516-49
RFG -
5/19/71
Subject: 510 Segment Assembler.

This documsnt explains some of the details which
come into play when assembling segmented programs, using
the DDF sezment assembler described in Doc, #516-41.

| The following mnemonics are available to effect
a change of control from one area of code to apother.

JMP - Hardware interpreted intrasegment jump instruction,

GOTO. - Software interpreted macro instruction for intersegment

jumps (it may be used for an intrasegment jump, but
it is inefficient). S
Example: T6 continue execution at the fifth location

‘of segment "AB".:

"'Codiﬁg Example . Equivalent EXpansion
o« ‘ . , ’ ": . l

GOTO AB,4 : JST .GOTO.,*
- '+ VADDR AB, A

Note in passing thet the macro XGOTO available in
the assembler documented by 516-14, assembles into the same

code in the present assembler,

JST - Hardware 1nterpreéed 1ntrasegment‘jump~and store
instrucéion (also used to access syétem's prograns).
Caveats: 1) Pseudo-op DAC is illegal in the segment
assembler, so use OCT O or equivalent to prefii the

referenced code, ' .

516—&9 -2 -

11) Be aware that since the loc 4+1 of the JST
instruction is saved in the first loc, of the referenced
code, the code sO referenced i§ not reentrant; so be |
careful that no I/0 is called for from within that code,

i.e., do not do anything which will cause a roadblock.

' JOALL, JSUER, JRET - Software interpreted macro instructions
for reentrant ihtrasegment calling (reentrant equivalent

" of JST type).

JCALL is defined as OPSYN JST, and as such, JST may be
ﬁse§ in its place.
JSUBR is_the entny'boint to the code referenced by JCALL
(JsT) and assémblés»into; | |
| AB: JSUBR= AB:OCT O
, - J8T .JSUER, ¥
. The contents of AB are deposited on a push doun
1ist. The last entry on the list may be accessed by system
defined location ,JSTAD; this location may be IRS'ed and LDA 'ed
ﬁndirectly in order to pick arguments,
" JRET = JRETRN will return to the location pointed £o
Sy .JSTAD, \
JRET2, JRET3 will return to the contents of JSTAD +1

or +2 respectively.

. 516-49

. Eguivalent Expansion

AB: JSUBR
LDA .JSTAD,* (get ARGL)

IRS . .JSTAD
. . 4

~ LDA .JSTAD,* (get ARG2)

IRS .JSTAD
JRET2 (take 2RET)

> .

- JST

ARG1
ARG2
1RET

"2RET

AB

OCT

JST
LDA

IRS

LDA
IRS

JsT

0
.JSUBR, ¥
LJSTAD,* =

.JSTAD
.JSTAD, *

.JSTAD, *

.JRET2,¥%

516-49

- L -

CALL, RCALL, RETY, RRET - scftware interpreted macro

1nstructlong for reentrant jnterbe~ment calling.

CALL and RCALL 2are essentially the same, CALL hszs

 the effect of 1ock5nr the calling segment in core,

while RCALL releases the calling segment from core,

thus making room available for other segments. SO

_1f you are pag51nd argumonts rpom within the calling

sequence or if the call instruction is within a locp,

~use CALL; 0uhewuise PCALL 1s the preferrod way. lote

' 4n passing that the macro CWTARG will not handle

virtual addresses, only abs solube or relocatable.

RFTl and RRET are the corresponding return macros,

“also 1mp1emented are: RFTZ, RET3, RRET2 and

RRET3; these are self—explgpatory.

N

A
5)

516-49 | -5 -

Cocéing Example

CALL AB
ADDR C
1RET

2RET

C:0CT. 7T

END SEG

o wma e G- -

. GETARG 1 (get argument)

STA OCTAL
RET2 (take 1RET)
'END AB N

Equivalent Expansion

JsT
VADDR
ADDR

JsT
END

.CALL.,
AB
C

—

%*

