Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U.S. A.

UNIX Time-Sharing System:

The Programmer's Workbench

By T. A. DOLOTTA, R. C. HAIGHT, and J. R. MASHEY
(Manuscript received December 5, 1977)

Many, if not most, UNIX* systems are dedicated to specific projects and
serve small, cohesive groups of (usually technically oriented) users. The
Programmer’s Workbench UNIX system (PWBIUNIX for short) is a facility
based on the UNIX system that serves as a large, general-purpose, “util-
ity” computing service. It provides a convenient working environment
and a uniform set of programming tools to a very diverse group of users.
The PWB/UNIX system has several interesting characteristics:

(i) Many of its facilities were built in close cooperation between
developers and users.

(ii) It has proven itself to be sufficiently reliable so that its users, who
develop production software, have abandoned punched cards,
private backup tapes, eic.

(iii) It offers a large number of simple, understandable program-
development tools that can be combined in a variety of ways; users
“package” these tools to create their own specialized environments.

(iv) Most importantly, the above were achieved without compromising
the basic elegance, simplicity, generality, and ease of use of the
UNIX system.

The result has been an environment that helps large numbers of users to
get their work done, that improves their productivity, that adapts quickly
to their individual needs, and that provides reliable service at a relatively
low cost. This paper discusses some of the problems we encountered in
building the PWBJUNIX system, how we solved them, how our system is
used, and some of the lessons we learned in the process.

* UNIX is a trademark of Bell Laboratories.

2177

I. INTRODUCTION

The Programmer’s Workbench UNIX* system (hereafter called
PWB/UNIX for brevity) is a specialized computing facility dedicated to
supporting large software-development projects. It is a production
system that has been used for several years in the Business Informa-
tion Systems Programs (BISP) area of Bell Laboratories and that sup-
ports there a user community of about 1,100 people. It was
developed mainly as an attempt to improve the quality, reliability,
flexibility, and consistency of the programming environment. The
concepts behind the PWB/UNIX system emphasize several ideas:

(i) Program development and execution of the resulting pro-
grams are two radically different functions. Much can be
gained by assigning each function to a computer best suited to
it. Thus, as much of the development as possible should be
done on a computer dedicated to that task, i.e., one that acts
as a “development facility” and provides a superior program-
ming environment. Production running of the developed pro-
ducts very often occurs on another computer, called a “tar-
get” system. For some projects, a single system may success-
fully fill both roles, but this is rare, because most current
operating systems were designed primarily for running pro-
grams, with little thought having been given to the require-
ments of the program-development process; we did the exact
opposite of this in the PWB/UNIX system.

(ii) Although there may be several target systems (possibly sup-
plied by different vendors), the development facility should
present a single, uniform interface to its users. Current tar-
gets for the PWB/UNIX system include IBM System/370 and
UNIVAC 1100-series computers; in some sense, the PWB/UNIX
system is also a target, because it is built and maintained with
its own tools.

(iii) A development facility can be implemented on computers of
moderate size, even when the target machines consist of very
large systems.

Although PWB/UNIX is a special-purpose system (in the same sense
that a “front-end” computer is a special-purpose system), it is spe-
cialized for use by human beings. As shown in Fig. 1, it provides
the interface between program developers and their target

* UNIX is a trademark of Bell Laboratories.

2178 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Target 1

Users at k / Target 2
. PWBIUNIX fem" | ¢

hard-copy > ° system

L]
and CRT : L]
. L]
terminals .
* L]
L]

4 Target N

Fig. 1—pwn/unix™ interface with its users.

computer(s). Unlike a typical “front-end,” the PWB/UNIX system
supplies a separate, visible, uniform environment for program-
development work.

Il. CURRENT STATUS

The PWB/UNIX installation at BISP currently consists of a network
of DEC PDP-11/45s and /70s running a modified version of the UNIX
system.* By most measures, it is the largest known UNIX installation
in the world. Table I gives a “snapshot” of it as of October 1977.

The systems are connected to each other so that each can be
backed up by another, and so that files can be transmitted efficiently
among systems. They are also connected by communications lines
to the following target systems: two IBM 370/168s, two UNIVAC
1100-series systems, and one XDS Sigma 5. Of the card images pro-
cessed by these targets, 90 to 95 percent are received from
PWB/UNIX systems. Average figures for prime-shift connect time

Table |—PWB/UNIX™ hardware at BISP (10/77)

System CPU Memory Disk Dial-up Login
name type (K-bytes) (M-bytes) ports names
A /45 256 160 15 153

B /70 768 480 48 260

D /70 512 320 48 361

E /45 256 160 20 114

F /70 768 320 48 262

G /70 512 160 48 133

H /170 512 320 48 139
Totals - 3,328 1,920 275 1,422

* In order to avoid ambiguity, we use in this paper the expression “Research uNix
system” to refer to the UNIX system itself (Refs. 1 and 2).

THE PROGRAMMER'S WORKBENCH 2179

(9 a.m. to 5 p.m., Monday through Friday) and total connect time
per day are 1,342 and 1,794 hours, respectively. Because some login
names are duplicated across systems, the figure of 1,422 is a bit
misleading. The figure of 1,100 distinct login names is a better indi-
cator of the size of the user community.

