Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

Document Preparation

By B. W. KERNIGHAN, M. E. LESK, and J. F. OSSANNA, Jr.
(Manuscript received January 6, 1978)

The UNIX* operating system provides programs for sophisticated docu-
ment preparation within the framework of a general-purpose operating
system. The document preparation software includes a text editor, pro-
grammable text formatters, macro-definition packages for a variety of
page layout styles, special processors for mathematical expressions and
for tabular material, and numerous supporting programs, such as a
spelling-mistake detector. In practice, this collection of facilities has pro-
ven to be easy to learn and use, even by secretaries, Iypists, and other
nonspecialists. Experiments have shown that preparation of complicated
documents is about twice as fast as on other systems. There are many
benefits to using a general-purpose operating system instead of specialized
stand-alone terminals or a system dedicated to “word processing.” On the
UNIX system, these include an excellent software development JSacility and
the ability to share computing and data resources among a community of
users.

I. INTRODUCTION

We use the term document preparation to mean the creation,
modification, and display of textual material, such as manuals,
reports, papers, and books. “Document preparation” seems prefer-
able to “text processing” (which is not particularly precise), or

* unIx is a trademark of Bell Laboratories.

2115

“word processing” (which has acquired connotations of stand-alone
specialized terminals).

Computer-aided document preparation offers some clear benefits.
Text need be entered only once. Thereafter, only those portions
that need to be changed require editing; the remaining material is
left alone. This is a significant labor reduction for any document
that must be modified or maintained over a period of time.

There are many other important benefits. Special languages can
be used to facilitate the entry of complex material such as tables and
mathematical expressions. The style or format of a document can
be decoupled from its content; the only format-control information
that need be embedded is that describing textual categories and
boundaries, such as titles, section headings, paragraphs, and the like.
Alternative document styles are then possible through the use of
different formatting programs and different interpretations applied to
the embedded format control. Furthermore, programs can examine
text to detect spelling mistakes, compare versions of documents,
and prepare indexes automatically. Machine-generated data can be
incorporated in documents; excerpts from documents can be fed to
programs without transcription.

A variety of comparatively elegant output devices has become
available, supplementing the traditional typewriters, terminals, and
line printers; this has led to a much increased interest in automated
document preparation. Automated systems are no longer limited to
straight text composed in unattractive constant-width characters, but
can produce a full range of printed documents in attractive fonts and
page layouts. The major example of an output device with
significant capabilities is the phototypesetter, which produces very
high quality printed output on photographic paper or film. Other
devices include typewriter-like terminals capable of high-resolution
motion, dot matrix printer-plotters, microfilm recorders, and xero-
graphic printers.

Further advantages accrue when document preparation is done on
a general-purpose computer system. One is the opportune sharing
of programs and data bases among users; programs originally written
for some other purpose may be useful to the document preparer.
Having a broad range of users, from typists to scientists, on the
same system leads to an unusual degree of cooperation in the
preparation of documents.

The UNIX document preparation software includes an easy-to-
learn-and-use text editor, ed, which is the tool for creating and
modifying any kind of text, from documents to data to programs.

2116 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Two programmable text formatters, nroff and troff, provide pagina-
ted formatting and allow unusual freedom and flexibility in deter-
mining the style of documents. Augmented by various macro-
definition packages, nroff and troff can be programmed to provide
footnote processing, multiple-column output, column-length balanc-
ing, and automatic figure placement. An equation preprocessor,
eqn, translates a simple language for describing mathematical
expressions into formatter input; a table-construction preprocessor,
tbl, provides an analogous facility for input of data and text that is
to be arranged into tables.

We then mention other programs useful to the document preparer
and summarize some comparisons between manual methods of
document preparation and methods using UNIX document prepara-
tion software.

Il. TEXT EDITING

The UNIX text editor ed is the basic tool for entering text and for
subsequent modifications. We will not try to give a complete
description of ed here; details may be found in Ref. 1. Rather, we
will try to mention those attributes that are most interesting and
unusual.

The editor is not specialized to any particular kind of text; it is
used for programs, data, and documents alike. It is based on editing
commands such as “print” and “substitute,” rather than on special
function keys, and provides convenient facilities for selecting the
text lines to be operated on and altering their contents. Since it
does not use special function keys or cursor controls, it does not
require a particular kind of input device. Several alternative editors
are available that make use of terminals with cursors, but these have
been much less widely used; for most purposes, it is fair to say that
there is only one editor.

