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ABSTRACT

In nearly ten years’ time the original Portable C Compiler (PCC) has evolved through
three further generations that have improved its speed, generality, and code quality.
Each generation uses a different code generation strategy. These compiler technologies,
named PCC2, QCC, and RCC are all available in current AT&T C compilation system
products, notably those for the AT&T 3B2 computer, which is based on the WE™ 32100
Mmicroprocessor.

The C language recognizer, or front end, part of PCC2, QCC, and RCC is identical.
(The code is common among them.) It is essentially the same front end as that used in
PCC except that it has better error checking and greater robustness. The principal
differences, then, are in the respective code generation strategies, and they are the topic
of this paper.

INTRODUCTION

The Portable C Compiler has been the base for uncounted numbers of C compilers on a wide
variety of machines in its nearly ten years’ existence. The reasons for its success are simple.
Steve Johnson, author of both PCC and PCC2, put it this way: ‘“The compiler is efficient
enough, and produces good enough code, to serve as a production compiler.”m (The C compilers
that were part of UNIX* System V, Release 2, were PCC-based.) What’s more, PCC’s
portability means that “if you need a C compiler written for a machine with a reasonable
architecture, the compiler is already three quarters finished.”!

Compiler development within AT&T did not cease with PCC. We have continued to
investigate and to use new compiler technology. After reviewing some of the internal details of
PCC, this paper will describe some of the newly developed technology that has found its way
into compilers for, among other machines, the WE™ 32100 microprocessor, the heart of the
AT&T 3B2 computer.

The improvements that I will describe concern the strategies that the compiler uses to generate
code. For the rest of this paper I will assume that the parser portion of the compiler has
produced a tree-structured representation of C expressions, and that the code generator must
produce the assembly language that will realize the expression’s semantic intention. The new
technologies, PCC2, QCC, and RCC, share a C language parser that is closely related to
PCC'’s, except for improved correctness and error detection.

THE PROBLEM

Code generation is easy when a machine has an infinite number of general registers, each of
which may hold any datum. Of course, there are no real machines that meet this ideal, or that
even come close. (That’s one reason there is still a market for compiler writers.) Architecture
designs have a finite, usually small, number of machine registers, and sometimes certain
functions are tied to specific registers. Because machine registers must be considered scarce
resources, how they are allocated, and in what order they are used, has a significant effect on

* UNIX is a trademark of AT&T.
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the quality of code that the compiler generates. The PCC Family history is a collection of
solutions to the register allocation and code ordering problem.

PCC FAMILY ARCHITECTURE

The PCC Family compilers have two main pieces: a (relatively) machine-independent front-end,
or parser, that builds what are called C-trees; and a table-driven interpretive back-end, or code
generator that is machine-dependent. To create a new compiler instance, an implementor
provides definitions for symbols that describe the sizes and alignments of various data types,
the byte ordering and the stack layout of the target machine, and a set of templates that
describes what code the compiler must generate for various C operators. The templates contain
the C operator and shapes that describe each of the operator’s operands. Shapes are most easily
thought of as the C-trees that correspond to an architecture’s address modes.

The PCC Family back-ends consume the C-trees by starting at the fringe of the tree and
working back to the root. Example 1 shows how this process works on the simple expression

a=>b+ ¢ % d;

(REG represents a register node in the tree.) Part of the tree’s fringe is matched by a template,
the corresponding assembly code is emitted, and the portion of the tree that was matched is
rewritten to be the template’s result, if any, usually a scratch register. Thus the code
generation and tree rewriting mirrors the execution-time behavior of the code that is generated.
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Example 1. Reduction of a C expression.

PCC —— THE PORTABLE C COMPILER

Steve Johnson wrote the Portable C Compiler, PCC, in 1977 as part of an experiment to port
UNIX from a PDP-11t base to an Interdata 8/32 computer.? It became possibly the most widely
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used compiler that can generate native machine code. PCC established the compiler design
framework that continues in the PCC Family.

