- The Second Pass
- of the
Portable C Compiler

John Lions

Bell Laboratories
Murray Hill, New Jersey

June 1979

Preface

This document attempts a detailed examination of the source code for the second pass of the
Portable C compiler. It is intended for persons with an active interest in transferring the
compiler to new machines, for persons interested in maintaining and refining existing versions
of the compiler, and for persons who are merely curious about the details of one interesting
and fairly general approach to the problem of code generation.

The Portable C compiler is a compiler for the C language that was written by Stephen C.
Johnson. It is intended to be more easily transferable to new machines than was the original
compiler for the PDP11 written by Dennis M. Ritchie. The first working version of the

. Portable C compiler was for the Interdata 8/32; it was used to demonstrate the portability of the
" " UNIX operating system from the PDP11 to a machine that was not under consideration when

- UNIX was designed. Since that time, the Portable C compiler has been transferred successfully
to several other machines, so that the list of versions of the Portable C Compiler (as of April
1979) includes:

Data General Nova
Honeywell 6000

[BM System /360 and /370
Intel 8086

Interdata 8/32

PDP11}

Tandem 16

VAX11/780

Not all these different versions were adapted by Steve Johnson from the original. The PDPl11
version that is the principal subject of this document was adapted from the Interdata 8/32
version by H. Lee Benoy.

The functioning of the compiler as a whole is described in ““A Tour through the Portable C
Compiler’ by Stephen C. Johnson, in the UNLX Programmer’s Manual, Seventh Edition. Volume
Two. Other references relating to the present work are “‘Portability of C Programs and the
UNIX System™ by S. C. Johnson and D. M. Ritchie, Bell System Technical Journal, Vol. 57, No.
6. Part 2, pp. 2021-48, July-August 1978, and **A Portable Compiler— Theory and Practice’ by
S. C. Johnson, Proc. Fifth ACM Symposium on Principles of Programming Languages, January
1978. : ‘ '

[would like to acknowledge the considerable assistance of several people who reviewed drafts.
of this document. Particular among these have been Steve Johnson and Lee Benoy who have
been most helpful and have tried to put me ‘‘back on the rails™’ at several points. All
misunderstandings about the program that survive in this document are of course my own
responsibility. Thanks also go to Alicia Chellis, Ted Dolotta, Debbie Haley. Tom Landon.
Cathy Perez. John Reiser, and Bruce Rowland for their encouragement and assistance.

John Lions

Chapter L: Introduction . . . « v ¢ ¢ v v v v o o o o o 1
1.1 The Present Work 1
1.2 Source Code Files 2
1.3 Editorial Changes 2
1.4 Other Comments 3
Chapter 2: The Header Files 7
2.1 The File ‘*manifest’ 7
2.1.1 Operators 7
- 2.1.2 Operator Groups 7
2.1.3 Condition Names 9
2.1.4 Trees 9
2.1.5 Operand Types 9
2.1.6 manifest miscellany 11
~ 2.2 - The File *“macdefs’ 11 ,
2.2.1 AUTOINIT, ARGINIT 13
2.2.2 macdefs miscellany 13
. 2.3 The File **mac2defs’® 13
2.3.1 Registers 13
2.3.2 mac2defs miscellany 13
2.4 The File “*‘mfile2”” 13
2.4.1 Groups of Operators 15
2.4.2 Cookies 15
2.4.3 Shapes 15
2.4.4 More Types 15
2.4.5 Needs ‘17
2.4.6 Reclamation Cookies 17
2.4.7 Nodes 17
2.4.8 Pot Pourri 19
2.5 Code Templates 21
2.6 Addressing Modes 21
Chapter 3: The File ‘“‘common” e e e s e e e e s 25
~ 3.1 Error Messages 25
3.2 Tree Nodes 25
3.3 Tree Walks 25
3.3.1 walkf 25
3.3.2 fwalk 27
3.4 The dope arrays 27
3.5 mkdope 27
3.6 tprint 27
Chapter 4: The File *‘readerc’” PartOne 31
- 4.1 Variables 31 ' :
4.2 p2init 31
4.3 main 33
44 rdin 37
4.5 eread 37

Table of Contents

viii Contents The Second Pass of

46 eprint 39
4.7 delay 39

48 delaytl 39
49 delay2 43

Chapter 5: The File ““reader.c” Part Two 45
5.1 codgen 45
5.2 canon 45
5.3 store 47
5.4 stoarg 49
5.5 markcall 49
5.6 constore 51
5.7 prcook 51
5.8 rcount 51

Chapter 6: The File ‘‘reader.c” Part Three 52
6.1 Comparison with codgen 52
6.2 Strategy 52
6.3 Code Sections 53
6.4 First Section 53
.6.5 Second Section 55
6.6 Third Section 3535
6.7 Conditional Operators 57
6.8 Some Miscellaneous Cases 59
6.9 Procedure Calls 59
6.10 Fourth Section 62

Chapter 7: The File ‘‘reader.c’’ Part Four . . P, 63
7.1 negrel 63
7.2 cbranch 63

7.3 £f14 67
7.4 oreg2 69
Chapter 8: The File ““match.c” « ¢ ¢ ¢+« 73

8.1 setrew 73
8.2 match 75
8.3 getlr 77
8.4 tshape 77
8.5 ttype 79
8.6 expand 38l

Chapter 9: The File “‘alloc™ e e e e . . 85
9.1 Declarations 85
9.2 allo0 87
9.3 allchk 87
9.4 allo 87
9.5 Free Registers 89
9.5.1 freereg 89
9.5.2 usable 89
9.5.3 shareit 89
9.5.4 ushare 91

9.6 freetemp 91
9.7 reclaim 91
9.8 rwprint 93
9.9 recl2 93
9.10 rfree 93
9.11 rbusy 93
9.12 ncopy 95

The Portable C Compiler

9.13 tcopy 95
9.14 Keeping busy 95

Chapter 10: The File *‘order.c’® Part One

10.1
10.2
10.3
10.4
10.5

Chapter 11: The File ‘‘order.c’’ Part Two

11.1
11.2

- Chapter 12: The File ‘“‘order.c’’ Part Three

12.1
12.2
12.3

12.4 -

12.5
12.6
12.7
12.8

| Chapter 13: The File “local2.c’” Part One . .

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13

Chapter 14: The File “*local2.c’’ Part Two

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
‘14.11
14.12
14.13

12.4.4

.)
deltest 99

stoasg 99

mkadrs 99

rallo 101

mkrall 103

sucomp 107
zum 109

e o e w e oo o 111
getlab 111

deflab 111

offstar 111

The *‘set’” procedures 111
12.4.1 setincxr 111
124.2 setstr 111
12.4.3 setasop 111
setasg 113
12.4.5 setbin 113
niceuty 115

notoff 115

genargs 115
argsize 115

e 117
Declarations 117

setregs 119

eobl2 119

lineid 119

where 119

hardops 123

optim2 123

myreadexr 125

cbgen 125

callreg 125

genscall 127 -
gencall 127

popargs 127

nextcook 129 -
lastchance 131
rewfld 131
spsz 131

szty 131
shltype 131
shumul 131
special 131
shtemp 131
flshape 131
dcon 131
adrcon 133
adrput 133

Contents ix

x Contenis

14.14 conput 133
14.15 insput 133
14.16 upput 133
14.17 rmove 135
14.18 hopcode 135
14.19 zzzcode 135

Chapter 15: The File ‘“‘tablec™ G e e e s e
15.1 Macro Expansion 141
15.2 Table Searching 141
15.3 Some Statistics 143
15.3.1 Template Operators 143
15.3.2 Operator Summary 145
15.3.3 Visit Summary 145
15.3.4 Shape Summary 145
15.4 Some Comments 145

Chapter 16: Conclusion . . . ¢ ¢ v ¢V ¢ ¢ v o o o &
Appendix A. Cross-reference . . + + ¢« « ¢ « « « «
Appendix B. Defined Symbols . . . « . v . o o o o .
Appendix C. Procedure Calls Arranged by Caller . . .
Appendix D. Procedure Calls Arranged by Callee . . .

141

157
158
166
1M
173

Chaprer 1: Introduction

This docuinent attempts a detailed examination of the source code for the second pass of the
PDPI11 version of the Portable C compiler.

The package of programs that the user regards as the *‘compiler’” includes a pre-processor and a
post-optimizer/assembler. Within the compiler proper, the first pass performs lexical and syn-
tactical analysis of the source program, performs some storage allocation and generates specific
code for procedure entry and exit points, and for switch statements. [t builds binary trees to
represent expressions that are 10 be evaluated. These trees are written to an intermediate file
that is subsequently read back by the second pass of the compiler. The latter takes the trees
and massages them in various ways, until code can be generated. (There is also a one-pass ver-
sion of the compiler in which the expression trees are built and then broken down immaediately.
This version is somewhat larger, but it is also significantly faster than the two-pass version, '
because the overhead of writing and reading the intermediate file is eliminated.)

Thus. the principal task of the second pass is to take expression trees generated in the first
pass. and ta reduce these to assembler code. The goal of the implementation is to produce
code that is locally optimum in the sense of minimizing the number of intermediate values that
must be stored outside the processor’s high-speed, readily accessible registers. The compiler
applies heuristic rules based on theory given by Sethi and Ullman for finding the optimal
assignment in a simplified sitvation (see, for example, Principles of Compiler Design, by A. V.
Aho and J. D. Ullman, Addison-Wesley, 1977, p. 337). These rules determine when inter-
mediate results must be stored outside the processor's registers in the object-time stack area.
Attempts are made to break the original tree into a forest of trees, each of which can be pro-
cessed independently. The compiler also attempts to take as much advantage as possible of the
situations where address calculations can be carried out implicitly via hardware (i.e. the use of
index and base registers).

1.1 The Present Work

The present document deals primarily with the second pass of the compiler because the time
available to the present writer was not sufficient to cover the whole compiler and because:

1. The second pass is more machine-dependent than the first pass, and hence is of more.
interest to those people who are actively involved in transferring the Portable C compiler to
other processors. _ : :

Whereas lexical analysis and syntactical analysis are now fairly well understood fromf‘:z';__.'
theoretical viewpoint, the code-generation phase of compilers is not so well understood." .
and thus constitutes one of the more interesting parts of the compiler.

!\J

3. .The second pass of the Portable o) compiler is also used as the second pass of the Fortran
77 compiler written by S. I, Feldman. ‘

+. From a pedagogic point of view, the auraction of treating the compiler in terms of two
separate passes was obvious. and the second pass seemed like a good place to start.

The PDP!1 version was chosen because it is likely to be the most widely distributed version. at
least in the near future. and also because it relates to a machine whose characteristics are widely
understood.

2 Inroduction ‘ The Second Pass of

1.2 _Source Code Files

The approach that has been adopted here and that is based on previous favorable experience, is
to present an edited version of the actual source code (the version is a snapshot taken in
November, 1978). This is accompanied by amplifying and explanatory comments intended to-
guide the reader over the rougher spots. and to help him or her gain an understanding of the
program, if not in just one pass through the source code, then in substantially fewcr than might
otherwise be needed.

The source code for the Portable C compiler exists as a set of files, of which the following are
relevant to the second pass:

manifest common oxder.c
macdefs reader.c local2.c
mac2defs match.c table.c
mfile2 allo.c

The first four files (the first column) are header files that are *‘included’ by the remaining files
during compilation (In practice, these remaining files ‘‘include’” mfile2, which in turn

“includes” manifest, macdefs and mac2defs.) Of these, macdefs and mac2defs are,
machine- dependent)

The next group of four files (the second column) are files that are considered to be machidgﬁéf
independent, i.e. the same in all versions of the compiler. The remaining three files contain
the parts of the code that are expected to be different for each different machine type.

The job of transporting the compiler to a new machine counsists largely of modifying, adapting :
and changing five files. together with the two machine-dependent files from the first pass.’
code.cand local.c.

1.3 Editorial Changes

Although the working version of the source code is really quite clean from a documentation
viewpoint. the effort 1o prepare the version that appears.in this document has been consider-
able. and should not be underestimated. The value of a careful presentation of the code may
be reckoned differently by different individuals, but it is the the conviction of the present writer
that it is highly important. ' '

In editing the source code, lines that were too long were shortened, usually by breaking them
into two. (This is not difficult, but it is time consuming. It is hard to see how a mechanical
procedure could be used to do the job and still give results that are aesthetically acceptable in
all cases.) Each source code line has been labeled with a unique four digit number and padding
has been added to mark more prominently the end of each procedure. The four digit number
provides a convenient means for cross-referencing within the text. Thus. for example. a refer-
ence 1o “‘cbranch (1832)" is intended to direct the reader to line 1832, which occurs in the
procedure cbrarnch.

The contents of files have been re-arranged, in some cases quite extensively, to allow the
" presentation to flow more logically. In general, the policy has been to order the procedures in a
top-down"" manner, i.e. so that the code for a procedure occurs after the first call on the pro-
cedure has appeared. The general plan for the text of this document has been to follow the
source code through in the order in which it is presented. Thus, in general there should be no
difficulty in correlating code with comments.

The remaining editorial change of importance that needs to be mentioned is the omission of
parts of various files that refer only to the one-pass version of the compiler. Since these are. in
general, a re-statlement of things that are already said, it was felt that they could be dispensed
with here.

Also important to state are some of the things that were norchanged. No variable names were
changed. though the temptation to do so at times was very strong. The naming of variables.
for better or worse. should remain the program author’s responsibility. Likewise, it was felt

The Porrable C Compiler Introduction 3

that the movement of procedures between files would be too radical a change, since it would
‘cause difficulty for readers who wish eventually to work with the code in practical situations.
‘Thus procedures such as ncopy and tcopy still appear in ordex.c, although' they would be
very much more at home with the other tree manipulation routines in the file”common.
(There is a reason for this, of course: these procedures are needed only in the second pass.
whereas the procedures in common are used in both passes.) ‘

If some particular pleas to prospective program writers can be made appropriately at this point,
they would be to:

1. Take care with the physical layout of your program. (As well as observing sensible inden-
tation rules, do not allow the right hand margins of your code to wander much beyond
column 65.) -

2. Think long and hard about the choice of variable names. (For example, the practice of
naming the subfields of a given structure with the same initial prefix can be more useful to
the reader than choosing names that are always euphonious.)

3. Take care to arrange procedures and variable declarations among a set of files in a way that
is consistent with some logical criterion.

The usual admonitions about lacing the code with an ample, but not too generous supply of
relevant and well-positioned comments still apply, of course.

Another matter of concern for documentation has been the provision of various machine-
generated tables to supplement and support the source code. With this particular program, it
seems that a completely general cross-reference would not be so useful as some more special-
ized tables, especially an alphabetical list of defined symbols, and tables showing caller-callee
relationships for procedures, arranged both by cailer and by callee.

1.4 Other Comments

The coding style within the Portable C compiler is generally consistent and clear. As with many
programs, the principal difficulty for the reader is to understand the problem rather than its
solution. It is fair to say that the age-old problem of providing the reader with an adequate sup-
ply of incisive, well-placed comments, is not solved here either.

The problem of dividing the source code into machine-dependent and machine-independent .
parts has been solved, in a sense, by dividing the material into files that are clearly labeled as
machine-dependent and machine-independent. But many lines of the code in.the machine- *
dependent parts are in fact common to all versions of the compiler, whereas substantial parts of
the machine-independent parts exist to serve only one or a few machine types. The method
most commonly practiced for exorcising the machine-dependent parts of the code from the-
machine-independent framework, namely the invention of special procedures, many of which
are called only once, very often seems awkward and contrived. This is not intended so much as
a criticism of the Portable C compiler as a comment on the limitations of the program-building
tools that now exist. These problems with the Portable C compiler suggest further deveiop-
“ment of the C preprocessor.

In the defense of the authors of the Portable C compiler, it should be pointed out that some of
the less happy features of the code are the result of force majeure rather than an expression of
individuality. For example, the slate of extexrn declarations in mfile2 is a result of the lim-
itations of some assemblers (notably the one for the Honeywell 6000). Enumeration data types
and fields are not used in the source code of the compiler due to the compiler writer’s universal
need to be conservative in actually using new language features.

The Portable C compiler is known to work well as far as compiling correct code is concerned.
For the PDP11, the code produced is neither uniformly better. nor uniformly worse than the
code produced by the C compiler written by Dennis Ritchie, though the speed of compilation is
definitely inferior. Object modules tend to be about the same size or slightly larger.

4+ mantest

0001
0002
¢003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0018
0017
0018
0019
0020
0021
0022
Q023
0024
0025
0026
0027
0028
0029
9030
0031
9032
3033
0034
0035
0036
0037
0038
0Q39
2040
0041
0042
0043
2044
0045
0046
0047
2048
0049
0050
0051
0052
0053
0054
0055
- 3056

©9057
0058
2059
0060

0061

0062
0063
0064
0063
0066
0067
0068
0069
0070

PR NE "SR "IN R R I U R TSR W SR TAE U O

LI S W NN B N N W N N WY

% HYUHYEHEN

LI S N W N

include <stdio.h>
/e« manifest constant file for the lex/yacc interfaca
define ERROR 1
define NAME 2
define STRING 3
define ICON 4
define FCON S
define PLUS 6
define MINUS 8
define MUL 11
define AND 14
define OR 17
define ER 19
define QUEST 21
define COLON 22
define ANDAND 23
define OROR 24

/e« special interfaces for yacc alone </

/s These serve as abbreviations of 2 or more ops:
ASQOP =, = oOps

RELOP LE,LT,GE.GT

EQUOP EQ.NE

DIVOP DIV,MOD

SHIFTOP LS,RS

ICOP INCR.DECR

UNOP NOT,COMPL

STROP DOT,STREF

./
define ASOP 25
define RELOP 26
define EQUQP 27
define DIVOP 28
define SHIFTOP 29
define INCOP 30
define UNOP 31
define STROP 32
/+ reserved words, atc «/
define TYPE 33
define CLASS 34
define STRUCT 35
define RETURN 36
define GOTO - 37
define IF - 38
define ELSE 39
define SWITCH 40
define BREAK 41
define CONTINUE 42 . v
define WHILE 43
define DO 44
define FOR 45
define DEFAULT 46
define CASE 47
define SIZEOF - 48

define ENUM 49
/~ little symbols, etc.. namely

LP RP LC RC LB RB CM 5M
() { } () IS :

-/
define LP 50
define RP 31
define LC 52
define RC) 53

define LB 54

The Second Pass ot

./

The Portabte C Compiler Introduction 3

The speed of the Portable C compiler has always been an issue, and several changes have been .
introduced during development to improve this aspect. The original lexical scanner (which is
part of the first pass) was replaced. A version of the compiler that merges the two passes into
one, thus eliminating, the encoding, writing, reading and decoding of the intermediate file, is
30% larger but also substantially faster. Detailed examination of the code of the second pass-
has suggested many additional areas where speed improvements might be achieved. Further
investigation is needed to determine which, if any, of the suggested improvements are likely to
be worthwhile, but it does seem that with fine tuning, there is scope for substantially improving
the execution speed of the compiler and thereby removing one of its perceived drawbacks.

-6 mamfest

define RB 55
0072 # define CM 56
0073 # define SM . 57
0074 # define ASSIGN S8
0075 . :
0076 -/« END OF YACC «/
0077 :
0078) /« left over tree building operators «/
0079 # define COMOP 59
0080 # define DIV 60
0081 ¢ define MOD 62
0082 # define LS 64
0083 # dafine RS 66
0084 # define DOT 68
0085 # define STREF 69
0086 # define CALL 70
0087 # define FORTCALL 73 .
0088 # define NOT 76
0089 # define COMPL - 77
0090 # define INCR - 78
0091 #. define DECR 79
0092 # define EQ 80
0093 # define NE 81
0094 # define LE az
0095 # define LT a3
0096 # define GE 84
0097 # define GT 85
0098 # define ULE 86
00929 # define ULT 87
0100 # define UGE a8
0101 # define UGT 89
0102 = define SETBIT 90
0103 # define TESTBIT 91
0104 # define RESETBIT 92
0105 # define ARS 93
0106 # define REG 94
0107 # define OREG 95
0108 # define CCODES 96
0709 # define FREE . 97
0110 # define STASG 98
0111 # define STARG 29
0112 # define STCALL 100
0113 .
0114 ./+ some conversion operators +/
011S # define FLD 103
0116 # define SCONV 104
0117 # define PCONV 105
0118 # define PMCONV 106
0119 # define PVCONV 107
0120 ’ :
0121 /+ special node operators, used for special contexts </
0122 ¢ define FORCE 108
0123 ¢+ define CBRANCH 109
0124 # define INIT 110
0125 # define CAST 111
0126
0127 /+ operator modifiers «/
0128 # define ASG 1~
0129 # define UNARY 2+
0130 .
0131 # define NOASG (=1)+
0132 # define NOUNARY (-2)+
0133 /¢ cccccccccccvmmac s e m - - - o = [Ve
0134
0135 /+ node types =/
0136 # define LTYPE 02
0137 +# define UTYPE 04

0138 # define BITYPE 010

8 manitest The Second Pass of

0140 /+ operator information =/

0141 # define TYFLG 016

0142 =# define ASGFLG 01

0143 # define LOGFLG 020

0144 # define SIMPFLG 040

0145 # define COMMFLG 0100

0146 # define DIVFLG 0200

Q147 # define FLOFLG 0400

0148 # define LTYFLG 01000

0149 # define CALLFLG 02000

0150 # define MULFLG 04000

0151 ¢ define SHFFLG 010000

0152 # define ASGOPFLG 020000

0153 # define SPFLG 040000

0154 .

0155 /» operator condition names +/

0156 # define optype(o) (dopel(o]&TYFLG)

0157 # define asgop(o) (dope(o]&ASGFLG)

0158 # define logop(o). (dopelo]&LOGFLG) .

0159 # define callop(o) (dope[o)&CALLFLG)

0160 /% 233 3TTITTTSINTITAITAIAITIBSISTIINIIITIIIIARNIITZIIAR &/
0161)
0162 /+ type names, used in symbol table building </
0163 # define UNDEF 0 :

0164 # define FARG 1

0165 # define CHAR 2

0166 # define SHORT 3

0167 # define INT 4

0168 # define LONG S

€169 # define FLOAT 6

0170 # define DOUBLE 7

0171 # define STRTY 8

0172 # define UNIONTY 9

0173 # define ENUMTY 10

0174 # define MOETY 11

0175 # derine UCHAR 12

0176 # define USHORT 13

0177 # define UYNSIGNED 14

0178 # define ULONG 15

0179

3180 /+ type modifiers «/

0181 # define PTR 020

9182 # define FTN 040

0183 # define ARY 060

0184

0185 /+ type packing constants »/

0186 # define TMASK 060

0187 # define TMASK1 0300

0188 # define TMASK2 0360 .
0189 # define BTMASK 017

0190 # define BTSHIFT 4

0191 # define TSHIFT 2

9192

0193 /+ macros ./

0194 /» set basic type of x to y </
0195 # define MODTYPE(x.y) x = (x&(-BTMASK))iy

0196 =2 define BTYPE(x) (x&BTMASK) /+« basic type of x_ e/
0197 # define ISUNSIGNED(x) ((x)<=ULONG&&(x)>=UCHAR)

3198 # define UNSIGNABLE(x) ((x)<«<=LONG&&(x)>=CHAR)

0199 & define ENUNSIGN(x) ((x)+(UNSIGNED-INT))

0200 # define DEUNSIGN(x) ((x)+(INT-UNSIGNED))

0201 # define ISPTR(x) ((x&TMASK) ==PTR)

0202 # define ISFTN(x) ({X&TMASK)==FTN) /+ 13 x a function type </
0203 # define ISARY(x) ((x&TMASK)==ARY) /+ is x an array type +/
0204 2 define INCREF(x) (({x&~BTMASK) <<TSHIFT) |PTR: (x&3TMASK!} !}
0205 # define DECREF(x) (((x>>TSHIFT)&-BTMASK) | (x&BTMASK})
0206 /% TESIBANTINIRTIEATANIANCITATASTASTRINIIRISIAISAITITATIITIIRIRS &/

2207

Chapter 2: The Header Files

The first four files of the program contain definitions for many of the symbols and structures,
together with forward declarations for most of the variables, used by the program. The files
are:

1. manifest: Machine-independent definitions, many of which are used in both passes of
the compiler.

2. macdefs: Machine-dependent definitions needed in the first pass of the compiler. Some
of these are also needed by the second pass.

3. mac2defs: Machine-dependent definitions needed in the second pass.

4. mfile2: Definitions for symbols used in the code templates, declarations for the node and
template structures, and various forward declarations.

The fourth file, mfile2, *‘includes’ each of the first three. In turn, mfile2 is “included”
by each of the other compilable files. Accordingly the scope of the definitions in these four
files is the whole program. (In passing it may be noted that stdio.h is included by
manifest at line 0001.)

2.1 The File ‘““manifest™

2.1.1 Operators. manifest begins (lines 0001 to 0125) with definitions for a sequence of
approximately one hundred operator types, about half of which are of interest only in the first
pass of the compiler.

The particular association of numeric values with operator types is largely arbitrary. Since the
compiler contains many switch statements that are keyed on an operator variable, there may
be prospects for gains in code compactness and/or execution speed by fine-tuning these assign-
ments. {Such prospects would be less if more elaborate techniques were employed by the com-
piler in the generation of code for switch statements, as is done by the regular C compiler.)
Every node of an expression tree has an associated operator type, which is one of the values
given on lines 0004 through 0125. Note that the value FREE (0109) is used to label nodes that
are not currently assigned.

There are certain derived operators which are not given explicitly in the above mentioned list,
but are created via the *‘macro operators’ defined on lines 0128 to 0132. The most commonly
occurring example. of such an operator is UNARY MUL, whose value is 2 + 11 = 13. It will be
seen readily that no other operator type has been assigned that value. (In passing it may be
noted that NOASG and NOUNARY are not used in the second pass.)

2.1.2 Operator Groups. Operators sharing a common characteristic can be grouped in various
ways. Unfortunately the bits and pieces used to define such groups in this program are scat-
tered over three different files, manifest, mfile2 and common. As we shall see later, the
procedure mkdope (0811) constructs an array dope (0724) that contains a bitmask for each
operator. This bit mask consists of:

1. an ‘‘assignment’’ flag (one bit).
2. a‘‘type” field (three bits).
3. various other flags which are given on lines 0140 to 0153.

10 manifest The Second Pass of

0208 /+ table sizes «/

0209 # define DSIZE CAST+1 /= size of the dope array +/

0210 # define BCSZ 100 /» size of table to save break

0211 and continue labels s/

0212 # define SYMTSZ 450 /» size of the symbol table +«/

0213 # define DIMTABSZ 750 /+ size of the dimension/size table s/
0214 # define PARAMS2Z 100 /» 3ize of the parameter stack «/
0215 # define SWITSZ 250 /+ size of switch table s/

0216

0217 # ifndef FORT PRSI EIIISIIRISIIISISIII>

0218 # define TREESZ 350 /+ space for building parse tree »/
0219 # else AAXXXXXAXREX XK AXXLXXLXXXKKXK

0220 # define TREESZ 1000

0221 # endif CLLLLLLLLLCLEELLLLLCECCLE

0222 /% BB RO NN EEANIEIININISINSIIRSIATIZIITEARINTEIRAEREIDS o/
0223 ' '

0224 /» advance x to a multiple of y «/

0225 # define SETOFF(x.y) if(x%y !'= 0) x = { (x/y + 1) + y)
0226 /« can y bits be added to x withouf overflowing z </
0227 # define NOFIT(x.y,z) ((x%z + ¥) > z)

0228 ’

0229 /+ pack & unpack field descriptors (size & offset) =/
0230 # define PKFIELD(s,o) ({o<<6)1s)

0231 # define UPKFSZ(v) (v&077)

0232 # define UPKFOFF(v) (v>>6)

0233

0234 /+« miscellaneous =/

0235 # define NOLAB (-1)

0236 # define TNULL PTR /» pointer to UNDEF «/ :
0237 # define NCHNAM 8 /+ number of characters in a name +/
0238 /% ——mweeaa - e T o - - - ~/
0239

0240 typedef union ndu NODE;

0241 ctypedef unsigned int TWORD;

0242

0243 /+ common defined variables =/ .

0244 extern int nexrors: /+ number of errors seen so far +/

0245 extern NODE ~NIL; /+ a pointer which will always have 0 in it s/
0246 extern int dape(l; /+ a vector containing operator information </
0247 extern char »opst(]; /» a vector containing names for ops </

The Portable C Compiler : ‘ ' _ Header Files 11

These complicating type modifications may be cascaded. Each level requires another two bit
field in the operand type word. There is a set of macros, given on lines 0195 to 02085, for
encoding and extracting this information. The xmportant ones to notice for the second pass are:

1. BTYPE: extract the basic type.

2. ISPTR:is tms a pointer type?

3. ISFTN:is this a function type?

4. ISARY: is this an array type?
2.1.6 manifest miscellany. Most of the remaining material in the file manifest is ade-
quately commented. The following are worthy of notice at this juncture:

0225: SETOFF is an expression whose value is that of its first argument rounded up to a multi-
ple of its second argument. It is used primarily in the calculation of byte and
word offsets from bit offset values.

0230: PKFIELD is used in the first pass to store information in the rval field of a NODE
structure regarding the size and offset of bit-fields in structures. This information
is subsequently retrieved using UPKFSZ and UPKFOFF respectively.

0237: NCHNAM is the size of the character array in each NODE structure, i.e. it defines the max-
imum length of unique variable names.

0240: NODE (0240) is the type for the building blocks or nodes for the expression trees.
0241: TWORD (0241) is the variable type that stores operand type information. One such vari-
able is part of every NODE.
2.2 The File ‘““macdefs’’
This file, which begins at line 0248, gives machine-dependent parameter definitions that are
needed in the first pass of the compiler. Some of these are also needed in the second pass.
0250: Space is allocated in units of one bit. The different operand types each have associated,
hardware-determined sizes which reduce to one or a combination of the sizes of:
1. character.
2. short or long integer.
3. single or double floating point.
4. address constant (or pointer).
It may be noted that whereas offset calculations in the first pass of the compiler

are conducted entirely in bits, the calculations in the second pass are largely in
terms of addressable storage units.

0258: Likewise, the hardware for most machines dictates very strongly what the alignment
~ boundaries must be®. (It is assumed that the reader is familiar with the implica-
tions of aligning characters to an eight bit boundary, and short integers, to a six-

teen bit boundary, etc.)

* On the VAX11/780, the architecture allows alignment for all operand types. to eight bit boundaries. However the
hardware implementation exacts a significant run-time penaity if the operand types are not aligned to their
*‘natural” boundaries. Thus for this machine, there is a potential space/speed tradeoff that different VAX11/780
installations may prefer to solve differently.

12 macdefs The Second Pass of

0248 /= PDP11 Values «/

0249

0250 # define SZCHAR 8

0251 # define SZINT 16

0252 # define SZFLQAT 32

0253 # define SZDOUBLE 64

0254 # define SZLONG 32

0255 # define SZSHORT 16

0256 ‘# define SZPOINT 16

0257 .

0258 # define ALCHAR 8

0259 # define ALINT 16

0260 # define ALFLOAT 16

0261 # define ALDOUBLE 16

0262 . # define ALLONG 16

0263 # define ALSHORT 16

0264 # define ALPOINT 16

0265 # define ALSTRUCT 16

0266 # define ALSTACK 16

0267) .

0268 # define ARGINIT . 32

0269 # define AUTOINIT 48

0270

0271 /+« size in which constants are converted +/
272 - /+ should be long if feasable «/

0273 # define CONSZ long

0274 # define CONFMT "%Ld"

0275 :

0276 /» s8ize in which offsets are kept

0277 /+» should be large enough to cover address space in bits «/
‘0278 # define OFFSZ long

0279 - :

0280 7+ character set macro »/

0281 # define CCTRANS(x) x

g282 :

0283 /+ register cookie for stack poINTer +/

0284 # define STKREG 5

0285 # define ARGREG 5

0286

0287 /¢ maximum and minimum register variables </
0288 # define MAXRVAR 4

0289 # define MINRVAR 2

0290

0291 . /+ various standard pieces of code are used </
0292 # define STDPRTREE

0293 # define LABFMT "L%d"

0294

0295 /+ definition indicates automatics and/or temporaries
0296 are on a negative growing stack =/
0297 # define BACKAUTO “»
0298 # define BACKTEMP

0299 # define RTOLBYTES

0300 # define ENUMSIZE(high,low) INT

0301 . :
0302 # define makecc(val,i) lastcon = i ? (val<<8)ilastcon : val

The Porrable C Compiler)) Header File;s 13

2.2.1 AUTOINIT, ARGINIT. The Portable C compiler provides a general mechanism for
- building the run-time stack frames needed by procedures. The issues involved are discussed in
the internal technical memorandum, ‘“The C Language Calling Sequence”’, by S.C..Johnson,
D.M. Ritchie and M.E. Lesk. ' ' N

AUTOINIT defines the growth (in bits) of the stack, beyond the point indicated by the frame
pointer, due to the storage of CPU registers at procedure entry time. (The frame pointer marks
the beginning, or some point offset by a standard amount from the beginning of the stack
frame.) On the PDP11, where the frame pointer is RS, the stack growth is three words (48
bits) to store values of R4, R3 and R2.

ARGINIT is not used in the second pass, at least for the PDP11. It is intended for use with a
separate ‘‘argument pointer’’, which is needed, for example, when the arguments passed to a
procedure are not stored in a location fixed relative to the frame pointer.

2.2.2 macdefs miscellany. Many of the declarations in .macdefs are not relevant to the
second pass. Of those given from line 0271 on, MAXRVAR and MINRVAR are relevant to the
allocation of temporary registers (they define the range of registers which may be preempted for
local variables in fact), BACKTEMP (0298) specifies that temporary storage is allocated back-
wards in memory, and RTOLBYTES (0299) is used to flag the relatively unusual byte ordering
of the PDP11.

2.3 The File ‘“mac2defs’’

This file, which begins at line 0303, contains machine-independent definitions, additional to
those given in macdefs, which are needed in the second pass of the Portable C compiler.

2.3.1 Registers. There are assumed to be two different classes of registers which can be used in
the evaluation of expressions, and which the compiler must assign.

In the PDP11 version, type A registers are general registers which can store integers and
pointers, and which are generally in demand and in short supply. On the other hand, type B
registers are floating point registers for which the supply is reasonably adequate, and allocation
is no great problem. In retrospect, it seems® that it would have been preferable to treat the
floating point registers as additional type A registers, rather than as a different species, as is
done in the regular compiler for the PDP11.)

The concept of **B” registers was introduced into the compiler, to accommodate the index
registers of the Honeywell computer. One of the deficiencies*” of the present compiler is its
inability to recognize and handle more than two distinct types of registers. :

2.3.2 mac2defs miscellany. SAVEREGIONand wdal are not used in the second pass of the
PDP11 compiler. The defined symbol MYREADER is used, in effect, to indicate that a pro-
cedure, myreadexr (3926), exists, and is to be invoked (in main at line 1031). The variable
fltused (0349) is used for the PDP11 to set a flag, which will effect the loading of library
routines with the compiled program.

The defined symbols, STOFARG, STOARG and STOSTARG, all stand for procedures which
may be optionally present, and which are called by store (1325) to take machine-dependent
actions appropriately for the generation of code to calculate argument values. No special
actions are required on the PDP11, so these symbols have null values.

2.4 The File “mfile2”

This file contains various machine-independent definitions and declarations of global
significance to the second pass of the Portable C compiler. There is a companion file,
mfile1, which plays a similar role in the first pass of the compiler.

* Communication from Lee Benoy.
** Communication from Steve Johnson.