A text editor is often the primary interface between a user and the
system, and the program with which most user time is spent.
Accordingly, an editor has to be easy to use, and efficient of the
user’s time—editing commands have to “flow off the fingertips.” In
accordance with this principle, ed is quite terse. Each editor com-
mand is a single letter, e.g., p for “print,” and d for “delete.” Most
commands may be preceded by zero, one, or two “line addresses” to
affect, respectively, the “current line” (i.e., the line most recently
referenced), the addressed line, or the range of contiguous lines
between and including the pair of addresses. There are also

DOCUMENT PREPARATION 2117

shorthands for the current line and the last line of the file. Lines
may be addressed by line number, but more common usage is to
indicate the position of a line relative to the current or last line.
Arithmetic expressions involving line numbers are also permitted:

—5,+5p
prints from five lines before the current line to five lines after, while
$—-5%p

prints the last six lines. In both cases, the current line becomes the
last line printed, so that subsequent editing operations may begin
from there.

Most often, the lines to be affected are specified not by line
number, but by “context,” that is, by naming some text pattern that
occurs in them. The “line address”

/abc/

refers to the first line after the current line that contains the pattern
abc. This line address standing by itself will find and print the next
line that contains abc, while

/abc/d

finds it and deletes it. Context searches begin with the line immedi-
ately after the current line, and wrap around from the end of the file
to the beginning if necessary. It is also possible to scan the file in
the reverse direction by enclosing the pattern in question marks:
?abc? finds the previous abc.

The substitute command s can replace any pattern by any literal
string of characters in any group of lines. The command

s/ofrmat/format/
changes ofrmat to format on the current line, while
1,$s/ofrmat/format/

changes it everywhere. In both searches and substitute commands,
the pattern // is an abbreviation for the most recently used pattern,
and & stands for the most recently matched text. Both can be used
to avoid repetitive typing. The “undo” command u undoes the
most recent substitution.

Text can be added before or after any line, and any group of con-
tiguous lines may be replaced by new lines. “Cut and paste” opera-
tions are also possible—any group of lines may be either moved or

2118 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

copied elsewhere. Individual lines may be split or coalesced; text
within a line may be rearranged.

The editor does not work on a file directly, but on a copy. Any
file may be read into the working text at any point; any contiguous
lines may be written out to any file. And any UNIX command may
be executed from within the editor, even another instance of the
editor.

So far, we have described the basic editor features: this is all that
the beginning user needs to know. The editor caters to a wide
variety of users, however, and has many features for more sophisti-
cated operations. Patterns are not restricted to literal character
strings, but may include several “metacharacters” that specify char-
acter classes, repetition of characters or classes, the beginning or end
of a line, and so on. For example, the pattern

/°[0—8)/

searches for the next line that begins with a digit.

Any set of editing commands may be done under control of a
“global” command: the editing commands are performed starting at
each line that matches a pattern specified in the global command.
As the simplest example,

g/interesting/p

prints all lines that contain interesting.

Finally, given the UNIX software for input-output redirection, it is
easy to make a “script” of editing commands in advance, then run it
on a sequence of files.

The basic pattern-searching and editing capabilities of ed have
been co-opted into other, more specialized programs as well. The
program grep (“global regular expression print”) prints all input
lines that contain a specified pattern; this program is particularly use-
ful for finding the location of an item in a set of files, or for culling
items from larger inputs. The program sed is a variant of ed that
performs a set of editing operations on each line of an input stream
of arbitrary length.

IIl. TROFF AND NROFF — BASIC TEXT FORMATTERS

Once a user has entered a document into the file system, it can be
formatted and printed by troff and nroff.2 These are programmable
text formatters that accommodate a wide variety of formatting tasks
by providing flexible fundamental tools rather than specific features.

DOCUMENT PREPARATION 2119

troff supports phototypesetting today on a Graphic Systems photo-
typesetter and potentially on other typesetters, while nroff produces
formatted output for a variety of terminals and line printers, using
the full capabilities and resolution of each. troff and nroff are highly
compatible with each other, and it is almost always possible to
prepare input acceptable to both. Except for device description
tables, device-oriented routines, and a relatively small amount of
scattered conditionally-compiled code, the source code for these pro-
grams is also identical. The device tables permit nroff to understand
the entire typesetter character set, printing non-ASCII characters
where available or where they can be constructed (by overstriking)
on a particular device. The remaining discussion in this section
focuses on troff, the behavior of nroff is identical within device
capability.

troff is intended to permit unusual freedom in user-designed doc-
ument styles, while being relatively easy to use for basic formatting
tasks. The fundamental operations that troff provides are sufficient
for programming complicated formatting tasks. For example, foot-
note processing, multi-column layout with column balancing, and
automatic figure placement are not built-in operations, but are pro-
grammed in troff macros when needed. To program in troff, the
user writes a set of macro instructions, which expand short abbrevia-
tions into the longer command sequences needed for each format-
ting step. troff may also be instructed to invoke certain macros
automatically at particular page positions, such as at the top and near
the bottom of the page; other commands are invoked by the user by
placing macro calls at paragraphs, section headings, and other
relevant boundaries. Once a macro package has been written for
some particular style of document, users preparing a document in
that style need only provide their text with macro calls at the
appropriate points.