PCC Code Generation

PCC’s code generation is based on theoretical work by Sethi and Ullmanl®l and others. This
work describes how code generation may be ordered to use the smallest possible number of
machine registers. In [11, Johnson describes how PCC partitions the code generation problem
into determining the proper order and then following it.

The compiler implementor supplies a function to calculate the so-called Sethi-Ullman (or SU)
numbers. The machine-independent part of the back-end calls this routine to populate an
expression tree with SU numbers that indicate how many registers would be needed to do that
part of the tree. The number at the root of the tree must be no greater than the number of
scratch machine registers. Otherwise there are too few registers, and the compiler must rewrite
(spill) part of the tree so its result will be in a temporary location, rather than in a machine
register. Once the compiler successfully populates the tree with SU numbers such that no
number is greater than the number of scratch registers, code generation proceeds. The code
generator walks down the tree, doing higher SU numbers before lower, until it reaches leaves, at
which point it begins emitting code.

This code generation approach works well most of the time. However, the Sethi-Ullman
computation routine tends to look like black magic, since when it assigns numbers of registers
for computations it must anticipate what templates will be used at any point and what tree
rewrites will occur. When templates get added, removed, or just moved, the SU computation
often has to be modified to correspond.

Rarely could the SU computation be completely accurate, so it had to strike a careful balance
between optimism and pessimism. On one hand, if the SU computation is too pessimistic, the
generated code will be low quality, with many spills. On the other hand, if it is too optimistic,

the back-end can discover that fewer registers are available than the SU number promised, and
it will quit with a compiler error.

Another weak spot in PCC’s design was the handling of shapes. When PCC was designed,
“indirect through the sum of a register and offset” was considered an exotic address mode.
This address mode, which came to be known as an OREG, is a good description for such things
as stack locations and structure references, where the pointer to the structure is in a register.
Each time it emits code, PCC must reexamine the tree to recognize if an OREG has resulted
from the rewrite. When fancier architectures emerged, like the VAX and Motorola 68000!, that
had double indexing, PCC compilers had to scramble to fit such indexing into the OREG mold.

To summarize, PCC was the first practical, portable compiler technology that became widely

available. It can generate good quality code, although making it do so is challenging for the
implementor.

PCC2 —— CHILD OF PCC

Aho and Johnson did further work on code generation theory[‘*l, and in 1978 Johnson produced a
revised PCC, which became known as PCC2. The major changes from PCC were these:

o Code generation tree matching occurs top-down.

t PDP and VAX are trademarks of Digital Equipment Corporation.
1. The AT&T UNIX PC is based on a Motorola 68010.
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¢ Implementor-specified costs control code generation.
e Templates may contain arbitrary, implementor-specified shapes.
o The implementor uses a descriptive file to specify templates, shapes, and costs.

The Aho and Johnson theory states that the cost of a computation may be partitioned into the
cost of an operation and the cost of obtaining the operands. This may apply recursively,
because obtaining the operands may entail further computation. To minimize the cost of a
computation, one need only minimize the sum of the cost of the operands and the operation at
each step.

The PCC2 back-end walks the expression tree, and, using the implementor supplied costs, it
identifies the least expensive way to generate code for it, using a dynamic programming
algorithm. Since the cost calculation algorithm considers the templates that would actually be
used at each step, the calculated costs are accurate. Furthermore, the cost calculations take
into account the number of registers available at each step, so register allocation is a by-
product. Register spilling is another by-product because its cost is considered as a possibility at
each step. This approach solves the problem of the separation between SU computation and
code generation from which PCC suffered. However, the dynamic programming theory only
allowed for one type of register, a shortcoming that was later addressed by RCC.

PCC2 introduces the idea of treating register shapes as wildcards. During its top-down tree
match, PCC2 attempts to match a template against the expression tree. If it finds that a
register in a shape of the template matches a non-register in the tree, PCC2 considers the
result to be a (wildcard) match, with the following proviso: it must now calculate the sub-tree
whose root is the mismatched non-register and assume that the result of that computation will
end up in a register. At that point the register node in the shape will indeed match a register,
and code generation for the original template may proceed. Example 2 depicts the case of a

register (REG) node in a template matching part of a tree as a wildcard. The NAME node
represents an external variable.