This installation offers fairly inexpensive time-sharing service to
large numbers of users. An “average” PWB/UNIX user consumes 25
hours of prime-shift connect time per month, and uses 0.5 mega-
bytes of active disk storage. Heavy use is made of the available
resources. Typically, 90 percent of available disk space is in use,
and between 75 and 80 percent of possible prime-time connect
hours are consumed; during periods of heavy load, CPU usage occa-
sionally exceeds 95 percent.

The PWB/UNIX system has been adopted outside of BISP, primarily
for computer-center, program-development, and text-processing ser-
vices. In addition to the original PWB/UNIX installation, there are
currently about ten other installations within Bell Laboratories and
six installations in other parts of the Bell System. A number of
these installations utilize more than one CPU; thus, within the Bell
System, there are over thirty PDP-11s running the PWB/UNIX system
and there are plans for several more in the near future.* There is
also a growing number of PWB/UNIX installations outside of the Bell
System.

lll. HISTORY

The concept underlying the PWB/UNIX system was suggested in
mid-1973 and the first PDP-11/45 was installed late that year. This
machine was used at first for our own education and experimenta-
tion, while early versions of various facilities were constructed. At
first, ours was an experimental project that faced considerable
indifference from a user community heavily oriented to large com-
puter systems, working under difficult schedules, and a bit wary of
what then seemeéd like a radical idea. However, as word about the
system spread, demand for service grew rapidly, almost always
outrunning the supply. Users consistently underestimated their
requirements for service, because they kept discovering unexpected
applications for PWB/UNIX facilities. In four years, the original
PWB/UNIX installation has grown from a single PDP-11 serving 16

* The number of pppr-11's in the Bell System that operate under the PWB/UNIX system
has doubled, on the average, every 11 months during the past 4'2 years.

2180 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

300 2400

—— Ports
=—ws== Disk Capacity
250 | (Megabytes) - 2000
200 1600
5
Zz
£ 150 |- 1200
o]
& a
100 - 800
50 | 400
I it
et L | o
1974 1975 1976 1977

Fig. 2—Growth of pws/unix™ at BisP—number of ports and disk capacity.

users to a network of seven PDP-11s serving 1,100 users. Figure 2
shows two other aspects of the growth of that installation; see
Refs. 3 and 4 for “snapshots” of that installation earlier in its life-
time.

IV. MOTIVATION FOR THE PWB/UNIX APPROACH

The approach of using small computers to build a development
facility for use with much larger targets has both good and bad
points. At the outset, the following were thought to be potential
problem areas:

(/) Cost of additional hardware.

(ii) Inconvenience of splitting data and functions among
machines.

(iii)) Use of incompatible character sets, i.e., ASCIl and EBCDIC.

(iv) Limited size and speed of minicomputers, as compared to the
speed and size of the target systems.

(v) Degradation of reliability caused by the increased complexity
of the composite system.

Of these, only the last has required any significant, continuing
effort; the main problem has been in maintaining reliable communi-
cations with the targets in the face of continually changing
configurations of the targets, of the PWB/UNIX systems, and of the
communications links themselves.

THE PROGRAMMER'S WORKBENCH 2181

The approach embodied in the PWB/UNIX system offers significant
advantages in the presence of certain conditions, all of which existed
at the original PWB/UNIX installation, thus giving us a strong motiva-
tion for adopting this approach. We discuss these conditions below.

4.1 Gain by effective specialization

The computer requirements of software developers often diverge
quite sharply from those of the users of that software. This observa-
tion seems especially applicable to software-development organiza-
tions such as BISP, i.e., organizations that develop large, data-base-
oriented systems. Primary needs of developers include:

(9

(i)

(i)

(iv)

(v)

Interactive computing services that are convenient, inexpen-
sive, and continually available during normal working hours
(where often the meaning of the expression “normal working
hours” is “22 hours per day, 7 days per week™).

A file structure designed for convenient interactive use; in
particular, one that never requires the user to explicitly allo-
cate or compact disk storage, or even to be aware of these
activities.

Good, uniform tools for the manipulation of documents,
source programs, and other forms of text. In our opinion, all
the tasks that make up the program-development process and
that are carried out by computers are nothing more than
(sometimes very arcane) forms of text processing and text
manipulation.

A command language simple enough for everyone to use, but
one that offers enough programming capability to help auto-
mate the operational procedures used to track and control pro-
ject development.

Adaptability to frequent and unpredictable changes in loca-
tion, structure, and personnel of user organizations.

On the other hand, users of the end products may have any or all of
the following needs:

(i)

(i)
Giid)

Hardware of the appropriate size and speed to run the end
products, possibly under stringent real-time or deadline con-
straints.

File structures and access methods that can be optimized to
handle large amounts of data. ,

Transaction-oriented teleprocessing facilities.

2182 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(iv) The use of a specific type of computer and operating system,
to meet any one of a number of possible (often externally
imposed) requirements.

Few systems meet all the requirements of both developers and
users. As a result, it is possible to make significant gains by provid-
ing two separate kinds of facilities and optimizing each to match one
of two distinct sets of requirements.

4.2 Availability of better software

Time-sharing systems that run on large computers often retain
significant vestiges of batch processing. Separation of support func-
tions onto an appropriate minicomputer may offer an easy transition
to more up-to-date software. Much of the stimulus for PWB/UNIX
arose from the desire to make effective use of the UNIX system,
whose facilities are extremely well matched to the developers’ needs
discussed above.

4.3 Installations with target systems from different vendors

It is desirable to have a uniform, target-independent set of tools
to ease training and to permit the transfer of personnel between pro-
jects. File structures, command languages, and communications
protocols differ widely among targets. Thus, it is expensive, if not
impossible, to build a single set of effective and efficient tools that
can be used on all targets. Effort is better expended in building a
single good development facility.

