Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

RBCS/RCMAS —Converting to the
MERT Operating System

By E. R. NAGELBERG and M. A. PILLA
(Manuscript received February 3, 1978)

The paper presents a case history in applying the MERT executive to a
large software project based on the UNIX* system. The work illustrates
some of the basic architectural differences between the MERT and UNIX
systems as well as the problems of portability. Emphasis is on matters
pertaining to software engineering and administration as they afffect
development and support of a manufactured product.

I. INTRODUCTION

The Record Base Coordination System (RBCS) and Recent Change
Memory Administration System (RCMAS) are two minicomputer-
based products designed to carry out a record coordination function;
i.e., they accumulate segments of information received from various
sources on different media, filter, translate, and associate related
data, and later transmit complete records to downstream user sys-
tems, also on an assortment of media and according to various
triggering algorithms. The overall objective of record coordination is
to assure that information stored and interchanged among a variety
of related systems is consistent and accurately reflects changes that
must continually occur in the configuration of a large, complex
telecommunications network. To perform this function, RBCS and

* uNIX is a trademark of Bell Laboratories.

2275

RCMAS both provide various modes of I/0, data base management,
etc., and each utilizes a rich assortment of operating system features
for both software development and program execution.

The RBCS project was initially based on the UNIX system,! making
use of its powerful text processing facilities, the C language com-
piler,2 and the program generator tools Yacc and Lex.> However,
after a successful field evaluation, but just prior to development of
the production system, it was decided to standardize using the
MERT/UNIX* environment.* To a very large extent, this decision
was motivated by the genesis of a second project, RCMAS, which was
to be carried out by the same group using the same development
facilities as RBCS, but which had much more stringent real-time
requirements. The additional capabilities of the MERT executive,
i.e., public libraries and powerful inter-process communication using
shared segments, messages, and events, were attractive for RCMAS
and, even though the RBCS application did not initially utilize these
features, the MERT operating system was adopted here as well for
the sake of uniformity.

The purpose of this paper is to present what amounts to a case
history in transporting a substantial application, RBCS, from one
operating system environment, the UNIX system, to another, the
MERT/UNIX system. It is a user’s view in that development and
ongoing support for the operating system and associated utilities
were carried out by other organizations. Of course, these programs
were also undergoing change during the same period as the RBCS
conversion. On the one hand, these changes can be said to con-
found the conversion effort and distort the results, but on the other
hand a certain level of change must be expected and factored into
the development process. This issue is referred to later as an impor-
tant consideration in determining system architecture.

The paper begins with a discussion of the reasons for choosing a
UNIX or MERT/UNIX environment, followed by analysis of the deci-
sion to utilize the MERT executive. The transition process is
described, and a section on experience in starting with the MERT sys-
tem, for purposes of comparison, is added. Throughout, the
emphasis is on matters pertaining to software engineering and
administration as they affect development and support of a manufac-
tured product.

*MERT executive, UNIX Supervisor program.

2276 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Il. WHY THE UNIX AND MERT/UNIX OPERATING SYSTEMS?

With the exception of the interprocess communication primitives,
the UNIX and MERT operating systems appear to the user as fairly
equivalent systems. In large part, this is due to (/) the implementa-
tion of the UNIX system calls as a supervisory process under the
MERT executive and (/i) the ability to use existing C programs such
as the UNIX editor and shell with no modifications. Throughout this
paper, unless emphasis of a particular MERT/UNIX feature is
required, the phrase “UNIX operating system” will be used to mean
the stand-alone UNIX operating system as well as the UNIX supervisor
under MERT.

The facilities which the UNIX system provides for text processing
and program development, the advantages of a high-level language
such as C, and the power of program generators such as Yacc and
Lex are described elsewhere in this issue. All these were factors in
the final decision. However, the most compelling advantage of the
UNIX system was the shell® program, which permitted the very high
degree of flexibility needed in the RBCS project.

Because of the important role of field experience in the design
process, developing a system such as RBCS or RCMAS is difficult,
since a complete specification does not exist before trial implementa-
tion begins. Recognizing this fact, the developing department
decided to make heavy use of the UNIX shell as the primary mechan-
ism for “gluing together” various utilities. Use of the shell allows
basic components to be bound essentially at run-time rather than
early in the design and development stages. This inherent flexibility
permits the system designer to modify and/or enhance the product
without incurring large costs, as well as to separate the development
staff into (i) “tool” writers, i.e., those who write the C utilities that
make up the “gluable” modules and (ii) “command” writers who
are not necessarily familiar with C but do know how a set of
modules should be interconnected to implement a particular task.

