knuth's program. It's a little unfair, because his program
was written as illustration and technique and I, my report
criticizes it on engineering grounds, that that was not the right
way to write the program. And one of the things I wrote about
Knuth's program was, (greased) text that prints out a list of the
distinct words in the text and word counts, sorted by word count.
Its an easy problem. And he wrote one monolithic program to do
whole job and I said "Look, here's the way we do it in UNIX with
canonical pipelines, and although I don't recommend it. This is not
what he was out to do. I really think, he should have not put
definition of what word is, into the program that builds tables.
That these were completely unrelated things.

Now, in 1968, I would have thought he was doing just right. He was
taking this sub-routine and that sub-routine, and putting them
together in one program. Now, I don't think that is just right. I
think that the right way to do that job is as we do in UNIX in
several programs, in several stages. Keeping their identity
separate, except in cases where efficiency is of extreme importance.
 You never put the parts into more intimate contact. It's silly.
Because, once you've got them there, it's hard to get them apart.
You want to change from English to Norwegian, you have to go way to
the heart of Knuth's program. You really ought to be able to just
change the pre-processors that recognize this is a different
alphabet.

MSM: Going back to..

McIlroy: So, I learned a lot from Brian. Who really is the guy, the
 person who articulated the tools idea. It seemed to be in the air,
 but it was not an overt communicable design philosophy. You
 discovered it only by hanging around the UNIX room. Brian, put it
 out of the world.

MSM: Now, this is before or after piping?

McIlroy: After.

MSM: Your sense is that pipe (galvanize) was not true? But, it was
 there in embryo?

McIlroy: To some extent the shell... The ease of writing a shell script in
UNIX. There had been something like that on CTSS before. But, it
wasn't easy. You couldn't do more than six commands in it. It had
very curious limitations. You could do six things, but not seven.
Very ease of writing the shell script. Tomorrow capturing... having
a machine govern or guide a set of processes, that yesterday were
guided by humans, was certainly in Thompson's dream. And he did a
beautiful job of bringing it to reality.

So, we were all ready. Because it was so easy to compose processes
with shell scripts. We were already doing that. But, when you have
to decorate or invent the name of intermediate files and every area
has to say put your file there. And the next one say get your input
from there. The clarity of composition, of function which you
perceived in your mind when you wrote the program, is lost in the
program. Whereas the piping symbol keeps it. It's the old thing
about, notations are important.

MSM: I just got through beating somebody up about that. I'm not going to
 call on Newton. (Laughing)

MSM: Just the dangers of translating Newton's geometry into algebra and
 what you want to understand as Newton's habits of thought. He
 thought in geometry. He did not translate it from the functions.

McIlroy: He did not.

MSM: He never wrote that text in anything but geometrical form.

McIlroy: Did he discover the theorems, in geometrical form? All of those
 method of exhaustion arguments were. (Laugh)

MSM: No. Those are after the fact. They're meant to give logical rigor
 to what was a more intuitive form of ... Which is not classical
 geometry. It's an infinitesimallist geometry that was developed by
 people like Karl (Jurding -- Not Clear) and others in 17th century.
 I'll send you the article.

McIlroy: Yeah. So, he really did it?

MSM: No, he did it geometrically.

MSM: Christian Huygens, among others, taught him how to do that. Not... I
 mean, indirectly through his work. But, it was common to think in
 geometric terms. Because, actually, you could see your parameters.
 But, also, when you went to the continuous case, you would quite
 often lose your parameters. For example if you were... as he does in
 first proposition, talking about Keplerian motion you have the body,
 it's moving like that, here's your center force. Now, imagine it
 moving for a short period of time at uniform speed. Now, give it a
 push. Then it will move like that. Give it a push toward the
 center, and it will move like that. Well, these are impulses and
 then he just goes to a continuous curve, by shortening the intervals
 and increasing the number of pulses until you get to the continuous
 curve. The trouble is that geometrically, what you do is you lose
 your geometric measure of the velocity.

McIlroy: Yeah.

MSM: So, you have to relocate it. Well it turns out that if you draw... if
 you have an orbit with the center force here, and you want to know
 what velocity is here, you draw the tangent to the curve and draw a
 perpendicular to that tangent and the velocity is inversely
 proportional to that length. And you prove it as a separate
 theorem, to show that's the case. And that is ... (interrupted)

McIlroy: So, when you do the algebraic... when you do the usual algebraic
 derivation, and pulling a rabbit out of a hat. They convert from r,
 to 1 over r, and the equations become nice? (laughter) Are they
 generated? (laughter)

MSM: It would be nice to say that they are a translation of that. But
 no, the beauty of Algebra is that you don't worry about
 dimensionality. And you don't worry about losing terms. Because,
 ultimately you have a picture of an orbit here, which is a physical
 object in space. Well, there's no room in space of three dimensions
 for things like velocity, acceleration, time... so that any time
 you draw them on a diagram, you're imposing another dimensionality.
 And then you have to be able to work in several dimensions and are
 not using it another way. Whereas in the Calculus, it's just a
 question of how you write your terms and you can keep all your
 dimensions in multidimensional space.

McIlroy: But there is this amazing transformation that turns the equations
 of orbital motion. If you use 1 over r, instead of r, as your
 dependent variable, the equations are nice.

MSM: Yes. I've done the trick. But, no. That does not come from that.
 Anyway, you're right, notation makes a difference.

McIlroy: The... We talk about more elaborate... So, pipes are there for
 linear pipelines. More elaborate arrangements, such as we talked
 about in a language from NSA called POCAL. A data processing
 language, this was an amazing language which data processing...
 you... often problem or solution is expressed with pictures of here's
 the tape being carried here to there and it's being put onto cards,
 and what you're seeing is a data flow diagram, and not a classical
 program flow diagram. They had the idea that the data flow diagram
 was really the right way to express data processing, at a very fine
 grain. Even between two successive steps. So, we would put
 together a data processing application, as a whole bunch of little
 things connected up with files. Often fifty files. And then their
 compiler would optimize the files out of existence. It's gotta be
 biggest optimizing compiler (interrupted by laughter). You know,
 when you throw away a file pass, that's really different from
 saving an instruction which most optimizing compilers do. A very
 impressive optimizing compiler. It would throw away as many files
 as it could. Even when there's loop structures, if it could, by
 reading the code, determine that there would be a bounded feedback
 cue, then all you need to do is provide enough temporary storage to
 handle the bounding cue, and... furthermore, when there are loop
 structures, you can't do it with real live files. Because, you have
 to start reading the file... real live tapes, which is what they had
 at the time... because you have to start reading the tape while you're
 still writing it. How did I get onto POCAL? (laughter) Oh, other
 topologies of pipes.

MSM: Let me ask you about topologies and pipes that is mentioned, and
 that's APL... as a form of pipelining process. Or, a language that
 pipelines.

McIlroy: APL? Yes. It's the beautiful prefix... this composition of
 functions. Certainly APL was one of the things in mind when I was
 doing these blackboard exercises.

MSM: That was my question. Did you have APL in mind?

McIlroy: That was certainly in mind and APL just did not allow us to have
 operators with variance. Such as only options, that our utilities
 had. As long as you take the good clean operators, it's a
 beautiful notation. It only took us one willingness to throw in a
 new separator, the vertical bar and we were able to handle that, but
 it took us about four years, from the time we started talking about
 it, to the time it happened.

MSM: Let me ask you what you were thinking about in another sense, and
that is related to something we were talking about when I had lunch
here the last time. Which to the extent to which UNIX is the
instantiation of... really a theory of computing... of ideas in
computer science. YACC, the instantiation of a theory of (cursors --
not clear), blanks, of finite automata and so on.

To what extent can we take something like pipeline? You could treat
pipes as they appear in any instantiation as the instantiation of a
mathematical idea and what was the relationship over these early
years between theoretical comp sci. What were you thinking about?
Were you thinking about how to get an operating system working... a
computing system working... or were there a set of ideas that you
people were pursuing... that you were using this project to test
out?

McIlroy: Well, there were two. I would say that most of us, the theory
 was there on the side and we were certainly alert to it. I went to
 Oxford for a year, solely so I could imbibe the notation semantics
 from the source.

MSM: I lived with him in the same program for two years and didn't
 realize he was the source. (Laughing) Daniel was part of the
 history of science program at Princeton for two years.

McIlroy: He had been at Oxford just the year before I was. But Strachey
 was sort of the catalyst for the whole thing. Although Dana was the
 one who made it mathematically respectable.

MSM: You had gone to work with Strachey?

McIlroy: I went to work with Strachey. Most of us are more computer
 types than mathematicians. Even though we write papers occasionally
 with mathematical... With exception of the language theory. I had
 in my department, system builders like Thompson, and theoretical
 computer scientists like Aho. And Aho plowed the fields of
 language theory from '60... He joined us in around '66.. Just around
 the same time as Thompson. Handing out paper after paper of
 slightly different models of parsing, and automata. And that was
 supported with the overt idea that one day out of it, this really
 would feed computing practice. Even though it was not. In the same
 way, we have we have today folks working on denotational semantics.
 Which seems to be a longer term. But, I have the same belief that
 semantics, is going to be change practice, and ML is the current
 embodiment of that. This long line of playing with the mathematical
 ideas. Which happened all over the country. It wasn't just here.
 Finally led to Knuth's one paper on LR parsing. Which got
 repatriated back here, and one day Steve Johnson went in to Al Aho,
 although I wasn't present, I'm attributing something here... and
 said, "I want to make your stuff work". We had compiler compilers
 before TMG. And in some ways, TMG was nicer than YACC. Not
 specification of grammar, but it actually helps you do the
 translation. YACC only helps you do the parsing, it's up to you to
 do the translation after that.

When the sound theory of parsing went into a compiler writing system, it
 became available to the masses. It.. . There is a case where,
 there's absolutely no doubt that, overtly, theory fed into what we
 do. There are lots of other places where theory is an inspiration,
 or it's in the back of your mind. Very few of them are... well the
 regular expression business also came out of automata theory.
 Thompson wrote one famous recognizer, which is the one that's still
 in GREP. And Al Aho decided that he was going to take that part of
 automata theory, he built EGREP. Which determine... you have the
 deterministic one in EGREP, and the nondeterministic one in GREP.
 I think really that YACC and GREP are what people hold up the "real
 tools" and... they are the ones where we find a strong theoretical
 underpinning. troff has none. And of course it's used, and
 indispensable. Nobody holds up it as a programming gem. (Laughing)

MSM: When I used YACC, in the compiler course that Sethi taught us at
 Princeton, one liked to go in and actually look at the statement.
 And in my urgency, I have no desire to look into MS... (Laughing)
 ...and see what those macros are. (Laughing)

McIlroy: ... if you do look at it once, you recoil in just absolute terror.
 You know, there's no model there. It's true of all its
 competitors, too.

MSM: Things like TECC, are slightly more powerful...

McIlroy: ...but, fundamentally they are the same thing. You still don't
 have a model of what typesetting is about. But, one of the
 difficulties is it's partly esthetic. You cannot bend page to meet
 some theoretical requirements. Nobody cares what you're compiler
 looks like on the inside, so you can bend it to agree with a
 automata theory. troff has to feed into a different market...

MSM: Yea, and you're also, it seems to me with tools like YACC,
 accomplishing more than just getting a compiler together, you're
 getting some assurance about ambiguity... If it says that there's
 an equivocation in it, then there certainly is. But, if whether
 you're really healthy if you get a clean bill of health... but
 still, it's comforting to know that you've gone through there and
 you don't have any ambiguities in it.

McIlroy: This is the nice about programming in a language like ML. Which
 we have not... I have not yet been able to say all right I'm going
 to abandon C, I'm going to write in ML. I think I ought to. But,
 I will have burned my bridges. I will no longer be able to work
 with... I will have left all these old parts... that I could use.
 Starting from scratch. But, there's a language which is built on
 mathematical ideas of algebra. Category theory... how imposition of
 functions and higher level functions in that language... Functions
 that work on functions... Functions are return functions... Come
 straight out of modern algebra.

MSM: I haven't seen this. Is there text now available?

McIlroy: There is a book available. It's a job jointly done, by Edinburgh
 who are in the center and Dave McQueen here... and now there's also
 a big outpost of it at Cornell. I think it spread... In England where
 they like their computer science to be more scientific, I think it's
 spreading quite well.

MSM: The Algebraic reminds me of sort of the use of set theoretic
 specification through to Z and... at Oxford. When I was looking at
 it, it seemed to be more mathematical than would suit the American
 taste, or at least homegrown taste. So, I've ordered it.

MSM: ML, I'll take a look at it. And you say there is a book out on it?

McIlroy: Yeah.

MSM: One of my interests, as an historian in mathematics, is the effort
 to mathematize computing. One thinks of the computer as a
 mathematical instrument, and of course it is. The difficulty of
 getting it and capturing it in mathematical forms, especially
 dynamic behavior of programs, makes an interesting chapter in
 efforts at mathematization. ...and what it would mean to mathematize
 it.

McIlroy: It's interesting that computers are feeding back into the
 foundations of mathematics. I think computing is the engine that's
 driving type theory now.

MSM: Type theory through mathematical logic.

McIlroy: Yeah, the logicians are now getting their inspiration from the
 computing side.

MSM: Good, I'm glad there's a justification for it. Because, I must say
 when I first encountered it, I thought... the problem can't be that
 bad, that we have to go through this.

McIlroy: But, sound, type theory, is really at the heart of design of a
 language like ML. We often talk strongly typed languages, but the
 idea doesn't really mean much until you get to second order
 functions and polymorphic functions. The general identity function
 in that identity can be applied to anything. It just produces....

 Sam Morgan

The interview date is unknown

MSM: You were saying that there was some effort to...sometime ago to
 portray UNIX as having been management inspired. You were about
 to say but that was not so.

Morgan: It was not so and in the way that the question originally came
 to me. And why don't we get to that in the proper course of
 things.

MSM: Okay

Morgan: Let me ask you, whom have you talked to already about UNIX? Uh,
 some, some set of people not all of whom are right around this
 immediate corridor that were in on the early part of the work
 and would have interesting things to say. Who, who have you
 seen?

MSM: Well I have talked to Doug, talked to Ken Thompson and talked
 to Sandy Fraser, Peter Weinberger, Brian Kernighan. I am
 suppose to see Condon and Ritchie tomorrow.

Morgan: Ritchie, Ritchie is important as you know.

MSM: Yes. Let me see who else is in my book. Lorinda Cherry and Al
 Aho on Friday I am going to talk to. And then I think we have
 another interview, and I have a list of other people that I
 want to talk to. Basically one of the lists I have been using
 is the list of people that Doug put together in that little
 piece he did on the early manual. Identifying where pieces had
 come from and then I got some other names. Ted Dolotta gave me
 a call when he heard about this project cause I knew Ted from
 swimming.

Morgan: Okay, a person who you certainly ought see is Berkeley Tague.
 The reason I say that is well Berkeley is an articulate and
 philosophical person. But he was involved from very early on in
 the UNIX support group. When, when UNIX got to be big enough
 and interesting enough to the organizations at Bell Labs outside
 research Tague put together a support group that gradually took
 over the management and extension of UNIX as a software base for
 a lot of development efforts. And I think it was in 1982, um,
 Tague put together a fairly long talk on the history of UNIX up
 to till then as he had seen it. And I thought it was both
 entertaining and quite perceptive. Tague had during, Tague is
 now a department head in the Murray Hill comp Center. He can be
 found in the book and his name would be suggested to you anyway
 I think by someone. But he did make some effort to do a one
 man's history of UNIX. Which I thought was quite effective. And
 so you certainly want to talk to him as to how he saw it because
 his viewpoint was a little different from the viewpoint of the
 research organization. But not so different that you couldn't
 see some similarities and he did considerable work in 1982 on
 putting the record together. So he is somebody you ought to
 see.

MSM: Good. What was your position here at the time this UNIX
 project was done?

Morgan: I was Director of Computing Science Research. The same
 position that Al Aho holds now and that Sandy Fraser held after
 I did. Up until a couple of years ago. I was director of the
 organization which UNIX was done.

MSM: Were you director during the period of the MULTICS department.

Morgan: I became director in 1967 and MULTICS was a project that was
 then ongoing. MULTICS had been presented to the Bell
 Laboratories computer using community as a kind of computer
 utility. As an operating system that would be a major advance
 over the then existing mostly batch oriented operating systems
 and this was to run on GE 645 computers. And people users had
 been told don't make further major commitments to developing
 software for the then existing IBM700-7000 series. Uh, wait,
 uh, MULTICS which is being done as a joint effort by Bell Labs,
 General Electric and MIT, uh, this will be the operating system
 of the future. At the time MULTICS began to be presented to
 computer users in that style I was elsewhere and was a computer
 user myself. By the time I became Director of Computing Science
 Research there were beginning to be doubts about MULTICS. It
 was, the development was clearly moving more slowly then had
 been expected. And users were sighing with varying degrees of
 pungency, "We can't wait for this." But the MULTICS
 development effort as far as Bell Labs was concerned went on for
 about two years after I became director. And then Bell Labs
 declared that it's commitment to the MULTICS development effort
 had been fulfilled. This was made, this decision was made early
 in 1969 and Bell Labs work on MULTICS was terminated I believe
 at the end of March of 1969. So I was in on the last part of
 the MULTICS efforts so far as Bell Labs was concerned. And UNIX
 was born late in 1969 as you probably have heard and developed
 in research for awhile and then eventually spread.

MSM: I'm interested if you can you tell a little about that of the
 MULTICS project. Realizing that you had, that you came into
 your position while that was going on. But you did I guess that
 MULTICS, there were promises associated with MULTICS.

Morgan: There were promises associated with MULTICS that were not
 fulfilled on a scale and in a time period that would have made
 MULTICS generally useful to the Bell Laboratories computing
 community.

MSM: Was this an assignment that the computing research group got or
 had it had a role in shaping the project. Making those promises
 in the first place.

Morgan: I do not know how, I do not know for sure who was the driving
 force behind MULTICS. I associate it with an Executive Director
 named Ed David. I was not, I was not closely associated with
 the computing enterprise until I became Director of Computing
 Science Research. I was an applied mathematician and really had
 no expectation that I would be going into a computing
 organization. And so I simply heard about MULTICS. The person
 who did most of the talking in auditorium and general meetings
 describing this system that was coming and encouraging users to
 not make major commitments to the IBM700-7000 series but to wait
 for the GE 645 and MULTICS, the person who did most of this was
 Ed David. And there was a man named Corbato at MIT and I don't
 remember who the principle GE promoter of MULTICS was, but I
 simply, I simply was not aware of whose brain MULTICS sprang,
 sprang from. The Executive Director of the organization that
 Sandy Fraser is now Executive Director of was the principle
 person who promoted it and who advertised it. And, oh yes, I
 should say, at that time computing service with comp centers
 such as they were at the different Bell Laboratories locations
 were run by technical organizations. The comp center at Murray
 Hill had originally been run by the Mathematics Research
 Organization. And then it was run by the Computing Science
 Research Organization when math and computing science split.
 And the comp center at Holmdel was run by a technical
 organization that kind of ran computing service with its left
 hand, and at Indian Hill. Each of the comp centers was run by a
 technical organization whose business was not primarily running
 a comp center. They were using, the organizations that ran comp
 centers had been amongst the early users of electronic
 computers, and so they took on as a part of their business
 computing service to the whole location at which they were.
 Alright. Uh. The Computing Science Research Organization, um,
 which I believe was split off from mathematics about 1965 and
 was under Ed David's direction until he go promoted to Executive
 Director, the Computing Science Research Organization did the
 software development such as it was at Murray Hill at that time.
 The Computing Science Researchers had put together various
 operating systems for IBM 701, 704, 709, 7090, 7094 under the
 names of BESYS 1, BESYS 2, up through BESYS 7. This work, this
 operating system design work was done by computing science
 researchers. They called it all research and we ran with the
 aid of a fairly small number of associate technical types. We
 ran the Murray Hill computing service. So when MULTICS was
 commitment to by Bell Labs and I am sure that Ed David was the
 spear head of this effort, David committed his people in
 computing science research to carry the Bell Labs end of this.
 I don't know Doug McIlroy was around during that time and he
 will probably be able to tell you whether this MULTICS effort
 was supported whole heartily by everybody or whether there were
 doubters from the beginning. But in any rate, at any rate in
 1967 when I became director of Computing Science Research the
 computing science research organization was committed as a major
 part of its then ongoing work, to see the MULTICS project
 through, and MULTICS was going slowly and was clearly. it was
 becoming clear to people that MULTICS was an attempt to climb
 too many trees at once. It was a mixture of research and
 exploratory development and final development in so far as those
 terms can be applied to software and it was simply not going to
 produce usable amounts of computing service to customers. This
 feeling was already pretty strong in the computing science
 research center when I took it over, and users, outside users
 who were never very patient with anybody, users had decided
 already that MULTICS was not going to fly. Well the MULTICS
 effort never the less continued for another two year
 approximately and was officially terminated, Bell Labs quit
 working on MULTICS, as of the end of March in 1969.

MSM: You said you had, that you came out of applied mathematics and
 had not been heading to running a computer, computing
 environment.

Morgan: I had, I was simply a user of computers up to that point.

MSM: Did you, when you took over in '67 what did you see the mission
 of that group to be. Did your appointment represent a shift of
 direction of any sort?

Morgan: No it didn't represent a shift in direction it represented the
 fact that the person who was then director of computing science
 research had been laterally transferred to one of our Whippany
 organizations. Was doing military software for the Safeguard
 Project and I am, this was a lateral transfer . He became a
 director at Whippany and I was not aware of any particular
 reason why this was done I assume that he, it was felt he was
 needed at Whippany.

MSM: Was this Vyssotsky?

Morgan: No this was not Vyssotsky. Vyssotsky was a department head in
 computing science research at the time the man was Tom Crowly.
 Crowly was shifted to Whippany, lateraled as a director and I
 assume that it was because he was urgently needed at Whippany.
 And there was I presume a search for a suitable person to take
 over the computing science research center and I was asked to do
 it but I was not told that there shall be any change in mission.
 My understanding of the mission was that it was a research
 group. We were-[break]- to understand the foundations of
 computer science. Computer science at that time was not nearly
 as large and flowering a structure as it is now. We had work
 going in formal language theory. We had work going in numerical
 analysis. We had work going in operating systems. We had some
 work going in switching theory and we had this exploratory
 development project MULTICS which had been taken on under the
 aegis of Ed David and I believed at that time, and was not given
 any other sailing orders, I believed that our business was to
 do research to understand the power and limitations of computers
 in so far as computers ought to be useful to Bell Laboratories,
 and that as a transient part of this we were committed to seeing
 the MULTICS operating system through. But I always believed
 that this was a transient thing that we had been committed to
 and that we were not in the software development business for
 the long pull. We were suppose to assist software developers
 and so that MULTICS would ultimately be finished up. Well it
 wasn't finished up quite in the way that the originators
 expected it to be, but it did come to an end.

MSM: Was that a fairly sudden end?

Morgan: Uh, there had been an increasing feeling both outside computing
 science research and inside computing science research that the
 project was not possible to finish in order, in a way that would
 meet the original expectations. And our then, Vice President,
 Bill Baker, decided that the work was simply going to stop. It
 was Baker's understanding and mine too that we had in some sense
 met the commitments that we had originally made, that we were
 not backing out of any contractual arrangement without, well we
 were not breaking any contract and the day on which the work
 stopped I believe was the last day of March. There was an
 announcement, a formal announcement that the work was stopping,
 that we were charging no more effort to the MULTICS charging
 case. And that we were simply out of it. I believe it had to
 be done that way because some folk were, well unless there is a
 definite statement that you are not going to work on a project
 anymore, why, some people will continue to work on it. That's
 the way, that's the way research goes. Folk from day to day do
 their own thing. And so there was a clear announcement that the
 work was over. And this was due to Bill Baker. I believe that
 Ed David actually read the formal statement to the members of
 the computing science research department but they were words
 that had been, this decision was made by our Vice President. It
 is not unprecedented that a project shall stop, I have known of
 other much larger efforts that were simply by management edicts
 stopped on a certain day. And MULTICS stopped. It was, I
 believe the general reaction was that it was understood why it
 had to stop. It was simply, it was simply using up effort and
 was not, was not advancing and showed no promise of, of turning
 into a user useful thing.

MSM: You have talked to Ken, Doug, and those that have written about
 it, Dennis when he writes about it in his retrospective. We
 talk about the sense of disappointed they felt. Where as on the
 one hand they agreed and they agreed with the technical judgment
 of MULTICS's inadequacy. That is that this was a system that
 was simply wasn't going to do what it promised to do. For one
 thing is was not going to deliver the cycles that sort of...

Morgan: Well that, well that was the main, that was the main reason
 that MULTICS was stopped here so far as I can see. It, it had,
 it was originally a promise to users of very flexible cycles.
 It was the first real time sharing system. Well there was IBM's
 TSS which was running at Indian Hill. I have never been very
 familiar with the details of TSS. The Indian Hill people were a
 group that decided quite early on that they were not going to
 wait for research and for the GE 645 and for MULTICS they had to
 have something sooner, and they wanted something that was
 supported by a vendor which TSS was. I don't know the TSS story
 really and I can't tell it to you but MULTICS if it had met it's
 promised goals would have been a much more flexible, convenient
 system than TSS, so I am told and I believe. But MULTICS was
 not about to meet it's goals in 1969 and I think this was
 generally understood. Now the sense of disappointment that
 Dennis and Ken and a few other people, I guess all the people
 who were working on MULTICS felt, I think was that they had had
 a system that was for a few... Well in the first place it was
 intellectually elegant. There was a lot of nice conceptual
 stuff in MULTICS and it is always good to feel that you are on
 the leading edge. But the other thing was that it was a, it was
 a very pleasant and convenient system to work with if, to use,
 if there were only a few people on the machine, if you had so to
 speak, and I am not trying to be pejorative here, if you had
 exclusive use of this large expensive toy, great! It was fun.
 You could develop software, you could do all sort of things with
 it. It just wasn't adaptive to supporting, it wasn't cost
 effective. But heck it was something that they liked and as you
 have undoubtedly been told repeatedly it was to make well UNIX
 turned out to be a much simpler, more cost effective environment
 which provided users with the pleasures of a, of the same kind
 of sandbox. So MULTICS was fun. I, I never used MULTICS, but I
 was told that it was a lot of fun for the people who were
 developing it. It's just that it, it wouldn't carry the load
 for a, for a big organization.

MSM: Well they've, they said both in conversation with me, but also
 in writing it what they missed was the shared environment.

Morgan: Yes.

MSM: That here was a way in which you could, you were all working,
 you could share one another's files, and delete things for one
 another.

Morgan: It was a very nice environment for a small number of users, but
 the Labs just could not afford and users generally could not
 afford the cost of the GE 645 for the small number of users that
 it was supporting. Now I am giving this to you by hearsay, but
 that was my understanding. Not that UNIX was unsuccessful for a
 limited community of computer science, MULTICS, not that MULTICS
 was unsuccessful for a limited number of computer scientist
 users. But that it was not, it was not cost effective, it would
 not have been cost effective to support a large laboratory.

MSM: Now when the decision was announced that there would be no more
 charges made to the MULTICS case were there, were there any
 statements either explicit or implicit. Edicts about lines of
 research that would or would not be followed. I mean in a sense
 the MULTICS project didn't stop, stop it just got redirected.

Morgan: It got redirected. There were no statements about what lines
 of research were acceptable. We don't make statements around
 here about what lines of research are acceptable in the short
 run. AT&T is interested in a very wide variety of subjects. We
 are not interested in translating my hieroglyphics, we are not
 interested in fusion research, we are not interested in various
 other things but there are a lot of things that we are
 interested in. Centering, mostly centering around communication
 and around information handling and this provides a great many
 directions that one can go. When a new researcher is hired
 here, there will be a point to this in a minute just hang on.
 When a new researcher is hired here anywhere in the research
 area, he or she is hired because of a doctoral thesis or some
 other track record that indicates proficiency, creativity in
 some field that we are interested in. When the person comes in
 the department head's business is not to tell the individual
 what to do but to see that he or she gets introduced to folks
 with common interests or perhaps common interests and that
 various people come around and ask questions, try and consult
 with the person, and we suggest that a new employee spend
 considerable amount of time, up even to a few months, thinking
 about what he or she would like to do. Very often publishing
 the Ph.D. thesis is a good thing to start on. But anyway,
 people essentially found their own things to do influenced by
 the total environment they are in. And if a person wants to
 undertake a certain line of research, a certain kind of
 investigation, presumably because of the individual's technical
 background before coming here this would something that's in a
 field that is of interest to Bell Labs and we allow this to
 continue. And if the person seems to be getting somewhere,
 seems to be interacting with people and well seems to be making
 some progress, and particularly seems to be communicating with
 his or her colleagues a considerable length of time can go on
 before the department head try's to steer the person in some
 other direction. The problem that sometimes arises with people
 that come to with a bright new Ph.D. and seem to be very bright
 is that the person will somehow have been closely directed
 during his or her graduate life, worked for a professor who held
 the reins very tightly and then in a kind of free environment
 like this where nobody tells you what to do from day to day the
 person will just not be able to find new and interesting things
 to do. Now if a person does find new and interesting things to
 do and if they get written up and published and if there seems
 to be lot of interaction going on. And particularly, if the
 person seems to have people coming in to talk to him or her from
 other departments, that this person is interacting and
 communicating that is fine. The person will essentially never
 get directed by his or her department boss. If with the person
 doesn't seem to really to, be producing anything and in
 particular doesn't seem to be communicating or interacting with
 people the boss will over the next several months spend more and
 more time encouraging the person to communicate and to look at
 specific problems. And as a year or two goes by there is
 always performance reviews every, every year and a matter of
 communications is stressed. The boss will become more and more
 explicit about, "why don't you spend some of your time looking
 at this particular problem?" But a person says, "I want to do
 such and so." You are not going to be told not to. Eventually
 if the direction seems to be completely at variance with others
 things that are going on it may turn out that the person had
 better pursue this at a university or some place like that. But
 in the short run folks are not told you are not going to do
 this. Development organizations. If a development project is
 canceled usually that involves a team of people working on a
 particular direction. If a development project is canceled,
 alright you are not going to be developing XYZ widgets any more,
 that is clear enough. But researchers you don't tell them what
 to do. What we did we tell people that had been working on
 MULTICS was you cannot have a large computer a the [inaudible]
 Tand was proposed as a substitute for the GE645 during the
 summer of 1969. They didn't have a GE645 anymore and so there
 was some effort to propose the purchase of a large computer on
 which to do time shared systems research and proposals that one
 should by a substantial chunk of, of plant equipment, naturally
 have to be approved upstairs. The MULTICS people were told, "we
 are not going to provide you with a large computer for a small
 number of people to do time shared system research on." We
 didn't tell them what they should do. We told them various
 things that we were not going to buy equipment for. And so,
 that's standard operating practice for researchers. They are
 suppose to be able to find things to do and so eventually they
 did.

MSM: When did you become aware of this new project, this new file
 system and attempts to implement it?

Morgan: Oh, must have been late in 1969. We have a performance review
 every year. Starts about November and people write up a page of
 what they have done, it is commonly called the, I Am Great
 Report, although that is not an official name for it. And Ken
 Thompson had on his I Am Great Report in 1969 that he was
 working on a, a file system for a, a small computer and by 1970
 why the system had been named UNIX and several people were
 working on UNIX. Another theme that merged with the time shared
 development was the text processing, text editing and formatting
 theme. There was, I believe at MIT or from someplace a type
 script formatting scheme called runoff which Doug McIlroy worked
 on quite a bit and turned into a thing called roff and this, I
 got a head of myself a little bit. Now this when we got a cheap
 photo typesetter, got approved to a formatting scheme called T-
 ROLF which is still around. People were interested in text
 editing and formatting and you could do this on a small computer
 and if you had a, if you had a operating system that involved
 easy handling of files and presently time sharing so that the
 people could access and use each other's files. The UNIX file
 system and the text editing and formatting work kind of came
 together. I understand that Ken Thompson had a space war game
 that he played for a while when he was looking for something to
 replace MULTICS. That was fun but the, the first real
 application of the file system that became UNIX was a text
 processing system. And this was kind of the merging of file
 system work and work that folks had been interested in for a
 long time, text processing.

MSM: Well this is the system that the Labs was willing to buy a
 machine for.

Morgan: This was a system the Labs was willing to buy a machine for.
 When this, the proposal was first made that we should buy a
 machine for text processing it was presented to me because I had
 to sign the purchase order. And I didn't understand at the time
 the innovative nature of the UNIX file system and we had done
 text processing work in the past and I didn't see that we were,
 that any great research advance was being made. It sounded as
 if people wanted to provide a service or something with a typing
 pool. So the first proposal to buy a I guess it was a PDP11/20
 I turned down, this was in 1970 and another director Max
 Matthews managed to gin up a machine. He was also interested
 in text processing and by the time people had worked on the file
 system and on text processing for another year by 1971 it was
 quite clear to everybody locally that there was something rather
 special going on. And from then on we bought a sequence of PDP-
 11's, and research, and by and by the patent division was using
 the text processing scheme, and by and by it was used in the
 word processing typing organizations, and eventually it spread
 all over.

MSM: What is it that persuaded you that there was a research
 component?

Morgan: Well, I do not remember at the moment any particular day on
 which I decided there was a research component there. I guess
 it was being, being shown some of the things that the text
 processing system could do. I guess I felt that. Let's back up
 a little bit. The computing science organization here like all
 of the research area, but I think maybe they are a little
 stronger than some, has always been very outspoken and very
 sharp tongued in promoting their viewpoints and there was a good
 deal of noise when MULTICS came to an end. And it seemed to me,
 that well I guess I had some difficulty in sorting out the
 signal from the noise. I was quite well aware that my bosses
 wouldn't approve the purchase of a really large computer to
 support any surreptitious continuation of the MULTICS effort.
 And I was, I think willing to wait for the initial shouting to
 die down and I figured that if there was a research component
 involved in the text processing work that it would appear in due
 course. And indeed it did. I have told this tale more than
 once to people who, this is were we came in, who would have
 liked to demonstrate that it was management perspicacity that
 caused UNIX to be, to be born. Some parts of management did not
 understand UNIX as rapidly as other parts did. I think that we
 did understand management principles. The management principles
 here are that you hire bright people and you introduce them to
 the environment, and you give them general directions as to what
 sort of thing is wanted, and you give them lots of freedom.
 Doesn't mean you always necessarily give them all the money that
 they want. And then you exercise selective enthusiasm that is
 one of Bill Baker's favorite phrases. You exercise selective
 enthusiasm over what they do. And if you mistakenly discourage
 or fail to respond to something that later on turns out to be
 good. If it is really a strong idea it will come back. So
 anyhow that is...
MSM: We had a dean at Princeton who was famous. No matter what the
 proposal the first answer was no. Then you came back.

Morgan: Alright, well it is a little bit like patent examiners. I was
 told in my early career when I got a few patents that there is
 always an interplay between the local patent attorney and the
 patent examiner at the bureau of patents in Washington. And you
 had chit chat for a while and then you get from the patent
 examiner a final rejection. This patent is now finally
 rejected. All claims are rejected and that is an invitation to
 put forth your strongest argument. You now give me your best
 argument and I will listen to it. But I was told that the final
 rejection is the last, last stage before you finally get some
 things admitted. Well, we didn't quite play it like that around
 here. But that. I have never been in an organization that had
 enough money, or enough hiring slots, or enough office or land
 space to do everything that we would like to do. So one
 provides some back pressure. And in the case of the transition
 from MULTICS to UNIX the MULTICS faucet had to be turn off
 reasonably hard. It was a part of turning off, I mean it was a
 management decision that this was going to be turned off. And
 part of turning it off was not immediately buying hardware on
 which MULTICS could be continued. In retrospect, Thompson and
 Ritchie and other people did find partly through their own
 efforts and partly by looking for a director that was willing to
 buy a small amount of hardware, did find machines on which they
 could work. And in due course when it was clear to everybody
 around the research area that UNIX was going to go somewhere and
 needed to be supported they have had the machines that they
 wanted.

MSM: One of the things that impressed me, that has impressed me
 about UNIX is the way in which it's a system with a lot of
 really effective coding, programming. On the other hand it is a
 system that if it's not theory driven at least has roots in
 theory. There is a, if one works ones way through the various
 books by Aho, Hopcroft, Ullman or the various combinations of
 three things taking two at a time, that series represents. And
 one looks at UNIX, one sees their other piece, and that is the
 product by in large of the computing research group. How did
 that unity come about. Was that something that you were looking
 to create or is it pure coincidence, or it is...

Morgan: I...

MSM: It is a view of computing really as an enterprise...

Morgan: I, I don't, there was a conscious decision to do this unified
 sort of way. As I, yes I was saying earlier we have had at Bell
 Labs for a long time, certainly since before I came and I have
 been here forty two years, we have the philosophy that you hire
 bright people, you expose them to interesting problem areas, and
 you keep an eye on what they are doing and in particular on
 their interactions with other people. You attempt to give them
 guidance only in a very general sort of way. Often times this
 guidance is simply a lot of enthusiasm for something that they
 are working on. An environment like that is self perpetuating,
 so long as you keep your hiring standards up and your management
 keeps its eyes open. Remember that the management around,
 around Bell Labs all are, at least around the research area, all
 came up through the technical route. And people don't get
 promoted to management in the research area here unless they
 have a good track record. You may find a few folk who disagree
 with that. But my view is that our department heads and
 directors and executive directors were once technical hot shots.
 Sometimes that back fires, because you get a technical hot shot
 who has no people skills. But that is a different story. Your,
 uh, your technical people, your managers were once technical
 hot shots and they were imbued with this general philosophy of
 how you conduct, how you manage research at this kind of place.
 And good things come out of this. Well, good things come out of
 this philosophy of research management. And as I said it is
 self perpetuating in that that's the way that I grew up and that
 is the way Al Aho grew up and it is the way Sandy Fraser grew up
 and it is the way our local department, department heads have
 seen it work for a long while. What we did in the computing
 science research organization. I didn't create this, to some
 extent I keep it going. But was to have bright, interactive
 people who were interested in theoretical computer science, that
 is Al Aho and now Ravi Sethi and lots of other people, but Aho
 was one of the early ones. And folk who were interested in
 programming techniques. People like Doug McIlroy who was a
 mathematician to start with, but was in on computer from very
 early on. And people like Peter Weinberger, who I guess was an
 algebraist to begin with but he is interested in practically
 everything. And people like Brian Kernighan who are, is a
 superb expositor. Kernighan writes beautifully, which a great
 many computer scientists don't and is very creative in seeing
 something that needs to be, needs to be done. And people like
 Mike Lesk perhaps not the world's greatest programmer but Mike
 Lesk who is now at Bell Core did the EQN patient setting system.
 No I guess that was Brian, that was Brian. Alright Mike Lesk
 did a lot of the page layout stuff that got put on top of, of T-
 ROLF. Brian, Mike, Lorinda Cherry, could see things that, by
 golly, I know how to do this and I bet somebody else would be
 interested in it too. The EQN equation layout package for
 instance after it has been done. Sure other people do that sort
 of thing, there's ...