4.4 Changing environments

Changes to hardware and software occur and cause problems even
in single-vendor installations. Such changes may be disastrous if
they affect both development and production environments at the
same time. The problem is at least partially solved by using a
separate development system. As an example, in the last few years,
every BISP target system has undergone several major
reconfigurations in both hardware and software, and the geographic
work locations of most users have changed, in some cases more
than once. The availability of the PWB/UNIX system often has been
able to minimize the impact of these changes on the users.

THE PROGRAMMER’'S WORKBENCH 2183

4.5 Effective testing of terminal-oriented systems

It is difficult enough to test small batch programs; effective testing
of large, interactive, data-base management applications is far more
difficult. It is especially difficult to perform load testing when the
same computer is both generating the load and running the program
being tested. It is simpler and more realistic to perform such testing
with the aid of a separate computer.

V. DESIGN APPROACH

In early 1974, much thought was given to what should be the
overall design approach for the PWB/UNIX system. One proposal
consisted of first designing it as a completely integrated facility, then
implementing it, and finally obtaining users for it. A much
different, less traditional approach was actually adopted; its elements
were:

(/) Follow the UNIX system’s philosophy of building small,
independent tools rather than large, interrelated ones. Follow
the UNIX system’s approach of minimizing the number of
different file formats.

(i) Get users on the system quickly, work with them closely, and
let their needs and problems drive the design.

(iii) Build software quickly, and expect to throw much of it away,
or to have to adapt it to the users’ real needs, as these needs
become clear. In general, emphasize the ability to adapt to
change, rather than try to build perfect products that are
meant to last forever.

(iv) Make changes to the UNIX system only after much delibera-
tion, and only when major gains can be made. Avoid chang-
ing the UNIX system’s interfaces, and isolate any such changes
as much as possible. Stay close to the Research UNIX system,
in order to take advantage of continuing improvements.

This approach may appear chaotic, but, in practice, it has worked
better than designing supposedly perfect systems that turn out to be
obsolete or unusable by the time they are implemented. Unlike
many other systems, the UNIX system both permits and encourages
this approach.

VI. DIFFERENCES BETWEEN RESEARCH UNIX AND PWB/UNIX

The usage and operation of the PWB/UNIX system differ somewhat

2184 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

from those of most UNIX systems within Bell Laboratories. Many of
the changes and additions described below derive from these crucial
differences.

A good many UNIX (as opposed to PWB/UNIX) systems are run
as “friendly-user” systems, and are each used by a fairly small
number of people who often work closely together. A large frac-
tion of these users have read/write permissions for most (or all)
of the files on the system, have permission to add commands to
the public directories, are capable of “re-booting” the operating
system, and even know how to repair damaged file systems.

The PWB/UNIX system, on the other hand, is most often found
in a computer-center environment. Larger numbers of users are
served, and they often represent different organizations. It is
undesirable for everyone to have general read/write permissions.
Although groups of users may wish to have sets of commands
and files whose use they share, too many people must be served
to permit everyone to add commands to public directories. Few
users write C programs, and even fewer are interested in file-
system internals. Machines are run by operators who are not
expert system programmers. Many users have to to deal with
large quantities of existing source code for target computers.
Many must integrate their use of the PWB/UNIX system into exist-
ing procedures and working methods.

Notwithstanding all the above problems, we continually made
every attempt to retain the “friendly-user” environment wherever
possible, while extending service to a large group of users charac-
terized by a very wide spectrum of needs, work habits, and usage
patterns. By and large, we succeeded in this endeavor.

VIl. NEW FACILITIES

A number of major facilities had to be made available in the
PWB/UNIX system to make it truly useful in the BISP environment.
Initial versions of many of these additional components were writ-
ten and in use during early 1974. This section describes the
current form of these additions (most of which have been heavily
revised with the passage of time).

7.1 Remote job entry

The PWB/UNIX Remote Job Entry (RJE) subsystem handles the
problems of transmitting jobs to target systems and returning

THE PROGRAMMER'S WORKBENCH 2185

output to the appropriate users; RJE per se consists of several
components, and its use is supported by various other commands.

The send command is used to generate job streams for target
systems; it is a form of macro-processor, providing facilities for
file inclusion, keyword substitution, prompting, and character
translation (e.g., ASCII to EBCDIC). It also includes a generalized
interface to other UNIX commands, so that all or parts of job
streams can be generated dynamically by such commands; send
offers the users a uniform job-submission mechanism that is
almost entirely target-independent.

A transmission subsystem exists to handle communications with
each target. “Daemon” programs arrange for queuing jobs, sub-
mitting these jobs to the proper target, and routing output back to
the user. Device drivers are included in the operating system to
control the physical communications links. Some of the code in
this subsystem is target-specific, but this subsystem is not visible
to end users.

Several commands are used to provide status reporting. Users
may inquire about the status of jobs on the target systems, and
can elect to be notified in various ways (i.e., on-line or in absen-
tia) of the occurrence of major events during the processing of
their jobs.