In actual practice, some overlap will exist between the two groups
if for no other reason than to properly define the requirements for
the particular C utilities. The RBCS and RCMAS developments fol-
lowed this approach and the evaluations of the projects overwhelm-
ingly support the ease of change and administration of features. The
response of the end users to the RBCS field evaluation system, in
particular, has been most encouraging. In fact, they have written a
few of their own shell procedures to conform more easily to local
methods without having to request changes to the standard product.

CONVERTING RBCS/RCMAS TO MERT 2277

In addition to the shell, heavy use of both Yacc and Lex was
made to further reduce both projects’ sensitivity to changes of either
design or interface specification. For example, some processing of
magnetic tapes for RBCS has been accomplished with parsers that
produce output to an internal RBCS standard. For RCMAS, various
CRT masks are required for entry and display of important informa-
tion from its data base. An example is shown in Fig. 1. These
masks, being character strings tailored to the format of the specific
data to be entered or displayed, lend themselves very naturally to
design and manipulation using Yacc and Lex program generators.
This allows rapid changes (even in the field) to the appearance of
the CRT masks without incurring the penalty of modifying the
detailed code for each customized mask.

Documentation for manufacture and final use was provided using
the nroffé text formatting system. In addition, to make the system
easier to use and to obtain uniformity of documentation, the UNIX
form’ program was utilized to provide templates for the various doc-
umentation styles.

With two development projects, short deployment schedules, and
limited computer resources in the laboratory, it was necessary to
develop, test, and manufacture software on the same machine. The
software engineering required to support such simultaneous opera-
tions would have been difficult, if not impossible, without the vari-
ous UNIX features.

Ill. WHY THE MERT SYSTEM?

If the UNIX operating system performed so well with its powerful
development tools and flexible architecture possibilities, why, then,
was RBCS converted from the UNIX to the MERT operating system
and RCMAS directly developed under the MERT operating system?
To answer this question, it is important to examine the underlying
software engineering and administration problems in a project such
as RBCS.

The organization responsible for end-user product engineering and
design for manufacture should regard themselves as users of an
operating system, with interest centered around the application. Once
end-user requirements are defined, architectural and procedural
questions should be resolved at all levels (/) to minimize change
and (ii) to avoid the propagation of change beyond the region of
immediate impact. Once the development is under way, changes of

2278 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

sew LD SYWOHU— ‘814

ShBL/710/20:NO DVHDN: AT d3¥3IN3

=]
= 00002100 30
= €RPLéVE NI
= b0OX quo
= /:1NOf3NIT:ON
= wase XJUINII-NON TAQUIY-T0 | Dtsesere

[-d
M~
N
~N
=
o
w
=
[}
[l
[42]
<
=
Q
o
~
w
[&]
m
19
]
=
-
o
w
>
r4
O
(6]

2£/50,20:31vd 3nd e FUAT:d9D LOX : QN0

HYOL:3UTL 2£/50,20:31vd 3SY313y Gd: (Vd “WI “dd)NLSdSIA
=0d b ¢d9d

any sort are undesirable if adequate administrative control is to be
exercised, schedules met, and the product maintainable.

The nature of the RBCS project, however, necessitated changes to
the UNIX operating system in three important areas: (/) a communi-
cations interface to support Teletype Corporation Model 40 CRTs,
(ii) multifile capability for magnetic tape (e.g., standard 1BM-labeled
tapes), and (jii) interprocess communication for data base manage-
ment. It was the problem of satisfying RBCS requirements in these
areas under an ever-increasing rate of modifications to the “stan-
dard” UNIX system that led to a consideration of the MERT operating
system.

Figure 2 graphically illustrates the problem of making slight
modifications to the executive program of the UNIX operating sys-
tem, especially in the area of input/output drivers. Because the
UNIX system, including all drivers, is contained in a single load
module, any modifications, even those at the applications interface,
require careful scrutiny and integration, including a new system gen-
eration followed by a reboot of the system. On the other hand,
referring again to Fig. 2, modifying a driver in a MERT environment
is considerably easier because of the modular architecture of the
MERT executive. In particular, the MERT executive is divided into
several components, which can be administered and generated
separately, frequently without a reboot of the system.