[END OF SIDE ONE]

Morgan: ... had the inventiveness to see (A) that I can do it and (B)
 that it would be nice if somebody did it. Now maybe it ought to
 come the other way around, perceiving the, perceiving the niche
 and observing the technique, that the technology exists for
 doing it. These are two parts of the same thing. Alright we
 had people like Brian, we had people like Mike Lesk, we had
 people like Doug, we had people like Ken and Dennis. We had
 people like Alfie and if I, well it was a small group, it was
 about two dozen people for a number of years after, after 1969
 when we quit running a comp center service. I will come back to
 that in a moment. And when the MULTICS effort and some people
 who were associated with MULTICS in a more supportive sort of
 way went elsewhere. From about 1970 to about 1976 or 1977 we
 had about two dozen people, twenty four people in the whole
 group. We were essentially not hiring anybody, we were in one
 of our chronic hiring freezes and we just had a small group of
 good people who generally ate lunch together, and who were quite
 willing to argue with each other and to discuss and to use the
 techniques they knew about to put together things that they
 thought were interesting. It was a lot of work in text
 processing at that time. There was a lot of work in practical
 operating system development. There was a lot of work in
 theoretical computer science, compiler theory and algorithms.
 It was done essentially by a hand full of people. But they were
 people who did a lot of talking to each other and a lot of
 shouting and who essentially collaborated. And that is the way
 that research is suppose to be done.

MSM: What I am getting here is a picture of a group of people hired
 within a fairly short period of time, several years. At a time
 when things are the field was still in flux.

Morgan: It was still in flux.

MSM: What computer science was suppose to be in the 60's was an open
 question.

Morgan: That's, that's right.

MSM: Brought together they tend to form a stable community and in
 essence what I see is a usual match between practical
 applications and theoretical foundations. Certainly the out,
 the product of a group that had come together for different
 reasons but then had found a common, they had established a
 community.

Morgan: They established a community. They were in touch, of course,
 with the university community with computer science being
 established, being defined as a field in the 1960's. Some of
 the old timers, myself and Doug McIlroy, and a few others came
 from the math research center. We had a numerical analyst named
 Dick Hamming, early on who was kind of the farther of service
 computing at Bell Labs.

MSM: What had been your background?

Morgan: I was mathematical physics. And as I said I was an applied
 mathematician. I did boundary value problems, radar antennas,
 microwave, wave guides, up until I was put in charge of
 computing science research. And I suspect that I was put in
 charge of computing science research because just at the time
 that the previous director was transferred to Whippany there
 wasn't a really good professional computer scientist who was
 ready for the job. Sometimes you know there is, you have to
 fill a slot, and there isn't a perfectly qualified person of the
 right amount of seniority. So I didn't look for the job in
 computer science. It wasn't compatible with my background
 really, but I had been steeped in the general way in which
 research is managed here. You get good people, you make sure
 they are aware of a wide class of problems and you let them do
 their own thing. But you give them feedback.

MSM: Did you have a sense yourself of what computer science would
 look like at the time?

Morgan: Not really. I was more interested in the mathematical parts of
 it. Of course I was interested in seeing that people got, so
 long as we ran a service organization I was interested in seeing
 that service was supplied. In the middle of 1969, this is a
 new topic but it is relevant I think...

MSM: Right. It was about to ask you what happened when you ceased
 to be a service organization.

Morgan: In the middle of 1969 service computing at all Bell Labs
 locations was taken away from technical organizations, that is
 organization whose primary business was something else. And
 merged into a single division under a man named Phil Thayer, who
 is now retired. All the comp centers were put under unified
 management and for a year and a half I was both director of
 service computing at Murray Hill and Whippany, and director of
 computing science research. It was expected that this would be
 a temporary arrangement and so at the end of 1970 I chose to
 give up the service computing aspect and from then on it was
 under its own separate management. Well anyhow. The move to a
 separate computing service organization I think was long over
 due. It just wasn't reasonable for a single, for a research
 organization also to try to manage a stable computing center.
 Researchers you know always like to fiddle and, "we are going
 improve it!" And users, "my program that ran yesterday won't
 run today what the hell have you done with the operating system
 now? And besides I want this thing fixed!" and the researcher
 may feel, "I am not really interested in fixing that. That is
 mundane..." So anyhow, having a separate computing service
 organization was long over due. It was started in the
 middle of 1996.
 And this was another impetus I think toward the
 development of an operating system for small machines namely
 UNIX, that went on in computing science research. Because once
 the comp center machines were moved out from under the research
 aegis, we had in research had our own machines and management
 would not buy big DEC PDP 10's and so we had to do something on
 minicomputers. And that was another impetus toward Thompson and
 Ritchie in the UNIX direction. Anyway, that's kind of the
 history of things. I was interested in both in seeing that
 users got good service and got new tools as rapidly as they
 could be delivered. And also in seeing that the theoretical
 understanding of computer science got advanced. And if I had
 any personal interests here I found the text processing work
 particularly entertaining. But I did not do any of the, I did
 not do any of the research myself. I was, I was the research
 manager.

MSM: Was there any point at which you were running interference for
 these people?

Morgan: Well you always run interference in that part of the business
 of management is to explain to higher management and to other
 parts of the laboratories what is going on. So that was just
 part of the job. I never felt that, I never felt that I had to
 go out and fight for them in the sense that I was contending
 with anybody. I was, I was if anything a publicist and
 explainer rather than a person who was going out and contending
 with other people for money. Our research area here has always
 been I think quite well supported. It doesn't mean that we have
 everything we wanted. But if you can make a good case for
 something, and it is the director's business to make a good
 case, if you could make a good case for something well you could
 get it.

MSM: At a certain point I gathered between 73-74 I am not sure what
 the date is. UNIX in a sense out grew the research group or...

Morgan: Well basically it out grew

MSM: Did it outgrow it and therefore did you feel that it had to
 someone else had to take over...

Morgan: Well

MSM: Take over or...?

Morgan: Remember in 73 and 74 we had a couple of dozen people who
 included some numerical analysts, and some people like Al Aho,
 Jeff Ullman was around here for a while. He is now in Stanford
 he has become a big man in academic computer science. We had a
 small number of people and we had essentially no support staff
 and there were things that folks wanted to do with UNIX that our
 people were not terribly interested in putting the time on. My
 perception of the way things grew is roughly as follows and you
 will want to talk to Berkeley Tague on this because he was
 heavily involved in this next stage. My perception is that
 various software development organizations around Bell Labs
 picked up UNIX and its researchy state and began adding things
 to it, to meet their needs. The first application of UNIX
 outside research where it was a test bed or an environment for
 software researchers to use, the first thing that was done
 outside, was early 1971 where the patent organization took UNIX
 on as a word processing system. And there was another system
 whose name I forget now I could look it up, it was a commercial
 system that was a competitor. Well, the patent organization was
 persuaded by some of our folks including particular Joe Osanna
 who was the father of troff. Osanna died I think in 1977. But
 anyway Osanna persuaded the patent people that they ought to use
 UNIX as a text processing system. And so computing science
 research organization provided what extra bells and whistles
 were needed and hand holding for the patent typists and so
 forth. But by 1972 there were a number of outside
 organizations, outside research at Bell Labs that were beginning
 to use UNIX for software development. And each one of them had
 special needs and so they came and they talked to our people and
 then they added their own bells and whistles. It was about this
 point that Berkeley Tague who'd been in and out of research and
 was at the time associated with the comp centers, decided that,
 that was a game that he wanted to play. His story now is that
 he was tired of the work that he was doing at the comp centers.
 He wanted to get into the UNIX action and this was a very
 interesting area and it was clear to Tague, who has always had
 his head screwed on right, it was clear to Tague that somebody
 was going to need to support UNIX. And so he persuaded his
 management as part of the comp center that there needs to be a
 UNIX support group. His version of this is that he got together
 a few people and the way that he became a UNIX support group was
 that when anybody would ask a question, "We had this problem
 with UNIX," Tague would say, "well I will take it under
 consideration." Then he would get on the phone and fly around
 like mad to every UNIX user he could think of and say, "have
 you every encountered this problem? What did you do about it?"
 When he found out he would trot this back, and "you know this is
 the way that you can fix it!" And after six months he had some
 local expertise. Well you should hear Tague tell this story.
 Anyway. Starting in 1972 UNIX began to be adopted here and
 there and then it was a kind of an avalanche of organizations
 that needed it for software development purposes or for running
 their own particular version of the operating system on. And
 they got to the UNIX organization supported out of the comp
 centers and Thompson, Ritchie and Kernighan and Mike Lesk and
 Doug McIlroy and the folk who had contributed to the early
 stages of UNIX went on adding things as they wanted to, and
 answering calls from Tague occasionally, and generally
 consulting, but they were not in the support business any
 longer. They hadn't been in the support business very much
 although at the beginning, whoever invents something has got to
 give it some support. But a UNIX support organization was
 formed I think in 1973 under Tague, and from there on it...

MSM: Well the system was first announced if I am not mistaken in
 1974 at the IBM conference.

Morgan: I believe that..

MSM: Was there a definite decision about when to go public with this
 and... Cause there's a, one sees a flurry of papers around the
 mid '70s, is that a sense of back-up?

Morgan: Well we. Computer scientists most of them we don't like to
 write papers. And so it was a while after the system existed
 before it was, before it was written up. I forget, I could look
 up when we first began licensing UNIX to universities. There is
 another interesting aspect of the UNIX story which might not
 happen the same way again. AT&T management could not understand
 the importance of what it had in UNIX. And so we began
 licensing UNIX to universities for a very small amount of money.
 At most a few hundred dollars. And UNIX was licensed all over,
 it spread over the academic world, Berkeley but many other
 places, it just went all over the academic world in the early
 1970's. Doug McIlroy can tell you when or I could dig up out of
 my records the first dozen or twenty or fifty universities that
 we licensed. AT&T had simply let universities have UNIX for a
 song on the basis that they would not do certain things with it
 that universities didn't very often do anyway. And as a result
 of that graduate students got on UNIX and decided that, "I love
 this, where can I get more of it?" And this piece of
 serendipity was I think very important in spreading UNIX over
 the world. The fact that it was essentially given free of
 charge to universities. And I suspect that we would not do that
 again. But it was a case of AT&T's top management not realizing
 that software could be financially, extremely valuable.

MSM: You also weren't suppose to be in the computing...

Morgan: We were not suppose to be in the computing business. So we
 were not making computers and people did not realize that the
 computer is more than just hardware. It's also software. So
 giving UNIX away essentially free, talking about it freely and
 having open lines of communication with our university
 colleagues especially those at Berkeley, but also elsewhere,
 this was a major thing in the spread of UNIX. And to some
 extent it was an accident.

MSM: So they, that set of papers that appear in the mid '70s is that
 just a..

Morgan: Well now.

MSM: The timing there accidental?

Morgan: Well, the first big set of papers was the 1978, BSTJ. I have
 got that around someplace.

MSM: Yeah, I have got the reprint of them.

Morgan: Alright. It was, I was involved in that rather heavily and in
 putting it together. The BSTJ decided that computer software
 was a good thing and that we ought to have, we ought to have an
 issue on it. And there was a general consensus that the UNIX
 operating system by 1978 needed a special issue. And so we kind
 of made that a, well we made that a project. I was the, yes
 guest editor who put the issue together and we sold the issue at
 two dollars and a half or three dollars and a half a copy, and
 it has out sold every other issue of the BSTJ that we ever
 published by a factor of many. It over took the transistor
 issue almost at once, and it was a tremendously heavy seller,
 and they sold it for the standard rate on single issues of BSTJ
 which I forget how much it was then, I believe it was two
 dollars and a half. And that was another thing that AT&T
 management didn't recognize that they could have done much
 better by charging five dollars an issue. The big spate the
 first big spate of papers on UNIX was the 1978 BSTJ issue and I
 don't believe except for some conference papers and the original
 Ritchie-Thompson paper, I don't believe there had been much
 before then. I know I beat quite hard on folk to get papers
 written for the 1978 BSTJ issue. And we kind of regarded that
 as the journal unveiling of the subject. There should have been
 more publications before then but it was a case of lots of word
 of mouth and lots of electronic mail. And the fact that most
 computer scientists with the except of Kernighan and Aho don't
 much like to write. There was no conscious deci..., before the
 BSTJ special issue, there was no conscious decision, "we will
 now publish on this." Our folk were encouraged to publish
 anything that is worth publishing. But some people you have to
 push pretty hard to get them to publish and we don't push
 perhaps as much as we should.

MSM: So there was no sense of sort of a formal release to the world?

Morgan: UNIX didn't get any formal treatment in it's early stages it
 was a thing that Ken and Dennis made and other people as they
 heard about it by word of mouth, got on to it, "oh this is
 great!" And university people heard about it and, "Oh yeah you
 can have it. We will set up a mechanism, you pay us three
 hundred dollars or whatever and sign this agreement that you
 won't set up your own company to market this stuff." And it was
 all a very small scale and low key in the beginning.

MSM: If you look back on it from a point of view of manager, is
 UNIX the sort of thing that management can make happen?

Morgan: No. You can't make it happen. You hire bright people, provide
 them with a stimulating environment. And you do selective
 pruning and encouragement of what they undertake. But you don't
 do this with too short a time constant. As I said the first
 time that Thompson and company asked for a computer they asked
 for a DEC PDP10 and they were told no on that. It was simply to
 big and you are not going to do operating system research for a
 big computer just after MULTICS has been turned off. The second
 time they asked, they wanted a PDP11/20 and I said, "I am not
 convinced yet, I want to see more of what you say you are going
 to do with your text processing system." So I didn't stomp on
 them, but neither did I sign their order and they found somebody
 else, another director to sign the order, and the third time
 they came around they wanted an 1145 and by that time they had a
 perfectly plausible and defensible story. So they got selective
 enthusiasm used on them but not too violently or with too short
 of a time scale. If it is going to be good it will prove
 itself.

MSM: Well, you know, you. The selective enthusiasm with a
 counterpart. You were displaying selective enthusiasm. They
 were displaying entrepreneurship. You said no, so they went and
 found someone that said yes.

Morgan: That is right.

MSM: Is that also, is that conscious management? That is,
 encouraging people to do sort of in-house entrepreneurship.

Morgan: Not in the sense that people are told that if you want this
 funding you have got to find somebody to fund it. We don't ride
 our folk with a short rein. And we don't tell them who they can
 talk to or who they can't talk to. And I didn't tell the guys
 when they came around and asked for the 11/20 and I said, "Look
 I am not convinced by this story." I didn't say, "If you can
 find somebody else to do it, feel free." But I didn't tell them
 "Look you must not talk to anybody else," and when I discovered
 there were no secrets about this I discovered, I was told "Look,
 Max Matthews can support this." He was the other director. And
 why could he support it? He could support it because he was
 interested in text processing, he was doing, he was in
 behavioral sciences and psychology and he had people who were
 working on text processing, and in fact one of the folk who was,
 came in with the proposition for the 11/20 that I turned down.
 One of the folk was Lee McMahon who was one of Max's department
 heads. Lee has recently and very sadly died. But anyway, Lee
 McMahon was the department head of Max Matthew's so the pitch
 was not really that two of Morgan's MTS, having been thrown out
 of Morgan's office, I exaggerate here, but having been thrown
 out of Morgan's office, trot down the hall to Matthew's and,
 "Morgan doesn't love us what can you do for us?" They came in
 through McMahon's director and in fact I am, I hadn't really
 reviewed this but as I think about it comes back to mind. The
 people who originally made the proposition to me were Osanna,
 Thompson and McMahon who were working together. They were in
 different organizations, they were working together. McMahon
 was particularly interested in English grammar and in text
 analysis at the time. Osanna was interested in editing and
 formatting systems, things like the runoff system. Thompson was
 interested in file systems and ways of handling information
 conveniently in a computer. So these birds were talking to each
 other and they had discovered they were all interested in small
 computers. They had discovered the PDP-11/20, and they felt
 that they could make a good text processing system out of an
 11/20 which would exercise Thompson's file system. I don't know
 whether it was called UNIX then or not. It would exercise
 Thompson's file system, it would give Osanna a chance to write
 text processing programs. It would give Lee McMahon a chance to
 process text in his analysis of grammatical structure. Which is
 what he was doing as a psychologist in Max Matthew's area. So
 they came to see me. And I obviously didn't fully understand
 where their proposition was going and so I said I couldn't do
 it. Not then. So they go around and they give this pitch to
 Matthews who is Lee McMahon's director. And so it wasn't a case
 of guys from my organization going outside my organization to
 find somebody. They simply went to the director of the other
 person in the trio. And I didn't think there was anything wrong
 with this or unreasonable about it. Max Matthew's was a person
 who collected little computers anyway and it may be that he had
 more money at the time than I did. We have certain plant
 budgets. Anyway, I didn't think that there was anything out of
 the way about this and I didn't feel that somebody was
 criticizing my judgment. Max was perhaps in a better position
 to support the machine or I don't know what. But anyway it
 didn't seem unusual to me and now that I recall McMahon reported
 to me for a long time. He transferred from Max's organization
 into mine not too long after this particular incident. But at
 the time he was a department head for Max Matthew's. So he
 added his voice to the desires that the other fellows had and so
 Max bought the first computer. But there was nothing, there was
 nothing particularly unusual about this. And since it would
 have been a little more unusual if people entirely from one
 center had gone to a different director and said can you support
 this. In which case, I am sure that Max would have come to me
 and said, "Look, two of your guys have come to me and have said
 will I buy them a computer. If a computer is going be bought
 you ought to buy it. Let's discuss whether it should be bought
 or not." The reason it didn't happen that way was that one of
 Max's department heads was in this story.

MSM: It sounds less entrepreneur...

Morgan: Well, now I should have told you, told that to you that way in
 the beginning. I remember now who the people were. It was
 Thompson, Osanna and McMahon, and at that time McMahon was a
 department head for Max Matthew's, and Thompson and Osanna were
 MTS in my shop, and each one of them had a separate interest in
 the particular project, and Max was willing to buy it. If he
 hadn't had one of his department heads pitching it to him he
 wouldn't have bought it. I would have done it or nobody. And
 if I hadn't, if Max had come to me and said, "Look, I have
 listened to these guys and I think they have got a good story,
 and why don't you listen to them again," I probably would have.
 Anyway there was nothing unusual about this and it wasn't a case
 of people either being encouraged or choosing to find a back
 door. We do encourage people to be enterprising, that if they
 want something done, or if they want somebody to cooperate with
 them. There is another kind of question that comes up
 occasionally with a new MTS. You will occasionally get someone
 with feels that he would like to have somebody working with him
 and this won't happen until somebody's boss says, "You two guys
 collaborate." One does not tell researchers to collaborate with
 each other. You find, you find common interests in somebody and
 then the collaboration occurs. So if somebody came to me and
 said, "You tell somebody to, you tell such and so to work with
 me." You make your own contacts. So folks, folk are encouraged
 to be entrepreneurial in the sense that they make contacts and
 they get collaborations going. They are not encouraged to go
 and ask some other member of management for money that they
 can't get from their own management. But in the case of the
 Thompson, Osanna, McMahon thing the pitch to Matthews came from
 one of his own department heads.

MSM: Well, we have gone on for a while and I think that I have run
 out of questions.

Morgan: Alright.

MSM: But I also probably..

 Bob Morris

The interview date is unknown

MSM: Talked to Doug McIlroy. Ken Thompson, Dennis Ritchie, Sam Morgan,
 Lorinda, Brian, Sandy Fraser, Al Aho, Joe Condon, Weinberger and
 Berk Tague, oh and Stu Feldman. Have I missed someone
 important?

Morris: Well, there's three people, that they have missed. Two are
 dead, so, uh, you waited too long. That's Lee McMahon and Joe
 Osanna.

MSM: Who was the first person?

Morris: Lee McMahon. He died about two years ago. Joe Osanna maybe
 died ten years ago. There is another person. Who was in very
 early. That gets inadequate credit for what he did. But, he
 left the research area, sort of right after when things really
 sort of got started. People have forgotten about him. Which
 they shouldn't, because, hey, I had forgotten his name too.

MSM: Rudd Canaday?

Morris: That's probably who I'm thinking of.

MSM: He was one of the original three that met in Ken's office.

Morris: Yeah. Okay. No you didn't mention him.

MSM: I hadn't talked to him.

Morris: Yeah and uh, I mention that because there's quite a few people
 who were not in it in the beginning at all, who still get a lot
 of credit. Some people who were in it in the beginning who
 don't and I think Rudd would definitely be one of them.

MSM: I'll talk to him.

Morris: Of the people you talked to, very few were associated with the
 creation of the system itself. Or were even anywhere near close
 to it. Those who were were really, Ken, Dennis and Rudd.
 Others came in maybe a year or two or three years later and
 myself included. I was nearby but not involved in the creation
 of the system and the fundamental ideas that went into it. I
 was nearby but not involved.

MSM: How did you get involved?

Morris: Interesting goings on. Possibility of restoring what a time was
 a... Bell Labs had become a technological backwater in almost all
 computer science related activities, and not only that, but we
 were headed in a direction of more stagnation as time went on.
 This was right after the death of MULTICS project. Which we had
 been on for oh perhaps six years, seven years something like
 that. I think we started in about 1963 or 4. 64. It was a
 dying system and never did serve any really useful purpose. We
 recognized Bell Labs recognized it was a dying system and
 abandoned it, in 1970 or '71. I can't the exact date.

MSM: It's gotta be '69.

Morris: Maybe. Yeah. All of my dates back then are plus or minus a
 year.

MSM: That's what references are for.

Morris: Here was the possibility for creating a computing environment.
 That was actually somewhat forward looking. Using what then had
 become relatively common facilities for multiple users on, that
 is multiple access to a time shared system. So, that the access
 was broad and usage was broad. What we had at Bell Labs up
 until that time was pretty much big machines somewhere in the
 basement. Inside a room somewhere and you put a deck of cards
 down and that's the way the job run. That was all very well when
 I arrived at Bell Labs in 1960, that was the way computing
 environments were. Uh, but, during the '60's people had gotten
 way, way head of that and here was a project that was attempting
 to and eventually did get us back on the track. On more or less
 on an up to date computing environment. By no means a first,
 God it wasn't the fifth, there were just in my own experience
 that I personally used not just a handful but a considerable
 number of predecessor systems of that sort. Remote access for
 multiple users and provided reasonable computing services.

MSM: Had you used them at the Labs or in other projects, you were involved
 in?

Morris: Well, the Labs itself, themselves didn't have much. The labs
 itself had nothing of that sort. MULTICS would have been an
 attempt to go in that direction. But it failed for reasons I
 guess that we don't often hear. Too big, too complicated. The
 best quotation of getting MULTICS to do something is like
 kicking a whale down a beach. No, I had used systems at MIT. I
 give them credit for being the first off the market. They
 produced the first system of this sort. Of which UNIX was a
 simply logical development, eight years later. But, the system
 that, again all my dates are plus or minus a year, the system
 that MIT produced in 1963, called CTSS, basically showed the way
 for all the others. By '66 or '67 I was using a home grown time
 sharing system, at Berkeley, and the work, just one they
 basically built themselves.

MSM: Is this the Genie system?

Morris: Huh?

MSM: Genie? Or what was the name of the system at Berkeley?

Morris: Oh God. I don't know. Berkeley timesharing system, I think.

MSM: Okay.

Morris: Ran on a SDS-940. I don't think it had a fancy name, but it
 was a project that was home grown within the electrical
 engineering department, and uh, I had used it by that date. I
 was at Berkeley in '66 or '67. There were several commercial
 time-sharing systems. __ So, it had
 become reasonably common. I went back to Bell Labs from
 Berkeley, in the summer of '67. And uh, we were still kicking
 MULTICS around and it didn't seem even at that time, to have any
 future; I never took much interest in it. I spent some time
 working on it. But really as little as I could get away with it.
 It died, whatever date you said. Basically, Ken Thompson saw
 some machines kicking around that weren't being used and decided
 to set up a time sharing on them and uh, at that point, it was
 pretty much his baby. I saw it happening but I did not
 participate. He got the rudiments of a system to work on, oh
 God I don't know. PDP7 PDP9...

MSM: The PDP7 was the first one.

Morris: Something like that. They're both the same. I'd have to
 physically remember how big it was.

MSM: (Laughing)

Morris: Between the PDP7 or the PDP9. They're the same machine. They
 run the same code. Got that going though was really only the
 rudiments of an operating system at that point. It handled
 input, output. Some scheduling of processes. But certainly did
 not for multiple users. It supported one user, sort of. I've
 forgotten whether it supported one user, so long as he was at
 the console or not. But, it was along those lines. It went
 along and never got a heck a lot beyond that point. Or, Bell
 Labs computing. Bell Labs situation otherwise was dependent on
 monolithic mainframe computers. That was viewed by them as the
 way they wanted to go. The wave of their future at least and
 they continued on. Somebody, I guess just Ken needed to
 scrounge on a machine. In which he could put together a viable
 operating system that for which the PDP7, PDP9 version was just
 a forerunner. I think, whether and to what extent he asked his
 own management for support for this I don't know. Certainly he
 didn't get it. But that is neither here nor there. Well,
 actually he did both here and there. (Laughing) He managed to
 con I think the Murray Hill patent department into paying for
 the machine. I'm sure of that. Chris would know better.

MSM: _

Morris: Promised them and eventually delivered a system which would
 provide them significant economic savings, in their patent
 preparation operations. That actually happened. Got the
 machine, I think they paid for it. that would have been a oh
 God knows PDP something with very low number, 11-2.

MSM: I think it was eleven forty-five.

Morris: Before that.

MSM: Before that.

Morris: Eleven forty-five is distinctly later. I think eleven-twenty.

MSM: Okay.

Morris: Let's think eleven-twenty. The first machine was quite small.
 If it was in this room. You could have concealed it so there's
 not now visible. I mean, I think it occupied about 5 cubic
 feet.
MSM: I see.

Morris: By, so by so. Something like 5 cubic feet. Let's see at this
 point. Joe Osanna, is clearly in the picture. He's probably
 the second person to really commit himself to the development of
 the system. That machine was set up in our space in an attic
 room in Murray Hill.

MSM: By our space now you mean computer research?

Morris: Yeah.

MSM: Okay.

Morris: Yeah. Don't think of a fancy laboratory, but it was a room up
 in the attic. And instead of bringing the facility to the
 patent department, the patent department came to us. There
 were something like four patent department secretaries resident
 in our space for I think for several years. I would estimate,
 two years. Something like that. The system was largely
 developed including the software, that they used, within
 present. You could get, to say the least rather instant
 feedback. Don't like this. Do like this. This doesn't work.
 How can I do this or why can I do that and things like that. Was
 rather immediate feedback. At this point we had, currently have
 Ken, Dennis, Joe Osanna and Rudd Canaday working on it. Those
 four were really the four that brought. I was nearby. But,
 again not participating. I saw this happening but I wasn't
 doing it. Those four people were in it in the beginning and
 they were the ones that had the vision to turn an idea into
 something that could kick. But, it was developed initially as a
 text processing system. For the Murray Hill patent department.
 That was the surface reason for its creation. Right from the
 outset.

MSM: When did it catch your attention as something you would want to work
 on?

Morris: Within a year after that.

MSM: What about it that caught your attention?

Morris: Just what I said at the outset. That it seemed like a distinct
 step away from the, by then one can fairly say bankrupt notion
 of computing a cardex on the monolithic computers. You put your
 job into compile and you go back an hour later and get it and
 discover, there was a compilation error. First of all very
 inefficient. The wrong way to do things and what caught my
 attention was simply that, and I had had tremendous experience
 in software. I was a heavy user of CTSS at MIT. Heavy user of
 the Berkeley time sharing system at Berkeley and UNIX was a
 derivative of all of these. It would be too much to say there
 was nothing new in UNIX. But, that's not often much of an
 exaggeration. Obviously tremendously derivative on what existed
 at the time and what have you created in the past.

MSM: What were you using a computer for?

Morris: Me? I'm a mathematician.

MSM: You were using it to do math?

Morris: Of course, also the text processing. Because, I wrote my own
 papers. I mean part of the way a mathematician survives is by
 doing mathematics and also another way of surviving is to
 publish papers. Any paper that I was writing, and there's was
 always something on the fire. The text preparation was
 certainly being done, on some time sharing system and after UNIX
 arrived on it. So, that I was there probably about a year after
 its creation. The. That was damned near it for a long time.
 Probably another three years or so. During the time I was with
 it, I didn't do that work. It really turned into a fairly
 complete system. With the system utilities, you would need and
 expect to do the ordinary things you expect to do with a
 computer.

MSM: Did you add some of those utilities yourself?

Morris: The one thing that I did, from the earliest times was the, was
 to contribute most almost all perhaps of the mathematics
 related, arithmetic related software. The mathematics, I don't
 need fancy mathematically things. I mean that if the system
 printed up a date on your terminal. The chances are to get the
 numbers and that date. It went through software that I wrote.
 So, when I mean invented software. I really mean in a broad
 sense arithmetic software. I did a great deal of that. So,
 just stuff that involved numbers for whatever reason. Like
 entering a date, or receiving a date. All kinds of conversion
 type stuff. Conversion of numbers to form or another. Because
 these things are really held internally anything like the form
 that you would expect to see them externally. Also, I wrote the
 fundamental service routines that computed the commonly used
 mathematical functions, sines, cosines, tangents, logarithms,
 exponentials, things of that sort. As far as I can recollect I
 wrote all of those plus some specialized things. The so called
 desk calculator. Still pretty widely used. Though I didn't
 write it for the public, I wrote it for myself and that's true
 of a lot of software that people are buy and large writing
 software according to their own standards. The way they wanted
 to. For their own use, and the use of their friends and
 associates. Certainly no notion in the early '70's that this
 was going to become a country and of worldwide time sharing
 system that everybody and his brother would be using. We did
 not contemplate that and certainly in early times. The software
 was just not written anything like that. The desk calculator,
 which was now used by, I suppose, tens of thousands of people.
 I wrote it for one person. Myself. Period, and the reason for
 it actually that fairly early on it replace an earlier version
 of it by something else that I needed to do a lot of
 coefficients in order to install sine, cosine, logarithms, and
 stuff. I needed high precision arithmetic to do that and DC
 was the vehicle for that. There's another program called BC
 which is just the same stuff.

MSM: I've used BC.

Morris: Same stuff. Repackaged.

MSM: You put that together, cause you needed it. But it eventually became
 a utility that others used and others contributed their packages
 and one of the other things that struck me is that there is
 certain if not uniformly consistency of approach. Or am I
 misreading things?

Morris: It depends on your point of view. Some would say and I feel a
 consistency of approach in style in general, orientation and in
 attitude, but, there are others, critics who at some
 justification observe that in the ordinary commands one uses day
 to day, it seems like nobody was talking to anybody else there
 that they are all maybe similarly or generally but enough
 different in detail. A total pain in the butt. Some arguments
 have dashes before them. Some arguments that, ordinary
 functions have dashes before them. Require the dashes but for
 the argument, for the command. Some require them. Some forbid
 them. It takes some experience to guess which is which. There
 certainly is a uniformity. It did not extend into enough
 detail, that that is a widely held view. I view it that way.
 Later on I got into other things. One of the contributions that
 I put in was, all the password related stuff.

MSM: May I ask you about that? When did it acquire password in some form
 of security?

Morris: Some form of security? Right from the beginning. I can't
 remember when there wasn't some forms of password security, that
 they weren't used. But, there were there. The initial version
 of the system. When it first got on the air. Every user could
 have a password. But, most didn't. Which was very unusual. In
 the early 70s, for anyone to actually use a password. They were
 available. The password itself was kept in a file somewhere and
 now you begin to get into problems of being able to keep those
 passwords on a file. So, that they could be entered, or when
 people entered passwords or changed passwords. They could be
 awked up when the system needed to check the authenticity of
 something. But, yet you wanted to prevent others from either
 reading them or changing them. So the clear text so called,
 let's call it clear text passwords, unencrypted passwords. I
 was having an argument at some point with somebody. This was
 certainly rather early '70's. Probably '73 there about. Again,
 everything plus or minus a year. But, we are talking after all
 about a twenty year old offense.

MSM: Exactly. (Laughing)

Morris: The notion that I had was to encrypt them. Pretty standard
 stuff and has been for a long time. But, that wouldn't quite do
 the job. If the algorithm used to encrypt them was readily
 available, because anybody who wanted to mimic a real user.
 Just had to mimic the encryption. Which though you might be
 able to keep it secret for a certain period of time it would
 eventually become known and what I bet I could come up with was,
 and though I did not know it, this trick had been done before,
 whenever, I don't think ever published. Somebody in England had
 done the same thing was to find an encryption operator who would
 work in the direction of turning ordinary passwords into
 encrypted passwords. But, extremely difficult to go the other
 route and that is proving to be true. It's seems even now, and
 God knows the current version of UNIX password is encryption,
 the current version is close to fifteen years old. It is much
 older than ten years. Expect fifteen or fourteen years, people
 still don't seem to be able to have any edge at all on going
 backwards. Obviously, you can try things. You can try things
 automatically. People run whole dictionaries through the damn
 thing.

MSM: Yeah.

Morris: That certainly works. I made that as slow as I could. But, I
 couldn't arbitrarily slow and I knew the future was going to be
 faster and has just turned out that the future is faster. And
 originally, I put the routines in so that the amount of time it
 took to do the lookup of a password was about as slow as I felt
 people would tolerate them. 'Bout a second. Things have
 speeded up now. It could even at that time been sped up by
 perhaps a factor of ten. But, still that ten per seconds, it
 takes a hell of a long time to go through a dictionary.

MSM: Yeah.

Morris: Machines however, are perhaps twenty times faster as they were
 then, and now what I had originally had the that version was
 used on-line. Which took about one second per password, is now
 doable in something on the order of 10 milliseconds.

MSM: Really.

Morris: It's a lot faster.

MSM: But, no big deal. Expected. The only question was when, and five
 years hence it would be some other factor faster. It still
 takes awhile to go through a dictionary and encrypt all the
 words in it. That remains as far as I know the only attack on
 the password algorithm. No one seems to have gotten any edge on
 going backwards, going from the encrypted passwords. And the
 advantage of encrypted passwords is that you can keep it openly
 in the file, and it gives people relatively little edge. It
 turns out in retrospect that may not be the wisest thing, but
 you still can do it without total loss of security, as long as
 you can look at a password file and has everybody's encrypted
 passwords. You still got a whole lot of work ahead of you, to
 find out what their passwords were.

MSM: I was, I was actually in that file the other day in my own machine.
 Because, I was having, seeming to have trouble with a password
 command. Someone said, "Just check the password and see if its
 changed..."

Morris: ...and it would tell you.

MSM: ...and it would tell me.

Morris: If it succeeded in putting in a new password, by God, it would
 change. The first one that I put in worked but it had draw
 backs, of which the main one was that it could be made to run
 too fast. That was probably first put in about 1973. It was
 changed in a major way about three years later with an algorithm
 whose main advantage was actually that it was much more slower
 and pretty hard to speed up. Anyway those are two of the
 principles things that I contributed to the system.

MSM: Did you see those as interesting theoretical problems or ___.

Morris: Oh the password thing was just a side issue. I just, just like
 I fix bugs and so forth in one way or another. The password
 stuff was not central. The arithmetic stuff fell into two
 baskets really. One was general service routines for the people
 who wanted to do genuine computation on computers. A rare thing
 now days. Now days computers you use text processing, not
 arithmetics. But, that's a change that has really taken place
 in during my working career. That changes. When I came to work
 at Bell Labs in 1960. That's what people used computers for.

MSM: Surely, it's primary use was in numerical analysis.

Morris: Not just the predominate _.

MSM: Sole users.

Morris: That changed through the sixties. So, that 1960 was a hundred
 percent. In 1970 there was considerable amount of text
 processing. In by now it 's almost unheard to hear of someone
 using a computer for numerical analysis. It just doesn't
 happen. I mean I don't even use my own computer to perform
 numerical analysis. I use text processing one kind or another.
 Oh maybe occasionally I would run some numerical programming.
 It's a rarity. It's not what it's there for. So, one basket is
 certainly the...

[END OF SIDE 1]

Morris: You back again?

MSM: We're back again.

Morris: Yeah. The service stuff that simply contributed to the system
 being a complete operating system but had the kinds of support
 and service mechanisms that one would expect. Part of it was
 that and the good part of was really doing my own work. By and
 large, when I did things like writing sine, cosine, tangent,
 exponential, and logarithm functions. I tried very hard to some
 success to first do a very good job and second there was a
 enough originality in it that most of the work of that sort that
 I did got published.

MSM: I see.

Morris: Sooner or later. So, that was genuinely part of the research
 I was doing. Mathematical component. Not a side issue.
 Passwords were always a side issue. There solved immediately an
 irritating problem that we have more than one copy of the
 password file. Because, of the old style password. We had more
 than one copy of. One copy you could look at and one copy you
 couldn't look at. You needed to look at some of the information
 having to do with log-in names, because for example you would
 simply be able to know who was logged-in. Or you would want to
 mail something to somebody. Something of that sort. So, and we
 did have and they were always kind of out of synch with each
 other and never worked out right. The, so, one of the important
 perceived advantages of an encrypted password scheme was the new
 ability to keep all the user related information in single file.
 Now, it turns out in twenty years, retrospective that ain't a
 hot idea. What the hell. What does turn out to be a good idea
 in twenty years. I don't know.

MSM: Twenty years from now it may look like a good idea again.

Morris: At this point in proceedings there were, to the best of my
 recollection, and I'm talking about 1973. Five people working
 for ___ Unix. Well except that Rudd left. But, for a long
 time it was Rudd, Ken, Osanna and myself and Doug. That's about
 it. During the period of time where it developed from the idea
 for an operating system to a fairly complete operating system
 things that people wanted to do. It was really those five or
 six people that I mentioned.

MSM: So, what was Doug's role?