14 macldefs ' The Second Pass of

0303 /=« PDP11 Registers +/
0304)
0305 /+ scratch registers »/

0306 # define RO 0

0307 # define R1 1

0308

0309 /» register variables +/
0310 # define R2 2

0311 # define R3 3

0312 # define R4 4

0313

0314 /+ special purpose =/

0315 # define RS S /+ frame pointer =/

0316 # define SP 6 /+ stack pointexr »/

0317 # define PC 7 /+ program counter +/

0318

0319 /+ floating registers +/

0320 # define FRO 8

0321 # define FR1 9

0322 # define FR2 10

0323 # define FRI 11.

0324 # define FR4 12

0325 # define FRS 13

0326

0327 # define SAVEREGION 8 /+ number of bytes for save area »/
0328

0329 # define BYTEOFF(x) ((x)&01)

0330 # define wdal(k) (BYTEQFF(k)==0)

0331 # define BITOOR(x) ((x)>>3) /+ bit offset to oreg offset «/
0332 ‘

0333 # define REGSZ 14

0334

0335 # define TMPREG RS

0336

0337° # define STOARG(p) /» just evaluate the arguments, .
0338 and be done with it... =/

0339 # define STOFARG(p)
0340 # define STOSTARG(p)
0341 # define genfcall(a,b) gencall(a,b)

0342

0343 " /+ shape for constants between -128 and 127 =/
0344 # define SCCON (SPECIAL+100)

0345 /» shape for constants between 0 and 32767 «/
0346 # define SICON (SPECIAL+101)

0347

0348 # define MYREADER(p) myreader(p)

0349 extern int fltused:

0350

0351 /+ calls can be nested on the PDP-11 +/

0352 # define NESTCALLS >

The Porwable C Compiler _ Header Files 15

2.4.1 Groups of Operators.

0360: In coding the set of operator templates in the array table. it is convenient and possible
to provide some templates which apply for a whole group of operators. Some
such groups are implied by the names given on lines 0360 1o 0370. The ASG
(0128) operator can aiso be applied to these to produce e.g. ASG OPLOG, which
has a value of 01001 7.

0375: MNOPE (0375), MDONE (0376) are values returned by the procedure match (2159)
"~ when it has been decided that the situation is either hopeless, or completely under
control, respectively.

2.4.2 Cookies. In the present context, the term ‘‘cookie’” (see line 0379) means **goal™” or
*‘set of alternative goals™. Each expression tree represents a calculation that may be carried out
to yield a result. The cookie refers to the disposition of this result. In particular, the cookie
FOREFF implies that all results of the calculation that are' left in the processor registers and in
the temporary part of the, object-time stack may be discarded. All useful results of the calcula-
tion will have already been saved explicitly. All trees passed from the first to the second pass
of the compiler are to be computed *‘for effect’ only.

In the case of subtrees, even if the overall goal is **for effect”. the result of the subtree calcula-
tion may be temporarily important and must be saved somewhere. Just where may depend on
what other registers are already being used. Failing all else, the result may be placed in the
- temporary part of the object time stack. (This is generally undesirable because access to stack
locations is slower, and the necessary code is longer, than for reference to the processor regis-
“ters.) ‘ :

The other gb‘als are !iéted, with comments, on lines 0382 to 0389. Note that references to
l1value on lines 0384, 0385 and elsewhere certainly do not apply in the case of the PDP11.

2.4.3 Shapes. The use of the term ‘‘shape™ in the present context is somewhat unconven-
tional. It is used to suggest the way an operand, represented by a particular subtree, can be
accessed. It may be in an A register (SAREG, 0395), or in a temporary A register (STAREG.
0396). or in a B register (STBREG, 0398), or in the condition codes (SCC, 0399). It may be a
constant (SCON, 0401), or a subfield of a word (SFLD, 0402).

The operand may be accessed indirectly through a pointer variable (STARNM, 0404). or
through a register pointer (STARREG, 0405).

The reader should be careful to distinguish between STAREG and STARREG. They are to be
“parsed’’ quite differently, as “*S-T-AREG™ and “‘STAR-REG", respectively: furthermore.
they must be distinguished from the operator type STARG (0111)* '

There are also a number of special **shapes™ for constants: SZERO (0408), SONE (0409) and
SMONE (0410). The latter, ‘*minus one™, is not handled specially on the PDPIl. On the
other hand. short integer constants may be given special treatment in some circumstances on
the PDP11 (see lines 0344 and 0346). SWADD (0406), meaning “*shape of word address™. is
relevant 1o the Honeywell 6000. ‘ '

2.4.4 More Types. The definitions which begin on line 0417 are for a set of operand types.
Unlike the set previously given on lines 0163 to 0178, which were designed to be compactly
encoded in a four bit field. these definitions are for a set of bit masks which may be combined
into sets of alternatives.

Iy
’

——
® These are 10 be read as “‘shape of a temporary A register””, “‘indirection through a register™ and “‘structure
argument’. respectively. Note also that the meaning of STARREG in the current PDPI1 version is slightly non-
standard. since it can refer to autoincrement and autodecrement addressing modes.
A3

16 mfilel

0353
0354
0355
0356
0357
0358
0359
0360
0381
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
Q377
0378
0379
0380
a3g1
03182
0383
0384
0385
0386
0387
0388
0389

0390

0391
0392
0393
0394
039S
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414

T

The Second Pass of

include "macdefs"
include "mac2defs"
include "manifest”
/+ QP descriptors </ : ‘
/+» the ASG operator may be used on some of these </
define OPSIMP 010000 /% +, =, &, 1, ~ */
define OPCOMM 010002 /+ +, &, 1, ~ /
define OPMUL 010004 /= », / «/
define OPDIV 010006 7/~ /, % »/
define OPUNARY 010010 /» unaxy ops =+/
define COPLEAF 010012 /= leaves =/
define OPANY 010014 /=« any op... =/
define OPLOG 010016 /» logical ops +/
define OPFLOAT 010020 /+ +, ~, +«, or / (for floats) =/
define OPSHFT 010022 /=~ <<, >> «/
define OPLTYPE 010024 /= leaf type nodes (e.qg, NAMS. ICON) »/
. cceccmmeas . o o o 2 e o e o e o e o -——
/+» match returns «/
define MNOPE 010000
define MDONE 010001
SN S R
/+ cookies, used as arguments to codgen =*/
define FOREFF 01 /» compute for effects only =/
define INAREG 02 /+ compute into a register s/
define INTAREG 04 /+ compute into a scratch register s/
define INBREG 010 /= compute into a lvalue register s/
define INTBREG 020 /+« compute into a scratch lvalue register «/
define FORCC 040 /+ compute for condition codes only +/
define INTEMP 010000 /» compute into a temporary location «+/
define FORARG 020000 /+ compute for an argument of a function +/
define FORREW 040000 /« search the table for a rewrite rule »/
/¥ cmammccmccceaa————— - - - D W D - - - B e V4
/% shapes »/
define SANY 01 /+ same as FOREFE «~/
define SAREG 02 /+ same as INAREG s/
define STAREG 04 /» same as INTAREG </
define SBREG 010 /+~ same as INBREG «/
define STBREG 020 /+» same as INTEREG </
define SCC - 040 /=~ same as FORCC «/
define SNAME 0100
define SCON 0200
define SFLD 0400 »
define SOREG 01000
define STARNM 02000
define STARREG 04000
define SWADD 040000
_# define SPECIAL 0100000
define SZERO SPECTAL
define SONE {SPECTAL}1)
define SMONE (SPECIALI2)

/+ FORARG, INTEMP are carefully not conflicting with shapes </

/W et o o ot o s v o v o o b it e " e S - - LR Y4

The Portable C Compiler , ‘ Header Files 17

2.4.5 Needs. Most of the definitions in the section of code beginning at line 0381 are for items
which can occur in the code templates. The formal declaration of the structure which encodes a
single template occurs at line 0539, and is discussed in more detail below.

The particular set of definitions that commence at line 0435 under the label *“Needs”, refer to
the resources which may be needed temporarily during the sequence of instructions defined by
the template. For example, NAREG (0435) specifies that a temporary A register will be
required, and one such register must be made avallable if the code sequence specified by the
template is to be used.

NASL (0438) specifies that a temporary A registcr is needed, but that this can be the same
register as used by the “‘left hand’’ operand provided the contents of this register do not have to
be kept intact for some other reason.

NACOUNT (0436) is a mask to deﬁne the field in which the number of A registers is encoded.
NAMASK (0437) is used to isolate the requests (by masking out other fields) for A registers
from other requests (e.g. for B registers). These are all used by the procedure allo (2493).

REWRITE is a special need, which should be encountered when there is no hope of matching
the particular node with any of the regular templates. It signals that the tree w:ll have to be
remodeled before the template matching should be attempted again. .

0449: MUSTDO and NOPREF are used to qualify the value of the rall field in the ndu struc-
ture ... see line 0469.

2.4.6 Reclamation Cookies. A set of deﬁmuons for these begins on line 0455. After a template
has been matched, and the appropriate instructions emitted, the tree must be rewritten to
replace the matched subtree by, typically, a single node representing the result obtained. The
“‘reclamation cookie’’ is used to denote where the result may be found. In many cases, the
result is available in more than one location, e.g., after a move instruction, so that the practical
problem becomes to decide which of these will be most convenient.

The cookies are bitmasks that may be combined to represent multiple alternatives. RLEFT
(0456) denotes that the result will be in the left operand of a binary pair. RESC1, etc. denotes
the first, etc. temporary registers assigned. RNULL denotes that no result need be saved,
whereas RNOP denotes that there is no result to be saved

2.4.7 Nodes. The type definition on line 0240 equates, for the second pass, the type NODE
(which is frequently used) with the type ndu (which is not used otherwise). The NODE type is
specified differently during the first pass of the two pass version of the compiler, and differently
again in the single pass version.

The type nduis a union of four different structures, which are declared beginning at line 0465.
All four structures have their first four fields in common:

1. opis an operator type.

2. rall is used for expressing preferences for where (in which register) results should be
stored.

3. type describes the associated operand type.

4. su expresses the number of registers needed during the calculation represented by the sub-
‘tree.

Further the first two forms, A and B, which may be associated with BITYPE and LTYPE nodes
respectively, have a common fifth field, name, whose contents, when non-null, are derived
from a variable name in the source program. The structure for UTYPE nodes does not appear
explicitly, but is in effect an amalgam of forms A and B, with a right **value’ and a left "*node
pointer’’,

18 mfile? _ . The Second Pass o

0415 /e types s/

0416

0417 # define TCHAR 01

0418 # define TSHORT 02

0419 # define TINT 04

0420 # define TLONG 010

0421 # define TFLOAT 020

0422 # define TDOUBLE 040

0423 # define TPOINT 0100

0424 # define TUCHAR 0200

0425 # define TUSHORT 0400

0426 # define TUNSIGNED 01000

0427 # define TULONG. 02000

0428 .# define TPTRTO 04000 /+ pointer to one of the above =/
0429 # define TANY 010000 /= matches anything within reason </
0430 # define TSTRUCT 020000 /=* structure or union »/

0431 /% wmmwceciccccmmcccamena~- et mmme e ———— ——mmmm— ¥/
0432)

0433 /+ needs s/

0434

0435 # define NAREG 01

0436 # define NACQUNT 03

0437 # define NAMASK 017

0438 # define NASL 04 /+ share left register =/

0439 # define NASR 010 /+ share right register «/

0440 # define NBREG 020

0441 # define NBCOUNT 060

0442 # define NBMASK 0360

0443 # define NBSL 0100

0444 # define NBSR 0200

0445 # defins NTEMP 0400

0446 # define NTMASK 07400

0447 # define REWRITE 010000

0448

0449 # define MUSTDO 010000 /» force register requirements +/
0450 # define NOPREF 020000 /» no preference for register assignment «/
0451 /& =-ccecemcnaa= e e e e e e e 2 e - o/ -
0452

0453 /+ reclamation cookies +/

0454

0453 # define RNULL 0 /+ clobber result «/

0456 # define RLEFT 01

0457 # define RRIGHT - 02

0458 # define RESC1 04

0459 # define RESC2 010

0460 # define RESC3 020

0461 # define RESCC 04000 . .

0462 # define RNOP 010000 /+ DANGER: can cause loops.. +/
0463 /+ 33=S3=2=233333333AIIFAITIISIIIAIIIATAI=SITIIISITIIRIAR 8/

0464

The Portable C Compiler V Header Files 19

0498: The sizes of structures, and their alignments, are given in multiples of characters.

2.4.8 Pot Pourri. The latter part of mfile2 (lines 0505 to 0593) is a bit of a mixture (to put
it mildly). It consists mainly of forward declarations for variables which are declared elsewhere.
In view of the way mfile2 is used, it would seem better to replace most of these forward
declarations by the actual declarations. However, as has already been noted, the present
arrangement has been dictated by the limited capacity of some assemblers to handle globally
defined variables. Descriptions for many of these variables will be given again when they are
re-encountered. However several are worthy of comment now.

The first group of variables (from line 0505 to 0517) are concerned with NODES.
1. The array node (0510) is the basic supply of structures from which trees are built.

2. The array resc (0511) is used to hold information, at the time code is being generated,
about the temporary storage and registers.

3. deltrees (0508) is an array of node poimers, used to keep track of subtrees that have
been broken off from ‘the main tree by delay?2 (1233), and which await later processing.
(The size of this array seems to be very generous.)

4. The integer deli (0506) k'eeps‘track‘ of the latest entry in deltrees.

5. The procedures talloc, eread, tcopy and getlr all return a node pointer as their
result.

0521: rstatus (3717) is a constant, machine-dependent data array, which is declared and ini-
tialized in the file local2.c. It gives information about the type and status of
individual processor registers.

0522: busy (2453) is used to keep track of the usage of temporary registers during expression
evaluation.

0524: respref is both the name of a structure (defined here) and the name of an array of
such structures. The latter is initialized beginning at line 3729. It is used in
selecting the best of a set of alternative results from the execution of a particular
machine instruction.

0532: SETSTO is a macro which assigns values to stocook and stotree. These values are
determined by store (1325) as it attempts to decide which subtree should be
worked upon next. .

0539: See the next section below.

0553: Offsets and related quantities are reckoned in bits, so they are stored and manipulated as
long integers. (See the definition of OFFSZ (0278).)

0561: nrecur is reinitialized to zero for each expression tree, and is incremented at each call
of order (1537) and match (2168). :

0563: If the value of nrecur reaches NRECUR, the compiler exits on the assumption that it is
looping infinitely (see line 1517).

0589: These remaining maéros are used for machines such as the IBM 360/370 and the Inter-
data 8/32, which have ‘‘base-index’’ addressing. They are not needed for the
PDPI11.

20 mnle? The Second Puss of

0465 wunion ndu {

0466

0467 struct { /+« form A «/

0468 int op:

0469 int rall;

0470 TWORD type:

0471 . int su;

0472 .char name [NCHNAM] ;

0473 NQDE +left;

0474 NODE +right;

0475 : ts

0476

0477 struct { /+ form B +/

0478 int op:

0479 int rall:

0480 TWORD type:

0481 int su;

0482 char name [NCHNAM] ;

0483 CONSZ 1lval;

0484 . int rval;

0485 1

0486

Q487 struct | /+ form C «/

0488 int op, rall:

0489 TWORD type;

0490 int su; :

0491 - int label: /» for use with branching =/
0492 B ‘

0493 '

0494 - struct /+ form D =/

0495 int op, rall;

0496 ' TWORD type:

0497 int su; .

0498 . int stsize; /+ sizes of structure objects </
0499 int stalign: /+ alignment of structure objects =/
0500 : HEN

0591)

0502 be -

0503 /¢ —emmecmm e et c e e e &/
0504 - : '
0505 # define DELAYS 20

0506 extern int deli; /+ mmmmm */

0507

0508 extern NODE ~»deltrees[DELAYS]:
0509 extern NODE »stotree;

0510 NODE node (TREESZ];

0511 extern NODE rescll]:

0512 .
0513 extern NODE

0514 «talloc().

0515 seread().

0516 stcopy(}).,

0517 «getlr():

0518

0519 /+ register allocation +/

0520

3521 extern int rstatus(]:

0522 extern int busy({]:

0523)

0524 extern struct respref { int cform: int mform; } respref(]:
0525

0526 # define isbreg(r) (rstatus(r]&SBREG) ,
1527 # define istreg(r) (rstatus(r]&(STBREG,STAREG))
0528 # define istnode(p) (p->0op=3REG A& istreg(p->rval))

n529

The Porable C Compiler Header Files 21

2.5 Code Templates

Each code template contains a description of a subtree, or class of subtress, plus a “recipe’ for
producing the assembler code that will carry out the calculation represented by that subtree.

The declaration of the data structure, optab, which will hold the description of a single tem-
plate, and a forward declaration for the array. table are given starting at line 0539. The com-
ponents of optab are: :

1. op, the type of node that may be matched.

visit, the type(s) of goal that can be met.

lshape, allowable shape(s) for the left subtree.

ltype, allowable operand type(s) for the left subtree.

rshape, rtype, ditto for the right subtree. _

needs, resources that will be required (e:spécially 'temporary registers).

rewrite, rule for rewriting the tree after a match has been made.

P NS LA e

¢string, a character strmg which expands into a set of assembler instructions.

: 'nne file table.c, which begxns at line 4664, declares and initializes the array, table. Any
serious student of the compiler will need to analyze this array at some length. For the
moment, it will be worth looking at just a few parts of that array.

Beginning at line 4701, there is a template for a subtree whose root node has the operator
ASSIGN. It is used to copy a long integer, signed or unsigned, from one directly addressable
location to another. The shape and type restrictions for both the left and right subtrees are the
same. LWD is defined on line 4667, and specifies a set of alternative shapes that are acceptable.
No additional resources are needed, and after the operation, the ‘‘result’ is accessible through
either the left or right operands. The template may be used FOREFF, in which case the result
is not of interest, or else it may be used for INAREG, i.e. to get the result into a pair of A
registers. If neither the right or lefi subtrees represent a register pair, then additional move
instructions may need to be generated.

The next template, which is initialized starting at line 4707 is very similar except for the shape
of the left subtree, i.e. the destination. If the left subtree has the shape STARNM, i.e. contains
a pointer to the destination, then this pointer can be brought into a temporary A register, and
used to address the destination. The temporary register may be an additional register (‘*‘need”
NAREG) or may reuse the register already used in the left subtree, .provided no other use for
that register already exists, i.e. if the left register is sharable (‘*‘need’’ NASL). In this case, the
result (if required) will be more readily accessible as the right subtree (‘‘reclamation cookie®" is
RRIGHT), since the left register will have been incremented.

2.6 Addressing Modes

One of the distinguishing features of the PDPI11 class of computers and its successor, the
VAX11/780, is a rich, flexible and somewhat complex set of addressing modes. An addressing
mode is a convention for using the contents of a designated register, possibly combined with a
word obtained from the instruction stream, to define the address of an operand.

The PDP11 has eight basic addressing modes and eight general purpose registers, so that a
(mode, register) pair can be defined in a string of six bits. Two such fields can fit into a single
sixteen bit word, so the PDPI11 is able to encode a number of two address instructions
efficiently. (In some of these, both operands are addressed via the general addressing modes,
and in others, one of the operands is addressed in the general way, and the other must be a
register.) Descriptions of the addressing modes for the PDP11 are given in the ““PDP11 Proces-
sor Handbook’’ (Digital Equipment Corporation, various editions) and are not repeated here.

22 mpite?

0530
0531
0532
05233
0534
0535
0536
0537
0538
0539
0540
0541
0542

0543

0544
0545
05486
0547
0548
0549
0S50
0551
05352
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
9563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
. 0577
0578
0579
0580
0581
0582
9583

2584
0585

Q586
0587
0588
0589
0590
0591
0592
0593

define

define SETSTO(x.y)

REGLCOP(1)

extern int stocook:

extern int callflag:

extern int fregs.

extern struct optab {

~int
int
int
int
int
int
int
int

char « cstring:

ops
visit;
lshape;
ltype:
rshape:
rtype:
needs;
rewrite:

}
tablef]:

extern OFFSZ tapoff:
- extern OFFSZ maxoff:
.extern OFFSZ baseoff:
extern OFFSZ maxtemp:

extern in

t maxtreg:

extern int ftnno:

extern in

define

extern char »rnames(];

extern in
extern char filename(];

t nrecur:

The Second Pass ot

for(i=0;1<REGSZ;++i)

(stotree=(x).,stocook=(y))

/+ flag to keep track of recursions =~/

NRECUR (10+TREESZ)

‘extern CONSZ rdin():

extern int eprint():

t lineno:

extern int fldshf, fldsz: :
extern int lflag, xdebug. udebug. edebug, odebug.
.rdebug, radebug. tdebug. sdebug:

ifndef
define

-# endif

#ifndef ¢
define
#endif

EXIT
EXIT

allchk
callchk(x)

#ifndef PUTCHAR

define
#endif

/e
define
define
define
define

PUTCHAR(x)

SEXDIPIDBOIZIEIDOIXIEIIIIDII>DD
exit _
CLLELLCLLLRLCLCLLLCKLCLCCLCKCL

DOZIIIODIEEIIIRDEIISEIDI>IID>

allchk(x)

CLECLLLCLELLELLLCELCLCLLLC L LS

SEBRBIIIRSEHBEIIDPSIBIIIFRIIERE

putchar(x)
KELLELLLLELLLELEEKLELLLLLCLLCL L

macros for doing double indexing «/

R2PACK(x.y)
R2UPK1 (x)
R2UPK2(X)
R2TEST(x)

(0200+«((x)+1)+y)
(({x)>>7)=1)
((x)80177)
({x)>=0200)

The Porable C Compiler ‘ Header Files 23

In the discussion that follows, a linearized notation for trees is used, so that A denotes a sub-
tree consisting of single node of type A, while A (B, C) denotes a subtree that has A as its
root, and B and C as its left and right descendents, respectxvely, etc. The characters Vhe +H, -=
are the familiar symbols from the C language.

The expression trees passed from the first to the second pass of the Portable C compiler contain
only the simplest of these modes in a ‘‘ready-made’ form, namely:

REG Operand is a register. [PDP11 address mode is “‘register”’, or 0n.]

NAME Symbolic address of operand is given. [Mode is “‘relative’, or 67.]

ICON Immediate constant (possibly an address). [Mode is “‘immediate™, or
27.]

As will be seen later in Chapter Seven, the routine oreg2 (1988) is invoked by canon
(1307) to recognize certain subtrees, and to convert these. into nodes of type OREG (register
plus offset). The. program design envisages four different styles of OREG, of which only two
are relevant for the PDP11, namely:

OREG .~ Register contains a pointer to the operand. [Mode is ‘‘register
deferred”’, or 1a.]

OREG The sum of the register plus the word following the instruction defines
the address of the operand. [Mode is “‘index’’, or 6n.]

‘Each of the remaining address modes is recognized and handled as a subtree with two or more
nodes, right up till the time of code generation. For example:

* (NAME) The absolute address of a pointer to operand is given. [Mode is 77.]
» (ICON) This is the same as the previous case. ’
*» (OREG) The address of a pointer to the operand is given by the sum of the

register and the word followmg the instruction. [Mode is “‘index
deferred”’ or 7n.] :

(++ (REG, ICON)) The register is a pointer to the operand. After the reference is
"made, the value of the register is incremented by the value of the con-
stant. [Provided the increment is appropriate to the operand (i.e.. one
for a character, two for a word, etc.), this can be handled by “autom-
crement’’ addressing, i.e. mode 2x.]

*

*

(-= (REG, ICON)) The register is decremented, and then used to point to the
- operand. Provided the decrement is the appropriate value, *‘autodecre-
ment’’ addressing, i.e. mode 4n, can be used.)]

In this program, there are many places where a class of subtrees of depths varying from one to
three, and which represent PDP11 addressing modes, must be recognized and handled. (For
example, see line 2183 and shltype, 4141.) The concept of ‘‘shape’ serves to characterize .
such subtrees. The last two examples above are considered to have the shape STARREG. and
the three before those, the shape STARNM However, only a limited number of the possible
'shapes are explicitly recognized, and the shape is not stored explicitly with the subtree,

It seems to the present writer that life would be much easier in many parts of the compiler if
oreg?2, or some equivalent, could reduce a/l the subtrees that represent addressing modes to
one single node type. That this has not been done seems to be the result of an impljcit
assumption in the original design, namely that the set of operators and the definition of OREG
would be machine-independent and non-negotiable. Steve Johnson says that an alternative
approach, which he prefers, would involve extending for each machine the set of “‘special
shapes’ that would be recognized to include such cases.

24 common

0594
0595
0596
0597
0598
0599
0600
0601
- 9602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
067

0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646

0647

0648
0649
06350
0651
0652
0653
0654
0655
0656
0657
0658
0659

include "mfile2"
int nerrors = 0; /s» numbexr of errors +/

/+ VARARGS1 +/

uerror(s, a) char »s; { /+ nonfatal error message </
/+ the routine where is different for pass 1 and pass 2:
/+« it tells where the error took place +/

++NEerrors:

where({‘u’): - .

fprintf(stderr, s, a):

fprintf(stderr., "\n") :

if(nerrors > 30) cerror("too many errors”):
'}

/% wmm—— S U, - ——— e mmm »/

/+ VARARGS1 »/ .
werror{ s, a, b') char +«s; { /+ warning </
where('w’)
fprintf(stderr. "warning: "):
fprintf(stderr. s, a., b):
fprintf(stderr, "\n"):
/- ---1 _____ - . o s " - - - - " " " - - ————— -/

/% VARARGST »/ :
cerxor({ s, a. by, ¢) char +s: { /» compiler error: die «/
where(‘c’): .
if(nerroxrs && nerrors <= 30){ /+ give the compiler the
benefit of the doubt </
fprintf(stderr,
"cannot recover from earlier errors: goodbye!\n"}:

} .

else {
fprintf(stderr. "compiler error: " }:
fprintf(stderxr, s, a, b. ¢ }:
fprintf(stderr. "\n" };
}

ZXIT(1):

}

/‘ 2T IS SIS ISSASIANSESAATIITAISNATIIITINAIXZNIAIRIBIEIIS C/
NODE +NIL: /+ pointer which always has Q0 in it </
NODE ~lastfree; /+ pointer to last free node: (for allocator) </

tinie(){ /+ initialize expression tree search +/
NODE =p:

for(p=node: p<= &node[TREESZ-1]: ++p) p->0p = FREE:
lastrfree = node:

[/ # cmm e - -——— - o - -) - - " - —— ————- &/
define TNEXT(p) {p== &node(TREESZ-1]?node:p+1)

NODE «
tallioc(){
NODE ep, «q:

q = lastfree:
for(p = TNEXT(q): p!=q: p= TNEXT(p))
if(p-»op ==FREE) return(lastfree=pl}:

Chapter 3: The File ‘‘common™

This file contains procedures which are used in both passes of the compiler. Since certain struc-
tures, notably for the tree nodes, are defined differently in the two passes, this file is compiled
-with the file mfile1 for the first pass, and with mfile2 for the second pass. The full source
code includes two files, comm1.c and comm2.c, which “‘include’ the common file and the
appropriate “*mfile”, and which are used in conjunction with the first and second passes respec-
tively. (Neither comm1.c nor comm2.c is listed here.)

3.1 Error Messages

The three procedures, uerror (0599), werror (0612) and cerrox (0621). are used to pro-
vide error messages on the standard output file, with varying degrees of severitv. Note that a
call to cerrox is made when the compiler diagnoses a situation that **cannot happen’". When
this occurs the compilation is aborted. (The comments **/* VARARGS1 =/°" and similar ones
elsewhere are for the benefit of 1int.)

3.2 Tree Nodes

The next four procedures are concerned with the maintenance of tree structures. There are two
other procedures that are companions to these, namely ncopy (2891) and tcopy (2910).
The latter have been included in allo.c rather than the present file, because they are not
used in the first pass.

0642: tinit is used to initialize the free list of nodes, which it does by setting the op field for
every tree node, in the array node (0510), to the value FREE. The pointer
lastfree (0640) is initialized to point to the first element of node.

0653: talloc finds the next ‘‘free’” node and returns a pointer to it. Free nodes are found by
searching forward from the last node allocated (designated by lastfree), wrap-
ping around when the end of the array is reached. Compilation is terminated by
the call to cerror at line 0660, if the free list becomes exhausted.

0665: tcheck checks that in a situation where there are no errors, all nodes in the array have
been properly freed. This is a test for compiler consistency. If the test is
satisfied, the only use for the subsequent call on tinit (0642) will be to set
lastfree. This routine could obviously be improved so that the check wiil be
performed when the errors are not of recent origin, and by calling tinit only
when checking was not performed. '

0675: tfree, as may easily be guessed, frees the nodes of a tree or subtree. The technique is
to use the procedure walkf (0688) to perform (line 0678) an endorder walk of
" the tree, performing tfree1 (0682) at each node visited.

3.3 Tree Walks

2.3.1 walkE (0688) performs an endorder walk over the tree whose root node is passed as its
first parameter, and applies the function which is passed as its second argument to each node
visited. The endorder traversal implies visiting the left subtree (if any), then the right subtree
(if any). and then visiting the node itself. This is the appropriate algorithm 10 use when a
bottom-up processing of the tree is required.

26 conmon : ’ ' The Second Pasy o1

0660 cerror("out of tree space; simplify expression”):
0661 /+« NOTREACHED +/
0662 } : |
0663 /4 ———=—mweee S O ./
0664
0665 tcheck(){ /+ ensure that all nodes have been freed »/
0666 NODE +p:
0667
0668 i£(!'nerrozrs)
0669 for(p=node: p<= &node(TREESZ-1]:; ++p)
0670 if(p-»op !=a FREE) cerror{ "wasted space: %o", p)i
0671 tinic(): :
0672 }
0673 /% m~rcemmrm e c e mc e e m e r e r e — e e e e — —— . ———— ./
0674
0675 tfree(p) NODE +p: { /= free the tree p »/
0676 extern tfreel():
0677 _
0678 if(p->op != FREE) walkf(p. tfreel)
0679 - } '
0680 /% ccomcccmccccrircresc e an- - e e e e -/
0681
0682 tfreei(p) NODE +p: { .
© 0683 if(p == 0) cerror("freeing blank tree!"):
0684 . else p->op = FREE;
0685 } » :
0686 /4 ——cmcmcc e ccmmc et r e r e e e e, — e — e - ———-—————— -/
0687
0688 walkf(t. £) register NODE +t:; int (+£)(): {
0689 register opty:
0690
0691 cpty = optype(t->0p);
0692
0693 if(opty != LTYPE) walkf(t->left, £);
0694 i${ opty == BITYPE) walkf(t->right, £):
9695 («£)C Tt)3
0696 b)
0697 /% ———cmeeem e tmmmcmmmecam—————— P . 74
0698 ’
0699 fwalk(=, £, down) register NODE +t; int (+£)(): {
0700 int downil. down2;
0701 _
0702 more: .
0703] downl = down2 = 03
0704
0705 (+«£){ t. down, &down!., &down2):
0706
0707 switch(optype(t-»op)){
o708
0709 case BITYPE:
0710 fwalk(t->leftt, £. downl)i
0711 . t = t->right:
3712 down = down2:
0713 goto more:
0714
9715 case UTYPE:
N716 ' t =2 t-»left:
Q717 down = downl:
04718 goto more:
0719
0720 }
0721 }

0722 /+ 2323333333 aMsXIIFITATIAIZIIIAASIRATIIXIIIIIIVIIIAIITRES +/

Q723

The Portuble C Compiler ’ conumon 27

LTYPE nodes are leaf-type, and have no descendents; UTYPE nodes are unary type, and have a
left descendent only; and BITYPE nodes are binary type, and have both left and right descen-
dents.

S) e

3.3.2 fwalk (0699) performs a preorder walk over the tree whose root node is passed as its
first parameter, and applies the function which is its second parameter to each node visited.
The traversal involves visiting the node itself, then the left subtree (if any), and then the right
subtree (if any).. This procedure could be implemented purely recursively (as with walkf) but
since the root node does not have to be revisited, there is the possibility, exploited here. of
replacing recursion by iteration for visiting the (left) subtree of a UNARY node, and the right
subtree of a binary node.

0705: At first glance, the variables, down, down1 and down2, are somewhat perplexing.
Since the function £, the first parameter, does not call itself recursively, there is
no direct way for an invocation of £ to pass information to its **descendents™, i.e..
invocations of £ applied to nodes which are descendents of the current node. The
second parameter, down, is a value which was passed to £ by its *“parent”. In
turn, it can deposit with its real parent, an invocation of fwalk, two values which
are to be passed later to to its left and right **descendents’”. These last two values
are passed back via the pointer arguments, down1 and down2, respectively.

3.4 The dope arrays

The array indope (0727) is initialized with the values on lines 0729 to 0807. Each element of
indope is a structure of type dopest, which contains:

1. an operator number, i.e. a value which may ‘appear in the op field of a tree node.
2. an eight character array name for the operator, which is used for diagnostic printing.

3. a bitmask. stored as an integer, defining atmbutes of the operator, especially its type
(LTYPE or UTYPE or BITYPE).

A careful study of these values now will be useful for later reference. As noted earlier. the
operators are divided into three major categories, characterized as LTYPE, UTYPE and

BITYPE. Many of the operator types declared in manifest do not occur (or at least should
not occur because they are not expected) in the expression trees handled bv the second pass.
These include LB, RB LC, RC, TYPE and STREF.

The binary operators, in particular, are classified into various groups. and group membership is
indicated by the setting of flags in the dopeval field. The flags themselves are defined on
lines 0141 to 0153. The meanings of the flags are fairly clear from the ways they are used on
lines 0729 1o 0805. As noted earlier, there are a number of definitions given on lines 0156 to
01359 that may be used for testing some of the flags in a convenient fashion.

3.5 mkdope (0811)

The ordering of the elements of indope is somewhat haphazard. and, in particular, is not con-
strained to be ordered by operator type. Hence two additional arrays are introduced. dope
10724) and opst (0725), which are indexed by operator type, and which allow direct retrieval
of the dopeval bit mask, and the eight character operator name, respectively. The procedure
mkdope (0811) is responsible for initializing dope and opst at object time. mkdope is
called by p2init (0890).

3.6 tprint (0821)

This procedure which is calied only from eprint at line 1167, during diagnostic printing of
the contents of a tree, is straight forward enough. The only point which would require some
explanation is the name in which the initial *t’ stands. not for “‘tree™. but for “"type’’. More-
over it stands not for “*operator type” but “‘operand type’.

28 common ’ The Second Pass of

0724 int dope{ DSIZE];

0725 char +opst[DSIZE];

0726

0727 struct dopest { int dopeop: char opst{8]; int dopeval; } indopel] = {(
0728

0729 NAME, "NAME" . LTYPE,

0730 STRING, "STRING", LTYPE,

0731 REG, - "REG"., LTYPE,

0732 OREG. "OREG", LTYPE,

0733 ICON. " "ICON", LTYPE,

0734 FCON. "FCON". LTYPE,

0735 CCODES . "CCODES", LTYPE,

0736 TYPE. "TYPE", LTYPE,

0737

0738 NOT. ol R UTYPE | LOGFLG

0739 COMPL, e UTYPE,

0740 FORCE. “FORCE". UTYPE.

0741 INIT. "INIT". UTYPE.

0742 SCONV. "SCONV", UTYPE,

0743 PCONV, "PCONV", UTYPE.

0744 FLD. "FLD", UTYPE.

0745 GOTO, ~ "GOTO". UTYPE,

0746 STARG., "STARG", UTYPE.

0747 .

0748 UNARY MINUS. "u-", UTYPE,

0749 UNARY MUL., "ge", UTYFE,

0750 UNARY AND. "Us", UTYPE,

0751 UNARY CALL. "UCALL". UTYPE|CALLFLG.

0752 ° UNARY FORTCALL,"UFCALL". UTYPE|CALLFLG.

