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Microcomputers, operating as satellite processors in a UNIX* system,
are at work in our laboratory collecting data, controlling apparatus and
machinery, and analyzing results. The system combines the benefits of
low-cost hardware and sophisticated UNIX software. Software tools have
been developed that accomplish timing and synchronization; data acquisi-
tion, storage, and archiving; command signal generation; and on-line
interaction with the operator. Mechanical testing, magnetic measure-
ments, and collecting and analyzing data from low-temperature convec-
tive studies are now routine. The system configurations used and the
benefits derived are discussed.

The vision of an automated laboratory has promise: computers
control equipment, collect data, and analyze and display results.
The experimenter, freed from tedium, devotes more energy to
creative pursuits, presumably research and development. Unfor-
tunately, the vision has proved to be a mirage for more than one
experimenter who, after a year of learning the mysteries of hardware
and software, finds the control of experiments as far away as ever.

This paper describes a system for laboratory automation using the
UNIX time-sharing system that has permitted experiments to be
automated in hours rather than years. This is possible because the

* UNIX is a trademark of Bell Laboratories.
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UNIX system makes programming easy, standardized hardware solves
many interfacing problems, and a library of programming tools per-
forms many common experimental tasks. The complex task of
automating an experiment reduces to the simpler tasks of assem-
bling hardware modules, selecting the appropriate combination of
software tools, and writing the program. The experimenter need not
know the details of how signals are passed from one hardware
module to another.

The benefits of automation are illustrated here by examples taken
from the laboratory. Among these are very precise data logging,
simplified operation of complex machinery or experiments, quick
display of results to the operator, easy interfacing to data analysis
tools or graphics, and ease of cross-correlating among experiments.

. APPROACHES TO AUTOMATION

A variety of approaches have been made to the problem of labora-
tory automation. Systems can be designed for the job at hand, or
they can be designed to be multipurpose. A computer may be
devoted to a single experiment, or one computer may be shared
among several experiments.

1.1 Job-specific automation

One approach to automation is to tailor a system to a specific
problem, either by developing dedicated hardware or by developing
job-specific software. A modern digital multimeter affords a good
example. Some multimeters employ specially designed digital circui-
try to accomplish a myriad of operations (ac-dc voltage and current
readings, resistance, autoranging or preset scales, sampling times,
etc.), while others incorporate a microprocessor with specific
software to accomplish the same functions.

A drawback is that the design can be too specific. Changes in the
operation of the device can be made only by rewiring the circuit or
by rewriting the program. Since the operation of a digital multime-
ter changes slowly, the job-specific development is practical. If
enough instruments are sold to recover the high costs of specific
design, the approach is economical.

Larger examples of job-specific design are to be found in the auto-
mation of widely used scientific apparatus such as gas chromato-
graphs and x-ray fluorescence machines, where the high cost of
software and hardware can be amortized over many units and where
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the function of the apparatus changes slowly. Unfortunately, there
are other examples where the automation never quite worked prop-
erly or could not be changed to meet changing needs, and still oth-
ers where the high cost of developing the job-specific design was
never recovered.

1.2 Multipurpose automation

In fact, many cases of automation in research and on the produc-
tion line are antithetical to the conditions for job-specific develop-
ment. The tasks are varied, they change rapidly, and the number of
identical installations is small. Such applications are best served by a
system that is versatile and easily changed.

A system can be multipurpose only if the hardware and the
software are multipurpose. Flexibility in hardware at the module
level is illustrated by the multimeter, which performs a variety of
functions by virtue of the specific hardware and software it con-
tains. Hardware versatility at the system level is achieved by the
ease of interconnecting or substituting various modules, meters,
timers, generators, switches, and the like. Recently, standards for
interfacing instruments have been gaining acceptance. Many
modern instruments offer the IEEE instrument bus;! nuclear instru-
mentation follows the CAMAC standard? which permits higher data
rates and larger numbers of instruments than the IEEE bus.