Morris: Well you see Doug was a manager and he had a supervisory
 responsibility for the whole thing anyway. It was all being
 done by people, I think all in...He was a department head and I
 think was being done by people in his department. There may
 well be exceptions but, most of them certainly were in his
 department. So, at the early stage. He simply watched this
 happen and thought it was a good idea, supported it, and helped
 in an administrative way to make it happen. Perhaps a couple of
 years later, he was right along in there pushing along with the
 rest of them. On the technical level. That's why in this stage
 I include him. I don't mean Doug as a manager as a department
 head. But, as a technical might, he was in there by 1973
 thereabouts. But, at the point, when it was turning, say when
 we had encapsulated the system for the patent attorneys. That
 machine by the way got sent back to the Murray Hill patent
 department, with the secretaries, and they had a locally
 operating system built for them. To their requirements, that
 they used quite some years in the PDP1120 I believe. Its at
 that point that we get a 45 and again to within the usual
 inaccuracy. I'd say '73 or '74.

MSM: Okay.

Morris: You know in the best of all possible worlds there may be places
 where we could actually determine that, rather than getting
 people's guesses, but this ain't the best of all best possible
 worlds, and I know approximately. Others would also know.

MSM: That's what archives are for, and other sources.

Morris: There aren't any archives. Most of this information is
 anecdotal and long since lost. I think.

MSM: Well one of the things I want to do is to look at, track down the
 case numbers of some of these things, these projects that were
 associated with it. But, as you say, a lot of it is just cross
 checking people.

Morris: I remember for example, one piece of software that I made a
 noticeable change in. I was listening one day in about 1974 to
 Ken and Dennis arguing about when something happened and even at
 that point they couldn't agree to the nearest year it happened.
 They had a printout in front of them which had the date on it.
 Month and day of the month and I looked at them, looked at the
 piece of paper, their argument and in my best Southern drawl. I
 said, "Ah shit," and turn around console and actually changed
 the print programming program called PR and so it would now
 print out the year.

MSM: (Laughing)

Morris: I did it and I did it one day without anybody noticing it was
 in 1974. It was not part of the original package. Find the
 sheets. If you see them. Which were printed before that. Do
 not have the year on it. At one point, I put that in just for
 that reason. Because, we were already losing the precision of
 knowing when things had happened and paper records that should
 have settled such questions were not in fact settling.
 (Laughing) So, I was the user, and of parts of it I was creator,
 but there mainly in the arithmetic and mathematics. I continued
 to be a user. I continued to do research on making things on it,
 beyond that. But, the creativity slowed down in the late '70's
 and was practically dead by 1980.

MSM: You mean in the system? In what was going into UNIX?

Morris: The rate of change slowed down tremendously... The rate of
 change in the early '70's was absolutely unbelievable. The
 responsiveness of it was also unbelievable. One day early on
 let me pick about 1973. I was watching Dennis Ritchie do some
 arithmetic computations. I don't mean anything fancy. He was
 just adding up a list of numbers. Using DC to do it and as he
 was typing them in he made a error of typing and DC for no
 particular reason except just the way it was designed. It could
 have just printed him a error comment. But, that's not what it
 did. It printed him a error comment and wiped out the current
 sum. So, he had to start from scratch and again went back to my
 favorite Southern drawl. Went in made the change to the first
 program of DC. Recompiled it and installed it and it when about
 ten minutes later. Dennis, who probably hadn't seen me, the
 fact that I was watching him, said, "There's a problem with
 your program and think I ought to fix it." Hey it's already
 installed and that kind of thing could happen with any person ,
 any software, any time and was the rule rather than the
 exception.

MSM: What do you think in...

Morris: In the early and mid '70's, we were basically in the same room
 with all of our users.

MSM: Okay. What is it that made that, that facilitated that kind of
 flexibility. Is it the tools? Was it the shared knowledge of
 how the system worked or...For instance, when you were going in
 there making those changes. I take it now at this point that
 you using C?

Morris: Yeah, yeah.

MSM: That made a difference?

Morris: Well actually that program happened to be machine language.
 But, that's the detail of...the machine language was it in the
 beginning and B had become available, and B changed to C and I
 don't remember the date of the, the real date of the change.
 But, it was '74 or '75. Before the system itself was written in
 C, and you would expect that essentially anybody wrote for any
 purpose. But, it is a detail and about that, because BC was
 written early on. That sure it was written in machine language.
 I think the reason for it is share of knowledge of the system.
 But, I think a general. Two things one is general attitude.
 People contributing system software and that crucial, there were
 not working toward externally separate departments. We were not
 bidding on some Goddamn government project. Which meant
 somebody who didn't know anything had set out a lot of ways of
 how the system should operate. (Coughing) Excuse me. We had
 almost total freedom in that and we were able to and it's a
 luxury. I mean no one could do that kind of stuff with UNIX now.
 Couldn't possibly.

MSM: That's what everybody says.

Morris: Not with AT&T UNIX. Not with any UNIX. You just couldn't
 possibly laugh and see something so wrong go with a program.
 See that it was wrong. Go in, find the place when the change
 needed to be made and install the result. Hey that was
 perfectly reasonable in 1974. By 1978, it was absolutely out
 of the question.

MSM: Did you guys talk among yourselves in a explicit way about this
 shared philosophy? Did it work itself out? Was it seeing one
 another's work? How do you do explain the emergence of this
 sharing of thoughts?

Morris: We all worked in the same room. We worked all up in an attic
 room on the sixth floor, in Murray Hill. In space that maybe
 was one and a half times the size of this hotel room. We were
 sitting at adjacent terminals, and adjacent, and we knew each
 other and we had always in fact ate lunch together. Shared a
 coffee pot. So, it was a very close relationship and most of us
 were both users and contributors and there was a significant
 innovative for research contribution at all points. As I
 mentioned, the possibly the best known in name terms of all the
 quota I put as BC or DC. The. As far as people using code
 without knowing it, that pales with something in comparison to
 the sine routine, or, that a lot of the code does just mundane
 conversions. That's gets for example a date, the year and print
 it out right on your terminal. That kind of quote don't make
 you famous. But, it's still going to be there. So, I was a user
 and I was creating system that in part, in large parts I wanted
 to use. So, the parts I was creating were in many cases the
 part, I needed for my own work. So, I was both a user and a
 contributor. But, that was generally true. It was true of
 everyone. C for example, everybody I imagine now just happened.
 Well, it didn't just happen. In one form or another, was in the
 process of being born for very nearly a decade and I watched
 most of it. I wasn't a contributor. Well I used to bitch about
 it. Bitching about someone else's software was always a
 contribution in those times. I was not a contributor, but I saw
 it happening and it was basically transition from a language
 developing in Britain called BCPL. Got important in this
 country and it was some attempts to get it or some like it going
 on. MULTICS never panned out, then Multics never
 __. Then a version of it, a modified version of it
 turned up on UNIX written by Dennis, as B, the language B. It
 was an outgrowth of BC and an improvement on it. But, then
 turned into C. Mid '70's. Before, '75 certainly. A tremendous
 amount of development had taken place and Dennis wasn't just
 batting his gums. He was doing a real research in programming
 languages. In process of taking relatively antiquated BCPL that
 nobody's ever heard of. I mean the only reason anyone has ever
 heard BCPL was because it was two times antecedent of C and that
 the C that was originally created ain't the same C as exists in
 UNIX now. It's called the same name. But, I had the
 interesting experience of not too long ago. Maybe two or three
 years ago, to compile a program, that I had written. In about
 1974 or '75. Fairly complex Boolean _ program. I
 compiled it and I think I as a result hold the world's record on
 error comments from a compiler. I ran it through a error
 checker called... It does a better job than C in outlining your
 errors and miraculously I got seven thousand knots. On every
 single program. A lot of things had changed and you know much
 of it, I could look through, I actually wanted the program, look
 through it and see a third of comments were all on the same
 subject, that a particular piece of the syntax had changed and I
 hadn't bothered to change. I fixed that and looked at what the
 big winner was and I think in four or five hours I finally got
 the thing to compile. But, it certainly sensitized me that to
 the fact that the C that started out like, is recognizably a
 predecessor of the C that now exists. But, that's all it is.

MSM: When I first started programming in C in 1982 and I got some
 routines. I've had well no were near your record. But, had that
 same phenomena. Compiling now and getting error messages. That
 the earlier compiler didn't care about.

Morris: Yeah, and it would have been much. In order to get the ten
 thousand. I had to go through some significant syntax change.
 Changes in syntax. That took place in the late '70's. There's
 a construct if you want to say A equals A plus B. Originally
 you wrote that A=+B and that got changed to A+=. _A
 minus turned into = reversed. [editor's note: the tape is
 unclear here. However, Morris is explaining the change in
 notation from A=+B to A+=B, and A=-B to A-=B. This was needed
 to distinguish "A gets A minus B" from "A gets minus B. "] You
 know that by itself can cause thousands of error comments. But,
 that wasn't all. That's easy because quick editing of
 passwords, will take care of that. Some of them were genuinely
 hard. Because you could no longer quite work on just line by
 line change. As if it were a syntax change. Genuine facilities
 that disappear, or change in some service functions for example,
 whether it disappeared or changed their function in a central
 way. So, that a significant change had to be made. But, it's
 still changes. Yes, eighty-two would not be the same of ninety-
 one. Oh hell a lot closer than '75 for sure.

MSM: You mentioned that Dennis was paying serious attention to
 developments of programming languages. One of the things that
 has struck me about UNIX as a system is its close ties to
 developments in theoretical computer science during the late
 '60's and especially the early '70's. Did it pick up that...

Morris: The '60's were the golden age for computer science to turn
 theory into practice in computer science is something that
 happened in the '60's. Didn't happen much before that. There
 wasn't much science, and didn't happened really at all. Notice
 that UNIX is practically the last operating system to be
 developed. Not quite, but very nearly. There are operating
 systems which are simply copies. Renamed copies of things that
 already exist. C is very nearly the last programming language to
 be developed. Again, there exceptions, but there aren't many.
 One can only really think of two, Ada and PL1, that were
 developed since, C, um that's a close one too, PL1 very early...

MSM: Actually PL1 comes before C.

Morris: I don't think so.

MSM: PL1 was under development in the mid '60's.

Morris: I'm sorry.

MSM: It was originally called new programming language. Doug was
 responsible for the semantics of it.

Morris: I'm sorry, you're quite right. I just got my dates mixed up.
 PL1 became a reality in about 1967. '66 or '67.

MSM: Because, I went to an IBM workshop. There were trying sell humanists
 on it as a language. '67.

Morris: It's not much use even now. Perfectly good language, and some
 what the same features of Ada, but, I guess, I would have to say
 that Ada is pretty much it. There isn't. There has been
 relatively. You know those are extreme statements of what of
 course, could have __ But, the broad notions
 still exist. That there is been remarkably less research in
 innovation in both operating systems and in languages. Since
 the days when all of us were getting geared up to do this kind
 of thing. Late '60's. Those were the good days to do those
 then. The good days don't much seem to be here anymore. I
 don't see comparable activity taking place, beyond mid '70's. It
 hasn't. The operating systems that one encounters that are
 newer than that are so bad as to be almost laughable. DOS? That
 they call DOS an operating system? It doesn't to my mind. It
 would have generally at least fit the definition of operating
 systems of 1960's. Certainly wouldn't in 1980. The definition
 of a operating system is 1960 would have been, the service
 routines that handle IO that's it. Period. By 1980, minimum
 definition for an operating system was process control. DOS
 don't exactly do that. So, it is indeed almost laughable.
 But, there haven't been, there has been remarkably little
 innovative in programming languages and operating systems.
 Since the UNIX experience. It was the right time to strike and
 one of the best things about UNIX is. Isn't anything in UNIX
 itself. But timing. It was a darn good system, coming out at
 essentially exactly the right time.

MSM: What made it the right time?

Morris: I don't know. I know the Ken was help selling the system and
 this is all hazy in my mind. Because, I wasn't even
 particularly close to that. I know that it happened. Ken
 persuading AT&T operating companies to use UNIX? For various
 kinds of purposes. Not for text processing. But for one thing
 like maintenance and things like that and quite a few did. The
 actually, pieces of the government, peddled the idea of using
 UNIX to national security agencies. I kind of laughed at the
 people there. Because, are they aware of the fact that the UNIX
 that they are now running actually got to NSA in the trunk of my
 car.

Both: (Laughing)

Morris: In the mid '70's. Ken and Dennis and I went down there one day
 and bought the tape, Which is the direct predecessor of what
 they're now using. They didn't upgrade to more recent version.

MSM: Oh, they didn't?

Morris: They are stuck riveted the wheel system, it is actually a
 system that developed out of that tape, that I brought down
 there.

MSM: No kidding?

Morris: About fifteen years ago.

MSM: How do you, you said that...

Morris: I don't so, that's a definitive answer. I don't know where I
 was at the time. I thought about it before and I put together
 in my mind in some of the pieces that make it clear, that it was
 the right time. I had thought about it and I do not know the
 answer.

MSM: You said that, if I remember correctly that AT&T had become something
 of a technological backwater in computing science. Then the
 UNIX project or UNIX got underway. Was there a change in the
 place of computing at the Labs at that time? I mean, I know that
 at first the project wasn't encouraged but by the same token,
 new people were being hired.

Morris: In the crucial years, it was not supported. The years that
 made the difference between it continuing and not continuing.
 The best one can say management role is, they didn't manage to
 kill it. Hey, that's fine. In many other organizations, they
 would have managed to kill it. At Bell Labs, they didn't. I
 don't see an awful lot of distinction. I was originally hired
 in the engineering department at Bell Laboratories. Promptly
 within a year transferred into math research, and computer
 science was then viewed as essentially a part of math research
 and indeed my training is, was, is a mathematician. There are
 relations in a certain way that I do computing and there
 continue to be relations. The um. We had an IBM 7090
 basically, well it had been a 704. It became, in that term 7090.
 Then that turned into a 7094, etc. The whole period,
 about a decade, '58 through about '68. Not terribly much
 changed during that period. At the beginning of it. There was
 relatively little need for computer science and the parts we did
 need, had some support. This would be, for example, numerical
 analysis, support. But, not much and by say 1970, we just sort
 of '68 through '70 which is sort of crucial date of what we're
 talking about. This situation was much the same thing. We
 really didn't have a bunch of people, who were trained in
 computer science in the way you would expect. Numerical
 analysis was still getting some support. But, considering the
 organization, actually to my mind, surprisingly little. Or, this
 may not have been a management decision in supporting it. Maybe
 it just getting and holding those people was hard to do and
 indeed it was. For us, I think in general, it was a good time
 to do that kind of stuff and lots of people did. They were
 doing exactly the same thing when I was out in Berkeley, two
 years previously. People had been doing the same thing. At MIT,
 eight years previously, they continued and theirs was the, I
 mean they really were first off the market. The fundamental
 underlying of ideas came MIT's CTSS. Which stands for
 something. Compatible time sharing. Some nonsense like that.
 It was the right time. But, you have to have the right people
 put together. We did and I think that's a accidental, and.
 Things would be much more if we hadn't. ___Ken was
 one that wanted on and saw a machine not being used. He said,
 "Hey, that machine's not used, you ought to fix that" and that's
 one important piece of it. Dennis, Rudd Canaday was in with Ken
 on that end of things. Dennis came in very shortly after and
 basically and Joe Osanna, probably at or before the transition
 to the PDP11. I know they did in fact. But, having those people
 all put together. Having to be the right time and I have no
 explanation for having the right people all together at that
 time. Is just an accidental piece of magic it happened. I don't
 know why.

MSM: Did you, that original core group play any role, selecting the second
 generation? There is, the core group you've talked about, it
 doesn't include Brian. For example, or Lorinda ___[NOTE:
 Probably Lorinda Cherry]. Can one talk about generations
 involved in this?

Morris: Not really, because people are showed up essentially one by one
 and simply joined the group. Not in any formal way. But, in
 some informal way and no there is no such thing as generation,
 because if you look into where all this lists of people you were
 talking about had some involvement here. Say by about seven or
 eight years later. The original people still there and the
 number of people who had left, was really quite small. I think
 by 1979, by 1979 the dye was completely cast. UNIX was a
 living, going thing and what we have now was inevitable of the
 situation in '79. By that time, I think the only people that
 had left were Rudd Canaday and Joe Osanna died. Roughly that
 time period. I would say around '78 or '79, again, the usual
 plus or minus a year, of the rest of the people that had
 originally started on it, were still there. The people that had
 drifted in later.

[END OF SIDE 2]

[TAPE 2, SIDE 1]

MSM: Okay. Uh. One of the more revealing statements that came up in an
 earlier argument. I was talking to Joe Condon and uh asking
 about his encounter with the machine because he was in many
 ways a user of the system...
Morris: Oh yes.

MSM: ...and I said, I forget how it came up. He said one day he went to you
 he went because he didn't find the manual much help and he said
 something like. "How do you know what these commands do?" He
 said your response to it was. "What you think they ought to do.
 Uh. That is what would make sense for them to do. That's
 pretty much what they probably do do. "

Morris: Excessively a flexible attitude.

MSM: (Laughing) But he took that as sort reflecting of philosophy of what
 we call UNIX. Do you remember that encounter?

Morris: I don't specifically recognize the encounter. It's the kind of
 thing I perfectly would have said. Should have said and
 probably did say. I've had conversations myself that are much
 the same line. There is for example a collection of formatting
 software that formats basically mathematically text. There's
 something I use in my own writing a great deal. Its called EQN,
 and neither here near there. When it first came out I sort of
 made a deal with the author of it. That must be Brian. Yeah.
 That the damn thing ought to work and it ought to work in
 obvious ways and I didn't have a manual. Wasn't going to get
 one and never intended to look at one. That if something that I
 tried is a natural way of creating a construct didn't work. Then
 the program needed to be changed. His view was and that's in
 line with my conversation with Condon. His view was completely
 supportive of that. Uh, uh. That uh his view was if I used
 common sense and tried to create some construct, uh and I wrote
 integral from A to B of X that it should damn well produce a
 nice integral sign and an A at the bottom of it and a B at the
 top of it and an integrand and do all that without a lot of
 messing around and if it didn't recognize common sense ways that
 ordinary people say this is mathematical text so ordinary people
 who were writing that mathematical text. Then it ought to be
 changed. And that's the way it stayed. I'm still a user of EQN,
 and I still never seen a manual with EQN. That's one of the
 credible ones. Because there are an awful lot of possible
 differences. I mean looking at competing packages of that sort
 damn near unusable, because you have to learn so many rules to
 operate them. Uh, uh. That by the time you learn half of the
 rules, you're already bored with the whole thing. And uh the,
 you attempted to do the whole thing in long hand.

MSM: Well WordPerfect has embedded EQN in their mathematical interface?

Morris: Have they?

MSM: Yeah. That's how it's based. I find out you could just write each
 EQN statements off the keyboard and the mathematical editor will
 format them.

Morris: That must be more recent; I'm still dealing with...

MSM: This is the WordPerfect 5.1.

Morris: I'm still stuck at 4.2.

MSM: 5.1 has mathematics editor and uh you can have an EQN expression in a
 file and just import it will become the equation.

Morris: Okay. Well it was a real piece of work. You know it was good
 time for creativity. Because in many cases what you did in
 those years changed the world. Uh, uh. yeah. You didn't know
 at the time what you were doing. In retrospect it turns out a
 lot of things people did. Awful lot of decisions people made.
 They restocked and they changed the future. And uh, in hundreds
 of different ways so that not just the effect is just not on
 current UNIX the effect is on, current computer environment in
 an awful lot of ways as you say. Found it's way into
 WordPerfect.

MSM: Yeah.

Morris: Crazy.

MSM: Did anyone lead exercise any particular leadership in this
 enterprise?

Morris: No.

MSM: It was more cooperative?

Morris: It was. I don't think there was any time when there was any
 notion of anybody adopting on leadership. Uh. If Ken, uh, asked
 somebody to do something, the answer would be, "Go suck a
 grapefruit."

MSM: (Laughing)

Morris: (Laughing) Oh no matter who he asked. Or if someone in
 the group had been
 asked to do something. "Do it yourself." Uh. No. There was no
 leadership that I detected for being in, was community. No I
 can't imagine you've heard anything different from that.

MSM: Well I haven't.

Morris: No.

MSM: Well it's a question I...

Morris: You better ask questions. I'm running out of free flow remarks.

MSM: No. Well. It's actually it's been very revealing. When did you leave
 Bell Labs?

Morris: I left the environment of Bell Labs Research and went to work
 on a particular focus project at Whippany.

MSM: Uh, uh.

Morris: Military Project in 1981. Uh, uh. I worked on that for about
 five years. About five years later left Bell Labs at the
 termination at that project in the fall of '86. Pushing five
 years now. Uh, uh.

MSM: You felt part of the UNIX project up to that point. Or was there a
 point you felt UNIX was on its own.

Morris: No. I was part of the UNIX project until I left Murray Hill in
 '80 or '81. Uh. But the rate of change and the rate of
 contribution had slowed down tremendously by then. Uh. People
 were by and large off on relevant but tangential potential
 things by then. Uh. The all the examples that I brought out is
 extreme creativity responsiveness throughout early and mid
 '70's. Uh. The rate of the possibility of that happening simply
 continued to decrease throughout the 70s until about 1980. It
 was at that point simply no longer possible. Just say such and
 such piece of software needs a change, I'm going to go in and
 change it and install the change.

MSM: That's the bitter price of success.

Morris: Oh sure. But by then of course we had customers all over the
 damn place. I don't know when Berkeley came into all this.
 But, relatively early on and I talk in terms say '79 is a good
 date. We're talking about a complete delivered system that uh
 is basically the, obviously the predecessor in software now.
 Uh. The uh. Once either that had happened or feared that it was
 going to happen. That kind of up and at them creativity was
 simply no longer appropriate. Because you just couldn't cope
 with the system of some guy might come in with a hangover and
 decided he was going to change the way he did things. If the six
 people are all sitting in the next room. You could say that
 next morning or at lunch. Hey, I changed the way everybody
 does things. This is the way everybody does things. That's
 okay. But, there came a time when that was no longer a user
 community or user group and uh, perfectly obviously just
 wouldn't go to that. There had to be some notion of stability.
 Stability was not one of your watch words in the early days.
 The system was anything but, not stable.

MSM: (Laughing)

MSM: Thank God. Any further thoughts?

Morris: No. I'm running down on free flow.

MSM: Okay.

Morris: Your questions or subjects.

MSM: No. I've managed to get my questions in too. I'm may at some point
 think of them.

 Dennis Ritchie

The interview date is unknown

Ritchie: He's [Ted Dolotta] involved with - I'm not sure whether it's as
 a job or whether it's a looser association with some magazine
 publishing group, that has magazines in Japan. So this was
 actually for a - to be published in a Japanese magazine.

MSM: Japan seems to be his new stomping ground.

Ritchie: Yes, he spends a lot of time there.

MSM: Yeah. Fortunately, on expense account.

Ritchie: Yes.

MSM: You worked on Multics didn't you?

Ritchie: That's right. I was a graduate student; I worked part time at
 Project Mac. And there that was sort of the beginning days of
 Multics. And when I came here - fairly soon after I came here,
 I also got involved in this part of the [inaudible].

MSM: [Inaudible].

Ritchie: Ah, well it was sort of two different things. At MIT mostly
 what I did was documentation. I sort of read things. Wrote
 some descriptions of various aspects of the file system. Did
 not really do very much programming at all. At least on
 Multics. When I came here it was divided up, and one of the
 things that was going on here was working on the terminal
 [inaudible]; output devices, input/output devices. Things had
 already begun to quiet down in terms of activity at the Labs.
 At one time there was a fairly extensive amount of work. Quite
 a few people involved. And this had pretty much been stopped
 except for the group here at Murray Hill. And there was a
 fairly small number of - and that involved Peter Norman, who was
 with us earlier, activist who was most interested, plus Joe
 Osanna, Thompson, and various other people would occasionally be
 involved. I sort of got into that fairly - when I first came I
 thought I'd stay away from it for awhile. But, then, as things
 worked out I soon got interested in what was going on there.

MSM: Then your special interest as a grad student?

Ritchie: My work was fairly theoretical. It was in recursive function
 theory. And in particular, hierarchies of functions in terms of
 computational complexity. I got involved in real computers and
 programming mainly by being - well, I was interested even as I
 came to graduate school. But, I guess it was even the first
 year I was a teaching fellow in the introductory programming
 course and I continued that for at least, I guess, at least
 three years. Being a teaching fellow in that course and also a
 couple of others, but, ah, this was at Harvard. The computer
 situation was fairly - reasonably backward there, it
 characterized [inaudible] quite well-known people. But they
 didn't really have a comprehensive program. Of course this was
 early 1963.

MSM: Your Harvard class was '63?

Ritchie: Yes.

MSM: Okay, then we overlapped by just a year then. I was Class of
 '60.

Ritchie: At that point there were really weren't any, any computer
 science probably was not even called that practically anyplace.
 Harvard has always been part of the sort of strange relationship
 with the subject. That's what's [inaudible]. At that time in
 particular there were individual courses that were for people
 who were quite well-known. So, as I said, my actual thesis work
 was on - was fairly theoretical but I spent a lot of time, also,
 doing programming.

MSM: Was your thesis work at Harvard?

Ritchie: Yes.

MSM: And in the recursive function area, who were you working with?

Ritchie: Pat Fisher. Who, when - I guess the last year or so he went to
 the University of British Colombia. He is now at Vanderbilt.
 Pat was sort of not really the Harvard advisor. I was fairly
 independent.

MSM: So you wandered down to Project Mac for a summer job?

Ritchie: It wasn't a summer job. I think by that time I guess I was
 just more interested in doing programming. I don't know how I
 even found my way to it, precisely. But it was a part-time job
 throughout the year. Basically to support myself.

MSM: How did you come to Bell Labs?

Ritchie: My father worked for Bell Labs. Hence I knew very much about
 the place. I knew it because also he was involved with
 telephony. I came to know the Multics work from MIT. I
 actually interviewed at several places at Bell Labs. I was out
 Indian Hill and Whippany as well as the research group here.
 And this certainly looked the most interesting.

MSM: Did you have an idea of what you wanted to do? A specific sort
 of agenda in mind?

Ritchie: Not a specific agenda, I would say a general agenda. I guess I
 definitely wanted to be - by the time finished school it was
 fairly clear that I didn't want to work anymore in, I didn't
 want to stay in theoretical. I was just more interested in real
 computers and what they could do. And particularly struck by
 the - how much more pleasant it was to have interactive
 computing as opposed to decks of cards and so forth.

MSM: Had you met that at MIT?

Ritchie: Yes. That's right.

MSM: You worked on CTSS there?

Ritchie: Yes I used CTSS because that was what was used during the
 development of Multics. I didn't work on that - I didn't have
 anything to do particularly with the development or maintenance
 of that system. I was just a user. And, ah...

MSM: At Harvard, at this time they were probably still throwing
 around card decks.

Ritchie: They were still throwing around card decks. They had some
 things. They had - there was a thing called, there was a
 thing--an interactive system that was run out of some place in
 Southern California. The Color Freed System, which was a fairly
 special purpose math system. It wasn't symbolic. It really
 manipulated graphs and functions and could do pointwise
 arithmetic and functions. It was fairly crude. I mean it was
 sophisticated in some ways. It did things that were unusual and
 it had a very fancy special keyboard and all sorts of strange
 labels on it and so forth. And it was also a cross country
 connection if they managed to get a phone line in. A data line
 in to California which at that time was something really very
 fancy. But that was not, not really generally used. That was a
 very special sort of experiment of some sort. I was not
 directly involved with it. I just sort of saw it. The
 interesting thing of course was that within a few months of that
 I saw that someone had, at MIT, essentially a simulation of the
 system on CTSS. Considerably more greater convenience than
 trying to keep this cross country data link up. Anyway when I
 came here the Labs was in essentially the same state as far as
 computing was or a very similar state as Harvard. There was
 Multics, and the main conflict for the experimental [inaudible]
 the people who were working on the system was not wide spread.
 The comp center also had another GE645 which was a Multics
 machine. But they used it as the GE635 which was the standard
 large machine with an all-electric main. And at that time the
 system running on that was just a BAP system. Later they began
 getting a fairly crude interactive system built on top of
 [inaudible] which was the name of the operating system for
 the 635. But Multics was definitely the most sophisticated
 interactive system there was. And it was really the disappear -
 the combination of the disappearance of Multics, what it did two
 or three years later. And just the fact that Ken had always
 wanted to write an operating system of his own was what led
 fairly directly to Unix.

MSM: What attracted you to Ken's enterprise? Were you also
 interested in operating systems or was it that his work held
 some promise in getting back that interactive system that you
 just talked about?

Ritchie: I think it was probably a bit more of the later. I knew him
 already. We had been working together on Multics. There was
 this strange period which seems now to be longer than it
 probably was, of maybe 6 months, a little more in which we were
 agitating very hard to try and get a new machine of our own. A
 fairly substantial one in the half million dollar range. Nearly
 25 years ago, it was a lot more even than it is today. And that
 sort of was at several stages that sort of almost seemed to be
 about to go through. And never did. And so we were sort of
 frustrated with that. Ken actually made a couple of starts at
 doing the system before there was any special hardware. In the
 very last days of Multics he actually wrote a very, very inner
 part of an operating system for the 645 machine standalone. I
 think he got as far as making it a few characters on the
 terminal. That didn't really go very far. And it was obvious
 it was pointless to waste time on it because the machine was not
 going to be around.

MSM: And you planned on following that?

Ritchie: What I'm getting at is that we had been sort of involved with
 working with each other in various ways. I had been doing other
 things as well during this period. I did a compiler for the
 Altran system which was Stan Brown's algebra system which was
 completely independent of Multics and that crowd. That was one
 of the things that made it particularly obvious that having an
 interactive system was nice. The Altran stuff was actually
 written on the terminal. I forget now whether the GE TSS stuff
 was around then or whether it was actually written in Multics
 terminals and somehow transmitted. But the representation of
 the program - in the first place was in Fortran, and in the
 second place it was obvious we were going for punched cards.
 Typing out on terminals. But the formatting was very rigid and
 whatnot. And there were batch jobs and object decks and stuff
 like that. And it really made it very obvious that having a
 smooth interaction with the machine was a lot more fun, a lot
 less clumsy. It was really a combination of things that got me
 involved. Just the fact that the style of thing that Ken was
 headed for seemed very much, very desirable. I know this just
 from the work with him.

MSM: What sparked exercise in file systems?

Ritchie: I think that was basically part of Ken's desire to do a system
 of his own. So I don't know what very specific thing sparked
 it. But he started about bosses and he started about paging
 systems and he actually wrote a simulator for paging behavior
 and then he and I and Rudd Canaday started drawing pictures on
 the blackboard or maybe white board. Drawing the structure of
 this proposed system which was in most ways the predecessor of
 Unix. Some of the ideas appeared even, I think the notion of
 special files appeared then. I think that was mine. Most of
 the ideas were Ken's. I think that particular idea was mine.
 I.e., the devices had a representation in the file system so
 that they could be opened and closed and whatnot.

MSM: How much of Multics was behind your thinking in this file
 system?

Ritchie: The relationship of Multics to this is actually interesting and
 fairly complicated. There were a lot of cultural things that
 were sort of taken over wholesale. And these range from
 important things, the hierarchy file system, tree structure file
 system, which incidentally did not get into the first version of
 Unix on the PDP-7. This is an example of why the whole thing is
 complicated. But any rate. Things like the hierarchical file
 system, choices of simple things like the characters you use to
 edit lines as you're typing, erase character, [inaudible]
 character, were the same as those we had. I guess the most
 important fundamental thing is just the notion that the basic
 style of interaction with the machine, the fact that there were
 the notion of command line, the notion was an explicit shell
 program. In fact the name shell came from Multics. A lot of
 extremely important things that we completely internalized, and
 of course this is the way it is. [Inaudible]. A lot of that
 came through from Multics. As far as other technical details,
 there were enormous differences. The scale of not only of both
 of effort and of resources, of machine resources, was just
 incomparable. The whole, I forget now how big the Multics
 machine was, it wasn't very big of course by today's standards,
 but the first PDP-7 was tiny. It was only 8k words of memory,
 68k [inaudible]. So there was a vast difference in complexity.
 And a lot of that was forced just by conditions. But a lot of
 it really was a taste as well. One of the obvious things that
 went wrong with Multics as a commercial success was just that it
 was sort of over-engineered in a sense. There was just too much
 in it. And it certainly explained why it took so long to get
 going. Heavily consumptive of resources, of machine and
 certainly in terms of people required to produce it. I think
 there was a real reaction in the design of Unix. But this is
 sort of going back to the other side again. Another strong
 resemblance is the way that the I/O system worked; the read and
 write system calls were essentially taken directly from Multics.
 At least they're the form of the call. On the other hand
 Multics had a fairly complicated thing called the I/O switch.
 The argument, the handle that you used to do a read and write
 was not a file descriptor as in Unix which is a fairly simple
 object. An I/O screen in Multics that implied a fairly
 complicated thing called the I/O switch that sort of [inaudible]
 lots of different modules had a chance to massage the calls as
 they went around accessing modules and whatnot. And in fact in
 some ways the Multics I/O switch was like the screen stuff that
 came much later. On the one hand the read and write I/O system,
 part of the I/O system in Unix was modeled after that of Multics
 or at least a simplified version of it. But there was nothing
 at all of the Multics virtual memory system. That in fact was
 the most characteristic feature of Multics. That was the thing
 that made it technically unique. The fact that it so-called one
 level stored, that the objects that programs manipulated were
 segments which were named, and the segments caused the memory
 segments, the things that are visible to the program, that's the
 named object that you can store into [inaudible] responded also
 to objects in the file system. That was the absolutely crucial
 distinguishing thing about Multics. And that just didn't, that
 was just completely out of Unix. Partly because it seemed very
 hard to do, partly because it required fairly sophisticated
 hardware that was memory mapping hardware, segmentation hardware
 that was just not on any of the machines we had. Until just
 over the last few years has not been available on [inaudible] of
 machines. Furthermore, particularly in hindsight and to us, or
 to me anyway, there was some sort of conceptual problems, in
 that Multics really wanted to make a very uniform view of the
 world based on these segments in which the paradigm for all
 activity was all relationship with the file system was to
 institute operations on segments in memory. But of course
 that's not really possible because you always have devices of
 some sort. We have terminals and whatnot. And those just can't
 work on the same model. We've got to have a different model for
 dealing with I/O. And so there were various between these two
 possibilities in Multics. In particular there was a thing
 called the FSIM, the File System Interface Module, that really
 made a segment, a memory object look like a device. Then you
 could treat this memory thing in the same sort of way. In fact
 they cleaned things up a little bit later. But in the original
 thing the only way you could deal with very large objects was
 through this FSIM which, if something was too big to fit into a
 given segment it would use several of them. [Inaudible]. That
 was something that was inconvenient to do by hand. At any rate,
 my view is that even though Unix is usually understood does not
 have this segmentation notion. It only has an I/O notion. If
 you're going to restrict to one main Paradigm, the one Unix has
 chosen is more powerful in some sense because in the sense it
 can apply to objects other than addressable memory. In
 particular that's how things like pipelines and our current form
 of interprocess communication and so forth all work. By using
 this same scheme of doing reads and writes. Usually of course
 people have begun adding something of the segmentation idea, so
 called mapped files and so forth. They haven't really made it
 into any of the standards, probably because they're not really a
 very portable idea, at least with current hardware. Not all
 machines can handle the notion.

MSM: You said you're interested in getting away from theory, and
 getting into real computers. One of the things that I've always
 found interesting about Unix, is that although it might not be
 theory driven, it nonetheless it's had a strong theoretical
 component [inaudible]. Neat and sophisticated programming going
 on here but generally exemplifies something theoretical or has a
 theoretical base. How far has the theory been from your
 activities? Have you had it in mind? Thought it out? Have you
 chosen to do things for theoretical reasons?

Ritchie: No I would say that I haven't, really. The kind of work that I
 was doing as a graduate student was in some sense fairly
 abstract. The kind of theorems that were being proved referred--it
 was kind of strange actually. It was the area of
 computational complexity. What functions are inherently more
 complex take longer time to compute than others. This
 particular bulk of hierarchies of functions. But the
 interesting is that that hierarchy began at exponential time.
 So that was sort of the unit [inaudible] size of its input or
 the value of its input. And, this really is - in some sense
 dealing with it was partly like programming because when you
 design a function to exemplify something it bears a strong
 resemblance to programming a machine. But the results you get
 are really totally theoretical because, of course, exponential
 time things are typically too hard. And the reason it's amusing
 is that about two years or so after I finished the whole
 business of NP completeness and all this interesting structure
 and questions within things that take exponential time as
 opposed to building on top of that. Suddenly the hot field was
 the stuff that I just sort of said was sort of baseless. We
 won't examine this because it all seems a little bit too complex
 whereas we can get a nice smooth structure. I guess the point
 is that this particular aspect of things really does not have
 very much direct applicability.

MSM: The sort of stuff that Al Aho was doing when he came.

Ritchie: There are many aspects of theory that do have applicability.
 Certainly a lot of the insights into languages.

MSM: Has that been an area of interest to you at all?

Ritchie: Not of great interest. It was the sort of thing that was
 included in [inaudible] and whatnot. Actually, most of the
 interesting work in parsing came after I was out of school.
 [Inaudible]. The notion of parsing generators, and so forth. I
 think to get beyond just me, though, I think that one of the
 things that is very refreshing is the fact that there are all
 sorts of people doing quite a range of different things nearby.
 In particular both theoreticians and more practical-oriented
 people. And it's a lot easier to keep in touch with everything
 they're doing here than it seems to be in most places. So yeah,
 there definitely have been people who have contributed things
 that are not just sort of hacking out solutions to the problems
 but doing programs or systems based on some sort of theoretical
 principal.

MSM: When we speak of it sometime as a programming environment and
 yet it occurred to me as I was talking to Al this morning, it's
 almost a meta-programming environment. It just happened?

Ritchie: Well, I don't think it just happens, or at least it seems to me
 that there has been a conscious effort to hire people who are
 fairly broad. Whom they really looked on as a plus, even if
 you're theoretically inclined, if you have say some programming
 experience. And the pressures to turn something into something
 theoretical into some kind of practice, they can be quite subtle
 and not burdensome, but I definitely think that they're there in
 this organization. And of course sometimes people justify
 things in saying - they justify it in sort of theoretical terms,
 or at least when they're following the area of computers. In a
 lot of cases it really does happen. Things like AWK for example
 which was the condition of the program to produce parsers from
 the grammars. I'm not even sure what the exact historical
 period is. I don't believe that that idea was his, [inaudible],
 had already been realized that this was the technique by which
 the grammar describing the language had produced a machine that
 would recognize the language. He was one of the first actually
 to do this and produce a package that allowed people really to
 use this, as opposed to either proving that it could be done or
 demonstrating it as some sort of private program of their own,
 but rather producing a general thing. These people had a
 language that they wanted to try. That they were using tools to
 help take the description of the language and turn it into the
 compiler. I think that was the kind of work I really very much
 encouraged.

