O

(-

516-14
ADH,CC
1/16/69

GMAP Assembler for the Multi-Programmed 516

A GMAP assembler is available for assembling DDP-516 segmented
programs (i.e., relocatable programs stored on disk which are
called into core upon demand). The assembler output includes .
a symbolic listing, an octal listing, and a bilnary deck which
may be loaded into the DDP-516 through the card reader. The
deck set-up for running an assembly follows:

1 8 16 :
IDENT [usual information] .
SELECT GEDISK/DDP-516/SEGMENT/GMAP
[symbolic deck]

SELECT GEDISK/DDP-516/SEGMENT/POSTPROC
ENDJOB |

The assembly requires two éctivities (GMAP, and the post
processor). Sevéral programs may be assembled in one run;
the $ SELECT cards must be used with each deck.

The user must glve a seguent name to his program by calling SNAME?

1 8 16
SNAME name

where name is the segment name, which consists'of 1-6 characters,
taken from the alphabetics and period. '

The 516 "unadulterated" memory-reference instructions are coded
with a dot in front of the standard mnemonic. . Examples:

1 8 . 16
| .JMP X
.LDA Y,1
.ANA z,* -
.STA 3,1* -

The assembled format 1s like that of a GE memory-reference
instruction. The 4-bit operation code is in bits 22-25, the tag

‘bit position (part of the code for .LDX and .STX) is bit 21, and

the flag bit position (bit 20) is always O. Bits 18-19 are 102,
a post-processor flag. '

The segmented-program wrifer will normally use the 516 mnemonics
without dots. These codes are defined as MACRO-instructions that
compile into a variety of sequences, depending on the variable

field contents. Examples of these various cases follow. -Notice

516-14 - 2

that STX and LDX are not avallable, since the index regilster
13 not avalluble 1in segmented programs. Also, JST 1s a special
case because Lt causes a_physical address to be stored inside
the program, in violation of segmented-program rules. The tag
(tase register) bit is controlled by the following rule: The
tag 1s set if and only if the address is relocatable. To help

define addresses properly, the symbol .RZERO is defined as
relocatable O. o ' :

1 8 16
JMP - A, *]

where A 1s absolute or relocatable (e.g.; a transfer of control
tnalde the segment). The assembled sequence is just the machine
instruction: :)

1 8 16
.JMP A, [*]

The GOTO mnemonic.may be used interchangeably with JMP.

1 8 . 16
" LDA B[, *]

where B 1s an external symbol, assembles into a subroutine call.
f:r address ccmputation followed by the corresponding machine
tnatruction. The computed physical address is stored in .SRPO.
The direct and indirect reference cases call two different
s.treutines: :

! 8 . 16
* _
6i%%3 éOPDAD’ direct address
.LDA .SRPO, *
or ‘
.JST .OPISW, * :
VADDR B indirect address _
«LDA .SRPO, *

§ “he indirect-address case, the address (in location B of the
“l¥n segment) is assumed to be a single-word address, either

?ﬂ-!ntra-§egment reference or a pointer into common storage
@ztor Q). :

-
-
I d
[o

?:F an indirect reference in which the indirect address is a
y.rtual-address pair, the same code 1s used regardless of where
“» indirect address 1s located. Thus,

C

«

.

(\,

516-14 - 3
7/1/69

1 - 8 16
‘ ANA X, *VA

assembles into

1 8 16
.JST LOPIVA,*
VADDR X
.ANA .SRPO, *

regardless of'whether X 1is absolute, relocatable, or external.

In the above examples, VADDR 1s a MACRO which generates a virtual-
address pair of words, regardless of the address type. This MACRO
is available to the applications programmer directly. The other
address-generating MACRO 1is: : ’

1 8 16
ADDR X

If X is absolute or relocatable, the result is a single word,
with the tag bit O or 1, respectively. If X is external, the
result is a virtual address pair (identical to the use of VADDR).

The MACRO EXTERN must be used to define an external symbol prior
to its first use in an address: ° .

1 8 16 - -
EXTERN segment, (namel,offsetl,...,name8,0ffsetB)

The first argument is the name of the external segment. This

- segment name 1s entered on the program card. The segnent name

may appear in the address field of some later instruction, where
it is interpreted as the first location in the external segment
(offset or relative address of 0). If X is such an external
segment name, then X+5 1s a legal address, the sixth locatlon

in segment X. The optional argument following the segment name
definesadditional locations in the external segment. Thus,
"namel" 1s the name of location "offsetl"” in the external
segment, and so on. A maximum of 8 such auxiliary names may

be defined by one EXTERN statement. These names are not global,
in that they do not appear on the program card, and thus are

known only inside the segment which defines them 1in the above
.manner, ' . .