The more complex formatting tasks require relatively complex
macro packages designed by competent programmers. A well-
designed package can be easy to use, and usually permits convenient
choice between several related styles. At the simple end of the style
spectrum, a newspaper style galley may not require any embedded
format control except paragraphing. A simple, paginated style might
use only three macros, defining the nature of the top-of-page mar-
gin, the bottom-of-page margin, and paragraph breaks.

Input consists of rext lines, which are destined to be printed, inter-
spersed with control lines, which set parameters or otherwise control
subsequent processing. Control lines begin with a control

2120 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

character—normally a period—followed by a one- or two-character
name that specifies either a built-in request or the substitution of a
user-defined macro in place of the control line. This form is remin-
iscent of earlier text formatters.3-4 A typical request is

.pl 8.5i

which sets the page length to 8.5 inches. Various functions may be
introduced anywhere in the input by means of an escape character,
normally \; examples are \fB, which causes a change to bold font,
and \I’3i ", which draws a three-inch line.

There are some eighty built-in control-line requests that imple-
ment the fundamental operations, allow the setting of parameters,
and otherwise affect format control. In addition, some forty escape
sequences may appear anywhere to specify certain characters, set
indicators, and introduce various functions. Automatic services
available include filling and adjusting of text, hyphenation with user
control over exceptions, user-settable left, right, and centering tabs,
and output line numbering.

User-settable parameters include font, point size, page length,
page number, line spacing, line length, indent, and tabs. Functions
are available for building brackets, overstriking, drawing vertical and
horizontal lines, generating vertical and horizontal motions, and cal-
culating the width of a string. In addition to the parameters that are
defined by the formatter, users may define their own parameters,
stored in troff variables called “number registers” (for numeric
parameters) and “strings” (for character data). These variables may
be used in arithmetic and logical expressions to set parameters or to
control the invocation of macros or requests.

A macro is a user-named set of lines of arbitrary text and format
control information. It is interpolated into the input stream either
by invoking it by name, or by specifying that it is to be invoked
when a particular vertical position on a page is reached. Arguments
may be passed to a macro invoked by name. A string is a named
string of characters that may be interpolated at any point. Macros
and strings may be created, redefined, appended to, renamed, and
removed. Macros may be nested to an arbitrary depth, limited only
by the memory available.

Processed text may be diverted into a macro instead of being out-
put, for footnote collection or to determine the horizontal or vertical
size of a block of text before final placement on a page. When
reread, diverted text retains its character fonts and sizes and overall
dimensions.

DOCUMENT PREPARATION 2121

A trap mechanism provides for action when certain conditions
occur. The conditions are position on the current output page,
length of a diversion, and an input line count. A macro associated
with a vertical page position is automatically invoked when a line of
output falls on or after the trap position. For example, reaching a
specified place near the bottom of the page could invoke a macro
that describes the bottom margin area. Similarly, a vertical position
trap may be specified for diverted output. An input line count trap
causes a macro to be invoked after reading a specified number of
input text lines.

A variety of parameters are available to the user in predefined
number registers. In addition, users may define their own registers.
Except for certain predefined read-only registers, a number register
can be read, written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One common
use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time
numerical input is expected or desired. In most circumstances,
numerical input may have appended scale factors representing
inches, points, ems, etc. Numerical input may be provided by
expressions involving a variety of arithmetic and logical operators.

A mechanism is provided for conditionally accepting a group of
lines as input. The conditions that may be tested are the value of a
numerical expression, the equality of two strings, and the truth of
certain built-in conditions.

Certain of the parameters that control text processing constitute
an environment, which may be switched by the user. It is con-
venient, for example, to process footnotes in a separate environ-
ment from the main text. Environment parameters include line
length, line spacing, indent, character size, and the like. In addi-
tion, any collected but not yet output lines or words are a part of the
environment. Parameters that are global and not switched with the
environment include, for example, page length, page position, and
macro definitions.

It is not possible to give any substantial examples of troff macro
definitions, but we will sketch a few to indicate the general style of
use.

The simplest example is to provide pagination—an extra space at
the top and bottom of each page. Two macros are usually
defined—a header macro containing the top-of-page text and spac-
ings, and a foofer macro containing the bottom-of-page text and
spacings. A trap must be placed at vertical position zero to cause

2122 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the header macro to be invoked and a second trap must be placed at
the desired distance from the bottom for the footer. Simple macros
merely providing space for the margins could be defined as follows.

