Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

No. 4 ESS Diagnostic Environment

By S. P. PEKARICH
{Manuscript received December 2, 1977)

Maintenance and testing of the Voiceband Interface and the Echo
Suppressor Terminal in No. 4 ESS are aided by software in the 1A pro-
cessor. A No. 4 ESS diagnostic environment was needed during the
development phase of both the hardware and diagnostic software. The
minicomputer chosen to support this environment was also required to
support the development of more than one frame at the same time.
Because of this requirement and other reasons, the UNIX* operating sys-
tem was selected for software support and development. This paper
describes how the UNIX operating system was applied to this project.

|. INTRODUCTION

Software in the 1A processor is used to maintain and test the
Voiceband Interface and the Echo Suppressor Terminal in No. 4
ESS.! These testing programs were written in a high-level language
oriented to the special requirements of diagnostics in an ESS
environment. A No. 4 ESS diagnostic environment was needed dur-
ing the development phase of both the hardware and diagnostic
software. Digital Equipment Corporation’s PDP-11/40 minicomputer
and the UNIX operating system? were chosen to support this environ-
ment.

* UNIX is a trademark of Bell Laboratories.

2265

Il. VOICEBAND INTERFACE AND ECHO SUPPRESSOR
TERMINAL

The Voiceband Interface? (VIF) provides an interface between
analog transmission systems and the digital time-division switching
network of No. 4 ESS.45 A VIF contains up to seven active and one
spare Voiceband Interface Units (viu’s). Each VIU terminates 120
four-wire, voice-frequency analog trunks and performs the analog-
to-digital and digital-to-analog conversions necessary for interfacing
with the time-division network.

The Echo Suppressor Terminal® (EST) is inserted (when required)
between the VIF and the time division network. Through use of
digital speech processing techniques and by operating in the multi-
plexed Ds120 bit stream, the EST achieves about a 10:1 cost reduc-
tion over the analog echo suppressor it replaced.

Ill. MAINTENANCE OF VIF AND EST

Maintenance software for No. 4 Ess”:8 can be functionally divided
into three categories:

(i) Detect and recover from software malfunctions.

(i) Detect and recover from hardware faults.

(iii) Provide error analysis and diagnostic programs to aid
craftspersons in the identification and replacement of faulty
modules.

This paper discusses how the UNIX operating system was applied to
aid the development of diagnostic programs for VIF and EST.

Figure 1 shows the maintenance communication path between the
1A processor and the VIF and EST. The 1A processor issues mainte-
nance commands to the VIF through maintenance pulse points from
a signal processor.’ The VIF replies to the 1A via the peripheral unit
reply bus (PURB). The EST communicates with the 1A through a
full peripheral unit bus® (PUB). EST commands are issued from the
1A via the peripheral unit write bus (PUWB), and the replies return
by way of the PURB.

IV. NO. 4 ESS DIAGNOSTIC ENVIRONMENT UNDER THE UNIX
SYSTEM

During the hardware and diagnostic software development phase
of both the VIF and EST, a No. 4 ESS diagnostic environment had to

2266 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

VOICEBAND ECHO
INTERFACE SUPPRESSOR
FRAME TERMINAL
';g'ﬁf_ PURB PURB PUWB
ACE | INTE
RecevER |INTERFACE INTERFAC RFACE
PULSE
POI
I DINTS A
PROCESSOR
SIGNAL
PROCESSOR
PURP PUWB
INTER-| INTER- PERIPHERAL UNIT
FACE | FACE REPLY
] 8US (PURB)
PERIPHERAL UNIT WRITE BUS {PUWB)

Fig. 1—Communication path between 1A Processor and VIF and EST.

be supported. Since a 1A processor was not available for the
development of VIF and EST, a minicomputer was used to simulate
the diagnostic functions. Figure 2 shows the No. 4 ESS diagnostic
support environment which was created. Special hardware units

DRIIC
POP-11
DIAGNOSTIC
|PHOGRAM5I
5P PULSE
PURS
POINTS PURS PUwa
1
PURS PULSE PURB PUWB
INTERFACE | RECEIVERS INTERFACE | INTERFACE PURE — R e - T
—PERIPHERAL UNIT
VOICEBAND ECHO PUWE WRI‘ll’E BUS
INTERFACE SUPPRESSOR SP — SIGNAL PROCESSOR
FRAME TERMINAL

Fig. 2—No. 4 ess diagnostic support environment.