0753 UNARY STCALL, "USTCALL". UTYPE|CALLFLG.

0754

0755 - PLUS. e, BITYPE |FLOFLG}SIMPFLG| COMMFLG.

0756 ASG PLUS, "+=", BITYPE!ASGFLG| ASGOPFLG | FLOFLG! SIMPFLG| COMMFLG.
9757 MINUS. e, BITYPE|FLOFLG|SIMPFLG,

0758 ASG MINUS."-=", . BITYPE | FLOFLG|SIMPFLG{ASGFLG) ASGOPFLG.
0759 MUL., e, BITYPE | FLOFLGMULFLG,

0760 ASG MUL, "e=", BITYPE|FLOFLGIMULFLG!|ASGFLG| ASGOPFLG.
9764 AND. &, BITYPE |SIMPFLG|COMMFLG,

9762 ASG AND. "a=" BITYPE|SIMPFLG!COMMFLG| ASGFLG) ASGOPFLG.
0763 QUEST. nam BITYPE.

0764 COLON., "L, BITYPE. _
0765 ANDAND, "s&", BITYPE | LOGFLG.

0766 OROR, . BITYPE!LOGFLG.

9767 CM. ", BITYPE., '

0768 COMOP, ".,0p", BITYPE,

0769 ASSIGN, =", BITYPE;ASGFLG.

0770 - DIV. ", aITVPE.FLQFLG.MULFLG.DIVFLG

0771 aASG DIV, /=", BITYPE.FLOFLG:MUL:LG.DIVFLG:ASGFLG-ASGOPFLG.
0772 MOD. nor, BITYPE.DIVFLG.

0773 ASG MOD, “"%a", BITYPE.DIVFLG«ASGFLG.ASGOPFLG.

0774 LS. "<e", BITYPE|SHFFLG,

a77s ASG LS. LPPTLN BITYPE |SHFFLG|ASGFLG|ASGOPFLG

0776 RS. ">, BITYPE!SHFFLG.

0777 ASG RS, "yaa®, BITYPE |SHFFLG|ASGFLG | ASGOPFLG.

0778 OR. " BITYPE| COMMFLG | SIMPFLG

29779 ASG OR. “la", BITYPE } COMMFLG | SIMPFLG | ASGFLG | ASGOPFLG.
0780 ZR. men, BITYPE|COMMFLG|SIMPFLG.

0781 . ASG ER, "hat, BITYPE | COMMFLG | SIMPFLG ! ASGFLG I ASGOPFLG.
0782 INCR, T, BITYPE|ASGFLG.

0783 DECR, BT BITYPE|ASGFLG.

0784 STREF. Taxt, BITYPE.

3785 CALL. - "CALL". BITYPE|CALLFLG.

0786 FORTCALL. ""CALL" BITYPE|CALLFLG.

0787 EQ. ‘za", BITYPE)LCGFLG.

0788 NE. =", BITYPE| LOGFLG.

0789 LE. "ea, BITYPE|LOGFLG.

The Porable C Compiler common 29

This is an appropriate occasion to draw attention to the way that operand type information is
stored in a variable of type TWORD (which is defined to be an unsigned integer on line 0241).
Such a variable is actually a packed structure of one four bit integer which defines the basic
operand type (symbolic names for the sixteen possible values are defined on lines 01683 through
0178) plus a set of two bit integers defining type modifiers (see lines 0181 to 0183).

30 common

0790
0791

0792
0793
0794
3795
0796
0797
0798
0799
0800
0801

0802
0803
0804
0805
0806
0807
o808
0809
0810
0811

0812
0813
0814
Q815
0816

0817 -

0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
‘0838
0839
0840
0841
0842
0843
0844
0845
1846
0847
0848
0849
0850
0851
aas2
0853
0854
0855

LT, e, BITYPEILOGFLG.

GE., ", BITYPE!LOGFLG.
GT. ", BITYPEILOGFLG.
UGT. "UGT". BITYPE|LOGFLG,
UGE. "UGE". BITYPE|LOGFLG,
uLT, "ULT", BITYPE| LOGFLG,
ULE, "ULE". BITYPEILOGFLG.
ARS. "ax»", BITYPE,

LB. i BITYPE,

CBRANCH, “CBRANCH".BITYPE,
PMCONV, "PMCONV", BITYPE.
PVCONV, "PVCONV", BITYPE,
RETURN. "RETURN" ., BITYPE|ASGFLG}ASGOPFLG.

CAST. "CAST". BITYPE|ASGFLG! ASGOPFLG.
STASG, "STASG"., BITYPE|ASGFLG,
STCALL, “STCALL", BITYPE|CALLFLG.
-1, 0
s i
/% emamamem—m—— - - - a2 - - - . - - - - - »/
mkdope () {

register struct dopest =»q;

for(q = ipdope; g->dopeop >= 0; ++q }{
dope[q->dopeop] = g->dopeval;
opst({g->dopeop] = g->opst:
}

}

/Q ETERISSSZTTIITUIEICINIITNITTIIIIIIIIIIIIIIIIIIIII=R ’/

tprint(£) TWORD t: {
/+ output a nice description of the type of t «/

static char + tnames([] = {

"undef",
llfarq” .
"char”.
"short”,
"int",
"long”.
"float".
"double".
"strty”.
"uanionty”,
"enunty”,
"moety".
"uchar",
"ushort”,
"unsigned"”.

- "ulong”.
“?ll. Il?"

b .

for(:: t = DECREF(t)){

if£(ISPTR(t)) printf("PTR "):

else if(ISFTN(t)) printf("FTN " j:

else if(ISARY(t))} printf{ "ARY ")i

else { :
printf("%s". tnames([t]):
recurn:
}

}

:.
J W e o o - - - - - - -~ - - an - ——— -/

Chaprer 4: The File ‘‘reader.c’’ Part One

In this chapter we can begin discussion of the major procedures comprising the second pass of
the Portable C compiler. This is the longest file, and in many ways the most difficult. It con-
tains the procedures that determine the grand strategy for code generation and for the whole
second pass. :

The discussion of this file has been divided into four parts. This chapter considers the follow-
ing procedures:

1. p2init, as the name suggésts, berfo:ms initialization.

main reads the input file and calls the shots. ‘

rdin reads immbers from the input file.

éread reads expressiori trees from the input file.

eprizit dis'pl‘a‘ys expression trees for diag;nostic purposes.

delay tries to break the expression tree into more manageable parts.

delay1 looks for calculations that can be done immediately before the main calculation.

L T AU o

delay?2 looks for calculations that can be put off till later.
4.1 Variables

1. filename (0860) is used for the name of the source code file that is being compiled.
This name is passed from the first pass to the second pass for diagnostic purposes.

2. ftnno records the number (arbitrarily) assigned to the current function. When this
number changes in the data received from the first pass, the second pass must pertform cer-
tain ‘‘end-of-function’ chores.

3. lineno is passed from the first pass for diagnostic purposes. It refers to a line in the
source code. ‘ . S

4. 1flag may be set from the command line invoking the program. When it is set, a com-
ment line identifying each input code lme- is sent to. the assembler output of the compiler
(see line 1022).

5. Beginning at line 0866, there are a set of ‘*debugging’” flags, ?debug, which may be set
and which provoke various kinds of diagnostic output for checking the program’s behavior.

6. tmpoff, maxoff, baseoff and maxtemp are all used in the management of the
current procedure’s stack frame. The ﬁrst three of these measure offsets from the begin-
ning of the stack frame.

Explanations of the remaining variables, maxtreg, fregs, stotree, stocook and
callflag, are given later.

4.2 p2init (0890)

p2init is the section of initialization code that is executed in both the one and the two pass
version of the Portable C compiler. It is called as the very first action of main (0961) in the
version of the source code presented here.

32 readerc ‘) . The Scecond Pass ot

0856 ¢ include "mfile2"

0857)

0858 /= some storage declarations »/

0859

0860 char filename[100] = ""; /+ the name of the file «/ -
0861 int ftnno: /+ number of current function =*/

0862 1int lineno: :

0863 int nrecur;

0864 - int lflag;

- 0865

0866 int edébug = 0:

0867 int odebug = 03

0868 int rdebug = 0:

0869 int radebug = 0;

0870 int sdebug = 0;

0871 int tdebug = 0;

0872 int udebug = 0:

0873 int xdebug = 0:

0874

0875 OFFSZ tmpoff; s+ offset for first temporary.

0876) in bits for current block =~/
0877 OFFSZ maxoff: /+ maximum temporary offset over all blocks

0878 in current ftn. in bits </
0879 OFFSZ baseoff = 0 .)
0880 OQFFSZ maxtemp = 0
0881

0882 int maxtreqg:

0883 int fregs:

0884 NODE sstotree:
0885 int stocook:

0886 int callflag:
0887

0888 /4 ZaSEEaASAISaSINARINIIAIARIITIIBIINTISIIZIIAIIZIRINIT 4/
0889 .

0890 p2init(argc. argv) char «argv(]l;{

0891 /+ set the values of the pass 2 arguments «/

0892

0893 register int c:

0894 register char <cp:i

0895 register files:

0896 .

0897 allo0(): /=~ £free all regs +«/

0898 . f£iles = 0; '

0899

0900 for(c=1: c<argc: ++c){

0501 if(=(cp=argvic]) == - }{

0902 while(<+++cp) {
. 0903 switch(»cp){

0904 .) .)

0905 case ‘X’: /= passl flags +«/ .
0906 . while(+++cp.) { /7« VOID =/ }
0907 . -=Cp: ;
0908 : break:

0909

0910) case ‘l’: /+ linenos </

09113) ++1flag; :

0912 break:

0913 : }

0914 : case ‘e’: /+ expressions e/

9915 . ++edebug;

0916 . break;

0917

0918 ' ‘ case ‘o’: /+ orders +/

0919 ++0debug;

0920 break:

0921

The Portable C Compifer reader.c (1) 33

0897: allo0 (2458) initializes a number of variables that are used in the allocation of the cpu
registers.

0900: Loop through the arguments passed to the program by its parent. looking to see which
options have been requested, incrementing the associated flags. and looking also
for explicit file names (if any).

0955: Call mkdope (0811) to initialize the arrays. especially dope (0724), which describe the
_ different operator types.

0956: setrew (2112) scans the contents of the array table (which contains the templates for
the machine orders). It initializes rwtable (2108) and the array opptr (2110),
which define starting points for searching table when operator templates are
being matched for a given operation.

4.3 main (0961)

In the distributed source code, main actually occurs as mainp2. This procedure, whose prin-
cipal function is to read the intermediate file written by the first pass, is not needed in the one
pass version of the Portable C compiler.

0968: The value returned by p2init indicates whether there are explicitly named inbut files.
or whether input data should be obtained from the standard input.

0969: tinit (0642) initializes the freelist of tree nodes.

0973: Re-read the argument list, looking for a file name (if such is known to exist i.e. was
- reported by p2init), and use it to reopen the standard input file.

0978: There is a bug‘ in the code here. Replace files by files++.

0980: Begin readmg the standard input which is organized as a set of lines of ascii characters
Each line is classified by its first character.

0981: Lines beginning with ')’ get copied directly to the standard output (assembler code and
directives, which were generated during the first pass of the compiler).

0989: Lines beginning with ‘[’ define the beginning of a new block. In Fortran the concepts of
block and subroutine coincide. In C, a procedure may consist of more than one
block. - The beginning of a new procedure or subroutine implies, at object time.
extension of the stack and adjustment of the stack pointer. The code for pro-
cedure prologues is generated in the first pass and does not concern the second
pass, except in one respect: The stack pointer is advanced by an amount which is a
symbolic constant representing the maximum growth of the stack frame during
the procedure. The value of this constant is accumulated as maxoff. (See also
the comments for lines 0997 and 1012 below.)

0990: rdin (1055) reads an optional minus sign plus a string of numeric characters from the
input, and interprets them as a number in the base passed as an argument.

(0994: The line should contain exactly three numbers. in base 10:

1. a function number.

Pointed out by Le2 Benoy. who never got around o tixmy it

34 reader.e) ' The Second Pasy of

0922 case ‘r’: /+ register allocation s/
0923 ++rdebug:

0924 break:

0925

0926 case ‘a’: /» rallo =/

0927 ++radebug;

0928 break:

0929 . : S

0930 case ‘t’: /= ttype calls =/
0931 . ++tdebug;

0932 break;

0933

0934 : case ‘s’: /+» shapes =+/

0935 ++sdebug;

0936 break:;

0937 :

0938 ’ /+ Sethi-Ullman testing (machine dependent) «/
0939) case ‘u’: .

0940 ++udebug;

0941 . break;

0942 :

0943 : . ./+ general machine-dependent debugging £lag «/
0944 case ‘x’: .

0945 ++xdebug;

0946 i break;

0947 -

0948 } : default: .

0949 . cerror("bad option: %c". +cp):
0950 ' } '

0951 }

0952 }

0953 " else files = 1; /» assumed to be a filename «+/
0954 }

0955 mkdope () ;

0956 setrew():

0957 return(files):

0958 }

0959 /# ~-mecccccceccccmccac e T e e -/
0960 . '

0961 main(argc, argv) char =»argv(]: (

0962 register files;

0963 register temp:

0964 register c:

0965 register char «cp;

0966 register NODE =»p:

0967

0968 files = p2init(argc., argv);

0969 tinitc():

0970

0971 reread:

0972

0973 if(files){

0974 while(files < argc && argv(files][0] == °-°)} {
0975 ++files;

0976 - } :

0977 if(files > argc) return(nerrors }:

0978 : freopen(argv(files]. "r"., stdin):

0979]

0980 while((c=getchar()) > 9) switch(c){

0981 case ") ’:

0982 /+ copy line unchanged «/

0983 ' while((c=getchar()) > 0){

9984 PUTCHAR(c) :

0985 if(¢ a= ‘\n’) break:

0986 }

3987 continue:

The Portable C Compiler ‘ reader.c (1) 33

2. an offset, which defines where in the stack allocation of temporaries can
begin, i.e. after the area allocated to automatic variables.

3. maxtreq, i.e. a statement of the maximum number of temporary registers
available. (This can vary from block to block and depends on the number of
register variables allocated.) : :

0997: If the function number has changed, re-initialize maxoff, maxtemp and ftnno.
These are used as follows:

1. maxoff keeps track of the maximum value of tmpoff and baseof £ over
all expressions in a single function.

2. maxtemp keeps track of the number of temporary locations allocated, but is
not otherwise used (at least in the PDP11 version).

1007: setregs is the first machine dependent routine that we encounter. Its principal func-
tion is to calculate £regs, the number of available type A scratch registers. This
value, which is calculated afresh for each block, is determined as the larger of
maxtreg + 1 and MINRVAR, and for the PDP11, is never greater than four.
For testing purposes, the value of fregs may be limited to a particular value by
use of the *x’" program debugging flag. setregs also updates the array

rstatus at the beginning of each block to reflect the temporary or otherwise

status of each register.

1010: Lines begiﬁnfng ‘with *]" denote the end of a block.

1011: SETOFF (0225) rounds the value of maxoff up to an even multiple of ALSTACK.
which defines the preferred alignment boundary for stack entries. (On the
PDP11, the value of ALSTACK (0266) is 16 (bits), implying alignment to a word
boundary.

1012: eobl2 (3753) is a machine dependent routine which performs *‘end of block®® actions.
For the PDP11 this consists of determining the maximum extent of stack growth
for the block, and issuing an assembler directive. It will also define the variable
fltused (“‘float used’) for the assembler, if a floating point operation has been
compiled. (This will subsequently influence the loading of certain library routines
with the compiled program.) -

-1018: Lines.beginning with a period define an expression tree for which code is to be generated.
1019: Read the source file line number.
1020: Read the source ﬁle name into the array £ilename.

1022: If 1flag is set (which would have occurred in p2init). call 1lineid (3770) 1o
display the line number and file name in the output file. Since this will be a com-
ment in the assembler file, 1ineid is regarded as a machine dependent routine.

1026: eread (1089) is called to read in the details of the expression tree, and to recreate the
expression tree in internal binary form.

This routine is somewhat time-consuming, and is avoided entirely in the one-pass version of
the compiler. In situations where the two-pass version must be used. a worthwhile improve-
ment in execution efficiency may be obtained by changing the mode of storage ol expression
trees from the current ascii form.

36 reader.c) . _ The Second Pass of

0988 .

0989 case ‘[’: /+ beginning of a block =/

0990 temp = rdin(10): /+ ftnno »/

0991 /+ autoorff for block gives max offset of autos in block =/
0992 tapoff = baseoff = rdin(10);

0993 maxtreg = rdin(10):

0994 if(getchaz() != ‘\n’)

0995 cerror("intermediate file format errox"):

09296

0997 if(temp != ftnno){ /+ beginning of function =/
0998 maxoff = baseoff;

0999 ftnno = temp;

1000 maxtemp = 0}

1001 }

1002 else {

1003 if(baseoff > maxoff) maxoff = baseoff;

1004 /+ maxoff at end of ftn is max of autos and temps
1005 - over all blocks in the function =/

1006 ' :

1007 setregs();

1008 continue;

1009

1010 case ‘]’: /» .end of block =»/ B

1011 SETOFP(maxoff, ALSTACK);

1012 eobl2(); .

1013 . while((c=getchar()) != ‘\n’){

1014 ’ if(c <= 0) cerror("intermediate file format eof");:
1018 ’ } ~ .

1016 continue; -
1017 .

1018 . case ‘.": /+ compile code for an expression =/

1019 lineno = rdin(10);

1020 for(cp=filename; (s»cp=x=getchar()) != ‘\n’; ++cp) { }
1021 «cp = ‘\0’;

1022 if(1flag) lineid(lineno, filename };

1023

1024 /+ expression at top leval reuses temps »/

1025 tmpoff = baseoff;

1026 p = eread();

1027

1028 if(edebug) fwalk(p, eprint, 0);

1029 - ’ -

1030 # ifdef MYREADER PIOPIIRIIISISSIIIEIIFIID

1031 MYREADER(p); /+ do your own lauridering of the input =/
1032 # endif LR LCCLELLCLELELLCL<<

1033

1034 nrecur = 0;

1035 delay(p); /» expression statement throws out results s/
1036 reclaim(p, RNULL, 0);

1037

1038 allchk();

1039 tcheck();

1040 continue;

1041

1042 cdefault: ,

1043 cerror("intermediate file format error"):

1044

1045 }

1046

1047 /+ EQOF «/

1048 if(files) goto reread:

1049 return (nerrors) ;

1050 o} :

1051

1052 /¢ RS ras SRS ISR AS AR TANRATONAIIIISAIIANRSEITIZIIT 4/

1053

The Poriable C Compiler reader.c i) 37

1028: For debugging purposes, call eprint (1134) at each node to print a display of the
expression tree.

1031: The optional call on myreader at this point provides an opportunity for some machine
dependent massaging of the expression tree.

For the PDP11, myreadexr (3926) (a) looks for **hard operations'’, namely mul-
tiply and divide operations involving long integers, and rewrites the tree so that
these operations are replaced by calls on library procedures; (b) rewrites expres-
sions involving the operator AND, so that its meaning is effectively changed to
that of the PDP1Il “‘bic’ instruction (since this operation is non-commutative,
care has to be exercised later to avoid re-ordering the left and right subtrees): and
(c) resets toff to zero.

1035: This innocent looking procedure call to delay (1183) initiates code generation for the
expressxon tree. By the time it is finished. there should be nothing much left ...

1036: for reclaim (2677) to salvage, and ...

1038: for allchk (2479) and tcheck (0665) to check.
4.4 rdin (1055)

rdin is a routine for reading in integer numbers in ascii format, without generating overflows
at the extreme end of the range. Numbers may begin with zero or more minus signs, and must
terminate with a tab character. The number base is provided as an argument. With only one
exception, (line 1106), base is always 10 when rdin is called.

4.5 eread (1089)

This procedure is called by main at line 1026 to read the input file and build the expression
tree in internal form.

1098: Read the operator value and assign it to the op field of a newly acquired node.

1102: The operator type, LTYPE (leaf), UTYPE (unary operator), or BITYPE (binary opera-
tor), determines subsequent actions at this level. UTYPE nodes always tby con-
vention) have a left subtree, but no right subtree.

1103: For LTYPE nodes, get a value for lval. ' s
1104: For LT?PE and UTYPE nodes, get a value for rval.

1106: Read in the operand. type information. i.e. a numeric value which which will be inter-
preted as one of CHAR, SHORT. INT, LONG. erc.

1107: Initialize the rall field to indicate no preference for locating the result of the operation.
This field may subsequently be changed by rallo for particular operauons 1{s)
indicate a preference for, or msxsttence upon, a particular register.

1109: If the operation involves structures, read and save values deﬁning the structure size and
the required storage alignment boundary parameter. These four operations: struc-
ture assignment, structure argument, and call to a function. with or without argu-
ments. which returns a structure as a result. are cither UTYPE or BITYPE. Note
also that stsize and stalign occupy space that is otherwise assigned to the
name array in the tree node.

.

38 reuder.c ' The Second Pass o1

1054 CONSZ
1055 rdin(base){

1056 register sign, c:

1057 CONSZ val:

1058

1059 sign = 13

1060 val = 0; - ’
1061

10862 while((c=getchar()) > 0) {

1063 i£(¢ == *=*){

1064 if(val !'a 0) cerror("illegal -"):
1065 sign = -sign: :

1066 continue;

1067 }

1068 if(¢ == ’\t’) break:

1069 if(c>="0" && c<=’9”) {

1070 val = base:

1071 . i£(sign > 0) :

1072 val += ¢c=-’0":

1073 else

1074 . val -= ¢c-“0":

1075 . continue:

1076 S

1077 cerror("illegal character ‘%c’ on intermediate file"., c):
1078 - break; :

1079 }

1080 .

1081 if(¢ <=0) { i

1082 -~ cerror("unexpected EOF"):

1083 o }

1084 . return{ wval):

1085 }

1086 /4 m=emcccccccccccr o ce s e s c e e e e m e s s s cmcmm e e —— - -/
1087 ’

1088 NODE «
1089 eread(;{

1090 .

1091 /+ call eread recursively to get subtrees. if any «/
1092 o

1093 register NODE +p:

1094 register i. c:

1095 register char =pc:

1096 register j:

1097

1098 i = zdin(10)

1099 p = talloc():

1100 p->0p = i3

1101

1102 i = optype(i): :

1103 if(i == LTYPE) p->lval = rdin(10):

1104) if(i t= BITYPE) p->rval = rdin(10 -}

1105 : .

1106 . p->type = rdin(8)) : :
1107 . p~»rall = NOPREF; /+ register allocation information +/
1108 .-

1109 if{ p-»>op == STASG |i p->op == STARG i1

1139) - p->0p == STCALL (| p->0p == UNARY STCALL }{
1114 p->stsize = (rdin(10) +» (SZCHAR-1))/SZCHAR:
1112 p~>stalign = rdin{10) / SZCHAR: :

1113 - if(getchar() != “\n’) cerror("illegal \n"):

1114 }

The Portable C Compiler ' . reader.c (1) 39

1116: If the oberator isa regiéter, increment the registef’s *“busy’” count.

1119: Read in the name, and store up to NCHNAM (eight) characters.

1122: Add a null character at the end of the name, if it .is less than' NCHNAM characters long.
1127: For UTYPE and BITYPE operators, \r‘ea;d the left subtree.

- 1128: For BITYPE opex"ators, read the right subtree.
Note that no nodes representing labels (form **C™*, line 0487) are expected by this.routine.
4.6 eprint (1134) | |

This procedure is used to provide a diagnostic display of the expression tree during debugging.
Itis referenced from several locauons but always as an argument to £walk (0699), viz.

. fwalk (P, eprint, 0);
A proper undersmndmg of this procedure is not necessary for our immediate purpose but is
otherwise instructive, and it does cast some light on the type of information which may be
stored in the tree nodes, e.g.

1. REG nodes (whxch are of type LTYPE, ie. a leaf) have the associated register number
stored as rval.

2. ICON, NAME and OREG nodes have an assocxated address part which is stored as lval.
In the case of OREG nodes, a register number is also stored as rval.

3. rall can contain one of the patterns: NOPREF or PREF plus a register number, or
MUSTDO plus a register number. ‘ :

From lines 1137 to 1141, it will be seen that the equivalent of down times four blanks are
emitted at the beginning of each line and that the value passed to the ‘‘descendent’ is
increased by one at each stage. (See the discussion of fwalk (0699) in the previous chapter.)
Thus there are provided different levels of indentation for each level of the tree.

4.7 delay (1183)

This routine looks for ways of breaking the expression tree into (smaller) subtrees, that can be
handled more expeditiously.

- 1191: Call delay1 repeatedly to break off the left subtrees of any ‘“‘visible’ comma-operators.
and process them immediately. Finish when they are all done. When a comma-
operator occurs within an expression. it implies that the calculation represented by
the left subtree should be carried out for side effects only, and the value returned
for the whole tree should be the value obtained from evaluating the right subtree.
In this situation, a comma-operator is considered invisible if it occurs in part of
the expression which is not always evaluated, i.e. that is part of the right subtree
of an operator such as ANDAND or OROR.

1195: Call delay2 to find right subtrees‘which can be broken off for processing later. (Refer-
ences to these are accumulated in the array deltrees (1180).)

1196: Call codgen (1281) to process the remaining trunk of the original tree.

1198: Call codgen to process all the subtrees split off by delay2.
4.8 delay1 (1202)

This proceduré performs a (possibly abbreviated) preorder traversal of the tree. looking for
visible COMOPs (comma-operators). As noted already. such an operator will be regarded as not
visible, if it is part of the right subtree for a conditional operator, i.c. a subtree for which the |

10 reader.c { - The Sccond Pass ot

1115 else { /» usual case s/

1116 if(p-»>op == REG)

1117 . /+ non usually, but sometimes justified «/
1118 rbusy(p-»rrval, p->type)3

1119 for(pcsp-»>name,j=s0; (¢ = getchar{))} != "\n’; ++3){
1120 if(j < NCHNAM) =pc++ = ¢

1121 }

1122 if(j < NCHNAM) *pc = °‘\0";

1123 } '

1124

1128 /+ now, recursively read descendents, if any =/
1126

1127 if(i != LTYPE) p->left = eread();

1128 if(i == BITYPE) p->right = eread();

1129 . ,

1130 return{ p);

1131 }

1132 /4 ~ee-- —————— ——————— ——mrmee e ——— P — ./
1133 ’

1134 eprint(p. down. a, b) NODE »p; int =a., +b: {
1135 ’

1136 " s«a 3 #b = down+1;

1137 while(down »= 2){

1138 printf("\t")

1139 down == 2;

1140 . ’ }

1141 . if(down--) printf(" ")3

1142

1143 . printf("%o) %s", p, opst(p->opl]):

1144 = switch(p->op) { /» special cases «/

1145 :

1146 case REG:

1147 printf(" %s", rnames(p->rvall]):

1148 .break;

1149 ‘ .

1150 case ICON:

1151 case NAME:

1152 case OREG:

1153 printf(" ")

1154 adrput(p);

1155 break:

1156

1157 case STCALL:

1158) case UNARY STCALL:

1159 case STARG:

1160 case STASG:

1161 , printf(" size=%4". p->stsize):

1162 printf(" align=%d"., p->stalign);

1163 - break: .

1164 }

1165

1166 printf{ ", " }:

1167 tprint(p->type);

1168 princf(", "): :

1169 if£(p-»rall == NOPREF) printf("NOPREF" }:
1170 else {

1171 ’ if(p->rall & MUSTDO) printf("MUSTDO " }:
1172 else printf("PREF "):

1173 printf("%s", rnames[p->rall&-MUSTDQ]):
1174 }

1175 printf{ ", SU= %d\n". p->su):

1176 ’ }

1177

1178 /e 2m=T23ASIASNSSISSIIINTRTTATIRIIIITIRNIIIZIIRIIINIZaR -/

1179

The Portable C Compifer : reader.c (1) 41

corresponding subexpression will not always be evaluated during the evaluation of the whole
expression. For example, if the expression

‘A&S B

is evaluated in a conditional context, and the value of A is found to be false, then it is not
necessary to evaluate B also in order to determine the value of the whole expression. In fact in
the C language, it is expressly required that B should not be evaluated in this situation, and A
may be a test to determine whether the evaluation of B will not cause an object time error.

In terms of tree operations, the tree

X]

(al Bl
is to be transformed into two separate trees

X1

(Al [B

t

with the leftrnost of these being processed immediately via the recursive call on line 1219.

In the process of splitting the tree, one node is freed. Formally, this is the node containing the
COMOP. However, since there may be several references to this node recorded in difficult to
find places, for example, as actual arguments to procedures, it turns out to be convenient. if
not absolutely essential, to free the node which was the root of the right subtree after its con-
tents have been copied (by ncopy (2891)) onto the node which was formerly the COMOP.

1207: Leaf nodes are obviously of no interest. Return a zero value.

1208: Unary nodes' are not COMOPs. Look down the left subtree (the_,only possibility).
1210: With orily bihary nodes left to deal with, if the operator is ...

1212: QUEST or ANDAND or OROR, do not look for COMOPs in the right subtree (yet).

1218: At last!

1219: Call delay (1183) recursively to handle the left subtree. Upon return from this pro-
cedure call, the left subtree will be completely reduced in the sense that code for
all the computations represented by that subtree will have been generated. Since
the COMOP takes its value from the right subtree, there is no need to investigate
the value, if any, calculated by the left subtree.

1221: Re-write the subtree. ncopy (2891) copies the contents of the node referenced by its
second argument onto the node referenced by its first argument. (i.e. the
*‘lvalue™ is on the left.)

42 reader.c The Secomd Pass of

1180 NODE ~deltrees([DELAYS]:
1181 int deli:

1182
1183 delay(p) register NODE ep; {
1184 /+ look in all legal places for COMOP S, ++ & =-— ops to delay «/
1185 /+ note: don’‘t delay ++ and -- within calls or things like
1186 /+ getchar (in their macro forms) will start behaving strangely
1187 */
1188 register i;
1189
1190 /» loock for visible COMOPS, and rewrite repeatedly =/
1191 while(delayi(p)) { /» VOID +/ }
1192
1193 /+ look for visible, delayable ++ and -- »/
1194 deli = 0;
1195 delay2(p):
1196 codgen{ p, FOREFF); /+ do what is left »/
1197 /+ do the rest «/
1198 for(i = 0; i<deli; ++i) codgen(deltrees(i]. FOREFF):
1199 }
1200 /% cmemmmeem—aaa e — e — e — e ——————————— -/
1201 i
1202 delayt(p } registexr NODE =+p; { /+ lock for COMOPS +/
1203 register o, ty:
1204
1205 O = p->0p:
1206 ty = optype(o);
1207 if(ty == LTYPE) return(0);
1208 else if(ty == UTYPE) return(delayl(p->left })3
1209
1210 switch(o){
1211
1212 case QUEST:
1213 case ANDAND:
1214 case OROR:
1215 /« don’t look on RHS =/
1216 return(-delayl(p->left)):
1217
1218 case COMOP: /» the meat of the routine «/
1219 delay(p~>left): /»* completely evaluate the LHS +/
1220 /~ rewrite the COMOP +/
1221 { register NODE =q;
1222 q = p->right:
1223 ncopy(p. p->right }:
1224 q->op = FREE:
1225 }
1226 return(1);
1227 }
1228 .
1229 return(delayiip->left) || delayi(p->right)):
1230 } :
1231 /% amme=— e m - —————— - o o e m—————— -/
1232
1233 delay2(p) register NODE +p: {
1234
1235 /+ look for delayable ++ and -- operators «/
1236
1237 register o, ty;
1238 o = p->0Op:
1239 Ty = optype(o):

1240

The Portable C Compiler - reader.c (11 43

1226: Return a non-zero (true) value, which will be passed back eventually to delay at line
1191.

1229: None of the above-mentioned cases has occurred, so recursively search the left subtree,
and if nothing interesting happens, do the right subiree also.

delay calls delay1 repeatedly until no further changes are observed. After the tree has
been broken up, and re-written by delay1, it is apparently necessary to return to the root of
the whole tree. If the tree contained several COMOPs, not all of these may have been found
upon the first try, and after the tree has been rewritten, the remaining COMOPs may appear at
any node, including the root itself. (Consider the case of a tree in which COMOPs are cascaded
to the right.)

4.9 delay2 (1233)

This procedure performs a preorder traversal of the tree, looking for visible INCR and DECR
operators. These operators, which correspond to the postfix versions of ++ and -- in the C
language are binary operators whose value is the value of the left operand, but which have the
side-effect of changing the value of the operand. (The prefix versions of these operators are
transformed into ASG PLUS and ASG MINUS operators respectively during the first pass of the
compiler.) The ++ and -- operators constitute one of the more novel and innovative features
of the C language. They also lead to some of the more intricate and complex parts of the C
language compiler. Since they provide the application programmer with what turns out to be a
two-edged sword, all in all, they have to be regarded as a 'mixed blessing.

If the current subtree looks like

X}
++

(a B]

it is to be replaced by a reduced subtree plus an extra tree

/X] /++\
[a , [A B]

The extra tree is generated by making an entire copy of the original subtree (using tcopy
(2910)). copying the left node, labeled ‘A’ in the diagram, onto the root node. and finally
abandoning the two nodes labeled ‘A’ and ‘B’.

1261: deltest (2947) is a machine dependent routine which determines under which condi-
-tions it is reasonable to delay the operation. For the PDP11, the decision to delay
is taken if the left tree represents an addressable variable (‘‘lvalue’’), and the
incrementation can not be achieved using autoincrement addressing.

1266: The node labeled ‘B’ will always be a leaf (i.e. a constant) from the way the expression
tree was originally calculated.

Code generation for the extra tree will be delayed until after the main tree has been completely
reduced (see line 1198). Note also that if there is no node labeled *X’, i.e. the root node is
the "+ +" node, delay2 will still operate to create two trees, the first of which will be trivial.
and will generate no code.

44 reader.c

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262,

1263
1264

1265

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306

switch(o){

case NOT:

case QUEST:

case ANDAND:

case OROR:

case CALL:

case UNARY CALL:

case STCALL:

case UNARY STCALL:

case FORTCALL:

case UNARY FORTCALL:

case COMOP: i

case CBRANCH:
/+ for the moment, don’t delay past a conditional
/+ context, or inside of a call «/
return:

casa INCR:
case DECR: ‘
if(deltest(p)){
if(deli < DELAYS){
register NODE =+q:
deltrees{deli++] = tcopy(p):
q = p->left:
p->right->op = FREE: /=~ zap constant
~ ncopy(p. q)i
q->0p = FREE:
return:

}

}

if(ty == BITYPE) delay2(p->right):
if(ty != LTYPE) delay2(p->letft ;:
H .

/4 IR EENIRRRABAATIIIRITIRITIANTTIRITAIDAZSIRNSTTIAISIITIINNDT /S
codgen(p. cookie) NODE s+p: {

/+« generate the code £or p;
order may call codgen recursively «/
/» cookie is used to describe the context »/

for(::i){ -
/+ create OREG from « if possible and do suconmp «/
canon(p):
. stotree = NIL;
if{ edebug){ .
- printf("store called on:\n"):
fwalk(p, eprint., 0)
}
store(p):
if(stotree==NIL) break:

/+ because it’s minimal. can do w.o. stores «/
order(stotree, stocook)
}

order(p, cookie);

}

/’ AR IIAT A TIITITCIIITIISIIINISSSAIXNIBSIIIAITIRTIIIIIID S

./

Chaprer 5: The File *‘reader.c’’ Part Two

This chapter introduces the second set of procedures from the file reader.c. These are
1. codgen which attempts to generate code for a given subtree, for a specified effect.

2. canon which tidies up the tree, and calls sucomp to recalculate the Sethi-Ullman
numbers.