One might think that because typing is easier than soldering, it
should be easier to change software than to change hardware. How-
ever, the ease of changing software depends on the language at
hand, the quality of the editor, the file system structure, etc. The
very features of the UNIX time-sharing system that make it suitable
for system development3 also make it suitable for automating a
laboratory or a production line. Most of the work in automation is
in the software, and UNIX makes developing the software easy.

1.3 Multipurpose software

Software is changed more readily if it is well designed and cleanly
implemented. Quite small programs can meet a large number of
needs if they fit Kernighan and Plauger’s description of a software
tool:4

it uses the machine; it solves a general problem not a special
case; and it’s so easy to use that people will use it rather than
building their own.

MICROCOMPUTER CONTROL 2211



Naturally, such tools will not meet every need, but they will
serve for most tasks. They are usually easily modified to meet spe-
cial needs.

1.4 Stand-alone systems

An experiment can either have a computer devoted exclusively to
it or it can share the computer with other experiments. The stand-
alone approach has several virtues; chiefly, no one else can preempt
the computer at a crucial instant (real-time response) and no one
else’s errors can cause the system to crash (independence). Real-
time response and independence must be traded off against the high
cost of hardware and software. While the cost of the central proces-
sor and memory have declined significantly in recent years, the cost
of terminals, graphics, and mass storage devices has remained high.

It should be remembered that most of the cost of automation is
in software development. The software development tools on most
stand-alone systems are primitive by UNIX standards and result in
substantially higher total development costs.

1.5 Shared systems

Connecting several experiments to a well-equipped central com-
puter shares the costs of expensive peripherals and may provide a
reasonable programming environment. Simple experiments which
do not require real-time response can be interfaced to a time-
sharing system directly. UNIX time-sharing can be used for this pur-
pose if the data rates are slow enough or if time delays can be
tolerated. For example, an x-ray diffractometer might be interfaced
as an ordinary time-sharing user since data are normally taken every
five seconds or so. If there is some delay due to the load on the
time-sharing system in positioning the diffractometer for the next
reading, nothing but time is lost.

Some central computers do provide a system which will guarantee
real-time response. The MERT system is an example of one which
provides a very sophisticated real-time environment aimed at users
capable of writing system level programs.> Nevertheless, writing
programs for real-time response on a shared system is a complex
task that must be done with care because a single experiment can
bring down the entire system. In the past, big shared central com-
puters have been unsuccessful in controlling many experiments at
once, although recent reports indicate some success.5 In general,

2212 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



such a system is forced to rely on a small amount of very reliable
code to shield the users from one another and from the system.

1.6 Satellite processors

The real-time response and independence of a stand-alone system
can be combined with the lower costs and superior software of a
shared system if inexpensive, minimally equipped microcomputers
are connected to a large, well-equipped central processor. The
microcomputer or satellite processor (SP) provides real-time
response and independence when the experiment is in progress; the
central processor (CP) provides data storage, an excellent program-
ming environment, and data analysis tools. Not only is the cost of
such a system significantly less than the cost of an equivalent
number of stand-alone systems, but the CP also provides time-
sharing services for data analysis and reduction, document prepara-
tion, and general-purpose computing.’- 8

Il. SYSTEM DESCRIPTION

In our laboratory, we have automated several experiments with
the distributed processing system shown schematically in Fig. 1.
The cP provides UNIX time-sharing service to 16 incoming phone
lines and supports up to 16 sps for experimental control or as ordi-
nary time-sharing users.

2.1 The central computer

A Digital Equipment Corporation (DEC) PDP-11/45 with 124K of
core storage, cache, 80M bytes of secondary disk storage, and a tape
drive serves as the central computer. Graphics are provided by a
high quality terminal (Tektronix 4014) and a hard-copy printer
plotter (Versatec 1200A). Data can be transmitted to other com-
puter centers with an automatic calling unit and a 2000-baud syn-
chronous phone link.