NO. 4 ESS DIAGNOSTIC ENVIRONMENT 2267

were developed to provide electrically compatible interfaces
representing the peripheral unit bus and the signal processor mainte-
nance pulse points. These units are controlled by the minicomputer
through standard computer interfaces. The minicomputer then per-
forms the diagnostic functions of the 1A processor in a No. 4 office.
By issuing commands to the special interface units, the minicom-
puter simulates the 1A processor’s transmission of diagnostic
instructions to the individual frames. The majority of the diagnostic
software for VIF and EST was developed in this diagnostic environ-
ment.

Software development began under the disk operating system
(Dos), supplied by the vendor. DOS is a “single-user” system; that
is, only one software designer can use the machine at any given
time. This limitation was acceptable early in the project when all the
computer time was dedicated for software development. However,
as support software became available, the hardware and diagnostic
software test designers became heavy users of the system.

At the start of the project, it was realized that the minicomputer
system was required to support more than one frame. In addition,
support software development effort was still continuing, which now
presented a problem in scheduling the minicomputer system. Two
alternate solutions were considered. The first was to purchase
another minicomputer to support the development effort on the
second frame. A disadvantage of this proposal was that one of the
minicomputer systems still had the scheduling problem with support
software development and with supporting the frame. Also, sup-
porting additional frames would cause the problem to arise again.
The second alternative was to upgrade the minicomputer system so
that it could support time-shared operations. This seemed a more
economical way of supporting additional frames and support
software development. The second alternative was chosen.

Two time-sharing systems were available for the pDP-11 computer,
UNIX and RSX-11. The RSX-11 system was basically the single-user
DOS, upgraded to support multiple users. Its main advantage was its
upward compatibility with programs developed under DOs. The
UNIX operating system, on the other hand, offered a better develop-
ment environment and more support software tools than DOS. The
C language was also available, which presented a very attractive
alternative for developing new software. These advantages
outweighed the disadvantage of having to modify the existing
software developed under DOS. Therefore, the UNIX operating sys-
tem was selected to support this project.

2268 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

IBM 370 PDP-11

COPY
AND

DIAGNOSTIC ASSEMBLE

PROGRAM

SOQURCE
FILE

DIAL | DIAL
LIBRARY COMPILER
OPERATIONAL DIAGNOSTIC
CONTROL CONTROLLER
PROGRAM PROGRAM
UNIX™ }
ASSEM
SOURCE DIAL
SOURCE
LISTING
INTERFACE

EQUIPMENT |
TERMINAL FRAME TERMINAL'

Fig. 3—Software for No. 4 ess diagnostic environment.

V. THE SOFTWARE SYSTEM

Figure 3 is a block diagram of the overall software system used to
support the No. 4 ESs diagnostic environment. It consists of an off-
line compiler for a special diagnostic programming language
(described below), a run-time monitor for execution and debugging
of diagnostic programs, an on-line compiler for hardware and
software debugging aids (denoted as Operational Control), and sup-
port programs for creating and maintaining the diagnostic data base.
The entire software system on the minicomputer was named PADS
(pDP-11 Aided Diagnostic Simulator).

5.1 DIAL compiler

DIAL (Diagnostic Language)® is a high-level programming
language that allows a test designer to write a sequence of test
instructions with data using macro calls. The language was
developed to meet the special requirements of diagnostics in the ESS
environment. DIAL statements can be divided into two classes: test-
ing statements and general purpose statements. Testing statements

NO. 4 ESS DIAGNOSTIC ENVIRONMENT 2269

are used to issue maintenance commands to a specified peripheral
unit in a No. 4 ESS office. The general purpose statements are simi-
lar to most other high-level languages. They manipulate data, do
arithmetic and logical functions, and control the program execution
flow. The diagnostic programs for both the VIF and EST were written
in DIAL.

Several DIAL compilers are available to diagnostic program
designers. Each compiler produces code for a different application.
The compilers of interest to the VIF and EST test designers are the
DIAL/ESS and the DIAL/PADS compiler. The DIAL/ESS compiler,
developed using the TSS SWAP (Switching Assembler Program),?
produces a data table which is interpreted by a diagnostic control
program8 in the No. 4 ESS office. The DIAL/PADS compiler,
developed using VMSWAP (Virtual Memory SWAP), produces code
for a pDP-11. This compiler, which runs on the 1BM 370 computer,
produces PDP-11 assembly language source code which is acceptable
to the UNIX assembler. The assembly language code is subsequently
transported to the UNIX file system where it is assembled. The
resultant object modules are usable with the run-time monitor in
PADS.