3. store which looks for situations where te‘mporai'y results must be placed outside the tem-
porary registers. ’

4. stoarg which is a modified version of store for function arguments.

. markcall which searches subtrees iooking for ‘*call’* operators.

h

6. constore, which is a2 reduced version of store, is used to preserve the left-to-right
evaluation of logical expressions.

7. prcook which is used for diagnostic printing.

rcountwhich keeps an iteration count, and terminates the compilation if things appear to
be getting out of hand. .

5.1 codgen (1281)

This procedure is called by delay (1196, 1198), after all obvious tree-lopping has been per-
formed. Itis also called (indirect recursion) by order and cbranch.

1287: Loop repeatedly, transforming the tree (via canon (1307)), and then calling store
' (1325) to look for a subtree whose value (i.e. the value which will be calculated at
object time) needs to be stored in a temporary location outside the processor

registers, in the run-time stack.

As long as such subtrees can be found, the call to order (1524) at line 1300 should generate
segments of code, and simplify the tree, until finally the tree is simple enough to be handled
directly by the final call to order at line 1302,

The main strategy of the second pass is laid bare at this point: as long as the current tree
‘represents a calculation which is too complex to be carried out entirely within the processor’s
high speed. readily addressable registers, use the procedure store to identify a subtree which
represents a calculation that can be so conducted and arrange to have the result of this calcula-
tion stored outside the registers, i.e. in a temporary core location. Use order to generate the
code for this subtree. Simplify the main tree to take account of this, and try again, until the
whole tree is computable.

In theory, there is a clear division of labor, with store making the strategic decisions and
order doing the hack work. In practice, things are a little more complex. Due to the way
conditional expressions are handled, ordex in fact calls codgen recursively in certain situa-
tions.

5.2 canon (1307)

This procedure is called principally by codgen and order, but also by myreader.
genargs and setasop. [lis function is to tidy up the expression tree in the following
respects:

46 reuder.c ’ The Secomd Pass of

1307 canon(p) NODE sp: {

1308 /+ put p in canonical foxrm +/ -

1309 int oreg2(). sucomp():

1310 .

1311 # ifndef FIELDOPS R S N E E F T

1312 int ££14():

1313 fwalk(p. ££1d4, 0): /» look for field operatoxs +/
1314 # endif CCKLELLLCLLLLLLLEELCLLLK

1315 walkf(p. oreg2); /= look for and create OREG nodes +/
1316 # ifdef MYCANON PRI EIBIIRDFRESISIIDS>

1317 MYCANON(p): /= your own canonicalization routine(s) «/
1318 # endif A CCELLLCCLLLLLCLLLL

1319 walkf(p, sucomp }; /+ do the Sethi-Ullman computation +/
1320 T :

1321 }

1322

1323 /% ZRRATTIIRARATATANSTATAXSAAISIASITNTIRNIIIATIIIIIISRR 4/
1324

1325 store(p) register NODE +p; (

1326 .

1327 /+ find a-subtree of p which should be stored »/

1328

1329 register o, ty;

1330

1331 - o 3 p->0p;
1332 ty = optype(o): h

1333 ' -

1334 if(ty == LTYPE) return;

1335

1336 switch(o){

1337

1338 . case UNARY CALL:

1339 case UNARY FORTCALL:

1340 case UNARY STCALL:

1341 ++callflag:

1342 break:

1343 : :

1344 case UNARY MUL: .

1345 if(asgop(p->left->op)) stoasg(p->left, UNARY MUL):
‘1346 break:

1347 '

1348 case CALL:

1349 - case FORTCALL:

1350 case STCALL:

1351 store(p=-»left)i

1352 stoarg(p-»>right. o):

1353 ++callflag;

1354 return; o

1355 .

1356 case COMOP:

1357 markcall(p-»>right): ')
1358 if(p-»>right->su > fregs) SETSTO(p. INTEMP ;};
1359 store(p->left).

1360 return;

1361 ;

1362 . case ANDAND:

1363 case OROR:

1364 case QUEST:

1365 markcall(p->right):

1366 if(p->right-»>su > fregs) SETSTO(p. INTEMP):
1367 case CBRANCH: /+« to prevent complicated expreSSLOns
1368 : . on the LHS from being stored =/

1369 case NOT:

1370 constore(p->left)3

1371 return:;

1372

1373 }

1374

1375 if(ty == UTYPE){

1376 store(p->left):

1377 return:

1378 }

The Portable C Compiler . ‘ reader.c (1) 47

1. If the cpu has no hardware for extracting subfields from words in storage directly, simulate
the desired operation using a combination of shift and masking operations.

2. Replace explicit address calculations by implicit calculations that can be performed by the
memory addressing hardware.

3. Perform any other transformations that will take advantage of the features of a particular
machine (not used for the PDP11).

4. Finally, perform the *‘Sethi-Ullman’ calculation (see Chapter Eleven) to determine the
resource requirements (measured in numbers of type A cpu temporary regxsters) to carry
out the calculation represented by each subtree.

Since canon is called quite frequently, since tree walking is a relatively expensive axercise,
and since relatively few C expressions contain any reference to values stored in bit fields, the
call here on ££1d must be considered relatively expensive. Fields cannot be disposed of once
and for all, because only field extractions. not field insertions may be handled easily. The
rewriting of trees in mid-stream, e.g. for an assignment operator, may cause a field extraction to
appear in the tree at some intermediate stage, but only if the tree contained a field insertion in
the first place. If it were known that the tree contained no ﬁeld operations, the common situa- -
tion, then ££1d need never be called.

If a bit mask were defined for each operator type, and the union of the masks for all operators
present in the tree was created when the tree was built or reconstructed, then it would be possi-
ble to answer relatively inexpensively a number of simple questions such as “*are there any field
operators in the tree?””. Not only could unnecessary tree walks looking for FFLD nodes be
avoided, but delay1 need not be called if there are no COMOP nodes, nor delay?2, if there
are no INCR or DECR nodes, etc. ‘

Note that whereas oreg2 and sucomp are constrained to walk the tree in endorder. ££1d is
not so constrained, and hence can use the faster preorder walk.

5.3 store (1325)

The principal call on this procedure occurs at line 1295 in codgen. It is also called recur-
sively, directly at lines 1351, 1359, 1376, 1387, and 1388 and indirectly via constore (line
1468) and stoarg (lines 1409, 1414). ‘

The basic idea behind stoxe is simple enough: a pre-order walk, from right to left. is per-
formed over the tree. If the node represents a *‘call’” operation, callflag is incremented: if
the SU number for the node is greater than the number of free registers, then the node is
remembered as stotree, and an associated goal is remembered as stocook. These latter
are set via the macro SETSTO (0532). Note that SETSTO will erase any values stored earlier.
so that only the most recent values are saved. store is called iteratively until nothing further
is to be done.

One may wonder whether a different method of traversing the tree would allow store to ter-
minate the first time SETSTO is invoked. However the need to treat specially the right sub-
trees of conditional operators seems to forbid this.

callflag is zeroed only by stoarg (1392), just before the latter calls store (line 1408).
The value of callflag is tested when nested calls must be avoided. i.e. a procedure call
must not be invoked during the calculation of arguments for another procedure call. This can
occur with machines that do not implement a hardware stack.

The basic structure of store is perturbed by a number of special situations:
1342: The break here is equivalent to a transfer to line 1376,

1345: For the PDPI11, the only effect of stoasg (2960) is to return a value. See the discus-
sion of the next section.

48 reader.c : ‘ The Second Puss o

1379

1380 if(asgopl p->right-»>op)) stoasg(p->right. o)i
1381

1382 if(p-»suxfregs){ /+ must store +/

1383 mkadrs(p): /+ set up stotree and stocook to subtree
1384 v that must be stored +/

1385)

1386

1387 store(p->right);

1388 store(p-»>left).

1389 } .

T390 /4 memc e mrmcdcr s e e e e - e ./
1391

1392 stoarg(p. calltype) register NODE ~p: {

1393 /+ arrange to store the args =/

1394

1395 if£(p=>op == CM){

1396 stoarg(p->left, calltype |

1397 P = p->right .

1398 }

1399 if(calltype == CALL)(

1400 STOARG(p) 3

1401 }

1402 . else if(calltype == STCALL){

1403 . STOSTARG(p) ;

1404 } .

1405 else {

1406 STOFARG(p):

1407 }

1408 callflag = 0:

1409 . store(p):

1410 # ifndef NESTCALLS P P P E E S P T Y

1411 ; iZ(callflag){

1412 - /+ prevent two calls from being active at once +/
1413 ~ SETSTO(p.INTEMP):

1414 store{p): /+ do again to preserve bottom up nature... </
1415 e

1416 # endif CREXECKLLLLLLLLLLL LSS

1417

1418 /4 comccvcsacc s m e rr e e e e S — - — - - - -/
1419

1420 markcall(p) resgister NODE #p: {

1421 /« mark off calls below the current node ./

1422

1423 again:

1424 switch(p->op) {

1425 :

1426 case UNARY CALL:

1427 case UNARY STCALL:

1428 case UNARY FORTCALL:

1429 case CALL:

1430 case STCALL:

1431 case FORTCALL:

1432 ++callflag:

1433 return:

1434

1435 }

1436

1437 switch(optype(p->op)){

1438

1439 case BITYPE:

14490 ‘ markcall(p->right).

1441 case UTYPE: :

1442 p = p->left.

1443 - /% eliminate recursion (aren’t I clever...} </
1144 goto again:

1445 case LTYPE:

1446 return:

1447 ¢ . }

1448 }

1449 /e cm-emmee- o e e e > e e -
1450 :

The Poriable C Comypiler N : reader.c (1) 49

1352: The right subtree contains the argument list.

1357: markcall looks to see if there are any call operators in the subtree. It can be regarded
as a restricted version of store.

1358: The right subtree of the COMOP is too complex for calculation entirely within the proces-
sor registers. Remember the place, and explore the left subtree.

1365: markcall (1420) explorés the right subtree to check if there exist any *‘call operators™
(not important for the PDPLII).

1366: Evaluation of the right subtree can use all the available registers, so attempt to get the
value of the whole conditional expressmn in to a temporary stack location.

1370: constore (1451) will follow the leﬁmost path of the subtree, without executing
SETSTO, until a non-conditional operation is encountered.

-

1380: See the comments above for line 1345.

1383: mkadrs (2968) is called when it is known that a subtree is overloaded. Its job is to
locate the most pressing subgoal, which should be satisfied. One way or the other,
it invokes the macro SETSTO (0532), to set the values for the variables sto-
tree (0884) and stocook (0885).

Since store is called recursively immediately following the call on mkadxs, and
since SETSTO (0532) may be reinvoked during these recursive cails, it would
seem possible and desirable to delay the calculation at line 1383 until after the call
on line 1388, and then to invoke mkadzrs only if stotree has not been reset.

5.4 stoarg (1392)
This procedure is called by stoxe at line 1352.

Since for the PDP1l, STOARG (0337), STOSTARG (0340), STOFARG (0339) and NEST-
CALLS (0352) are all defined with null values, the routine could be re-written simply as

if(p->op ==CM)

stoarg(p->left, calltype)

callflag = 0;

store(p);
Since the value of callflag is only interrogated at line 1411, it is clear that the whole rou-
tine could in fact be replaced by the smgle statement

store(p);
This implies that for machines such as the PDP11 and VAXI11/780, where nested calls are not
a problem, the code in this area could be substantially revised.

1412: This comment is misleading, if taken literally, since the only possible side-effects of
storeare to set callflag, stocook and stotree. The intent here is, that
when calls must not be nested, to do something in the situation where the call on
store at line 1409 changed the value of callflag, but may or may not have
changed the value of stotree (0884) and stocook (0885). If the values were
changed, well and good, but if not, then line 1413 is what is required. This code
comes under the heading of things that could be better said ...

5.5 markcall (1420)

As has already been noted, this procedure can be regarded as a stripped down version of
store. As has been further noted, since its only side-effect is to change callflag, which is
not of interest on machines such as the PDP11 and VAXH/?SO it could be eliminated from
the compiler for these machines.

50 reader.c : ‘ _ The Second Pass of

1451 constore{ p) register NODE +p; {

1452
1453 /+« store conditional expressions «/
1454 /+ the point is, avoid storing expressions in conditional
1455 context, since the evaluation order is predetermined «/
1456
1457 switch(p-»>op) {
1458
71459 case ANDAND:
1460 case OROR:
1461 case QUEST:
1462 markcall(p->right):
1463 case NOT: ;
1464 constore(p->left):
1465 return;
1466
1467 . }
1468 store{ p):
1469 }
1470
1471 /% Z2aZarAZTIITTITRATIETITSIAIIIIRAIIAIJIAIAIIITIISIIIIIZSS +/
1472
1473 char e<cnames{] = {
1474 "SANY",
1475 "SAREG" .
1476 "STAREG".
1477 "SBREG" .
1478 "STBREG".
. 1479 *sce .,
1480 "SNAME",
1481 "SCON".
1482 "SFLD",
1483 "SOREG" .
1484 "STARNM" ,
1485 "STARREG",
1486 "INTEMP",
1487 "FORARG",
1488 "SWADD" .
1489 g,
1490 |3
1491
1492 prcook(cookie){
1493 ’ _
1494 /+« print a nice-looking description of cookie +/
1495
1496 int i, flag:
1497
1498 if(cookie & SPECIAL){
1499 : if(cookie == SZERO) printf("SZERGC"):
1500 else if(cookie == SONE) printf("SONE"):
1501 else if(cookie == SMONE) printf("SMONE");
1502 else printf("SPECIAL+%d", cookie & -SPECIAL):
1503 . return; i
1504 - }
1508 flag = 0:
1506 for(i=0: cnames(i]: ++i){
1507 if(cookie & {1<<i}){
1508 if{ flag) printf{ "{"):
1509 ++flag;
1510 printf(cnames{i]):
1511 }
1512 .)
1513 }
1514 /& cecmcecrre e e e r e r s e m—,—— e ————— - =/
1515
1516 rcount(){ /+ count recursions «/
1517 i£(++nrecur > NRECUR)({
1518 cerror("expression causes compiler loop: try simplifying”):
1519 }
1520 }
1521

1922 /0‘:a-::l=-:=sssssa=s====:n:=:===:================:a: s/

The Portable C- Compiler : reader.c (1) 31

5.6 constore (1451)

This procedure is called by store at line 1370, when the operator of the tree node is found to
be a conditional or a branch. The right subtrees of trees passed to constore are checked via
markcall only for the presence of ‘‘call operators. In cases where there are several condi-
tional operators cascaded to the left. the use of constore on the second and subsequent
nodes will ensure that any execution of SETSTO will be for the first such node only (see line
1366).

The special treatment accorded by store and constore to conditional operations, is to
preserve the left to right evaluation of conditional expressions. ordex, when it comes to deal
with such expressions, does not iterate or call itself recursively, which is its usual style of
behavior. Instead, it calls codgen recursively (see line 1630, for example) to ensure that the
order in which code will be generated will follow the C language rules.

5.7 prcook (1492)
Not much difficulty here. Diagnostic prifiting only.
5.8 rcount (1516)

This small procedure monitors the progress of the calculation, and provides an escape hatch in
certain looping situations that could be endless. nrecur is reset to zero (line 1034) after each
new expression tree is read in. NRECUR (0563) is defined to be ten times the number of tree
nodes. rcount is called at the beginning of order (line 1537) and of match (line 2168).

Chapter 6: The File ‘‘reader.c’” Part Three

“

This chapter is given over to the study of a single procedure, oxder (1524). This procedure is
most probably the most challenging, as well as the longest, procedure of the program. Once
you have mastered this, ‘‘the rest is downhiil”’. Of course the task is not going to be exactly
trivial, since this procedure is richly connected to many others. What makes it so formidable at
first sight are:

1. its sheer length:

2. the number of machine dependent procedures that have been exorcised and moved into
the machine-dependent file order.c, namely:
setasg setbin setstr
setasop setincr

3. the seemingly endless set of special cases (and how can you be sure that nothing has been
missed?)

4. the many invocations of other procedures: (oxdexr makes in fact 55 separate procedure
calls, to 30 different procedures.) :

W

the extensive use of recursion, including six direct calls to itself, and numerous possibili-
ties for indirect calls via procedures such as :
codgen offstar setbin
genargs setasg setstr
gencall setasop

The principal call 1o order occurs in codgen (lines 1300, 1302), after store (1325)
has found a subtree that it thinks represents a calculation that can be conducted entirely
within the registers of the cpu, i.e. without disturbing any registers that may have been
temporarily reserved, and without requiring any intermediate results to be stored in the
run-time stack. .

»

6.1 Comparison with codgen

codgen and order are called with similar arguments, and have very similar intended func-
tions: to generate code for a particular subtree (whose root is the first parameter), and 1o
achieve a specified goal (the *‘cookie’” or second argument). The difference between the two is
ostensibly that, when codgen is called, it will not be clear whether any intermediate results
will need to be stored in the run-time stack, whereas when order is called the latter doubt has
been removed. However truth is stranger than fiction, and because store can only take a lim-
ited cognizance of conditional operators, in view of the ordering rules for conditional expression
evaluation, order must be constrained in its behavior. Hence there are occasions where,
instead of calling itself recursively, it must in fact go back to codgén to handle a particular
subtree. Providing this is always a proper subtree, the process must eventuaily converge.

6.2 Strategy
The overall strategy used by order is broadly as tollows:

1. it takes the subtree given as the first argument, and sees if it is matched by any of the tem-
plates provided in table.

2. if not, it perturbs the tree, cither by explicitly rewriting it in some way, and/or by calling
itself recursively to handle some subtree. .

The Portable. C Compiler reader.c (111) 33

3. after the tree has been rewritten in some way, it returns to the beginning and tries again.

In the best of all possible worlds, oxder should be able to achieve its task with a **bottom up™
strategy realized via an endorder traversal of the tree. In the method realized here, the strategy
is neither purely *‘bottom up’ nor “‘top down”, but a hybrid of these. If the tree passed to
“order is clearly too complex to be translated into a single instruction (or group of instructions
matched by a single template), then an attempt is made to reorganize the root portion of the
tree in certain special cases, and the problem is tackled again from the beginning.

Before long, via one or more recursive calls, ordexr will be dealing with subtrees that can be
matched, and which after the corresponding code has been emitted, can be shrunk down to a
single node, thus pruning the original tree. With the tree pruned, control can return to the
higher level for yet another high level iteration, and so on. Note that not every subtree may be
distinguished by its own call to order, since the procedure may reach two or more levels
down into the current tree before calling itself recursively.

In calling itself recursively, not only does ordex skip some nodes, but it takes a fairly optimis-
tic view of what can be achieved, and for the most part requests that intermediate results be
left in a register. However, for certain types of nodes, if it looks like the going may get rough, -
one of the alternative goalis for a recursive call may be to leave the result in a temporary stack
location, even though based on the previous analysis, this should not be necessary. (This is
true for the PDP11 at least. See for example the machine-dependent routines setbin (3525
and nextcook (4075), where the alternative cookie can include INTEMP (0387).)

Clearly the dividing line between what will, and can, be matched via templates, and what will
be handled via special cases recognized by the program, is not obvious.

6.3 éode Sections

The code for order divides into four main sections:

1534 again: INITIALIZATION
1549 .
1555 switch For most operators, call match.
' (several times, if it seems appropriate).
1586
1587 The hard slog. Lots of special cases
1601 switch ° for rewriting the tree
which end variously with either -
a transfer to one of
again, nomat, or cleanup,
1778 or a return, or a call to cexror.

1780 cleanup: _
1799 . THE USUAL WAY OUT

- 1526: One may wonder about the choice of the variables which have been assigned as register
variables in this procedure ... ?

6.4 First Section

1536: Copy cook to cockie. (It may be overwritten at line 1563.)

1537: xrcount (1516) performs a safety check.

The Porrable C Cumpiler , reader.c (111 53

1538: canon (1307) will recheck to see if new OREG nodes can be created, and will recalculate
the SU numbers.

1539: rallo (3006) is a machine dependent routine that performs register allocation.” *Prior to
this point the SU numbers have provided estimates of the numbers of registers
required, without the verification that a feasible allocation (giving regard to the
idiosyncrasies of the actual cpu) will be possible. [ts job is to set the rall field
for those nodes of the subtree (whose root is passed as a parameter) to ensure
that the final value calculated will appear in the appropriate register, without over-
constraining the association of registers with the remaining nodes.

6.5 Second Section

1555: The switch which begins here effectively preempts the table search for the set of
operators that are listed beginning at line 1571; ’

1557: Except for the 13 operator types listed on lines 1571 to 1583, call match (2159) hope-
fully to generate code for the subtree. It will return one of several results:

MDONE plain sailing

MNOPE Doesn’t look promising. Moderate your
expectations as to where the
calculated result may be stored.

other Reorganize the calculation (i.e. re-write
the tree), via one of the special
cases handled in the next section.

1559: Structured programming enthusiasts would most probably prefer to see the next ten lines
replaced by something like:
for(;;){
m = match(p, cookie);
if(m == MDONE) goto cleanup;
if(m != MNOPE) break;
cookie = nextcook(p, cookie)}
if(lcookie) goto nomat;

}

1571: The first seven operators in the list that starts here are not 1o be matched explicitly.
FORCE is a pseudo-operator which exists to signal that certain values must appear
in pre-defined places (in particular the result returned by a procedure must appear
in register RO or FRO).

1578: The remaining six operators can be re-interpreted in a machine independent fashion into
more basic operations. The procedure call operators are not to be matched expli-

citly at this point. Instead the match will be made via a call to match from gen-
call (4032).

6.6 Third Section
1590: Begin by setting p1 and p2, and doing a little diagno‘stic printing, if appropriate.

1606: This code is for COMOPs which escaped the net cast by delay1 because they occurred in
the right subtree of 1 QUEST or ANDAND or OROR operator.

36 reader.c ' The Secomd Pass or

1594 i£(odebug){

1595 printf("order(%o, ", p):

1596 prcook(cook)i

1597 printf("), cookie "):

1598 precook(cookie)i

1599 priatf(", rewrite %s\n". opstim]):
1600 } .

1601 gwitch(m){

1602 default:

1603 nomat:

1604 ~cerror("no table entry for op %s". opst{p->opl }:
1605

1606 case COMOP:

1607 codgen(p1, FOREFF)i

1608 p2-»>rall = p->rall;

1609 codgen(p2. cookie);

1610 ncopy(p. p2);

1611 - p2->0p = FREE:

1612 . goto cleanup;

1613

1614 case FORCEY

1615 /+ recurse, letting the work be done by rallo =/
1616 p = p->left; ' :
1617 cook = INTAREG)INTBREG:

1618 goto again:

1619

1620 case CBRANCH:

1621 o = p2->lval;

1622 : cbranch(p1, =1, o):

1623 p2-»op = FREE:

1624 p-»op = FREE:

1625 retyrn;

1626

1627 case QUEST:

1628 cbranch(p1. -1, m=agetlab());

1629 p2->left->rall = p->rall;

1630 * codgen{ p2->left. INTAREG|INTBREG):
1631 : /+ forxrce right to compute result into same register
1632 as used by left «/ :)
1633 p2->right->rall = p2-»left->rvaliMUSTDO;
1634 reclaim(p2->left., RNULL, 0):

1635 cbgen(0. m1 = getlab(). ‘'I")

1636 deflab(m)]

1637 codgen(p2->right, INTAREG!|INTBREG):
1638 deflab{ m1): !

1639 p->0p = REG: /+« set up node describing result </
1640 p->1lval = 0:

1641 p->rval = p2->right->rval:

1642 p->type = p2~>right->cype;

1643 tfree(p2->right);

1644 ' p2->0p = FREE:

1645 goto cleanup:

1646

1647 case ANDAND:

1648 case OROR:

1649 case NOT: /=~ logical operators +/

163590 /+ if here, must be a logical operator for 0-1 wvalue +/
1651 cbranch(p. -1. m=getlabi)):

1652 p->op = CCODES;:

1653 p->label = m;

1654 order{ p, INTAREG):

1655 i - goto cleanup:

1656 :

1637 case FLD: /e fields of funny type «/

16358 if (pl-»>op == UNARY MUL){

1659 offstar(pl-»>left)i

1660 goto again:

1661 . }

1662

1663 case UNARY MINUS:

1664 order(pl. INBREGINAREG):

1665 goto again:

The Poriable C Cumpiler ' . , reader.c (111} 57

1607: Call codgen to handle the left sﬁbtree:. for effect only (i.e. any resﬁlt calculated does
not need to be saved).

1608: Transfer information regarding the preferred location of the result from the rom to the
root of the rxght subtree.

1609: Call codgen to handle the right éubtree. The value obtained will be the value of the
whole expression.

1610: Copy information about the value calculated by the right subtree into the root node.

codgen, not order, is called at lines 1607 and 1609 to handle the subtree, because the call
to store in the earlier invocation of codgen (dormant and not yet complete) will not have
explored properly below the COMOP. A similar comment also applies to lines 1630 and 1637.

1615: rallo (3006) will recognize FORCE as a special case, and will mark the root node of
the left subtree (UTYPE operator) as either RO {MUSTDO or FRO.MUSTDO.
whichever is appropriate.

1620: cbranch (1806) generates code to evaluate the subtree designated by its first argument,
and generates a branch instruction which will be taken at object time if the result
is true, and another to be taken if the result is false. If either of the label
numbers supplied as the second and third arguments is negative, no explicit
branch statement will be needed, and in the appropriate circumstances, control
will “*fall through™ to the next statement. . :

6.7 Conditional Operators

1627: QUEST is the operator for conditional expressions. The code on lines 1628 to 1644 is a
textbook case of the use of the piece parts provided in the compiler.

1628: cbranch (1806) is being asked to take the left subtree, evaluate it, and if the result is
true, fall through, otherwise generate a forward branch to the label returned by
getlab (3353). (This label will be placed in the assembler output at line 1636.)

1629: Copy the rall value into the root of the left sub-subtree of the right subtree. This
implies a stronger condition than rallo would have applied to this node. (Note
- that the root node of the right subtree should be a C:O]:.ON.)~

1630: Generate code for the true case.

1633: Whatever the location of the result from the left subtree, make the right subtree put its
' result in the same place.

1634: reclaim (2677), in this situation, will *‘unmark’ any registers used from the evalua-
' tion of the left subtree of p2, and will free all the nodes in that subtree.

1635: Generate an unconditional branch around the code for the false case.

1636: Place the label generated at line 1628 into the assembler output to mark the beginning of
: the code for the false case.

1637: Generate code for the false case.

The Poriable C Compiler . reader.c (1111 39

1638: Place the label after the code for the false case.

1639: Replace the subtree designated by p by single leaf node, which represents the register
into which the result was forced by the action at line 1633. phe

1651: The relevant code in cbranch for this case begins at line 1872. The result is available
in the condition codes, and the subtree is reduced to a single node.

1654: The recursive call on order will result in a template match (see lines 4970 through
4980).

6.8 Some Miscellaneous Cases

1657: FLD and the next three case are not mentioned in the original list (lines 1571-1583) of
special cases. They can only occur as values returned by match. Get the left
hand operand-into a directly addressable form if it is not already so. offstar
(3363) will attempt to get the left subtree into the form of an OREG. Note that if
the tree does not begin with a UNARY MUL, fall through to the next case.

1663: If we can’t get the negative value where it is needed directly, calculate its complement.
by a recursive call to order (the SU numbers etc. should still be ok), and then
reverse the sign via another iteration of the present order invocation. The next
ume there should be a matching template.

1667: Thmgs (i.e. subtrees) that should be placed in a register may get here. However if the
node is already a REG, something has gone wrong ..

1673: INIT operators should always have a left subtree which is a constant. and should be
matched by a template. Any other situation is a compiler error (not a user error).
See the templates on lines 5444 through 5454.

6.9 Procedure Calls _

1677: Since, for the PDPII and VAX11/780, genfcall and genscall are defined to be
gencall (4032), the code from here to line 1696 is over elaborate for these
machines.

1681: genfcall is defined to be identicdl to gencall. Also genscall on line 1695
reduces to gencall, so the differentiation amongst the types of call, at least at
this point, is unnecessary for the PDP11 and VAX11/780.

1703: A small optimization.

1709: offstar (3363‘) attempts to transform the subtree under a UNARY MUL into a form
that will be reduced to an OREG by canon (1307).

1713: For the PDP11 and VAX11/780, setincr is a no-op and always returns the value zero.
i.2. there is no special processing. (There is most probably an opportunity to
refine the compiler at this point. Contrast this case with the next case, for STASG
on line 1731.)

setincr (3378) is the first of a set of procedures with names beginning with set. These are
called to provide machine-dependent recognition and processing of various cases, before the
more general machine-independent processing occurs.

One does not gain a clear understanding of the function of e.g. setincr by studying the ver-
sion of it needed for the PDP11l. However its.function is to apply ad hoc rewriting rules to the .

60 reader.c . The Second Pass of

1735 case ASG PLUS: /<« and other assignment ops #/
1736 if(setasop(p)) goto again;

1737

1738 /+ there are assumed to be no side effects in LHS +/
1739

1740 p2 = tcopy(p):

1741 p->op = ASSIGN;

1742 reclaim(p->right, RNULL, 0)

1743 p->right = p2;

1744 canon(p):

1745 rallo(p, p->rall);

1746

1747 if(odebug) fwalk(p. eprint., 0):
1748

1749 order(p2->left, INTBREG:INTAREG }:
1750 order(p2. INTBREGIINTAREG);

1751 goto again:

1752

1753 case ASSIGN:

1754 if(setasg{ p)) goto again:

1755 goto nomats;

1756

1757

1758 case BITYPE:

1759 if(setbin(p)) goto again;

1760 /+» try to replace binary ops by =ops +/
1761 switch(o) { . '
1762

1763 case PLUS:

1764 case MINUS:

1765 case MUL:

1766 case DIV:

1767 case MOD:

1768 case AND:

1769 case OR:

1770 case ER:

1771 case LS:

1772 case RS:

1773 p->0p = ASG 0;

1774 goto again:

1775 }

1776 goto nomat:

1777

1778 }

1779

17380 cleanup:

1781 -

1782 /e if it is not vet in the right state., put it there +/
1783

1784 if{ cook & FOREFF }{

1785 reclaim(p. RNULL, 0):

1786) return;

1787 }

1788

1789 i£{ p-»0op==FREE) return:

1790

1791 i¢(tshape(p. cook }) return:

1792 .

1793 if!{ (m=matchip.cook)) == MDONE) return:
1794

1795 /+ we are in bad shape, try one last chance »/
1796 i$:{ lastchance(p. cook)) goto again:

1797) :

1798 goto nomat;

1799 }

1800

1801 /% EEEESZSERSSSSSIZTSISSITIRI=SSTSTSSIRIIIIITI[=ITIITIII -/

1802

The Porrable C Compiler reader.c (111) 61

current tree, at or near its root, which will take advantage of, or disguise the deficiencies of, a

particular target machine. (Just how to recognize such cases in the first place is another prob-
lem!)

1717: Convert the operation to ASG PLUS or ASG MINUS. If the value is not needed further,
just change the operator type of p; else ...

1724: Rewrite the subtree with additional nodes so that
++
[x ~ IB]

becomes

ixf 1)

1740: Rewrite the subtree with additional nodes, so that

becomes

(x . += .
[x B]

1743: p2->op is not reset at this point because, after the call 10 order at line 1749, the
ASG PLUS operator will be applied to a copy of the value of the left subtree that
resides in a temporary register.

1758: BITYPE is a value which can be returned by match (2159) as a result of the *‘last-
ditch’ template at line 5515. setbin (3525) attempts to rewrite the tree in suc-
cessive stages until either a call to match results in a successful template martch.

Chapter 7: The File ‘‘reader.c’” Part Four

Fortunately, the remainder of this file is not so heavy going as the earlier parts. The three
remaining procedures are quite distinct, and pleasantly different:

1. cbranch (1806) generates code for conditional branches.

2. ££14 (1928) rewrites the tree to handle field extractions when there is no hardware to do
the job. .

3. oreg2 (1988)_ rewrites the tree so that address arithrﬁetic Will be done implicitly by the
hardware, whenever possible.

7.1 negrel (1804)

This array is used for reversing the sense of relational tests. Its contents can be understood
from the definitions on lines 0092 to 0101 for the ten relational operator types, viz.

EQ 80 GT 85
NE 81 ULE 86
LE 82 ULT 87
LT &3 UGE 88
GE 84 . UGT 89

The reverse of EQ is NE == negrel [EQ - EQ], of ULT, UGE == negrel [ULT - EQ].
etc. A .

7.2 cbranch (1806)

This procedure is called by order from three different locations. It generates a conditional
branch instruction which will use the result to be calculated from the tree which is passed as the
first parameter. In all three cases, the second parameter is -1, which implies that no branch is
to be taken if the result is true. cbranch also calls itself recursively at several places. It uses
the machine-dependent routine cbgen (3981) to emit the actual assembler branch instruction.

1807: See comment in the code.

1826: This code is used to standardize the situation, when one of the alternatives is to ‘‘fall
through’” to the next instruction. Arrange things, by reversing the sense of the
test if necessary, so that the *‘fall through’ path will always be the false path.

1831:'NOOPT is not set for the PDP11, so keep going to give special treatment for comparisons
against zero. :

1832: If the right operator is a genuine constant zero ...
1833: confirmed by a null name! ...

1834: rewrite the operation.

64 reader.c .) The Second Pass or

1803 /+ negatives of relationals »/
1804 int negrel(] = { NE. EQ, GT, GE, LT, LE, UGT, UGE, ULT., ULZ |
180S '
1806 cbranch{ p. true, false) NODE «p; {

1807 /+« evaluate p for truth value, and branch to true or false
1808 /+ accordingly: label <0 means fall through =/
1809

1810 register o, lab, flab. tlab;

1811

1812 lab = =1;

1813

1814 switch(osp->op){

1815

1816 case ULE:

1817 case ULT:

1818 ~ case UGE:

1819 case UGT:

1820 case EQ:

1821 : case NE:

1822 case LE:

1823 case LT:

1824 case GE:

1825 case GT:

1826 if(true < 0){

1827 : o = p->op = negrell o-EQ];

1828 true = false;

1829 false = -1

1830 H

1831 +# ifndef NOOPT P T T > T L,

1832 if(p->right->op == ICON && p->right->lval == 0 &&
1833 p->right->name (0] == "\0" }{
1834 switch(o){

1835

1836 case UGT:

1837 case ULE:

1838 y o = p->op = (0==UGT)?NE:EQ:
1839 : » case EQ:

1840 case NE:

1841 case LE:

1842 case LT:

1843 : case GE:

1844 case GT:

1845 if(logop{(p->left->op) }{
1846 /+ strange situation: e.g., (a!=0}) == 0: must
1847 . /+ prevent reference to p->left->label. so get 0/1
1848 /+ we could optimize., but why bother «/
1849 codgen(p->left, INAREGIINBREG):
1850 }

1851 . codgen(p->left, FORCC):
1852 cbgen(o, true, ‘I’);

1853 break;

1854

1855 case UGE:

1856 ./« unconditional branch »/
1857 cbgen({ 0, true, "I }:3

1858 case ULT:

1859 s 7+ do nothing £f£or LT </
1860 }

1861 }

1862 else : :

1863 # endif CCLRRLEEKCLLCKCCKRLLLLS

1864

1865 ‘ : p->label = true:

1866 codgen(p, FORCC)3

1867 } :

1868 if{ false»>=0) cbhgen(0, false, "I° }:
1869 reclaim(p. RNULL, 0 }:

1870 return;

1871

The Portable C Compiler : ' reader.c (IV} 65

1838:
1851:

1851:
1852:

1853:

1858:

1864:

1868:
1869:

1872:

1873:
1874:
1876:

1880:

1883:
1893:

1899:

Unsigned comparisons against zero can be converted to signed comparisons against zero:
UGT becomes NE, ULE becomes EQ.