A user may route the target’s output to a remote printer or
may elect to have part or all of it returned to the originating
PWB/UNIX system. On return, output may be processed automati-
cally by a user-written procedure, or may be placed in a file; it
may be examined with the standard UNIX editor, or it can be
scanned with a read-only editor (the “big file scanner”) that can
peruse larger files; RJE hides from the user the distinction
between PWB/UNIX files, which are basically character-oriented,
and the files of the target system, which are typically record-
oriented (e.g., card images and print lines). See Ref. 5 for exam-
ples of the use of RIJE

7.2 Source code control system

The PWB/UNIX Source Code Control System (Sccs) consists of a
small set of commands that can be used to give unusually power-
ful control over changes to modules of text (i.e., files of source
code, documentation, data, or any other text). It records every
change made to a module, can recreate a module as it existed at
any point in time, controls and manages any number of

2186 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

concurrently existing versions of a module, and offers various
audit and administrative features.®

7.3 Text processing and document preparation

One of the distinguishing characteristics of the Research UNIX
system is that, while it is a general-purpose time-sharing system,
it also provides very good text-processing and document-
preparation tools.” A major addition in this area provided by the
PWB/UNIX system is PWB/MM, a package of formatting “macros”
that make the power of the UNIX text formatters available to a
wider audience; PWB/MM has, by now, become the de facto Bell
Laboratories standard text-processing macro package; it is used by
hundreds of clerical and technical employees. It is an easily
observable fact that, regardless of the initial reasons that attract
users to the PWB/UNIX system, most of them end up using it
extensively for text processing. See Ref. 8 for a further discus-
sion of this topic.

7.4 Test drivers

The PWB/UNIX system is often used as a simulator of interactive
terminals to execute various kinds of tests of IBM and UNIVAC
data-base management and data communications systems, and of
applications implemented on these systems; it contains two test
drivers that can generate repeatable tests for very complex sys-
tems; these drivers are used both to measure performance under
well-controlled load and to help verify the initial and continuing
correct operation of this software while it is being built and main-
tained. One driver simulates a TELETYPE® CDT cluster controller
of up to four terminals, and is used to test programs running on
UNIVAC 1100-series computers. The other (LEAP) simulates one
or more IBM 3270 cluster controllers, each controlling up to 32
terminals. During a test, the actions of each simulated terminal
are directed by a scenario, which is a specification of what scripts
should be executed by that terminal. A script consists of a set of
actions that a human operator might perform to accomplish some
specific, functional task (e.g., update of a data-base record). A
script can be invoked one or more times by one or more
scenarios. High-level programming languages exist for both
scripts and scenarios; these languages allow one to specify the
actions of the simulated terminal-operator pairs, as well as a large

THE PROGRAMMER'S WORKBENCH 2187

variety of test-data recording, error-detection, and error-correction
actions. See Ref. 9 for more details on LEAP.

Vill. MODIFICATIONS TO THE UNIX SYSTEM

Changes that we made to the UNIX operating system and com-
mands were made very carefully, and only after a great deal of
thoughtful deliberation. Interface changes were especially avoided.
Some changes were made to allow the effective use of the UNIX
system in a computer-center environment. In addition, a number
of changes were required to extend the effective use of the UNIX
system to larger hardware configurations, to larger numbers of
simultaneous users, and to larger organizations sharing the
machines.

8.1 Reliability

The UNIX system has generally been very reliable. However,
some problems surfaced on PWB/UNIX before showing up on other
UNIX systems simply because PWB/UNIX systems supported a larger
and heavier time-sharing load than most other installations based
on UNIX. The continual need for more service required these sys-
tems to be run near the limits of their resources much of the
time, causing, in the beginning, problems seldom seen on other
UNIX systems. Many such problems arose from the lack of detec-
tion of, or reasonable remedial action for, exhaustion of
resources. As a result, we made a number of minor changes to
various parts of the operating system to assure such detection of
resource exhaustion, especially to avoid crashes and to minimize
peculiar behavior caused by exceeding the sizes of certain tables.

The first major set of reliability improvements concerned the
handling of disk files. It is a fact of life that time-sharing sys-
tems are continually short of disk space; PWB/UNIX is especially
prone to rapid surges in disk usage, due to the speed at which
the RJE subsystem can transfer data and use disk space. Experi-
ence showed that reliable operation requires RJE to be able to
suspend operations temporarily, rather than throwing away good
output. The ustat system call was added to allow programs to
discover the amount of free space remaining in a file system.
Such programs could issue appropriate warnings or suspend opera-
tion, rather than attempt to write a file that would consume all

2188 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the free disk space and be, itself, truncated in the process, caus-
ing loss of precious data; the ustat system call is also used by the
PWB/UNIX text editor to offer a warning message instead of
silently truncating a file when writing it into a file system that is
nearly full. In general, the relative importance of files depends
on their cost in terms of human effort needed to (re)generate
them. We consider information typed by people to be more valu-
able than that generated mechanically.

A number of operational procedures were instituted to improve
file-system reliability. The main use of the PWB/UNIX system is
to store and organize files, rather than to perform computations.
Therefore, every weekday morning, each user file is copied to a
backup disk, which is saved for a week. A weekly tape backup
copy is kept for two months; bimonthly tape copies are kept
“forever” —we still have the tapes from January 1974. The disk
backup copies permit fast recovery from disk failure or other
(rare) disasters, and also offer very fast recovery when individual
user files are lost; almost always, such files are lost not because
of system malfunctions, but because people inevitably make mis-
takes and delete files that they really wish to retain. The long-
term tape backup copies, on the other hand, offer users the
chance to delete files that they might want back at some time in
the future, without requiring them to make “personal” copies.