Consideration was given to implementing the DIAL/PADS compiler
directly on the UNIX system. This would have eliminated the need
for the IBM 370 computer in the diagnostic development effort. All
software development could have been performed on the UNIX sys-
tem. However, because of the lack of the necessary staff and com-
puter resources, this approach was abandoned.

5.2 No. 4 ESS run-time environment

The PADS system allows the test designer to execute a DIAL pro-
gram with the aid of a run-time monitor and debugging software
package called DCON (Diagnostic Controller). The debugging pack-
age in DCON provides a tool for evaluating diagnostic algorithms and
debugging DIAL programs. DCON facilities allow the user to:

(i) Trace the execution of DIAL statements.
(i) Pause before execution of each DIAL statement.
(iii) Pause at DIAL statements selected at run time.
(iv) Display and modify simulated 1A memory during a pause.
(v) Start execution of the DIAL program at any DIAL statement.
(vi) Skip over selected DIAL statements at run time.
(vii) Loop one or a group of DIAL statements at run time.

2270 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

This last feature was especially useful for hardware troubleshooting.
Using this debugging package, the test designer can follow the exe-
cution of a DIAL program while it is diagnosing the VIF or EST.

DIAL programs compiled by the DIAL/PADS compiler communicate
data and status information to the diagnostic controller program.
Under DOS, this communication link was established at run-time via
the pDP-11 “trap” instruction. After switching to the UNIX operating
system, the “emulator trap” (emt) instruction was used. The DCON
process used the signal() system call to catch the emt instruction
executed by the DIAL program. However, because of the large
number of emt instructions executed in the DIAL program and the
operating system overhead to catch and handle this signal, this
method of dynamic linking between DCON and DIAL programs had to
be abandoned. It was replaced by the jump subroutine instruction
and loading a register with an address at run-time.

Maintenance instructions are sent to the VIF and the EST through
general purpose 1/0 ports (DR11Cs) on the minicomputer. Origi-
nally, DCON relayed the maintenance instructions of DIAL programs
using the read() and write() system services of the UNIX operating
system. Before executing a DIAL program, DCON opened the
appropriate files (general purpose I/0 ports) and retained their file
descriptors. All subsequent maintenance instructions requested by
the DIAL program were handled by DCON as read() or write()
requests to the file. Measurement of the I/0 activity on these ports
revealed that the VIF diagnostic program sent a large number of
maintenance instructions. Hence, a large portion of the diagnostic
run time was operating system overhead. Based on this observation,
special system service routines were added to the UNIX operating
system. These routines directly read and write the general purpose
I/0 ports. After implementing the I/O for maintenance instructions
in this manner, the run time for the VIF diagnostic was reduced by
more than half.

The PADS system simulates the automatic running of diagnostics
as performed in a No. 4 Ess office. A complete diagnostic for a peri-
pheral unit is normally written in many functional blocks called
phases. Each phase is a self-contained diagnostic program designed
to diagnose a small functional part of the unit. The phases of the
diagnostic program are stored as load modules in the UNIX file sys-
tem. The PADS system automatically searches the directory contain-
ing the diagnostic phases for the peripheral unit. Each phase is
loaded into memory by PADS and execution control is given to it.
At the termination of each phase, control is returned to the run-

NO. 4 ESS DIAGNOSTIC ENVIRONMENT 2271

time monitor program which will determine the next phase to be
executed. The diagnostic phases for different frames are stored in
separate subdirectories. The files are named using a predefined
naming convention. This allows DCON to automatically generate the
file name for the next diagnostic phase to be loaded and executed.

5.3 Support programs

The output from the DIAL/PADS compiler is UNIX assembler
source code. The DIAL assembly source code is placed on a mag-
netic tape for transport to the PDP-11 system. A shell procedure on
the UNIX system reads the tape and invokes the UNIX assembler.
The output from the assembler is then renamed to the file name
supplied by the user in the shell argument.

The UNIX shell program10 is also used to interpret shell procedure
files which simulate the automatic scheduling of diagnostics in the
central office. These procedure files call special programs which
monitor the equipment for a fault indication. After a fault is
detected, the shell procedure calls in the DCON program to run the
frame diagnostics.

5.4 On-line diagnostic aids

A software package known as “Operational Control” was
developed under the UNIX system using the C compiler.!! This pro-
gram allows the user to issue operational commands to the frame by
typing in programming statements at his terminal. These statements
are compiled directly into PDP-11 machine code and may be exe-
cuted immediately. Test sequences may be developed directly on-
line with the frames. These programs can then be saved in files for
future usage. This last feature was extremely easy to implement in
the UNIX operating system. By altering the file descriptor from stan-
dard input or output to a file, common code reads and writes the
program from the terminal or a file.