The experience over an 18-month period with the MERT operating
system is that no RBCS or RCMAS driver was affected by changes to
the MERT system. RBCS modifications to the magnetic tape and com-
munications drivers were frequently tested without generating
another system and, quite often, without rebooting. The advantages
of not having to regenerate or reboot become obvious after a few
iterations of change.

Furthermore, as shown in the encircled area of Fig. 2, it should
be feasible, .ultimately, for a project such as RBCS or RCMAS to
receive the UNIX supervisor, MERT file manager, and MERT executive
as object code rather than as source code. Both RBCS and RCMAS
change only sizing parameters in these modules; such parameters
could be administered after compilation, thus freeing a project from
having to track source code for the major portions of the operating
system.

With regard to interprocess communication, the translation and
data-base management aspects of RBCS place a heavy strain on any
operating system, but on the UNIX system in particular. For exam-
ple, since the UNIX system was designed to provide a multi-access,

2280 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

"sorjIa1m uonedldde ajqissod Yiim S2INIIANYIIE ANNIAXS LUTW PUB L, XINN—T 814

43sn

1H3IW

OV QOW 3dvl wsa@
_ _ — __. 3007 193r80
|
% |
|
73NHIY
/ _ Tan HOWA
AHVHEN |
w3 t
N 1SAS !
|
|
e o
|
HOSIAHIANS AdNS w%qﬁ 1| Adns
INIL Y3 XINN Jsva _ XINN
_
e — e —_——
Z WO3s | Wo3s
“ Z AHVHEI1 2178Nd
L d
SNV D0Hd

P |

A
7

/

[]
HIOVNVW 3114
W3ILSAS DNILYHILO XINN

/

/

NOILVIITddY NV 510344V
AT3SHIAAY HOIHM
NOILVDI4100W
XINN 40 V3V

SWvHOO0Hd

u3sn .

X

|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|

INN

CONVERTING RBCS/RCMAS TO MERT 2281

time-sharing environment in which a number of independent users
manipulate logically separate files, a large body of common code,
such as a data base manager, could only be implemented via a set of
subroutines included with each program interacting with the data
base. With such a structure, no natural capability exists to prevent
simultaneous updates, and special measures become necessary. In
general, it is difficult to allow any asynchronous processes (non-
sibling related) to communicate with each other or to synchronize
themselves without modifying the operating system or spending
inordinate amounts of time with extra disk 1/0.

Several measures were taken to try to overcome these limitations.
Where sibling relationships existed by virtue of processes having
been spawned by the same shell procedure or special module, UNIX
pipes could be used, but these are quite slow in a heavily loaded sys-
tem. Where nonsibling related processes were involved, specialized
file handlers had to be used since large amounts of shared memory
(within the operating system) were out of the question. It is impor-
tant that the shared memory be contained in wuser space since
different applications, at different points during processing, may
place inordinate demands on a system-provided mechanism for shar-
ing memory. This point is discussed further in the next section.

After considerable experience with the RBCS field evaluation, the
time came to incorporate what had been learned and design a pro-
duction system. It became quite clear that interprocess communica-
tions was our primary bottleneck and that this would be even more
the case for RCMAS. An operating system was needed that could (/)
support better interprocess communication than the UNIX operating
system, (ii) support feature development (modifications to the
operating system) without tearing into the kernel of the system or
unnecessarily inconveniencing users by system generations, reboots,
etc., and (iii) still provide the powerful development tools of the
UNIX system. The MERT operating system met these three criteria
quite satisfactorily.

IV. CONVERTING TO THE MERT OPERATING SYSTEM

It was essential in converting RBCS from the UNIX operating sys-
tem to the MERT operating system to make as few application
changes as possible; RBCS was already running so that only
modifications necessary for enginering the production system, as
opposed to a field evaluation, were incorporated. Confounding this,
however, was a desire to upgrade to the latest UNIX features such as

2282 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(/) the latest C compiler, (i) “standard” semaphore capability, (iii)
“standard” multifile magnetic tape driver, and (iv) the Bourne
shell.> There was also, of course, a desire to investigate and exploit
those MERT features that were expected to yield performance
inprovements.