Generate code to evaluate the left subtree into the condition bits of the processor status
word.

codgen will cause the root node operator to be changed to CCODES.

Call cbgen (3981), passing the operation, o, as the first parameter. o is the original
root node operator. The parameter ‘I implies the regular case for cbgen.

A UGE comparison against zero must always succeed, so generate an unconditional
branch. (Note that the initial argument to cbgen is zero.)

A ULT comparison against zero must always fail. So do nothing, and *‘fall through™.

This is the normal case (also the unoptimized test against zero). Copy the “‘true’" label
into the label field of the root node, and call codgen with the cookie FORCC
i.e. the goal of leaving the result in the condition codes. Note that the value of
label will be picked up by zzzcode at line 4426.

Generate the false branch, if needed.
Call reclaim with the argument RNULL to completely dismantle the subtree. |

The conjunction of two conditions is false if the first condition is false. Transform the
tree so that the equivalent of ~
' if (A &8 B) {goto true;} else {goto false;}
will become the equivalent of
if (! A) {goto false;}
if (B) {goto true;} else {goto false;}

If false is intended to refer to the next statement (i.e. the label for the false branch is
negative) use getlab to provide a unique new label number.

Call cbranch recursively twice in succession to generate code for the two equivalent
branch statements shown above.

If a label was generated, call deflab (3358) to declare it at the current location in the
assembler output file.

This case is handled analogously to the ANDAND case.

Call cbranch recursively with the left subtree as the first argument, and with the other
arguments reversed. A textbook application of recursion.

This case is also a textbook variety. There seems to be nothing significant about freeing
the root node before, rather than after, the recursive call on chranch.

This case is handled also by rewriting the tree in a way analogous to rewriting
if(p?1l:r) {goto true;} else {goto false;}
into the form
if (not p) {goto z;}
if (1) {goto true;} else {goto false;}

if (r) {goto true;} else {goto false;}

66 reader.c ’ The Second Pass

1872 case ANDAND:)

1873 lab = false<0 ? getlab() : false ;

1874 ‘ cbranch{ p-»>left, -1, lab);

1875 cbranch(p->right, true, false):

1876 if(false <« 0) deflab(lab)

1877 p->op = FREE;

1878 return;

1879

1880 case OROR:

1881 lab = true<Q ? getlab() : true;

1882 ‘cbranch(p->left, lab, =1);

1883) cbranch{ p->right, true, false)

1884 if{ true < 0) deflab(lab);

1885 p->op = FREE;

1886 return;

1887

1888 case NOT:

1889 . cbranch(p->left, false, true):

189Q p->op = FREE;

1891 break;

1892

1893 case COMOP:)

1894 codgen(p->left, FOREFF);

1895 p-»>op = FREE;

1896 cbranch(p->right. true, false);

1897 return;

1898

1899 case QUEST:)

1900 flab = false<Q ? getlab() : false;

1901 tlab = true<0 ? getlab() : true;

1902 cbranch{ p-»>left, -1, lab = getlab(})):
1903 cbranch{ p->right->lef+, tlab, flab);
1904 deflab{ lab);

1905 cbranch(p-»right->right, true, false }:
1906 if{ true < 0) deflab(tlab):

1907 if(false < 0) deflab(flab);

1908 p->right->op = FREE;

1909 : p~->op = FREE;

1910 return;

1911

1912 default:

1913 /+ get condition codes «/

1914 codgen(p, FORCC);

1915 if(true >= 0) cbgen(NE, true. "I” };
1916 if{ false »= 0) cbgen{(true >= 0 ? 0 : EQ, false, “I"):
1917 reclaim(p, RNULL, 0);

1918 return;

1919

1920 }

1921 i

1922 }

1923 /# ~—memeceeecececcmoecc oo sem—o— - e —————— »/
1924 '

1925 2 ifndef FIELDOPS BE>FPRSIFSSEISIOIEDED>

1926 /+ do this if no special hardware support for fields </
1927 .)

1928 f££1d(p., down, downl, down2) NODE +p: int +downi, ~down2: {
1929 /+ look for fields that are not in an lvalue context.
1930 and rewrite them... +/

1931 register NODE +shp;

1932 register s, Q0. VvV, ty;

1933

1934 - +downtl = asgop(p->op);

1935 s«down2 = 03

1936

1937 if(!down && p-»>op == FLD){ /+ rewrite the node »/
1938

1939 if(!rewfld(p)) return;

1940

1941 ty = (sztyl{p->type) == 2)? LONG: INT;:

The Portable C Compiler reader.c ([¥V) 67

1912: In the remaining cases, the value to be tested is not a logical expression. Evaluate the
subtree so as to set the condition codes.

1915: Generate the true branch if required.

1916: Generate the false branch if and as appropriate.
7.3 ££14 (1928) '

This procedure is used when there is no special hardware for extracting subfields of memory
words, and the desired effect must be obtained by masking and shifting. This is true for the
PDP11 but not the VAX11/780. ££14 is invoked at each node via fwalk (0699), from a call
from canon at line 1313.

1934: If the operator for the current node is an assignment operator, pass this value on to the
procedure invocation that will process the left subtree, when its time comes.

1935: The right subtree requires no special treatment.

1937;: If this is not the left subtree of an assignment operator, and the current operator is a
FLD, then there is work to be done.

1939: rewf1ld is a machine-dependent procedure (which is a no-op for the PDP11) which gets
a chance at this point to apply any special tricks which work in limited situations,
e.g. if hardware exists to extract a character from a word. (Such hardware is
available on the Honeywell 6000, for example.)

1941: Treat data as an integer or long*, i.e. forget reﬁnements such as floating point or
unsigned integers.

1942: v contains two fields: the least significant field of six bits defines the size of target field.
‘and it is unpacked via the macro UPKFSZ; the other field, by UPKFOFF (0232).

1945: o defines the offset of the field within the word.
1952: Rewrite the tree so that

FLD]

becomes or

AND AND

[x ICON] RS ICON]

(x ICON]

* Fields for long variables are not implemented on the PDP11, though they conceivably could be (hib).

68 reader.c , The Second Pass of

1942 v = p->rval;

1943 s a UPKFSZ(v):

1944 # ifdef RTOLBYTES PO ISFIIIIIIEIIIIRI>>ED>
1945 o = UPKFOFF(v); /& amount to shift =/
1946 # else KAXRXAXRAKKHAR XXX XKXXRXKX
1947 0 = szty(p->type)sSZINT -~ s - UPKFOFF(v);
1948 # endif LR CLCLLELCCLECLLCCEL
1949

1950 /+ make & mask part =/

1951

1952 p->left->type = ty;

1953 .

1954 p->op = AND;

1955 p->right = talloc();

1956 p->right->op = ICON;

1957 p~->right->rall = NOPREF;

1958 p->right->type = ty;

1959 p->right->1lval = 1;

1960 p->right-»>rval = 0%

1961 p->right->name(0] = °\0’;

1962 p->right->lval <<= s§;

1963 p->right-»>1lval-~-;

1964

1965 /+ now, if a shift is needed, do it »/
1966

1967 if{ o !a 0){

1968 shp = talloc():

1969 shp->0p = RS}

1970 shp->rall = NOPREF;

1971 shp->type = ty;

1972 shp->left = p->left;

1973 shp->right = talloc();

1974 shp->right->op = ICON;

1975 shp->right->rall = NOPREF;

1976 shp->right->type = ty;

1977 shp-»>right->rval = 0;

1978) shp-»>right->lval = o; /% amount to shift »/
1979 shp->right->name (0] = ‘\0’;

1980 p->left = shp;

1981 : /» whew! «/

1982 o }

1983 }

1984 }

1985 # endif : R CCECERECCLCLLLLCCL
1986 /# ~==mmememcscmccccemccccccomem————m———— e aem e %/
1987

1988 oreg2(p) register NODE »*p;:

1989

1990 ~ /+ look for situations where we can turn =+ into OREG =/
1991

1992 NCDE »q;

1993 register i;

1994 register r;

1995 register char +cp;

1996 register NODE +ql, =*qr:

1997 CONSZ temp:

1998

1999 if(p-»op == UNARY MUL){

2000 q = p->left;

2001 if(g-»op == REG){

2002 : temp = g->lval;

2003 r = g->rval:

2004) ¢cp = g->name;

2005 goto ormake:

2006 }

2007

2008 if(g->op != PLUS && g-»op != MINUS)} return;
2009 ql = g->left;

2070 qr = q->right:

2011

The Portable C Compiler , reader.c {{V) 69

1952: Set the type field for the left descendent.

1954: Change the root node operator from a unary FLD to a binary AND.
1955: Create a new node to hold the mask. |

1963: Finally (1), the value is (1<<s) -~ 1

1967: If a shift is needed, introduce an extra node (RS) with its associated right descendent, of
type ICON (a constant to specify the number of shift positions), so that the sub-
tree becomes the second case shown above.

Fields which occur as part of an “‘lvalue’ are handled directly in the code templates. Note also
that the rewriting of an INCR (++) or DECR (--) operator can cause the appearance of field
operators on the right-hand side of a subtree. Hence the scanning for field operators is carried
out repeatedly, whenever canon (1307) is called, during the reduction of the expression tree.

7.4 oreg2 (1988)

This procedure is called indirectly from canon (1307) via a call to walkf (0688). The rou-
tine traverses the expression tree in endorder, looking for ways to eliminate explicit additions
or subtractions which occur during address calculations in the hope of delegating these to the
hardware addressing mechanisms.

There are four types of subtree which may be sought out and transformed into a single node of
type OREG. With PM used to denote either PLUS or MINUS, these are as follows:

*]
» *]
(i) o (i)
+
{REG
[REG REG]
and
»]
*] :
(iii) _ (iv)
) ' PM
+ 1ICON]
[REG ICON] /
| (REG ' REG)
2001: Case (i)

2005: The label orinake occurs at line 2064,

2012: Machines with the hardware for double indexing include the IBM 360/370 and the Inter-
data 8/32, but not the PDP11 or VAX11/780.

70 reader.c The Second Pass of

2012 # ifdef R2REGS ORISR IIIIISRIFISIIID

2013

2014 /+ look for doubly indexed expressions +/

2015

2016 if(q->op==PLUS && qr->op==REG && ql->op==REG &&
2017 (szty(ql->type)a=1||szty(qr->typel==1)) {
2018 temp = 0;

2019) cp = gl->name;

2020) if(=cp) {

2021] if(sqr->name) return;

2022 :

2023 else {.

2024 ‘ cp = gr->name;

2025 }

2026 if(szty(qr->type)>1)

2027 r = R2PACK(qr->rval,ql->rvall;

2028 . else r = R2PACK(ql->rval,qr->rval);

2029 goto ormake;

2030 }

2031 ‘ B

2032 . if({ (gq->op==PLUS!||q->op==MINUS) && qr->op==ICON &&
2033 ’ ‘ ql->op==PLUS 8& gql->left~->0p==REG &&
2034 ql-»>right->0p==REG) {

2035 : temp = qr->lval;

2036 ' ' cp = gr->name;

2037 if(q->op == MINUS){

2038 if(=cp) return;

2039 ‘ © temp = -temp;

2040 }

2041 - . 1£(w»cp) {

2042 if(»ql->name) returm;

2043 } '

2044 : else {

2045 cp = ql->name;

2047 r = R2PACK(gql->left->rval,ql->right->rval);
2048 goto ormake;

2049) } .
2050 :

2051 # endif CERCCECCLCCLLCELCLCLCLL

2052 : : '

2053 _ if({ (q->op==PLUS || q->op==aMINUS) && qr->op == ICON &&
2054 ql->op=3REG &8 szty(qr->typel==1) {
2055 temp = gr->lval; -

2056 if(q~>op == MINUS) temp = ~temp;

2057 r = ql->rval;

2058 temp += ql-»>lval;

2059 ' cp = qr->name;

2060) if(»cp && (g->0p == MINUS }} sql->name))
2061 - : return; .

2062 . if(I»cp) ¢p = gl->name; N

2063

2064 ormake: .

2065) if(notoff(p->type, r, temp, Ccp)) return;
2066 p->op = OREG; . i

2067 p->rval = r;

2068 p->lval = temp;

2069 . for(i=0; i<NCHNAM; ++i)

2070 p->name(i] = scp++;

2071 . tfree(q);

2072 return;

2073 }

2074 }

2075 }

2076 /% —cmeemmmmwem e —————————— - - e cwmmmmm——= o/

The Portable C Compiler , reader.c (IV) 171

2018: Case (ii). Not supported by the PDP11 or VAX11/780.
2035: Case (iv).. Not supported by the PDP11 or VAX11/780.
2055: Case (iii) is fairly straightforward. |

2060: If »cp is non-null, then the constant is an array address. Do not subtract it from any-
thing, or add it to another array name.

2065: Check the size of the offset and abandon the attempt if is out of range. (Not a problem
on the PDP11 or VAX11/780, but a real one on the iBM 360/370 where the
~offset must satisfy 0 <= k < 4096.)
2066: Respecify the root node.

2071: Throw away the fomer left subtree.

72 march.c

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

2103

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

2126

2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142

include "mfile2”
int fldsz, fldshf;

/+» masks for matching dope with shapes +/
static int mamask({] = {

SIMPFLG, /s OPSIMP s/
SIMPFLGIASGFLG, /* ASG OPSIMP s/
COMMFLG, /+» OPCOMM »/
COMMFLG ! ASGFLG, /» ASG OPCOMM »/
MULFLG, /» OPMUL »/
MULFLG|{ASGFLG, /» ASG OPMUL »/
DIVFLG, /» OPDIV »/
DIVFLGiASGFLG, /#* ASG OPDIV =/
UTYPE, /» OPUNARY +/ _
TYFLG, /*» ASG OPUNARY is senseless »/
LTYPE, /» OPLEAF »/
TYFLG, /» ASG OPLEAF is senseless =/
0, i /% OPANY +/
ASGOPPLG|ASGFLG,/* ASG OPANY </
LOGFLG, /» OPLOG »/
TYFLG, /+ ASG QPLOQOG is senseless »/
FLOFLG, /+ OPFLOAT +/
FLOFLG{ASGFLG, /% ASG OPFLOAT »/
SHFFLG, - /% OPSHFT »/
SHFFLGIASGFLG, /* ASG OPSHIFT «/
SPFLG, /+ OPLTYPE »/
TYFLG, /#» ASG OPLTYPE is senseless »/
’
/Q ---------- - aD En e S NS e WD A v W D D D D S WP D WY - D W - './

struct optab srwtable;
struct optab »opptr(DSIZE];

setrew()
/» set rwtable to first value which allows rewrite »/
register struct optab =*q;
register int i;

for(q = table; gq->op != FREE; ++q){
if(gq->needs == REWRITE) {
rwtable = q;
goto more;

}

cerror{ "bad setrew");

more: .
for(i=0; 1<DSIZE; ++i){
if(dope(i]){ /+ there is an op... */
: for(g=table; g->op != FREE: ++q){
/» beware; things like LTYPE that match
multiple things in the tree must
not try to look at the NIL at this
stage of things! Put something else
first in table.c «/
/» at one point, the operator matching was 15%
of the total compile time; thus, the function
call that was lere was removed...
*/

if(g->op < OPSIMP){
if(gq->op==i) break:;

74 match.c ' . _ The Second Pass of

2143 else

2144 register opmtemp:

2145 if ((opmtemp=mamask(q~>op - OPSIMP])&SPFLG){
2146 if(i==NAME |! i==ICON || i==OREG) break;
2147 else if(shltype(i, NIL)) break:
2148 }

2149 else if((dope{il&(opmtempi!ASGFLG)) ==

2150 opmtemp) break;

2151 . }) :

2152 }

2153 opptr(i] = q;

2154 }

2155 . }

2156 }

2157 /% 2RI AT IR ITITAICEATATIZIAIAIIXNAZITAIAIRNITAISIATINNIN »/

2158)

2159 match({ p, cookie) NODE +p; {

2160 /+ called by: order, gencall

2161 look for match in table and generate code if found,
2162 unless entry specified REWRITE. Returns MDONE, MNOPE,
2163 or rewrite specification from table »/

2164 :

2165 register struct optab »q;

2166 register NODE »r;

2167

2168 rcount();

2169 if(cookie == FORREW) q = rwtable;

2170 : elgse g = opptrip->opl;

2171

2172 for(; q->op != FREE; ++q){

2173 :

2174 : /+ at one point the call that was here was over 15X of
2175 the total time;

2176 thus the function call was expanded inline </
2177) if(g->op < OPSIMP){

2178 if(gq->opl=p->0p) ‘continue;

2179 .

2180 else

2181 register opmtemp: '

2182 ‘) if((opmtemp=mamask(q->op - OPSIMP])&SPFLG) {

2183 . if(p->opli=NAME && p->op!=ICON && p->op!= OREG &&
2184 ! shltype(p-»0op, p)}) continue;

2185 }

2186 else if((dope(p->opl&(opmtemp!ASGFLG)) != opmtemp }
2187 continue;

2188 } '

2189

2190 if(!(g->visit & cookie)) continue;

2191 _ r = getlr(p, ‘L’); /» see if left child matches s/
2192 if(!'tshape(r, g->lshape)) continue;

2193 if(!'ttype(r->type, g->ltype)) continue;

2194 r = getlr(p, "R’)}; /# see if right child matches s/
2195 if(!tshape(r, g->rshape)) continue;

2196 if(!ttype(r->type, g->rtype)) continue;

2197

2198 /#» REWRITE means no code from this match but go
2199 ahead, and rewrite node to help future match =/
2200 if(g->needs & REWRITE) return(g->rewrite);

2201 /» if can‘t generate code, skip entry +/

2202 i£(tallo(p, q)) continue;

2203

2204 . /+ resources are available; generate code »/

2205 expand(p, cookie, q->cstring);

2206 reclaim(p, g->rewrite, cookie);

2207 return{MDONE) ;

2208 }

2209 return{MNOPE) ;

2210 }

2211 /% comecmmccecna- - o o e e e e o e -/

2212

Chapter 8: The File ‘“‘match.c”’

This file contains procedures that are concerned with matching the templates in the table
array with the operations required by the expression tree. A close perusal of this file will per-
suade the reader that there are a number of implicit assumptions made in the code regarding
the contents of table. Moreover, since a good part of the code is machine dependent, the set
of implicit assumptions is also machine dependent (Not an altogether desirable situation, and
a hard act to follow!) : co

The procedures in the file are as follows:
1. setrew finds appropriate starting points for searching table.
2. match searches table looking for a template which matches in all relevant respects.
3. getlr retumé a pointer to a node that is related to the current node (usually a child).
4. tshape compares the shape of a tree with a set of possible shapes.
5. ttype compares operand types with operation capabilities.
6. expand expands a character string into a s‘et of assembler instructions.

The initial entry in this file is the declaration of two integer variables, £1dsz and £1dshf,
which are used in connection with bit fields. They are set as a side-effect of tshape, and used
by expand.

The next entry is the declaration and initialization of the array mamask (2082). This provides,
for each of several groups of related operators, a bit mask compatible with the ones stored in
dope (0724) for simple operators. The comments on lines 2083 through 2104 can be better
understood if reference is made to the definitions of OPSIMP,OPCOMM, ... OPLTYPE on lines
0360 to 0370. Note that these are even integers and that ASG is defined as **1 +"°.

8.1 setrew (2112)

This procedure, which is called once by p2init at line 0956, searches the array table
(4669), which contains all the operator templates. (The initialization of table occupies a file
of its own, table.c.)

2117: The first task is to locate an entry for which the needs field has the value REWRITE,
and to store a pointer to this entry.

2123: If no such entry can be found, this is taken to imply a fatal defect in the file table.c.
and hence a compiler error, since the perfect computer, with an operator for every
occasion, has not yet been invented.

2126: Then for each operator in turn ...

2128: which is valid (i.e. has an entry in the array dopest (0727), and hence a non-zero entry
in dope (0724)) ..

2129: look through the entries in table and ...

The Portable C Compiler , ‘ ‘ ‘ match.c 15

2140: if the table entry is for a simple operator, and matches the current operator ...

2153: store a pointer to the table entry in the opptx (2110) array. This will provide a start-
ing point for search of table when the particular operator is to be magched.

2144: If the operator type found in the table entry refers to a group of operators, i.e. has a
value in the range OPSIMP through ASG OPLTYPE, then subtract OPSIMP from
it, and using the result as an index into mamask, retrieve the corresponding bit
mask.

2146: If the SPFLG is set {true only for OPLTYPE i.e. a leaf node) then if the node is a NAME
or a constant or an OREG, then a starting point has been found that can be
recorded in opptx.

2147: The SPFLG is set but the previous test did not succeed. Call the machine dependent
routine shltype (4141) to make a determination as to whether the operator has
the shape of a leaf. (An examination of shltype for this version of the com-
piler shows repetition of the code of line 2146, and only one extra case, REG,
being recognized.)

2149: If the SPFLG was not set, see if bits set in mamask entry are matched by correspoading
bits in the dope (0724) entry for the operator, with the added proviso that, if the
operator to be matched is an assignment operator, the operator group must also
represent assignment operators.

The last entry in table is an entry for the operator FREE, and the search of the
table stops there. Hence, if for a particular operator, there is no table entry
that matches the operator, the corresponding entry in opptr will have the value
FREE.

8.2 match (2159)

This procedure is called by oxrdex (also gencall (4032)) to try and find a template in the
table which matches the operation defined by the subtree whose root is passed as the first
argument. ‘

2168: Check to see if t.h'ere have been too many iterations.

2169: Determine the starting point for the search from the values prepared by setrew.

2172: The fbr loop which begins here bears more than a passing resemblance ta the loop in
setrew. However instead of breaking from the loop when the first matching
entry is found, the requirement now is to ignore (continue) entries which do
not match.

2178: Matching the template requires satisfactory answers to a series of questions. The first
question is whether the operation defined in the template is, or includes, the
operation to be matched.) .

2190: The next Questlon is whether the template defines an operation which can create the
desired effect (meet the required goal).

2191: Look at the left deécendent, and see if ...

2192: the **shape’ of the left subtree is compatible with the **shape’” of the left operand of the
table entry. Ifso ...

76 match.c , , The Second Pass af

2213 NODE
2214 getlr(p, c) NODE »p; {

2215
2216 /+ return the pointer to the left or right side of p,
2217 or p itself, depending on the optype of p +/ '
2218
2219 switch(c) {
2220
2221 case ‘1’:
2222 case ’2°:
2223 case ‘3’:
2224 return(&rescle-’1’]);
2225
2226 case ‘L’: .
2227 , return(optype(p->op) == LTYPE ? p : p->left };
2228
2229 case ‘R’: .
2230 return(optype(p->op) != BITYPE ? p : p->right)i
2231 .
2232 }
2233 cerror{ "bad getlr: %c", c);
2234 /* NOTREACHED =/
2235) }
2236 /% mccmeccccecaccmmcccce—en—= et e o e e —mem - »f
2237
2238 tshape(p, shape) NODE =»p; {
2239 /+ return true if shape is appropriate for the node p
2240 side effect for SFLD is to set up fldsz.,etc »/
2241 register o, mask; '
2242
2243 O = p->ap;
2244 if(sdebug){ -
2245 printf("tshape(%o, %o), op = %d\n", p, shape, o);
2246 }
2247
2248 if(shape & SPECIAL){
2249 ’
2250 - switch{ shape){
2251
2232) case SZERO:
2253 case SONE:
2254 case SMONE:
2255 if(o !a ICON || p->name(0]) return(0);
2256 if(p-»lval == 0 && shape == SZERO) return(1);
2257 else if(p->lval == 1 && shape == SONE) return(1):
2258 else if(p->lval == -1 && shape == SMONE) return(1);
2259 else return(0);
2260
- 2261 default:
2262 return(special(p, shape) };
2263 } .
2264 }
2265 i
2266 ' if(shape & SANY) return(1):
2267
2268 if((shape&INTEMP) && shtemp(p)) return(1);
2269
2270 if((shape&SWADD) && (o==NAME||0=a0REG) }{
2271 if{(BYTEOFF(p->lval)) return(0);
2272 ' }
2273 ’
2274 switch(o){
2275
2276 case NAME: ‘
2277 return(shape&SNAME);
2278 case ICON:
2279 mask = SCON:
2280 . return{ shape & mask);

2281

The Porable C Compiler - match.c 77

2193: are the types compatible?

The last few lines raise a number of points for discussion. First, the term ‘‘shape” in this con-
text refers to the set of locations in which an operand can occur, e.g. in a register, or in the
temporary part of the stack, etc., or some combination of these. This is to be dlsungmshed
from *‘type’’, which refers to the category of information stored, its representation, and its size.

Second, the use of the procedure getlr (2214) seems curious. getlr will return a reference
to the left subtree, if one exists, otherwise a reference to the node itself. If the current node is
BITYPE, then, clearly, tests are going to be applied to both the left and right subtrees of the
node. If the current node is UTYPE, then tests for shape and operand type are going to be
applied to the left subtree and the node itself. If the UTYPE node is a type conversion, for
instance, then it is quite useful to be able to do this. Finally, if the node is LTYPE, tests are
going to be applied against the node itself twice. While one set of these may be useful, the
second set is certainly going to be redundant. (See, for example, the group of templates start-
ing at line 4897.) ~

2194: Perform shape and type compatibility tests on the right hand side.

2200: Certain general entries are used to recognize situations where the tree should be re-
organized, e.g. by introducing additional nodes which represent actions which can
be avoided on some machines.

2202: Call allo to allocate resourcés, i.e. temporary registers and/or temporary space in the
object stack.

2205; With all barriers surmounted at last, call expand (2376) to take the string which is the
fast item.in the table entry, and expand it macro-fashion into one or more lines
of assembler code. '

2206: Call reclaim (2677) to rewrite the tree to reflect the progress made in the calculation
by the code just emitted, and to return any resources no longer reserved back to
the free lists.

12207: Report success.

2209: The whole table has been searched without success. Report failure.
8.3 getlr (2214)

The functioning of this procedure is clear enough. It attempts to return a valid node pointer in
all situations. The use of a character value as the second argument, rather than a binary value,
is dictated by the needs of expand, e.g. at line 2428, and its alter ego, zzzcode, which
extract the argument from a character string.

8.4 tshape (2238)

This procedure is called with two arguments: 2 node pointer, and a ‘‘shape’’, which is a state-
ment about the possible forms that the data that the node represents can assume. Since the
matching of templates is not done recursively, the node had better represent something directly
accessible, not something which can be computed in principle. As has been seen, tshape is
called by order (line 1791) with a second argument cook to see if the goal can be satisfied
by the current node without ever calling match. tshape is called by match with a second
argument taken from a table entry. tshape is also called by reclaim (2742), setasg
(3508), and adrput (4562).

Because there is the call from orderx, it will be seen that there is an affinity between cookies
and shapes, as is strongly suggested by the comments on lines 0394 to 0412.

Ty

78 mairch.c

2282 case FLD:

2283 i£(shape & SFLD){

2284 : if(!£flshape(p->left)) return(d);
2285 /+ it is a FIELD shape; make side-effects «/
2286 o = p->rval; .)

2287 ' fldsz = UPKFSZ(0);

2288 # ifdef RTOLBYTES P S R S P PP PPN Y

2289 £ldshf = UPKFOFF(0):

2290 # else SCALICIEIHIIHKIENK KKK KA IEAR

2291 fldshf = S2INT - fldsz - UPKFOFF(o):
2292 # endif L CCLLCELLLALLLELELLLLLLLE

2293 return(1);

2294 }

2295 return(0);

2296

2297 case CCODES:

2298 return(shape&SCC)3

2299

2300 case REG:

2301 /+ distinctions:

2302 SAREG any scalar register

2303 STAREG any temporary scalar register
2304 SBREG any lvalue (index) register

2305 STBREG any temporary lvalue register
2306 ./

2307 mask = isbreg(p->rval) ? SBREG : SAREG:
2308 if¢(iscre?(p->rval) && busy(p-»>rvall<=1)
2309 : mask 1= mask==SAREG ? STAREG : STBREG;
2310 return(shape & mask)

2311

2312 _ case OREG:

2313 return(shape & SOREG);

2314

2315 case UNARY MUL:

2316 /% return STARNM or STARREG or 0 =/

2317 return{ shumul(p-»>left) & shape);

2318

2319 }

2320

2321 return(0):

2322 }

2323 /% cecsacecccicaercrc e e mca———— - - e o o e me e)

2324

The Second Pass of

“The Portable C Compiler mé:ch.c 79

tshape retumns a true value if the node and the desired shape agree according to a rather
complex set of criteria, and false otherwise. Note that a particular shape may include several
distinct possibilities or alternatives.

2243: If the shape can be SPECIAL, then ...

2255: if the shape specifies one of -1, 0 or +1, check that p represents a constant, but not an
address constant, and that its value is correct.

2262: épecial (4163) is a machine dcpéndent routine which, on the PDP11, looks for char-
acter constants (SCCON (0344)) or positive integer constants (SICON (0346)).
These are used as special cases in the tables for code optimization.

2266: If the shape is not important ... or if the calculation is for effect only ... then ok.

2268: If the shape is INTEMP (this will only occur via a call from order or reclaim), then
call the machine dependent procedure shtemp (4187) to make the decision as to
whether the shape is that of a temporary storage location.

2270: SWADD is the shape for a word address ...
... relevant for the Honeywelil 6000.

2274: Now make the decision by considering the operator type first.
2277: The kind of‘ straightforward decision you would expect.
2282: Fields again.

2284: flshape (4195) is a machine dependent routine that attempts to determine if the field
is being applied to something reasonable. This is clearly a point of interaction
between the contents of table and the machine dependent cade.

2286: Unpack the field specifications and leave them in the global variables £ldsz and
£1dshf£ to be picked up by expand later.

2317: shumul is a machine dependent procedure which determines the shape (STARNM or
STARREG or neither of these) for subtrees whose root is a UNARY MUL opera-
tion.

It may be noted* that the set of possible shapes that will be recognized is quite circumscribed.
Only at this point and at line 2284 is there an opportunity to match anything but simple nodes.
For a machine such as the PDP11, this is somewhat restrictive. Thus, in the present version of
the compiler, the meaning of STARREG has been extended to comprehend autoincrement and
autodecrement addressing (see shumul (4147)).

8.5 ttype (2325)

This procedure is called from match with two arguments: t, a word extracted from a tree node
defining an operand type, and tword, a type description extracted from an operator template
in table. (Just to contribute to the general confusion, tword is of type int whereas t is of
type TWORD, which happens to be defined as unsigned int.) The range of values for
tword is the union of the values defined on lines 0417 to 0430.

For the PDP11, the actual values which occur in table (with their frequencies) are:

* . Communication from Lee Benoy

80 march.c

2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342

2343 -

2344
2345
2346
2347
2348
2349
2350
2351
2352
23153
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

ttype(t, tword) TWORD t;

/+» does the type t match tword =/

if(tword & TANY) return(1);

i£(tdebug){
printf(

"ttyﬁe(%o, %o)\n", t, tword);

}
if(ISPTR(t) && (tworda&TPTRTO)) {

- do {

t = DECREF(t);
} while (ISARY(t)); :
/+» arrays that are left are usually only
in structure references... »/
return({ ttype(t, tword&(-TPTRTO)));

}

/» TPOINT means not simple =/

if(£ != BTYPE(t)

if(twoxrd & TPTRTO) return(0):

switch(.t){

case CHAR:
) return(tword
case SHORT: '
’ return (
case STRTY:
case UNIONTY:
return(tword
case INT:
return(tword
case UNSIGNED:
. return(tword
case USHORT:
retuzrn (
case UCHAR:
return(
case ULONG:
return(
case LONG:
return(
case FLOAT:
return(
~case DOUBLE:
return(tword
' :

twoxrd

tword
twoxd
twdrd
twozxd

tword

return(0);
}

)

o2 I RN "IN I L o B " I -]

return(tword & TPOINT);

TCHAR)3

TSHORT);

TSTRUCT);
TINT):
TUNSIGNED);
TUSHORT)
TUCHAR) ;
TULONG)3
TLONG)3
TFLOAT)3

TDOUBLE);

/’ xasasl:::.a.a::sana:sana:x:-n:snaa:a=‘==:=:a:a:::z? "/

The Second Pass of

The Portable C Compiler match.c 81

69 TANY

64 TLONG | TULONG

40 TINT | TUNSIGNED | TPOINT

20 TDOUBLE

11 TINT
10TINT.TUNSIGNED.TPOINT.TCHAR.TUCHAR
STFLOAT

8 TCHAR | TUCHAR

5 TUNSIGNED | TPOINT

5 TUCHAR

4 TPOINT

4 TINT | TUNSIGNED .

3 TPOINT ! TINT | TUNSIGNED | TCHAR | TUCHAR

2 TULONG

2 TPOINTITINT!TUNSIGNED
2 TLONG

2 TINT:TLONG:TULONG

2 TCHAR

‘ LTINT.TUNSIGNED.TPOINTfTCHAR{TUCHARgTLONGfTULONG
1 TINT | TUNSIGNED | TPOINT | TCHAR
lTINT.TUNSIGNED.TCHAR.TUCHAR;TPOINT
1 TDOUBLE | TFLOAT
1 TCHAR|TINT

The intention of ttype is to decide the suitability of the operator for the actual operand type.
2328: Simple enough. |

2333: If the type is complex, and is a pointer to something, then ...

2334: discard the pbinter attribute and any succeeding array attributes.

2339: This recursive call could be changed to an iteration ... change tword and go back to line
2330. '

2342: If t does not represent a basic type, then it must be a pointer to something (which may
be acceptable), or else a function, which will certainly not be acceptable at this
. point (always assuming that it can actually happen).

2343: If we reach this point, t :epresents‘ a basic type. If you are still looking for a pointer
type, forget it.

2345: All the cases in this switch statement are eminently straightforward. Surely something
must be missing!

2372: The basic types not explicitly mentioned in the switch statement beginning at line 2345
are UNDEF, FARG, ENUMTY, and MOETY. Presumably their occurrence here
would be a real surprise.

8.6 expand (2376)

This procedure is called by match, cbgen, genargs and zzzcode to expand the string
passed as its third argument, in accordance with the cookie passed as its second argument, and
under the control of the tree passed as its first argument.

expand will look for values set previously in fldsz and £1dshf, when it is dealing with
field operators.

82 march.c

2376 expand(p,

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448 /e

cookie, cp) NODE #p; register char =+cp;: {
/+ generate code by interpreting table entry s/

CONSZ wval;

3 =cpi ++cp)} {
switch(+cp) {

default:
PUTCHAR(=cp)3
continue; /» this is the usual case...

case ‘Z’: /» special machine dependent operations s/

zzzcode(p, *++Cp);
continue;

case ‘F’: /s this line deleted if FOREF?'is active </
if(cookie & FOREFF) while(#+++cp != ‘\n’) { }

continue;

case ‘S’: /» field size =/
" printf("%d", fldsz);
continue;

case ‘H’: J/» field shift =/
printf("%¥d", fldshf);
continue;

case ‘M’: /» field mask «/ .

case ‘N’: /» complement of field mask =/
val = 13
val <<= fldsz;
--val;
val <<= fldshf:
adrcon(ecp=='M’ ? val : -val);
continue;

case ‘L’: /=» output special label field »/
printf("%d4d", p->label);
continue;

case ‘0’: /= opcode string =/
hopcode(«++cp, p->op)i
continue;

case 'B’: /= byte offset in word s/
val = getlr(p,»++cp)=->1lval;
val = BYTEOFF(val);
printf(CONFMT, val);
continue;)

case ‘C’: /» for constant value only +/
conput(getlr(p, #=++cp))
continue;

case ‘I’: /» in instruction =/
insput(getlr(p, #++cp));
continue;

case ‘A’: /» address of »/
adrput(getlr(p, s++cp) });
continue;

case ‘U’: /» for upper half of address, only +/

upput(getlzr(p, #*++cp)):
continue;

}

e o e o . 20 e e e ek e e o S s e i WS

The Second Pass of

The Portable C Compiler 4 maich.c 83

2381: Read the string defined by the third argument, examining each character.