The parser for the Operational Control language is recursive. This
type of parser was exceptionally easy to implement in C since the
language allows recursive programming. The management of
storage variables needed by the parser in recursive functions was
automatically performed by the C compiler. This would have been a
horrendous bookkeeping operation if a nonrecursive programming
language had been used. The block structuring features of C made
it easy to implement the parser from the syntax definition of

2272 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Operational Control. Using C, the on-line compiler was defined,
implemented, and operational within a short time period.

VI. UNIX SYSTEM SUPPORT

The UNIX time-sharing system enables the minicomputer system
to support more than one frame at a time. Each frame has a dedi-
cated, general-purpose 1/0 port from the computer. The user sup-
plies the frame selection information to the controlling program
(either DCON or Operational Control). Then the software opens the
appropriate I/0 port for future communications with the frame.

Another feature provided by PADS is to allow the diagnostic
debugging program to escape to the on-line compiler program. This
is done in a manner such that when the user exits the on-line com-
piler, he immediately returns to DCON at the state at which it was
left. This feature was very easy to implement under the UNIX
operating system. By using the fork() and exec() system calls, the
parent program (DCON) sleeps, waiting for the death of its child pro-
cess (Operational Control). When the user exits from Operational
Control, DCON is awakened and will continue its execution from the
last state it was left in. The concept of placing one process to sleep
and invoking another was not available on RSX-11.

Vil. SUMMARY

The UNIX time-sharing system had many advantages over the
RSX-11 system that was considered for the PADS system. Originally,
PADS was developed under Digital Equipment Corporation’s single-
user Disk Operating System (DOS) using the macro assembler
MACRO-11. When it became apparent that a second frame had to be
supported, a time-sharing system was considered. At that time only
two time-sharing systems were available for the pDP-11 computer,
UNIX and RSX-11.

DEC’s RSX-11 system is a disk operating system which supports
multiple users. The basic advantage of RSX-11 was its upward com-
patibility with programs written to run under the disk operating sys-
tem. However, this advantage was outweighed by the advantages
the UNIX operating system presented.

In our opinion, the UNIX operating system provided a much better
software development environment for our purpose than RsSX-11. In
particular, the C language is much better suited to systems program-
ming than a macro assembler or Fortran. Also, many excellent

NO. 4 ESS DIAGNOSTIC ENVIRONMENT 2273

software tools such as the text editor and the linker existed on the
UNIX system. For example, it was felt that with the aid of the text
editor, all the programs that were written in MACRO-11 assembly
language could easily be translated into the UNIX assembler
language. This allowed the existing software to come up under the
UNIX system in a short time period. Then, as time allowed, the
existing software could be rewritten in C. All future software was
slated to be written in C. The need to rewrite the software gave an
opportunity to rethink the entire software project, this time with
some experience. In the end, this led to vast improvements in the
software packages.

REFERENCES

1. “1A Processor,” B.S.T.J., 56 (February 1977).

2. D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.J., this
issue, pp. 1905-1929.

. 1. F. Boyle, et al., “No. 4 ess: Transmission/Switching Interfaces and Toll Terminal
Equipment,” B.S.T.J., 56 (September 1977), pp. 1057-1098.

. “No. 4Ess,” B.S.T.1., 56 (September 1977).

. J. H. Huttenhoff, et al., “No. 4 gss: Peripheral System,” B.S.T.J., 56 (September
1977), pp. 1029-1056.

. R. C. Drechsler, “Echo Suppressor Terminal for No. 4 gss,” Intl. Conf. on Com-
munications, 3 (June 1976).

. P. W. Bowman, et al., “1A Processor: Maintenance Software,” B.S.T.J., 56 (Febru-
ary 1977), pp. 255-289.

. M. N. Meyers, et al.,, “No. 4 ss: Maintenance Software,” B.S.T.J., 56 (September
1977}, pp. 1139-1168.

. M. lzilggféarmn, et al., “Service Programs,” B.S.T.J., 48 (October 1969), pp. 2865-

~N N s W

= -]

10. S. R. Bcl)'g_li'lixe].gsgmx Time-Sharing System: The unix Shell,” B.S.T.J., this issue,
pp. -1990.

11. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “UNix Time-
?g;;igglgystem: The C Programming Language,” B.S.T.J., this issue, pp.

2274 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