The central facility is similar to an ordinary UNIX installation,
offering a wide range of time-sharing services. Like other UNIX sys-
tems, many jobs are program development or document prepara-
tion. An unusually large number of jobs are numerical analysis run
in Fortran or Ratfor® or graphical displays using the UNIX graph
command. Fortran is used because of the availability of many
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Fig. 1—Satellite processor system used for control of experiments.

mathematical subroutines, for example, the PORT library,10 or
because of inertia on the part of experimenters.

2.2 The satellite processor

Eight sps are presently connected to this central facility, each con-
sisting typically of an LSI-11 microcomputer with extended arith-
metic, a 9600-baud CRT terminal, two serial line interfaces (one for
the CP and one for the terminal), a PROM/ROM board containing a
communications package, and from 8 to 28K of semiconductor
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memory. Because memory is inexpensive, most users choose more
than minimum storage.

2.3 The CP-SP interface

The sps are linked to the CP by means of serial line interfaces
(see DL and DH in Fig. 1), operating over two twisted pairs of wires,
often 300m long.

The sp does not have the resources either in memory or secon-
dary storage to run the UNIX system directly. For a UNIX system
that will run on a microprocessor equipped with a floppy disk, see
Ref. 11. However, with the cooperation of the CP, the SP can emu-
late the UNIX environment during execution of a program, using the
Satellite Processing System (sps).12

SPS prepares a program for execution in the SP, transmits it, and
monitors it during execution. If the program in the SP executes a
system call, it is sent to the CP for execution. In our experience,
sending all system calls to the CP proved burdensome, so we
modified SPS so that the SP would handle system calls itself if possi-
ble, referring only those system calls to the cP which the CP alone
could handle. For example, reading and writing the local terminal
is best handled by the sp itself, whereas reading or writing a remote
file can only be done through the cp. Certain other system calls,
fork, for example, are simply not appropriate in the present distri-
buted processing framework and are presently treated as errors.
When no program is executing in the SP, the local terminal behaves
exactly as if it were connected directly to the CP under UNIX time-
sharing. Further revisions to the CP-SP communication scheme are
under way that should permit the SP to run a long-term program
acquiring data while the local terminal is used for ordinary time-
sharing.

Although Sps was designed to accommodate a variety of comput-
ers, cost considerations have led us to use LSI-11 microcomputers
exclusively. If future needs dictate a large computer, the capacity is
there, although the future may well bring bigger and faster satellite
machines.

2.4 Interface to the experiment

A surprising variety of experiments can be automated with the
interfaces shown schematically in Fig. 1.
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() The CRT terminal operating at 9600 baud provides interaction
with the operator at a speed high enough to permit messages
as explicit as needed without slowing the experiment down.

(ii) Voltage signals are read or generated by means of an ADAC
(Analog-to-Digitial Digital-to-Analog Converter). Connec-
tions are made through a standard multipin connector. From
8 to 64 lines can be used on input and two lines on output.
The usual range of voltage is 10 volts with a precision of
5 mV. The programmable gain option allows the precision to
be increased to 0.5 mV over a correspondingly smaller vol-
tage range.

(iii) Signals that are binary in nature can be interfaced with the
LSI DRV-11 parallel interface, which provides 16 input and 16
output lines. On output, pulses can be generated to step
motors, set relays, or trigger devices that respond to TTL sig-
nals. On input, switch closure, TTL signals, and interrupts
can be monitored. The DR also provides a way to interface to
numeric displays or inputs. If the number of binary inputs is
large, several DRs can be employed.

(iv) Sophisticated instruments, such as multimeters, frequency
synthesizers, transient recorders, and the like, can be inter-
faced through the IEEE instrument bus.! More than a hun-
dred instruments are available with the IEEE bus, and the
numbers have been increasing rapidly.