A second area of improvement was motivated by the need for
reliable execution of long-running procedures on machines that
operate near the limits of their resources. Any UNIX system has
some bound on the maximum number of processes permitted at
any one time. If all processes are used, it is impossible to suc-
cessfully issue the fork system call to create a new process.
When this happens, it is difficult for useful work to get done,
because most commands execute as separate processes. Such
transient conditions (often lasting only a few seconds) do cause
occasional, random failures that can be extremely irritating to the
users (and, potentially, destroy their trust in the system). To
remedy this situation, the shell was changed so that it attempts
several fork calls, separated from one another by increasing
lengths of time. Although this is not a general solution, it did
have the practical effect of decreasing the probability of failure to
the point that user complaints ceased. A similar remedy was
applied to the command-execution failures due to the near-
simultaneous attempts by several processes to execute the same
pure-text program.

THE PROGRAMMER'S WORKBENCH 2189

These efforts have yielded production systems that users are
willing to trust. Although a file is occasionally lost or scrambled
by the system, such an event is rare enough to be a topic for dis-
cussion, rather than a typical occurrence. Most users trust their
files to the system and have thrown away their decks of cards.
This is illustrated by the relative numbers of keypunches (30) and
terminals (550) in BISP. Users have also come to trust the fact
that their machines stay up and work. On the average, each
machine is down once a week during prime shift, averaging 48
minutes of lost time, for total prime-shift availability of about 98
percent. These figures include the occasional loss of a machine
for several hours at a time, i.e., for hardware problems. How-
ever, the net availability to most users has been closer to 99 per-
cent, because most of the machines are paired and operational
procedures exist so that they can be used to back each other up.
This eliminates the intolerable loss of time caused by denying to
an entire organization access to the PWB/UNIX system for as much
as a morning or an afternoon. Such availability of service is
especially critical for organizations whose daily working procedures
have become intertwined with PWB/UNIX facilities, as well as for
clerical users, who may have literally nothing to do if they cannot
obtain access to the system.

Thus, users have come to trust the systems to run reliably and
to crash very seldom. Prime-shift down-time may occur in
several ways. A machine may be taken down voluntarily for a
short period of time, typically to fix or rearrange hardware, or for
some systems programming function. If the period is short and
users are given reasonable notice, this kind of down-time does
not bother users very much. Some down-time is caused by
hardware problems. Fortunately, these seldom cause outright
crashes; rather, they cause noticeable failures in communications
activities, or produce masses of console error messages about disk
failures. A system can “lock-up” because it runs out of
processes, out of disk space, or out of some other resource. An
alert operator can fix some problems immediately, but occasionally
must take the system down and reinitialize it. The causes and
effects of the “resource-exhaustion” problems are fairly well-
known and generally thought to offer little reason for consterna-
tion. Finally, there is the possibility of an outright system crash
caused by software bugs. As of mid-1977, the last such crash on
a production machine occurred in November 1975.

2190 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

8.2 Operations

At most sites, UNIX systems have traditionally been operated
and administered by highly trained technical personnel; initially,
our site was operated in the same way. Growth in PWB/UNIX ser-
vice eventually goaded us into getting clerical help. However, the
insight that we gained from initially doing the job ourselves was
invaluable; it enabled us to perceive the need for, and to provide,
operational procedures and software that made it possible to
manage a large, production-oriented, computer-center-like service.
For instance, a major operational task is “patching up” the file
system after a hardware failure. In the worst cases, this work is
still done by system programmers, but cases where system
recovery is fairly straightforward are now handled by trained
clerks. Our first attempt at writing an operator’s manual dates
from that time.

In the area of system administration, resource allocation and
usage accounting have become more formal as the number of sys-
tems has grown. Software was developed to move entire sections
of a file system (and the corresponding groups of users) from
volume to volume, or from one PWB/UNIX system to another
without interfering with linked files or access history. A major
task in this area has been the formalization and the speeding-up
of the file-system backup procedures.

By mid-1975, it was clear that we would soon run out of
unique “user-ID” numbers. We resisted user pressure to re-use
numbers among PWB/UNIX systems. Our original reason was to
preserve our ability to back up each PWB/UNIX system with
another one; in other words, the users and files from any system
that is down for an extended period should be able to be moved
to another, properly configured system. This was difficult enough
to do without the complication of duplicated user-IDs. Such
backup has indeed been carried out several times. However, the
two main advantages of retaining unique user-IDs were:

(i) Protecting our ability to move users permanently from one
system to another for organizational or load-balancing pur-
POSES.

(i) Allowing us to develop reasonable means for communicat-
ing among several systems without compromising file secu-
rity.

We return to the subject of user-IDs in Section 8.4 below.

THE PROGRAMMER’S WORKBENCH 2191

8.3 Performance improvements

A number of changes were made to increase the ability of the
PWB/UNIX system to run on larger configurations and support
more simultaneous users. Although demand for service almost
always outran our ability to supply it, minor tuning was eschewed
in favor of finding ways to gain large payoffs with relatively low
investment.