The conversion was carried out over a period of 3 to 4 months by
a team of three people. As expected, the major changes took place
in the I/0 routines, including (/) the CRT driver, (/i) the CRT utility
programs, (/i) the magnetic tape utilities, and (iv) the RBCS data
base manager, which allocated physical disk space directly. The pro-
cedure was straightforward and algorithmic, albeit a tedious process.
Some manual steps were required, so that the conversion was not
totally mechanized, but since the four basic subsystems mentioned
above were edited, tested, and debugged in only 3 to 4 months, the
effort was considered minimal.

At this point, an attempt was made to convert the remainder of
the RBCS data base manager subsystem to the MERT public library
feature.# Under the UNIX operating system, the RBCS data base
manager routines were link edited into a substantial number of
application utilities at compile time. Any changes required approxi-
mately two weeks for recompilation of the affected programs (the
subroutine dependencies were kept in an administrative data base).
It was felt, during the conversion planning effort, that the most
common file manager routines were taking an inordinate amount of
space; approximately 10 to 12K bytes duplicated among on the order
of 100 routines; each with different virtual addresses for these com-
mon routines. The MERT public library feature appeared to solve
the common space problem by allowing the most frequently used
routines to be placed in a shared text segment. As of this writing,
the basic system without the public library feature has been com-
pleted. Work is still underway to convert the RBCS data-base
manager routines to the new MERT public library format and should
be completed in a few months.

With the confidence gained by the initial success, work proceeded
on obtaining compatibility with the latest version of the C language
compiler, on the standard I/O library, and on engineering the
manufacture of the production RBCS system.

The program which proved most difficult to convert was the “tran-
saction processing” module. This large, complex body of code is
responsible for (/) restricting write-access to the data base manager
to avoid simultaneous updates and (/i) maintaining internal con-
sistency between successive states of the numerous RBCS files.

CONVERTING RBCS/RCMAS TO MERT 2283

These functions require considerable interaction with other shell
procedures, generally on an asynchronous basis. Since the system
was written under the UNIX file manager, the transaction processing
module carried out this interaction through specially created files
with a large number of “open” and “close” operations, characteristic
of a time-sharing system. The MERT file manager restricted the
number and frequency of these operations with the result that con-
siderable effort was necessary first to analyze the problem and then
to carry out the necessary design changes.

V. STARTING WITH THE MERT OPERATING SYSTEM

Probably the most important reason for using the MERT operating
system, in addition to the above-mentioned architectural advantages,
is the interprocess communication capabilities; in particular, shared
segments, public libraries, and guaranteed message integrity.4

In Fig. 3a, the first module represents a “data base read” module,
the second a “CRT interactive” package, the third a “data
verification” module, and the fourth a “data base write” module.
Fig. 3a illustrates the necessary pipeline flow of data using the UNIX
“pipe” mechanism via the shell. Reverse flow of data (from
cooperating modules, for example) is not possible at the shell level,
and control flow is difficult without some form of executive. Furth-
ermore, in a heavily loaded system, the pipes degenerate rather
quickly to extra disk 17/0; the result is a total of 4 reads and 4 writes
for a simple data base transaction.

A typical transaction for the architecture illustrated in Fig. 3a
would be for a keyboard query (module 2) for a particular data base
record (module 1) to be displayed (module 1). Following local
modification of the record using CRT masks, a request to send the
record to the data base (module 4) is made. Before sending the
record to the data base manager, the sanity check process (module
3) verifies the “within record” data integrity for such violations as
nonnumerical data or illegal data. If the data check is unsuccessful,
then module 2 should be activated to blink the fields in error as
indicated by data obtained from module 3. Control flows alternately
between modules 2 and 3 until either the record passes the data
integrity check or local management overrides the process for
administrative purposes. Only at that time would the record proceed
to the data base write process (module 4). With a shell syntax, it is
only possible for data to flow left to right; reverse flow requires files
specifically allocated for that purpose.