(v) Timing during the experiment can be accomplished with the
internal 60-Hz line time clock of the LsI-11 or by a more pre-
cise programmable clock, the Kw-11,

lll. INTERFACE TO THE EXPERIMENTER

Our goal was to create an interface between the user and the
experiment which used the machine to do the dirty work, met a
variety of needs, and was so easy to use that people wouldn’t try to
reinvent it—in short, to develop what Kernighan and Plauger
describe as tools, as opposed to special-purpose programs.4

Each interface described above is handled with one or more tools
summarized in Table I. Each is a function or series of functions
written in the C programming language!3:14 which can be called
from a C program. The C functions can also be called directly from
programs compiled with the FORTRAN 77 compiler which is now
operational on UNIX.15 A tutorial discussion of the use of these
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Table |1—Tools for experimental control

Interaction with the experimenter

rsvp(); number();
Data acquisition

getvolt(); setgain(); zero(); parin(); parint();
Experimental control

outchan(); putvolt(); ramp(); sine(); parout();
Timing and synchronization

time(); delay(); setsync(); sync();
Dynamic data storage

bput(); bget(); bfree();
Sending data to the central computer

bsend(); bname();

tools is available!® which has served as the text for a 16-hour course
in computer automation.

3.1 Interaction with the terminal

The programmer can use two tools to ask a question of the opera-
tor and read the response: number which returns a floating point
number and rsvp which matches the response to a list of expected
replies. For example,

velocity = number("ram velocity", "mm/sec");
will print the message
ram velocity, mm/sec?

on the terminal, analyze the response, and return a floating-point
number. If the input is unrecognizable, number repeats the mes-
sage. If the reply is “1 ft/min,” a conversion will be made to
mm/sec, the units specified by the optional second argument. If
the units are unknown, e.g., furlongs/fortnight, an error message
will be printed and number will try again. It is possible for the user
to supply an alternate table of conversion factors for number.

A second tool is provided to ask the experimenter a question and
analyze the reply. The simplest use of rsvp is to use the terminal
to get a cue, as in:

rsvp("Hit RETURN to start the test.");

which prints the message on the terminal and waits for the carriage
return to be typed. rsvp will analyze responses, as in:

reply = rsvp("stress or strain?", "stress", "strain");

which prints the first argument on the terminal as a prompt,
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analyzes the response, and sets reply to 1 if stress was typed, 2 if
strain was typed, and O if anything else was typed.

Because number and rsvp are reasonably intelligent and cautious
about accepting illegal input, they can be used to create other pro-
grams which are similarly gifted. For example, many experiments
require a knowledge of the area of the specimen under study. A
simple function can be written in a dozen or so lines which will cal-
culate the area from information supplied at the terminal for either
a circular or a rectangular specimen. The user can supply dimen-
sions in units ranging from yards to microns.16

Because rsvp and number use the standard I/0O routines, they
run on the 11/45 as well as the LsI-11. Developing them was also
easy, because the hard part was done by UNIX library routines like
atof.

3.2 Interfacing with analog signals
Once the leads from the experiment are connected to the ADAC,
the voltage on the nth channel can be read by calling
getvolt(n);
The gain on channel n can be set to 10X by calling
setgain(n, 10);

If this call is issued and the ADAC lacks programmable gain, or if
the desired gain is not available, setgain will print an error mes-
sage. In some experiments, it iS convenient to take an arbitrary
reference voltage as a zero reference. Calling

zero(n);

will take the current voltage reading on channel n as the zero refer-
ence for all subsequent readings on channel n. All data returned by
getvolt will be in consistent internal units, so that the gain or zero
can be set independently by different routines.

Voltages can be generated with the function:

putvolt(v);

If there is more than one D—A, the function outchan can be
called to specify the channel for output. The following code causes
zero volts to appear on the two output channels.
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outchan(0);
putvolt(0);
outchan(1);
putvolt(0);

putvolt can be used in combination with the timing tools to create a
variety of signal generators or command signals. If the response to
the voltage command is measured with getvolt and fed back to the
command, closed loop control is possible. Examples of such con-
trol are given in a later section.