MSM: You designed C.

Ritchie: Yes, although not from scratch.

MSM: I see. An adaptation of B?

Ritchie: It was adaptation of B. That was pretty much Ken's. He
 actually started out as Fortran. Ken one day said the PDP-7
 Unix system needed a Fortran compiler in order to be a serious
 system. So he actually wrote and sat down and started to do the
 Fortran grammar. This was before AWK. He actually started in
 TMG. It took him about a day to realize that we wouldn't want
 to do a Fortran compiler at all. He did this very simple
 language called B, got it going on the PDP-7 and whatnot. B was
 actually moved to the 11. A few system programs were written in
 it, not the operating system itself, but the utilities. It was
 fairly slow because it was an interpreter. There were sort of
 two realizations about the problems with B. One was that
 because the implementation was interpreted it was always going
 to be slow. And the second was that unlike all the machines we
 used before which were word oriented we now had a machine that
 was byte oriented. In that some of the basic notions that were
 built into B which in turn was based on BCPL were just not
 really right for this byte oriented machine. In particular, B
 and BCPL had notions of pointers which were names of storage
 cells. But on a byte oriented machine in particular, and also
 one in which the - it had 16 bit words - and I don't think it
 did originally, but they were clearly intending to have 32 bit
 and 64 bit floating point numbers. So that there were all these
 different sizes of objects. And B and BCPL were really only
 oriented towards a single size of object. From a linguistic
 point of view that was the biggest limitation of B. Not only
 the fact that all objects were the same size but also just the
 whole notion of [inaudible] object didn't fit well with B. So
 more or less simultaneously I started trying to add types to the
 language B, and fairly soon afterwards write a compiler for it.
 The language changes came first. For a while it was called NB
 for New B. It was also an interpreter. I actually started with
 the B compiler. [Inaudible]. Because C was written in a
 language very much like itself and at every stage in the game.
 So it must have started with the B compiler and sort of merged
 it into the C compiler and added the various - the type
 structure. Then tried to convert that into a compiler. That
 incidentally was sort of another - that the basic construction
 of the compiler of the co-generator for the compiler was based
 on an idea that I heard about from someone at the Labs at Indian
 Hill - I never actually did find and read the thesis, but I had
 the ideas in it explained to me so that the co-generator for NB
 which was based on this Ph.D. thesis. It was also the technique
 used in the language called EPL which was used for switching
 systems in ESS machines - it stood for ESS Programming Language.
 The first phase of C was really, it was two phases in short
 succession of first some language changes from B really adding
 the type structure without too much change in the syntax, and
 doing the compiler. The second phase was slower; it all took
 place within a very few years but it was a bit slower so it
 seemed. And it stemmed from an attempt, the first attempt to
 rewrite Unix. Ken started trying it in the summer of
 probably 1972. He gave up.
 And it may be because he got tired of it or
 whatnot, but there were sort of two things that went wrong. One
 was his problem in that he couldn't figure out how to run the
 basic sort of co-routine in multi-programming primitives. How
 to switch control from one process to another. In relationship
 inside the kernel of different processes. The second thing that
 he couldn't easily handle, from my point of view the more
 important, and that was the difficulty of getting proper data
 structure. The original version of C did not have structures.
 So to make tables of objects, process tables and file tables and
 this tables and that tables, it really fairly painful. One of
 the techniques that we borrowed from seeing it used in BCPO was
 to define names who are actually small constants and then use
 these essentially as subscripts. Basically you would use a
 pointer offset by a small constant that was named to do the
 equivalent of naming a field of a structure. It was clumsy. I
 guess people still do the same sort of thing in Fortran. It was
 a combination of things that caused Ken to give up that summer.
 Over the year I added structures and probably made the compiler
 somewhat better. Better code. And so over the next summer that
 was when we made the concerted effort and actually did redo the
 whole operating system in C. That was fairly successful. It
 took the winter of '73 to do that. And there were no really
 tough problems.

MSM: People, yourself included have said that Unix was a
 distillation of some of the best ideas in operating systems in
 the '60's. I want to come back to that point but let me take a
 variation on that. Is C a distillation of ideas on programming
 languages as they had emerged during the '60's?

Ritchie: No, only one aspect. It's definitely a limited language
 variety in various ways. I think Unix probably covers a lot
 more of the real important ideas of that period than C does. C
 is quite low level; all the objects it deals with are really
 very concrete. The operations it provides on them are very
 [inaudible]-oriented. The control flow in [inaudible] is
 conservative in terms of [inaudible] straight line. None of the
 more interesting things like co-routines of various kinds.

MSM: What I found interesting, I counted when I was writing a list
 interpreter in C was that even the assignment operator returns a
 value so that I found that at a certain point that my C routines
 were beginning to look like LISP routines. I had my little C
 functions and I started embedding them and I started to get a
 lot of families of parentheses that were long enough and I said
 to hell with it, I'm going to do a list by [inaudible] instead.
 But it does have that applicative quality to it. Was that
 conscious? Am I right in discerning it?

Ritchie: I think you may be exaggerating it. Either that or you found a
 particular style and application in which it became more visible
 [inaudible]. Particularly if you - well, I guess there is a
 style in which there are a lot of different operators that are
 of one kind or another that are implemented as functions. But
 since they are not syntactic operators they have - the functions
 have to be embedded in arguments to each other. I don't think
 that's unique to see.

MSM: It wasn't something you had consciously?

Ritchie: Let's see... what are the other ways in which C is sort of
 [inaudible] covers a small part of the space of languages. I
 guess that's it mainly. I mean - oh, storage. The different
 kinds of storage that are possible in C itself are very simple
 in just the automatic variables, stacked variables and static,
 statically allocated things. There's no built in off-stack heat
 type storage. There's no garbage collection. Whereas language
 design - I mean, probably because it's easier to do a language
 than to do an operating system, there's less work in producing
 the compiler. Language design has sort of always had a little
 more freedom associated with it. There are lots more ideas that
 are really very different from each other as compared to
 systems. So no, I wouldn't call C a distillation except at the
 very specific part of it. I guess the thing that has made it
 successful - well, there are really two things that are making
 it successful. One is the association with Unix. It just got
 carried along. The second is the fact that I think that there
 is a surprising amount of work [tape reverses] so you can keep a
 [inaudible] the real hardware details. In particular so that
 the portability is possible with a little care. There are lots
 of machine dependent things that can be visible to C programs.
 Part of the art is to learn what sort of things you can depend
 on, and what you shouldn't. I guess the only real explanation
 for success is that there were a lot of people writing in the
 language, typically prose, are now able to write in C. The
 programs are likely to be a lot better for it. They do have a
 chance of moving. I think portability, and keeping portability
 in mind is something that you really have to learn to do. You
 have to convince yourself that it's important. It's easy to
 say, look, this is just a one odd program, and I know it's not
 going to anywhere but here. Why should I care that this is
 something that will never work on another machine? Sometimes
 people consciously do that or just below that.

MSM: When did you decide that Unix had to be born?

Ritchie: That was not in there in the beginning. It did have roots.
 Part of the claim of Multics was that it was going to be
 portable because - and nobody ever did anything to try and prove
 that. They sort of upgraded different newer models of the same
 machine, but nothing less than that. The business about Unix
 came because there were a couple of things that were happening.
 A lot of these interesting tools began being developed for Unix.
 Things like Yak. And of course since it was not a widely used
 system at the time there was an effort to make them available to
 other people. And the best way to do that was to have a C
 compiler on other machines. Even though the idea in general was
 quite important, a lot of the Altran project was concerned with
 a Fortran system. And they were very explicit about making that
 portable and wrote tools to make sure that the dialect, the
 subset dialect of Fortran was sort of the intersection of all
 possible of all possible Fortrans in the world. The real
 insight that we got - I was responsible for grasping this - was
 the fact that when moving these programs to - these various
 Unix tools to - the IBM systems and the GE or then Honeywell
 systems, the difficulties that we ran into were really not due
 to the underlying machine architecture, even though C made that
 visible, or made it possible to see, but really had a lot more
 to do with the operating system differences. How you do I/O.
 How you write the so called portable libraries. There were
 messes in implementing some of the - keeping these programs
 portable. It had nothing to do with the program itself. It had
 to with its interaction with the rest of the system. And the
 thing that really was most important was the thought that
 instead of really spending all this time trying to make
 individual programs portable and fighting the operating system,
 why not move the operating system along, too. In general, the
 portability aspect of work around here has been - but it took a
 few years before it was specifically called Unix. Although I
 have to say that Ken had a - one point early in the game. I
 think we were probably still on the PDP-7. He came up with this
 idea of writing in B the very simple operating system that would
 be very, very portable. It would run on all sorts of
 microcomputers that were just here. It would not be ambitious.
 The idea would be that this is something that could be
 distributed widely. I think what he was getting at was on the
 one hand something perhaps like UCSD Pascal which was a
 [inaudible]. Maybe something like, some of these operating
 systems that people like [inaudible] did. In [inaudible], it
 was written in fairly portable form. I think that was after
 this... It was the sort of idea that other people had and it
 never went anywhere as such. The idea was just put out one day
 and I don't think he spent any time at all working on it. Even
 though nothing came of that immediately, or very directly, that
 was the first sort of specific impulse towards Unix portability.
 Upright system portability.

MSM: This raises a question of perhaps the timing, your first
 request - you came off a big machine coming off the big GE's.
 The first request was either for a PDP-10 or a Sigma 7. You
 either had to settle for a discarded PDP-7, which is a small
 machine. And in the end Unix has wound up going on small
 machines.

Ritchie: Not as small as the original though.

MSM: [Laughs] Well, small is a relative term.

Ritchie: Yes, relatively small.

MSM: But I think also what goes with small machines is not only the
 question of machine size but also an attitude toward who's going
 to have the machine, what commitment is one making when one buys
 the machine, because if you buy yourself a small machine, you
 have an idea that you're going to use it for a few years and
 you're going to replace it and it may or may not be a machine by
 the same family. Maybe next time I'll get myself a Mac or I'll
 get this or I'll get that. I had the sense that the Labs around
 1970 were beginning to make a transition as an Institution from
 the idea of big central computing facilities and big machines to
 small machines. Smaller machines.

Ritchie: Yeah, but it took longer. It was not until a few years later
 that it really began to happen.

MSM: Now, did Unix respond to this or did you help to foster it?

Ritchie: No I think we helped to foster it. I think there was - well,
 it went along with it. There were a couple of things happening.
 First, that was when the machines like the PDP-11 began to
 appear and there had been these earlier machines that tended to
 be for fairly quite specific purposes. The PDP-7 was a graphics
 engine. That was the time when a lot of projects began
 developing what are called OSS's, for Operations Support
 Systems. The way these worked out were that they tended to be
 mini computers dedicated mainly to doing a specific support sort
 of thing for the telephone company. A very typical one was one
 which would keep - collect and keep trouble records. The ESS
 machine or Crossbar machine or something like that, you know,
 spits out in one form or another records of things that have the
 text going wrong, with individual lines or whatnot.
 Traditionally these had been punched on cards and then sorted
 somewhere else by a process I don't understand. The technicians
 would understand it. And so that an Operation Support System
 might be something that collects these automatically and puts
 them in bins and whatnot and makes printouts. These things
 existed for billing and for taking orders and just all sorts of
 telephone things. And this was all quite independent of the
 [inaudible] itself. A lot of people began buying machines like
 PDP-11's to do this sort of stuff. And some fraction of them -
 this exemplifies what you're saying, that there were these
 things away from the main comp center. But at least groups like
 these, the product they were producing was something that was
 sort of inappropriate for comp center anyway, it was really a
 new thing. But of course they had to do their own computation
 someplace. You know, when you're producing a support system
 it's not as if it doesn't involve a lot of programming. So I
 guess the idea of getting your own machine, the departmental
 machine, along with being more sensible - the availability of
 reasonably powerful and affordable machines I think was the most
 important thing. It was not a software issue, it was this. And
 one of the great strokes of luck was that Unix was a system that
 appeared at just the time that this new phenomenon that was
 beginning to - was occurring, because there was really no chance
 that we would, just as there was no chance that we, or at least,
 didn't persuade our own management to spring for all this money
 for this untried thing. There was really very little chance
 that Unix at that time would [inaudible] someone who was running
 a big comp center. It was just too unformed. It wasn't even a
 just a matter of being risky, it just didn't do enough. There
 were just too many things that inaudible]. That was when people
 were - the combination of having machines that were sort of
 affordable and did more or less lead to the effort; they really
 did more or less lead - ultimately lead to the near overthrow of
 comp centers in the traditional sense, or at least the great
 weakening of their power. Software for all these machines
 tended to be pretty [inaudible].

MSM: You think that within that [inaudible] this operating system
 that worked on these small machines? Give people added
 insurance. [Inaudible].

Ritchie: Yes, although there were plenty of projects that were either
 working on their own operating systems or using manufacturers'
 systems [inaudible]was clearly a very fertile [inaudible].
MSM: So that was Ken's system, and then he tells me that you guys
 figured out a way to get the console to act as a second
 terminal. I mean the display to work as a second terminal. So
 then it became Ken and Dennis's machine.

Ritchie: Most ideas in the system, and actually most of the working out
 of the ideas were his, but Thompson was in it from the start,
 and [inaudible] at least in some phases we sort of worked
 together, and periods in which we sort of wrote programs
 together.

MSM: What I was getting at was that issue of leadership/ownership;
 you must've had a terrific sense ownership the two of you had in
 the beginning. There must also have been a point at which you
 had to loosen that sense of ownership to open the thing up.
 Were you conscious of that happening?

Ritchie: I was conscious of it on and off. You have to remember that
 this did take, this had been going on over [inaudible] there was
 no particular moment in which there was a sort of [inaudible].
 Even in the '70's there was this history started that Bell Labs
 [inaudible] that did the programmers [inaudible]. And the point
 about these groups is that in fact sort of one of the
 interesting things about the whole development of the system is
 there always were people outside our own group who were actually
 [inaudible] never a matter of distributing something [inaudible]
 other people. There were always lots of people who opened up
 the box. They always did have independent rules and needs. So
 it really never was a stage acceptance. The very, very
 beginning of which he had complete control on what was going on.
 By continuing to make progress and generally by doing a
 reasonably good job of producing sort of the next generation of
 things was an effective, a very strong [inaudible] just because
 other groups, and this date was later sort of extended
 [inaudible]. There was always a very strong influence because
 people tended to pick up what we did and it continued for years
 afterwards with a diminishing fraction of the total system. As
 long as the USG had PDP-11's, the compiler that Aho did for the
 PDP-11 was the one that they used. Even by this time they had
 their own version of the operating system, that they controlled
 and wasn't ours, until - probably until this very day
 [inaudible] at this point we've got [inaudible] fraction at
 least, and AWK, too, was still owned by the AWK conspiracy, or
 consortium. So there's obviously been an enormous loss of
 control over [inaudible], a fraction that we can do anything
 about. It really isn't spread out over a long time. I guess
 the biggest realization I have now is occasionally getting into
 search of things that the Summit People do or the standards
 committees do or Berkeley does or whatever is just the - things
 have such an enormous momentum, that to deflect them requires
 enormous effort. Occasionally we get involved in something and
 say this is wrong. We really should do this instead of that.
 Or just not do that. I don't care what you do as long as it's
 not that. And, it really does take a lot of effort.

MSM: You're anticipating a question I wanted to ask Ken. It's the
 counterpart to your question about, or to the observation that
 Unix is a distillation of the best ideas. Were there bad ideas
 of operating systems in the '60's and about computing in the
 '60's you didn't want to see? [Inaudible] Whatever else is going
 to be, it is not going to be this, and it's not going to have
 this [inaudible]. Do you have any bad examples in mind that you
 were working early on?

Ritchie: I've never been convinced that Multics's virtual memory model
 was right, and in an interesting experiment is coming back. I
 think it was over sold. Of course it was not the common idea
 even then. It wasn't pioneer enough to do it because very few
 other people had it. I don't know, I guess we didn't think in
 those terms. I guess the thing that, particularly in
 retrospect, it may have happened, some of it unconsciously, but
 honestly I wasn't very conscious of, is the extent to which
 things were not put into Unix because we didn't yet
 know how to - well,
 a combination of we didn't know how to do them and we
 didn't actually need them. And this actually caused general
 weaknesses as far as [inaudible]. The whole business of inter-
 process communication of which [inaudible] sort of classic
 [inaudible], the whole business is very cleverly designed to do
 sort of exactly what we wanted and very little more. It fits
 together...

MSM: You were talking in your evolution article about essentially
 the hack of the message this never received. God help the
 system if it ever worked.

Ritchie: Right, in the later development that went away and the whole
 business of float [inaudible] and so forth [inaudible]. All
 this works very, very neatly and there's no need to talk to each
 other by means of pipes which we had sort of set up. A little
 more general scheme was put in place and as a result it was a
 very big succession of word schemes that people, because they
 felt they really needed to do something. Having one process
 call another out of the blue.

MSM: I think they were communicating [inaudible] sequential
 processes was about that time. That was an issue of some
 [inaudible].

Ritchie: Yeah, everybody else sort of knew that this was required. In
 the first place it was not required by anything we wanted to do.
 And therefore no scheme was worked out.

MSM: Did the size of the system, was the size of the machine and
 the size of the system you were working on dictate that?

Ritchie: In a general way, but not in any particular thing. There was
 nothing we decided that we could not do because it wouldn't fit.
 That never happened. There was no specific feature. Put it
 that way. It induced an approach to things.

MSM: I tend to think that a process communications been using on big
 central systems and you weren't building a big central system
 [inaudible] size constraint.

Ritchie: I think more it was a matter of [inaudible] things the style
 of computing - we were just interested in using the machine in a
 limited number of ways. It wasn't required for the kinds of
 things we were interested in doing.

MSM: And those ways, where were they coming from?

Ritchie: It was just a matter of wanting to, most of the programs are
 either straightforward and interactive commands that we type, or
 perhaps they derived it. Or perhaps some actual computation
 that takes in the place in the background. Nothing to do with
 autonomous events happening wanting to tell somebody that this
 event is happening. What's a better example? Well this isn't
 quite in the same track but it does serve. Some people's
 interprocess communications problems came for reasons that were
 directly related to the machine being small. And that is that
 they had something that was logically one single process but it
 wouldn't fit. And therefore they had to chop it up. And then
 the pieces had the problem of communicating. That of course is
 an artificial example. Theoretically it's a sort of artificial
 example because we shouldn't have chopped it up. But of course
 they had to do it. [Inaudible]. They had to work because of
 artificial restrictions. [Inaudible]. Except that there are
 definitely limitations on Unix. Many of them they are simply
 because we did not [inaudible] bother with that and the result
 of something that is a lot more coherent, because we're not
 going to solve all the problems. I guess the sort of genius in
 both Unix and C for that matter is the fact that while both
 languages have this approach they have a fairly strict approach
 about what they are willing to do and what they're not willing
 to do. The fact they manage to cover sufficiently large
 fractions of what people really needed, or at least some group
 really needed, while still retaining a sort of smallness of
 compactness of design. It really was not planned that feature,
 that aspect was not planned in an explicit way. It can't be.
 You can try but it's very hard to do. And I suppose the reason
 is that things work that way is that we did in fact start with
 some fairly well formed ideas on what we wanted. It wasn't
 [inaudible]. But, these designs were pushed to the point that
 they still showed that they solve problems that we are
 interested in solving themselves as opposed to satisfying all
 the things or doing all the things on a bulletin list, or
 surveying all the people that we could find and ask them what it
 was that they wanted. It didn't really have to prove a point in
 the same sense that most other people do. It obviously was
 important to make something available as other people became
 interested. But we didn't have to make a product. We didn't
 have to write enough pages to get a thesis. It really was a
 matter of being able to push things in directions that are
 interesting to go. And you only had to push as far as seemed to
 be worthwhile. [Inaudible] I think the keys to this that made
 this succeed where people or talents might not have made such
 a...

MSM: And similar tastes?

Ritchie: And tastes. It might have been more constrained than in other
 environments. As far as the success is concerned there was a
 good deal of luck involved in being in a position to ride this
 particular wave of the growth of machines that was suitable.
 Lucky to have the license it required - that the licensing stuff
 worked the way it did, too. There was a long period being able
 to have lots and lots of universities. A small number of
 commercial and government firms kept it on very good terms. A
 lot of people were interested in the system. [Inaudible].

MSM: It seems ironic it's effective marketing when marketing was not
 the intention and there was no product to sell.

Ritchie: Yes. On the other hand marketing takes a rather luxurious
 approach, namely to say we'll give it away for nearly free for
 ten years. And then start - in most cases you can't arrange
 that.

 Berk Tague

The interview date is unknown

Tague: ???????????????? But you and I were in Boston I guess at the
 same time. I was at MIT from September of '58 through February
 of '60.

MSM: I was there September '57 through June of '60.

Tague: Yeah, Okay. I spent a summer, I guess it was the summer of '56
 I was at Wesleyan doing my undergraduate work after 4 years in
 the service in the middle of my checkered academic career. And I
 was sent up there. There was a 704 that was being run that IBM
 had 8 hours of and MIT had 8 hours of and a consortium of New
 England universities had 8 hours of. Wesleyan was part of the
 consortium. My professor took mercy on me one summer and gave
 me a grant to go up there in the summer to learn to program.
 Fernando J. Corbat`o, who I met again in the '60s on Multics,
 turned out to be my instructor in that course. That was my
 first real program for the 704. We had programming courses at
 Wesleyan but no machine and in retrospect it was really rather
 silly. We had a professor from Yale, an astronomer who came up
 and had us writing things on coding for him, and for ??????? in
 that era. I started out in physics and discovered indeed that,
 one, I didn't much care for the laboratory and, two, I didn't
 seem to have much talent for physical intuition of certain
 sorts. And math was easy but boring. And when I went away to
 the service they cleaned house in the Math department in
 Wesleyan and brought in this fellow [name] who was really
 terrific and brought in some real mathematicians. In
 correspondence courses in the service I had discovered what
 mathematics really was all about and fell into the camp of pure
 mathematics for a while there until I made some judgments about
 what my talents were in that area and my interests. ??????????
 career at MIT.

MSM: So you went to MIT as pre-math?

Tague: Yes. I worked with Art Madduck who I guess just
 went emeritus as being head of the department. I did my
 Masters' Thesis under him. I edited a Ph.D. program and after a
 year and a half; looking myself in the mirror saying what
 are you going to
 be when you grow up and said let's get out of here and do
 something with it. I came down to the Labs. When I was in the
 service I discovered everything good in radar was done at a
 place called Bell Laboratories. I subscribed to one of the
 company magazines. I had a girlfriend who worked here one
 summer. I asked her to get me subscription to BSTJ and she got
 me a subscription of the Bell Labs Record instead. It was all
 right. I got some idea of what was going on. Those were
 exciting times. Shannon was around here. There was a lot going
 on in information theories. Still see some of those guys who
 were in early computing.

MSM: So you started out with systems research department? And
 doing ??????? simulation?

Tague: Yes, there was a program, indeed the program that
 when I got here there was a program that had been written by an
 electrical engineer under the guidance of my supervisor there, a
 fellow named Runyon who was interested in telephone
 traffic.
 He invented
 something called the sequence diagram which was just a diagram,
 kind of a block diagram, of the steps in call processing. In
 looking at these diagrams which he was putting together to
 understand the phone system at that time was a lot of interest
 up in research. They were doing PCM research and the T1 digital
 stuff was just coming in; I missed T0, actually, the very first
 micro and digital links. And they also had a system called diad
 which proved to be a fairly prescient runner up for toady's
 digital telephony. In trying to understand how the phone system
 worked John had put together these diagrams. He recognized he
 had the idea by his little marks kind of running through this
 diagram. I could actually simulate the office if I move them
 along according to these sort of timing machines. A professor
 from Wisconsin named Dietmeir came in for a summer and at the
 end of the summer he had 3000 lines of absolutely
 unaccommodating assembly codes that didn't work. My first
 assignment when I arrived in February was to work with a fellow
 named Jeff Gordon who was in Transmission and had some interest
 in the application of this, straighten it out. And Jeff had put
 some comments in it so the structure was a little more evident.
 I made the thing run and I really made my research career out of
 it. It turned out to be one of those really neat deals that I
 took it around and I simulated everything from missile traffic
 for the early Nike stuff to the telephone offices to the traffic
 at the World's Fair buildings to elevators at the Holmdel open
 house to factory lines down in Western Electric. It was really
 terrific. I got a really nice view of the company. And the
 program that Jeff Gordon got in one of these binds where his
 organization was moving south. He wanted out of his
 organization but they froze everybody. Meaning you have a
 choice. You can either quit or you can go to Holmdel. And he
 said he had no problem going to Holmdel, he didn't want to go
 with his organization. But that didn't wash. He went off to
 IBM carrying the program, which showed up a couple of years
 later as the general for the system simulator out at IBM, GPSS.

MSM: This was the forerunner of GPSS?

Tague: Yes, GPSS. At that point I was in research and by
 this time it was getting rather burdensome to in effect to spend
 all of my time running around helping people run
 simulations.
 So when GPSS
 came along they said use that, it's essentially the equivalent
 and I began the SDS and went off into what eventually became the
 Multics project.

MSM: What did you do in the Multics project?

Tague: I was in a couple of roles. First of all they got
 me involved with the documentation. Everything was done in
 triads. And there was a firm of Haig, Tague and McGee that were
 the GE, MIT and Bell Labs pieces that tried to get the documentation
 automated. They didn't think they could use CTSS to get this
 done so we were trying to use some punch paper tapes systems and
 other primitive stuff. I volunteered to do that because I
 became secretary of a triumvirate which was really ???????
 started out with 3 people who were really running the project at
 the operational level. I became secretary to that committee
 which gave me a preview of what was going on and after a year or
 so was charging my obligations to get the documentation scheme
 going. I protested and got assigned to interprocess
 communication. I got to work with Jerry Saltzer designing that.
 And that brought me to about '67 where it was pretty clear to
 me that contradictions inherent in this 3 headed monster were
 not going to lead to success so I decided to get off the sinking
 ship before the last raft left and came over here to Whippany
 where Safeguard was going on.

MSM: I'm going to stop for a second here and talk a little bit
 more about Multics. What had attracted you to that project in
 the first place?

Tague: Oh, that's pretty simple. There was a, ... as I say,
 I got into simulation and when I got into simulation one of the
 things you ran up against, of course, was the deficiencies that
 occur in languages and so forth. And we had macro [fat] but I
 wrote my simulator. I did a re-write of it along about spring.
 I said I came in February of '60.
 I had the program running somewhere
 around March and in March I discovered there was a fatal flaw in
 the method of timing. There was just a basic logical flaw and I
 went to my boss and said I think I understand this program. I
 want to throw it away and re-write it. And he recoiled in
 horror and said don't do that. But I duplicated the deck and
 went home and did it anyway. And we came back and said I did it
 anyway. Tom and I got it running. How do you like that? He
 said that's terrific and then we went on from there. And then I
 re-wrote it from a 7094 series which was coming in the spring
 and I can really revise this thing and use the macros. And I
 got into data structures in a fairly heavy way and it became
 apparent to me that the real key to this program was really the
 data manipulations and well, things were not very well
 understood most days. But basically the eventless timing was
 something we invented and embedded in this program and those 2
 things said that there was a pretty clear way to put the program
 together. I got that one done and set some records on the
 number of lines of working codes produced which is something I'm
 happy to brag about. But to be perfectly honest about it that
 was simply if you really thoroughly understand the program and
 are writing to a spec that's as good as that it really is pretty
 to set records. But it was a good deal. But that had shown me
 that the operating system first of all was lacking some things I
 needed. One of the things for example in those days, when you
 put your job in you put in an estimated running time with the
 operators but the operators thought they could tell when the
 program was looping. A simulator is basically a big loop and
 they couldn't tell when it was looping because subtle changes
 that would go through this thing weren't evident looking at
 flashing lights. They kept cutting my damned program. At some
 point in that era why IBM came in with a clock that was
 programmable so I can put on the card how much I'm willing to
 spend and then the rule was keep your hands off and if I get a,
 you know... occasionally would have a runaway which they had cut
 it. But it was a much better deal. And that got me involved in
 the operating interface with the Thesis series at that time.
 And there was a re-organization also where the computing systems
 research and those in acoustics research and those in math
 research and some others all kind of got blocked together under
 a math center Henry Pollack took over.

MSM: When was this?

Tague: This was probably around '62-'63. Somewhere around
 there.

MSM: Is this when computing research started?

Tague: Yes. Ed David came in. Let's see, Ed David became
 our Director with Crowley as head and David became executive
 director and Crowley became director on the Multics project
 which was starting at about that time. I'd gone down to an
 FJCC, a fellow joint in Washington in which there was a TRW
 system described down there where they took 3 screens, I think.
 It was quite elaborate for that day. It completely took
 over
 a rather
 sizable disk machine. It was a 650-like machine made by TRW, a
 brand that no longer exists, Bendix maybe, I don't know. But
 the thing that was intriguing was this was one of the first
 interactive systems ever put together. It was an interactive
 system to do mathematics. It essentially handled numerical
 analysis and algebra in a peculiar mix. And it would put up in
 real time it would graph equations for you and so forth. And
 there was a good paper given by somebody who had solved a
 significant mathematical problem. The problem was I think a
 differential equation solution and there were 3 or 4 other
 papers at this FJCC which was speaking to interactive use of
 computers. And I came back from that and I was sort of singing
 for my supper and gave a seminar within the research department
 saying we really ought to get in to this time sharing stuff. We
 didn't probably call it that at that time which we really ought
 to build our operating system to be interactive. And I was not
 the only one singing that by a long shot. There were a lot of
 people and essentially during that time why Ed David I know
 heard my talk. We talked a little bit about what was going on
 and out of that came the nucleus of the Multics project. The
 machine generations were changing. IBM was not doing ????????
 in 7094. They came in with a 360 with a long suffering salesman
 who everyone felt quite sorry for. He was a very competent
 individual. I think he was carrying the message up to
 Poughkepsee repeatedly. You're not offering these guys what
 they want. You kept telling them to go back and sell them what
 we've got. And that ended up in a bidding war between GE and
 IBM which IBM won. I mean GE won. And I remember vividly that
 on the last day of acceptance of proposals a limousine from
 Poughkepsee raced up to the door and dropped off this proposal
 to the receptionist at Murray Hill. And it was the TSS system.
 But that was too little too late from our point of view. We'd
 been working with GE and they had a very good designer down
 there, I can't remember what his name was. He was the designer
 of the 635. And it just looked a lot better to us. And I'd say
 it didn't hurt that they had 6 bit bytes in a 36 bit word ??????
 conversion from what we had was easier and of course in the
 event the TSS proposal was picked up by the switching people who
 were then down in Holmdel and who ????? the TSS out there, it
 eventually became an effective product for them at about '69 or
 thereabouts it actually began to work and at the same time GE
 went belly up in the computer business and Honeywell took it
 over and things looked good for a while. Honeywell ????????
 basic structure of that project of course was kind of crazy. GE
 was in it to get into the computer business and get out a
 product. The deadlines of some financial accountability. MIT
 wanted to write the specifications of the ultimate operating
 system and we had a mixture of the 2 where we wanted researchers
 to participate in the MIT side of things and on the other hand
 we had a deadline where supposedly in 6 months or something we
 were supposed to have this operating system up and running on
 new hardware. It was just incredibly naive what set off to do.
 It was kind of recognized as to how much trouble we were in.
 Probably we were off by an order of magnitude even in our
 pessimistic views. It certainly was ????? I think for most of
 us. There were a number of people going on at that point trying
 to put up new software on new hardware at the same time and it
 took a while for people to learn that you have to do some kind
 of a cross compiling game. You've got to use the machine you've
 got. Corby wrote a good paper on Multics saying if he it to do
 over the first thing he would have done was move CTSS over to
 the 635 and go from there. That's probably a good idea.

MSM: Is this the '72 paper he did on "Multics, the First Seven
 Years"?

Tague: Yes. But at any rate I came out of Multics in '67.
 I came over here on Safeguard because I'd always felt that
 I should leave
 research and go into management. I was willing to wear a 3
 piece suit and that might have been more telling of my talent
 than doing computing research in competition with some of the
 folks over at Murray Hill there. I came over to Safeguard and
 took kind of bath because I arrived here with a group of 8
 people and by Christmas I had 70 reporting to me in 3 states and
 it was just an amazing circus. In retrospect a good learning
 experience but after 2 years of that I quit and came back to
 Murray Hill in the Comp Center just at the time that Multics had
 died. The summer of '69 one of my friends in Research Bill
 Baker called them all together one day and like Viet Nam he
 declared victory and got out of Multics.

MSM: He hadn't played any role or done any consulting at all in
 that decision?

Tague: No.

MSM: Was that decision really made right at the time?

Tague: I suspect so. Yes. I think it was Bill, I think it
 was Bill Baker's decision to make it.
 He'd insisted from the start that it
 was a research project and there was a conflict in there from
 the beginning. Doug McIlroy, who was my boss during that
 period, had said, if we're going to do a research project on
 operating systems I don't want to be a part of it. My condition
 for getting involved in this is that it'd be the operating
 system for Bell Labs. It'd be the successor for the ??????
 chain, and that was accepted at one level. On the other hand
 Bill Baker was very insistent that this was a research project
 not a development project and he was certainly right in the way
 it was run. And on the other hand there were people in Comp
 Centers such as here in Whippany, who bought 635's [and] had
 military business critically dependent on it. And there were
 the Holmdel folks who I say should have bought into TSS and were
 struggling trying to get something that actually worked there
 out of IBM and I don't know what was behind that bifurcation but
 I suspect that ESS was big enough and powerful enough at that
 time that they could just ????? But Bill Baker I think had one
 fundamental misunderstanding about the computer business that he
 didn't really cotton to until the end of the '60's. And that
 was that computing for research and computing research are 2
 different things. I mean the legitimate niche when I was in the
 Comp Center ?????? was some hapless business coming in with this
 Fortran deck saying what have you guys done to screw me up? My
 program ran yesterday and doesn't run today and would you kindly
 not do me any favors. And perfectly legitimate beef and one
 that was not responded to at all. I mean the systems research
 people ran the computer at that time. We found nothing
 that?????? knocking it down for an hour or 2 in the middle of
 the day to put up some new stuff or to screw around with. We'd
 take it down at lunch time and play biological games. Some of
 which were quite stimulating and interesting. But nonetheless
 it didn't help the production along very well. It was batch
 processing so it wasn't what it would be in today's terms by a
 long shot. You expected kind of a half day turnaround on your
 job which was kind of the norm. But one of the reasons that I
 kind of got out of this whole circus was that I was leading
 ??????? about how computing should be done and they didn't quite
 agree with the way Research was doing things. But I came back
 one of the things I was delighted with was that they had made
 the split and the computers were taken over by a new division
 formed under a man named Thayer whose job was to take all these
 disks ??????? who ever happened to get the largest computer at
 each location first and pull them into a coherent computing
 service. And that spoke to me because I thought that the right
 role of this outfit was for the computing research guys to do
 their computing research on some machines that were appropriate
 and dedicated to the task and that should be in Murray Hill in
 Production System which should integrate the research technology
 with production au lieu and when we ran things to schedule and
 kept machines up and got service to customers was the primary
 goal. I came back in September of '69 and at the end of '69 I
 was offered a job, a promotion to head a department that had a
 very peculiar history. The government had requested that we put
 together a planning department. Again I wasn't in on this, this
 had all gone before I left Safeguard. But I think it was kind
 of in response to the Brooks Bill. Are you familiar with this?

MSM: No

Tague: The Brooks Bill in Congress was a bill that
 established how the government should buy computers. And it was
 a pretty horrible bureaucracy. It's still with us to the
 day.
 And it's
 the reason with these government people it takes them 2 years to
 get the permission to buy a machine. And then they have all
 these lawsuits anyway at the end of it. But the whole thing
 established a bidding structure and made sure that there was
 competition and the rest of this. And as part of the pressure
 on the organization... now, at that time Safeguard was something
 like 20% of Bell Laboratories; I mean it was a big project,
 multi-millions being spent on it and I think we got big enough
 that we fell under the Brooks Bill. The Whippany Comp Center
 here had to buy machines to procure them under these regulations
 and it was all pretty hairy, and pretty meaningless. The
 government didn't understand that you can't go out and put bids
 on a computer the same way you could on a two or three eighths
 film pencil. Brooks was smarter than that but not smart enough
 to understand what the degrees of freedom were and not to
 understand the locking that you had with the vendor unless you
 buy into their software. So the result was that everything sort
 of had the flavor of bidding but actually came out to the sole
 source. So outfits like RCA and Honeywell were offering IBM
 compatibility packages to try to pull this off and their
 weakness was typically that their hardware was just not nearly
 reliable enough relative to IBM's, that you touch with Honeywell
 and GE machines were multiprocessor ?????????????. One of my
 bosses said it's a good thing because you need it all. Half the
 machine is broken all the time. So if you didn't have twice as
 much gear it wouldn't run. Tape units were just disastrous. But
 the result of this was I asked them to create a department that
 would review computing purchases for Bell Laboratories. In any
 event the way it was set up in the job I was offered was to a
 head a department which would review every computing purchase in
 Bell Laboratories with my ED Thayer as head of the computing
 division had a sign off as to whether you could actually
 purchase a computer or not. On the one hand it was an
 impossible charter. I mean we were even then buying computers
 and many were just starting to come in. But the sales were in
 terms of hundreds a year and the department that had 2 groups of
 probably less than a dozen people total. One of the groups was
 occupied almost entirely with just finding out what we owned and
 put together the first real database on what computers we had
 and what they were running, and the other part was doing mixed
 reviews

MSM: Did the result of that survey surprise you?

Tague: Not particularly. I guess it surprised some people.
 I mean the growth rates were quite spectacular with all
 these
 exponential
 curves rising up in the prediction that it would saturate and
 they were met. And it kept repeating itself of course with
 maxis and minis.

MSM: Was that first list showing mostly big systems or was the
 mini beginning to show up?

