
Interprocess Communication 
in the Eighth Edition Unix System 

D. L. Presotto 
D. M. Ritchie 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

When processes wish to communicate, they must first establish communica­ 
tion, and then decide what to say. Previously described stream mechanisms of the 
Eighth Edition Unix system! provide a flexible way for processes to speak with dev­ 
ices and with each other. An existing stream connection is named by a file descrip­ 
tor, and the usual read, write, and 1/0 control requests apply. Processing modules 
may be inserted dynamically into a stream connection, so network protocols, termi­ 
nal processing, and device drivers separate cleanly. 

This paper describes ways of commencing communication. The traditional, 
and simplest, is the pipe. In our system, pipes are just cross-connected streams. 

A new request associates a stream with any named file. When the file is sub­ 
sequently opened, operations on the file are operations on the stream. Also, open 
files may be passed from one process to another over a stream, and opening a 
stream-associated file may create a new and distinct channel to the stream's server. 

These low-level mechanisms allow considerable flexibility in constructing net­ 
work dialout routines and connection servers of various kinds. 

Introduction 
The Eighth Edition version of Unix is the system that runs on machines in the Information 

Sciences Research Division of AT&T Bell Laboratories, and at a few sites elsewhere. It is named, 
by our custom, after its manual. 

The work reported here provides convenient ways for programs to establish communication 
with unrelated processes, on the same or different machines. The kind of communication we are 
interested in is conducted by means of ordinary read and write calls, occasionally supplemented by 
1/0 control requests. Moreover, we wish to commence communication in ways that are as close as 
possible to ordinary file opening. These considerations spring from the desire to find ways of fitting 
even complicated things into a simple pattern, and from the observation that whenever objects 
behave like files, practically any program is able to use them. 

In particular, we study how to 
I) provide objects nameable as files that invoke useful services, such as connecting to other 

machines over various media, 
2) make it easy to write the programs that provide the services. 

Unix is a trademark of AT&T Bell Laboratories 

309 



Recapitulation 

The Eighth Edition system introduced a new way of communicating with terminal and net­ 
work devices, 1 and a generalization of the internal interface to the file system.2• 3 We begin by 
reviewing already-published nomenclature and mechanisms of our 1/0 and file systems. 

Streams 
A stream is a full-duplex connection between a process and a device or another process. It 

consists of several linearly connected processing modules, and is analogous to a Shell pipeline, except 
that data flows in both directions. The modules in a stream communicate by passing messages to 
their neighbors. A module provides only one entry point to each neighbor, namely a routine that 
accepts messages. 

At the end of the stream closest to the process is a set of routines that provide the interface to 
the rest of the system. A user's write and 1/0 control requests are turned into messages sent along 
the stream, and read requests take data from the stream and pass it to the user. At the other end 
of the stream is either a device driver module, or another process. Data arriving on the stream is 
sent to the device or read by the process; data and state transitions detected by the device, or gen­ 
erated by the process, are composed into messages and sent into the stream towards the user pro­ 
gram. Intermediate modules process the messages in various ways. They are symmetrical; their 
read and write interfaces are identical. 

The two end modules in a stream to a device become connected automatically when the pro­ 
cess opens the device; streams between processes are created by a pipe call. Intermediate modules 
are attached dynamically by request of the user's program. They are addressed like a stack with its 
top close to the process, so installing one is called 'pushing' a new module. 

Queues 
Each stream processing module consists of a pair of queues, one for each direction. A queue 

comprises not only a data queue proper, but also two routines and some status information. One 
routine is the put procedure, which is called by its neighbor to place messages on its data queue. 
The other, the service procedure, is scheduled to execute whenever there is work for it to do. The 
status information includes a pointer to the next queue downstream, various flags, and a pointer to 
additional state information required by the instantiation of the queue. Queues are allocated in such 
a way that the routines associated with one half of a stream module may find the queue associated 
with the other half. (This is used, for example, in generating echoes for terminal input.) 

Message blocks 
The objects passed between queues are blocks obtained from an allocator. Each contains a 

read pointer, a write pointer, and a limit pointer, which specify respectively the beginning of infor­ 
mation being passed, its end, and a bound on the extent to which the write pointer may be 
increased. 

The header of a block specifies its type; the most common blocks contain data. Control blocks 
of several kinds have the same form as data blocks and are obtained from the same allocator. For 
example, there are control blocks to introduce delimiters into the data stream, to pass user 1/0 con­ 
trol requests, and to announce special conditions such as line break and carrier loss on terminal dev­ 
ices. 