.de hd \" begin header definition

‘sp 1i \" space 1 inch

. \" end of header definition

de fo \" footer

‘bp \" space to beginning of next page

. \" end of footer definition

.wh 0 hd \" set trap to invoke hd when at top of page
wh —1i fo \" set trap to invoke fo 1 inch from bottom

The sequence \" introduces a troff comment.

The production of multi-column pages requires somewhat more
complicated macros. The basic idea is that the header macro records
the vertical position of the column tops in a register and initializes a
column counter. The footer macro is invoked at the bottom of each
column. Normally it increments the column counter, increments
the page offset by the column width plus the column separation, and
generates a reverse vertical motion to the top of the next column
(the place recorded by the header macro). After the last column,
however, the page offset is restored and the desired bottom margin
functions occur.

Footnote processing is complicated; only the general strategy will
be summarized here. A pair of macros is defined that allows the
user to indicate the beginning and end of the footnote text. The
footnote-start macro begins a diversion that appends to a macro in
which footnotes are being collected and changes to the footnote
environment. The footnote-end macro terminates the diversion,
resets the environment, and moves the footer trap up the page an
amount equal to the size of the diverted footnote text. The footer
eventually invokes and then removes the macro containing the accu-
mulated footnotes and resets its own trap position. Footnotes that
don’t fit have their overflow rediverted and are treated as the begin-
ning footnote on the next page.

The use of preprocessors to convert special input languages for
equations and tables into troff input means that many documents
reach troff containing large amounts of program-generated input.
For example, a simple equation might produce dozens of troff input
lines and require many string definitions, redefinitions, and detailed
numerical computations for proper character positioning. The troff
string that finally contains the equation contains many font and size

DOCUMENT PREPARATION 2123

changes and local motion, and so can become very long. All of this
demands substantial string storage, efficient storage allocation, larger
text buffers than would otherwise be necessary, and the accommo-
dation of large numbers of strings and number registers. Input gen-
erated by programs instead of people severely tests program robust-
ness.

IV. MACROS—DECOUPLING CONTENT AND FORMAT

Although troff provides full control over typesetter (or typewriter)
features, few users exercise this control directly. Just as program-
mers have learned to use problem-oriented languages rather than
assembly languages, it has proven better for people who prepare
documents to describe them in terms of content, rather than speci-
fying point sizes, fonts, etc., in a typesetter-oriented way. This is
done by avoiding the detailed commands of troff, and instead
embedding in the text only macro commands that expand into troff
commands to implement a desired format.

For example, the title of a document might be prefaced by

TL

which would expand, for this journal, into “Helvetica Bold font, 14
point type, centered, at top of new page, preceded by copyright
notice,” but for other journals might be “Times Roman, left
adjusted, preceded by a one-inch space,” or whatever is desired. In
a similar way, there would be macros for other common features of
a document, such as author’s name, abstract, section, paragraph,
and footnote.

Macro packages have been prepared for a variety of document
styles. Locally, these include formal and informal internal
memoranda; technical reports for external distribution; the Associa-
tion for Computing Machinery journals, some American Institute of
Physics journals; and The Bell System Technical Journal. All these
macro packages recognize standard macro names for titles, para-
graphs, and other document features. Thus, the same input can be
made to appear in many different forms, without changing it.

An important advantage of this system is the ease with which new
users learn document preparation. It is necessary only to learn the
correct way to describe document content and boundaries, not how
to control the typesetter at a detailed level. A typist can easily learn
the dozen or so most common macros in a few minutes, and

2124 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

another dozen as needed. This entire article uses only about 30 dis-
tinct macro calls, rather more than the norm.

Although nroff is used for typewriter-like output, and troff for
photocomposition, they accept exactly the same input language, and
thus hide details of particular devices from users. Macro packages
also provide a degree of independence: they permit a uniformity of
input, so that input documents look the same regardless of the out-
put format or device they eventually appear in. This means that to
find the title of a document, for example, it is not necessary to
know what format is being used to print it. Finally, macros also
enforce a uniformity of output. Since each output format is defined
in appearance by the macro package that generates it, all documents
prepared in that format will look the same.

V. EQN—A PREPROCESSOR FOR MATHEMATICAL
EXPRESSIONS

Much of the work of Bell Laboratories is described in technical
reports and papers containing significant amounts of mathematics.
Mathematical material is difficult to type and expensive to typeset by
traditional methods. Because of positioning requirements and the
multiplicity of characters, sizes, and fonts, it is not feasible for a
human to typeset mathematics directly with troff commands. troff is
richly endowed with the facilities needed for preparing mathematical
expressions, such as arbitrary horizontal and vertical motions, line-
drawing, size changing, etc., but it is not easy to use these facilities
directly because of the difficulty of deciding the degree of size
change and motion suitable in every circumstance. For this reason,
a language for describing mathematical expressions was designed,
this language is translated into troff by a program called eqn.