3.3 Parallel interfacing

The 16 output lines of the parallel interface can be written simul-
taneously by writing a 16-bit word with the call:

parout(n, word);

where n refers to the number of the DR interface board. The
binary representation of the word will determine which lines are on
or off. Since the C language provides a number of operators for bit
manipulation, the common operations of setting, clearing, or invert-
ing the ith bit can be accomplished easily.14

Similarly, the state of the 16 input lines on the nth DR can be
read simultaneously with the function:

parin(n);

which returns a 16-bit integer. The C bit operators are then used to
mask off the bits which correspond to the signals of interest.

The interrupt inputs on the DR can be used to signal the proces-
sor as described in a later section.

3.4 The IEEE instrument bus

The IEEE bus interface tools are still under development with the
goal of writing high-level commands that will interface to many
electronic instruments. At present, the instruments can be con-
trolled by the standard technique of writing or reading an ASCII
stream on the bus with reads and writes or the high level routines
scanf or printf. A command analogous to stty called buscmd()
sets the state of the bus driver.
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3.5 Timing

Events during the experiment can be timed by means of the
internal line time clock in the LSI or by a higher precision pro-
grammable clock. In either case, the tools for timing remain the
same; the precision simply changes. The simplest use of the clock
is to measure elapsed time with the variable time which is incre-
mented each clock tick. Events can be synchronized with a clock by
the function sync(). A function setsync(t) is provided which sets
the period of the sync signal to ¢ ticks of the clock. Subsequent
calls to sync() will not return until a sync signal is generated. In
this way, data can be obtained at regular intervals, or pulses of a
specified frequency can be generated. A third function delay(n)
causes the program to wait for n sync signals. The accuracy of the
timing functions is determined by the accuracy of the clock and
ultimately by the speed of the LsI-11, which seems to limit practical
timing to frequencies of less than about 10 kHz. In the future, fas-
ter processors may extend this limit.

3.6 Data storage and transmission

Many applications of computers to experiments are primarily data
acquisition and recording. The tools for storing data on the SP and
transmitting it to remote files on the CP are important. Therefore,
considerable effort has been spent on devising a set of commands
for storing data in buffers on the SP and transmitting the buffers to
named files on the CP.

A group of buffers are provided in which data can be stored
without regard to type (int, long, float, or double). The buffering
routines keep track of the type automatically. This is useful in stor-
ing data for an xy graph; »n pairs of integers which form the data for
the graph could be stored in the same buffer as an initial pair of
double precision scaling factors which convert the integer data into
useful units. The entire buffer can be transmitted to the CP as a
unit. The buffers are dynamically allocated; that is, depending on
how the data are written, one buffer could consume all the buffer
space, or all the buffers could share the space. The command
bfree(n) releases the nth buffer whose space is then made available
for data storage by any of the other buffers. The command
bsend(n) sends the contents of buffer n to the cP. The function
bname() is used to specify the name of the file.
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The buffering commands can be used in combination to form a
sophisticated data logging system. For example, bsend can be
called periodically during data logging to update a file on the CP.
The transmission will be incremental; that is, only the data added to
the buffer since the last bsend will be transmitted. For applications
where more data are taken than will fit in the sp, large files can be
built on the cP by doing a bsend when the buffer fills, followed by
a bfree. Once the files are saved on the CP, the UNIX shell and pro-
grams can be used to manipulate or forward the data to yet another
computer facility for analysis on a higher speed computer.

3.7 Interrupt and signal handling

In the control of real-time experiments, it is sometimes necessary
for the experiment to interrupt the computer, as for example when
data collection is complete or an event of some urgency has
occurred. The UNIX system’s signal and interrupt mechanisms are
rudimentary, as such events are rare in the fully buffered 1/0
environment. The single-level interrupt structure of the LsI-11
further complicates the problem of handling interrupts generated by
the experiment. Our solution has been to implement a simple con-
trol primitive for doing all this, the EXECUTE command.
EXECUTE(routine, priority) allows the user to specify a routine to be
run when the software priority level of the program drops below the
given level. Because things normally considered atomic in nature
(floating-point arithmetic and system calls) may be extremely slow
when simulated on the LSI-11, it is advantageous to make them
interruptable at a high priority rather than atomic. To guarantee no
side effects, the interrupting routines must take care not to execute
non-reentrant code.