For a system such as PWB/UNIX, it is much more important to
optimize the use of moving-head disks than to optimize the use
of the cPu. We installed a new disk driver* that made efficient
use of the RP04 (IBM 3330-style) disk drives in multi-drive
configurations. The seek algorithm was rewritten to use one
(sorted) list of outstanding disk-access requests per disk drive,
rather than just one list for the entire system; heuristic analysis
was done to determine what 170 request lead-time yields minimal
rotational delay and maximal throughput under heavy load. The
effect of these changes and of changes in the organization of the
disk free-space lists (which are now optimized by hardware type
and load expectation) have nearly tripled the effective multi-drive
transfer rate. Current PWB/UNIX systems have approached the
theoretical maximum disk throughput. On a heavily loaded sys-
tem, three moving-head drives have the transfer capacity of a sin-
gle fixed-head disk of equivalent size. The C program listing for
the disk driver is only four pages long; this made it possible to
experiment with it and to tune it with relative ease.

Minor changes were made in process scheduling to avoid “hot
spots” and to keep response time reasonable, even on heavily
loaded systems. Similarly, the scheduler and the terminal driver
were also modified to help maintain a reasonable rate of output to
terminals on heavily loaded systems. We have consciously chosen
to give up a small amount of performance under a light load in
order to gain performance under a heavy load.

Several performance changes were made in the shell. First, a
change of just a few lines of code permitted the shell to use
buffered “reads,” eliminating about 30 percent of the CPU time
used by the shell. Second, a way was found to reduce the aver-
age number of processes created in a day, also by approximately
30 percent; this is a significant saving, because the creation of a
process and the activation of the corresponding program typically

* Written by L. A. Wehr.

2192 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

require about 0.1 second of CPU time and also incur overhead for
1/0. To accomplish this, shell accounting data were analyzed to
investigate the usage of commands. Each PWB/UNIX system typi-
cally had about 30,000 command executions per day. Of these,
30 percent resulted from the execution of just a few commands,
namely, the commands used to implement flow-of-control con-
structs in shell procedures. The overhead for invoking them typi-
cally outweighed their actual execution time. They were absorbed
(without significant changes) into the shell. This reduced some-
what the CPU overhead by eliminating many fork calls. Much
more importantly, it reduced disk 170 in several ways: swapping
due to forks was reduced, as was searching for commands; it also
reduced the response time perceived by users executing shell
procedures—the improvement was enough to make the use of
these procedures much more practical. These changes allowed us
to provide service to many more users without degrading the
response time of our systems to an unreasonable degree.

The most important decision that we made in this entire area
of reliability and performance was our conscious choice to keep
our system in step with the Research UNIX system; its developers
have been most helpful: they quickly repaired serious bugs, gave
good advice where our needs diverged from theirs, and “bought
back” the best of our changes.

8.4 User environment

During 1975, a few changes that altered the user environment
were made to the operating system, the shell, and a few other
commands. The main result of these changes was to more than
double the size of the user population to which we could provide
service without doing major harm to the convenience of the UNIX
system. In particular, several problems had to be overcome to
maintain the ease of sharing data and commands. This aspect of
the UNIX system is popular with its users, is especially crucial for
groups of users working on common projects, and distinguishes
the UNIX system from many other time-sharing systems, which
impose complete user-from-user isolation under the pretense of
providing privacy, security, and protection.

Initially, the UNIX system had a limit of 256 distinct user-IDs;!
this was adequate for most UNIX installations, but totally inade-
quate for a user population the size of ours. Various solutions
were studied, and most were rejected. Duplicating user-IDs across

THE PROGRAMMER'S WORKBENCH 2193

machines was rejected for operational reasons, as noted in
Section 8.2 above. A second option considered was that of
decreasing the available number of the so-called “group-IDs,” or
removing them entirely, and using the bits thus freed to increase
the number of distinct user-IDs. Although attractive in many
ways, this solution required a change in the interpretation of
information stored with every single disk file (and every backup
copy thereof), changes to large numbers of commands, and a fun-
damental departure from the Research UNIX system during a time
when thought was being given to possible changes to that
system’s protection mechanisms. For these reasons, this solution
was deemed unwise.

Our solution was a modest one that depended heavily on the
characteristics of the PWB/UNIX user community, which, as men-
tioned above, consists mostly of groups of cooperating users,
rather than of individual users working in isolation from one
another. Typical behavior and opinions in these groups were:

(/) Users in such a group cared very little about how much
protection they had from each other, as long as their files
were protected from damage by users outside their group.

(ii)) A common password was often used by members of a
group, even when they owned distinct user-IDs. This was
often done so that a needed file could be accessed without
delay when its owner was unavailable.

(iii) Most users were willing to have only one or two user-IDs
per group, but wanted to retain their own login names and
login directories. We also favored such a distinction, because
experience showed that the use of a single login name by
more than a few users almost always produced cluttered
directory structures containing useless files.

(iv) Users wanted to retain the convenience of inter-user com-
munication through commands (e.g., write and mail) that
automatically identified the sending person.

The Research UNIX login command maps a login name into a
user-ID, which thereafter identifies that user. Because the map-
ping from login name to user-1D is many-to-one in PWB/UNIX, a
given user-ID may represent many login names. It was observed
that the login command knew the login name, but did not record
it in a way that permitted consistent retrieval. The login name
was added to the data recorded for each process and the udata

2194 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

system call was added to set or retrieve this value; the login
command was modified to record the login name and a small
number of other commands (such as write and mail) were
changed to obtain the login name via the udata system call.
Finally, to improve the security of files, a few commands were
changed to create files with read/write permission for their own-
ers, but read-only for everyone else. The net effect of these
changes was to greatly enlarge the size of the user community
that could be served, without destroying the convenience of the
UNIX system and without requiring widespread and fundamental
changes.