2385: Most characters (in fact all but a few upper case characzers) are copied dnrcctly to the
standard output.

2388: 2z’ is an escape to the machine-dependent routine zzzcode (4415), to provide special
effects, The next character is passed to this procedure as an argument.

Most of the special characters have eﬁ;écts which are readily discerned from read-
ing the source code. Special effects are achieved via the following set of machine
dependent procedures, which are found in the file local2.c:

L.

. adrcon emits a constant (actually a bit mask).

P

zzzcode does machine specific expansions.

2
3. hopcode selects one of a set of instruction names.
4. '
5

conput emits a constant or a register name.

insput is a null procedure on the PDP11, but is used by the Honeywell
6000 compiler to generate register names.

adrput generates the symbolic address of an operand.

. upput complements adxrput for the other half of long types.

84 allo.c

2449
2450
2451
2452
2453
2454
2455
2456
2457

2458

2459
2460
2461

2462
2463
2464
2465
2466
2467
2468
2469
2470
2471

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501

2502
2503
2504
2505
2506
2507
2508
2509
2510
2511

2512
2513
2514
2515
2516
2517
2518
2519
2520

include "mfile2"

define TBUSY 01000

NODE resc{3];

int busy(REGSZ]; .
int maxa, mina, maxb, minb;

SN i am o i - > o - »/

allo0(){ /» free everything »/

register 1i;

maxa = maxb = -1;
mina = minb = 0;

REGLOOP (i) {
busy(i] = 0;
if(rstatus{i] & STAREG)({
if(maxa<0) mipa = i}
maxa = 1i;

}
if(rstatus{i] & STBREG) {
if(maxb<0) minb = i;

maxb = i3
}
: }
}
/W et ot e e - - - - - - - - - - - »/
allchk(){
/+ check to ensure that all registers are free »/
register i;
REGLOOP (i) {
if(istreg(i) && busy(i]){
cerraor("register allocation erraxr”):
}
}
}
/® e enm - - — - 7 - - - - - - LY 4
allo(p, g) NODE sp; struct optab +qi {

register n, i, Jj;

n = gq~>needg;
i=0; . >

while(n & NACOUNT){
resc(i)l.op = REG;
resc{i].rval = freereg(p, N&NAMASK)3
resc(i).lval = 0;
resc(i].name{0] = ‘\O°";
n -a NAREG:
++1

}

while{ n & NBCOUNT }{
resc(i].op = REG:
resc(i].rval = freereg(p, n&NBMASK);
resc{i].lval = 0;
resc(i].name(0] = ‘\0";
n -= NBREG;
++1;

}

if(n & NTMASK){
resc(i}.op = OREG;
resci].rval = TMPREG;

Chaprer 9: The File allo.c™

This file contains, for the most part, procedures that are concerned with allocating, freeing and
checking the use of resources, especially the temporary registers.

allo (2493) is the basic procedure for assigning registers. It is passed, as parameters, refer-
ences to a node and a table entry, and it attempts to obtain the necessary temporary registers
and/or temporary space in the object time stack. allocalls freereg (2546) and freetemp
(2647) to make these allocations. The second of these is fairly straightforward, but the task of
the former, freeregq, is rather more convoluted.

freereg (2546) relies on the advice of the procedure usable (2582), which decides
whether a particular register may be used in a particular context. The latter’s task is compli-
cated by the possibilities of (a) register pairs; (b) sharing registers that are already **busy"".

reclaim (2677) is concerned with restoring parts of the tree after code has been generated.
The difficult case occurs when the result is in one or more registers that must be saved.

recl2 (2839) is invoked by reclaim at each node of the free which is being freed, to call
rfree. rfree (2854) decrements the ‘‘busy’ status count for temporary registers, while
rbusy (2874) increments the ‘‘busy’” status count for temporary registers.

There are two procedures at the end of the file that would be more at home with the other tree
manipulation routines in the file common. They are not there because they are not needed in
the first pass of the compiler. These are ncopy (2891) which copies the the contents of a
node onto another node, and tcopy (2910) which makes a complete copy of a subtree.

Since processor register resources tend to be very individualistic, the raw data for the routines
of this section are included within the machine dependent file, local2.c. Worthy of special
note at this stage are:

1. rstatus (3717) which specifies, for each register, whether it is to be classed as type A or
type B, and whether it may be used as a temporary register*.

!‘\J

respref is both the nume of a two word structure defined on line 0524, and the name of
" an array of such structures, initialized beginning at line 3729. It is used to select (he most
appropriate one of a set of possible outcomes.

9.1 Declarations

The following are declared at the head of the file: a flag, TBUSY, two arrays and four variables.
The role of the variables maxa, mina, maxb and minb'is discussed in the next section.

resc is an array of type NODE. It features prominently during the actual code generation.
when it is used to remember references to registers and temporary variables which are allocated
in accordance with the requirements of particular templates.

busy is used to keep track of the commitments for particular temporary registers. In theory,
the usage of busy is simple enough: when a reference to a temporary register is inserted in the
tree, the corresponding element of busy is incremented: when the reference is removed. the
element of busy is decremented. However it turns out that the actual details of the manipula-
tion of busy are somewhat indirect (perhaps a better word would be “‘obscure’’). This topic is
taken up again in the last section of this chapter.

* On the PDP1I, the floating point registers are of type B. On the VAX11/780, there are no type B registers.

86 allo.c } The Second Pass of

2521 if(p-»>op == STCALL || p->0p == STARG ‘i p->op ==
2522 UNARY STCALL |! p->op == STASG){

2523 resc{i].lval a freetemp((SZCHAR»p->stsize +
2524 (SZINT-1))/SZINT);

2525 } -

2526 alse {

2527 rasc{i].lval = freetemp((nR&NTMASK)/NTEMP);
2528 }

2529 rescf{i] .name[0] = °\O‘;

2530 resc{i].lval = BITOOR(resc(i].lval);

2531 v+l

2532 }

2533)

2534 /+ turn off "temporarily busy" bit s/

2535

2536 REGLOQP (j) {

2537 busy{4] &= -TBUSY;

2538 }

2539 :

2540, for(j=0;3 je<i; ++3j) if(resc{jl.xrval < 0)} return(0);
2541 return(l);

2542

2543 } :

2544 /% ~eommccrem——ae - o e ot - —————— e —————

2545 :

2546 freesreg{ p, n) NODE »p; {

2547 /* allocata a register of type n »/

2548 . /+ p gives the type, if floating +/

2549

2550 register j;

2551 -

2552 /» not general; means that only one register (the result)
2553 is OK for call »/

2554 if{ callop{p->op)){

2555 i = callreg(p);

2556 if({ usable(p, n, j)}) return{ j });

2557 /+ have allocated callreg first +/

2558 } .

2559 j = p->rall & ~MUSTDO;

2560 if(3!=NOPREF && usable(p,n,j) }{ /+ needed and not allocated =«/
25861 return{ j); .
2562 }

2563 if (n&NAMASK) {

2564 for{ j=mina; j<=maxa; ++j) if(rstatus[jI&STAREG){
2565 if(usable(p,n,j)){

2566 return{ j);

2567 }

2568 }

2569 . }

2570 else if(n S&NBMASK){

2571 for(jamznb' jesmaxb; ++3j) if(rstatus[j]&STBREG){
2572 if(usable(p,n,j)){

2573 return(j);

2574 }

2575 }

2578 }

2577

2578 return{ ~1)3

2579 }

2580 /& ~——c—ee=- o e 2 e R 4

2581

2582 usable(p, n, r) NODE =»p; {

2583 /+ decide if register r is usable in tree p to satisfy need n »+/
2584

2585 /+ checks, for the moment =»/

2586 if(listreg(r)) cerror("usable asked about nontemp register”);
2587)

2588 if(busy({r] » 1) return(0);

2589 i£(isbreg(r)){

2590 . if(n&NAMASK) return(0);

The Portable C Compiler v allo.c 87

9.2 allo0 (2458)

This procedure is called once by p2init during the initialization phase, to initialize the busy
array and to set the values of maxa, mina, maxb and minb, to reflect the ranges of the two
register types that should be searched to locate a temporary register. (For the PDP1E, minais
0, maxais 4, minbis 9, and maxbis 12.

2465: REGLOOP (0530) is simply a shorthand for a for statement over the registers.

9.3 allchk (2479)

This procedure is called by main at line 1038, after each expression tree has been processed,
and again by reclaim under the alias of callchk at line 2701. It looks to see if any tem-
porary register is still marked as busy ... which is, at the time the procedure is called, a serious
error. . ’

9.4 allo (2493)

This procedure is called at line~'2202, as the last conditional step in match, before expand is
called to generate assembler code. allo builds a list in the array resc (2452), whose ele-
ments are of type NODE, for each resource required by the table entry.

2497: Extract the ‘““‘needs’” from the table entry.

For the PDP1 l; the actual values which can occur here are:

0 NAREG NBREG

NAREG | NASL NAREG | NASR NAREG | NASL | NASR
NBREG | NBSR NTEMP 2*NTEMP ‘
4*NTEMP - REWRITE

2560: If any type A registers are needed.‘set values in the next available element of resc.
2502: The interesting part is done by freereg (2546).

2509: Do the_ éame for type B registers.

2518: Request is for temporary ’stack space.

2520: TMPREG (0335) is. defined as RS for the PDP11. Note that temporaries in the object
time stack are referenced relative to the frame pointer, RS, and not the stack
pointer. ' -

2523: For structures, the size in characters is stored in the node as the field stsize. This
value, converted to integer units, and rounded up, is passed as the argument to
freetemp (2647). The value which is returned and stored in the field 1lvalis
the offset relative to TMPREG needed to locate the space allocated by £reetemp.
Note that freetemp, which never fails to make an allocation, accepts an argu-
ment measured in words, and returns an offset measured in bits.

2530: BITOOR (0331) is a machine dependent operation which converts its argument from bits
to the addressable unit of storage. For the PDP11 and the VAX11/780, BITOOR
simply shifts right by three places.

2536: freeregq turns on the TBUSY flag for any register that it allocates. Such bits are now
turned off, whether the allocation is regarded as successful or not. (Whether code
is about to be generated or not, the registers will be available next time allo is
cailed.)

88 allo.c The Second Pass of

2591 }

2592 else {

2593 if{ n & NBMASK) return(0);

2594 } v ’
2595 if((nANAMASK) && (szty(p->type) == 2)){

2596 /» only do the pairing for real regs »/

2597 if(r&01) return(0);

2598 if(listreg(zr+1)) return(0);

2599 -1f(busylzr+1] > 1) return(0);

2600 if({ busyl{r] == 0 && busy(zr+1] == 0 |}

2601 busy{r+1] == 0 && shareit(p, r, n)} i1

2602 ' busy(r] == 0 &8 shareit(p, r+1, n)}){

2603 _ busyl[r] = TBUSY;

2604 ' busylzr+1] i= TBUSY:

2605 return(1):;

2606

2607 else return(0);

2608 }

2609 i£(busyl{r] == 0) {

2610 busy{zr] != TBUSY;

2611 return(1);

2612 . } ‘

2613 : :

2614 /#» busylr] is 1: is there chance for sharing =/

2615 return(shareit(p, r, n));

2616

2617, })

2618 /% —ccccwmcae- - - e —emwmceevawm———- &/
2619

2620 shareit(p, r, n) NODE sp; {

2621 /+ can we make register r available by sharing from p
2622 : given that the need is n =/

2623 if((n&(NASL-NBSL)) &5 ushare(p, ‘L’, r })} return(1)}:
2624 if((n&(NASRINBSR)) && ushare(p, ‘R°, r } ¥ return(1};
2625 return(0);

2626 ' }

2627 /% ~=memmm—me—emmemcem———— SR cmm——— —————— ————— e/
2628

2629 ushare(p, £, ©) NODE +p; {

2630 . /# can we find a register r to share on the left or right
2631 (as f=='L’ or ‘R’, respectively) of p «/

2632 p = getlr(p, £):

2633 " 1£(p->op == UNARY MOUL) p = p->left:

2634 if(p-»op == OREG){

2635 if(R2TEST(p->rval)){ ' ‘
2636 return(r==R2UPK1(p->rval) i} r==R2UPK2(p->rval) };
2637 }

2638 else return(r a= p->rval);

2639 } :

2640 if(p->o0op == REG){ : ¢

2641 return(rsap-s>rval || (szty(p->type)==2 && ra=p->rvalel));
2642 }

2643 return(0);

2644 i }

2645 /% —mmem—- - et et e — e —————————- 4/

2646 o

2647 freetemp(k){ /s allocate k integers worth of temp space «+/
2648 /+» we also make the convention that, if the number of words
2649 /e is more than 1,

2650 : /+ it must be aligned for storing doubles... s/

2651

2652 # ifndef BACKTEMP

2653 int t;

2654

2655 if(k>1) {

2656 SETOFF(tmpoff, ALDOUBLE);

2657 '} ,

2658

2659 t = tmpoff;

2660 tmpoff += k»SZINT;

2661 if(tmpoff > maxoff) maxoff = tmpoff;

The Porrable C Compiler , allo.c 89

2540: A final check is made to see if ailo has been successful: for every relevant .element of
resc, is the register number stored in the rval field valid? (freereg will
have returned -1 if it failed.)

Clearly, allo is more general than is needed by the PDPII: from the list of actual **needs™
given above, allo is only ever called upon to allocate:

1. exactly one A register or register pair; or
2. exactly one B régister or register pair; or
3. one block of stack storagé; or
4. nothing

9.5 Free chistgrs

The next four procedures, freei‘eg, usable, shareit and ushare, form a strict hierar-
chy, where each is called by, and only by, its predecessor, with the exception of freereg,
which is called by allo at lines 2502, 2511.

9.5.1 freereg (2546) is called to allocate a free register. The first argument is a node
pointer and the second indicates whether a type A or type B register.is needed.

2554: If the operation is a *‘call”’ (CALLFLG set; see callop (0159) and dope (0724)) then
take the value returned by the machine dependent routine callreg (4021). For
the PDP11, this is either RO or FRO.

' 2556: Check if the register is ‘“‘usable’® (see later).
2559: Look at the value in the rall field of the node, but ignore the MUSTDO flag if it is set.

2560: If a definite register has been requested, and it is ‘‘usable’’, return the register number.

2563: Look for either a type A or a type B temporary register which is ‘‘usable’ and return its
value, else ...

2578: return -1 as an indication of failure. -

9.5.2 usable (2582) is called by freeregto determine whether a ngen register is available
to be used. -

2588: Failure. The register is already committed more than once.
2589: Failure, This is a B register and you wanted an A, or vice versa.

. 2595: A pair of type A registers is required. They must be an even-odd pair, and both must be
available, or potentially available (shareit (2620)).

| 2603: Mark the registers busy, and retumn.
2609: If the register is free, reserve the register and return.

2614: The register is booked, but there is still a chance. Look a little further.
9.5.3 shareit (2620) The arguments passed to this procedure are a re-ordering of the argu-
ments of its parent, usable.

2623: If the template says that the left operand may be shared, call ushare to check the left
operand,

90 allo.c : The Second Pass of

2662 if(tmpoff-baseoff > maxtemp) maxtemp = tmpoff-baseocff;
26613 return(t);

2664

2665 # else

2666 tonpoff +a k+SZINT;

2667 i£(k>1) |

2668 SETOPF(tmpoff, ALDOUBLE);

2669 }

2670 if(tmpoff > maxoff) maxoff = tmpoff;

2671 if(tmpoff-baseoff > maxtemp) maxtemp = tmpoff-basecff:
2672 return(-tmpoff);

2673 # endif

2674 }

2675 /8 ERASRAZINSAIBTIZIETRATTLITARIANANATINISATTANIIZIBIAZIRNRT /
2676
2677 reclaim(p, xw, cookie) NODE »p; {

2678 register NODE »»qq;

2679 register NODE »q;

2680 register i:

2681 NODE srecres(5];

2682 struct respref sr;

2683)

2684 /+ get back stuff »/

2685 ‘

2686 if(rdebug){

2687 printf("reclaim(%o, ", p):
2688 rwprint(zw);

2689 prints(", "); : ' .
2690 prcook(cookie)3

2691 . printf£(")\n");

2692 ’ }

2693

2694 if(rw == RNOP || (p->op==FREE &5 rwa=RNULL))
2695 return; /» do nothing =/

2696

2697 walkf(p, recl2);

2698]

2699 if(callop(p->o0p)){ _

2700 /+ check that all scratch regs are free +/
2701 callchk(pl); /+ ordinarily, this is the same as allchk() </
2702 }

2703

2704 if(rw == RNULL || (cookie&FOREFF)) {
2705 /» totally clobber, leaving nothing »/
2706 tfree(p);

2707 retuzrn;

2708 }

2709

2710 /+~ handle condition codes specially »/
2711 :

2712 if((cookie & FORCC) && (rwa&RESCC)) {
2713 /+ Ttesult is CC register »/

2714 tfree(p):

2715 p~>op = CCODES;

27186 p->1lval = Q;

2717 p->rval = 0; -
2718 return;

2719 }

2720 -

2721 /» locate results «/

2722

2723 . qq = recres;

2724

2725 if(rw&RLEFT) #qg++ = p->left;

2726 if (rw&RRIGHT) =»qq++ = p->right;

2727 if(rwAhRESC1) »qq++ = &resc(0];

2728 if(rw&RESC2) sqq++ = &xesc{1];

2729 if(rwhRESC3) sqg++ = &resc(2];

2730

2731 " if(qq == recres){

2732 cerror("illegal reclaim");

The Portable C Compiler ' allo.c 91

2624: If that failed, try the same with the right operand.

9.5.4 ushare (2629) When this procedure is called, by shareit, it is known that the regis-
ter r (the third argument) has only a single commitment. After the operation on line 2632, p
designates a subtree, whose result, so far as the current template is concerned, may ‘be shared,
i.e. its value is needed as data for the instruction execution, but may be destroyed by the end of
the execution. The question to be answered is: does r designate a register which is appropri-
ately located in the subtree designated by p?

2632: Descend the tree one level, if possible.
2633: Descend an additional level if the operator is a UNARY MUL.
2634: If the node is an OREG, is r either the base or displacement register?

2640: If the node is a REG, is r the register? Or could ii be that the node denotes a register
pair, and r is the other member of the pair?

9.6 fré.etemp (2647)

This procedure is called by allo (at line 2523 or 2527) to allocate temporafy stack space.
There are two distinct approaches, depending on whether stacks grow up or down. On the
PDP11, they grow down.

2666: Increase tmpoff by the number of bits requested. (The request was in terms of words.)

2655: If more than one word was réquested. align the allocated area on a double word boun-
dary. This means rounding the value for tmpoff up. (This is a conservative
strategy, which shouid nip most alignment problems in the bud.)

2670: Keep the values of maxo£ff and maxteémp current.

2672: Retumn the négative value of tmpof£. This will be used as an offset from RS5 to find the
beginning of the newly allocated temporary area.

9.7 reclaim (2677)

This procedure is called by cbgen, cbranch, genargs, main, match, ordexr and
setasop, to rewrite a subtree after code has been generated. The revised tree will reflect the
values which will be generated by the newly emitted code. There are three arguments: a node
pointer, directions for how the tree is to be rewmten, and the original ‘‘cookie’’ or set of alter-
native goals

2681: Note the dynamic array allocanon for recres, which is used in the reclamation of
resources.

2694: The easy cases. For the PDP11, RNOP occurs with a template for STASG (5426) (struc-
ture assignment), and with templates for GOTO (lines 05464 to 5480). RNULL
occurs for templates where visit (i.e. ‘‘cookie’) is FORARG, so that the results
will go into the stack. o

2697. Walk the tree in preorder, and apply reclz (2839) at each node to ‘‘free” any regxsters
in use.

2699: Check the **busy’’ states of temporary type A registers.

92 allo.c The Second Pass of

2733 .}

2734

2735 +qq = NIL;

2736 , :

2737 /+ now, select the best result, based on the cockie »+/
2738

27395 for(r=respref; r->cform; ++r){

2740 if(cookie & r->cform) {

2741 for{ qq=recres; (qa +qq) != NIL; ++qq){
2742 if(tshape(q, r->mform)) goto gotit:
2743 } .

2744 }

2745 }

2746 .

2747 /+ we can’t do it; die «/

2748 cerror("cannot reclaim”);

2749

2750 gotit:

2751 :
2752 if(p~>op == STARG) p = p->left; /» STARGS are still STARGS »/"
2753

2754 /+ to make multi-register allocations work »/

2755 q->type = p->type;

2756 /+» maybe there is a better way!l =/

2757 .

2758 q = tcopyl(q);

2759 tfree(p);

2760 p~>0p = g->0Op;

2761 p->»lval = g->lval;

2762 p->rval = g->rval;

2763 for(i=0; i<NCHNAM; ++i)

2764 p->name{i] = g->name(i];

2765 q=->0p = FREE;

2766

2767 /» 1f the thing is in a register, adjust the type +/
2768 .

2769 switch(p=->op)({

2770

2771 case REG:

2772 if(p->type == CHAR || p->type == SHORT) p->type = INT:
2773 else if(p->type == UCHAR || p->type == USHORT)
2774 p->type = UNSIGNED:

2775 . else if(p->type == FLOAT) p->type = DOUBLE.
2776 if(! (p=->rall & MUSTDO)) return:

2777 /» unless necessary, lgnore it »/

2778 i = p->rall & -MUSTDO;

2779 ~ if(i & NOPREF) return;

2780 if(i != p=->rval){

2781 if(busy[i] || (szty(p->type)==2 && busy(i+1])){
2782 . cerror("faulty register move" };
2783 }

2784 rbusy(i, p->type);

2785 rfree(p-»>rval, p->type);

2786 - rmove(i, p->rval, p->type):

2787) p->rval = i;

2788 }

2789

2790 case OREGY ’

2791 if(R2TEST(p->rval))({

2792 . int r1, r2;

2793) r1 = R2UPK1(p->rval);

2794 r2 = R2UPK2(p=->rval);

2795 if((busy{r1]>1 && istreg(r1)) i

2796 (busy(r2]>1 && istreg(zr2))){
2797 cerror("potential register overwrite"):
2798 !

2799 }

2800 else if((busy(p->rvall>1) && istreg(p->rval))
2801 cerror("potential register overwrite"):
2802 } ’

2803 }

2804 /% mmmmmmmm————— mmmmmm—m————— m——————— m———m—————— .

The Portable C Compiler allo.c 93

2704: If the tree was evaluated ‘“‘for effect”, or if there is nothing to be saved, dismantle the
subtree,

2712: If the cookie included FORCC, and the result is accessible via the current condmon codes
.. ok.

2720: If the cookie was FORCC alone, and we get here ... then die at line 2732.

2723: Make a list of resources that are candidates to replace the subtree denoted by p, as given
by the template rewriting specifications.

2739: The problem here is to choose the most useful result from among the possible results,
‘which are now listed in the array recres. A certain amount of leeway may be
possible in some cases if the original ‘‘cookie’” was not matched exactly.
respref (03729) is a list of pairs (cform, mform), given in order of prefer-
ence. If the ‘“cookie’” matches cform, see if one of the recres elements is
acceptable on the basis of mform The result does not have to match the
‘‘cookie’’ exactly provided it is close enough. For example, if the ‘‘cookie’” was
INAREG, then any addressable type will be acceptable, because it can be taken
care of by the final call to match at line 1793 of order, if necessary.

2742: Quit as soon as a result is found that the shape of one of the alternative ‘“‘cookies”.

2752: Descend the‘ tree one level, so that the STARG will not be thrown away by the code
beginning at at line 2759.

2754: Operand type information was not stored in resc by allo (2493) earlier.
2758: Note that tcopy updates busy counts.

2771: Adjust the type of REé nodes, i.e. widen the value if necessary.

2780: The result‘is in the wrong register. Generate a register-to-register move.

1 2790: Only a test for compiler consistency.
9.8 rwprint (2806)

This procedure, which is invoked by reclaim at line 2688 for diagnostic printing, serves as a
working definition for the set of values that reclaim can expect as its second argument.

9.9 recl2 (2839)

This procedure is passed as the second argument to walkf (0688) by reclaim at line 2697.
For each register reference in the subtree that is being freed, call rfree (2854) to update the
corresponding element of busy.

9.10 rfree (2854)

Ifrisa temporary register, decrement busy [r] to reflect a use for r which is bemg given up.
Take care of register pairs, as and when required, and be cautious about. error situations. This
procedure is called by recl2, and also by reclaim and zzzcode at lines 2785, 4589
respectively.

9.11 rbusy (2874)

This procedure implements"the reverse operation to that performed by rfree. It is called by
eread at line 1118, reclaim at line 2784, and tcopy (2910) (four times), and zzzcode
at line 4592.

94 allo.c . ‘ The Second Pass of .

2805
2806 <rwprint{ rw)}{ /+ print rewriting rule +/
2807 register i, flag;
2808 static char + rwnames{] = (
2809
2810 "RLEFT",
2811 "RRIGHT",
2812 . "RESC1",
2813 . "RESC2",
2814 "RESC3",
2815 0,
2816 |
2817
2818 if(rw == RNULL){
2819 print£("RNULL");
2820 return;
2821 }
2822
2823 : if(rw == RNOP){
2824 . printf("RNOP");
2825 . return;
2826 }
2827)
2828 flag = 0;
2829 o for(i=0; rwnames(iJ; ++i){
2830 if(rw & (1<<i)) {
2831 : if(flag) printf("i");
2832 ++flag;
2833 printf(rwnames(i]);
2834 }
2835 }
© 2836 } - -
2837 /® c—cmccvemeaw e e e o e e e L ————)
2838
2839 recl2(p) register NODE »p; {
2840 register r = p->rval;
2841 if(p->op a= REG) rfree(r, p->type)s
2842 else if(p->op == OREG) {
2843 if(R2TEST(r)) {
2844 rfree(R2UPK1(r)}, PTR+INT)3
2845 ' rfree(R2UPK2(r), INT);
2846 } :
2847 else {
2848 - rfree(r, PTR+INT);
2849 : }
2850 }
2851 } ,
2852 /% <ccccrcmcccmmsccccesccen—- PR L EL LT o ———— S
2853
2854 rfree(r, t) TWORD t;)
2855, /+ mark register r free, if it is legal to do so »/
2856 /+ t is the type »/
2857
2858 if(rdebug){
2859 printf{ "rfree(%s), size %d\n", rnames{r], szty(t)):
2860 }
2861
2862 if(istreg(r)){
2863 1f{ --busy(r] < 0) cerror({ "register overfreed”};
2864 1£(sztylt) == 2){
2865 _4f((zr&01) |1 (istreg(r)“istreg(r+1)))
2866 cerror("illegal free");
2867 ‘ : if(--busy[r+1} < 0)
2868 cerror("register overfreed” };
2869 }
2870 }
2871 - }

2872 /% mmmmmmme= wmmmmmmerc————- cmmmmmmmmm————= cvm——— ——— s

The Portable C Compiler allo.c 95

9.12 ncopy (2891)

This procedure is called by delay1, delay2, order and tcopy at lines 1223, 1267, 1610
and 2916 respectively. It copies the contents of one node (given as the second argument) onto
another (the first argument). It is useful when one subtree must be replaced by another. Since
it may be difficult to locate all existing references to the root of the first subtree, it is easier to
copy the content of the root of the second subtree onto the element that was the root of the
first subtree, and to abandon the element which was the root of the second subtree.

9.13 tcopy (2910)

If we ignore for the moment the code on lines 2918 through 2928, this procedure is an arche-
type for a recursive ‘‘tree copy’’ routine. The contents of individual nodes are copied by the
call 10 ncopy at line 2916. tcopyis called by delay?2 at line 1264, by order at lines 1724,
1740, and by reclaim, setasopand zzzcode at lines 2758, 3452 and 4444 respectively.

2918: The code from here to line 2928 is almost identical to that on lines 2840 to 2850, except
that rfree has been replaced by rbusy. Thus it will be seen that, as new
copies of subtrees are made, for each register reference which is encountered,
rbusy is called to increment the appropriate element of busy, if the register is a
temporary register. '

9.14 Keeping busy

As mentioned at the beginning of this chapter, keeping track of the movements of the elements
of busy in this program is not a straightforward task. Moreover since register allocation is
such a central problem in the whole task of code generation, any failure in the mechanism for
manipulating busy could have sericus consequences. Since part of this mechanism resides in
the machine-dependent parts of the compiler, new implementers should take care. A review of
operations on busy needs to consider the following points:

1. nodes of type REG are recognized by eread when expression trees are read in from the
intermediate file. Temporary registers shouid not appear here, but rbusy is called anyway
(line 1118).

2. Since exread does not recognize OREG nodes, it can be assumed that these will not be
present in the initial trees, or, if present, do not use a temporary register.

3. OREG nodes are generated by oreg2 (1988), which uses tfree to dismantle a subtree
and replace it by a single node. tfree (0675) does not call rfree, and so the array
busy is not altered during this operation.

4. When trezs are copied by tcopy, as an important side-effect, the busy counts for tem-
porary registers are increased.

5. When trees are dismantled by reclaim, busy counts for temporary registers are
decreased.

6. The most important place where busy counts are incremented is not at all obvious: it
occurs as a side effect of the code on lines 2758 through 2765 in reclaim

The complexity of a complete verification of the program’s manipulations of busy is
sufficiently daunting that the present writer has not attempted it. This is, of course, not to say
that the code is incorrect. However, a complete check would need to examine all sections of
code which rewrite the trees or the contents of nodes to ensure that references to registers are
not being created or destroyed under obscure circumstances. It seems to the present writer that
this aspect of the present program should not be considered one of its more enduring features.

Steve Johnson has pointed out that the use of allchk ensures that disasters in this area can’t
spread, and also that register sharing is one aspect of the compiler over which he labored long,
and successfully! The present code does tackle the problem in a machine-independent way,
which is an achievement in itself.

96 aillo.c

2873
2874
2875
2876
2877
2878
2879
2880
2881

2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

2892
2893
2894
2895
2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906
2907
2908
2909
2910
2911

2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931

2932
2933
2934
2935
2936
2937
2938
2939
2940

rbusy(r,t) TWORD t; {

/»

/+ mark register r busy +/
/+ t i3 the type «/

if(rdebug){
printf("rbusy(%s), size %d\n", rnames{r], szty(t))
}

if(istreg(r)) ++busyir];
1f(szty(t) == 2){
if(istreg(x+1)) ++busy(r+1l;
if((r&01) |} (istreg(z) istreg(r+1)))
) cerror("illegal register pair freed"™):;

}

’38-8‘-3‘:8!-83”"5='ﬂ‘=.ﬂ..-”:35*2’3::”2‘!3:!.3-3 ‘./

ncopy(q, p) NODE »p, =*q; (

/+ copy the contents of p into q, without any feeling fox
the contents «/

/+ this code assume that copying rval and lval does the job;
in general, it might be necessary to special case the
operator types »/

register i;

q->0p = p->0p;

q->rall = p->rall;

q->type = p->type;

q->1lval = p->lval;

g->rval = p-»>rval; :
. for{ i=0; 1i<NCHNAM; ++i) g-»>name(i] = p=->namefil];

NODE » ,
tcopy(p) register NODE »p; {

/» .

/+ make a fresh copy of p +/

register NODE +q;
register r;

ncopy(q=talloc(), p);
r = p->rval;

if(p=->op == REG) rbusy(r, p->type)3
else if(p-s>op == OREG)

- . if{ R2TEST(r)){

rbusy(R2UPK1(zr), PTR+INT); -

rbusy(R2UPK2(r), INT);

} .

else {
rbusy(r, PTR+INT):
}

}
switch(optype(g->op)){
case BITYPE:

q->right = tcopy(p-»>right);
case UTYPE:

q->left = tcopy(p->left);

}

return(q);

----------------- L L b e Y 4

-
’

Chaprer 10: The File ‘‘order.c’” Part One

The file order.c contains procedures which, to a greater or less extent, are machine-
dependent. As the name suggests, many of these are associated with the procedure oxder,
and represent sections of code which might naturally occur in-line in that procedure. However,
in the absence of better mechanisms for building program families, these machine-dependent
sequences have been exorcised and made into the free-standing procedures that appear here.

Of the nineteen procedures in this file, there are three

offstar called by genargs, order, setasg, setasop
and setbin :

getlab called by cbgen, cbranch and oxrder

deflab called by cbgen, chranch, order and zzzcode

which lay some claim to being of general usefulness. There are two other procedures

rallo called by order, setasop and mkrall
stoasg called by store

which are invoked more than once by procedures external to this file. Most of the remaining
procedures, namely ’

‘deltest called by delay2 (1261)
mkadrs called by store (1383)
sucomp . called by canon (1319)
setincr called by orxder (1713)
setstr called by order (1732)
setasop called by order (1736)
setasg called by order (1754)
setbhin called by ozxder (1759)
notoff called by oreg2 (2065)
genargs called by gencall (4041)
argsize called by gencall (4037)

consist of straight line code and are cailed exactly once. Amongst these, only sucomp should
undoubtedly be a separate procedure on its own merits. The last two procedures., genargs
and argsize, are really out of place, and should be moved to be with their *‘parent”. gen-
call, into the file local2.c.

Finally there is a small set of procedures that are only referenced from within this file, i.e. they
are not referenced from the machine-independent parts of the program, and hence could con-
ceivably not appear in some other implementations:

zum called by sucomp
mkrall calls, and called, by rallo
niceuty called by setbin

The single variable declared at the head of this file, £1tused, is used as a flag to signal the
occurrence of floating point operations. It is incremented by rallo at line 3022, whenever it

98 order.c The Second Pass of

2941 # include "mfile2"

2942

2943 int fltused = 0;

2944

2945 /% —meemmm e cmeeemmmmemmemee———a————— %4

2947 deltest(p) register NODE +p; {

2948 /+ should we delay the INCR or DECR operation p */
2949 if(p->op == INCR && p->left-»op = REG &&

2950 spsz(p->left->type, p->right->lval)){
2951 /* STARREG »/ '
2952 . return(0);
2953 }

2954 p = p=->left;

2955 if(p~>op == UNARY MUL
2956 return(p->op == NAME
2957 } .
2958 /& em—mcem——- e e c e e m e m e e e, ———— - ——————— -— %/

) p = p->left;
{ p~>op == OREG {{ p->op == REG);

2960 stoasg(p. ©) register NODE +p; { .

2961 . /» should the assignment op p be stored.

2962 given that it lies as the right operand of o
2963 (or the left, if oa=UNARY MUL) «/

2964 return(shltype(p->left->op, p=->left))

2965 }

2966 /% cmwmcom—a~a o e o o e 0 e > o e wwmm———

2968 mkadrs(p) register NODE =»p; {
2969 register a;

2971 o0 = p->ap;

2973 if(asgop(o)){

2974 if(p-»>left->su »= p->right-»su){

2975 if(p->left->op: =a UNARY MUL }{

2976 if(p->left-»su > 0)

2977 SETSTO(p->left->left, INTEMP);
2978 else {

2979 if(p->right<>su > 0))
2980 SETSTO(p->right, INTEMP);:
2981) else cerror(

2982 . "store finds both sides triwvial”)3
2983 . }

2984 }

2985 else if(p~>left->op == FLD &&

2986 p->left->left->0op == UNARY MUL){
2987 t SETSTO(p->left->left->left, INTEMP);

2989 else { /» should be only structure assignment +/
2990 SETSTO(p->left, INTEMP }: >
2991 }

}
2993 else SETSTO(p-»>right, INTEMP);
}

2995 else {

2996 if(p->left->su > p->right->su){
2997 SETSTO(p->left, INTEMP);

2998 } ’

2999 else |

3000 SETSTO(p->right, INTEMP);

The Portable C Compiler - (order.c (I) 99

encounters a node of type FLOAT or DOUBLE, and interrogated by eobl2 (3755), which then
passes the information to the assembler. (This is totally oriented towards the PDP11.)