2284 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(1 (2) (3) (4)

D/B K DATA D/B
READ sk, VERIF. WRITE
DATA |-———| DATA |————| DATA |————| DATA |———— DATA
FLOW | BUF |FLow FLOW FLOW FLOW
—— — —— — e e e —— e e —

REVERSE FLOW?
4 READS AND WRITES

(a)
(ccm)
COMMAND AND
CONTROL
MERT INTERPROCESS
< —— —— COMMUNICATION USING
MESSAGES, EVENTS, .. .
) (2) (3) 4)
DATA DATA
FLOW FLow
SHARED
BUFFER

1 READ AND WRITE

(b)

Fig. 3—(a) UNIX™ shell architecture. (b) MERT shell architecture.

Figure 3b illustrates the MERT approach with a single shared-data
segment used for a minimum 1 read and 1 write. Each cooperating
process is shown with a virtual attachment to the shared data seg-
ment indicating access to the data without disk 1/0. Thus, reverse
flow of data is accomplished by each process writing into the shared
segment at any given time. Flow of control and process synchroni-
zation is accomplished in the example shown by the upper process
called a “Command and Control Module” (ccM), in RCMAS. The
shared data segment can be as large as 48K bytes in user space with
MERT support provided so that sibling-related or even nonsibling-
related processes can be adequately interfaced or isolated as the case
requires without system modifications on our part.

The large user segment size allows individual RBCS or RCMAS tran-
saction data to be supported with a minimum of disk I/0. The mes-
sage capability, along with the segment management routines, allows

CONVERTING RBCS/RCMAS TO MERT 2285

the data to remain in a segment; the processes modify the single copy
of the data instead of passing the data around through pipes or files,
as with the UNIX operating system implementation shown in Fig. 3a.

Rather than write an elaborate C module for the “Command and
Control” process of RCMAS, the latest version of the shell written by
S. R. Bourne® was extended to include the MERT interprocess com-
munications primitives.? In particular, the “Command and Control
Module” for RCMAS has been implemented entirely by means of one
master shell procedure and several cooperating procedures. This has
the advantage of easier readability to nonprogrammers, flexibility in
the light of frequent changes, and ease of debugging (since any shell
procedure can be run interactively from a terminal, one line at a
time). Measured performance to date has not indicated any penalty
great enough, from a time or space viewpoint, to necessitate rewrit-
ing the shell procedures as C modules.

It is clear from observations of RCMAS performance and discus-
sions with interested people that considerably more flexible architec-
tures are possible than the simple “star” network illustrated in Fig.
3b. However, it was felt that such a simplified approach was neces-
sary to retain administrative control during the initial design and
implementation stages until sufficient familiarization was achieved
with asynchronous processes served by the elaborate MERT interpro-
cess primitives.

VI. ACKNOWLEDGMENTS

The work of converting the RBCS project from the UNIX to the
MERT operating system fell primarily on D. Rabenda, J. P. Stampfel,
and R. C. White, Jr. The task of coordinating the design work for
the RCMAS project was the responsibility of N. M. Scribner.
Throughout the RBCS and RCMAS developments, especially under
the MERT operating system, D. L. Bayer and H. Lycklama were most
helpful with the operating system aspects and S. R. Bourne with the
shell.

REFERENCES

1. D. M. Ritchie and K. Thompson, “The UNIx Time-Sharing System,” B.S.T.J., this
|ssue, pp. 1905-1929.

2. D. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “unix Time-
?ggiirzl%ngyslem: The C Programming Language,” B.S.T.J., this issue, pp.

3. S. C. Johnson and M. E. Lesk, “unix Time-Sharing System: Language Develop-
ment Tools,” B.S.T.J., this issue, pp. 2155-2175.

2286 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

00 =~ o v A

. H. Lycklama and D. L. Bayer, “UNix Time-Sharing System: The MERT Operating
System,” B.S.T.J., this issue, pp. 2049-2086.
. S. R. Bourne, “UNIX Time-Sharing System: The UNIX Shell,” B.S.T.J., this issue,

pp. 1971-1990.
. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, “ynix Time-Sharing System:

Document Preparation,” B.S.T.J., this issue, pp. 2115-2135.

. K. Thompson and D. M. Ritchie, unix Programmer’s Manual, Bell Laboratories,
May 1975, section form(I).

. N. I. Kolettis, private communication.

CONVERTING RBCS/RCMAS TO MERT 2287