An important requirement is that the language should be easy to
learn and use by people who don’t know mathematics, computing,
or typesetting. This implies that normal mathematical conventions
about operator precedence, parentheses, and the like cannot be
used, for otherwise the user would have to understand what was
being typed. Further, there should be very few rules, keywords,
special symbols, and few exceptions to the rules. Finally, standard
actions should take place automatically—size and font changes
should follow normal mathematical usage without user intervention.

When a document is typed, mathematical expressions are entered
as part of the text, but are marked by user-settable delimiters. egn
reads this input and passes through untouched those parts that are

DOCUMENT PREPARATION 2125

not mathematics. At the same time, it converts the mathematical
parts into the necessary troff commands. Thus normal usage is a
pipeline of the form

eqn files | troff

The language is defined by a YaccS grammar to insure regularity
and ease of change. We will not describe the eqn language in
detail; see Refs. 6 and 7. Nonetheless, it is worth showing a few
examples to give a feeling for the language. Throughout this section
we write expressions exactly as they are typed by the user, except
that we omit the delimiters that mark the beginning and end of each

expression.
eqn is an oral (or perhaps aural) language. To produce
2m [sin(wr) dr
one writes

2 pi int sin (omega t)dt

Each “word” in the input is looked up in a table. In this case, pi
and omega are recognized as Greek letters, int is a special charac-
ter, and sin is to be placed in Roman font instead of italic, following
conventional practice. Parentheses and digits are also made Roman,
and spacing is adjusted around characters to give a more pleasing
appearance.

Subscripts, superscripts, fractions, radicals, and the like are intro-
duced by words used as operators:

is produced by
X sup 2 over a sup 2 ~=~ sqrt {pz sup 2 + qz + r}

The operator sub produces a subscript in the same manner as sup
produces a superscript. Braces { and } are used to group items that
are to be treated as a unit, such as all the terms to go under the rad-
ical. eqn input is free-form, so blanks and new lines can be used
freely to make the input easier to type, read, and subsequently edit.
The tilde ~ is used to force extra space into the output when
needed.

More complicated expressions are built from the same piece parts,
and perhaps a few new ones. For example,

2126 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

erf (z7 ~=~ 2 over sqrt pi int sub O sup z
e sup —t sup 2 dt

produces
erf(z) = —j:f(;e_'zdt
while
zeta (s) —~=—~ sum from k=1 to inf
k sup s ~~~ (Re — s > 1)
is
{(s) =Y k> (Res>1)
k=1
and

lim from {x —> pi /2} (tan ~x) sup {sin~2x} ~=~ 1
yields

lim (tan x)%i" 2¥ = 1
x—m/2

In addition, there are built-up brackets, braces, etc.; matrices;
diacritical marks such as dots and bars; font and size changes to
override defaults; facilities for lining up equations; and macro sub-
stitution.

Because not all potential users have access to a typesetter, there is
also a compatible version of egn that interfaces to nroff for produc-
ing output on terminals capable of half-line motions and printing
special characters. The quality of terminal output leaves something
to be desired, but it is often adequate for proofreading and some
internal uses.

The eqn language has proven to be easy to learn and use; at the
present time, well over a hundred typists and secretaries use it at
Bell Laboratories. Most are either self-taught, or have learned it as
part of a course in UNIX system procedures taught by other secre-
taries and typists. Empirically, mathematically trained users
(mathematicians, physicists, etc.) can learn enough egn in a few
minutes to begin useful work, for its syntax and rules are very simi-
lar to the way that mathematics is actually spoken. Persons not
trained in mathematics take longer to get started, because the
language is less familiar, but it is still true that an hour or two of
instruction is enough to begin doing useful work.

DOCUMENT PREPARATION 2127

By intent, egn does not know very much about typesetting; in
general, it lets troff do as much of the job as possible, including all
character-width computations. In this way, eqn can be relatively
independent of the particular character set, and even of the
typesetter being used.

The basic design decision to make a separate language and pro-
gram distinct from troff does have some drawbacks, because it is not
easy for eqgn to make a decision based on the way that troff will pro-
duce the output. The programs are very loosely coupled. Nonethe-
less, these drawbacks seem unimportant compared to the benefits of
having a language that is easily mastered, and a program that is
separate from the main typesetting program. Changes in one pro-
gram generally do not affect the other; both programs are smaller
than they would be if they were combined. And, of course if one
doesn’t use eqn, there is no cost, since troff doesn’t contain any
code for it.