10.1 deltest (2947)

This procedure is called by delay2at lme 1261 to determme whether INCR and DECR opera-
tions may be executed after the main effects of the expression have been realized. If the opera-
tion is delayed, a copy of the subtree of the INCR or DECR operator is made, and a reference
to it is stored in the array deltrees. The main tree can then be simplified, and, in particu-
lar, the INCR or DECR operator can be removed.

deltest for the PDP11 returns the answer ‘‘do not delay” if the incrementation can be per-
formed naturally by the hardware using autoincrement addressing modes®, or if the operand is
not directly addressable.

10.2 stoasg (2960)

This procedure is called by store twice, at lines 1345 and 1380. In neither case does the cal-
ling procedure expect a value to be returned. shltype (4141) may call shumul (4147),
which may call spsz {4096), but since none of these has any side-effect, it can be seen that
stoasg, at least for the PDP11, is harmless (and should be null, as it is for the VAX11/780).

10.3 mkadzrs (2968)

mkadxrs is called by store, when the latter knows that some intermediate result will have to
be stored temporarily in the stack. The question then becomes ‘“‘from which subtree will this
result come?’’. The decision is frequently made by mkadrs.

Unfortunately for the reader, the logic of this procedure is inverted, with the most complicated
situation being given first, and the easy cases being left until later.

2995: We are not dealing with an assignment operator so ...
2996: if the left side looks harder, ...
2997: do it, otherwise ...

2999: do the right side first.

2993: We are dealing with an assignment operator, and the right hand side looks the harder, so
do it first.

2985: We are dealing with an assignment operator, but the operator in the left subtree is not a
UNARY MUL Perhaps it is a FLD pointing at a UNARY MUL pointing at ... If so.
store .

2975: We are dealing with an assignment operator; the left side is at least as demanding of tem-
porary registers as the right side; the left subtree has a UNARY MUL root ...

2976: How bad really is the left hand side? If it needs at least one register, get the address
(subtree of the UNARY MUL) into temporary storage. (Seems a fairly conservative
response.) .

Lee Benoy has pointed out that, with a very high probability, the parent of the INCR node wi‘ll be 2 UNARY MUL.
If it is not, then it would in fact be better to delay.

100 order.c ‘ The Second Pass of

3006 rallo(p, down) register NODE »p: {

3607 /+ do register allocation +/

3008 register o, type, downl, down2, ty;

3009 . ‘

3010 ‘ if(radebug) printf("rallo(¥o, %o)\n", p, down);
3011

3012 down2 = NOPREF;

3013 p->rall = down;

3014 down1 = (down &= -MUSTDO };

301S :

3016 " ty = optype(o = p->0p)}

3017 type = p->type;

3018 :

3019

3020 if(type == DOUBLE i{! type == FLOAT){

3021° if(o == FORCE) down1 = FRO{MUSTDO;

3022 ++fltuged;

3023 }

3024 else switch(o) (

3025 case ASSIGN:

3026 down1 = NOPREF;

3027 _ down2 = down;

3028 break;

3029 :

3030 case ASG MUL:

3031 case ASG DIV:

3032 case ASG MOD: - .
3033 /* keep the addresses out of the hair of (r0,r1) =/
3034 . if(fregs == 2){

3035 . /+ 1hs in (r0,r1), nothing else matters =/
3036 down1 = R1IMUSTDO;

3037 ‘ . down2 = NOPREF;

3038 break;

3039 } .

3040 /» at least 3 regs free =»/

3041 - /» compute lhs in (r0,r1), address of left in r2 s/
3042 p->left->rall = R1{MUSTDO;

3043 mkrall{ p-»>left, R2|MUSTDO);

3044 /+ now, deal with right =/

3045 if(fregs == 3) rallo(p=->right, NOPREF);
3046 else {

3047 /+ put address of long or value here «/ -
3048 p->right->rall = R3|MUSTDO:

3049) mkrall(p->right, R3IMUSTDO);

3050 . }

3051 . return;

3082

3053 case MUL:

3054 case DIV: -

3055 case MOD: }

3056 rallo(p-»>left, R1{MUSTDO);

3057

3oss8 if(fregs == 2){

3059 rallo(p->right, NOPREF ');

3060 return;

3061 }

3062 /+ compute addresses, stay away from (xQ,r1) </
3063 p->right->rall = (fregs==3) ? R2IMUSTDO : R3|MUSTDO
3064 mkrall(p-»right, R2IMUSTDO);

3065 return;

3066

3067 case CALL:

3068 case STASG:

3069 case EQ:

3070 case NE:

3071 case GT:

3072 case GE:

3073 , case LT:

3074 case LE:

The Portable C Compiler ‘ order.c 1) 101

2980: If we get here, it should be a miracle or something®, since:

p~>left->su >= p->right->su
p->left->su ==
p->right->su >0

2990: When‘fu‘rther inspiration fails ... do this. .

Since there is no way out of this procedure without executing a statement of the form

' SETSTO(..., INTEMP); : '
and since SETSTO is a macro which stares values for stotree and stocook, this procedure
could be improved space-wise slightly by setting stocook upon entry, and changing the refer-
ences to SETSTO to assignments to stotree.

-10.4 rallo (3006)

This procedure is called from orderxr ‘twiée and once from setasop (3398), which is really an
in-line segment of ordexr. rallo also has a recursive relationship with its alter ego mkrall.

Notwithstanding the comment on line 3007, rallo does not perform register allocation expli-
citly. This is done by freereg (2546) (called by allo) when the time for code generation
actually arrives. The task of rallo is to set values of the rall field of tree nodes. These
values, unless they are flagged as MUSTDO, constitute advice, not orders, to freereq. (The
rall value is also observed by reclaim at line 2778, which may generate a ‘‘register-to-
register”” move, if perchance the result has been forced into the wrong register.)

The basic strategy of rallo is to perform a pre-order walk of the subtree, setting the rall
field of each node as appropriate, in order to direct the results of the calculation into the loca-
tion specified by the rall value of the root node. (This advice may range from NOPREF to
something very specific.) The nodes are not treated exactly alike since certain links may be
traversed via calls to mkxrall rather than to rallo.

The call from ordex (1539) is executed upon the initial entry to oxrder and at the begiﬁning
of every subsequent iteration. The other calls, from order at line 1745 and setasop at line
3473, are made after the tree has been rewritten and immediately before a recursive call on
order.

3012: Set out to:
1. Tell your right descendent nothing.
2. Do as you were told by your barent.
3. Be a little less strict with YGur left descendent.

down1 and down2 are passed as arguments to recursive calls to rallo at lines
3087 and 3088 for the left and right subtrees respectively.

3020: If the data type is single or double precision floating point, and the operator is FORCE.
give the left descendent strict instructions.

3025: With ASSIGN operations, the result will be where the right subtree leaves its result. so
plan accordingly.

3030: Multiplication and division with assignment. If a register pair is needed. this will be RO
and R1. The preferred strategy is to obtain, in order of importance, R1 for the
value of the left operand, R2 for any register used to address the left operand, and
R3 for the value of the right operand. If, when code generation time draws near.
a spare register has to be found (as specified in the template), this will be RO.

Lee Benoy comments: "*Very interesting, the tangle one gets oneself into ... ™"

102 order.c The Second Pass of

3075 case NOT:

3076 case ANDAND:

3077 case OROR:

3078 down1 = NOPREF;

3079 break;

3080 .

3081 case FORCE:

3082 downti = RO{MUSTDO;

3083 ' break:

3084

3085)

3086

3087 if(ty != LTYPE) rallo{ p->left, downl);

3088 if{ ty == BITYPE) rallo(p->right, down2):
3089

3090 } .

3091 /% cecccccccaeaa e ———— —mm e mecc e cm e ————— o dm——— %/
3092

3093 mkrall(p, T) register NODE »p: {

3094 /+ insure that the use of p gets done with register r;
3095 /+ in effect, simulate offstar +/

3096 .

3097 if(p->op == FLD){

3098 p->left->rall = p->rall;

3099 p = p->left;

3100 ’ } .

3101 if(p->op != UNARY MUL) return: /+ no more to do +/
3102 p = p->left;

3103 if(p->ap == UNARY MUL){

3104 p->rall = r;

3105 P = p->left;

3106 }

3107 - if(p-»>op == PLUS && p->right->op a=a ICON){
3108 p->rall = r;

3109 . p = p->left;

3110 }

3111 rallo(p, r)

3112 } .

3113 /% 3 AR R NARNIANRREXTIA I TIANCNRETIETIININAIRARNRDDND &/
3114

3115 # define max(x,y) ((x)<(y)?(y):(x))

3116 '# define min(x,y) ((x)<(y)?(x):(y))

3117

3118 # define ZCHAR 01

3119 # define ZLONG 02

3120 # define ZFLOAT 04

3121 .

3122 suconmp({ p) registar NODE *p:

3123

3124 /» sat the su field in the ricde to the sethl-ullman
3125 number, or local equivalent =/ -
3126 :

3127 register o, ty, sul, sur;

3128 register nr;

3129

3130 ty = optype(o=p->0p);

3131 nr = szty(p->type):

3132 p~->su = 0; :

3133

3134 1#(ty == LTYPE) {

3135 if(p->type==FLOAT) p->su = 1;

3136 : return;

3137 }

3138 else if(ty == UTYPE){

3139 switch(o) (

3140 case UNARY CALL:

3141 case UNARY STCALL:

3142 p->su = fregs; /+ all regs needed »/
3143 return;

3144

The Portable C Compiler 4 ’ order.c (1) 103 -

Note that whatever happens, all temporary registers wm be used, and that this is
relevant to the calculation of the SU numbers.

3036: With only two free registers, force the result of the left subtree into R1. Although no
preference is being expressed, the result of the right subtree is going to end up in
a temporary stack location.

3042: If the example of other cases in this switch statement were followed, a break would
occur here, leading to a recursive call to rallo at line 3087. Instead the code
reaches down explicitly into the root node of the left subtree and ‘‘fixes’ it.
mkrall is then called, and it does not touch the root of the tree it is passed.
However it goes on and propagates, to a limited extent, the value it receives as an
argument into some of the nodes further down.

3053: Regular muitiplication and division. The left operand must go into R1, and the result
will appear in either RO or R1.

3062: If extra registers are available, arrange for the value of the right operand to be placed in
R2 or R3, and any value needed in the calculation of the right operand. into R2.

3067: The operators listed here do not impose any preference for where the result of either tree
will be left. The conditional operators expect to obtain their data from the condi-
tion codes.

3081: The significance of the FORCE operator is manifest at this point. (It would be tidier if
the code on lines 3020 to 3023 were moved to here.)

10.5 mkrall (3093)

This procedure, which is called by rallo at lines 3043, 3049 and 3064, is similar in intent to
rallo in that it sets rall values for nodes in the subtree designated by its first argument.
The second argument is a value which may be forced into the rall field of nodes in the left
subtree in certain cases. The general intent is to get the subtree into a form that may be con-
verted into an OREG that will use the register designated by r.

104 order.c

3145 case UNARY MUL:

3146 if(shumul(p->left)) return;

3147 "

3148 default:

3149 p-»>su = max(p->left->su, nr):

3150 return;

3151 }

3152 }

3153

3154

3155 7+ If rhs needs n, lhs needs m, regular su computation +/
3156 sul = p->left->su;

3157 sur = p->right-ssu;

3158 i£(o == ASSIGN)({ }

3159 asop: /» also used for +=, etc., to memory =/
3160 if(sul=ag){ o
3161 /+ don’t need to worry about the left side =/
3162 p->su = max(sur, nr);

3163 }

3164 else {

3165 /+ right, left address, op »/

3166 if(sur == 0){)

3167 /% just get the lhs address into a register, and mov +/
3168 /+ the ‘nr’ covers the case where value is in reg afterwards s/
3169 p~»>su = max(sul, nr):

3170 }

3171 else {

3172 /+ right, left address, op */

3173 p->su = max{ sur, nr+sul):

3174 }

3175 }

3176 return;

3177 }

3178 if(o == CALL |{ o =a STCALL){

3179 /+ in effect, takes all free registers »/

3180 p->su = fregs;

3181 return;

3182 }

3183 if(o == STASG){

3184 /+ right, then left =/

3185 p->su = max(max(sul+nr, sur), fregs):

3186 return;

3187 }

3188 if(logop(o)){

3189 /+ do the harder side, then the easier side,
3190 /+ into registers +/ '

3191 /+ left then right, max(sul,sur+nr) =/

3192 /+ right then left, max(sur,sul+nr) </

3193 /+ to hold both sides in regs: nr+nr »/

3194 nr = szty(p-»left->type):

3195 sul = zum(p->left, ZLONG|ZCHAR|ZFLOAT):

3196 sur = zum(p->right, ZLONG!ZCHAR!ZFLOAT);
3197 p->su = min(max(sul,sur+nr), max(sur,sul+nrc));
3198 return:

3199 }

3200 if(asgopl({o)){

3201 /+ computed by doing right, doing left address.
3202 doing left, op, and store +/

3203 switch(o) { :

3204 case INCR:

3205 case DECR:

3206 ‘ /+ do as binary op +/

3207 break;

3208

3209 case ASG DIV:

3210 case ASG MOD:

3211 case ASG MUL:

3212 if(p-»>type!=FLOAT && p->type!=DOUBLE)
3213 nr = fregs,;

3214 goto gencase;

Chaprer 11: The File ‘‘order.c”® Part Two

The Sethi-Ullman numbers estimate the number of processor registers that will be required to
obtain or contain the value calculated for a particular subtree. The estimation of these numbers
before code generation is attempted, together with the use of these numbers in choosing the
strategy for code generation, constitutes one of the novel features of the Portable C compiler.

The original theory (Ravi Sethi and J.D. Ullman, “The Generation of Optimal Code for Arith-
- metic Expressions™, Journal of the ACM, Vol.17, No.4, October 1970, pp.715-728.) relates to
the case where resources are of a single, uniform type, namely word registers, and where binary
operators can combine the contents of two registers, or of a register and a memory location.
and leave the result in a register or memory location. Let p be a node that has left and right
descendents 1 and x, and let each of sup, sul and suxr denote the register requirement. or
SU number, for each of the subtrees whose root nodes are p, 1 and r respectively. Then the
basic result is that sup is defined recursively by

sup = max{ tp, sul, sur, min{sul + tr, sur + t1})

Here tp, tl and txr denote the number of registers to store the result calculated by each of
the subtrees whose root nodes are p, 1 and r, respectively. In the case considered by Sethi
and Ullman, tp is always one, except for leaf nodes representing values stored in main
memory, for which the value is zero.

An alternative formulation of the above expression is

sup = minl max{ tp, sul, sur + tl}, max tp, sur, sul + tr}]}
which reduces, if tp, tl and tr au have the same value, nr. to

sup = min{ max(sul, sur + nr}, max{ sur, sul + nr }}

The term max | sul sur + nr } in the above formula represems the number of registers
needed if the expression is evaluated right-to-left. If sul is zero, the formula reduces further
to just

sup = min{ sur + nr, max sur, nr}) = max{ sur, nr}

The theory is not directly applicable in practice for several reasons. The C language features
many assignment operators which were not considered originally, and for the PDP11, the fol-
lowing must also be considered:

1. Some operators (notably multlply and divide) may require a pair of consecutive registers to
store their result (i.e. tp = 2).

2. For some operators such as ASG MUL, it is desirable, if not absolutely essential, to get both
the left operand value and the left operand address into registers simultaneously.

3. Floating point calculations use a separate set of registers (usually not in short supply).

4. The results of some calculations may appear in the condition code bits of the processor
status word.

5. The result from a function call is always left in RO or FRO.

The procedure sucomp (3122) is used to calculate a value for each node of the tree u'sing a
modified version of the Sethi-Ullman algorithm. The modifications are machine dependent.

106 order.c The Second Pass of

3215

3216 case ASG PLUS:

3217 case ASG MINUS:

3218 case ASG AND: /s« really bic +/

3219 case ASG OR:

3220 if(p->type == INT || p->type == UNSIGNED 1|,
3221 - ISPTR(p->type)) goto asop:

3222 i

3223 gencase:

3224 default:

3225 sur = zum(p->right, ZCHAR!ZLONG|ZFLOAT):
3226 if(sur == 0){ /+ easy case: if addressable,
3227 do left wvalue, op, store «/

3228 if(sul == 0) p->su = nr;

3228 /+ harder: left adr, val, op, store </
3230 else p->su = max(sul, nr+t);

3231 }

3232 else {

3233 /+ do right, left adr, left value, op, store »/
3234 if(sul == 0){

3235 4* right, left value, op. 3tore =/

3236 . p->su = max(sur, nr+nr);

3237 . }

3238 : else {-

3239 p->su = max({sur, max(sul+nr, t+nr+nr));
3240 }

3241 }

3242 return;

3243 }

3244 }

3245

3246 switch(o){

3247 cagse ANDAND:

3248 case OROR:

3249 case QUEST:

3250 case COLON:

3251 case COMOP:

3252 p~>su = max(max(sul,sur), nr);

3283 return;

3254 }

3255

3256 i£((o==DIV || o0==MOD || o==aMUL)

3257 &8 p->type!=FLOAT && p->type!=DOUBLE) nr = fregs;
3258 . if(o==PLUS || o==MUL {| 0==OR || o==ER){

3259 /+ AND is ruined by the hardware =/

3260 /+» permute: get the harder on the left «/

3261

3262 register rt, lt;

3263

3264 . /+« if ... don’'t do it! »/

3265 if(istnode(p->left) |! sul > sur) goto noswap;
3266

3267 /+ look for a funny type on the left, one on the right «+/
3268 1t = p->left->type:

3269 rt = p~>right->type;

3270

3271 i£(rt == FLOAT && lt == DOUBLE) goto swap:

3272

3273 if((rt==CHAR||rt==UCHAR) &&

3274 ' {1t==INT{|lt==UNSIGNED{ i ISPTR(1t})) goto swap:
32758 .

3276 if(1t==LONG || 1lt==ULONG }{

3277 if(rt=aLONG |} rt==ULONG){

3278 /+ if one is a STARNM, swap =/

3279 if(p->left->op == UNARY MUL && sul=a)
3280 goto noswap:

3281 if(p->right->op == UNARY MUL &&

3282 p~->left-»op != UNARY MUL) goto swap:
3283 goto noswap;

3284 }

The Portable C Compiler order.c (I1) 107

and may over-estimate the SU numbers in certain heuristically determined situations. By occa-
sionally over-estimating, but never under-estimating, the register requirements to evaluate each
subtree, the results calculated by sucomp provide a safe basis upon which to generate code for
the subtree, while avoiding the problem of running out of temporary registers unexpectedly.

Because the calculation of the SU numbers is performed independently of the code generation,
" there is a valuable built-in check on compiler consistency, provided the strategies followed by
allo and rallo, by order and the ‘‘set'” procedures, and by sucomp are all consistent
and compatible.

11.1 sucomp (3122)

This procedure is called by canon at line 1319, for each node visited during an endorder
(*‘bottom-up’’) traversal of the expression tree. The PDP11 version of this procedure has been
made rather more complex than some of the other versions because of the problems of dealing
with long (i.e. two word) integers. :

3130: Set ty. nr, o and p->su.

3135: A type A register is needed for addressmg the operand.

3146: If the shape of the subtree defined by this node is either STARNM or STARREG, leave
‘p->su as zero.

3154: All operators cbnsideréd after this point are binary.

3172: Right-to-left evaluation is needed.

3179: Don’t try to leave values in temporary registers during procedure calls.
3185: Why isn’t this just fregs?

3195: zum (3318) ensures that the SU values associated with certain operand types will not fall
below a minimum threshold.

3213: Grab all available temporary registers. (See the earlier discussion for line 3030.)

3230: The present case is not covered officially by the theory because there is a need to have
the address of the left operand and its value in registers simultaneously.

3239: The third part of this expression, 1 + nr + nr, corresponds to the case where both
operands plus the address of the left operand, are brought into registers simui-
taneously.

3252: Intermediate results during the evaluation of logical expressions live in the the condition
code bits of the processor status word, and do not require a register.

3259: See the comments later, in Chapter 13, for optim2.

3265: istnode is defined at line 0528 and checks whéther‘ the node is a REG, and if so.
whether it involves a temporary register.

3271: Starting here, investigate the possibility of interchanging the right and left subtrees.

3312: It is necessary to get both operands into a register before the operation. Hence the sub-
expression for nxr + nr.

108 prder.c The Second Pass of

3285 else if(p->left->op == UNARY MUL && sul == (0)
3286 goto noswap;

3287 else /+ put long on right, unless STARNM </
3288 goto swap; -

3289 }

3290

3291 /+ we are finished with the type stuff now: if one
3292 is addressable, put it on the right «/

3293 if(sul == 0 &8 sur != 0){

3294

3295 NODE »s;

3296 int ssu;

3297

3298 swap: .

3299 ssu = sul; sul = sur; sSur = sSsu;

3300) g8 = p->left; p->left = p~>right; p->right = s;
3301 }

3302 }

3303 noswap:

3304 .

3305 sur = zum(p->right, ZCHAR|ZLONG|ZFLOAT);

3306 if(sur == Q){

3307 /+ get left value into a register, &o op */

3308 p->su = max(nr, sul);

3309 }

3310 else {

3311 /+ do harder into a register, then easier «/

3312 p->su = max(nr+nr, min(max(sul, nr+sur),

3313 max(sur, nr+sul) });

3314 }

331§ } :

3316 /% ~emmeccccccccccccncnes e e e e o m—————— %/

3317

3318 zum(p, zap) register NODE »p: {

3319 /~ zap Sethi-Ullman number for chars, longs, floats =/
3320 /+ in the case of longs, only STARNM’sS are zapped +/
3321 /+ ZCHAR, ZLONG, ZFLOAT are usad to select the zapping »/
3322 . :

3323 registexr su:

3324

3325 su = p->sui

3326

3327 switch(p->type){

3328

3329 case CHAR:)

3330 case UCHAR:

3331 if(!(zap&Z2CHAR)) break;

3332 if(su == 0) p-»s8u = su = 13

3333 break;

3334

3335 ' case LONG: >

3336 case ULONG:

3337 if(!(zap&ZLONG)) break:; .

3338 if(p->op == UNARY MUL && su == 0) p->su = su = 2;
3339 break;

3340

3341 case FLOAT: :

3342 if(!(zapAZFLOAT)) break;

3343 1i£(su == 0) p->su = su = 1;

3344

3345 }

3346

3347 return(su); .
3348 '}

3349 /% ZIZ3ARSIRSITARAASTAIIAIANFITARIXITTARBIAIIIITTIIINRA AR »/

3350

The Poriable C Compiler - order.c (11) 109

It is the fate of sucomp to be written, and then rewritten and refined several times during the
development of a new version of the Portable C compiler, as register allocation bugs are
uncovered, and ways of improving the code generated in certain cases are discovered. Under
these circumstances, it is not surprising that that the code might become a little ragged around
the edges. In the present version of sucomp, there are a long set of tests plus tw‘o separate
switch statements all keyed on the node operator type o. This seems to be less than optimal,
and an overhaul to the structure of this procedure, in particular to utilize a single large
switch, would seem to be now due. (Since the VAX11/780 version of the Portable C com-
piler preserves a similar structure for sucomp, perhaps this should be taken as a word of
advice to future implementers.)

11.2 zum (3318)

This procedure is called only by sucomp at lines 3195, 3196, 3225 and 3305. It ensures that
the SU numbers associated with nodes for certain operand types will never fall below certain
thresholds. This procedure is extremely machine-oriented, and has no analog in other versions
of the compiler.

In all four calls, the second argument is ZCHAR | ZLONG. ZFLOAT, so it, together with lines
3331, 3337 and 3342 represent surplus baggage. A test for su==0 at the beginning of zum
would also be helpful.

110 order.c

3351
3352
3353

3354 -

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418

int crslab = 10000;

getlab () {
return{ crslab++);
) .
/B o o e o n o e o = -/

deflab(1){ .
printf("L%d:\n", 1);
}

/’ =:a:t=:s:aa:zt::a:aana::::a::m:én==:===::===--alaa i'/

offstar(p) register NODE +p;: {
/+ handle indirections =/

if(p->op == UNARY MUL) p = p->left;
if(p->op == PLUS || p->op == MINUS){

if(p->right->op == ICON }{
order(p->left , INTAREG!INAREG)3

return;
}
}
order(p, INTAREG!INAREG);
}
S W e o e s e o o " = o7 = = = o o - - - -/
setincr(p) NODE =+p: {
return(0) /+ for the moment, don’t bother =/
}
/# v ke o e - o o o o e ./

satstr(p) register NODE #p: { /+ structure assignment «+/
if(p-»right->op != REG){
order(p->right, INTAREG);
return(1);
}
P = p->left:
if (p->op != NAME &5 p-»>o0p != OREG){
if(p->op != UNARY MUL) cerror("bad setstr” 1};
' order(p->left, INTAREG);
return(1);
o}
return(0 };

setasop(p) register NODE =+p: (
/% setup for =ops =/
register sul, sur; .
register NODE »q, +p2; ’

sul = p->left-»su;
sur = p->right->su;

switch(p->op){

case ASG PLUS:

case ASG OR:

case ASG MINUS: :
if(p->type !m INT && p->type != UNSIGNED &&

1ISPTR(p->type)) break:

if(p->right->type == CHAR || p->right->type == UCHAR
order(p->right, INAREG);
recurn(1);
}

break:

) {

Chapter 12: The File ‘‘order.c’’ Part Three

_This chapter covers the third and final part of the machine-dependent file order.c. The first
two procedures, getlab and deflab, are ‘‘one-liners’ concerned with the generation of
labels. The remammg procedures derive, du'ectly or indirectly, from the procedure order.

12.1 getlab (3353)

Define a new numeric label value.

12.2 deflab (3358)

Output an assembler statement declaring a label (character 'L’ followed by a decimal integer).
12.3 offstar (3363)

This procedure is a little more general than most, and it is called from fourteen different loca-
tions in order and its minions, setasg, setasop, setbin and genargs. In each case
when offstar is called, the parent node is an operator of type UNARY MUL. so that the sub-
tree that is passed to of£fstar will return a result that is an address.

The function of offstar is to compute this address into a register or to leave the subtree in a
state where it can be readily transformed into an OREG node.

12.4 The “‘set’® procedures

The next five procedures, with names beginning with set, represent sections of code which, if
they were not machine-dependent, would occur in-line in the procedure ordexr. As will be
recalled, the general strategy of ordexr, which these procedures follow, is to perturb the tree
and try again. They are coded as a sequence of actions in order of increasing severity, or
desperation. Each return statement can be read as ‘*have another try to match a template™.

12.4.]1 setincr (3378) is called by vorder at line 1713 to perform any machine-dependent
processing of INCR or DECR nodes before oxrder resumes its normal procedures. The PDP11
does not seem to offer any interesting possibilities here.

12.4.2 setstr (3383) is called by order at line 1732 to sort out structure assignments and
this is considered to be an entirely machine-dependent affair. If setstr cannot find some way
to perturb the current set-up, then there is no machine-independent recipe to fall back on.

3384: Get the value from the right-hand subtree into a temporary register.

3388: Look down the left subtree. If the node is not a NAME or an OREG, then it had better be
a UNARY MUL. whose subtree can be computed into a temporary register.

This procedure offers two apparently different ways to fail: the call on cerror at line 3390, or
the return at line 3394. However the latter will lead very rapidly to the call on cerror at
line 1604.

12.4.3 setasop (3398) is called by order at line 1736 to provide machine-dependent tree
rewriting for assignment operators. As with the rest of its sister procedures, and the related
code in order, the basic idea is to keep stirring, to keep chopping bits off the tree (the recur-
sive calls to order), and then trying again until it is possible to generate code.

In this case, there is also the chance to rewrite the tree in a major way, so as to separate the
actions of assignment and the basic arithmetic operations. The various alternatives are arranged

112 order.c : The Second Pass of

3419 case ASG ER:

3420 if(sul == 0 || p->left-»op == REG){

3421 if(p->left->type == CHAR 1|1

3422 p->left->type == UCHAR)

3423 goto rew; /» rewrite =/

3424 order(p->right, INAREG)INBREG);

3425 return(1);

3426 }

3427 goto leftadr;

3428 }

3429

3430 i£(sur == 0){

3431

3432 leftadr:

3433 /» easy case: if addressable, do left value, op, store +/
3434 if(sul == 0) goto rew; /+ rewrite »/

3435 P

3436 /+ harder; make aleft address, val, op, and store -/
3437 if(p-»left-»>op == UNARY MUL){

3438 offstar(p->left->left);

3439 . return(1);

3440 : }

3441 if (p->left~->0p =a FLD &8 p->left->left->op == UNARY MUL)({
3442 offstar(p->left->left->left);

3443 return(1);

3444 }

3445 rew: /+ rewrite accounting for autoincrement, autodecrement +/
3446 g = p->lerft;)
3447 if(g-»op == FLD) q = g->left;

3448 if(g=>op != UNARY MUL i shumul(g->left) != STARREG)
3449 return{(0); /+ let reader.c do it +/

3450

3451 /+ mimic code from reader.c +/

3452 p2 = tcopy(p)

3453 p->0p = ASSIGN;

3454 " reclaim(p-»>right, RNULL, 0);

3455 p->right = p2;

3456

3457 /+ now, zap INCR on right, ASG MINUS on left «/
3458 if({ gq->left->0op == INCR) {

3459 q = p2-»left;

3460 if(gq-»op == FLD) q = q~>left;

3461 if(g->left-»op != INCR)

3462 cerror("bad incr rewrite" };

3463 }

3464 else if(gq->left->op != ASG MINUS)

“3465 cerroxr(" bad -= rewrite");

3466

3467 g->left->right~->op = FREE;

3468 g->left-»op = FREE;

3469 g->left = g->left->left;

3470

3471 /» now, resume reader.c rewriting code «/

3472 canon(p);

3473 rallo(p, p->rall)i

3474 order(p2->left, INTBREG.INTAREG)3

3475 order(p2, INTBREG | INTAREG):

3476 return(1)3

3477

3478

3479 /» harder case: do right, left address, left value, oOp, store =/
3480 . if(p->right-»op == UNARY MUL){

3481 offstar(p-»>right->left):

3482 return(1);

3483 }

3484 /e« sur> 0, since otherwise, done above »/

3485 /» make lhs addressable +/

3486 if(p->right->op == REG) goto leftadr:

3487 order(p->right, INAREG|INBREG)i

3488 retarn(1)3

3489 }

The Portable C Compiler order.c (HII) 113

in order of increasing complexity, as determined by the SU numbers.

3411: If the operand type is not a single word, don’t attempt anything special yet.
F
3413: If the right subtree operand type is ‘‘character’, then get the right operand mto a register
and try for a template match,

3419: If the left subtree is easy, get the result of the right subtree into a register. Templates for
" ASG ER begin at line 5231. Note that the PDP11 xor instruction is unusual in
that it expects the source (i.e., the right operand) to be in a register.

3430: The code from here to line 3477 acco'unts for all possibilities for which the right subtree
represents a readily accessible operand.

3437: Try to get the left subtree into a form where it can be converted into an OREG.

3441: Get an assignment into a field into a form that can be matched by a template. The tem-
plates for this purpose begin at line 4782. They are associated with the ASSIGN
operator and require the left subtree to have the *‘shape’ SFLD.

3448: The code to handle the case where the left operand is not dxrecﬂy add.rwsable beg,ms at
line 1740.

3451: The code from here to line 3475 is a modification of the code on lines 1740 through
1750. The important difference is the handling of INCR and ASG MINUS opera-
tions as the side effects of autoincrement and autodecrement addressing.

3480: The alternative situation, where sux, the number of registers needed in the computation
of the right subtree, is non-zero, begins here. Try to simplify the right subtree.

3487: Get the right operand into a register.

12.4.4 setasqg (3492) is called by order at line 1754 to rewrite the tree in order to handle
structure assignments.

34985 Start by simplifying the right subtree.

3502: If the right operand is not in a register, and the operand type is. FLOAT or DOUBLE, then
get it into a register.

- 3507: It would seem simpler to use shumul directly here.
3512: Anyway, get the left subtree into a state where it can be made into an OREG

3517: At this point, several attempts at a template match have been made without success. As
a last resort, force the right operand into a register.

12.4.5 setbin (3525) is called by order at line 1759 to rewrite a tree whose root node is a
binary operator. The pattern and style of this procedure are similar to those found in
setasop (3398) and setasg, which have just been examined®. A series of stratagems are
provided that can be invoked one by one until a match is achieved.

The present author finds a number of features of the program strategy at this point to be somewhat unsatisfying.
There are the many points of interaction between the contents of table, the strategy of sucomp. and that of the
set procedures. This tripartite arrangement is. for the uninitiated, aimost unfathomable. Then there is. for
example. the use of offstar to modify a subtree, 50 that subsequently oreg2 (1988) can can convert it into an
OREG node. Surely some more direct means to achieve the same end would be possible.

114 order.c ‘ The Second Pass of

3490 /4 —~mmmmeccmccce e e e e e o e om0 */

3491

3492 setasg(p) registexr NODE #p; (

3493 /+ setup for assignment operator /

3494

3495 if(p->right-»su != 0 &5 p->right->op != REG) {

3496 if(p->right->op == UNARY MUL)

3497 offstar(p->right->left);

3498 else

3499 order(p->right, INAREG!INBREGSOREG!SNAME(SCON);
3500 return(1);

3501 }

3502 if(p->right->op l= REG &&

3503 (p->type == FLOAT || p->type == DOUBLE)) {
3504 order(p->right, INBREG);

3505 return(1);

3506 }

3507 if(p->left->op == UNARY MUL &&

3508 {tshape(p-»left, STARREG STARNM) }{

3509 offstar(p->left->left); ’

3510 return(1);

s }

3512 if(p~>left-»>op == FLD && p->left->left->op == UNARY MUL){
3513 offstar(p->left->left->left)i

3514 return(1);

3515 }

3516 /% if things are really strange, get rhs into a registexr +/
3517 if(p->right->op != REG){

3518 order(p->right, INAREG|INBREG);

3519 return(1);

3520 }

3521 return(0);

3522 }

3923 /# cecccccccanweecm———— - - = - =/

3524 :

3525 setbin(p) register NODE »p;: (

3526 register NODE »r, +l;

3527

3528 r = p->right;

3529 1 = p->left;

3530

3531 if(p->right-»>su == 0){ /#+ rhs is addressable =/

3532 if(logop(p->op)){

3533 if(l-»op == UNARY MUL 5& l->type != FLOAT &&
3534 shumul(l->left) != STARREG)
3535 offstar(l->left };

3536 else order(l,INAREG!INTAREG!INBREG!INTBREGIINTEMP):
3537 : return(1)3

3538) }

3539 if(t!istnode(1)){ .