The JST instruction is only to be used for intra-segment references.
It may be used either in the direct-addressing mode or for l-level
indirect addressing, in which case the indirect address 1s single
word and not in an external segment. '

T

516-14 - 4 4_ '

An ASCII macro has been defined which converts GE to ASCII
'he symbollic format is:

™ Y
_ 1 8 16 :

. ASCII (ab,cd,...)
where a goes into the left half of the first word, d goes into
the right half of the second word. The format. for ASCII literals
ist . . .

~ | 1 8 , 16

“;§ LDA -=Hab

To call a subroutilne either internal or external to the calling
segment the following statement is used:

1 8 16
CALL (SUBR, ARG1,ARG2,...)

where "SUBR" is the subroutine name and "ARG1", "ARG2",... are
address arguments to be passed to the called subroutine. The
subroutine name and the address arguments may be defined internal

to the calllng segment or be defined as external to calling .
- 2egment by an EXTERN statemenb

The called subroutine can fetch the address arguments using:

: 1 8 : 16
GEPA N

(R T A

where N is the number of the argument to be fetched (N=1 fetches

the first argument). Upon execution of a GETA statement three

items are returned. .ADPTR contalns a pointer to the requested

P address argument in the calling sequence. The requested address
C argument (2 word virtual address) in the calling sequence is

’ﬁ}! converted to an absolute core address and left in .ADARG. The
#, 2ontents of the memory location pointed to by the address

~argument are left in the A register.

; If another level of indirection is required (.ADARG points to
¢ ' another virtual address), ,
¥ 8
"%5 ADC@NV
fetches the virtual address pointed to by .ADARG, converts it to
An absolute core address and returns with the converted address

<
3

%
=
[
%
%t
&
e

516-14 - 5

in .ADARG. Any level of indirection can be followed by repeated
ADCONV calls. To return frem a called subroutine, use

1 8 16

RETURN N .
where N is 1 +Vthe number of arguments in the calllng sequence
(1f there were no arguments use RETURN 1). :

Although CALL can be used to call internal subroutines 1t is
inefficient. For internal subroutines. the following set of
statements can be used : :
1 8 .- 16

JCALL - SUBR

where "SUBR" must be internalhr?efined by:

1 8
SUBR . JSUBR

This pair of statements is 1like using the 516 machine instruction
JST but in a reentrant sense. When the subroutine has been
entered the system location .JSTAD points to the memory locaticn .,
after the JCALL statement. It can be incremented with an IKS

and used to fetch arguments Jjust like a JST-planted address.

1 8
JRETRN

i1s used to return frcm a JCALLed subroutine (.JSTAD must be left
pointing to where control should be returned.) '

Each thread in the multiprogramming system has assoclated with 1t
8 relocatable pointers (.RPO-.RP7). An absolute core address
(pointer) can be depcsited in cne of these pointers and the system
will automatically relccate it when every ‘core shifts. Thus a
segment may be accessed for data, etc. indirectly thru a relocatatle
pointer with no systen overhead time. Loading a relocatable
pointer with a pointer to a segnent also has the effect of holding
the segment in core. For thils reason a zero address should be
loaded into a relocatzaktle pointer when the user is finished using
it, to allow the segment to be pushed out of core 1f necessary.
The indirect bit cannot be set in a relocatable pointer.

1 8 16
RELPTR .RPN

(.f)

<

516-14 - 6

is used to set up one of the 8 relocatable pointers (.RPO-.RP7).

The A register is assumed to contain an absolute core address

to be planted in the relocatable pointer. The old contents

of the polnter are destroyed, with the appropriate book-
keeping done.

Sometimes it 1is desirable to write a non-reentrant subroutihe
or part of a subroutine. The following statement should precede
‘any non-reentrant code. :

1 8
A GATE

This statement allows only one thread té pass this point. After
the non-reentrant code has been executed, the gate should be
reopened for any other threads by storing a zero .in location

A+l. / D .

i

The binary card format for felocatable'programs uses .-the following
packing strategy:

column
.hk—3 top U4 bits of top 4 bits of top 4 bits of
. word 3k word 3k-1 ~word 3k-2 ‘
hik-2 bottom 12 bits of word 3k-2
4k-1 bottom 12 bits of word 3k-1
u bottom 12 bits of word 3k

The card format 1s based on the unpacked words, not columns:

516-14 - 7

Program Card

word
‘;\’ 1 1{1]1]1]word count (start at word 4)
2 segment length
3 - checksum (2's complement)
N 0| first progran card: total number of names
—~ 1 | continuation: number of first name on this card
"‘ 5 1-25 names (word pairs, format as in 516-5)
. Note: First name on first program card is riame (SNAME)
of this segment; all other names are EXTERN names.
Data Card
word . I
1 o111 word count (start at word 4)
2 origin of this card
3 - checksum (2's complement)
4 1-48 type bits:
0 - data word
6 1 - index into EXTERN names
7 1-48 data words
C 2