Tague: No the mini was showing. The PEB series was around
 in a large way and there were many of them around. We also at
 one point there a little later kept track of terminals. And
 that was a real surprise as people discovered that there was
 more than one terminal per technical staff. Typically it ended
 up being 2 or 3 in the end. But that was a useful thing. One
 of things we did is we learned to manipulate that database so
 when someone at the top of the house would ask a question
 involving computing we almost always could get at, you know,
 reformulate the question in such a way to shed some light on the
 problem they were trying to shed some light on by going
 into
 this database
 and pulling some data off and manipulating it a little bit and
 coming back with it. The real stick was this business of having
 to sign off on computers and if you know the culture around here
 that was very much a counter culture kind of act. And indeed
 after I got the job I was then shown this correspondence which
 uniformly in the computer committee at that time which would
 have been the people representing each BP area. They all said
 that this shouldn't exist. And the good news was a comment from
 Ed David that if it's going to have to exist then ??????? might
 as well run it ????????????? But Thayer, the man I worked for,
 was a guy with some real backbone and some good sense he agreed
 early on that the thing to do was to choose our targets. That
 we couldn't review everything. We really rubber-stamped most of
 it. But if he saw some foolishness going on he'd really dig in
 and use really as a lever to try to clean up the computing
 business. And we started out at that time on the outside time
 sharing business. The total computing budget was probably under
 $50M in the Labs at that time. $30M of it was going out to time
 sharing. Outside time sharing sources. We had 35 or 40
 suppliers with absolutely no rhyme or reason. It was sort off
 whatever salesmen did in the offices that made them sign up. We
 extended and interpreted the charter to say that outside time
 sharing contracts would cover it. We got sign off on that and
 pulled them down to 2. We ended up with GE that provided very
 good time sharing service. Basic and so forth. Based on
 Honeywell machines. And that fit with a lot of Honeywell
 traffic we had around. And then IBM VM-based services, VM had
 appeared on the horizon at that time and we got I think 1 or 2
 VM suppliers and cut everybody down to that and just told them
 if you want to do outside time sharing here's what you do and
 then internally in the newly formed division to provide
 computing services we started racing like mad to try to get a
 time share with a decent interactive approach to Fortran ??????
 computing going in most of GE contacts than IBM contacts. GE
 kind of led the charge on that since they had the ????? a pretty
 good system, again Multics ?????????????? There was still some
 Multics going on, research, buy it died pretty quickly. The VM
 stuff, we started getting into VM I think on some CICS that was
 tried for a while. Third party system I forgot. But basically
 we started chipping away at this outside time sharing business
 to try to bring it inside because we were nervous about having
 our databases outside. There were some things you couldn't do
 with the databases fragmented among the suppliers. The cost was
 getting pretty high. We thought ???????????

MSM: Were you aware of the CMS project that was going on at the
 Cambridge center?

Tague: Yes.

MSM: Was that at all attractive?

Tague: It was but it came too late. By the time it came we
 were committed in other directions.
 The TSS business had really taken
 over. It was being effective for ESS which said there was a TSS
 community that was pretty large. And the GE stuff as well as
 the Honeywell stuff was beginning to work on ??????? so we had
 more ????? covered on that score. And we tried VM, we tried
 CMS, but the more popular system was, I'm trying to think of
 what it was. It was a proprietary system that was mostly
 interpretive and folks really liked it for interactive Fortran
 kind of computing???????? The NBS turned out to be satisfactory
 as far say the design engineering ??????? CAD/CAM ??????? by
 various minis ?????? But after we got the time sharing cleaned
 up we then went after consolidation with the Comp Centers and we
 bid off some budding comp centers in places like Allentown PA
 and made them go to remote stations to the larger centers of
 Holmdel and Murray Hill and whatever. And Indian Hill came into
 the fold. We took over that comp center as part of the
 division. We bounced off Columbus and Merrimac Valley for good
 reason. Merrimac Valley is where I can see it most clearly.
 That was the one place where I got into an argument with my boss
 because he wanted to fight on standards. And we told him we'd
 lose, and we fought and we lost. But they had an interesting
 setup. It turns out that the factory at Merrimac Valley and its
 attached lab had the property, had several things that came
 together. First of all they were beginning to feel outside
 competition. The Japanese and others were getting into the
 transmission business at that time. So they had to run a little
 tighter ship. The were the only place in the Bell System or in
 Bell Laboratories where you knew where your product was going to
 be produced. That factory was dedicated to transmission and the
 Merrimac Valley people knew where their designs were going to be
 produced. They were in the same building. They established a
 very good rapport with the factory and really started making
 some CAD/CAM, sort of putting the CIM kind of stuff work. But
 I'd go up there to talk to the guys I worked with. ??????????
 downstairs now ???????? one of my customers again. ??????? The
 thing that fascinated me was that he justified his computers in
 quite a different way. He did not charge back by the job. He
 allocated the cost across his organization. The computing
 center was dedicated to his center. But it was only a center.
 It wasn't even a division. It was just one lab that was up
 there. But the way he justified it was to me absolutely the
 right way. Instead of talking in the number of jobs they
 processed every day and the number of ???????? and all this
 kind of stuff that the traditional comp center used he simply
 said before I put in the CDC machines and those that were CDC
 which was a different thing and he did hybrid. You know, he
 plugged hybrid stuff into the side of the CDC and that's pretty
 good service now. He said before I got these computers I would
 take one of my designers and they would turn out 2 designs a
 year. And they now turn out 10. Take a look at these
 economics. I can pay for that comp center 14 times over so
 don't give me a hard time. To me that said, hey, don't screw
 with this fella. We're down here counting jobs in Holmdel, 50%
 of which are JCL errors and we're calling it productivity. I
 said this is the way to do this thing so let's not screw. Well,
 my boss who also incidentally ran the DDS function and they were
 kind of out-grouped on DDS. It was pretty much a battle,
 although we won't get into that. But he lost, he lost ultimately
 gracefully and we went to Merrimac Valley. And to this day
 they're not part of my organization. They run their own comp
 center up there. They still run it with much the same flavor.
 We've gotten a lot smarter in the comp centers about how we
 allocate costs and we'll sell you dedicated and allocated
 machines and all kinds of stuff. That's been a big help in
 getting us to be more serviceable to our customers' bottom line.
 But after having done that part of things and kind of gotten
 the main comp centers under way the minis were then beginning to
 appear. And the affirmative thing was there were some HP based
 systems that had been developed by the Transmission folks. And
 they were measuring, on the one hand they were measuring traffic
 and on the other hand they were doing things like collecting
 alarm signals from these remote transmission towers and
 analyzing troubles and stuff like that, dispatching people. And
 I ran across a guy, again up in Merrimac Valley who happened, it
 was sort of accidental, a guy up there who complained that your
 guys are designing these systems and I have to go out and do
 bulk sales and the sole source purchases of HP machines. I
 can't go out for bids. I don't like that. And we talked a
 little bit and understood the problem and pointed out to him
 that it's kind of difficult to do otherwise. We really can't
 ????? around. But I was aware that my buddies in Research were
 working portability. We'd heard about this thing called UNIX.
 It actually took place over probably a year and a half but I got
 to the position where I said look the right answer in this area,
 we started calling these things Operations Support Systems or
 Operations Systems and there were a lot of them. So the right
 thing to do here is get a hold of UNIX, a portable UNIX, and I
 was able to go to my boss and say look, we put this stuff on
 UNIX. If you want me to I can fix say 3 vendors and well put
 UNIX up on those 3 vendors and people can now continue to
 develop on whatever UNIX they happen to have in their lab and
 when we go out for bids we can generally go out and among these
 3 vendors get them to compete for the volume. The volumes
 weren't large. The typical problem was a program or somewhere
 between a dozen or 50 machines. They were typically
 regionalized. There weren't that many of them. Though there
 were a few of the smaller ones that had little PDP sitting out
 in the central offices and data collection peripheral roles,
 thousands of them. But the Labs wasn't ready for them.

MSM: When was this now?

Tague: This was probably around '73, '74. Yes. To get the
 timing right I got into the UNIX business.
 The date that's firm in my mind
 is in September of '73 I got permission to put together the
 first UNIX support group in Bell Laboratories. I put a
 supervisory group together and staffed that up. And at that
 time I was also interested in supporting MIRC. I thought I'd do
 MIRC for real time and UNIX for a time sharing kind of
 application. MIRC never got off the ground. We wasted energy
 on that. Though MIRC actually got embedded in some of the UNIX
 line systems that underlined the ESS processors. That stream
 did continue in a peculiar way. But what we discovered was that
 the real time part of the business we had in these OSS systems
 at that point was really handled in one of two ways. You can
 either write a specialized driver and do all the real tidy stuff
 down in the driver, or you can buy yourself a PDP8 and quaff it
 down and put the real time in the PDP8 and the PDP8 would then
 appear much like it did external in terms of its response needs.
 And we had to do, the other things we had to do some database
 activity in there. And the typical thing people did was to put
 a process up that would manage the database and then we added
 interprocess communication features. 3 of them. It seemed to
 be a surplus of things. But I was driven by my customers. When
 I went into business all of my customers knew more than my
 people did. So we spent the first year in documenting the
 product, getting an LDI to Western that made it an official
 product which is a submission of design information that had to
 be done. And my people learning to be as good as their
 customers were in understanding what it was we had. But we
 quickly got to the point where we understood what the business
 was and we were trying to gain control of the customers because
 in Columbus there were a bunch of people who were doing these
 things and even there they invented 3 different interprocess
 communication mechanisms which ??????????? smaller number. But
 typically they'd have it locked in the product and out in the
 field by the time that you raise the thing up to anybody's
 consciousness. We ended up just at the end putting in a lot of
 that stuff in UNIX to hold it together.

MSM: How did you find out about UNIX?

Tague: That was very easy. I left Multics you see in '67
 and I overlapped a little bit with Thompson and Ritchie but I
 still knew those guys in Research and indeed part of my role in
 this planning job you see really became the planning department
 for the comp centers. So keeping in touch with Research was one
 of my officials chores anyway. And at that time you looked
 around the mini
 area at the end of the '70's. The typical mini computer
 operating system was all out like a PC DOS. The PC DOS would be
 sophisticated compared to many file system. Flat file system,
 ???????? processing and so on. And Thompson was sort of the
 legends in the Multics anyway.

MSM: What made him legendary?

Tague: Oh. It was very simple. Vic Vyssotsky was a very
 good friend for many years. And Vic made the comment, because
 Vic was sort of heading up the Multics effort at that time as
 far as his building was concerned. He said Thompson arrived on
 our premises with a sort of mixed story from UCLA, I mean from
 Berkeley, saying that we've got this guy out here who's really
 good. He writes terrific programs but we can't get him to write
 his thesis and we don't think he's going to make it.
 When we took him on,
 and as Vic said, Thompson had shuffled into his office and wrote
 on the blackboard saying there's sort of a problem here. Do you
 think it would be worthwhile solving. If you do something about
 that it would be terrific. Well about 2 days later he shuffled
 back in and said look what I've got. And it would be solved and
 solved very elegantly. But I say it was about that time that I
 departed from the Multics project and spent a couple of years
 over here in Safeguard, between '67 and '69. But by the time I
 came back to Murray Hill there were a couple of competing
 operating systems for minis. There were really 3 efforts that I
 remember. One was Sandy Fraser had done his spider thing, the
 forerunner of datakit. And he had some operating system stuff.
 It was pretty primitive but he did some multi programming
 things. That was really never much of a contender. But there
 was a crew not in Research but in a kind of an exploratory
 CAD/CAM department and they existed in Murray Hill was then
 under a fella named Charlie Rosenthal. A fella named Larry
 Rossel who was a very bright guy who subsequently made some
 contributions to UNIX put together a little operating system
 that ran the PDP series and looked like it could do some good
 stuff. And the other one was UNIX. And just talking to people
 it became apparent that UNIX looked like a class act and Stan
 Brown who I worked with at Alpac when I was in Research on
 Altran. He an I did some joint papers there back in the '60's.
 And Stan was interested in portability and was telling me good
 things about where we were on ?????? portability, and C indeed
 looked like B and C and its predecessors looked like a real good
 deal. I did enough time in development then to understand that
 it was going to very tough to wean the developers off the macro
 fat because as long as you could tell them that a compiler
 couldn't do certain things it was very difficult to get them to
 write in the high level language. And I would ???????? high
 speed routine ????? assembly. And B and C offered the promise
 that they could really write in the sort of semi higher level
 language from the start. And it was a big seller. C was no
 problem but the way I got interested in the business was in '62
 I saw these guys starting

MSM: '72 ?

Tague: Yes, '72, I'm sorry. I can't get my decades right.

MSM: I know exactly how you feel. [laughter]

Tague: A long time ago. Yes, '72, for example, here in
 Whippany there were a bunch of people coming off of Safeguard
 who had gotten into this operations systems business. And I
 vividly remember the first guy I sold UNIX to. There was a
 fellow here at Whippany and he'd gotten a crew of pretty good
 programming talent off of Safeguard. They'd never written for
 anything but large machines. They'd never done an operating
 system before or a compiler or anything very sophisticated in
 the way of systems software. And they had a schedule that said
 they were going to buy a PDP1120 it probably was at that time.
 They're going to build an operating system. They were going to
 write their own language and they were going to compile an
 application that was going to be in the field in the spring. I
 came around to review this purchase. And I sat down with this
 fella, a fella named Jan Norton, a very nice Dutchman. And he
 and I were eyeball to eyeball pretty quickly because ??????? I'm
 not going to aprove this. And he got his dander up pretty
 good
 at that. I
 said look, here's the deal. I understand you guys will probably
 the world's most portable operating system, but what I'm going
 to insist you do, is you pick up UNIX and that you use it as a
 basis for your development because it'll get this machine
 running. And if you don't do that you don't have a prayer.
 I'll bet you money on that. So I said you can go on and do your
 own operating system. Of course I knew what would happen when
 they got this thing up. And they really realized what they were
 up against. UNIX would be the only way they had a prayer of
 getting anything done even close to the time schedule. And
 indeed that was. And Jan was a big enough guy that I got a very
 nice letter from him along about January. That deal took place
 in the fall. He said thanks very much. He said if my guys
 hadn't had the opportunity of reading Ken's admittedly
 uncommented code [laughter] he said that they would never have
 learned how to program this machine properly and never would
 made it without using the UNIX operating system as a base. And
 I repeated that process with several people and the PDP11 deck
 had a good reputation. It was clearly the machine they liked.
 The transmission people stuck with Hewlett Packard and they
 simply went into some volume price agreements with them and then
 DEC screwed up very badly which helped us out quite a bit. I
 can't remember the acronym for their operating system but they
 promised it eventually it was going to have a whole bunch of
 features and was going to be the world's most wonderful and be
 upward compatible. It was none of those. And when they de-
 committed from all that there was a project down in Holmdel
 associated with automatic intercept under a director named
 Townsend who had (a development) who's dependent on DEC
 following through on this, I guess. And when they bombed on it
 he really was just ????? and just screwed his schedules. And we
 made a deal with him that he actually funded me from September
 to December of '73 to get my department started. Gave me a key
 individual. A fella named Jerry Vogel who's right down the hall
 as a matter of fact who joined me as a member of that first UNIX
 group and put us in business. And we started delivering to him.
 His people eventually went to Columbus and were part of the
 nucleus of the operating systems at Columbus which were UNIX
 based and kind of made the business go. But at that point I was
 getting kind of tired of the planning job. I've got kind of a 3
 year time constant personally. Every 3 years I change things
 and go to something different. So what I was doing at that time
 was maneuvering. It was clear that people wanted central
 support for UNIX. For a developer to take an uncommented batch
 or code from Research would normally be impossible. But you see
 these guys had (hooked) themselves. Because they were promising
 to write their own operating system from scratch. So I could
 point out to them look, you're going to have to support an
 operating system so you might as well support one that exists.
 And don't tell me it's going to be easier to write your own and
 to beat this guy who's doing his 3rd operating system and by
 that time it was beginning to get some momentum. So that was a
 seller. But I knew life would be easier if we had central
 support. So I went to my boss and in effect what we agreed to
 do was to split the planning department into 2 pieces. And I
 took on a department that became UNIX-MIRC development and the
 planning function went to calling to mind Russ Archer. And he
 took over all that business in carrying forward. And that
 really got me started. The PWB programer's workbench was an
 independent development under a bunch of people that at
 Piscataway in the BIS project. Are you familiar with this one?

MSM: Ted DeLotta and I were old swimming parents together.

Tague: Very good, okay. Well, Ted was key, Rudd Canaday
 who's still around was one guy. The inventor of the UNIX file
 system was down there and he kind of brought UNIX in. Ted was a
 key guy. Ivan, I said a minute ago, went out to Utah.
 And Dick Hague.
 Dick Hague was kind of the guy who became a proprietor of UNIX
 and he and Ted came in to work for me. They came in about '76.
 They brought a fella with them named Larry Weir. And a
 remarkable thing happened because I had some misgivings on these
 guys moving in.

MSM: Let's get the relationships clear. PWB had started up and
 then came under you?

Tague: Yes.

MSM: It started up independently?

Tague: It started up independently and it had a quite
 different charter you see. I was really driven by these
 operations systems and they needed a database plus a little real
 time and stuff like that. Dick's thing was simply to put a
 time sharing
 front end on this huge array of machines that BIS was committed
 to. But they got out on a bid per project. So they had Xerox,
 they had RCA, they had IBM, they had Univac. And it was driving
 them crazy. Not only that of course the people behind UNIX had
 sense enough to realize this is really what you needed to edit
 and compare stuff. The big payoff you see was that they put a
 UNIX front end down in front of something like an IBM, say
 ?????? They put the IBM experts to work canning all those
 terrible JCL sequences and getting them down to the 2 parameters
 that people actually had to do. They embedded all in a shell
 and then offered somebody a shell. And they kicked this stuff
 off and the source would be driven across the channel link and
 put on the machine to run. The body would be brought back on to
 UNIX. They could walk over the body on the UNIX files, keep it
 or throw it away as they wished and all the code control that
 comes with bill control. They were the guys who made the SCCS
 the code control apparatus go with the rest. And it was a nice
 compliment as you see and we had these people doing these kind
 of real time database sort of things and people doing time
 sharing system. They were going to come together. We'd each
 been busily modifying the ??????? to some extent to get this
 thing done. But I was not looking forward to this clash between
 my established group under Joe Maranzano and Dick Hague again,
 and his guy ????? and my guy Tom Rolly. And I thought that
 there'd be great conflict. And to my delight Weir was so good.
 ??? [tape fades out, end of side one] ??? We said we'll use the
 PWB base and put this other stuff into the PWB base; with
 Larry's help it'd probably be the other way around, and that was
 a decision I never regretted. Weir was excellent at keeping
 track of that system and running it in his head. Quite
 remarkable.

MSM: I heard somewhere there had been some conflict.

Tague: There was, let's put it this way. Weir and Research
 didn't always get along very well. And Dick Hague was a
 very prickly
 character. He was working for me again up until last year. He
 retired; he's now got a venture operation down in Clemson. And
 Dick had strongly held opinions which he made no bones about
 sliding. On the other hand he was frequently right. My
 arguments with Dick generally were that I really believed that
 there were such things as large developments and they had to be
 handled somewhat differently than what I would consider kind of
 ?????? which Dick was very good at running. And Craig Dodd in
 Buffalo did work in that in that mode. But he for example
 thought nothing of changing the system incompatibly in a way
 that would just wipe out stuff. And his attitude was generally,
 things are 2 years old they ought to be redone anyway. Well,
 then there's context in which that is true and probably more
 context than we're willing to admit, but there are context in
 which that isn't true and that was where many of the tensions
 came. But that wasn't a big problem. It was manageable. We
 got that going and we managed to modulize things so that people
 could leave some stuff out if they didn't need it. Then we'd
 work from a standard system base but with sort of add-ons as
 needed to ?????? it free with the operations systems market or
 PWB market. And there were very good tools that Dick and his
 people had produced on the PWB for managing code and doing code
 control and that sort of thing. Dick was not very patient for
 that but he appreciated; his managers needed it. We referred to
 them as a manager's "Linus' blanket," and there was a certain
 amount of fairness about it. I personally wanted to have a
 configuration control of some formality and perfection is rarely
 obtainable. If you can't tell me what it is you're delivering
 to the field, I'd say you're probably in deep trouble on a
 project of any size.

MSM: I must say my job down in Holmdel working for Charlie
 Stenard was to scout out software development environments for
 the AWIPS project. I was the person who identified RDD100 as
 the most promising one. Cemented that relationship between
 Holmdel and Ascent Logic[?] [and] did the report on it. But
 before that project, before we did not get the contract, one of
 my concerns was how are we going to interface ??????? that but
 we were going to have to have some source control with
 configuration management on line. No question, talking about
 200,000 lines of code just for the platform and then a million
 lines of government code that was somehow going to have to be
 introduced.

Tague: Yeah, projects like that, you just, you know,
 they're simply wrong. You can't run those by the senior pants.
 His retort to that, if he were, here would be to point out those
 projects were doomed to failure. They never worked anyway.
 The only way
 they worked is you break them off into smaller projects that can
 be run my way. Again there's a certain amount of truth in that.
 But again you won't get an ESS kind of effort.

MSM: I was watching a smaller project that wasn't doing too
 well either.

Tague: Yes. In credit to Dick there's not many people I
 would find as credible in promising to bring a small project off
 on schedule. He was very good at moving in the
 requirements,
 cutting them
 down to feasibility, hiring a lean and mean team, he very much
 believed in the 10 to 1 ratio of programmers. He knew who the
 10's were and who the 1's were. He'd end up with the 10's and he
 didn't care what he had to pay. And there's no question in my
 mind that if you run a project that way it's very effective,
 cost effective ???? [voice fades out] ??????

MSM: I'm going to back you up a bit. Back to Klein. You said
 something earlier about coming in and talking about the comp
 centers, and the need to separate comp centers from the research
 people because computing in research and computing research
 are 2 different
 things. You can't have people tearing down the system over
 lunch. It seems to me one of the conclusions that we'd follow
 up on that is you set up the comp center and you take the
 machines you put in something actually possible. And you say
 look for computing in research that's the system. But we have a
 stake in computing research and therefore we ought to let these
 computing research people have a machine from which they can
 work. But the big story is that they couldn't get hold of a
 machine. But they lost their CTSS and their Multics. And here
 they were in 1969 sitting there without a machine that they
 named they really could play with. Had you recommended that
 they get a machine or was there anybody speaking for them?

Tague: No let me tell you the timing on that. When I
 arrived in '69, Research was really in a blue funk. They'd
 really been kind of ripped up. And there were a few last folks
 still working with a Multics that was up on the 5th floor being
 run as a Multics a few hours a day or something like that.
 Multics still wasn't working much. ????????? There was a last
 crew still on the shift. All of whom were no longer there
 within a couple of years. Joe died rather suddenly tragically,
 Peter went off to Stanford Research Institute and a few others
 have dispersed. And the computing research people were asked to
 divide themselves into 2 parts.
 When I came over to take the planning job
 I had 2 directors. Sam Morgan who was a director of computing
 research. He had a co-director named George Baldwin who had the
 Murray Hill or Whippany comp center and the Murray Hill comp
 center piece of this ???????? kind of split off in some way and
 Sam would manage the transition. And there were a number of
 difficult choices for people in Research. Because what they're
 all trying to do of course is they wanted the best of both
 worlds. They still wanted to influence the production computing
 but they wanted to do research. They weren't permitted to have
 that choice. And there were some fairly bitter personal
 conflicts that got in there. I was working for Charlie Roberts
 who was the department head when I came back. He was a
 physicist who co-opted in the comp center. And he was working
 very hard to make Fortran run in the G codes. And there was one
 other researchers, a fella named Sterling who had a competing
 thing called Guts. And Joel was an exceedingly and competent
 programmer who had already built things that mind you are rather
 fragile and it took him to keep them going. It didn't seem to
 have much appreciation of the fact that you couldn't build
 things that way, that the world just wasn't going to be that
 regular. He always had logic on his side but logic isn't the
 winning rule in most people's lives. I got caught between
 the 2. They're both good friends of mine and actually they're both
 people who I had known slightly but became friends with when I
 came back to Murray Hill. I was trying to be at some merger of
 best worlds here, but that eventually... well, Charlie always
 had the right idea. He knew he had to have G codes support. He
 couldn't afford to tinker (with) an operating system and worry
 that you hadn't done this or there was a whole bunch of custom
 code and datanet 355 front end which was at least at least a
 program and Charlie was trying to swim with GE or Honeywell's
 plans at that time to something ????????? He had continual
 problems and couldn't support it. And Joel stayed with Research
 and eventually left the company and basically came over here and
 ???????? for a while. It was sort of a difficult time and Haming
 was around at that time and Haming at that time was a department
 head without a department. He was sort of a ?????????? I was
 finding it very refreshing, you know finding and talking to
 other people and some of them would use other adjectives. But
 the thing I liked about Dick was that he'd sit you down,
 particularly in my younger years, he'd sit you down and kind of
 pull you up from the day to day hassle. Particularly when I was
 here on Safeguard. I was very unhappy and feeling very
 incompetent as I was wrestling with all these problems and not
 doing very well at it. He'd take me to lunch and kind of pull
 me back from all this and get me thinking about what the real
 problems were in a very useful role and research and take these
 people and tell them to quit writing papers, go out and write a
 book which is probably the right answer for anybody but for
 everybody. But for some people it's a good thing. One of his
 other quotes I gathered that I always liked is that the problem
 with computing is that most scientists stand on one anothers'
 shoulders and computing stand on each other's toes. And he had
 a sense I think of what computing science as a science ought to
 be. He wasn't always right about it. He's not one who ranks
 very high in clairvoyance as to where the business is going in
 certain ways. But he had a very keen sense I think of what
 people could do, what they should be doing and how research was
 going to be different from development and some of those issues.
 And he was going in to Ed David who was executive director at
 that time. I remember one of the quotes was, he said, Ed if you
 buy those guys a machine I'm going to lie down on your floor and
 scream. ?????????? everybody had just done that. There was a
 proposal in for PDP10. That was one that again I was in a
 position at that time, I was going to have to review that PDP10.
 And I went up talking to the research people, Sam Morgan, as to
 whether this was a good idea to get this thing or not. Let me
 back up a little bit. Henry said don't buy a machine until they
 get their act together and tell you what they're going to do. I
 think that was a good input. And David was certainly his own
 man. I don't know how much he was influenced by Hamming, but
 they go back a long ways together and he paid some attention to
 Dick. But by and large he did not let them get a machine. And
 it was partly made easy for him because there wasn't much with
 the demise of Multics. There were a lot of knives that had been
 sharpened for that over the years as it kept missing its
 schedules and screwed up development and so forth. So I think
 Bill Baker realized he was not in a very good position to go
 looking for a few mil to buy a machine for these guys if they
 didn't have a story just what they were going to do with it.
 And that forced his famous statement that they're going down and
 playing with left over PDP7s and stuff from the lab to get their
 thing done.

MSM: If you asked Ken, "What are you going to do with this?"
 he'd say, "I'm going to build an operating system." Now that
 would not have been an acceptable answer?

Tague: That might have been an acceptable answer but
 probably not. I would guess not. And if that sounded too much
 like you guys just want to do Multics again and this was not the
 time to do Multics again. One of the observations being made was if
 Multics was influencing various vendors in various ways and
 there were some case to be made that you'd see some of these
 things maybe not on the right path. But I think there was pretty
 good recognition that the computing business had matured that
 we're building your own operating system for a large machine
 which was probably not possible. And on the other hand I think
 Ken recognized was, about minis, it was not only possible it was
 needed. And jumped into that window. But you see they were
 going for kind of a mini. But that PDP10 was not really a mini.
 The deck couldn't think of it that way. They thought of it as
 their maxi entry.

MSM: Yes. If I remember it correctly what I've read, it is,
 "Can we have PDP-7 or a Sigma 7?" We're not talking
 minicomputers.

Tague: So as I say during that era I certainly wasn't
 playing much of a role around that time. As I say David I think
 was just digging in and shortly before David left I think
 he
 was feeling
 the penalties of having of having Multics come in proper and
 again I don't know any other little stories. But I think it's
 not coincidentally right now that he ?????? science advisor I
 think ??????? career ??????. He probably was taking a lack of
 from this thing. He was very bitter about GE I know. GE kind of
 backed away from this thing and there was some truth to that.
 On the one hand there were some other people rather early in the
 project somebody observing the ?????? that it looks to me like
 you can do jet engines, nuclear reactors, and computers. Maybe
 2 out of the 3 but not all 3.

MSM: Yes.

Tague: That was confirmed. We might have seen that coming.

MSM: Did Dick Hamming play a role in shaping the style of
 computing research? Is it a very theoretical group, or...?

Tague: Not really. Not really. Let's put it this way.
 Dick had a blind spot I think on computing and that is I really
 do believe and still believe that there's a sort of experimental
 computer and a guy like Thompson who's a typical practitioner in
 experimental research and computing. And there was a very
 narrow myth that I think I helped with where Sam Morgan was
 getting pressures at this time, '69-'70 to sort of turn the
 computing research department into an entirely computer
 complexity blah blah blah automota... you know, that kind of
 stuff. That was computing research. This other stuff was
 something else. And I spent a lot of time with Morgan pointing
 out to him that I thought it'd be a terrible mistake not to
 support this other strain. It may not publish the same kind of
 papers and doesn't look much like mathematics but it's terribly
 important and it's good stuff. We need it. We need it very
 badly. The other place where I personally think I played some
 role was in the time later on where it looked they were going to
 get a PDP10. This was about '72-'73. The issue was should they
 get a PDP10 or should they get a more than one smaller machine.
 And the machine they were looking at in that context was the
 first 32 bit mini: the south Jersey outfit; they later became ---

MSM: Oh, I know. Perkin.

Tague: Yeah, Perkin-Elmer took them over and whatever predecessor
 company was ????????

MSM: They're now, oh I forget. My wife is Princeton's
 technology transfer manager. And it was that company in south
 Jersey that took over from Perkin-Elmer and picked up the
 ????????????? machine. It's a household word for a while.

Tague: Yeah. In any case I intervened as accurately as I
 could on that. It was the research management saying,. and
 Ritchie and Thompson himself saying look I think they'll do more
 for the company if you get a lot of little machines in
 order
 to work them
 together. Rather than one big machine. If you do one big
 machine then put Unix on another machine. So ho hum so what.
 And, you know, DEC may have a future in the big machine business
 but that's pretty iffy. And it doesn't look en route too much.
 Whereas if you can learn to work a file system with us, clusters
 of machines and so forth that will be a good deal. It was
 somewhere in that era that I wrote up a little talk that I gave
 to Research entitled something like "The Cloudy Crystal Ball"
 but what I was saying I had this vision we ought to be able to
 take Unix as an operating system but as a company we can support
 this as an internal standard operating system along with C in an
 environment. And then we can then front end a large external
 agency and commercial agency in this. With the idea that people
 would sort of see the machine and use a common front. It was
 not well received by Research.

MSM: Partly PWB.

Tague: Yes. It was a PWB kind of proposal and it predated
 the PWB I think by a year or so. My story is they may not have
 appreciated it but it all came true. That really is pretty much
 the way the business has gone.

MSM: What was their objection to it?

Tague: Oh, just that they felt the right thing to do was to
 put it all together on one machine.
 They had a pretty clear picture of
 what the problems were of making a lot of little ones act like
 one big one and they didn't think this was very workable. But
 you see I was kind of coming at it from the developer's point of
 view. I knew what developers put up with. And there was a lot
 less elegant than what Research was used to and would it concern
 a decent support environment. And in that context the idea that
 you, that you--- and I also understood about you know what a
 project like ESS needs to make a bill. It isn't going to get
 done on a PDP10. They're going to be out there looking for the
 biggest machine they can fine with more bytes than you can
 possibly imagine and that isn't going to stop. It's driven that
 way. And you can say what you wish about there being a better
 way to do this or what have you. But, let's not kid ourselves.
 This kind of combination looked pretty good. Some of the
 laboratory things brought in with Unix. There's another tune
 that we were singing about that time is hard storms were in the
 system where you'd have a PDP8 in the lab with Unix behind it
 another elegant thing where you can download C programs. That
 was sort of a semi-Unix environment where the PDP8 you can sort
 of program pretty much as though you had full Unix. They would
 come back to the disk on the big machine across the line and
 make certain calls that didn't exist in the little machine with
 all the real timing stuff that was done out there. He had some
 rather ???? things to do. In the context of MIRC and all that I
 was trying to get some support for that but there was never a
 big enough market or enough bucks. I couldn't find a way to get
 funded.

MSM: Did you decide at a certain point then that it was time to
 take over the latest version of Unix and standardize it?

Tague: Yes. As I say in '73 it was apparent that we needed
 the support and the right thing to do was to go up to
 Research
 and tell
 Ritchie. And I might add that was a really nice interface where
 he worked with Dennis and Ken. They were quite good about
 telling me when they had things wrapped up, when it was time to
 go up and carry one away again. And we synchronized reasonably
 well in that and my people took care of the dog work of putting
 together the design information files and things that Western
 required in order to capture the configuration and to do
 configuration control. And graduated off some internal gurus
 that were competent at fixing the system and modifying the
 system as need be. And you could talked with our customers on a
 basis ???? and just containing the story of the next stage. The
 next major milestone by '76 as I say I've got to have the whole
 thing together here in terms of Unix support going and Unix
 internally was pretty much a sole product. In September of '78
 Jack Scanlon was putting together the initial computing business
 center. They picked up, I guess there were 5 of us. I was
 brought in for Unix, Lee Thomas was brought in for the Mackie
 micro-processor chip, Nick Martalotto was brought in for some of
 the software support tools for Jay and Dick Haddon, database---
 something like that. Tom Arnold had the... I believe there was
 another whole hardware center that did the 3B development. The
 3B was going to kind of machine based and that started the real
 development and we got very quickly a lot more accepting with
 some of the Columbus fixings and tried to put together a single
 Unix that would sell very easily across the board in those
 places. The business in trying to get 3B hardware in shape to
 support it and--- one stranger I might mention that was of
 interest. During the '70's I had been telling other vendors
 that they ought to go get a license for C and put C on their
 machines. They were all eager to try to port Unix and I was
 sort of discouraging that. I wasn't sure that they would be
 able to do it and do it right. There was some feeling that they
 were going to port Unix to get it to come out right. It was
 probably going to be necessary that we do it ourselves. That
 was probably a mistake in retrospect. And I was saved by
 Research and ????????? down in Product License department and
 went out and licensed Unix. And I was very clear with Sam
 Morgan at that time that I want no part of this. My nightmare
 was, you know, bank one in Ohio with this guy from ?????????
 Miller who sits on their board and the AT&T board picking up
 Unix and putting something important to their bank on it, and my
 getting called out of bed at 2:00 in the morning to fix the
 thing. So I told Sam, you want to go into this business, that's
 terrific. But you guys support it. My support is fully
 occupied by my internal customers and I'm not going to answer
 the phone for these people outside. If you do that you can set
 up your own business. I have no regrets about the position I
 took. I am very glad that they went ahead and put it out
 because in effect it worked out just right. The people who
 picked it up were the Rand Corporations and the universities,
 the banks didn't touch it with a 10 foot pole. That was all an
 unnecessary concern on my part and there was tremendous payoff
 for all of us involved on getting this. I'm very glad they
 didn't pay any attention to me and my suggestion and licensed
 Unix. And I got religion on licensing Unix by the second half
 of the '70's because by the time we got there we came up to
 parent the deal for the systems picture. It was the right
 thing. But the problem I ran into was it was a real stone wall
 was that the computing business was being driven by by the
 western iron mongers and the idea was that this one early on
 that I finally had something to do there was that we thought we
 could build better iron than the next guy because we understood
 Unix in terms we could do it. Well it took me about a year of
 working in that problem to come to the conclusion that it was
 only a couple of things that made Unix run better, a fast
 process switch and a good handle on your memory pointers, a few
 things like this. Almost all of which really were coming along
 in the hardware designers from every vendor anyway. It was no
 big deal.

MSM: I was talking to Joe Condon and was surprised to learn from him that
 there had been in the Steve Johnson business of trying to build
 a C machine. Is this what you're referring to?

Tague: Yes. The idea was well, Steve Johnson had the C
 compiler so a C machine was one angle on it. But the other more
 generally was just Unix. The C machine was all very nice
 but
 they really
 wanted to have the hottest Unix in the marketplace out there.

MSM: So this would be a Unix machine?

Tague: Yes. The 3B should sell itself because it would be
 the hottest Unix box around was the idea behind it. And the
 hope was that if we can get the hottest Unix box around by
 building into the 3B hardware stuff that made Unix run better.
 Well, as I say, about a year I was trying to do that. After a
 year I became a proponent of it and it was probably the start of
 my departure from the DSG business in there. I never
 really
 reconciled
 that with my bosses and so indeed I made a serious personal
 mistake in not recognizing for almost a year that Scanlon really
 didn't have the same picture in mind as I did which I should
 have recognized. But I saw building of the OSS niche business
 as the place we could sell 3Bs and the rest. Incidentally if
 you look where our market is why that and the government is
 where it is at the moment.

MSM: Yes, I haven't seen a lot 3Bs outside the Labs.

Tague: They were busily ??????????? Cobol up on Unix and
 other chimeras and I understood the need to have Cobol there but
 I didn't think we'd ever get anybody to use the thing.
 I don't know how
 that one's come out in the marketplace. But I'd be surprised if
 there's very much Cobol code running on Unix anywhere in the
 world. But the business at time as I say was to sell iron and
 the management view of things as it was and perhaps still is,
 I've been out of that for, I left I think in '83, and was really
 out of the planning of it by '82, but still Unix was a vehicle
 for selling hardware and that you couldn't be in the computing
 business without a hardware base and there's no ?????? Nobody
 could find a software company that didn't want $50M a year. And
 AT&T's thinking $50M just isn't enough to pay any attention to.

MSM: Anyone see the micros coming?

Tague: Yes. And not to my knowledge anybody who saw how
 quickly and how pervasive they'd be. Lee Thomas who was a
 fellow I think with some vision was a great one for
 extrapolating the language of chips down and what you can do
 with those chips. And he was pretty accurate as to what was
 going to be achievable. Like everyone in the business he was
 probably off by a fact or two in how long he thought it would
 take. Except ?????? I suspect the politics in the game are you
 ???????? you insist everything is winning and say that you're
 going to be able to do this in the next year and you know
 there's going to be some second order pops up that's going to
 make it difficult to do that. You deal with that when it comes.
 But they go around that chain and they by and large
 deliver.
 That's how
 you just order later. The later we always because every time
 you push the technology down some term of the equation would
 surface and to deal with it when it was ??????????????????
 There's been a lot of debate; there still is. I've always seen
 the business as having 3 layers. There's always been a top and
 middle and a small. And those have changed their definition
 over the years but from about the end of the '60s on I can
 always find those 3 layers and they're defined not just by
 machine size but the approach to the marketing machine was
 bundled is how it is. And it ranges from the large end which is
 this thing when you buy a machine we put people on your
 premises. It's all a package. The unbundling of course has
 attacked that a little bit but it still stems from that
 tradition. It's very much seen.

MSM: It's like selling telephones.