Examples 
Figure 1 shows a stream device that has just been opened. The top-level routines, drawn as a 

pair of half-open rectangles on the left, are invoked by users' read and write calls. The writer rou­ 
tine sends messages to the device driver shown on the right. Data arriving from the device is com­ 
posed into messages sent to the top-level reader routine, which returns the data to the user process 
when it executes read. 

Figure 2 shows an ordinary terminal connected by an RS-232 line. Here a processing module 

310 



- 
user 
write)I. 
user 

Eread 

device 
out )I. 

device 
E in 

Figure 1. Configuration after device open. 

(the pair of rectangles in the middle) is interposed; it performs the services necessary to make termi­ 
nals usable, for example echoing, character-erase and line-kill, tab expansion as required, and trans­ 
lation between carriage-return and new-line. 

user device 
write)I. tty out )I. 

out 
user tty in device E read E m 

Figure 2. Configuration for normal terminal attachment. 

Many network connections require flow- and error-control protocols to be carried out by the 
host computer. Therefore, when terminals are connected to a host through such a network, a setup 
like that shown in Fig. 3 is used; the terminal processing module is stacked on the network protocol 
module. 

user 
write)I. 
user 

Eread 

tty out proto out 

tty in proto in 

out 
device 
E, m 

Figure 3. Configuration for network terminals. 

user 
write)I. 
user 

Eread 

user 
E . wnte 
user 
read )lo. 

Figure 4. A pipe. 

device )I. 

A common fourth configuration (not illustrated) is used when the network is used for file 
transfers or other purposes when terminal processing is not needed. It simply omits the "tty" 
module and uses only the protocol module. Sometimes, on the other hand, a front-end processor 
conducts the required network protocol. Here a connection for remote file transfer will resemble 
that of Fig. 1, because the protocol is handled outside the operating system; likewise network termi­ 
nal connections via the front end may be handled as shown in Fig. 2. 

Finally, Figure 4 shows the connections for a pipe. In our system, pipes are full-duplex. 

File Systems 

Weinberger2 generalized the file system. He identified a small set of primitive operations on 
inodes (read, write, get, put, truncate, get status, etc.: a total of 11) and created a form of the 
mount request that specifies a file system type and, where appropriate, a stream. When file 

- 311 



operations are requested, the calls to the underlying primitives are routed through a switch table 
indexed by the type. His file system type performs remote procedure calls across the associated 
stream, at the other end of which is a server, and thus accomplishes a remote file system. Pike4 
takes advantage of the same file system type, but his server simulates a disk containing images clas­ 
sified by machine, person's name, and resolution. 

Killian3 added a file system type that appears to be a directory containing the names (process 
ID numbers) of currently running processes. Once a process file is opened, its memory may be read 
or written, and control operations can start it or stop it. 

Establishing communication 
Traditional Unix systems provide few ways for a process to establish communication with 

another. The oldest one, the pipe, has proved astonishingly valuable despite its limitations, and 
indeed remains central in the design we shall describe. Its cardinal limitation is, of course, that it is 
anonymous, and cannot be used to create a channel between unrelated processes. 

AT &T's System V has a variety of communication mechanisms including semaphores, mes­ 
sages, and shared memory. They are all useful in certain circumstances, but programs that use 
them are all special-purpose; they know that they are communicating over a certain kind of channel, 
and must use special calls and techniques. System V also provides named pipes (FIFOs). They 
reside in the file system, and ordinary 1/0 operations apply to them. They can provide a convenient 
place for processes to meet. However, because the messages of all writers are intermingled, writers 
must observe a carefully designed, application-specific protocol when using them. Moreover, FIFOs 
supply only one-way communication; to receive a reply from a process reached through a FIFO, it is 
necessary to construct the return channel explicitly. 

Berkeley's 4.2 BSD system introduced sockets (communication connection points) that exist in 
domains (naming spaces). The design is powerful enough to provide most of the needed facilities, 
but is uncomfortable in various ways. For example, unless extensive libraries are used, creating a 
new domain implies additions to the kernel. Consider the problem of adding a 'phone' domain, in 
which the addresses are telephone numbers. Should complicated negotiations with various kinds of 
ACUs be added to the kernel? If not, how can the required code be invoked in user mode when a 
program calls 4.2's connect primitive? 