The user would not normally use EXeECUTE directly but would use
parint(n, routine, priority) which handles interrupts coming in on
the nth DR interface. parint() can be used to turn off all interrupts
or name a routine to be EXECUTEd at the specified priority when an
interrupt occurs. For example, in the case of finding peaks in a
diffraction spectrum, it is advantageous to compute while data are
being collected by the counters, and be interrupted when the count
is completed. Such an interrupt could be executed at a relatively
low priority. If, on the other hand, an interrupt is received which
indicates that a disaster has occurred, it should be handled at the
highest priority.
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3.8 Notes on implementation

We have tried to design a software interface to experiments
which follows the UNIX unified approach to input-output (I/0), that
is, 1/0 should take place without regard to the type of device being
read or written. For example, the local terminal, remote files, or
the IEEE bus can all be read or written with standard 1/0.

Using standard I/0 provides additional benefits. Routines for the
IEEE bus were developed on the 11/45 and run on the LsI-11
without change. Development was much easier on the 11/45 where
pipes and a bus simulator were used to test the program before run-
ning on the LsI-11, without the added set of problems caused by
running on the unprotected LSI-11. The IEEE bus interface could
easily be used as a model for a UNIX device driver if the need arises.

I/0 is handled in the modified SPS framework by keeping a list of
device descriptors that represent local devices. Any system call for
a local device is handled without CP intervention; all others are
passed to the cP. The local terminal driver includes fully buffered
input and output, echoing, erase and kill processing, and interrupt
and quit handling.

A different approach is necessary for the devices on which a sin-
gle word or byte represents the entire transmission (DR or the
ADAC). These devices can be faster than the LsI-11 itself, so we
have kept the interface as low level as possible, thereby incurring
less overhead than would be the case if the standard I/O system
were used. We have tried to make the I/O as independent of the
device as possible, so that the user will not need to understand the
detailed operation of each device and so that similar devices can be
interchanged without changing the user programs.

Each SP has a unique combination of hardware which requires a
unique library of software tools to make it work. We are able to
compile such a library by specifying options to the C preprocessor at
compile time, so that the libraries can be prepared without changing
the programs or including redundant information.

IV. EXAMPLES

The measure of the system and the tools is to be found in their
application to actual experiments. The following examples are
experiments which are now running, using the system and tools
described above.
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Fig. 2—Servo-hydraulic control panel. The satellite processor is the small module in-
dicated by the arrow.

4.1 Mechanical testing

One function of computer automation is to simplify the operation
of a machine and shield the inexperienced user from its intricacy.
The complexity of the control module of a modern servo-hydraulic
machine is apparent in Fig. 2. The microcomputer, which controls
the machine, is the small module indicated by the arrow. As a sim-
ple example of the complexity of running an experiment without
computer assistance, the units of the stress strain curve being
displayed on the xy recorder in Fig. 2 are determined by the settings
of four potentiometers, the sensitivity of two transducers, and the
dimensions of the sample. Under computer control, the results are
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presented directly in the appropriate units. The computer program
also provides complete step-by-step instructions for the operator
during the test.

A second function of computer automation is to provide safe
control of a machine capable of generating forces of 50,000 kg and
displacing a piston 25 cm in fractions of a second. Largely because
of the simplified operation and safety of computer control, inexperi-
enced operators have been able to use this machine with minimal
instruction. In addition, computer control permits very precise data
acquisition, control of experiments not possible by hand, detailed
data analysis, and automatic data archival which forms the begin-
nings of an automated laboratory notebook.

Some details follow of how an experiment was automated to
determine the beginnings of plastic flow. The machine can be con-
trolled by selecting one of three servo modes: stroke, which con-
trols the position of the piston; load, which controls the load gen-
erated; or strain, which controls the strain induced in a specimen.
The servo mode (load, stroke, or strain) is set by calling
outchan(STROKE). The command signal is then generated by a call
to putvolt or ramp() which generates a ramping voltage to the
desired level.

outchan (LOAD);
zero(LOAD);
ramp((int)100.0+KG);

sets the servo mode to load control, takes the current load reading
as the reference zero, and increases the load to 100 kg.