Tague: Yes. But you know that these guys become part of
 your team. These IBM guys, they work for me. And they're in my
 offices and they come down and you can't tell them from my
 people.
 And the
 minis coming off the low end came out of this. You know, buy
 and put your lab machine and your control apparatus together.
 So the support there was pretty much here's the hardware and do
 with it what you will. As they work in the operating systems it
 never got the elaborate structures there until the business was
 well matured and there is almost a continuum at this point
 between the high end minis and the low end maxis as to the way
 they're sold. But then the micros came along and it's the same
 thing. ?????????????? But it went much more rapidly then as
 people realized that what I really want for this marketplace is
 a turnkey package. And that says that's really a quite
 different business at this point. It's the mini business where
 I still see the kind of boards being delivered. You know it
 comes in Unix these days of course. But it's not all that
 different I guess in some sense in taking delivery on a PDP in
 the late '60s.

MSM: Yes, the contrast that we seem to be getting at it does
 strike me strange. You find that the high and the low now in the
 middle that you expect the owner or user of the machine to
 know
 about the
 machine. You buy a big system. I don't want to know about it.
 I just want to use it. And a lot of the micro business,
 development of software in the micro business, has been to free
 to use it but we need to know it. Whereas minis there has
 always been an assumption that people who buy these things are
 well to learn how to use them.

Tague: They're knowledgeable. The mini is the VAR
 business, is one way to look at it, the VAR business or value-
 added reseller. The guys bring these things in and the people
 who buy them put stuff around them and they turn them over to
 somebody who may view as a turnkey system.

MSM: This is what you were doing with OSS?

Tague: Yes, the operations systems were turnkey systems and the craft
 as we called it would sit at these things and they would
 well you started out knowing that much about computing. Of
 course pretty soon you'd walk into the operating company
 and you'd see there's acres and acres of minis.
 Practically guys on roller skates skating from console to
 console trying to find what was up and down.

MSM: You've been with the company a long time. When did Bell
 Labs realize that programming was going to become a major
 activity and indeed a problematic activity?

Tague: The 60's, I think. ESS did it. The history of the
 ESS project which started before I got here. I arrived in '60.
 But I got an early view because I went to work in Systems Research in
 February and Tom asked me to go over here to Whippany where the
 switching people were at that time on a 3 way bounce Whippany to
 Holmdel to Indian Hill was there oddessey. But they were over
 here at that time in the Morris trial, which was this first
 electronic switch was put in Morris Illinois that used all kinds
 of funny technology ?????.

MSM: Oh yes.

Tague: Stuff like that. And the flying fox store. An end
 marked network that broke down neon niods to make switching
 paths and stuff like that. He sent me over here to get out of
 the ivory tower and learn what switching was all about and also
 to look into the computing business because we were clearly
 heading in the direction of computing research. And this was a
 big software project. And that project in 1960 was in a very
 interesting position. The guy who started it had started it
 with the idea of taking the number 5 crossbar switch which was
 an electro-mechanical switch and turning the translation memory
 into a Williams tool okay. And the translation memory on that
 switch, I think this is the one, when you look at it there's a
 bunch of big iron yokes and they'd go down in the rack. And you
 take a wire up here and you run it in and out of these
 yokes.
 When that
 line is pulsed, an electromagnetic field--- that yoke, it does
 things like changing line numbers into calling numbers and stuff
 like this. All with a bunch of relays and things. But his idea
 was I could actually just store the bits that represented these
 numbers and to look them up and find a spot to store. So the
 idea was I'd take a number 5 switch. By the time I'd arrived
 the schedules had been missed, the project was growing ?????????
 but Morris actually had been put together. And if you asked
 what the Morris trial did for us since there wasn't a single bit
 of the product in that machine that ever made the field that's
 the final ESS number 1. What it really did was that project
 went through transition. This was in the last half of the '50s.
 From this idea of putting a Williams tube on a number 5
 crossbar to a centrally programmed controlled machine. And
 somebody recognized that was what they were doing at that time.
 And I don't know who they were. Er, ... Keister, Ritchie and
 Washburn. Ritchie's father was the Ritchie involved. He wrote
 a book at that time which was the first hardware digital design
 bible, and all those 3 guys were here at Whippany handling the
 ESS project. They had a big training program going that was
 training people in the logical designers. There was for example
 Erna Hoover who I shared an office with and retired recently as
 a department head and whose husband was Charlie Hoover. He was
 an E.D. who retired here recently ???????? Yale. Erna had a
 degree in Philosophy from Welleselly. And she was busily
 teaching and learning boolean algebra in this other context.
 And indeed there are a whole bunch of philosophers in this
 office under Bill Keister who was in Systems Engineering
 ????????? they worked with. They're a delightful bunch of folks
 to work with. Since I've always been an amateur philosopher in
 science I think I'm a minor in that along the way. ???????? So
 these people were getting hardware training. Of course that
 gradually moved along to software training and the ESS people
 were the first people to miss their schedules and cost estimates
 by orders of magnitude. A dubious honor but pretty clear. But
 if you look at the Morris trials what it did, what they really
 had to do was for the first time to get a requirements
 description of what a switching office did in one place. And
 they discovered remarkable things. I was over here sort of on
 the fringe of this business. One of the papers I'm kind of
 proud of was at that time I said what you guys should do is buy
 a commercial computer and hook it up to a switching machine so
 that you can download the switching machine and drive it. You
 have to put a big memory on this thing. I don't care if you
 can't afford much memory when you get into the field. You need
 the memory for development. And of course I had some inkling
 that memory was going to get cheaper along the way. I had no
 idea how fast and how quick but we spend an awful lot of time
 honing code that fit into something that didn't need to be done.
 But the other thing was trying to get these people to
 understand and to get me to understand what the economics of the
 phone business were. One of the numbers I remember was they
 discovered they had 115 different kinds of trunks and signaling
 systems. And the word at that time was that's no problem. We
 could do it all in a program. 115 trunks. We'll just program
 them and even them up. Now noticed that we were talking of very
 complicated real time programming protocols and the context was
 a single CTU duplexed. Doing all this in real time all by its
 lonesome. The people I worked with, a very good engineer there,
 had invented a thing called the signal processor which was the
 first idea of an outboard peripheral that handled the real
 timing stuff. One of the key timing things of that first ESS
 was when your phone rings and you pick it up you've got to turn
 around very quickly something that shuts of ringing. Otherwise
 you're going to get that in your ear and you aren't going to be
 happy and it'll probably burn out the receiver on the handset as
 well. So one of the key timing loops was a loop that's spent
 all of it's time just looking to see if somebody had come of
 hook and get down and clamp that ringing tone ??????? [tape
 becomes unclear; sound of banging heard] ?????????????? Mike
 ??????? had invented this SB. So I put this old outboard in
 this little computer. Computers were getting cheaper, that sort
 of thing. The single processor finally came in. It took 8
 years I think from the time, from 1960 when that was being
 proposed. But we had an upstairs and downstairs at that time
 here in Whippany. Downstairs were the Systems Engineers which
 is the group I was with. Upstairs were the developers who had
 done the Morris trial. The upstairs developers were used to
 programming bit by bit using bit oriented machines that worked.
 They knew how to use every bit. And word orientation, you know
 word organized machines were coming at them. They were existing
 vitally. "I can't do efficient programs with words. You waste
 bits." How many times had we gone around that kind of story in
 this business? It's just frightening to see.

MSM: Well, it was the time when throwing away bytes must have
 just seem too wasteful.

Tague: The bit cost at time was something like over a
 dollar and the idea that it was, we knew already it had to get
 down to around a penny before the stuff would really work and
 the idea to get down to tenths of hundreds of a cent was just
 science fiction. My favorite quote is in ?????? he said, I am
 always too optimistic in what I think I can get done in a year
 and much too pessimistic in what I think can be done in ten.
 That's something that I have to keep reminding myself. But
 during that thing we started training programmers. There were
 programming courses coming along, configuration control of a
 sort was invented with ESS, one of the first data dictionaries
 was embedded with ESS. It was to keep track of symbols on ESS.
 These would conflict and these huge hundreds of programmers
 all
 putting
 this stuff together, make and build techniques were developed in
 that context, and one of the unfortunate things is that
 resesarch never really made contact with these people. I don't
 know how many times that I would go out to Indian Hill or down
 to Holmdel or wherever they were at the time. We'd sit in on a
 research review. Frequent requests ??????? and it would go like
 this time and time again. The research guys would be there
 telling them how to write programs in the context of cottage
 industry. These other guys knew they had a factory going and it
 never came together. The sad part was that unfortunately each
 side kind of dismissed the other. And there were some things
 that they badly needed. Research was absolutely right about the
 necessity of getting some kind of notion of an operating system
 in higher level languages into the game. These folks just don't
 understand. One of the things they understood very early was
 that something like 90% of the programming of the ESS machines
 is for maintenance. In those days this mortal machine
 ??????????????? It was a pretty remarkable concept and it still
 is. People out there would change the operating system; never
 take the machine down. Try that on your IBM machine. There's a
 lot of very clever stuff that goes on that these people
 understand and if you know you have to do that you get very
 cautious about being too clever in things like moving things
 around in memory and dynamic memory management. They depended
 on sort of knowing where things were locked in core so they
 could do this step using their two processors where the old
 processors running the old operating system this one kind of
 starts running the new one and they slowly do this interchange.
 Lots of good stuff. One of the first research contributions
 that really took was Joe ????????? multi-dimensional analysis.
 The way it was used was ESS had invented a card in those days.
 They went around and every type of board they had they took
 multiple copies of that board and they took a copy of that board
 and put switches in. They could put hard zero one faults
 everywhere the made any sense to do so. They plugged the board,
 they'd flip a switch and they'd run their diagnostic programs
 and record the symptoms. And they'd build a big dictionary.
 The idea was to get it down to a board replacement. The craft
 simply when something went wrong he'd sit at this console and
 the console would come back and say we'd run this test if this
 happens, punch this button and then you go through a whole
 catechism and ?????? would say ???????????? And they pretty
 much did it. But Joe Cruscle went out there with his multi-
 dimensional analysis. He took all these troubles and tests and
 in effect was able to tell them something about which test they
 needn't bother to run because it wasn't doing any isolation for
 them, what dimensions they needed injected. But it took years
 to get the idea of operating system and languages in out there.
 They were very good in the tool area that as they recognized
 pretty quickly they ought to get on a commercial machine, an
 interactive commercial machine. They went on TSS and put all
 their support software. Those guys were very sophisticated.
 But there was real resistance on those people who did this real
 time programming on the system and insisting they couldn't stand
 having a compiler around and they were right. What you needed
 was this model that said you write stuff at higher level
 languages, you measure where the body is buried on the real time
 loops and then you code those that you have to in whatever
 assembly level [language] is appropriate. But that really
 didn't get broken in until C. With C they finally realized and
 plus the economics in this stuff. That was the other thing that
 made it tough. You knew a compiler was not going to be
 efficient ????????? code and they couldn't afford the memory.
 It was a valid excuse through much of the '60s. But it was not
 excused by the end of the '60s. Took another 5 years or so
 before they got religion. But that was the first one. BIS in
 the '70s was another one. Safeguard at the end of the '60s was
 another one. Safeguard profited tremendously from ESS. I was
 on Safeguard the year we picked up their macro assembly
 language. It saved my bacon. My first responsibility was a
 compiler that was going to be an extension of Fortran. It had
 real time, complex arithmetic and every other thing and Univac
 was going to build it. It's very embarrassing for me to say but
 it took me a year to kill that thing. I should have been
 faster. And there was another project that got started off.
 They were building this 10 processor machine which was a pretty
 hot machine in its time and only transistorized mill spec, all
 kinds of stuff, radiation hardened, and the only peripheral gear
 they had on it was a model 33 teletype and that was what they
 were going to do to debug the machine. That was one
 contribution I made. I was at that time in the language area
 and some guys ??????? as a matter of fact built a GE time
 sharing system on a GE engine here. We finally got them around
 to an MBS base set of tools on a standard IBM ??????? that
 really started making the thing go. We could pick up this stuff
 from ESS ???????? code control gave us language configuration
 control. The language PiDense, Program Identification. Unique
 identifiers in this program so you keep track of what it was.
 An elaborate scheme of course for keeping track of vintages and
 programs and what had to come together to do the build. So that
 continued and one of the things in both Safeguard and In BIS and
 almost every large BIS project I claim you can see the same
 phenomenon that occurred on ESS. You take on one of these big
 projects. First of all ?????????? You don't think you're going
 to build a prototype. Then you said you were calling it by a
 different name but you will. But what typically happens in the
 building of the prototype what you're really doing if you look
 back at it in retrospect is you're putting together a
 programmable requirement of the job to be done. And you're
 educating people on both the application in the computing end to
 understand enough about each other's business that you start
 talking sensibly about where you can understand what is feasible
 and what's possible and negotiate the right compromise.
 Typically the application side coming at you thinking computers
 are magic and if they get empowered insisting the magic be done.
 And, you know, it of course always results in disaster. And
 the computing people are trying to communicate what is truly
 feasible on the one hand but also understanding that when these
 guys tell you that this interface won't work for my clerks to
 pay attention to that. Those clerks are not the same as you
 guys at the terminal and have to get those things done. We've
 been around that wheel several times and I sort of despair that
 there's a better way to do it. But I don't think our company is
 unique. I hear less in detail about what goes on in other large
 corporations. But I watch enough large disasters going on. The
 airlines reservations system have their stories. It came out
 during the late '60s early '70s as they kind of got their act
 together.

MSM: The major book I'm working on is the origin of the
 software crisis as it emerged in the '60s and how the industry
 got into that situation.

Tague: ESS is an interesting study because it's pretty well
 documented. If you go through the BSTJ and read about the
 Morris trial and then there's probably a half a dozen
 issues that were just devoted entirely to ESS at various
 epics. And if you read those ---

 Ken Thompson

Wednesday, September 6th 1989

MSM: Is it six? Is it six? Pass says seven. Okay, I 'll be here
 tomorrow. Okay. I was going by the pass.

MSM: Various accounts I've read of UNIX, Ritchie's retrospective on
 it, and even an interview you did with some people for a video
 back in 1981, talk about the system as being, or UNIX as being,
 sort of culling all the best ideas in operating systems that
 emerged during the '60's. What were those ideas and how did you
 first encounter them, how did you encounter them as ideas?

Thompson: My background for obtaining these ideas was uh, there was a I
 went to the school at Berkeley and there was a thing called
 Project Genie at Berkeley. As project Genie it was never very
 heavily advertised. But, what they is brought a SDS930 through
 an ARPA grant and cannibalized it, put paging in it and it
 became what SDS later marketed as SDS940,which was a time
 sharing system. In it there were some Mel Butler, Lampson,
 Peter Deutch and Mel Hurdle were there. They were the chief
 people there, who went on to do other things. But, they
 essentially made a cleaned up version of MIT's operating system.
 Time sharing system.

MSM: The CTSS?

Thompson: Actually, no PB1060. (not clear) It's a TDA. It's a three-
 letter acronym. IDN or ISN or I something. I can't remember.
 Anyway they had a lot of fun ideas in there and there and a nice
 clean file system. Then when I went to Bell Laboratories, I
 worked on CTSS, I used CTSS per say. I used CTSS and did some,
 a lot of programming on CTSS and I worked on MULTICS.

MSM: What did you promote?

Thompson: We were involved with the file system, which never really came
 to exist, because um the addressing is built into the paging
 system--the whole process is seen by paging--and what we
 did was try to develop read and write calls that were sequential
 calls that turned around and ended just reading sequentially out
 of pages, it's sort of upside down notion. And the um there
 were problems with the segments, things called files, and that
 they were fairly short and maximum size. Through the eighteen
 words of addressing, max. So, if you want big files you had to
 concatenate segments and walk across to the two-dimensional
 address--one dimension being the segment number and the other
 dimension being the word within the segment. Anyway, it was to
 try to clean up some of those problems with paging. But, it...
 so anyway... That's were most of the ideas came from was the
 combination of those three systems. The 940 system... what
 became the 940 system. CTSS and Multics, you know a couple of
 new ideas.

MSM: Which ones were they?

Thompson: Um Pipes. There were a lot of things that were talked about
 but weren't really done. Like treating files and devices the
 same, you know having the same read calls. Typically during
 those days there were special calls for the terminal and then
 the file system itself. Those calls weren't the same.
 Confusing them and redirecting IO was just not done in those
 days. So, that was... I think everyone sort of viewed that as a
 clean concept and the right thing to do but for some reason it
 just wasn't done. It was just the right time to actually install
 the feedback; and, uh, the things we stole: We stole a shell
 out of a MULTICS, the concept of a shell. We stole per process
 execution. You know create a process--execute the command.
 From a combination of the two, although, neither of them really
 did it, MULTICS wanted to do it. But, it was so expensive
 creating a process that it ended up creating a few processes and
 then using them and putting them back on the shelf, then picking
 them up and reinitializing them. So, they never really
 created a process for command because it was just too expensive.
 The ION direction and the stuff like that and later in fact
 streams came from um the IO switch, that we worked on in
 MULTICS. Having everything work the same and just directing, you
 know, changing what it really pointed to. Hard to think. I
 remember at the time that there was a discussion on whether we
 should go to six or eight bytes. Seems like silly discussion
 now. Wasting all that space, you know, going to eight bit bytes
 when there was only six bits of information there. (Laughing)
 It doesn't seem like a grave decision, but it really was. In
 higher level language which was still (not clear), we had always
 wanted to do that. The original wasn't, was written in a simple
 language. But,

MSM: Go you wanted to go to high level from the star t?

Thompson: Right from the start. Knew we had to.

MSM: Was that MULTICS influence?

Thompson: That was MULTICS influence. And just the complexity of
 maintaining the thing, we just knew that, you can't maintain
 something. Even write it, get it going. But, it will evolve.

MSM: Did the choice seem obvious to you? As to which high-level
 language to use?

Thompson: No. Not at all. Because none was really good. PL/1 was too
 high for us. Which was what MULTICS did. Or even the simpler
 versions of PL/1that we used in MULTICS. Like there was a thing
 called EPL. The 360 was around, although it was IBM-
 proprietary. After UNIX was up, or, simultaneous with UNIX
 coming out, BCPL was just emerging and that was a clear winner
 with both of us. Both of us were really taken by the language
 and did a lot of work with it.

MSM: How did you come up with it, it's an English language wasn't
 it?

Thompson: Ah yes, but the guy who did, Martin Richards, actually
 developed it at MIT. It was available in a very informal way,
 on CTSS and we pulled it off of CTSS and got a version running
 on GECOS here and did system programming there. It was too big
 a language to run on the UNIX machines that were 4K machines.
 That's when B was developed. Which was ...

MSM: Did you develop B?

Thompson: I did B.

MSM: As a subset of BCPL

Thompson: It wasn't a subset. It was almost exactly the same. It was a
 interpreter instead of a compiler. It had two passes. One went
 into intermediate language and which one was the interpreter of
 the intermediate language. Dennis wrote a compiler for B, that
 worked out of the intermediate language. It was very portable
 and in less than a day you could get very versatile (not clear).
 Typically the interpreter was a set macros for your interpreter,
 they were very field orientated and you just define these macros
 with these fields and then write a little interpreter that would
 switch the set routines, and you had to write about twenty three-
 line routines, and it would run. And it was very small, very
 clean. It was the same language as BCPL, it looked completely
 different, syntactically it was, you know, a redo. The
 semantics was exactly the same as BCPL. And in fact the syntax
 of it was, if you looked at, you didn't look too close, you
 would say it was C. Because in fact it was C, without types.
 There's no word like interchar or struct or anything like that.
 The word for... There was a word for extern, which means to
 declare an external thing. There was a word auto, which
 declared an auto thing. So, it would be like auto XYZ, instead
 int XYZ and it meant "word". Which was the only time.

MSM: So it operated really at the machine level.

Thompson: Yeah. It was used to a very small extent. It was written in
 its own language. That's why it's so portable. Because you
 just pull it through and it's up real quickly. Um... But, the
 interpreters, the interpreter for the 11 was having some
 trouble. It wasn't a word machine, and this thing had a word
 notion, and so on almost every operator you had shift left and
 shift right, shift left and shift right. It was just not a good
 match at all and part of this is we didn't have a good--on top
 of the interpreter problem-, it wasn't even a good interpreter
 on the 11, because of the mismatch of the machine and that we
 wanted something better as the systems language is what prompted
 Dennis to slowly permute it into C.

MSM: So C essentially contains B?

Thompson: Well, some of the anachronisms of C, that are now gone, or, at
 least are not or are unpublished to the point that no one knows
 they're there, are B anachronisms. Like auto. There's a word
 called auto. No one knows, I think it's actually ANSI finally.
 The word oriented parts of C, as C emerged were in fact the
 basic routines. And in fact one of the major, at least in my
 view (not clear) with C is that a arrays to are promoted to the
 address of the base of the array every time you touch them and
 that's one of the fundamental things of the NBCPL. That there's
 no such thing as an array but there's these things called
 vectors. A vector is a list of words and declaration of a vector
 is a word containing a pointer to a list of words. If you say
 auto x of 5, there's no such thing as x of five, you know,
 that's a type, and there is no types in this language. So, what
 it is, it's a single word called x and then five words that are
 unnamed and a pointer, initialization of a pointer into x to the
 base of the five words. To keep that semantics and develop a
 notion of an array, which we want to promote. The name of an
 array into the address to do it at run time. Anyway,

MSM: It always seems to be one of the neat features. The way you
 could step through an array with arithmetic.

Thompson: Oh yeah, yeah.

MSM: You prompted a question when you talked about portability of B
 and of course one makes a great deal of the portability of UNIX
 itself and it's a portability, if I understand you correctly,
 based on self-reference, or almost self-modification, which was
 the theme you were pursuing in your Turing Award talk, largely
 to suggest the dangers of doing it. Is that a theme of
 continuing interest to you?

Thompson: Have I got it right to start with? I guess it's wrapped up.
 Von Neumann machines in the real sense. There's a lot of power
 in executing data--generating data and executing data. In
 fact, that's how languages work and in college I worked for the
 comp center and it was thrown upon me to maintain a language
 called NELIAC and it's no longer wanted. Then later on then
 another language called Smalgol as a subset of Algol. Which were
 compilers both written in their own language. You get a sense
 of, I don't know, bootstrapping and of self-modifying programs
 and of self-replicated programs when you are in a position of
 maintaining a language written in its own language. Even if
 it's written in a simple language, you know, you get this
 feeling of bootstrapping and moving on and I used to do a lot of
 that stuff, earlier. In fact, the Turing talk was about work I
 did a long, long time ago. I'm really sure I referenced the
 date that it was done in the talk.

MSM: You talked about the game of writing the shortest program that
 writes itself. You said, "I imagine people programmed in
 Fortran for the same reason they took three-legged races."

Thompson: (Laughing) I shouldn't say such things.

MSM: Well, all right. It's a great remark.

Thompson: Last year I taught at University of Sydney I gave that to my
 class, the shortest self-reproducing program in C, and I got a
 surprise. I didn't think there was a surprise there to be had.
 But, I got somebody who has the shortest one I've ever seen,
 which is a record breaker, by about four characters of what I
 had proved to myself was the shortest program, and they did it
 by a totally different mechanism which of course nullified the
 proof.

MSM: Did you spend any time up at MIT during MULTICS ? Did you
 come...

Thompson: I just went in and out for a day at a time. Maybe for ten
 times. Something like that. Yeah. I'd go up there for... just
 ran through the halls and did work and go to meetings and stuff
 like that. I spent no time, I didn't teach and I didn't stay
 there for more than a day at a time .

MSM: 'Cause some of these things were very much a part of that
 environment: Minsky and then LISP, which essentially is a
 language written in itself.

Thompson: Well, LISP , least the original LISP, you know, the book, 1.5
 is... you know I think it's a horrible language. I really do.
 But, I was struck with that book and the idea of defining very,
 very low level semantics, you know cons and (not clear).
 Essentially that's all that's defined, maybe a few more. From
 that, developing a... it's not so much written in itself that it
 defines its own interpreter, in a way that gets into the what I
 think is the whole semantics for (hearing?) languages. It's
 always been a problem when you write a language or describe a
 language to say what constructs it recognizes and what they mean
 and what they actually do and that was the cleanest, simplest,
 most recursive, beautiful semantics of a language I've ever
 seen. Probably even to this day. But, unfortunately, what it
 describes I think is just a horrible language. I agree. That's
 really striking, 1.5. I did a lot of that. I did a lot of
 compiling. Even in college and out of college I did a lot of on-
 the-fly compilers. Ah. ah. I wrote a GREP-like program. It
 would... You type in ..., you'd say what you wanted it to look
 for, and a sed-like thing also. That you'd say, I want to do a
 substitute of A for B or some block of text. What it would do is
 compile a program that would look for A and substitute in B and
 then run the compiled program so that one level removed from it
 do I direct my (unclear) and the early languages, the regular
 expression searching stuff in ED and its predecessors on CTSS
 and those things were in fact compilers for searches. They in
 fact compiled regular...

MSM: Does this reflect itself in UNIX as it was developed?

Thompson: Not a whole lot. Outside of operating systems in general tend
 to operate on programs and they have to somehow turn the notion
 of data and programs inside out. They're operating on what they
 think are data, and that data are running programs. The whole
 (unclear) is encapsulating processes as not variables just data
 comes into it. But, no it's nothing real fancy in terms of....
 Do you know this kid Henry Heslin (?) He's a PHD student at
 Columbia. He's the doing a lot of weird stuff very similar to
 this now. He has a UNIX mailbox that does 68,000. But, when he
 issues a open on a file. It's the same semantics as UNIX. He
 compiles into what would be the open file table. Build the
 subroutines to getchar, putchar, read and rrite and getchar,
 putchar, that are just amazingly fast with all the checking
 built in. You know the files open, you know the descriptors
 here. You know all of this so that.... A read call traps right
 into this pre-compiled code for that at one character per time
 in a system that he gets faster than most systems get and are
 doing 8K at a time. He does a lot of that stuff.

MSM: I see. Does he work from here?

Thompson: No, no. He's...

MSM: How do you know about him?

Thompson: Um ... he wrote a paper that some people hate and some people
 love. I was struck by it. It's called Super Optimizer. What
 he does, he defines a function he wants to write, and see, and
 then he by trial and error, he builds that machine language that
 will implement the function, he uses the function to check the
 machine language. So, he'll try essentially all programs and
 then see if that program equals that program, but semantically.

MSM: (Laughing) I like to see what I'm getting... . It's a
 difference of opinion.(Laughing)

Thompson: And um, it generates shortest possible program for small
 functions, you can't do big things. It generates code that is
 absolutely inhuman. It's, it's indescribable, to be honest.
 Um, and um code you,... it's easy...there's no way to describe
 it except that it proves it. I've use that idea, since I read
 that paper, I've used that idea around four or five times. On
 one case I used it for a compiler I'm writing for 68000 um,
 multiply takes thirty-two seconds no matter what. So, if you
 multiply something by three, thirty-two cycles. Those same
 thirty-two cycles, thirty-two adds, on this machine. So, what a
 combination if you change a multiply into shifts and adds.
 Multiply by a constant with shifts and adds of, you know, the
 original thing. You're going to always beat the multiply
 because, the multiply is implemented so badly on this chip and
 so what I did is write super optimizer, which tries all
 combinations of shifts and adds to generate, to simulate a
 multiply by constants between one and ten thousand or something
 like that, and put them into tables and take the C the compiler
 and generate explicit code which is the best shift and adds and
 subtract.

MSM: So the multiply go to the table, look up at....

Thompson: No, no it doesn't go to the table, the compiler goes to the
 table. You say multiply by five and the compiler goes to the
 table and does shift left of four and add. It's four plus one.

MSM: So it picks up a particular combination of shifts and adds that
 will work for that particular multiplication.

Thompson: Right, shifts, adds, and multiplies.

MSM: By doing table lookup and then imbedding code.

Thompson: Right. And it's optimal because that's how the table was
 generated, by trial and error, all shifts and adds that can
 generate all multiplies of all things. Another one, is that the
 bit blit on this thing is um... it's read a pixel, a block of
 pixels, perform some operation on a block of pixels. It's like
 plus equals. You know, pixel block plus equals pixel block.
 Where a plus is a pixel is an XOR an man / you know all these
 operators. So, you put in any of the arbitrary binary sixteen,
 any of the sixteen binary operators in this opcode for the bit
 blit. And the whole thing's compiled. When you do a bit blit
 you compile the code and run it, and you want the best compiled
 code for these operations. You had to find the best compiled
 code for these operations. Put it into tables that are up and
 generated by trying all of the programs.

MSM: What machines?

Thompson: 68020.

MSM: Is that the NeXT symbol of the NeXT machine? Or is that just
 the (unclear) right there?

Thompson: No it's just a joke.

Thompson: That's the machine sitting on the table. It's a terminal
 in.... It's...tactically, if you want to use the word, it's
 almost a Sun3. It's the 68020 floating point, four-meg memory.
 Network interface which is an ether--it's a (unclear)

MSM: Did you design that yourself?

Thompson: No, no. It was designed here. Not by me.

MSM: Let me pull you back. ...Talked about this distillation of all
 the good ideas. Were there ideas that you particularly wanted to
 avoid, or features you wanted to avoid, or that you had in mind
 as representative of what was bad with operating systems?

Thompson: Yeah. There were lots of them. I wanted to avoid, special IO
 for terminals. I wanted to have virtual memory, at least as
 it's coupled with file systems. I wanted to keep file systems
 really exclusive and separate from virtual memory--as not be
 read and be write. There were lots of things. Ah. I wanted to
 avoid this thing called an "executive". The word has lost its
 meaning now. What it was is a pseudo-shell, built into the
 kernel, that somehow controlled the console and execute the
 commands for you and to drag that out and make it a process of
 any process could execute any command.

MSM: Just to make sure that every processor...it sets every
 processor the same as a user processor and having this
 privileged.

Thompson: Yeah and also to make the thing that became known as the shell
 it's handled in like any other program. There was no 'the
 shell' that came with the system that you were stuck with for
 life. In fact, we started off with two or three different
 shells and the shell had life of its own. A new shell would
 come in and supplant the old one and there were... shells
 performed different functions. Like, there was a shell for a
 video interface. A shell for a voice synthesizer. You know,
 what you would do is bring in a touch tone phone and put
 another shell in its place. So, anyway, the idea that there was
 no built in known level of command, that, that was just a
 replacement program that we could avoid like any other. We tried
 to avoid, you know, records. We were told over and over that
 was probably the most serious mistake and the reason was the
 system would never catch on, because we didn't have records.
 Essentially, the record manager was images imbedded in disk
 images. Having just this uniform sequence of lights, they said
 over and over to us that was a serious mistake, but we stuck by
 it.

MSM: I've just been having exchange systems programmer down at
 Princeton on the IBM mainframe. The problem, default record
 formats and what happens when you try and do a get on a file
 that's got a different format, losing (unclear) records
 when...do you have a code?

Thompson: I have um. I have um...in that era, we weren't trying to
 promote this idea. I'd give talks, we always come up, you know,
 why you didn't do records and I'd have some extra slides, cause
 I knew I'd be asked this. You know, you know, you jumped and
 said, " Well, I just happen to have a couple of these laying
 around. (Laughing) There, the best slide and best story is
 McIlroy's test. You ever heard of it?

MSM: Sort of finding a....

Thompson: Yeah it's a Fortran program that works

MSM: ... the first 'e' in the in the eighth column, and you do it on
 the Fortran program itself.

Thompson: Right. To ask them to go through the steps is just priceless--to
 see what happens in these systems when you do that. It all
 has to do with record formats. Confusing program and data, in a
 file format. You know, that things... You know, there's text
 files that are data formatted. You know, on and on and on.
 (not clear) It's just.... That was one of the things. The
 other thing is that, there's a series of thunderbolts out of
 manuals. Describing um. (not clear) By chance...

(Shuffling of papers)

Thompson: I think this might be it...No, this isn't it... .This is very
 similar.

Thompson: You know about the Yeah. It's putting it there . In our UNIX
 paper. Um, um. Dennis wrote this. It offers a number of
 features (not clear) it was actually a joke. It means nothing
 in a sense. It's those kind of things that people write in
 papers. People picked it up. Some people picked it as a joke,
 and some people didn't really understand it as a joke.(Laughing)
 Variations. Variations on that and that's how it gets picked
 up. It was a joke. (Laughing) ... four Princeton (unclear)
 larger bankrupt packages. Can you picture (not clear) ever
 wearing this thing.(Laughing) BT52, DEC's newest version of
 (not clear) (Laughing) So, and the other is, the one I was
 trying to find is, it, it, it was one of the HP3000, brand new
 operating system, post-UNIX. Talks about the editor and says
 that, "The editor edits um um binary um card images 84
 columns--whatever, some magic number--in a variable format. It's a
 variable column format, with columns set to 84 and this is what
 their editor edits and there's about ten computations like that,
 describing, you know, formats. Record formats and what this has
 do to convert this to this, you know.

MSM: Is the absence of those kinds record formats the reason why the
 UNIX editors had no concept of column? That is, if I am in a
 CMS editor, I can do column substitution, column searches, it
 not only has the notion of a line, but it has a column and I can
 go directly to it, do column locates and column changes.

Thompson: I don't know, I think mostly, it has no notion of columns,
 because none of the languages have notions. Grant, if we edited
 Fortran, I assume that you'd put a column thing in there. There
 are regular expressions that you can use to get your (not clear)
 at things.

MSM: Just no one found that feature particularly useful.

Thompson: If it's a notion that you need or want then I'm sure it will
 easily. I don't think it has anything to do with records,
 because, in fact, you know, the only thing important about lines
 there is newlines. There is a notion of lines and a notion of
 columns. It's just that we never (unclear)

MSM: The story, as I gather, is that behind UNIX stood MULTICS. All
 of you been working on MULTICS, then the word came down: no more
 MULTICS. How did you feel about that?

Thompson: Um. Mixed. Um. Technically, I thought it was a good idea that
 we were getting out of MULTICS. That it was too big, too
 expensive, too over-designed. It was just clear it was an
 exercise in building monstrosities. Efficiency would never come
 back to the point of where it was was cost effective and
 useful. Most of the efficiencies were dumped into features that
 were there because they were ... I don't know how to describe
 them. They weren't there because they were good features, they
 were there because they were neat technical acts. Um. So, on
 one hand, I thought it was the right decision. Even then. On
 the other hand, we, meaning essentially Dennis and I, two or
 three others, had a ten million dollar personal computer. It
 was clear that this decision was aimed at getting rid of that.
 You know, the side effects of this decisions was that this thing
 was going out the door. Our personal way of life was going to
 go much more spartan. So, in that sense, we didn't want this
 decision to go. Um. There's a deeper decision in it than just
 MULTICS, the crew wanted to work on MULTICS in Bell
 Laboratories, and that's that computer science research
 shouldn't work on operating systems. Operating systems were
 dead. This was the whole.... There was a whole change in
 thought at this point that, operating system research was dead.
 Um. Manufacturers, in a laboratory environment, you couldn't
 build a workable operating system. It really required a
 development kind of mentality and you know, grind it out. That
 we provide insight, but we couldn't build one. They were too
 big, too expensive to build or maintain. The whole computer
 science research was going to go back to theoretical, paper and
 pencil kind... There was a signaling of a very strange change
 here, at that point. Essentially getting out of the computing
 type of computer science as opposed to the theoretical type.
 When we persisted we were almost outlaws. We had to beg and
 borrow machines from weird places and weird sources.

MSM: Why did you persist?

Thompson: It's what I do.

MSM: You wanted to work on operating systems?

Thompson: Well, no not per say. I just wanted to work on computing and
 programs and it wasn't in essence no operating system. I never
 really viewed almost anything I did, as what I worked on. It's
 what I wanted to do next, for some other goal. After MULTICS
 went away and things settled after this, our computing
 environment.... Computer science and the Computer Center were
 one, and it split and the Computer Center went off to the
 services area, you know, like people who do the air
 conditioning. Computer science went into research. Um. We then
 had to go over a fence to talk to the computers. The computers
 were not with us anymore. We were a service organization where,
 you know, you had input boxes and output boxes and submitted
 cards over a counter. Very, very different approach what we
 were used to up until this point when we, since it controlled
 everything. The operating systems became vendor-supplied. In
 particular we went GECOS, and a word on top of GECOS, called
 TSS. Which was their time sharing system. Which was nothing
 but batch card entry. Quick turnaround batch card entry into
 the batch world. That's what they call it: TSS with a partition
 for editing. It was horrible just to use that. The operating
 system, I think was just a (not clear) to get into a environment
 (not clear).

MSM: I was thinking about this yesterday. As you may know from what
 Doug has said, I'm doing a history of software in general,
 during the '50's and'60's, working up to the roots and the kind
 of thinking that was going on in the late '60's as the software
 crisis emerged. Basically the question: how did the industry
 get itself into that, that situation? I was thinking about the
 operating systems of the '60's, which, if I understood them
 correctly, as someone who, when he was programming in the late
 '50's for a small company, still on the machine at night and
 worked at the console that to debug a program. I never went
 through that: hand on your cards and wait until the next day to
 get your output, first stage of program computing. That the
 notion of the operating system was to make the machine
 efficient. That the notion of a system like UNIX is more making
 the program more efficiently. As it's a programmers system
 rather than ...

Thompson: It was a combination of both. I mean there's reason they would
 be mutually exclusive. Um, um. The talk of the day in the
 conventional wisdom, which I never really bought, was that they
 were mutual exclusive.

MSM: That was the feeling at the time?

Thompson: Yes, and that um, time sharing would never survive because,
 you're spending all of your time on this big mainframe, you
 know, all floating point hardware and all of this stuff, you
 know, fielding these ratty little interims from people typing on
 flex-o-writers. And it was self-fulfilling prophecy, they
 believed that, in the systems they that built. Believing that,
 demonstrated that. Because, it makes it what it had to be. I
 think that in time sharing you can do better than batch. That
 you have a better mix of things to do and you can do scheduling
 in such a way that you just can't get in batch.

MSM: Follow that up, because, again, there is the lore that has
 grown up around that. On one hand, I gather that what you all
 felt most strongly about at the end of the MULTICS project,
 other than the fact is that you have a ten-million dollar
 personal computer, was that notion of communal or convivial
 computing, that is that you have been able to share files with
 one another, become a medium of communication among you and that
 you felt--Doug at least said he felt that that really hurt to
 lose out. Then the other story is that UNIX started off as a
 personal system. A one-person system. Those two stories
 (People laughing) aren't entirely compatible. That is...did you
 have a notion when you started UNIX of restoring that sharing?
 Was that in from the beginning? It was going to be multi-user
 system from the start?