Template matches Tree
+ +

/o N PN

.............................. oot e )
7 N\

e IAME BEE

Example 2. Register matches as wildcard.

The theory behind PCC2 assumes that all registers are equivalent and can contain any datum.
Indeed, using registers in shapes as wildcards reinforces that need. However, by carefully
designing templates and the supporting machine-dependent code, implementors have been able
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to create PCC2 compilers for machines that do not conform to this restriction, such as the
Motorola 68000 and Intel 80862

The machine description file that Johnson introduced for PCC2, commonly called stin (shape
and template input), is much more concise and easy to maintain than the previous PCC
template representation, an initialization of a large array of structures that had to be
maintained by hand. Stin descriptions are processed by a program to produce the PCC2
equivalent of the PCC array of structures.

PCC2 compilers produce locally excellent code, but they do so slowly because of the cost
calculations, which take two passes through each expression tree. In the first pass the back-end
determines the least-cost code sequence. In the second pass, the back-end follows that sequence
and generates code accordingly.

PCC2’s stin file led to better compiler maintainability than PCC afforded. Within my group
at AT&T we wanted to replace all of our PCC-based compilers with PCC2-based ones.
However, because PCC2 was as much as three times slower, we could not justify such an
impact on our customers. We therefore sought to improve PCC2’s speed and still retain its
other advantages. The result was QCC.

QCC —— A FASTER PCC?2

QCC is based on a principle that arose from a simple observation: most of the time PCC2
explores a great many possible code generation sequences before it chooses the obvious one. In
other words, most of the time the cost-based algorithm is unnecessary. Rob Murray and I
therefore replaced the cost-based algorithm with one that made the obvious choice, when there
was one. The only time that a choice was “un-obvious” was when the algorithm needed more
scratch registers than it had available, in which case it chose a simple spill-to-temporary
algorithm and tried again.

The algorithm is a top-down tree match like PCC2’s. Unlike PCC2 however, QCC uses the
first template (i.e., operation) for which the operand shapes (i.e., address modes) match. We
also chose the first matching shape. A register node in a shape, if it doesn’t actually match a
register in the C-tree, is treated as a wildcard, as in PCC2. QCC knows that before it can use
a template that has wildcard registers in a shape, it must generate the instructions that will
actually load those registers. At that point it descends the tree to generate that code first.

Two important observations must be made here. First, since we choose the first matching
template, the order of those templates is important. In PCCZ2, you will recall, the compiler
chose the lowest cost alternative from all alternatives, so the order of templates was irrelevant.

The second observation regards shapes. It would seem beneficial for QCC to match as large a
piece of a tree as possible with a shape. Implicit in that assumption is that a machine’s
hardware can do the operations (notably address addition) better (and cheaper) than a sequence
of equivalent instructions. This matching of larger shapes in preference to smaller ones has
been called “maximal munch,” because the compiler tries to bite off as large a piece of the
expression tree as possible.

To get the most from QCC’s first-match algorithm, then, the compiler must examine templates
and shapes in a preferred order. Because the description of templates and shapes was already
embodied in the stin file, and that file was already processed by a program (called sty), it was
natural to enhance sty to order the shapes and templates. In fact, one original design goal for
QCC was to be able to take a PCC2 compiler and convert it to a QCC compiler with a few

2. The Intel 8086 is the processor in the AT&T PC 6300.
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quick strokes.

That goal was not entirely met, and the reasons were both good and bad. On the good side, we
could do some things in QCC that were impossible in PCC2, and that reduced the number of
templates an implementor had to write and simplified others. On the bad side, sty was not
100% successful at ordering templates, and a little hand tuning often improved code quality.