Figure 3 illustrates the results of a test to detect the elastic limit
of a material. The specimen is deformed under strain control to A4,
then unloaded under load control to 4°. The sample is cycled to
progressively larger strains (B, C, D, ...) until a given amount of
residual strain on unloading is reached, G’ Data are taken during
the test with getvolt and stored with bput, as in:

bput(YS, getvolt(STRAIN));
bput(YS, getvolt(LOAD));

which stores a stress-strain pair in the buffer, ¥S. Strain control is
necessary because the shape of the curve would not permit equal
load increments.

Once this part of the test is completed, the results are analyzed
and the yield stresses displayed for the operator. Testing then
resumes under stroke control until failure of the specimen is
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STRESS OR LOAD

STRAIN

Fig. 3—Load-unload test. Testing begins at the origin and proceeds along the path
given by AA' BB' CC' DD’ EE' FF' GG' .

detected by a load drop. The uniform and total elongation and the
tensile strength are then calculated and displayed. At the conclu-
sion of each test, the results and stress-strain curves are transmitted
by bsend to the cP to files bearing the name of the specimen.
Finally the buffer space is freed using bfree and the program
requests information for the next sample.

Thanks to the UNIX file system, the files are marked with the
exact date and time of their creation, so that the file system itself
serves as an automated laboratory notebook. Commonly, after a
group of specimens is tested, the experimenter uses a graphics ter-
minal under time-sharing to examine the data with the graph|tek
command. The combination of the UNIX file system, the shell, and
the graphics makes cross comparison among specimens easy. When
the analysis is finished, the UNIX archive command ar can be used
to store the data in a compact form.

Other programs have been written that accomplish static and
load-unload tensile testing as well as fatigue and stress-relaxation
testing. Benefits go beyond automation of existing tests, for the
load-unload program outlined above would be impractical under
hand control on this machine.

MICROCOMPUTER CONTROL 2225



7%
/

P

%/

N\

Fig. 4—Magnetic hysteresis loops. BH loops are shown for two materials given
slightly different heat treatments. Note the difference in the II and IV quadrants,
which show up in a lower energy product, BH.

4.2 Magnetic testing

Using the tools developed for the preceding example, we
automated a magnetic hysteresis graph in about 5 man-hours from
start of typing and soldering to the first analyzed data. The applica-
tion monitors the magnetic field intensity A and the magnetic
induction B of a sample to determine its hysteresis loop (BH loop).
The output is a BH loop (see Fig. 4) which can be graphed on the
CP, as well as a table of the cardinal points obtained from the loop:
coercive force, remnant magnetization, saturation magnetization,
etc. The program also provides the energy product, BH, at specific
load lines and the maximum energy product.

Even though the application is little more than data acquisition
and analysis, much time is saved during testing. The ability to
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rapidly retrieve data and superpose BH loops of various materials,
illustrated in Fig. 4, has been a valuable byproduct of automation.
Future plans are to use the computer to control the field during
testing, which would speed up the test and make possible the collec-
tion of recoil permeability data at various points in the loop.

4.3 Other mechanical tests

A single satellite processor has been used to control both the
above experiments as well as acquire data from two screw-driven,
mechanical test machines located in the same room and automate a
rather specialized device called the W7-bend tester.!” The bend
tester determines the elastic modulus and the onset of plastic defor-
mation by vibrating a small strip sample in bending. The test is
normally controlled by dedicated digital hardware and mechanical
feedback. Using the LSI-11 we were able to control the bend tester
and acquire data more extensive and precise than had ever been
obtained before. The operation was a severe test of the timing abil-
ities of the LsI-11, because a precision of 100 microseconds was
required, even though the natural frequency of the vibration was a
few hertz. In this application, the normal timing tools were inade-
quate but served as the starting point for a routine that exploits the
LsI-11 very close to its limits. This is possible because the C
language permits programming at a level very close to the machine
level, thereby taking full advantage of the hardware. If, on the
other hand, the tools were written in Basic or Fortran language,
they would not have lent themselves to a natural extension to the
limits of the machine.