VI. TBL—A PREPROCESSOR FOR TABLES

Tables also present typographic difficulties. The primary difficulty
is deciding where columns should be placed to accommodate the
range of widths of the various table entries. It is even harder to
arrange for various lines or boxes to be drawn within the table in a
suitable way. tbl® is a table construction program that is also an
independent preprocessor, quite analogous to eqn.

tbl simplifies entering tabular data, which may be tedious to type
or may be generated by a program, by separating the table format
from its contents. Each table specification contains three parts: a set
of global options affecting the whole table, such as “center” or
“box™; then a set of commands describing the format of each line of
the table; and finally the table data. Each specification describes the
alignment of the fields on a line, so that the description

LRR

indicates a line with three fields, one left adjusted and two right
adjusted. Other kinds of fields are “C” (centered) and “N” (numer-
ical adjustment), with “S” (spanned) used to continue a field across
more than one column. For example,

cCSS
LNN

describes a table whose first line is a centered heading spanning

2128 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

three columns; the three columns are left-adjusted, numerically
adjusted, and numerically adjusted respectively. If there are more
lines of data than of specifications (the normal case), the last
specification applies to all remaining data lines.

A sample table in the format above might be

Position of Major Cities
Tokyo 35°45' N 139°46'E
New York 40°43' N 74°01' W
London 51°30' N 0°10' W
Singapore 1°17" N 103°51'E

The input to produce the above table, with tab characters shown by
the symbol @, is as follows:

TS

center, box;

CSS

L N N.

Position of Major Cities
Tokyo®35°45' N@139°46' E
New York©40°43' N©74°01' W
London®51°30' N®0°10' W
Singapore®1°17' N©103°51' E
.TE

tbl also provides facilities for including blocks of text within a
table. A block of text may contain any normal typesetting com-
mands, and may be adjusted and filled as usual. tbl will arrange for
adequate space to be left for it and will position it correctly. For
example, the table on the next page uses text blocks, line and box
drawing, size and font changes, and the facility for centering vertical
placement of the headings (compare the heading of column 3 with
that of columns 1 and 2). Note that there is no difficulty with equa-
tions in tables. In fact, there is sometimes a choice between writing
a matrix with the matrix commands of eqn or making a table of
equations. Typically, the typist picks whichever program is more
familiar.

The tbl program writes troff code as output, just as eqn does.
This code computes the width of each table entry, decides where to
place the columns and lines separating them, and prints the table.
tbl itself does not understand typesetting: it does not know the

DOCUMENT PREPARATION 2129

Functional Systems
Function Function
Number Type Solution
1 LINEAR Systems of equations all of which are linear
can be solved by Gaussian elimination.
2 POLYNOMIAL Depending on the initial guess, Newton’s
method (f,-+,=f,——i) will often converge
i
on such systems.
3 ALGEBRAIC The program zoNE by J. L. Blue will solve
systems for which an accurate initial guess
is not known.

widths of characters, and may (in the case of equations in tables)
have no knowledge of the height, either. However, it writes troff
output that computes these sizes, and adjusts the table accordingly.
Thus tables can be printed on any device and in any font without
additional work.

Most of the comments about using eqn apply to tbl as well: it is
easy to learn and is in wide use at Bell Laboratories. Since it is a
program separate from troff, it need not be learned, used, or paid
for if no tables are present. Comparatively few users need to know
all of the tools: typically, the workload in one area may be
mathematical, in another area statistical and tabular, and in another
only ordinary text.

Vil. OTHER SUPPORTING SOFTWARE

One advantage of doing document preparation in a general-
purpose computing environment instead of with a specialized word
processing system is that programs not directly related to document
preparation may often be used to make the job easier. In this sec-
tion, we discuss some examples from our experience.

One of the most tedious tasks in document preparation is detec-
tion of spelling and typographical errors. Existing data bases origi-
nally obtained for other purposes are used by a program called
spell, which detects potential spelling mistakes. Machine-readable
dictionaries (more precisely, word lists) have been available for
some time. Ours was originally used for testing hyphenation algo-
rithms and for checking voice synthesizer programs. It was realized,
however, that a rudimentary program for detecting spelling mistakes

2130 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

could be made simply by comparing each word in a document with
each word in the dictionary; any word in the document but not in
the dictionary is a potential misspelling.

The first program for this approach was developed in a few
minutes by combining existing UNIX utilities for sorting, comparing,
etc. This was sufficiently promising that additional small programs
were written to handle inflected forms like plurals and past partici-
ples. The resulting program was quite useful, for it provided a good
match of computer capabilities to human ones. The machine can
reduce a very large document to a tractable list of suspicious words
that a human can rapidly scan to detect the genuine errors.