The second problem was that of sharing commands. When a
command is invoked, the shell first searches for it in the current
directory, then in directory /bin, and finally in directory /usr/bin.
Thus, any user may have private commands in one of his or her
private directories, while /bin is a repository for the most fre-
quently used public commands, and /usr/bin usually contains less
frequently used public commands. On many systems, almost any-
one can install commands in /usr/bin. Although this is practical
for a system with twenty or so users, it is unworkable for systems
with 200 or more, especially when a number of unrelated organi-
zations share a machine. Our users wanted to create their own
commands, invoked in the same way as public commands. Users
in large projects often wanted several sets of such commands:
project, department, group, and individual.

The solution in this case was to change the shell (and a few
other commands, such as nohup and time) to search a user-
specified list of directories, instead of the existing fixed list. In
order to preserve the consistency of command searching across
different programs, it was desirable to place a user-specified list
where it could be accessed by any program that needed it. This
was accomplished through a mechanism similar to that used for
solving the previous problem. The login command was changed
to record the name of the user’s login directory in the per-process
data area. Each user could record a list of directories to be
searched in a file named .path in his or her login directory, and
the shell and other commands were changed to read this file.
Although a few users wished to be able to change this list more
dynamically than is possible by editing the .path file, most users
were satisfied with this facility, and, as a matter of observed fact,
altered that file infrequently. In many projects, the project
administrator creates an appropriate .path file and then makes

THE PROGRAMMER'S WORKBENCH 2195

links to it for everyone else, thus ensuring consistency of com-
mand names within the project.

These changes were implemented in mid-1975. Their effect
was an upsurge in the number of project-specific commands, writ-
ten to improve project communication, to manage project data
bases, to automate procedures that would otherwise have to be
performed manually, and, generally, to customize the user
environment provided by the PWB/UNIX system to the needs of
each project. The result was a perceived increase in user produc-
tivity, because our users (who are, by and large, designers and
builders of software) began spending significantly less time on
housekeeping tasks, and correspondingly more time on their end
products; see Ref. 5 for comments on this entire process by some
early PWB/UNIX users.

8.5 Extending the use of the shell

A number of extensions were made to the shell to improve its
ability to support shell programming, while leaving its user inter-
face as unchanged as possible. These changes were made only
after a great deal of trepidation, because they clearly violated the
UNIX system’s principle of minimizing the complexity of “central”
programs, and because they represented a departure from the
Research UNIX shell; these departures consisted of minor changes
in syntax, but major changes in intended usage.

During 1974 and early 1975, the PWB/UNIX shell was the same
as the Research UNIX shell, and its usage pattern was similar, i.e.,
it was mainly used to interpret commands typed at a terminal and
occasionally used to interpret (fairly simple) files of commands.
A good explanation of the original shell philosophy and usage
may be found in Ref. 10. At that time, shell programming abili-
ties were limited to simple handling of a sequence of arguments,
and flow of control was directed by if, goto, and exit—separate
commands whose use gave a Fortran-like appearance to shell pro-
cedures. During this period, we started experimenting with the
use of the shell. We noted that anything that could be written as
a shell procedure could always be written in C, but the reverse
was often not true. Although C programs almost always executed
faster, users preferred to write shell procedures, if at all possible,
for a number of reasons:

(/) Shell programming has a “shallow” learning curve, because

2196 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

anyone who uses the UNIX system must learn something
about the shell and a few other commands; thus little addi-
tional effort is needed to write simple shell procedures.

(ii) Shell programming can do the job quickly and at a low cost
in terms of human effort.

(iii) Shell programming avoids waste of effort in premature
optimization of code. Shell procedures are occasionally
recoded as C programs, but only after they are shown to be
worth the effort of being so recoded. Many shell pro-
cedures are executed no more frequently than a few times
a day; it would be very difficult to justify the effort to
rewrite them in C.

(iv) Shell procedures are small and easy to maintain, especially
because there are no object programs or libraries to
manage.

Experience with shell programming led us to believe that some
very modest additions would yield large gains in the kinds of pro-
cedures that could be written with the shell. Thus, in mid-1975,
we made a number of changes to the shell, as well as to other
commands that are used primarily in shell procedures. The shell
was changed to provide 26 character-string variables and a com-
mand that sets the value of such a variable to an already existing
string, or to a line read from the standard input. The if com-
mand was extended to allow a “nestable” if-then-else-endif
form, and the expr command was created to provide evaluation
of character-string and arithmetic expressions. These changes, in
conjunction with those described in Section 8.4 above, resulted in
a dramatic increase in the use of shell programming. For exam-
ple, procedures that lessened the users’ need for detailed
knowledge of the target system’s job control language were writ-
ten for submitting RJE jobs,* groups of commands were written to
manage numerous small data bases, and many manual procedures
were automated. A more detailed discussion of shell usage pat-
terns (as of June 1976) may be found in Ref. 11.

Further changes have been made since that time, mainly to
complete the set of control structures (by adding the switch and
while commands), and also to improve performance, as explained
in Section 8.3 above.

* Target-system users who interact with these targets via the PWB/UNIX RJE subsystem
make about 20 percent fewer errors in their job control statements than those who
interact directly with the targets.

THE PROGRAMMER'S WORKBENCH 2197

Although the shell became larger, the resulting extensive use of
shell programming made it unnecessary for us to build large
amounts of centrally-supported software. Thus, these changes to
the shell actually reduced the total amount of software that we
had to build and maintain, while allowing each user project to
customize its own work environment to best match its needs and
terminology. A new version of the shell has been written
recently;!2 it includes most of our additions, in one form or
another.