4 4 Low temperature fluid flow

Finally, to demonstrate the versatility of tools developed for a
mechanical testing machine, we cite the work of Behringer and
Ahlers who have studied the instabilities of fluid flow in liquid He
at 2.2K.18 The first use of their satellite processor was to acquire
data over long periods of time ranging from an hour to several days.
The ability to run continuously for weeks at a stretch is a measure
of UNIX reliability.

More recently, Ahlers has been using the LSI-11 to control his
experiments as well as take data. putvolt() is used to generate a
sinusoidal power input at one plate of the convection cell, while at
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Fig. 5—Temperature gradient across a cell as a function of time. The gradient is pro-
duced by applying a power input to one plate of a cell filled with liquid He at 2.2 K.
The power is varied sinusoidally at first, then is held constant at the rms power level
of the sine, and then is shut off. See Fig. 6 for a magnified view of how the mean
temperature approaches steady state and Fig. 7 for the power spectrum of the
response.

the same time the response (the temperature gradient across the
cell) is recorded with getvolt and stored with bput. The resulting
gradient is displayed in Fig. 5. After a time the sinusoidal input is
replaced by a constant power input of the same mean power, and
the gradient is again monitored. The power is then shut off for an
interval and the process is repeated with a slightly higher power
density.

Figure 6 shows how the mean temperature gradient approaches
steady state for the sinusoidal input and the constant input. It
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Fig. 6—Mean temperature as a function of time. The data from Fig. 5 have been
averaged and magnified to show that the approach to steady-state conditions depends
on whether the input is oscillating or constant.

shows that the stability of the system depends on whether the input
is oscillating or steady. Still using data obtained with the LSI-11,
Ahlers applies fast Fourier transforms to reveal the details of the
instability (Fig. 7). The ability to write programs, control experi-
ments, analyze data with sophisticated mathematical library func-
tions, display it graphically, and write it up for publication on a sin-
gle system is a significant advantage.

Other applications under way or in progress include x-ray
diffraction, pole figure determination, scanning calorimetry, phonon
echo spectroscopy, thin-film reliability studies, and semiconductor
capacitance spectroscopy.
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Fig. 7—Power spectrum of the temperature gradient vs. time function. The response
to the sinusoidal power input is Fourier-transformed, and the corresponding power
spectrum is displayed. Note the peaks at the second and third harmonic, which were
not present in the power input.

V. CONCLUDING REMARKS

We have in operation a system for controlling laboratory experi-
ments which is powerful, easy to use, and reasonably general. It
combines the isolation and real-time response of a stand-alone sys-
tem with the shared cost and better hardware/software facilites of a
large time-shared system. It is powerful because the UNIX operating
system and the C language provide facilities for file manipulation
and the direct control of devices. It is easy to use because tools
have been written which shield the novice from many of the inter-
facing details. It is general because the tools were written with gen-
eral, rather than specific, applications in mind. Where great speed
or specialization is necessary, the tools form a model that can easily
be modified to meet the needs.

For the future, we expect bigger and faster satellite microproces-
sors which will add further to the attractiveness of the satellite pro-
cessing scheme. As microprocessors become incorporated in test
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equipment, we see a trend toward more intelligent instruments
which, on command from the SP, can execute fast, complicated pro-
cedures without the SP’s intervention. The test instrument should
be intelligent about performing its essential functions and should
provide an interface (eg. the IEEE bus) to a more general-purpose
machine which controls other tests, coordinates instruments, and
analyzes the results. Trends toward building full-blown software
systems including file systems into large test equipment seem coun-
terproductive.

As to the future of the software discussed here, we plan to revise
the CP-SP communications interface to take advantage of new UNIX
features to improve reliability, versatility, and speed. Further work
remains to be done on a set of higher level tools for interfacing
with instruments on the IEEE bus.
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