Naturally, normal output from spell contains not only legitimate
errors, but a fair amount of technical jargon and some proper
names. The next step is to use that output to refine the dictionary.
In fact, we have carried this step to its logical conclusion, by creat-
ing a brand new dictionary that contains only words culled from doc-
uments. This new dictionary is about one-third the size of the origi-
nal, and produces rather better results.

One of the more interesting peripheral devices supported by the
UNIX system is an inexpensive voice synthesizer.’ The program
speak!? uses this synthesizer to pronounce arbitrary text. Speaking
text has proven especially handy for proofreading tedious data like
lists of numbers: the machine speaks the numbers, while a person
reads a list in parallel.

Another example of a borrowed program is diff,!! which compares
two inputs and prepares a list of all the places in which they differ.
Normally, diff is used for comparing two versions of a program, as a
check on the changes that have been made. But of course it can
also be used on two versions of a document as well. In fact, the diff
output can be captured and used to produce a set of troff commands
that will print the new version with marginal bars indicating the
places where the document has been changed.

We have already mentioned two major preprocessors for troff and
nroff, for mathematics and tables. The same approach, of writing a
separate program instead of cluttering up an existing one, has been
applied to postprocessors as well. Typically, these postprocessors are
concerned with matching troff or nroff output with the characteris-
tics of some different output device. One example is a processor
called col that converts nroff output containing reverse motions
(e.g., multi-column output) into page images suitable for printing on
devices incapable of reverse motion. Another example is a program
that converts troff output intended for a phototypesetter into a form

DOCUMENT PREPARATION 2131

suitable for display on the screen of a Tektronix 4014 terminal (or
analogous graphic devices). This permits a view of the formatted
document without actually printing it; this is especially convenient
for checking page layout.

One final area worth mentioning concerns the problem of training
new users. Since there seems to be no substitute for hands-on
experience, a program called learn was written to walk new users
through sets of lessons.!? Lesson scripts are available for funda-
mentals of UNIX file handling commands, the editor ed, and eqn, as
well as for topics not related to document preparation. learn has
been heavily used in the courses taught by secretaries and typists for
their colleagues.

Vill. EXPERIENCE

UNIX document preparation software has now been used for
several years within Bell Laboratories, with many secretaries and
typists in technical organizations routinely preparing technical
memoranda and papers. Several books!3-19 printed with this
software have been published directly from camera-ready copy.
Technical articles have been prepared in camera-ready form for
periodicals ranging from the Journal of the ACM to Science.

The longest-running use of the UNIX system for document
preparation is in the Bell Laboratories Legal and Patent Division,
where patent applications have been prepared on a UNIX system for
nearly seven years. Computer program documentation has been
produced for several years by clerks using UNIX facilities at the Busi-
ness Information Systems Programs Area of Bell Laboratories.
More recently, the “word processing™ centers at Bell Laboratories
have begun significant use of the UNIX system because of its ability
to handle complicated material effectively.

It can be difficult to evaluate the cost-effectiveness of computer-
aided versus manual documentation preparation. We took advan-
tage of the interest of the American Physical Society in the UNIX
system to make a systematic comparison of costs of their traditional
typewriter composition and a UNIX document preparation system.
Five manuscripts submitted to Physical Review Letters were typeset
at Bell Laboratories, using the programs described above to handle
the text, equations, tables, and special layout of the journal.

On the basis of these experiments, it appears that computerized
typesetting of difficult material is substantially cheaper than type-
writer composition. The primary cost of page composition is

2132 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

keyboarding, and the aids provided by UNIX software to facilitate
input of complex mathematical and tabular material reduce input
time significantly. Typing and correcting articles on the UNIX sys-
tem, with an experienced typist, was between 1.5 and 3.3 times as
fast as typewriter composition. Over the trial set of manuscripts,
input using the UNIX system was 2.4 times as fast. These documents
were extremely complicated, with many difficult equations. Typists
at Physical Review Letters averaged less than four pages per day;
whereas our (admittedly very proficient) UNIX system typist could
type a page in 30 minutes. We estimate a very substantial saving in
production cost for camera-ready pages using a UNIX system instead
of conventional composition or typewriting. A typical UNIX system
for photocomposition of Physical Review style pages might produce
200 finished pages per day on a capital investment of about
$200,000 and with 20 typists.

The advantage of the UNIX system is greatest when mathematics
and tables abound in a document. For example, it is a great time
saving that keys need never be changed because all equation input is
ordinary text. The automatic page layout saves time when multiple
drafts, versions, or editions of a document are needed. Further
details of this comparison can be found in Ref. 20.