The Eighth Edition's variant file systems, mentioned above, provide a general way of establish­ 
ing communications between processes. Indeed, they are a bit too general for many problems; it 
requires a sophisticated server to simulate a file system. Therefore, we tried to find simpler, but still 
general, ways of connecting programs. 

Additions 
We made three additions to the system. 

Mounted streams 
First is a new, but very simple, file system type. Its mount request attaches a stream named 

by a file descriptor to a file. Most often the stream is one end of a pipe created by the server pro­ 
cess, but it can equally well be a connection to a device, or a network connection to a process on 
another machine. Subsequently, when other processes open and do 1/0 on that file, their requests 
refer to the stream attached to the file. The effect is similar to a System V FIFO that has already 
been opened by a server, but more general: communication is full-duplex, the server can be on 
another machine, and (because the connection is a stream), intermediate processing modules may be 
installed. 

By itself, a mounted stream shares the most important difficulty of the FIFO; several 
processes attempting to use it simultaneously must somehow cooperate. 

312 



Passing files 
The second addition is a way of passing an open file from one process to another across a pipe 

connection. Although they are actually done with ioctl operations, the primitives may be written 

sendfile(wpipefd, fd); 

in the sender process, and 
(fd1, info) = recvfile(rpipefd); 

in the receiver. The sender transmits a copy of its file descriptor fd over the pipe to the receiver; 
when the receiver accepts it, it gains a new open file denoted by fdl. (Other information, such as 
the user- and group-id of the sender, is also passed.) 

Unique connections 
Finally, we found a way for each client of a server to gain a unique, non-multiplexed connec­ 

tion to that server. It takes the form of a processing module that can be pushed on a stream, which 
will usually be mounted in the file system as described above. When the file is opened by another 
program, this module creates a new pipe, and sends one end to the server process at the other end of 
the mounted stream, using the same mechanism as the sendfile primitive described above. After the 
server has called recvfile to pick up its end of the pipe, it may accept or reject the new connection; 
if it accepts, the other program's open call succeeds, and its open file refers to the local end of the 
new pipe to the server. If the server rejects the request, the open fails. 

Examples 
A graded set of examples will illustrate how to use these facilities. 

Network calling 
Originating network connections is a complicated activity. There is often name translation of 

various kinds, and sometimes negotiations with various entities. With our Datakit VCS network,5 

for example, a call is placed by negotiating with a node controller. When dialing over the switched 
telephone system, one must talk to any of several kinds of ACU devices. Setting up a connection on 
an Ethernet under any of the extant protocols requires translation of a symbolic name to a net 
address. These protocols should certainly not be in kernel code. It is usual to put setup negotiations 
in user-callable libraries, but it is better to have all the code for each network in a single executable 
file. In this way, if something in the network interface changes, only one program needs to be fixed 
and reinstalled. 

A program desiring to make a connection calls a simple routine that creates a pipe, forks, and 
in the child process executes the network dialer process. The dialer either returns an error code, or 
passes back a file descriptor referring to an open connection to the other machine. The pseudo-code 
for the library routine, neglecting error-checking and closing down the pipe, is: 

netcall(address) 
{ int p[2]; 

pipe(p); 
if (fork() l=O) 

execute("/etc/netcaller", address, ascii(p[O])); 
status= wait(); 
if (bad(status)) 

return(errcode); 
passedfd = recvfile(p[1]); 
return(passedfd.fd); 

} 

The /etc/netcaller program can be arbitrarily complicated. Its job is to create the connection 
and either fail, returning an appropriate error code, or succeed, and pass its descriptor for the open 

313 



connection. Along the way, it may negotiate permissions and provide the caller's identity reliably, 
because it can be a privileged (set-uid) program. 

Process connections 
Suppose you are writing a multi-player game, in which several people interact with each other 

through a controller process. It might be a banker (Monopoly) or a mazekeeper (Mazewar) or a 
tournament director (Bridge). The problem is to set up a single process prepared to receive asyn­ 
chronous connection requests from new players. In our solution, there are two programs: the con­ 
troller, set up initially, and the player program, executed by users as they enter the game. When 
the controller starts, it creates a pipe, pushes the unique-connection processor on one end of the pipe, 
mounts it on a conventionally-named file (say /tmp/gamester), and waits for connection mes­ 
sages to arrive. When the player program is run, it opens /tmp/gamester, thereby doing an 
implicit sendfile. The controller notices that there is input on its connection pipe (perhaps making 
use of select) and accepts the connection with recvfile. Thereafter, the player program transmits 
moves and receives replies over the file descriptor obtained from opening the gamester file, and the 
controller reads the player's moves and transmits replies over the file descriptor it received. 