On balance, the QCC experiment was a tremendous $uccess. QCC compilers actually turned
out to be faster than equivalent PCC compilers. The quality of generated code fell between
that of PCC and PCC2, but very close to the higher quality PCC2 side. It still suffered from
one shortcoming of PCC2: it could handle only one kind of machine register.

RCC —— QCC WITH REGISTER SETS

The restriction of QCC to one kind of machine register threatened to hamper its usefulness.
As QCC was emerging, so was the WE 32106 Math Acceleration Unit (MAU) floating point co-
processor for the WE 32100 microprocessor. Like many such co-processors, the MAU has its
own set, of registers, and they are emphatically not general purpose. They are for floating point
calculations. Although we felt that we could use various tricks in QCC to generate code for the

32100/32106 combination, we preferred a more direct approach. This motivation led to my
development of RCC.

RCC is QCC with more register bookkeeping. Where QCC keeps track of how many registers
it has available to it as it descends a C-tree to generate code, RCC keeps track of which ones,

too. In other words, RCC does a heuristic register allocation ‘“on the fly,” during tree
matching.

An RCC implementor must divide a machine’s registers into two groups (as with PCC, PCCZ2,
and QCC): scratch and user. User registers are the ones that are available to the C
programmer as register variables. The compiler manages and allocates the scratch registers
for intermediate computations. Beyond the user/scratch division, an implementor is free to
partition the registers in any useful manner. For example, on the 32100/32106 combination,
three CPU and one MAU register are designated as scratch, and six CPU and two MAU registers
are designated as user registers.

RCC also extends the notion of wildcard a bit further. In RCC, a register node in a tree might
match a register node in a shape as a wildcard if the register in the tree is not one of the ones
expected by the shape. For example, an implementor for an Intel 80286 compiler can write a
template in which the shape corresponding to the shift count is precisely register CX. RCC
guarantees that if that template gets used, CX will, in fact, contain the shift count. If the
result of a shift count computation ends up in AX, RCC will see to it that the value gets moved

to CX. Moreover, RCC will actually attempt to have the computation leave its result in CX in
the first place.

Example 3 shows how RCC generates code for the expression

a <<= Db + 2;
for the Intel 80286, where a and b are automatic variables. As I stated above, the shift count
must be in register CX, and the first template shows that the right operand indeed must be CX.

The rest of the example shows the register accounting that takes place. Want and available sets
of registers are passed down the tree during code generation, and a result set of registers gets

3. The AT&T PC 6300+ uses the Intel 80286 processor.
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Register Sets

Tree matches Template weant avail resulld

{any} {all}

7\ /7 N\
2 AUTD IGom (

need: 1 scratch

have: all scratch
want: { cX }

(scratch is result)
choose: { cX }

Example 3. RCC Register Accounting

passed upward. Thus, when the back-end goes to generate code for the + operations, it knows
that CX is the preferred result register. Since the template must allocate one register for its
computation; since that register becomes the result of the addition; and since CX is available,
RCC chooses CX as the scratch (and result) register for the +. At the next higher level, the
pre-condition for the <<= template, loading CX, has been met, and code for the shift may be
generated.

RCC lets the compiler implementor specify numbers and types of scratch registers with the
same precision as registers in shapes may be specified. For example suppose a scratch register is
needed for some calculation on the 32100/32106 combination. Should it be a general purpose
(32100) register or a MAU (32106) floating point register? RCC can’t guess the right answer,
but the implementor can say explicitly which one to use with an appropriate notation in the stin
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file.

RCC performs only slightly slower than QCC, due mainly to the extra register bookkeeping.
RCC’s version of sty knows how to process the extra register-specific information that the
RCC stin file may contain.

RCC has proved to be quite versatile. It has been used for product-quality or prototype
implementations of compilers for the AT&T 3B2/400 (C-FP+ product), AT&T 3B20, Motorola
68000, and Intel 80286.

SUMMARY

The PCC Family of compilers has evolved over ten years. Three new technologies have emerged
that improve the quality and speed of code generation. The result for our customers has been C
compilers that are faster and more reliable and that generate better object code.
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