IX. CONCLUSIONS

It is important to note that these document preparation programs
are simply application programs running on a general-purpose sys-
tem. Any document preparation user can exercise any command
whenever desired.

As mentioned above, a surprising number of the programming
utilities are directly or indirectly useful in document preparation.
For example, the program that makes cross-reference listings of
computer programs is largely identical with the one that makes
keyword-in-context indexes of natural language text. It is also easy
to use the programming facilities to generate small utilities, such as
one which checks the consistency of equation usage.

Besides applying programming utilities to text processing, we also
apply document processors to programs and numerical data. Statisti-
cal data are often extracted from program output and inserted into
documents. Computer programs are often printed in papers and
books; because the programs are tested and typeset from the same
source file, transcription errors are eliminated.

In addition to the technical advantages of having programming

DOCUMENT PREPARATION 2133

and word processing on the same machine, there can be personnel
advantages. The fact that secretaries and typists work on the same
system as the authors allows both to share the document preparation
job. A document may be typed originally by a secretary, with the
author doing the corrections; in the case of an author who types
rough drafts but doesn’t like editing after proofreading, the reverse
may occur. We have observed the full spectrum, from authors who
give hand-written material to typists in the traditional manner to
those who compose at the terminal and do their own typesetting.
Most authors, however, seem to operate somewhere in between.

The UNIX system provides a convenient and cost-effective
environment for document preparation. A first-class program
development facility encourages the development of good tools.
The ability to use preprocessors has enabled us to write separate
languages for mathematics, tables, and several other formatting
tasks. The separate programs are easier to learn than if they were all
jammed into one package, and are vastly easier to maintain as well.
And since all of this takes place within a general-purpose operating
system, programs and data can be used as convenient, whether they
are intended for document preparation or not.

REFERENCES

1. K. Thompson and D. M. Ritchie, unix Programmer's Manual, Bell Laboratories,
May 1975. See ED (1.

. J. F. Ossanna, “NROFF/TROFF User’s Manual,” Comp. Sci. Tech. Rep. No. 54, Bell
Laboratories (April 1977).

. 1. E. Saltzer, “Runoff,” in The Compatible Time-Sharing System, ed. P. A. Crisman,
Cambridge, Mass.: M.LT. Press (1965).

. M. D. Mcllroy, “The Roff Text Formatter,” Computer Center Report MHCC-005,
Bell Laboratories (October 1972).

. §. C. Johnson, “Yacc — Yet Another Compiler-Compiler,” Comp. Sci. Tech. Rep.
No. 32, Bell Laboratories (July 1975).

. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,”
Commun. Assn. Comp. Mach., /8 (March 1975), pp. 151-157.

. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,”
Comp. Sci. Tech. Rep. No. 17, Bell Laboratories (April 1977).

. M. E. Lesk, “Tbl — A Program to Format Tables,” Comp. Sci. Tech. Rep. No. 49,
Bell Laboratories (September 1976).

. Federal Screw Works, Votrax ML-1 Multi-Lingual Voice System.

. M. D. Mcllroy, “Synthetic English Speech by Rule,” Comp. Sci. Tech. Rep. No.
14, Bell Laboratories (March 1974).

. J. W. Hunt and M. D. Mcliroy, “An Algorithm for Differential File Comparison,”
Comp. Sci. Tech. Rep. No. 41, Bell Laboratories (June 1976).

. B. W, Kernighan and M. E. Lesk, unpublished work (1976).

. B. W. Kernighan and P. J. Plauger, The Elements of Programming Style, New York:
McGraw-Hill, 1974.

. C. H. Sequin and M. F. Tompsett, Charge Transfer Devices, New York: Academic
Press, 1975.

. B. W, Kernighan and P. J. Plauger, Sofiware Tools, Reading, Mass.: Addison-
Wesley, 1976.

OO 00 N N W AW N

[SEE—
[

— et
b

— =
[T S

2134 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

16. T. A. Dolotta et al., Data Processing in 1980-1985: A Study of Potential Limitations to
Progress, New York: Wiley-Interscience, 1976.

17. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Reading, Mass.:
Addison-Wesley, 1977.

18. Committee on Impacts of Stratospheric Change, Halocarbons: Environmental Effects
of Chlorofluoromethane Release, Washington, D. C.: National Academy of Sci-
ences, 1977.

19. W. H. Williams, A Sampler on Sampling, New York: John Wiley & Sons, 1977.

20. M. E. Lesk and B. W. Kernighan, “Computer Typesetting of Technical Journals on
UNIX,” Proc. AFIPs Ncc, 46 (1977), pp. 879-888.

DOCUMENT PREPARATION 2135