Network calling (advanced course) 
The network calling routines described above can be generalized by wntmg a connection server. 
The mechanism is illustrated in Figure 5. In structure, the connection server is exactly like the 
game master; it maintains a conventional file (say / server) with a stream mounted on it (Sa). 

Users of the service (programs like cu and rlogin, or our local addition to the family, dcon), 
open / server and write on it the name of the entity they wish to contact (Sb). The server pro­ 
gram reads the name, and translates it to a true address and the name of one of the network caller 
programs described above. It then executes the caller program (Sc) and passes the resulting connec­ 
tion file back to dcon (5d). Finally, dcon accepts the new connection and closes the connection 
stream (Se). 

A fine point in the design is the decision to make the connection server a continuously-existing 
process, and to communicate the desired address by writing on its mounted file. Another possibility 
is to invoke it like the caller programs in the first example: by executing it, with the user's address 
as a parameter. From the user's viewpoint, these two interfaces is equally effective. We are trying 
the current approach because it seems more efficient, in that the mapping tables can be cached in 
the server process, and it requires fewer process creations. It is also a more interesting experiment 
in program design, because it is so highly multiplexed. 

The structure encourages experimentation with naming plans. A domain setup seems natural 
to try. Suppose we have domains dk, inet , and att that refer respectively to Datakit, Internet, and 
the switched telephone system. Then the following address translations, which yield a complete 
Datakit address, Internet host address, and telephone number, are appropriate for our gateway 
machine: 

dk/research 
inet/research 

... 

... 
mh/astro/research 
192.11.4.55 

att/research -+ 2015825940 
There are, of course, complications: the machine is on two ethernets that have to be distinguished; 
various line speeds have to be specified when dialing with an ACU. Finally, it is necessary to 
coalesce the dcon, rlogin, and cu programs. 

Conclusion 

Unix has always had a rich file system structure, both in its naming scheme (hierarchical 
directories) and in the properties of open files (disk files, devices, pipes). The Eighth Edition 
exploits the file system even more insistently than its predecessors or contemporaries of the same 
genus. Remote file systems, process files, and the face server all create objects, the name of which 
can be handed as usefully to an existing tool as to a new one designed to take advantage of the 
object's special properties. Similarly, the stream 1/0 system provides a framework for making 

314 



dcon forbes connection 
server dcon forbes connection 

server 

/server 

(a) Server mounts a stream 
onto /server. 

dcon forbes connection 
server 

/dev/dk/dk03 /server 

(c) Server sets up network 
connection. 

(e) Process accepts network stream 
and closes stream to server. 

/server 

(b) dean command opens 
/server. 

I dcon foe bes I 

dcon forbes 

/dev/dk/dk03 

connection 
server 

/dev/dk/dk03 
(d) Server passes connection 

to dean command. 

connection 
server 

/server 

Figure 5. Establishing a network connection. 
already opened files behave in the standard way most programs already expect. For example, the 
real purpose of the terminal-processing module is to mediate between programs expecting a simple 
byte stream, and imperfect typists using terminals with peculiar control requirements. A network 
protocol module's purpose is to make an error-prone network, again with idiosyncratic properties, 
conform to a simpler model. 

The developments described here follow the same path; they encourage use of the file name 
space to establish communication between processes. In the best of cases, merely opening a named 
file is enough. More complicated situations require more involved negotiations, but the file system 
still supplies the point of contact. Moreover, the necessary negotiations may be encapsulated in a 
common form that hides the differences between local and any of a variety of remote connections. 

,. 
315 



References 

I. D. M. Ritchie, "A Stream Input-Output System," AT&T Bell Laboratories Technical Journal 
63(8) (October 1984). 

2. P. J. Weinberger, "The Version 8 Network File System," USENIX Summer Conference 
Proceedings, Salt Lake City, UT (June 1984). 

3. T. J. Killian, "Processes as Files," USENIX Summer Conference Proceedings, Salt Lake City, 
UT (June 1984). 

4. R. Pike and D. L. Presotto, "Face the Nat ion," USENIX Summer Conference Proceedings, 
Portland, OR (June 1985). 

5. A. G. Fraser, "Datakit-A Modular Network for Synchronous and Asynchronous Traffic," 
Proc. Int. Conj. on Commun., Boston, MA (June I 980). 

316 