Thompson: Not, explicitly, I think. I was more interested myself. Just
 selfish notions of trying to get a environment to work in.

MSM: Were you trying to build a programming environment for
 yourself?

Thompson: We always wanted to expand it and turn it back into communal
 things. We were always trying to get machines that we could take
 home, you know and share among wider groups of people. There's
 massive amounts of software that had to be developed, languages
 and all applications and all sorts of things. You just can't
 sit there with that Model 33, you know, wired right into a
 computer and do it all yourself. You can get your own work
 done, but you can really work faster if there's a community of
 ideas, a community of help. Application programs you can use
 and rely on. (People talking in the background)

MSM: As you were the developing the system did you have it in mind
 to keep that option open at all times, with decisions informed?

Thompson: Well, it was always time sharing in that sense. Sometimes it
 was a single-user system, but, it was always a time sharing
 system. I think it was implicit. It was never voiced, but it
 was always meant to be a shared system with lots of users.

MSM: When you and Canaday and Ritchie, I think that's the three,
 settled down to find a file system, what were you looking for?
 Because, the file system you designed looked like, if I
 understand it correctly, looked a lot like the MULTICS file
 system.

Thompson: Up to the point of writing simulators. Ah. The idea of the
 file system was to um, to have the activity locus of
 manipulation of data for user one and user two.... to be
 disjoint, so that in fact, wouldn't be locking common tables.
 Wouldn't be going through anything common unless we in fact
 shared files. To try to keep up real high, efficient access to
 disks. In fact, interleave accesses in a way. If two users...
 one user would expect some sort of response call or whatever it
 is and that at least with the disks of the disks of the day,
 two users will be able to command it and interleave seek times
 on the disks, and would not degrade each other. That was the
 idea behind the file system and the design; to move the
 addresses to the point where things could be cached and that
 your working and my working wouldn't interfere with each other
 in a locking sense or in a real sense in any way that (not
 clear). Um. I had built this system in a high level simulation
 of the whole file system and had gotten as results that these
 common disks of the day that in fact, you could enter(not clear)
 of your requests and get lots and lots of users happy at the
 same time.

MSM: Was this the one you were doing on the 645?

Thompson: Yeah. I was doing it on the 635 at the time. Yeah . I got
 these exponential curves where before it would get into trouble
 it would go way out and get lots and lots of simultaneous
 accesses going... I was playing with a disk sorting algorithms
 and caching algorithms at the time. All of those actually went
 into UNIX. Um.

MSM: This would be the research aspect of the work?

Thompson: Yeah. Then in the actual design. At that point, it just went
 to... There was a model of a user and a model of this, and they
 generated activities, and the activity went into the disks that
 were sorted and things like that. Um, um. It was never down to
 a design to the point of where you put the addresses, how you
 expand files and things like that. It was never down to that
 level. It was always at some higher level. I think it was just
 like one or two meetings, Dennis and Canaday and myself. Was
 just discussing these ideas of the general nature of keeping the
 files out of each other's hair and the nitty-gritty of
 expanding. Of the real implementation, where you put the block
 addresses, where you put this and this. I remember, um, we did
 it in Canaday's office. At the end of this discussion Canaday
 picked up the phone, and there was a new service in Bell
 Laboratories, dictation, where you call up essentially a tape
 recorder and you give notes, and then the next morning notes are
 typed and sent to you. The next day, these notes came back and
 the acronyms were butchered, like "inode" was "eyen..."
 (Laughing)

MSM: You should see the transcripts of your '81 interview.
 (Laughing)

Thompson: So, we get back these, (unclear) description and they were
 copied and we each got copies of them. They became the working
 document for the file system, which was just built in a day or
 two on the PDP-7.

MSM: But to the user it would look roughly the same as a hierarchy
 of directories.

Thompson: No, the first one was a DG. In fact, it wasn't even a acyclic.
 If you understand the UNIX file system, it was.... there was
 the I-list, which is a definition of all the files on the
 system. And then some of those files, were directories which
 just contained name and I-number. There's nothing in there that
 constrains it to a tree. So it was not in fact, not
 hierarchical at all.

MSM: I see.

Thompson: And we did not restrain it to a tree. We were experimenting
 with various topologies. What we ended up doing is turning into
 concrete and forcing the topologies that in fact were the
 topologies that came by convention from that system. The...
 Every time we made a directory, by convention we put it in
 another directory called directory--directory, which was dd.
 Its name was dd and that all the users directories and in fact
 most other directories, users maintain their own directory
 systems, had pointers back to dd, and dd got shortened into 'dot-
 dot,' and dd was for directory-directory. It was the place back
 to where you could to get to all the other directories in the
 system to maintain this spaghetti bowl. So, I mean this tuff in
 various forms, which was strictly convention in this DG
 implementation of just random set of directories and files got
 forced into a typology that we maintained. When we started
 writing things like file systems checking programs and stuff,
 the locking of the spaghetti bowl directories and finding of
 disjointed things, I mean you'd dissever something and never get
 it back, because you know you'd lost it. Those problems became
 close to insurmountable, and so in the next implementation we
 forced a typology stronger than that.

MSM: The PDP-7, you used the famous graphics machines you found. Um
 you went to when you found out you had in mind to just put the
 file system on there or ...?

Thompson: At first, yes, we used it for other things, the famous space
 travel game, and it was a natural candidate of a place to put
 the file system. When we hacked out this rough design of a file
 system on the dictation that day in Canaday's office, um I went
 off and implemented it on the PDP-7.

MSM: Ok the PDP-7 was already around at that point.

Thompson: Yeah. We had already done uh...we'd spent a lot of the summer
 doing it... space travel...we had a lot of the pads worked out,
 we had assemblers and...the assemblers were actually on GECOS,
 and they'd generate paper tape and we'd carry the paper tape
 down the hall and...

MSM: Were you looking for a graphics machine, was that...because of
 the space travel game?

Thompson: No, no, we used it because it was there, it was a graphics
 machine before. It was designed to be a circuit design system
 where you'd lay out resistors and transistors and things.

MSM: So originally you grabbed that from doing the s pace travel,
 worked up a certain number of tools on that in order to
 implement space travel, and then came the file system and you
 went to implement that.

Thompson: The file system didn't exist by itself very long. What we did
 was... to run the file system you had to create files and delete
 files, re-unite files to see how well it performed. To do that
 you needed a script of what kind of traffic you wanted on the
 file system, and the script we had was, you know, paper tapes,
 that said, you know, read a file, read a file, write a file,
 this kind of stuff. And you'd run the script through the paper
 tape and it would rattle the disk a little bit...you wouldn't
 know what happened. You just couldn't look at it, you couldn't
 see it, you couldn't do anything. Um and um we built a couple
 of tools on the file system...we used this paper tape to load
 the file system with these tools, and then we would run the
 tools out of the file system, that's called an "exec" by the way
 (laughter), and type at these tools that was called a "shell",
 by the way, to drive the file system into the contortions that
 we wanted it to uh, measure how it worked and reacted. So uh it
 only lasted by itself for maybe a day or two before we started
 developing the things that we needed to load it.

MSM: At what point did you feel you had something here?

Thompson: Um, well, the first one was not at all multiprogrammed, and was
 almost like subroutines on the file system. The read call, the
 system read call, was in fact the call "read" of the file system
 and it was very synchronous, just subroutine call to the file
 systems for these applications. And um there was a very quick
 rewrite that admitted it was an operating system, and it had a
 kernel user interface that you trapped across. I really can't
 remember what the realization was, I mean, the whole time span,
 from initially starting with...walking downstairs, down there
 with the idea that we were going to build a file system.

MSM: When was this, do you remember the time?

Thompson: Yeah, it was the summer of '69.

MSM: Summer of '69 ok

Thompson: In fact um my wife went on vacation to my family's place in
 California to visit my parents--we'd just had a new son in
 August '68--and uh they hadn't seen the kid so (unclear) took te
 kid to visit my family and she was gone a month to California
 and I allocated a week each to the shell, to the operating
 system, the shell, the editor, and the assembler, to reproduce
 itself. During the month she was gone, which was in the summer
 of '69, it was totally rewritten in a form that looked like an
 operating system, with tool that were sort of known, you know
 assembler an editor and a shell. If not maintaining itself,
 right on the verge of maintaining itself, to totally sever the
 GECOS connection.

MSM: So that you could work directly on it.

Thompson: Yeah. And from then on it kept pulling up files.

MSM: So we're talking about a month's development.

Thompson: Essentially one person for a month, it was just my self.

MSM: How'd the others get involved?

Thompson: um Doug got involved (unclear). Uh it was
 multiprogrammed...processes from the beginning, but it was just
 one console. And with just a little bit of work we turned the
 graphics scope into just another typewriter. You know, you
 print on the screen by inking characters all by hand as well.
 And so then it became two users, and it was constantly full, it
 was constantly at two users on it. (Unclear) got involved he
 was doing TMG, which was a compiler compiler language
 predecessory to the yacc kind of languages. Dennis got involved
 with ...during his language work. Uh (unclear) who was doing,
 he didn't do too much. I mean when it was in the PDP-7 form he
 didn't do too much. He did some... a number of theoretical kind
 of things.

MSM: Who else was involved?

Thompson: There were a lot of people involved, in a political sense, you
 know, trying to keep the machine for us, and get us the next
 machine, and that kind of stuff that weren't doing programming.

MSM: Who were these people?

Thompson: Uh Peter Neumann, Lee McMahon, (unclear) Matthews.

MSM: They were running interference with managers?

Thompson: Yeah. Joe Osanna did for ... at that point also. Uh he later
 became very involved in the thing. His pet thing was to develop
 a um text processing system, to um, which you call a desktop
 publishing or whatever word processing. A text processor for...
 he had ideas about secretaries and typing pools. And he was
 constantly on the lookout for good typewriters, in the sense
 that secretaries would use, and that could use a touch type, you
 know, IBM Selectric type typewriters, that were computer
 interfaced. And we'd go to almost every toy show, with this in
 mind. Looking for...I mean the industry was in sad shape at
 that point in trying to (unclear) things that we needed to
 accomplish some of these goals. But um everything that
 connected to computers was upper-case only, six bit generated
 and are very, very expensive. There's the 1050--you know what
 that is?--it's an IBM Selectric but it's about this big, and was
 loud and was about this tall on a console. So anyway they were
 interested in typesetting equation ... not typesetting but ...
 typewriter setting equations and doing TMS and documentation.

MSM: So was it Joe figured this was something he could sell to
 management? Keep your system (unclear) going?

Thompson: I don't know his motives. I won't guess his motives. Um I
 know he was genuinely interested in it, uh he in fact got a
 commercial type-setter and uh got it interfaced with the
 computer. Essentially ripped out the paper...it was meant to be
 driven by paper tape, and the paper tapes were to be, you know
 these typewriter to paper tape things, and what we did was we
 cannibalized the paper tape interface and just ran it over to a
 parallel interface on a computer, and we just punched paper
 tape...logical paper tape over to it over a wire. And uh it
 really had the first typesetting of this sort, so it was all way
 ahead of it's time and that was all Osanna's work. And it was
 all towards this ultimate goal of computer text processing.

MSM: I know the um when I asked Doug about pipes in (unclear), the
 story that I was telling him when I was coming up to talk to him--my
 my daughter who is a computer science/music major up at
 Harvard--said uh "Well, what did he do?', and I said "Well,
 he's (unclear) who had the idea of pipes. And she said, "Oh,
 well, you ought to call this project 'pipe dreams'." Uh I asked
 Doug about pipes and he talked about what the background to it
 had been, but he also told me that you were able to implement
 that overnight.

Thompson: Yeah,well, Doug had was for years and years, well it seemed
 like years, I don't know the actual span was probably one year,
 Doug had uh, and he talked to us continually about it, a notion
 of interconnecting computers in grids, and arrays, you know very
 complex, you know, and there were always problems in his
 proposals. That what you would type would be linear and what he
 wanted was three-dimensional...n-dimensional...I mean he wanted
 just topological connection of programs and to build programs
 with loops and and you know horrid things. I mean he had such
 grandiose ideas and we were just saying, you know, 'God, it's
 worthless, the complexity you're generating just can't be
 fathomed. You don't sit down and you don't type these kind of
 connections together.' And he persisted with his the grandiose
 ideas where you get into Kirchoff's law problems, where you get
 into you know, what happens if you have a feedback loop and
 every program doubles the number of characters, you know, it
 reads one and writes two? You know, what happens to...it's got
 to go somewhere you know. And you get these synchronization
 just, I mean there's just no way to implement his ideas and we
 kept trying to pare him down and weed him down and get him down,
 you know, and get something useful and distill it. What was
 going on, what was needed, what was real ideas, what was the
 fantasy of his ...and we there were constant discussions all
 through this period, and it hit just one night, it just hit, and
 they went in instantly, I mean they are utterly trivial.

MSM: And that a reflection of the basic structure of the system or
 was it just coincidence?

Thompson: No it was just we had control over it, it was our system. We
 could....it wasn't a big system, it wasn't a big thing to put in
 it was just, it just took minutes to do because we knew what...

MSM: Is pipes the sort of thing...pipelines the sort of thing that
 can be implemented in any system or are there certain system
 requirements?

Thompson: Uh well you really have to have real processes, and some places
 (unclear)data. Um for them to work in a um for them to actually
 work you have to have the notion of reading and writing streams,
 or whatever you read and write, and that the I/O cannot be
 different from the files.

MSM: Oh so that goes back to that idea, that that's a prerequisite.

Thompson: Yeah. Because if you have programs that sit there and read
 terminals, and then manipulate files back and forth there's just
 no way to connect them. Because what they read and what they
 write have to be the same thing.

MSM: How long was this the skunk works when did you . .. well you
 said in the beginning you were building an operating system in
 spite of what was supposed to be going on. Uh when did you go
 public with it, within the company?

Thompson: Uh we never really did. Um every step was painful . (Unclear)
 We couldn't have...uh it was an obsolete machine at the time the
 company the the, we didn't own it, uh it was another department
 that owned it, and when it would break, it would be a hassle
 over who maintained it, and we didn't maintain it because we
 couldn't get our department to pay for maintenance. There was,
 you know, no money at all but they just didn't want us to do
 this. We not only had to buoy this company, this department
 that owned the machine and wanted to throw it away, but to keep
 it, on their space and maintain it for us. That was a
 precarious situation, and that persisted. Then when it became
 clear that these machines were nearing the end of their life, uh
 we either tried to get them officially ours, which failed, our
 manager wouldn't pick up these machines, at zero cost, you know,
 they didn't want...the cost of the space. Then we started on a
 set of proposals for getting a new machine, through our
 management to replace it, to get a new machine, and they were
 all um... There was no explicit policy that we weren't going to
 get back into the computer business, (unclear) we really know
 the rules, you know, but the rules were in effect. So what
 would happen was that we would take these proposals for these
 machines and do all the research on them and get the vendors in
 and waste everybody's time, and get these proposals up and
 they'd be thought about our management for a extended periods of
 time and they'd say 'no' for some funny reason, you know, never
 for a real one (unclear) computing anymore. There were several,
 really several, of these big rounds of trying to get a vendor
 and a machine and, to get....to do this work. Most of it was
 carried on by Osanna and me, and the interference type people.
 Ultimately what happened was um we found a PDP-11, it was in
 fact not announced yet, but uh it was right on the edge of being
 announced. We would like the for the idea of text-processing we
 liked the expandible IO of the Unibus, where we could build our
 own interfaces, they had general purpose interfaces, they had
 lots of com gear, uh that we could do for...I mean it had
 everything. It looked like it was going to expand to any
 machine we wanted to make it. Um and these people, Osanna and I
 put together a proposal to buy a PDP-11 to do text-processing,
 research in text processing, (unclear) and document preparation,
 this type of stuff. Uh it was the first of the goals that were
 specific, uh we want to do this for this machine, um for this
 purpose. The other ones were...we wanted to play with computers
 and operating systems, and they were unspecific, and the our
 management went off and thought about it, and rejected it again.
 But in the meantime going up and down the hierarchy a sister
 department, 122, psychology research, uh came over and said
 'well we'll fund it out of our area,' embarrassed the hell out
 of our management. And they bought it, gave it to us, and...

MSM: What were you looking for?

Thompson: Well it was interesting, they thought it was interesting. They
 just had insight, and inspiration and unfortunately our
 management didn't. They were suffering from wounds, our
 management was suffering from wounds from the MULTICS days and
 you know ...

MSM: MULTICS really hurt?

Thompson: Yes. Lots of promises to lots of people to develop software
 that would be everything to everybody. It was sold, company
 wide, to be the computing utility. There'd be, there would be a
 plug for 110 volts, and right next to it there would be a
 MULTICS plug, and you'd just plug it in and suck out whatever
 cycles you wanted for anything you wanted. You know it just, it
 would just be the utility, you know just like a power utility or
 a phone utility, it was just the computing utility. For
 everybody. Everybody would have all the cycles they wanted. It
 was sold big all the way down the company and...

MSM: So it was a notion of once burned, twice wary .

Thompson: Anyway the 11 came in, um it say for a month in Osanna's
 office, because uh, it had no disk, the disk was delayed, it
 didn't come with it. And we'd type stand-alone type things, this
 stuff, um. Then when the disk was just ready to ... you know
 the disk was just ordered and was on its way, they were actually
 starting to manufacture and we were on the waiting list, we
 brought the machine up next to the PDP-11, which was what we
 were working on, and we started writing all the cross stuff. In
 B. We wrote a PDP-11 assembler in B, and ran on the PDP-7 the
 PDP-11 assembly code and punched paper tape out of the 7, you
 know out of the...across the floor into the 11 and had fake file
 systems that were done in memory, and we got it almost running,
 the disk came in and in probably another week we got UNIX
 running on it...At that point a lot of things came into
 being...the topology of the directory structure was fixed on
 more convention than convention by that point...

MSM: When was this, 1971

Thompson: Yeah, let me see, 71? Maybe '2? I don't know that. It's
 mentioned in one of the UNIX manuals, the dates rolled
 up....(unclear) And we moved over...Osanna...I was just
 interested in operating systems, I went along with the text
 processing (unclear). It didn't interfere with my plans so I
 ...went along with it. The editing, and the stuff around the
 text processing, and Osanna did the... went on to the nroff,
 troff stuff or the text processing. We instantly put all our
 secretaries on it. They did our mail messages and our documents
 and did that so we did text processing for that, then we uh as
 part of the demonstration Osanna got the patent people, patent
 application to come over--they were just about to buy a
 horrible little commercial type setting package--called, we
 shouldn't mention this...AstroText was the name of it...and it
 was just truly bad, and we could cobble together something that
 would be vastly superior to what they were about to pay real
 hard...you know a lot of hard money for. Um, and so we put their
 stuff together and developed a package for them that was
 specific to their applications, you know, they have very
 different kind of formatting (unclear). Um and in fact they
 liked it and they still had this money in the budget for this
 AstroText thing, and we talked them into buying our system,
 physically, you know, the hardware, move it out, and we took
 their money and bought an 11/45 with it. (Unclear) interim
 machine was a um. Before the 11/45 was available we bought a
 PDP-11 that had PDP-10 memory management, KS-1, it was a one of
 a kind machine, and that was the first time we ran the
 production of program development along with these--all in
 assembly language--along with these typists typing real
 applications and uh (unclear) on unprotected machines.

MSM: You hadn't gone over to C yet.

Thompson: No. C was fairly late.

MSM: (unclear) DEC machines. Did DEC ever show any interest in what
 you were doing?

Thompson: No. At one point we put a notion to them, and said um...the
 way it started running internally, is the word just got around,
 and these random groups would come in and say you
 know....everyone, technically would look around for a machine
 and choose a DEC machine, and DEC had no software, they were
 real late in the delivery of their software, and when it came it
 was horrible, just...that was probably the early reason UNIX
 thrived is because it had no vendor competition at all, none.
 It was the only software around for the DEC machine, and so
 they'd look around, they'd find DEC machines, they were just
 without technical peer. And a project would buy a DEC machine
 and they'd look around for software after that, and they'd hear
 our names, they'd come and talk to us. And they'd decide that
 they were going to run UNIX for their software development,
 develop their application and then run their application
 standalone; it never happened, they never got rid of UNIX. You
 know their application would run on top of UNIX (unclear). The
 story was always the same: that they were going to use software
 development, develop their application, and then deliver it with
 the application. And these things kept proliferating, more and
 more and more of these things, it was all underground. No one,
 you know, we were the only ones doing the development, and
 they'd want records or they'd want this or they'd want that, and
 we'd tell them no, we didn't like that, doesn't fit into our
 plans, so to hell with it. Uh and that's how the UNIX
 development group got involved is to do the to be more
 responsive than we were to the needs of the people. (Unclear)
 were starting to put these machines in (Unclear) telephone
 applications.

MSM: Would you say... is this the point at which UNI X became
 standardized in some sense, got settled?

Thompson: No, no um we had momentum, in our department, we were
 working...these guys were just fighting--the development group--were
 just fighting to learn what it was. By the time they
 learned, it was something else. I mean things were really
 moving fast in those days, and they would spend most of their
 time, coming up to speed with some version they'd cloned in the
 past, and in the meantime there would be three more of their
 customers that would have cloned from us, because they needed
 some new thing that we had and, then they'd end up retrofitting
 our current version back into you know their version, and most
 of their updates were in fact taking our version out. And this
 went on for several years, where they were just some sort of
 conduit buffer, and trying to learn what was going on. Um
 probably an unenviable position for them to be in. And it
 wasn't until there was a second group from (unclear) that cloned
 a version of our system and started doing...going off in their
 own direction, really doing their own work for it themselves.
 And they merged um (unclear) and, and a combination of our
 system and their system turned into the development system,
 which was the standard system, which, I think, turned into
 System 3. And from then on they were fairly separate, and just
 took ideas rather than massive amounts of code.

MSM: I was going to say, when did it wind down for you, or did it
 ever?

Thompson: Um at some point it got ponderous, and I decided to get out
 from under it. And I did, I took a sabbatical at Berkeley, just
 disappeared for a year. And you know, if you're here, you are
 indispensable; if you're not here, you know, (laughing).

MSM: That's why I'm going away next year...

Thompson: Yeah so I went away for a year and when I came back it was
 just...I was just not in it anymore, not in the mainstream and
 not needed for(unclear). It was actually planned.

MSM: So what did you go off to do?

Thompson: Uh, (unclear) I actually did a lot of system development for
 them, it was the start of their ascension. Most of the names
 you know were in fact students of mine.

MSM: I see...(unclear) the development of UCB.

Thompson: Yeah...when I went there they had one UNIX machine . It was
 (unclear) statistics, that they'd run it three days a week and
 statistics would run it three and they'd fight over it the last
 day, or run maintenance on it that day. When I left it was in
 almost every one of their courses. They had about three
 machines on order, they had three or four machines installed,
 real confident students.

MSM: Looking back (!phone!)...just one more, because we have been
 going for a long while. Um you look back on it...is there
 something fundamental you'd like to have done differently?

Thompson: Um, I had regrets about a couple things. Um probably the
 biggest thing is I had some little lash-up applications, uh with
 remote shells, and distributed machines where you had a shell
 where you could execute pipelines with different parts of
 different machines. Um and I never pursued that, and because of
 it there's these, you know, the stuff that we laid out and
 distributed was hardly ever changed; our file system, the
 composed read/write, the pipes, and you know all these things.
 The stuff that we left fuzzy, got done either poorly or multiple
 ways and their different, different systems and their addressing
 strange (unclear). And I think that if we had worked harder,
 had the insight or done more in networking in those days then
 you know things would be different. But uh it was, it's, it's
 nothing that I could have predicted, it had to be in retrospect
 to think of that. I dabbled in that area, and just never, never
 installed it, never distributed it as part of the system.

MSM: It's always easy to be wise after the fact, and hard to imagine
 how one thought otherwise about certain things, but, one thing
 about these timesharing systems of the late-60's...operating
 systems and the notion of making them time-sharing was the
 shared notion that computing was going to become generally
 available, it was going to be through a plug in the wall to a
 large central computer, when, in fact, that's not how computing
 has become available to people at all. Were you still thinking
 in the late-60's early-70's when you were doing UNIX about using
 a central computer, or did you...

Thompson: Yeah, in fact, I still think that way. Um in those days I
 typically thought of using one central computer, um mainly
 because of the expense and stuff like that, you know, RAM, and
 lack of networking although I'd done the interconnection of
 UNIXes to some extent. But now I am thinking of still central
 computing, but with multiple central computers, designing new
 operating systems that way, um I think that there... the comp
 centers maintain hardware better than people do in their
 offices. And um if you compute in your office, like a
 workstation mentality notion, that you are always stuck with a
 small machine, that you can't afford, on that machine, to put a
 hundred megabytes, but uh, on a central machine you can, and
 that for short periods of time you can use the 100megabytes...
 um for you applications. And that the sum of these, the
 distributions of how much memory you need and how much I need
 averages out much quicker on big machines than they do with one
 person with one machine on your desk. So I think that small
 amounts of sharing in central computing is better for everyone;
 it's cheaper and everybody gets better service and better cycles
 than they do on their machine on their desk. So I still feel
 that way.

MSM: But it would be a distributed system.

Thompson: Yeah, it would be several of these uh compute servers, call
 them whatever they are, but they're just there for these
 economies of scale, and you get these economies of scale with a
 few users.

MSM: Ok...

 Peter J. Weinberger

Friday, September 8th 1989

MSM: You joined AT&T in '76?

Weinberger: That's right.

MSM: From what?

Weinberger: From the University of Michigan. I was teaching mathematics.
 My background is in mathematics. Got my Ph.D. in '69 from
 Berkeley. And uh...

MSM: What kind of math had you done?

Weinberger: Number theory. Analytic and algebraic number theory. And I
 worked for a year in Washington then I went to the University of
 Michigan, taught math, wrote math papers and stuff. And then I
 didn't get tenure. And so I looked around for.... It's a big
 decision... It's what would I rather do? You could pretend you
 have many choices but the basic choice was would I rather be at
 a first class place or would I rather keep doing number theory
 and end up living in a place where perhaps I didn't want to
 live. I don't know that I could have gotten tenure at the
 University of Illinois but that was the kind of place that...where
 I didn't particularly want to live and I managed to get a job at
 Bell Labs in Development in '76 and worked on computer stuff
 -data bases and things. And in about a year and a half (as I
 remember - my memory for this stuff is not good) I transferred
 over into research. That was done by when we started working
 AWK.

MSM: I see...so you came in with AWK. How did AWK come about?

Weinberger: Well, as I remember, I came over to ask while I was doing this
 data base work in development (up the hill someplace)...I came
 over to ask Aho about parsing because there these...there was this
 sort of current about extensible languages. And it seemed like
 it would be convenient to, you know, add.... It was one of those
 things where the name is more than what the technique actually
 provided, ok. Extensible languages seems very desirable. The
 user could adjust the syntax in the language in some way and the
 composite would somehow automatically understand it and it would
 all be more convenient for the user, and so forth. And, um...Al
 was not very enthusiastic about that approach for...the technical
 reasons where that he was at that time, and I think as everybody
 is now, much more in favor of table driven parsers, in
 particular LR Parsers, and if you've compiled a table it's a
 little hard to adjust the syntax. And I suspect in retrospect
 he didn't think much of the usefulness of the technique. And I
 think in retrospect, he was probably right. Extensible
 languages is not something that worked out well. And the places
 where people are very enthusiastic about tailoring the syntax
 of...of...for users. There's two of them that I can think of. One
 is emacs, which is this editor where you can bind keys in weird
 ways. And the other is with something called Read Macros and
 Lisp. And the effect of both of those is that I can't enter
 your world, because each person personalizes his world in
 some...some way they like and nobody else can cope. So in fact
 it's not at all clear it was a good idea. But he said 'oh,
 you're in databases?'. He and Kernighan had been talking about
 some database-y extensions to UNIX. So we sat around and talked
 about this stuff and there's roughly speaking 2 pieces to
 databases. One is the question of how you get stuff out of the
 database. And the other is the question of how you sort of put
 stuff into the database. And putting stuff into a database gets
 involved in these 'are we going to allow for concurrent
 transactions' and 'do we have to do locking' because UNIX was
 not particularly good...was incapable of in those days. And it
 was just all too weird. Eventually we settled on the idea of
 what we wanted was some...thing that was...some tool that would let
 you get stuff out of ordinary UNIX files in a way that was...more
 general, more useful, more database-like, more report generally
 like. I don't know exactly what. Then stuff like grep, which
 just search for these patterns. That was all it did. But you
 didn't want to give that stuff up either. So whatever you were
 going to do was in this world of.... It wasn't going to just go
 into the database world, which to this day doesn't understand
 regular expressions. It believes everything. A lot of them are
 firmly into fixed size fields. And a lot of other stuff is
 pushed by a somewhat spurious view of efficiency, at least in
 small databases. So that's AWK, ok? AWK is like graphics,
 except it understands numbers and it understands that things
 could be divided into fields, and.... We went through a bunch of
 versions. As with everything, you get a lot of versions right
 at the beginning, and then things get stable with only slower
 changes.

MSM: Can you assign responsibilities to the AW&K?

Weinberger: Not so much in the finished object. I can pick out in no
 particular chronological order some of the things that people
 did. Always, Aho was in charge of the regular expression stuff,
 because you need some variant of regular expression stuff and he
 can just write it. He doesn't have to worry about it.

MSM: ????????

Weinberger: I did...we discussed syntax a lot. Kernighan likes free-form
 syntax. That is without extra parentheses and stuff, because
 it's so much easier to type. The problem with free-form syntax
 is that after a while the language becomes very ambiguous, and
 it's hard to see what it all means. I like more parentheses and
 stuff like that. So we tried out a couple of different
 syntaxes. We spent a lot of time discussing, all of us
 discussing, this pattern-in-action business...was that really what
 we wanted to do? And several rather more elaborate ways of
 doing it which were more database-y, which in the end didn't go
 in because either...we couldn't either...it turned out they didn't
 add anything. It was just do the same stuff anyway. Or we can
 figure out exactly what they meant and how to make them work. I
 think I wrote the first...a very early translator to try to...all it
 did was take these provisional languages and put out C-codes so
 you compile it. And...this may not be quite right. I think
 Kernighan wrote an interpreter, and then I wrote an interpreter
 and then some years later Kernighan re-wrote the interpreter.
 Or we both re-wrote the interpreter.

MSM: Am I right that there's a certain YACCy flavor to it? It looks a lot
 like C-code...

Weinberger: I ought to say a few words about the appearance to the users of
 the whole thing. Yeah, the pattern action stuff is...I'm not sure
 that yacc...yacc must have been in our mind. Because in those
 days especially there were not very many models of that stuff.
 There's another, I forget whether these are mark off somethings
 or post somethings...one of these constructs in theoretical
 computer science. Maybe they're post-productions...you match the
 left side and transform according to the right side, which is
 also vaguely the yacc model. It's not just yacc, it's several
 things. The C-like appearance of it all is...instead.... Well, the
 idea is if you made it just like C then you wouldn't have to
 explain it to the people around here. Or, that's how I remember
 the idea. We may not have been quite so concrete about it.
 What's interesting is that at the same time that we were doing
 AWK, there was a project at Xerox Park called Poplar. Maybe
 called Poplar. Anyway, whatever it was called there was this
 project at Xerox Park, which had fairly similar goals. That is
 they were going to take these files consisting of a lot of
 characters and you break them apart in various ways and you
 process them using some language and you pass them on. And they
 put a lot of work into clever ideas. It was a functional
 programming language. Which that's...especially then a big deal,
 now it's less of a big deal. And it was supposed to be user
 friendly and in addition you wrote the program sort of here and
 then you worked an example on the other side of the page and the
 compiler checked that the program worked the example the same
 way you had. So that you had some feeling for what the program
 was doing. And there were several other quite nice ideas. It
 was a real research project as opposed to AWK, which had it's
 research aspects but, you know...I wouldn't call it a hack but
 what we had in mind was producing this program to use, right...a
 useful tool. A lot of the stuff we were just prepared to push
 on. And, so this is a probably fairly friendly user interface.
 I don't remember the language but you had to learn it but it
 wasn't really complicated. Whereas we had all the C-grot and
 there's lots of C-grot that...particularly bad partly because of
 power syntax. There's this...the...one of the less...one of the
 ideas that I pushed fairly hard, which in retrospect is a little
 mixed, was this idea that to do stringing catenation, you
 just...stick the stuff there. And this just gave the parser
 complete hell. It's a swell idea but it doesn't mix well with,
 you know, minus signs or something. And, we really went through
 hell keeping that working. They had all sorts of stuff. And
 AWK lived and Poplar died. And I don't know...you know...this has
 affected my view about people who talk about user interface
 fairly severely. I'm no longer convinced anybody knows anything
 about user interface. It's clear some things are easier to use
 and some things are harder to use. That's okay. But it's also
 clear that people...people...learn a lot. Okay, and that some kind
 of...that, although AWK's language is both C-like and not real
 elegant, a lot of AWK programming isn't done by getting the
 reference manual and writing code. What is done is by finding
 some AWK program that's very similar to what you want to do and
 changing it, okay? And then the fact that it's a little weird
 isn't so bad. Because, you know...you're just changing it. AWK
 lives partly, I think, because of it's programming by example.
 The style you write code. Um....

MSM: I have Poly-AWK on my home computer, so I use it quite a bit.
 Indeed, I use it...I got it because I was just interested in it
 and I discovered it down in Holmdel. But then I had to deal
 with the ASCII file output of the database and I didn't know...it
 proves that I can do anything that....

Weinberger: I know, I know...it's...it's been a real success. It really worked
 out well and all I can...the only reason I can think of for that
 is because what we wanted to do with it was something that was
 worth having a tool that does. A lot of the other aspects of
 the program are irrelevant compared to the fact that it does
 something useful.

MSM: Let's take that back for a second, because one of the big criticisms
 of UNIX is user interface. It's a difficult system to learn. I
 wonder to what extent what you just said about AWK applies to
 UNIX as well?

Weinberger: Well, there's 2 pieces to that. Let me do not the one you
 asked but the one I thought you were about to ask. The way you
 compose programs in UNIX is this pike. What the pike...and...well,
 that's just what the system provides the way it's used. Almost
 invariably, is...this guy puts out text and this guy takes in text
 and this is essentially aside from that very low level thing.
 This is a technique with no structure. So it's academically
 completely unrespectable. Because there's no types.
 Everybody's got to agree. Now, in UNIX the convention that
 makes this work is everything is line oriented. Or, almost
 everything is line oriented and everybody at least knows they're
 getting lines and they have to cope as best they can. But for
 many years UNIX took a lot of crap on that I think in academic
 circles because it's so untyped. Academics don't think of ASCII
 as the type, right? I thought of something much stricter. But
 one of the experiences I think of all that sort of computing is
 that there is a balance between safety and usefulness and a
 balance between various flavors of generality. And the kinds of
 generality I think you have here is that if...if...if only passed
 typed objects, of course, some kind of small talk interface...if
 everything came with the type. That would be one kind of
 generality. The other kind of generality is you just passed
 random bits and its up to everybody to cope. I think UNIX was
 successful because it turned out that a lot of the safety that
 people relied on or that academically seemed respectable because
 you can say things about it...just...just was pointless. There's no
 need for it in many things. But of course, UNIX programs screw
 up all the time. Because one guy puts out output in a form the
 other guy cannot accept as input. That's one of the reasons for
 AWK, after all...is you gotta transform the output. But...if
 the...you can view this in retrospect of course...part of the UNIX
 philosophy as being...that's just inevitable. And it's important
 that the system provides a convenient way of coping with that.
 So the idea that you have...that you can stick an extra guy in the
 pipeline, shell scripts or AWK or whatever, to somehow adjust
 all of this is very much in the UNIX flavor of things. On the
 other hand, it means that UNIX is a system for people
 who...who...for people to use it like that. People have to be
 prepared to tinker. And if you provide a system where people
 can tinker, it's bound to have a lot more stuff at the top level
 than a system where people can't tinker. And I think you could
 contrast that with PC interfaces. This is long after the fact.
 People say 'well the PC interface is uniform'. Well it's not
 uniform at all in fact it's really crappy. But it does have
 properties. That is when you get Word Perfect...Word Perfect has
 17 flags...you want Lotus 123 output, you want text output, you
 want Harvard Graphics output, you want all these different kinds
 of graphic output. And you buy something that either has the
 features you want or you can't have it. There's no chance of
 adjusting it yourself. And although people say UNIX is hard to
 learn, I noticed that each application that comes with your PC
 has a manual that's the size of the full UNIX documentation, at
 least the full research UNIX documentation. Now it's a hell of
 a lot less terse. But nonetheless, this idea that, for each
 dollar you buy on some paper software you deserve 10 pages of
 documentation, seems to sort of pervade the PC world. So, yeah,
 I think it's a little more...somewhat more complicated and
 that...in...but I don't believe it's all that much more complicated.
 I do believe nobody explains it very well. And certainly those
 of us who are experts are not very good at explaining well and
 probably not capable of explaining it well. My guess is that
 there is a modest amount to learn and you can use it. And the
 truth is our secretaries use it. We don't have a special system
 for secretaries. They just use it. Now, when you watch them
 use it you say 'oh, but there's so many easier ways of doing
 it...there this and this'...but it doesn't really matter. They
 don't have to use it perfectly.

MSM: Did you know about it before you came here?

Weinberger: When I knew I was coming here, I started looking into it. I'd
 heard of it, but it wasn't something that was easy to find.

MSM: What was the status in '76?

Weinberger: Well, it was being shipped to universities out of research. I
 think that was version 5 in those days. Possibly the beginning
 of version 6. Version 5 I'm pretty sure was the assembly line
 version.

MSM: It hadn't reached Berkeley by the time you left?

Weinberger: Oh no that was '69, no, no...and I think it went to Berkeley with
 Ken's sabbatical, which was probably '75. In '69 it was hardly
 anywhere. Even here. But you can find it at universities. But
 I went back to Berkeley the summer of '75, I think. I don't
 remember when I was back in Berkeley. But anyway, that's where
 I had...I think it probably was in between semesters or
 something...it was the winter. And Ken was there and I met Ken at
 the house of a mutual acquaintance and learned to use some UNIX
 stuff. And found it...you know, I was learning C at that point
 too...and continued to learn when I got here. But I found it much
 easier to use than the world I was used to. The...one of the...it
 had a bunch of really good properties which I suspect are partly
 Doug's responsibility. You can take the manual which was pretty
 big even in those days and you could read it once and do some
 things and you could read it again and read it again and by the
 third time through you actually understood how the system worked
 to a large extent. All of a sudden things became much less
 surprising. And then all the source code was on-line in those
 days. It wasn't all that much source code. And you could look
 at it. And a large fraction of it had been written by people
 with very good style. Right, like say Dennis. And you could to
 write C from it too. So I found it very easy to learn and I
 found it very easy to switch from FORTRAN to C.