IX. WHAT WE HAVE LEARNED

Several UNIX systems have served for many years as develop-
ment facilities in support of minicomputers and microprocessors.
The existence of the PWB/UNIX system shows that the UNIX sys-
tem can also perform this function quite effectively for target
machines that are among the largest of the currently available
computers. The importance of this observation lies in the fact
that the PWB/UNIX system can be used to provide a uniform inter-
face and development facility for almost any programming project,
regardless of its intended target, or the size of that target.

Our experience also proves that the UNIX system is readily
adaptable to the computer-center environment, permitting its
benefits to be offered to a very wide user population. Although
some changes and additions to the UNIX system were required,
they were accomplished without tampering with its basic fabric,
and without significantly degrading its convenience and usability.

Finally, why is the PWB/UNIX system so successful? Certainly,
most of the credit goes to the UNIX system itself. In addition,
success came partly from what we added to the UNIX system,
partly because we provided generally good service, and, perhaps
most importantly, because, during the entire design and develop-
ment process, we forcefully nurtured a close, continuing dialogue
between ourselves and our users.

Another reason for the success of the PWB/UNIX system is that
it adapts very easily to the individual needs of each user group.
Without delving into the “Tower of Babel” effect, it appears that
each programming group has strong functional (and perhaps
social) needs to radically customize its work environment. This
urge to specialize has often been carried out at great cost on
other systems. On PWB/UNIX systems, users within such a group
share files, build specialized send “scripts” for compiling, loading,

2198 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

and testing their programs on target computers, and write com-
mands (shared within the group) that incorporate nomenclature
specific to the group’s project. Our changes to the shell and to
the user environment, along with the basic facilities of the UNIX
system, combined to permit the writing of these new commands
as shell procedures. The development of such shell procedures
requires at least an order of magnitude less effort than the writing
of equivalent C programs. The result is that today, on many
PWB/UNIX systems, four out of five commands that are executed
originate in such user-written shell procedures.

Speaking as developers of the PWB/UNIX system, we believe that
our system fosters real improvement in our users’ productivity.
The contributing factors have all been touched upon above; the
most important of these are:

(i) A single, uniform, consistent programming environment.

(i) Good, basic tools that can be combined in a variety of ways
to serve special needs.

(i) Protection of data to free the users from time-consuming
housekeeping chores.

(iv) Very high system availability and reliability.

Taken together, these characteristics instill confidence in our users
and make them want to use our system.

One effect that we did not fully forsee was that our changes to
the UNIX system (some made under considerable pressure from
our users) would lead to an explosion of project-specific software
and an expanded demand for PWB/UNIX service. However, we did
keep to our original goals:

(i) To keep up-to-date with the Research UNIX system.

(i} To change as little of the Research UNIX system as possible.

(iii) To make certain that our changes did not compromise the
inherent simplicity, generality, flexibility, and efficiency of
the UNIX system.

(iv) To provide to our users tools, rather than products.

X. ACKNOWLEDGMENTS

The basic concept of the PWB/UNIX system was first suggested
by E.L.Ivie.3 Many of our colleagues have contributed to the
design, implementation, and continuing improvement of that sys-
tem. Thanks must also go to several members of the Bell

THE PROGRAMMER'S WORKBENCH 2199

Laboratories Computing Science Research Center for creating the
UNIX system itself, as well as for their advice and support.

REFERENCES

1.
2.
3
. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Work-

10.

D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” Commun.
Assn. Comp. Mach., 17 (July 1974), pp. 365-375.

D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.l.,
this issue, pp. 1905-1929.

E. L. Ivie, “The Programmer’s Workbench—A Machine for Software Develop-
ment,” Commun. Assn. Comp. Mach., 20 (October 1977), pp. 746-753.

bench,” Proc. 2nd Int. Conf. on Software Engineering (October 13-13,
1976), pp. 164-168.

M. H. Bianchi and J. L. Wood, “A User’s Viewpoint on the Programmer’s
Workbench,” Proc. 2nd Int. Conf. on Software Engineering (October 13-15,
1976), pp. 193-199.

. M. J. Rochkind, “The Source Code Control System,” 1EEE Trans. on Software

Engineering, se-/ (December 1975), pp. 364-370.

B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, “unix Time-Sharing System:
Document Preparation,” B.S.T.]1,, this issue, pp. 2115-2135.

J. R, Mashey and D. W. Smith, “Documentation Tools and Techniques,” Proc.
2nd Int. Conf. on Software Engineering (October 13-15, 1976), pp. 177-181.

. T. A. Dolotta, J. 8. Licwinko, R. E. Menninger, and W. D. Roome, “The LEAP

Load and Test Driver,” Proc. 2nd Int. Conf. on Software Engineering
(October 13-15, 1976), pp. 182-186.

K. Thompson, “The unix Command Language,” in Stucmred Programming—
Infotech State of the Art Repori, Nicholson House, Maidenhead, Berkshire,
England: Infotech International Ltd. (March 1975), pp. 375-384.

J. R. Mashey, “Using a Command Language as a High-Level Programming
Language,” Proc. 2nd Int. Conf. on Software Engineering (October 13-15,
1976), pp. 169-176.

S. R. Bourne, “unix Time-Sharing System: The unix Shell,” B.S.T.J., this issue,
pp. 1971-1990.

2200 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