MSM: FORTRAN is what you had been using?

Weinberger: Yes FORTRAN is what I've been using.

MSM: You spend a lot of time around computers in Michigan?

Weinberger: Yes.

MSM: Because Michigan had a computer environment.

Weinberger: For an academic computer center, they had a first class place.
 It was very innovative. They had their own operating system,
 which was not a bad operating system. Like all home grown
 operating systems, it had these places with just appalling
 weakness, but usually users don't notice them...just like our home
 grown operating system. They had quite a good computer setup
 and it was all interactive. I'd been doing a fair amount of
 computing. My advisor D.H. Schlamer did...does...did...does a lot of
 computing.

MSM: He was one of the first to suggest using computers.

Weinberger: He started using them as soon as you could get on them...which is
 of course about '46. And kept using them quite
 productively....very ingenious things. Built special purpose
 fiber and all sorts of stuff. So I was pretty much into
 believing that they were useful and certainly in straightforward
 number theory. You could use them for experiments, which was
 quite convenient. You could use them to find numbers which...the
 world of mathematics is a very peculiar world. It's essentially
 a human creation but it's pretty clearly somehow there. So the
 experiments you do with computers in mathematics are the
 investigation you do using computers aren't...it isn't like the
 simulations weather people which is just a model. That's
 reality. It's the one case where you're actually at reality.
 Hugh Montgomery and I, for instance, wrote a paper where we did
 substantial calculation. I did the substantial calculation and
 he did the substantial mathematics and found some numbers that
 were unnaturally close. There were zeroes of some L
 function...all that sort of number theories. They were
 unnaturally close. It turned out this pair of unnaturally close
 numbers could be used to...you did a whole bunch of estimates and
 stuff like that and...and they could be used to cover a range from
 something like 10 to the 400th or 10 to the 2500 of cases in
 some other problem. So in this peculiar business of sort of
 missing...ontological gap which is the normal situation in
 modeling when you computers in mathematics. That's right. The
 things you discover are there. They're not just hypothetically
 there. You don't have to pretend the model is the reality, you
 know....

MSM: You have somebody reading them...reading Introduction to Minsky's in
 1969 book on mathematics and computation, finite machines, he
 talks in the beginning there about that, the difference between
 the computer as a machine and ??????????, one's a model and the
 other is...

Weinberger: Yeah, but see, in mathematics there are at least...if
 you're...there are cases where there is no difference in
 mathematics. What you tell the machine to do it's not doing it
 on the model it's doing it on the mathematical reality. There's
 no gap. Which, I think, makes it very appealing. And one of
 the...there's a difference between a computer program and a
 theorem, which some people...I think is a fundamental difference,
 at least to me. Which is that when you prove a theorem you now
 sort of know something you didn't know before. But when you
 write a program, the universe has changed. You could do
 something you couldn't do before. And I think people are
 attracted to different...in different...to these kinds of things.
 I've always found thinking a lot of work. And anything you can
 get the computer to do that's not what you would call thinking.
 But I've always found it hard to get things right. And once the
 program is working, it's working and if it can do different
 forms of the calculation for you, it's not just that it's
 faster, it's also more accurate than doing them over and over by
 hand, when you can get it to do it. So I've always been pushed
 in that direction...by myself...by my weaknesses...

MSM: One of the things I've noticed...

Weinberger: It's going to take us away from UNIX but that's okay. We can
 get back. As long as your tape holds out.

MSM: One interesting thing about discussions among numerical analysts,
 Wilkinson...Forsythe...toward the end of the '60's, is a concern
 that this marvelous tool for numerical analysis was, as it were,
 luring away good numerical analysts into what the authors was
 referring to as computerology. That is, they started off using
 the machine to do computations, but then they were getting
 interested in the machine itself. Is that happening among
 number theory?

Weinberger: I think it happened to some extent among...I think it's a...I don't
 know. I don't really have an answer to that. There is...

MSM: Did Lehmer ever complain about that?

Weinberger: No. Lehmer...Lehmer...Lehmer had a lot of strong views and as long
 as you weren't just completely out of touch on logic he didn't
 care what your views were either. No, I don't think Lehmer
 complained about that. I think Lehmer was amused by whatever,
 you know...whatever people did amused Lehmer. But he wouldn't
 take money from the government. Which I used to sort of wonder
 about and now I don't think it was a position of principle, I
 think it was pragmatically valuable. It's too much trouble to
 deal with the government if you can get by. But lots of people
 can't get by.

MSM: I've had government funding and had private foundation funding, and
 believe me, the second is a lot easier.

Weinberger: Yeah, absolutely. But there is a...something very seductive
 about hacking on the computer. Whatever it is. I'm sure it's
 different for different people. And that distracts people
 who...also computing in theoretical computer science and computing
 in general is another place where mathematically good people
 could go. And as long as it looks like the rewards are much
 greater people steer themselves in that direction. I think
 that...the fascination of programming is only part of that. So,
 yeah, I think...on the other hand it leads to a lot of...it's not
 clear what you ought to learn in the computer science education
 that's going to be of any particular value in 5 or 10 years.

MSM: One of the chapters...search in the '60's for what computer science was
 a science of.

Weinberger: I think that's well worth it. Especially since I don't think
 the answers are at all clear now.

MSM: They're not clear yet.

Weinberger: That's right. The optimistic way of looking at business, like
 saying 'well, it's like mathematics was at this point. Nobody
 was quite sure what the real subject was.' The other point of
 view is that we're just totally, you know...it's just totally
 wrong and it's just totally badly organized and we will discover
 where the subject we think we're studying doesn't...isn't there.
 And that it's actually some other set of subjects. It just
 breaks up some other way. Who knows? It's not predetermined.
 It's just that things may work out that there's a different
 division. Now, that's not easy because the way subjects develop
 is, you know, 'why is there a subject like this', 'well, because
 it's very much the way it was yesterday.' It's a historical
 development. So probably computer science will look a lot like
 computer science does. But I'm not sure it ought. I'm not sure
 what they're teaching is what they ought to be teaching. I
 don't have any...I'm sure if people thought of better things to
 teach, they'd teach them. I'm very uncomfortable with the state
 of computing as computer science education. And it's not just
 the subject matter. However, this is irrelevant for your book
 but while I'm talking, I'll talk. Push me back to whatever
 subject you want to talk about.

MSM: No, I've got a couple of books on the fire. So keep talking.

Weinberger: Okay. The problem I have with computer science education is I
 think that graduate students are...this is, of course, unfair to
 condemn them all. But on average lazy. Compared to say the
 graduate students in...biochemistry, which is a hard science
 that's moving fast and competitive. And computing science is a
 something science that's moving fast and potentially
 competitive. But I think there's just a significant difference
 in attitude. And part of it is, this is of course all
 conjecture, part of it is that the students feel they have it
 made because they're in this leading field. But part of it is
 that the standards of rigor aren't very high. If you're a
 biochemist you have an idea about what it takes to do an
 experiment that's publishable...about what the science of
 biochemistry is. And if you're a computer scientist I don't
 know how the hell you'd ever figure that out.

MSM: Hopcroft goes after that in his Turing Award lecture. He points out
 that the advantage that a new field like molecular biology has
 is that it's got very strong disciplines behind it. It's
 clearly an amalgam of the two. So when a graduate student comes
 in and wants to do molecular biology, 'you have to know this,
 you have to know this' and 'the courses are fair' and 'if you
 don't know this you can't do the field'...

Weinberger: But it's also clear what constitutes research. Or how you tell
 the difference between good research and bad research.

MSM: Yeah, because the problems are clear. And...

Weinberger: I really don't know. In some sense, of course, because the
 problems are clearer. But I don't understand the real
 difference. But there's a real difference. I just don't know
 how to articulate it.

MSM: Let me pick up and take it just a slightly different direction.
 Because one of the things that struck me about UNIX as a system,
 but also about the environment in which it has grown up, is that
 on the one hand there's a lot of very clever computing going on
 and yet so much of it seems to be, if not theory driven, at
 least an exploration of theory. You turn around and look at
 this feature and there's a theoretical paper behind it. You
 look at this feature and there's a theoretical paper. So
 there's a discipline behind you that...might be surprising. I
 think that's the way to which it's a hack....

Weinberger: I think that's very interesting. I think it's true. (phone
 rings) (phone rings) It's clear that the most powerful pieces of
 it have that property and that many of the pieces, even where
 there's no clear theoretical piece behind them, have sort of...the
 next best cousin in programming language, designer stuff like
 that. But there's a lot of...there certainly was in the past, a
 lot of push towards solving the whole problem. Not that the
 program solved the whole problem. UNIX is famous for this
 theory that it's best to do 80% because the last 20% is way too
 hard. But if there were a big piece you could chop off then you
 did it. And that's why you get general regular expressions
 instead of some other version. Or all those other things that
 come to mind. But I think regular expressions is clearly the
 most...the single thing that distinguishes the UNIX way from other
 ways, the MS DOS way and many others. Yes I think the
 compromises that are made are made somewhere else. Not made in
 these places where there are strong algorithms. They don't seem
 to put that sort of stuff in. Because there's also a somewhat
 minimalist tendency, which of course has affected the user
 interface too.

MSM: Yes. What led me to that was being exposed to a particular computer
 science curriculum, which is very much a Bell Labs, I
 think...influenced partly because the people involved in this seem
 to have a Princeton connection, only that as one moved through
 the introduction of programming systems, which in my year was
 taught by Peter Honeyman, worked on UNIX and one worked ones way
 up through to theory of computation, theory of automata...one was
 reading Aho, Hopcroft, and Ullman. There was a sequence where
 one began with very practical programming problems...and when in
 doubt...seeing a body of theory and the connection between the
 two. Which seemed to me the right way to go about it, if one
 could do a little better job of articulating it than they were
 doing...but still it was....

Weinberger: I think the other tendency has been a feeling, this is not a
 dominant tendency, but there's definitely been a tendency is, if
 you don't know how to do it right, just don't bother in the UNIX
 development. And I think that's one of the things that leads
 you...leads one to choose things that are backed by theory.

MSM: That's an ethos, it seems to me.

Weinberger: I think that's right.

MSM: How is it, I don't want to use the word 'enforced', but clearly it
 was something that you had to acquire when you got here. You
 acquired when you came into research. Do you have any sense on
 how that happened? If we can answer....

Weinberger: That's extremely hard to answer. I'll have to think about
 that. Let me put it this way. I think I was more receptive to
 it. I don't know how I acquired it and I don't know when I got
 it and all that sort of stuff. But this business...this point of
 view that the computer would do my work for me is a very
 absolutist point of view. Because I have this feeling I make
 mistakes, everybody makes mistakes, I also have this feeling
 that you never want to have to touch the programs. So it's
 important to do it right early and that it always be okay. So
 it always has to be...it's not just a problem of the minute,
 although one writes a lot of code that's got to do the problem
 of the minute, it's got to fill the niche permanently, which is
 completely unrealistic but it's certainly an attitude. And I
 think that matches this other. If it's just going to be a
 slipshod temporary hacked up way of doing it it's just not going
 to work long enough. And you're going to just have to come back
 and do it again and it's just too much like work. Not that
 reality actually matches this in any way but I think that's the
 attitude. I think that makes it easier to pick up that ethos.

MSM: When you talk to one another about stuff you're doing do the
 questions tend to drift back to what lies behind the code? What
 theory are you applying here, what makes this solution general?
 Can you verify this for me?

Weinberger: Verify it for you....

MSM: You show somebody something and say that's pretty neat but can you
 show me how it's going to work?

Weinberger: I don't think so. I don't think that's the way that works. My
 impression is that what happens when people talk about their
 work.... They explain the theoretical backdrop and all the
 problems and how they work it out and stuff like that. But...the
 effect of the sort of...external face of the work is that it's
 general and does a lot. And frequently people are surprised and
 disappointed, surprised and pleased, whatever by...things. For
 instance, the well-known UNIX regular expression stuff is not at
 all uniform. There's this business about back referencing.
 Sometimes you can say...later in the pattern, you take apart that
 matched in the first. It's got to be there again. That sort of
 stuff. Okay. And some of the pattern matchers do that stuff
 and some of them don't and people keep saying 'well how about
 this' or 'how about that?' And somebody has to point out that,
 well, if you put that in, the potential running time has just
 gone to unreasonable things. If you only use this class of
 regular expressions, then we can make the whole thing very fast,
 but if you use this class, then something else. So there's an
 awareness of the strengths and weaknesses of that stuff. And
 there's a sensitivity to the implications. And why...because the
 half...there's a problem with using theory based solutions.
 There's an advantage, which is you can explain what the theory
 gives you. And there's a disadvantage, which is you have to put
 up with the weaknesses of what the theory gives you. And for
 many specific problems there's an ad-hoc way that covers much
 better and we've been on, I think, both sides of that.

MSM: When you say weaknesses do you mean the theory tends to have longer
 run times?

Weinberger: No, I mean...well...The implicit claim for LR parsing...in fact it's
 an explicit theorem in LR parsing and turns into an implicit
 claim about LR parsers, is that they find an error at the first
 possible time. An LR parser does nothing once it comes to a
 symbol that cannot be illegal. It just can't beat them.
 Unfortunately that doesn't mean that an LR parser does that in
 any realistic sense. Because the parser doesn't see what you
 type out...the parser sees the output of some other program. It
 would just be endlessly confused. So people say you look at
 your buggy code and you say 'you could see right back there that
 is not a legal program'. Supervisor says 'yes that's right'.
 He says 'parser didn't notice until here'...'yes, that's right'...
 Well, but syntactically, without all this other stuff it was a
 legal program. The parser is just a little piece of it.
 There's a...the...when people give the talks that are backed by
 theory, of course you explain the theorems, and all the
 theorems...it's fairly typical, I think, of theorems in computing,
 is that there's a marketing piece to them which is that they....
 (I guess it was not your thing clicking....) There's a marketing
 piece to them. People use terminology that makes their results
 sound more important. You end up hearing about, you know,
 absolutely invulnerable oracles. That turns out that just
 doesn't mean anything. And this LR parser theorem is another
 example. The theory is correct. The theorems are correct. But
 the implications aren't what they sound like. You learn...that's
 one of the annoyances. Now on the other hand, if you don't base
 it on theory, it's just chaos, you say 'well I can hack it'. We
 have programs which are not based on theory and some of our
 quite successful programs are not based on theory. The extremes
 in that are Mike Lesk's contribution, TBL, one of the more
 extreme.... Can I get TBL to do this and the answer was 'in 45
 minutes'. He didn't say that literally but the true answer was
 in 45 minutes. And you say here's a bug in TBL and it's fixed
 in 45 minutes. But although that started with a model, Lesk's
 style, which he was extremely good at, was just to go in and
 hack it. The model got weaker and distorted and confused and
 'well, listen the problem mostly works.' But my feeling about
 that code was, which I use all the time in the ways that I
 understand how it works, was...there's this joke about farmlands
 in New England and farmlands in Iowa, right. If you take a rock
 out of a farm in Iowa, you have some feeling it's the last rock.
 The farm in New England is nothing but rocks surrounded by
 water. So it is with bugs and these two styles of programs. If
 you have a theory based program you can believe you got the last
 bug out. If you have a hacked up program, all it is, is bugs.
 Surrounded by, you know, something that does something. You
 never get the last bug out. So we've got both kinds. And it's
 partly the style of the programmer. Both kinds are useful. But
 one kind's a lot easier to explain and understand even if it's
 not more useful.

MSM: The community tends to have a tolerance across the reach.

Weinberger: I think the community, sure.... There's some balance between any
 program that's sufficiently useful can have any number of bad
 effects...properties. But people prefer small, clean, easy to
 understand programs. But they will use big horrible grotesque
 disgusting buggy programs if they're sufficiently useful. And
 some will complain louder than others but it's a rare few who
 will say 'this is just so awful I won't use it.' We've got more
 of those few here than in many places.

MSM: Sandy Fraser was telling me the other day that the UNIX manual was
 the first one to explicitly to cite its bugs, in a open, honest
 fashion. Is that part of that?

Weinberger: That's interesting. I don't know who did that style. The oral
 history around here is that's essentially Doug's style. He may
 be right. There's a couple other things that happened here. It
 may not be true, of course. There's a couple other things that
 I think are related to that. Not necessarily having anything to
 do with Doug, and are possibly the consequences of the fact that
 we don't have to go out and get funding, which is that there's a
 tendency not to go out and talk outside about your work a lot
 until it's finished. As opposed to well before you start.

MSM: When you say go outside, do you mean go outside your own office?

Weinberger: No, I mean go outside your organization. And there's also a
 tendency not to talk too much formally inside the group about
 what you're working on until it's done informally. There's a
 lot of that. And I think that's part of this same kind of
 flavor...calling it intellectual honest would be a little
 pretentious but it's that same flavor of approach that leads to
 bug sections in the manual. Well, this stuff is good and bad
 and here's the good and here's the bad.

MSM: I've gotten the sense from several conversations, not the least of
 which with Doug himself, that the early versions he used the
 manual as a way of...sort of getting people to clean things up.
 Go through a new version of the manual...anybody go through your
 code and want to clean it up a little bit?

Weinberger: I'd like to be able to take it so you can explain it in a short
 amount of time. I think that's also one of the...a common feel
 that's common in computing. The story is if you read the
 documentation early, it's likely it'll be possible to explain
 what your program does, whereas if you wait until your program
 is completely finished, you may discover that however coherent
 it looked while you writing the various pieces, it's impossible
 to explain it.

MSM: There's a guy down in Holmdel that had on his door a sign that said
 documenting a software project is like changing a tire on a
 truck while it's moving.

Weinberger: That's a bigger scale than we do.

MSM: You came in then on AWK?

Weinberger: Yes.

MSM: How did you pick up your next mission.... I'm interested in how people
 pick up missions in this....

Weinberger: I'm not sure I remember. I know one of the things I worked on
 almost immediately is FORTRAN I/O library. Stu Feldman and I
 were sitting around talking and...FORTRAN 77 had just come out,
 and we had this idea that it would be easy to implement a
 FORTRAN compiler because we had all these great compiler tools.
 So we were talking about it and I said...I think this was probably
 while I was still in development, I started on this also...well,
 we talked about the parts that are hard. There's essentially
 two things that are real aggravation in FORTRAN. One is the
 lexical analysis. Once you've figured where the tokens are,
 it's not all that hard, and the other is the wretched FORTRAN
 I/O library dominated by the god awful format statements. I
 thought about for a while and said I know how to deal with
 format status. So we divided it up. He would write a compiler.
 I would write the I/O library. And we'd just get this done in
 almost no time at all. Well, the truth is that our compiler
 tools are not all that good. What we had fundamentally was lex
 and yacc, and that's a long way from a compiler. The other
 truth is that, in addition to figuring out where the pieces of
 the format statements are, there's quite a lot of work in an I/O
 library . But basically we just started this thing up and ran.
 Because it was the first UNIX FORTRAN compiler. It had quite a
 long life. So it was quite an embarrassment. Another example
 is it doesn't matter whether your stuff is good or bad, as long
 as you've filled the niche it'll be a long time before anybody
 else comes along and starts poking. When we got our Cray 3 or 4
 years ago the first one was UNIX...on it. Somebody sat...was
 running perfect...they said, 'I'm getting these errors from
 FORTRAN. I don't understand them. Do you understand them? You
 run an I/O library, do you understand?' I said, 'No why would
 the I/O library have anything? They've got real FORTRAN.' But
 in fact they may have had real FORTRAN but they had my awful
 FORTRAN I/O library after all these years and I recognized the
 messages right away because it was still all my code. That's I
 think a story in favor of portability in writing in C, which is,
 by now, fairly well understood. After that it's fair to say I
 drifted a lot off and on. I did little things of one sort or
 another. And medium sized things, when I was interested. But
 it was stuff I thought of myself. I said this would be
 interesting to do and on my recollection, is that weeks or
 months would pass while I would be sort of trying things out
 that weren't working out. And then something I'd do would work
 out. That would be nice. Get me a raise. So it was
 very...structured.

MSM: Have you had any continuing themes that you've been pursuing?

Weinberger: Well you sort of end up working on stuff that you've turned out
 to be good at in the past. No, for a while there was. But no,
 I don't think so. The answer is there's stuff that I had done
 that I've sort of stopped doing. There'd be sequences of
 things, network file systems, servers, and that's still
 something I think about. But I'm less and less comfortable
 about doing kernel work. It's gotten more complicated and
 secondly you have to keep a lot in your head at once and I'm
 getting interrupted more now. It's hard to debug. So I don't
 do that much anymore. The research kernel has gotten a lot less
 modular, despite serious efforts to make it more modular, which
 of course have just...it's like releasing less carbon dioxide.
 It's not less carbon dioxide it's just not as much more. So
 there have been improvements in places but the general tent has
 not been very satisfactory. It's gotten much more complicated.
 So I don't know. The stuff I work on, there's always some,
 some...it's right around the system interface. I'm not sure
 there's too much more to it than that. My idea of an
 application program is a compiler. It'd be nice to move up a
 little from that. But I think I'd write some actual useful
 code. That's all I can think of that's been constant.

MSM: The prompt is as I was talking with Ken and listening to him talk and
 thinking of this Turing Award lecture, and so on...this continuing
 theme of self-replicating code, referencing systems which seem
 to reflect itself here, and reflect itself there, and the theme
 he came back to, and I was wondering if you have a theme like
 that you find yourself coming back to?

Weinberger: No. I'm not sure I would have characterized Ken that way
 either. There are things he really does keep coming back...file
 systems, and so forth. That's always been...that's how UNIX
 started, right, the point was...and he kept rewriting them and now
 he's just rewritten another one. Another batch. I can't think
 of...I'm not sure...I mean, that may be...I don't know.

MSM: What happened to the mathematician?

Weinberger: Well, what happened to the mathematician, the mathematician is
 still sort of there but it's hard to keep up. Keeping up with a
 single field of mathematics is essentially full time. And so it
 decays. What it is now is I have a really good education for
 computer scientists. And it's quite useful. It was
 interesting. Hopcroft came by a couple of years ago...I think it
 was Hopcroft. And when he was just starting in robotics and
 explained all this stuff that people ought to be learning in
 computer science...'this is the wave of the future' and it was all
 this stuff I had learned in the first year of graduate school at
 Berkeley in mathematics, right? It may have been new to him but
 it was just classical mathematics - period. So a lot of that
 stuff's good for a long time. What the mathematicians talk
 about in shifts. I can't read the fancy physics books because
 that's the kind of mathematics I...slowly it all shifts...(tape
 cuts)...I wrote math papers for a few years after I got here. The
 last one was probably 5 years out or something. But it's
 just...you have to be a scholar to write a research paper in
 mathematics. You have to be up on the field. It's just too
 hard.

MSM: Now you say you joined Development and you pointed back and it was
 behind the building.

Weinberger: Yes. There was a building back there.

MSM: That doesn't exist anymore?

Weinberger: Well that particular Development organization isn't there
 anymore. But yeah, maybe, yeah they moved somewhere else, but
 yeah, they're still around. Doing quite different things as you
 would expect after 15 years.

MSM: Were they where the analytic computing group was? When I first
 visited Bell Labs it was a fellow named Charlie Stenard.

Weinberger: Yes I think so. That's right. I was in Building 5. It was a
 weird building up there. Yes it was. I knew Jim Downs. He was
 a peculiar person in many ways. Frequently I couldn't figure
 out what he was talking about. But he had very enlightened
 personnel policies. If his people wanted to try something out,
 he would support them. Which is nice because frequently they're
 fairly hard to replace. It was nice.

MSM: How easy was it to make the shift? You said...again I'm interested in
 certain managerial structures. While you over here you found
 something?

Weinberger: No, there's more to it than that. I had tried to get a job
 here several years before. They come around and since I was a
 mathematician, Stan Brown had brought me in and they were
 working on ALTRAN in those days and I gave a talk on computer
 algebra. And I talked to Steve Johnson, all those people, and
 Sam Morgan wasn't hiring...no more mathematicians. Sam had in
 retrospect had this job of rebuilding this place or keeping it
 alive after the Multics thing. And there was a whole collection
 years right around there where they essentially hired nobody.
 As recently as the early '80's the place was 20 people. Well 20
 was low, but 25. So he had already said no to me once. But I
 was doing this stuff with Al and Brian who, in retrospect,
 clearly were very hot properties. And they obviously thought
 this was a good deal. So we talked about it informally and then
 started trying to do it. And I guess they talked Sam into it.
 I don't know anything about it. It was, I think, probably a non-
 trivial effort on their part or on Doug's part, who was the
 department head...on somebody's part...probably did a lot of work
 which I didn't notice at all. Just dropping in on Al was
 the...yeah, I just came over, and I probably made an appointment
 and came over and explained my thing. It developed into this
 other stuff.

MSM: He was talking with Sam next week but you say he wasn't hiring any
 more mathematicians, and are there splits?....

Weinberger: No, I didn't mean it was just mathematicians. My feeling is
 that Sam was not much interested in taking chances...in people it
 was clear would succeed...given his druthers. And he may also
 have had feelings about the project that people were likely to
 work on. In my case there was no telling at that point about
 whether or not I was going to be good at anything else.

MSM: So in '76, '77, there was still fallout?

Weinberger: No, the first time I had tried to come over was probably '73 or
 '74. '73 probably. There was still fallout. This is in
 retrospect, I don't know what the actual situation with Sam
 was...Sam will have a much clearer idea of what the actual
 situation was than I do.

MSM: I have a feeling I'm going to get a sort of...you know the story of
 probably apocryphal ...Sir Walter Raleigh, while in the tower,
 decided to sit down and write a history of the world. Just get
 his story down. So he was up there writing this story and there
 was a scuffle in the courtyard down below, so he went down at
 mealtime and tried to find out what it was about and talked to a
 lot of people. Got so many different accounts he went upstairs
 and ripped up his history.

Weinberger: Well, but all of us are...all of us just remember what we
 remember. I...

MSM: But also there's a question of what people were seeing from different
 vantage points.

Weinberger: Yes. I understand. Even if we remembered exactly you'd get
 different stories. Sure. I wouldn't be surprised if you got a
 lot of stuff out of Sam. I expect the environment was much more
 complicated than it looked to young beginning technical
 people...political environment.

MSM: Well, it also says something about the way....

Weinberger: Oh yes. Sure.

MSM: Shield people from what they don't need to know.... Did you find when
 you came it was positive?

Weinberger: Oh yes. Sure. I found it quite interesting. As with all
 these things there are some people you work well with, there are
 some people you don't work well with...but you talk to. Some
 people you hardly ever talk to. I think I was here two years
 before I understood anything Ken said. Because if you ask Ken a
 question, he sort of gives you a one line answer to the question
 he thinks you ought to have asked approximately. I don't know
 what he thinks he's doing. But that's certainly what it seemed
 to be like he was doing. And you have to know a lot to
 understand a one line answer to these things. And after a while
 the answers become extremely informative. But it really took a
 long time before I just understood anything Ken was saying.
 That was pretty funny.

MSM: Did you pick a mentor in the group?

Weinberger: No. My guess is if I did that I'd have been more organized
 probably. More would have gotten done or it all would have been
 more structured. But I was used to as a mathematician used to
 working alone. Although there were a fair number of joint
 publications, it was.... And the style here, not universally, but
 to a large extent, is even when people are working on the same
 things they work on different pieces of it. Partly that's
 because of the little funny schedules. If I'm working on
 something with, say Dennis, I get in at 7:30 in the morning and
 work till about just after Dennis shows up and then I go home.
 Then Dennis comes in and works. You've just got to have some
 way of not stomping all over it. The most remarkable example of
 that is Ken and Dennis doing UNIX, where apparently there was
 only one time they even considered writing the same code. When
 they wrote it, it was line for line the same code.

MSM: Yeah, I heard about that.

Weinberger: I believe that story.

MSM: It was, character for character, a match of assembly code.

Weinberger: Well, it was the right way to do it, I guess. So, there's a
 lot that sort of...I think that's part of it too. People talk
 about what they're doing. But they sit and write code not
 always...until recently and somewhere else. I have not seen
 people sit at the terminal and one person type while both of
 them were writing the program. You just don't see much of that
 around here. And it's a perfectly reasonable way to work,
 especially in complicated code. And occasionally here it
 happens a little bit. But it could happen much more
 systematically. That's just one of the things that doesn't
 happen here. Here it only happens for little pieces of a
 program where you're having some particular trouble, as opposed
 to, essentially, the whole program.

MSM: This is a part of its history. Where do you think UNIX is going to
 go?

Weinberger: That's actually quite easy up to a point. I think it's going
 to be completely dominant, in spirit at least. In part of the
 spirit. And you can see that in MS DOS or...where all this
 stuff....

MSM: All those years you knew DOS....

Weinberger: Well, unfortunately, not quite because it's such a botch. But
 yeah, that's right. All the stuff that was in original MS DOS
 and of the stuff they've added to DOS, a huge fraction of it,
 you know, 80% of it, is UNIX-like stuff. And the...open...all this
 open...all this standard stuff...standard to conform, and it's in
 POSEX and all that sort of stuff is UNIX stuff. And if you're
 building an innovative computer, unless you're extremely weird,
 it's just inconceivable to spend a lot of time building all the
 aspects of an operating system. So you take UNIX in one of its
 variants and put it on. So at that level, it's like FORTRAN.
 We're going to have a lot of the features of the UNIX interface
 forever.

MSM: I'm going to interrupt you for a second. Because there is another
 model entirely. You were talking about it when I came in, by
 the coffee machine....

Weinberger: Right. That's the Apple model in some sense. And we're going
 to see combinations of those. That's for the user interfaces.
 But the underlying system stuff, what that runs on top of, is
 going to be UNIX. Because, roughly speaking, that part of it
 they got right. And this other part of it, the UNIX people got
 right, and you're just going to have them both. It's a
 very...now...that is when you sit down and turn the thing on, right,
 we've got Windows, right, mice, and menus and all that stuff.

MSM: Also got command lines.

Weinberger: That's right. We've also got command lines. But you can chop
 way back on that. I can write an interface to this, with a
 modest amount of work, where one got most of your days work
 done. And the last command you typed, where you wouldn't type
 very many commands, it's not very hard, actually, to decide how
 much of that you want to do. The AT&T open look interface has a
 lot more of that. All this stuff that I find so easy just to
 type comes on these elaborate collections of menus. If you've
 never typed...if you've typed hardly anything. But the Macintosh
 interface and the Xerox interface did actually have a lot of
 typing. You didn't type commands but the stupid systems always
 want to talk to you. They always want another wretched file
 name and you never get to say "star dot c 2 dot". Do this a
 million times on all the dot c files which is something that
 UNIX is really quite good at. You get to type a lot of stuff
 over and over again. I think there will be some balance which
 is probably isn't close to it being achieved. Because
 interfaces need to be smarter.

MSM: Because when I got my next coffee cup...for looking at the
 demonstration...they had introduced the machine. They talked
 about this was going to be UNIX but with a friendly interface.
 And I said to the guy 'well, when I think of UNIX and I think of
 friendly, I think of pipes and macros. Now, are you telling me
 I can pile up icons in a pipeline' and he said 'no, we don't
 have to do that ,but you can open a command window'. I said 'I
 can do that in DOS.' It was part of making myself friendly.

Weinberger: The hell with them. They're all so self-satisfied. I don't
 like vendors.

MSM: Ron knows. He came in with his lowest common denominator thinking
 they were showing the next interface. But again I stopped him.
 I said 'wait a minute...you're hooking messages of the objects.
 Where did the objects come from? You're telling me that all the
 applications for this have been written in Objective C?' He
 said yes. I turned to our graphics person and he said 'now,
 that's raising the lowest common denominator.'

Weinberger: It certainly is. And Objective C's the wrong solution also.

MSM: Yes. But you've got faculty members who are scared by BASIC, you're
 not going to get them like to Objective C and you're not going
 to start them maintaining university status. Objective C
 codes....

Weinberger: No I think that's right.

MSM: Not the scholars working.

Weinberger: No I think that's exactly right. I don't know what to do about
 that stuff but that's not it. So the rest of the UNIX story and
 I think, to some extent, all these other stories is that the
 commercial products, by the standards we're used to, are pretty
 crappy. They're, for all the reasons that commercial products
 deviate from esthetic ideals of one sort or another,
 right...they've got to get them out. You've got to get them out
 on time. You've got to build them. They're not allowed this
 'well, I don't know how to do it', 'well, so let's not do it'
 attitude that we can indulge in. They've got to do it. They
 have no choice. It you don't know how to do it, well, you do it
 in a bad way. Then the bad way has some feature and some
 customer uses the feature and you can never get rid of the
 loathsome thing. It's all awful. And the commercial systems
 show every sign of that. They have the standards we use.
 They're appalling. And they make UNIX more and more like other
 commercial operating systems, because in fact the same effects
 are in all of them and they get bigger and harder to maintain
 and grottier and the manuals become outrageous, badly written,
 and all that sort of stuff. My only feeling about that...I have
 two feelings about that. One is it's inevitable. It could be a
 little better or little worse, but it's inevitable. And if it's
 gonna...I'd rather complain about what they've done with our work
 than have to put up with somebody else's work. So, it's
 relatively easy to complain about this and that but my view is
 that it's much better than it would be if...without it. Much
 better. The piece of the promise that does work...as you go out
 and buy equipment from lots of people, and you run it and the
 environment is fairly similar and fairly familiar and in fact
 it's so familiar and so similar, you complain a lot about the
 differences, instead of having to fight your way through a whole
 collection of new things. So I think permanent is too long, but
 I think it's here for a long time. I think we're going to be
 real sick and tired of it after a while. Just sick and tired.

MSM: It's a program, it's a file system, it's a programming environment.
 Did you hear about it as a software development environment?

Weinberger: No but I think that's what it is basically.

MSM: You think it's already industrial strength?

Weinberger: Well I don't know what industrial strength means, of course.

MSM: All you have to do is take the software cycle. Can one do
 requirements now as a specification, formal specification,
 tools, etc.?

Weinberger: One can do all those things. If they're being done, I assume
 they're done on UNIX systems. I think many of those things are
 operating system independent. The...it's true that the standard
 system doesn't come with some of the tools that some people
 want. I'm skeptical about a certain amount of that stuff. The
 real world suffers from a lot of, sort of, wretched, grotty
 problems. Everybody says 'no we don't want to mix languages.'
 There's always a little something weird. Not much but a little
 something weird so it has to be capable. And old code...you don't
 get to start over. And so a lot of the systems that ought to
 work, a lot of the things people write about as if they ought to
 work, they work real well if you write in one language and start
 over each time. Or at least they have a chance of working well
 if you write them one liners. But anybody can write software if
 you start over each time. It's this living with the past that's
 so hard. I'm moderately skeptical about a lot of this stuff.
 It's clear some people do software projects better than other
 people, but I'm not sure formal requirements is a piece of it.
 The people who seem to do the best are the people who are doing
 pretty much what they did the last time.

MSM: And starting from scratch?

Weinberger: No, not necessarily starting from scratch, but sometimes
 starting from scratch. As long as you don't get too ambitious
 and step on second systems and stuff like that. If software
 development environments means things, you know, like structured
 language, sensitive editors and stuff, incremental...incremental
 somethings and all that sort of stuff then no, we don't have a
 lot of that stuff. But I would much rather have general purpose
 editors and very fast compilers...and not have to worry about all
 this incredible crap that you otherwise have to build to keep
 your life straight. I think for instance C++, which is going to
 end up being a big step in that direction. I think C++ will be
 very popular, probably partly for the wrong reasons. Partly
 there are things I wish it didn't do, and so on and so forth.
 But I think this is tendency, okay. As machines are getting
 faster and faster and faster, the research community is usually
 big on...techniques for utilizing machines which have rates of
 growth that are much faster than the cycles are becoming
 available. Just impossible horrible things. C++ is less
 efficient than C if you use it in a natural way. But it's not
 so much less efficient that it's not going to pay off. This is
 where...instead of where all the...Xerox PARC is another example of
 this. They have these ALTOS which are slow and creaky and
 wonderful. Just, nobody's seen anything like it. They moved
 to...through a state of thing to DERADOS, which were damn fast
 machines and the damn machines were no faster than their other
 machines. The reason was that their software had been very
 greedy. They were going to do everything the right way. And it
 was incredibly expensive. All these cycles pissed away on the
 internal esthetics of the program, you know, layering and
 abstractions and all that stuff which everybody believes in but
 which can cost. And if you go to functional programming
 languages, you know, all that sort of stuff dynamic this and
 small talk that and all that sort of stuff, that stuff just eats
 the cycles like crazy. You end up with systems that don't work
 any better than the last systems except that they have lots more
 software in them and slightly fancier interfaces. And I think
 C++ is going to be a good compromise. Sure, it's going to be
 less efficient than C. You could probably make it the equivalent
 C++ program, written using all the features, half the speed of
 the C program. Well, that's a factor we can afford. Especially
 since not everybody's going to pay it. The 10% and 30%'s we can
 easily afford those if it really means the code is reusable
 where you can get the programs written faster. So I think it's
 going to be a big win.

MSM: That's interesting because, again at the next demonstration, one of
 the stunning figures was what percent...at the time you hadn't
 loaded how many megabytes on board those operating systems just
 to get those graphics. And I thought back to the original MAC
 which was so damn slow because it was all interface.

Weinberger: Yes, that's right. Well, is it worth it? Well, people differ.
 But if you keep it under control, and it's not clear in
 advance, whether you're keeping it under control. I think Ax is
 an example. There's this unbelievable pile of Ax crap. On the
 other hand if you don't use it all but only use some of it, Ax
 is reasonably fast. Much to my surprise. Of course they've re-
 written it several times and made it's standards very
 complicated so it can be fast. But they succeeded. There's
 always this question of do you take the functions you want and
 then learn how to make them fast or do you just try to make it
 fast from the start? And sometimes one, and sometimes the other
 seems to be the right answer. It's hard to be general about
 that. That's why software engineering is in such a terrible
 state. Civil engineering would be in a terrible state if all
 the properties...the physical properties and materials we used
 were changing at an exponential rate. How the hell would you
 ever learn to do engineering?

MSM: Yes, if you think you have trouble with computer science curriculums,
 the newest I triple E computer has suggestions for a software
 engineering curriculum. Any new curriculum....

Weinberger: Yeah right. I can't imagine what that can teach.

MSM: Essentially courses based on the cycle....

Weinberger: The only way you can get people to do that is you insist they
 go out and do it in groups and watch what happens. At least
 then they'd have some practical experience. Because the rules
 of thumb are just pointless.

cover_image.jpg
Michael S. Mahoney