3540 order{ 1, INTAREGIINTBREG);

3541 return(1)i

3542 }

3543 /+ rewrite »/

3544 recurn(0)

3545 }

3546 /+ now rhs is complicated: must do both sides into registexs </
- 3547 /+« do the harder side first «/

3548

3549 if(logop(p->op)){

3550 /+ relational: do both sides into regs if need bhe «/
3551

3552 if(r->su > l-»su){

3553 C1if(niceuty(r)){

3554 offstar(r->left);:

3555 return(1 };

3556 }

3557 else if(l!istnode(r)){

3558 order (r,INTAREG) INAREG | INTBREG | INBREG | INTEMP) ;
3559 return{ 1);

3560 }

3561 }

The Portable C Compiler | (| - order.c (III) 115

12.5 niceuty (3604)

The name of this procedure, which is a PDP11 exclusive, seems to be a contraction for ‘‘nice
unary type’: It is called by setbin at lines 3553, 3562, 3566 and 3584. If the result returned
is true, a call to offstar follows. ok

3607: The entire procedure is a single return statement, which returns true if the node is a
UNARY MUL, the operand type is not exotic, and shumul finds it acceptable.
The question to be answered is whether the subtree should be turned into a direct
address or OREG. However this is not to be done if the operand is already directly
addressable (e.g., if the shape of the tree is STARREG).

(shumul (4147) can return three possible values: STARREG, which is not acceptable here,
STARNM, which is, and 0, which most probably should not be acceptable.)

12.6 notoff (3613)

This procedure, which is called by oreg2 at line 20695, is asked to inspect the size of the offset
at an OREG and to pronounce upon its suitability. For the PDPI11 and the VAX11/780, and
most other machines, there is no problem, but, for machines in the class of the IBM 360/370,
offsets must be restricted to 12 bit posmve integers.

12.7 genargs (3623)

This procedure is called by gencall (4032), which is itself called by oxder at line 1688. It
generates code to assemble the arguments in the object time stack. Since there is a convention
in C that procedure arguments should be addressable as the elements of an array, and since
stacks grow downwards on the PDP11, this implies processing the arguments from right to
left™*.

3628: Link through the argument list recursively to get to the last argument. (To reverse the
order in which the arguments are evaluated, it suffices to invert the references to
“right”” and ‘‘left’’ on lines 3629 and 3631.)

3633: If the argument is a structure, copy the structure into the stack. This is a special case
since the method for copying the structure onto the stack can vary, depending on
the type of stack architecture (whether it is maintained via hardware or software)
and the direction of stack growth.

3657: The ‘‘cookie” passed to expand is only meaningful when the character string contains
an ‘F’. The string "AR" will be found to resuit in a call to adrput with
getlx(p, ‘R’) as argument. The string "2-" results in the instruction
address "~ (sp)".

3664: All other arguments get placed on the stack through a call to order with the ‘‘cookie’
FORARG. Templates for the ‘“‘cookie’ may be found at lines 4849, 4885, 4891
and 4897. Note that each of these leaves a value in the stack.

12.8 axrgsize (3668)

gencall calls argsize to determine, in advance, the number of locations that will be occu-
pied by the arguments in the stack. gencall subsequently passes this value to popargs to
generate code that will cut the stack back after the called procedure returns.

Two questions arise: why can’t genargs produce this value as a side effect? and why does
argsize search the argument list in a different order from genargs?®

For machines such as the IBM/370, where the stack grows in the positive direction, the arguments must be
processed from left to right.

The second question is readily answered. The two procedures used to be the same, but the PDP1l version of
genargs was changed to generate the arguments in the reverse order.

116 order.c

3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572

3573

3574
3575
3576
3577
3578
3579
3s80
3581

3582
3583
3584
3585
3586
3587
3588
3589
3590
3591

3592
3593
3594
3595
3596
3597
3598
3599
3600
3601

3602
3603
3604
3605
3606
3607
3608
3609
3610
3611

3612
3613
3614
3615
3616
3617
3618
3619
3620
3621

3622

if(niceuty(l)){
offstar(l->left);
return(1);
}
else if(niceuty(r)){
offstar(r->left);
return{ 1);
}
else if(!istnode(1)){)
: order(1, INTAREG|INAREG!INTBREG!INBREG|INTEMP);
return(1)3

if(listnode{ r)){
order(r, INTAREG|INAREG|INTBREG|INBREG|INTEMP);
return(1);
}

cerroxr("setbin can’t deal with %s", opst{p->opl):

}

/+ ordinary operator «/ :
if(!istnode(r) && r-»su > l-»>su){
/+ if there is a chance to make it addressable, try... s/
if(niceuty(zr)){
offstar(r->left);
/» hopefully, it is addressable by now »/
return(1);
}
/+ anything goes on rhs «/ 7
order(r, INTAREG|INAREG|INTBREG!INBREG!INTEMP):
return(1);
}
else {
if(listnode(1)){
order(1, INTAREG/INTBREG };
return{(1); ’
}
/» rewrite =/
return(0);

niceuty(p) register NODE #p; (
register TWORD t;

return(p->op == UNARY MUL && (t=p->type)!=CHAR &&
t!a UCHAR && t!= FLOAT &&
shumul(p->left) != STARREG)

/% e —————————————————— e — - —————— —————— %/

notoff(t, r, off, cp) TWORD t: CONSZ off; char »cp;: {
/#+ is it legal to make an OREG or NAME entry which has an
/+ offset of off, (from a register of r), if the
/+ resulting thing had type t +/

/« return(1); /+ NO «/
return(0); /= YES =/
}

/. aannnaassaaasaalalaaas:l===aa:a:-szs:auas:_aaa:-:aa b/

Chapter 13: The File *“local2.c’’ Part One

Like order.c, this file also contains procedures that are machine-dependent and have widely
diverse functions. For the most part, these procedures are simply sequences of code which
have been quarantined away from the machine-independent portions of the compiler. Only a
few of these, notably cbgen, szty and shltype, are called from more than one place in the
machine-independent code. ’

The first group of procedures in the file are connected.with the procedure main (0961):
1. setregs sorts out the temporary registers.
2. eobl2 does end of block processing.
3. lineididentifies the current source line.
4. hardops converts some operators to calls on library routines.
5. optim2rewrites (ASG) AND nodes.
6. myreader invokes hardops and optim2.

The next procedure is cbg'»an'1 which is concerned with the generation of assembly language
branch instructions. Since comparisons of long variables on the PDP11 involve double words,
this is not a completely trivial procedure.

The second major group of procedures are associated with code for procedure calls:
1. callregspecifies the register in which values are to be returned.
2. genscall handles calls for procedures that return structures.
3. gencall generates the normal procedure call sequence.
4. popargs generates code for cutting the stack back.
The remaining procedures of the file are the subject of Chapter Fourteen.
13.1 Declarations

The definition of BITMASK (3697) provides a set of masks with (SZINT - n) significant
zeroes and n ones.

The pointer brnode and the integer variable brcase are used by zzzcode to transmit
information indirectly to cbgen.

rnames provides a set character strings for both diagnostic and code generation purposes.

rstatus has an entry for each of the processor registers (fourteen in all on the PDP11).
Each entry defines whether the register is of type A or B, and whether it may be used as a tem-
porary scratch register. The status of type A registers may change from temporary to non-
temporary, or vice versa, at the beginning of each block, when setxregs (3739) is called. The
initial content of rstatus is used by allo0 (2458) in determining values for maxa, mina,
maxb and minb.

respref is an array which provides directives to reclaim at line 2740 for selecting the best
alternative if the result of a calculation is available in more than one form. The structure
respref is declared at line 0524 and consists of two integer elements, cform and mform
On the face of it, this array does not seem to be very machine-dependent. It would be easier.

118 order.c The Second Pass of

3623 genargs{ p) register NODE +p; {

3624 /+ generate code for the arguments «/

3625 register size;

3626

3627 /+ first, do the argquments on the right (last->first) «/
3628 while(p-»op == CM){

3629 genargs(p-»>right);

3630 p->op = FREE;

3631 p = p->left;

3632 } ’

3633 . if{ p->op == STARG){ /* structure valued argument +/
3634

3635 size = p->stsize;

3636 if{ p->left->op == ICON){

3637 /» make into a name node +/

3638 p->0p = FREE;

3639 p= p->left;

3640 p->op = NAME;

3641 }

3642 else {

3643 . /+ make it look beautiful... =»/

3614 p->0p = UNARY MUL;

3645 canon(p); /» turn it into an oreg */
3646 if{(p->op != OREG){ .

3647 offstar(p->left).

3648 canon{ p)3}

3649 if(p-»>op 1= OREG) cerror(“"stuck starg”)i
3650 } ’
3651 }

3652

3653 p->lval +a size; /+ end of structure */
3654 /» put on stack backwards +/

3655 for{ ; size>Q; size ~=2 2){

3656 p->lval -= 2

3637 expand(p, RNOP, " mov AR,Z-\n" 1
3658 }

3659 reclain(p, RNULL, 0);

3660 return;

3661 }

3662 /+ ordinary case +/

3663

3664 order(p, FORARG);

3665 }

3666 /% ~mmmmmmeme e eee e e e emm e e —smass——ss—esSoamooseos »/
3667 .)

3668 argsize(p) register NODE »p:

3669 register t;

3670 t = 0;

3671 if(p->op == CM){

3672 t = argsize(p->left);

3673 p = p->right;

3674 }

3675 if(p->type == DOUBLE i p->type == FLOAT){

3676 SETOFF(t. 2);

3677 return(t+8):

3678 }

3679 else if(p->type == LONG || p->type == ULONG) {
3680 SETOFF(t, 2):

3681 return(t+4)3

3682 }

3683 else if{ p->op == STARG){

3684 SETOFF(t., p-»stalign); /» alignment =</
3685 return{ t + p->stsize); /» size +/

3686

3687 else {

3688 SETOFF(t, 2)i

3689 recurn(t+2);

3690 }

3691 }

3692

3693 /4 —mmmmm—m- mmmemceemmmm—mmm— s ane———— mmm———— el 4

The Portable C Compiler local2.c (1) 119

at least for the reader, if respref dealt with only one ‘‘original cookie’’ at a time, and for
each of these, listed the acceptable alternatives in order of decreasing attractiveness.

13.2 setregs (3739)

setregs is called by main at line 1007, during the ixﬁtiaﬁiation phase at the beginning of
each block. (This procedure is actually simpler than a ﬁrst glance at the code suggests.)

3743: maxtreqg is the number of the last type A register assigned as a register variable.
(These are allocated in descending order.) Set fregs, which specifies the number
of temporary registers, to one greater than maxtreg, except that it must be at
least MINRVAR (defined to have the value two).

3744: Use the *‘x’’ debugging flag to further limit the value of fregs. Useful for debugging
register allocation strategies.

3749: Make sure that fregs is not too large. (This is' realiy a check on maxtregs.)

3750: Adjust the status of all the type A registers, which may sometimes be used as temporary
registers and sometimes not. (Remember, this is done at the beginning of each
block.)

13.3 eobl2 (3755)

This procedure is also called by ma:.n, at line 1012, after each block has been processed, to
perform ‘“‘end of block’’ chores

3758: Determine the maximum growth of the temporary storage section of the stack. This
value has to be discounted for the ‘‘automatic’’ growth due to the normal pro-
cedure prologue (the procedure csv). For the PDPll, csv unconditionally
stores R4, R3 and R2 in the stack. This is three words, or 48 bits (thc value of
AUTOINIT).

3762: Pass the stack growth value to the assembler via a constant definition. This value is used
- by the assembler to replace the symbolic name in an instruction of the type
sub $.Fn,sp
which is used to advance the stack pointer at procedure entry time.

3763: If any floating point operations have been generated, define the global symbol £ltused
to the assembler. This is a flag to the loader that it should load the “floating
point” versions of certain library routines, especially printf. This action is
really needed only once per program, not for every block. An alternative would
be to replace the expression tested at line 3763 by (fltused >0), and 10
replace line 3764 by

fltused -= 10000;

13.4 lineid (3770)

lineid is called by main, at line 1022, to place a comment in the assembler listing to iden-
_tify the origin (source file, line number) of the expression evaluated by the code that follows.

13.5 where (3776)

The procedure provided here is a dummy. It is referenced in each of the three ‘‘error’ pro-
cedures, cerror (0621), uerror (0599) and werror (0612), with the intention, presum-
ably, that it should provide some indication in terms of a reference into the source code, as to
where the trouble being reported occurred.

120 locall.c The Second Pass of

3694 # include "mfilel”

3695 /+» a lot of the machine dependent parts of the second pass =/
3696

3697 # define BITMASK(n) ((1L<<n)-1)

3698

3699 NODE sbrrniode;

3700 int brcase;

3701

3702 int toff = 0; /» number of stack locations used for azgs +/
3703 /% crmcccccacccccccermtccane- - s o o e - e 74
3704

3705 char =+

3706 rmames{]= { /* keyed to register number tokens «/

3707

3708 "ro", "r1",

3709 "r2", "r3", "r4",

3710 "rsl" "spll‘ "pC".

3711

3712 "frO", "fr1“. "fr2". “frB".

3713 "fr4", "£xs5", /» not accumulators - used for temps s/
3714 }s
3715 /% mmmmmee- dmemm e mm e e escscsmmeemmemme——————— ————w/
3716)

3717 int rstatus] = (

3718 SAREG|STAREG, SAREG)STAREG,

3719 SAREG { STAREG, SAREG|STAREG,

3720 SAREG ! STAREG, /+ use as scratch if not reg wvar +/
3721 SAREG, SAREG, SAREG,

3722

3723 SBREG | STBREG, SBREGISTBREG, SBREG!STBREG, SBREG | STBREG .
3724 SBREG, SBREG,

3725 ;

3726 /4 —me-- e m e m— e me—mme—mm o T Y
3727

3728 struct respref

3729 respref{]) = {

3730 INTAREG | INTBREG, INTAREG{INTBREG,

3731 INAREG| INBREG, .

3732 INAREG | INBREG | SOREG | STARREG | SNAME | STARNM | SCON,
3733 INTEMP, INTEMP,

3734 FORARG, FORARG,

3735 INTAREG, SOREG { SNAME,

3736 0, 0}

3737 /% mmmemmaaa- e —————————— - ————————————— ————— ————— ~/
3738

3739 setregs(){ /* set up temporary registexrs «/

3740 register i:

3741

3742 /» use any unused variable registers as scratch registers «/
3743 fregs =2 maxtreg>=MINRVAR ? maxtreg + 1 : MINRVAR;
3744 . 1i£(xdebug)({ - '

3745 /+ -x changes number of free regs to 2, -xXX to 3, erc =/
3746 . if((xdebug+1) < fregs) fregs = xdebug+1;

3747 } '

3748 /% NOTE: for pdp11 fregs <= 4 for float regs =»/

3749 if(fregs > 4) fregs = 4;

3750 for(i=MINRVAR: i<=MAXRVAR; i++)

3751 rstatus(i] = i<fregs ? SAREGISTAREG : SAREG:
3752 }

3753 /% e=mme—- e D et D D it - -/
3754

3755 eobl2(){

3756 OFFSZ spoff; /» offset from stack pointer «/
3757

3758 spoff = maxoff;

3759 if(spoff »= AUTOINIT) spoff -= AUTOINIT;

3760 spoff /= SZCHAR;

3761 SETOFF(spof£,2);

3762 printf(" .F%d = %Ld.\n", ftnno, spoff };

3763

if(fltused }

3764 fltused = 0:

The Portable C Compiler ' ’ local2.c

3765
3766
3787
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791

3792
3793
3794
3795
3796
3797
3798
3799
3800
3801

3802
3803
3804
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823

3824

3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3a3e

printf(" .globl f£ltused\n");
}

/% mmmeem—————— mmm——————— - o o e o 2 o ————— %/

lineid(1, £fn) char ~fn; { ,
/# identify line 1 and file fn »/
printf("/ 1line %d, file %s\n", 1, £n };
}

/# enmnn - - - - - T o v - - > om0 an ™ - - = - */

where (¢) char c3; {
/* VOID «/
}

/‘. BEES ST ARSI EESNESIEENSINNEANRAANIANREANSERRAENRAURNESIASANES .»/

struct functbl (
int fop;
TWORD ftype;
char «func;
} opfunc(] = {

MUL., LONG, "lmul”,
DIV, LONG, "ldiv",
MOD, LONG, . "lrem",
ASG MUL, LONG, "almul",
ASG DIV, LONG, "aldiv",
ASG MOD, LONG, "alrem",
MUL, ULONG, "lmul”,
DIV, ULONG, "aldiv",
MOD, ULONG, "ulrem”,
ASG MUL, ULONG, "almul®,
ASG DIV, ULONG, "auldiv”,
.ASG MOD, ULONG, "aulrem",
0, 0, 0 };

/* mmm—m e ————— o - — - Y A - - - - - - . 4

hardops (p) register NODE +p; {
/» change hard to do operators into function calls.
for pdp11 do long » / % */
register NODE «q;
register struct functbl «f;
register o;
register TWORD t;

o = p->0p;
t = p->type;
if{ t!=LONG && t!=ULONG) return;

for(f£aopfunc: f->fop;: £++) {
1if(o=af->fop && t==f->ftype) goto convert;
} ‘

return;

/+» need address of left node for ASG QP +/ .
/« WARNING - this won’t work for long in a REG =/
convert:
if(asgop(o)) {
switch(p->left-»op) {

case UNARY MUL: . /» convert to address +/
p->left->op = FREE;
p->left = p~>left->left;
break;

case NAME: /« convert to ICON pointer =/
: p->left->op = ICON:
p->left->type = INCREF(p->left->type):
break:

case OREG: /+ convert OREG to address =/
p->left-»op = REG: ’

121

122 lpcal2.c The Second Pass of

3837 p->left->type = INCREF(p->left->type)}
3838 if(p->left->lval != 0) {

3839 q = talloc();

3840) q->op = PLUS:

3841 g->rall = NOPREF;

3842 q->type = p->left->type;

3843 g->left a2 p->left:

3844 qg->right = talloc();

3845

3846 . g~>right~->op = ICON;

3847 q->right->rall = NOPREF;

3848 g->right->type = INT;

3849 q->right->name(0}] = “\0’;

3850 q->right->1lval = p-»left->lval;
3851 g->right->rval = 0;

3852

3833 ' p~>left->1lval = 0;

3854 : p->left = q;

3855 }

3856 - break;

3857 .

3gs8 default:

3859 cerror("Bad address for hard ops");
3860 /+ NO RETURN =/

3getr

3862 }

3863 . }

3864

3865 /% build comma op for args to function »/

3866 q = talloc();

3867 q->op = CM:

3868 g->rall = NOPREF;

3869 gq->type = INT;

3870 gq-»left = p->left;

3871 q->right = p->right;

3872 p->0op = CALL;

3873 p->right = q;

3874

3875 /+ put function name in left node of call »/

3876 p->left = g = talloc();

3877 g->op = ICON;

3878 g->rall = NOPREF;

3879 q->type = INCREF(FTN + p->type);

3880 strepy(g->name, f£->func);

3881 g->1lval = 0;

3882 q->rval = 0;

3883 .

3884 return;

3885 }

3886 /& =mmcm—mm—mmm e cmemmemmr——————m————n %/
3887

3888 optim2(p) register NODE »p;

3889 /+ do local tree transformations and optimizations =/
3890 '

3891 . register NODE =»r;

3892

3893 switch(p->op)

3894

3895 case AND:

3896 /+» commute L and R to eliminate complements and constants «/
3897 if(p->left->opa=ICON || p->left->op=aCOMPL)} {
3898 r = p->left; ,
3899 p~>left = p-»right;

3900 p->right = r;

3901 } .

3902 case ASG AND:

3903 /» change meaning of AND to -R&L - bic on pdpt1 »/
3904 r = p->right; .

3905 . if(r-»op==ICON) { /+ complement constant «/
3906 r-»>lval = ~r->lval;

3907 ' }

The Portable C Compiler . local2.c (I) 123

13.6 hardops (3802)

This procedure is passed by the procedure myreader (3926) as the procedure argument to
walkf (0688). (myreaderis called at line 1031 under the alias of MYREADER.) The inten-
tion is to perform a preorder walk of the expression tree looking for certain combinations of
operator/operand type for which the code generated will be calls on standard library subrou-
tines. The list of such combinations for the PDP11 can be found starting at line 3787. har-
dops is called before canon, which calls oreg2 (1988), so that OREG nodes will not have to
be unraveled.

3812: The only operand types of interest are LONG or ULONG.
3814: Locate the appropriate entry in opfunc (3785), or return if none exists.

3822: If this is an assignment operator, the value presented to the library routine for the left
subtree must be an address, so look at the root of the left subtree.

3825: The root is a UNARY MUL. Just throw it away and find the address.
3830: NAME nodes can become address constants.

3835: In spite of the comment above, there may still be OREG nodes that need to be expanded
back into explicit arithmetic expressions. (Although the first pass of the Portable
C compiler does not generate OREG nodes, the first pass of the Fortran 77 com-
piler may do so!)

3865: Build a subtree representing a function call, with an argument list, and the name of the
appropriate function.

13.7 optim2 (3888)

Like hardops just described, this procedure is passed by myreader (3926) to walk€f as its
procedure argument. This results in a preorder traversal of the tree, with optim2, like har-
dops before it, applied at each node.

The task of optim?2 is to rewrite the tree for AND and ASG AND to reflect the properties of
the PDP11’s bic instruction. This is an asymmetric operation, which, in the absence of a
better alternative, is used to implement the symmetric AND operation. The bic instruction
computes ~R&L i.e. the conjunction of the ‘‘destination’’ operand with the complement of the
‘““source’ operand (where ‘‘destination’” and ‘‘source’’ are used in the same sense as in the
PDP11 Processor Handbook.)

' 3898: Interchange the left and right subtrees if the left subtree is a constant, or begins with a
COMPL operation. : :

3904: For both ASG AND and AND operators, ...

3905: complement the right hand subtree, which will be easy if it is constant, ...

.3908: only a little harder if the right hand subtres has a COMPL, operator at its root (this is a
unary operator, for which the corresponding node is simply thrown away, since

two COMPLs cancel each other).

3912: The remaining case requires the addition of a new node to the tree, to represent the
COMPL operation which must be inserted.

124 locall.c

3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922

else if(r->opasCOMPL) { /» -~A => A «/
r->op = FREE;
p->right = r->left;
} B
else { /+ insert complement node =/
p->right = talloc();
p->right->op = COMPL;
p->right->rall = NOPREF,;
p~>right->type = r->type;
p->right->left = r;
p~>right->right = NULL;
}

The Second Pass of

break;
}
}
/l' - . - - - - A . T - A DY W OPT w - */
myreader (p) register NODE wp; {
walkf(p, hardops); /+ convert ops'to function calls «/
canon(p); /+ expands r-vals for fileds =/

walkf(p, optim2);
toff = 0; /» stack offset swindle «/
}

char =

cebranches([] = (
" jeq L%da\n",
" jne L#%d\n",
" jle L%a\n",

" jilt L%d\n",
" jge L%d\n",
" jgt L%d\n",
" jlos L%d\n",
" jlo L%d\n",

" jhis L¥%d\n",
jhi L%d\n".

/- long branch table

This table, when indexed by a logical operator,
selects a set of three logical conditions, required
to generate long comparisons and branches. A zero
entry indicates that no branch is required.
E.G.: The <= operator would generate:

cmp AL,AR

jit lable / 1st entry LT -> lable

jgt 1£ / 2nd entry GT =-> 1f

cap UL,UR ' .

jlos lable / 3xrd entxy ULE -> lable
1:

-/

int lbranches(](3] = {
/«EQ»/ 0, NE. EQ,
/+NE*/ NE, o, NE,
/+LE~/ LT, GT. ULE,
/*LT*/ LT| GT, U‘LT|
/#GE»/ GT. LT. UGE,
/*GT»/ GT, LT, UGT,
/+ULE»/ ULT, UGT, ULE,
/«ULT >/ LT, UGT,., ULT,
/+UGE»/ UGT, ULT, UGE.
/«UGT»/ UuGT, ULT, UGT,

[% a0 0 ¢ 0 S % w o -/

/+ logical relations when compared in reverse order (cmp R.L} </

short revrel(]l={EQ, NE, GE, G?, LE, LT, UGE, UGT, ULE, ULT};

The Portable C Compiler ' ' local2.c (1) 125

13.8 myreadexr (3926)

With hardops and optim2 already discussed, the function of myreadex is now fairly clear.
Under the name MYREADER (defined at line 0348) it is invoked by main at line 1031 for each
expression tree, after the latter has been read in, but before it is passed t0> delay.
myreader performs various ‘‘one time’ changes to the tree (c.f. canon, which may be
called many times).

3928: canon is called after the call on hardops, so that the latter will not have the problem,
already alluded to, of unraveling OREG nodes which canon may ravel. On the
other hand, canon is called before optim?2 because the rewriting of field extrac-
tions may introduce additional AND nodes that optim2 must attend to.

3930: The comment here begs a further comment®.

13.9 cbgen (3981)

This procedure is called in several places from cbranch (1806), order (1524) and
zzzcode (4415). The first parameter is, for the most part, simply zero. It may also be o (see
lines 1852 and 3981)! At lines 1852, 1915 and 1916, it is clearly a relational operator, e.g. EQ
Only at line 4436 is the value hard to predxct since the value is then taken from one of the
table entries.

The third parameter is normally ‘1’ (for “integer”), but it may also be ‘F’ (for “‘floating
point”’) in the call from line 4436. .

3986: This routine envisages three main possibilities. The first is that ois 0, so that the branch
to be generated is unconditional, and rapidly disposed of.

3987: The second possibility is that the first argument is in error.
3989: The third possibility is much more complicated, and derives from the interaction between
operator templates in table and the machinations derived therefrom by

zzzcode.

3990: brcase is used to transfer information from zzzcode to cbgen when the comparis-
ons involve long comparisons (see lines 4883, 4956).

3994: Comparison with longs involve two stages of testing. (See the comment which begins at
line 3951.) The next few lines are brutal, but straightforward enough.

4010: If it is not a ““long’’ comparison, and if the mode is *F*, use the array revrel (3979)
to reverse the sense of the comparison.

4011: ccbranches is declared at line 3935.

4015: Reset brcase and brnode before exiting so that the default case will be used next
time if zzzcode has not prepared a long comparison.

13 10 callreg (4021)

This procedure is called once, by freeregq at line 2555 It reaffirms the convention that the
results from procedure calls are returned via RO or FRO, as appropriate.

* Lee Benoy notes **tof £ should have been reset to zero in the previous expression evaluation. This is just to be
doubly certain.”

126 local2.c : ' The Second Pass of

3981 cbgen(o, lab, mode) {

3982 /. printf conditional and unconditional branches »/
3983 register «plb;

3984 int labif;

3985 .

3986 if(0 == 0) printf(" ijbr L%d\n", lab);

3387 else if(o » UGT) cerxrror("bad conditional branch: %s".
3988 opstfo]);

3989 else {

3990 switch(brcase) {

3991

3992 case "A’:

3993 case 'C’:

3994 plb = lbranches[o-EQ];

3995 labtf = getlab(); '

3996 expand(brnode, FORCC, brcase=='C” ?
3997 "N\Ntcomp\tAL,AR\n" : "\ttst\tAR\n");
3998 if(eplb != 0)

3999 printf(ccbranches([«plb-EQ], lab);
4000 if(#++plb = 0) .

4001 printf(ccbranches(»plb-EQ]. labi1f);
4002 " expand(brnode, FORCC, brcase=a’C’ ?
4003 "Ntemp\tUL,UR\R" : "\ttst\tUR\n");
4004 printf(ccbranches([»++plb~EQ}, lab);
4005 deflab(labl1f);

4006 reclaim(brnode, RNULL, 0)}

4007 break;

4008

4009 default: : :

4010 if(mode==’F’) o = revrel[o-EQ 1;
4011 printf(ccbranches(o-EQ], lab):

4012 break;

4013 }

4014

4015 brcase = 0;

4016 brnode = 03

4017 }

4018 }

4019 /% =cmce—emee- T e
4020 .

4021 callreg(p) NODE »p: {

1022 return((p->type==DOUBLE||p->type==FLOAT) ? FRO : RO):
4023 }

4024 /% ~ccmcrrme e e r e e e e — - - m——————— - %/
4025

4026 genscall{ p, cookie) registexr NODE s+p; {

4027 . /=+ structure valued call »/]

4028 return(gencall(p. cookie))3

4029 . }

4030 /% ==mmmecemeeeee——a—e—aeo e ———————— ————— ————/
4031

4032 gencall(p, cockie) register NODE »p: {

4033 /+ generate the call given by p «/

4034 register temp:

4035 register m;

4036

4037 if(p->right) temp = argsize(p-»>right)

4038 else temp = 0: .

4039

4040 if(p->right){ /+ generate args =»/

4041 genargs(p->right)

4042 } :

4043 :

4044 if(!'shltype(p->left-»op. p->left)) {

4045 order(p->left, INAREGI|SOREG):

4046 }

4047

4048 p->op = UNARY CALL;

4049 m = match(p, INTAREG!|INTBREG);

4050 popargs{ temp)i

4051 return(m != MDONE);

4052 }

4053 /+ —--m-== e mmeemecmemmmmdeememe——m—m——m e e ae— . —————— y

The Portable C Compiler ' local2.c (D 127

13.11 genscall (4026)

This procedure- simply dummies up a call to gencall. Itis to be compared with genfcall,
which is defined as gencall at line 0341. (It would seem preferable if both this procsdure
and its predecessor, callreg, were made into #define statements.)

13.12 gencall (4032)

gencall is called directly by order at line 1688, and via its aliases, genfcall and gens-~
call, at lines 1681 and 1695 respectively. Any distinctions between these that may be drawn
on some machines are not visible with the PDP11.

4037: Determine how far the stack will grow at run-time when the arguments are generated.
4040: If there are arguments, generate the code that will bring them into the stack.

4044: If the left subtree, which must reduce to the address of a function, is not in a state to be
passed to the subroutine call instruction, get its result into a type A register or, at
least, transform the subtree into the shape of an OREG.

4048: With the arguments in the stack, convert the call to a UNARY CALL.

4049: Now call match to match the UNARY CALL, with the result, if any, going into a tem-
porary register (as determined by callreg).

4050: Call popargs to generate an instruction which will cut the stack back by the amount
calculated by argsize.

4051: Return a non-zero result if match did not return MDONE. . (Back in order, this will
result in a transfer to nomat at line 1603, and a call to cerror.)

13.13 popargs (4055)

This procedure is called only once, by gencall at line 4050. At least in the PDP11 version
of the Portable C compiler, there is no real reason for its separate existence.

4058: tcff keeps track of the size of all arguments in the stack when procedure calls are
nested. size (i.e. the variable temp declared by gencall (4032)) accounts
only for the arguments of the current procedure, and does so in units of bytes.
Note that if there have been no nested calls and there was only one single-word
argument, i.e., toff==1, size==2, then no stack adjustment is required.

For arguments to procedure calls, the convention is that the stack pointer will be pointing ini-
tially at the location in the stack where the procedure result may be stored. This same location
may also be used for the first argument to the procedure. (See also lines 4543 to 4550.) Since
procedures return their result via RO or FRO, storage of the result in the stack is only impor-
tant for the case of nested procedure calls, when the ‘‘cookie’” FORARG implies moving the
value of RO or FRO into the stack.

4060: Generate the most efficient instruction to increment the stack pointer by the required
amount. (On the PDP11, the stack pointer is incremented to cut back the stack.
because stacks grow in the negative direction.)

128 locai2.c

4054

4055 popargs(size) register size; {

4056 /+ pop arguments from stack «/

4057

4058 toff -2 size/2;

4059 1£(toff == 0 && size »>= 2) size -= 2
4060 switch(size) {

4061 case 0:

4062 break;

4063 case 2@

4064 printf(" tst (sp)+\n");

4065 break;

4066 case 4:

4067 . printf(" cmp (sp)+,{sp)+\n");
4068 break;

4069 default:

4070 printf(" add $%d.,sp\n". size);
4071 }

4072 }

4073 /» ==========|-:===========:a====a=_:.==l==:==n=='====a:=s w»/

4074 .
4075 nextcook(p, cookie) NODE =»p; {

4076 /+ wa have failed to match p with cookie; try another s/
4077 if(cookie == FORREW) return(0); /+ hopeless! «/
4078 if(!(cookie&(INTAREG:INTBREG))) return(INTAREG!INTBREG);
4079 if(!(cookie&INTEMP) && asgop(p->op))
4080 return(INTEMP!INAREG:INTAREGINTBREG!INBREG):
4081 return(FORREW))
4082 }
4083 /% ceeccmm e c e r e r e e e e e e e et — e e .- -/
4084
4085 lastchance(p, cook) NODE =+p; {
4086 /+ forget it! »/
4087 return(0);
4088 }
4089 /% ccmcccccm e r e e e — - — . ———— »/
40990
. 4091 rewfld(p) NODE «p; (
4092 return(1);
4093 }
4094 /% ~cmmmm et e s cmmeamaememee e eme——————————— */
4095
4096 spsz(t, v) TWORD t; CONSZ v;
4097
4098 /+« is v the size to increment something of type t </
4099 . :
4100 if(!ISPTR(t)) retuxrn(0);
4101 t = DECREF(t);
4102
4103 if(ISPTR(t)) return(v == 2);
4104 .
4105 switch(t){
4106
4107 case UCHAR:
4108 case CHAR: .
4109 return(v == 1)3
4110
4111 case INT:
4112 case UNSIGNED:
4113 " return(v =a 2);
4114
4115’ case FLOAT:
4116 return(v == 4)3
4117
4118 case DOUBLE:
4119 return(v == 8 };
4120 }
4121
4122 recurn{ 0)
4123 }

4124 /% mmmmmmmmmmmmmmamame—meemeeeememme——mme—me———————— 2

Chapter 14: The File “‘local2.c’® Part Two

The chapter discusses the remaining procedures in the file local2.c. The first group consists
of three easy ones:

1.

5

-

3.

nextcook provides an alternative goal when the original one seems unattainable.
lastchance is a desperation move that is ignored on the PDP11,

rewf1ld is a chance to invoke limited hardware resources for field extraction.

The next set of procedures is used for the evaluation of types and shapes:

1.
2
3.
4

)
6.
7.

spsz checks whether hardware autoincrement or decrement will work correctly.
szty determines the number of registers to store a gived type.

shltypé determines whether a particular subtree has the shape of a leaf.

shumul determines the shape of a tree whose root is UNARY MUL.

special looks for machine-dependent shapes that‘may receiQe special treatment.
shtemp determines whether a particular subtree has the shape of temporary storage.

flshape determines whether a subtree is ready for field extraction.

The last group of procedures is associated with the expansion of strings, taken from templates
in table, into assembly language statements:

1.

~

=

© N o W

9.

acon emits a constant value as part of an address.

adrcon emits a special kind of constant.

adrput emits the address of a source or destination.

conput emits a non-address constant.

insput is not used for the PDP11. ' .
upput does the half of long variables that is not handled by adrput.
rmove generates a register-to-register move.

hopcode emits an operator mnemonic selected from a table.

zzzcode does extra, machine-dependent things for expand.

14.1 nextcook (4075)

nextcook is called by order at line 1563 when an initial attempt to generate code for the
subtree has ended in failure. If the subtree is to generate an intermediate result. it is possible
that ordexr may still be able to succeed, if the conditions as to where the result may appear are
relaxed somewhat.

nextcook returns 0. meaning ‘‘hopeless’™, in a situation where code cannot be generated.
(This is likely to be a common occurrence in the early days of a new version of the compiler.)
nextcook may return FORREW, if the only possibility lies in re-organizing the tree in some
way. (This is the only alternative if the original goal was FOREFF, or FORARG or FORCC.)

130 locall.c The Second Pass of

4125 :
4126 szty(t) TWORD t; { /» size, in words, needed for thing of type t +/
4127 /+ really is the number of registers to hold type t =/
4128 switceh({ t) {

4129

4130 case LONG:

4131 case ULONG:

4132 return(SZLONG/SZINT);

4133

4134 default:

4135 return(1);

4136

4137 }

4138 }

4139 /% =3SESISNaISIERTITRSSETTIAISITISAITIIISITSTITZISTIISIITIAIR &/
4140
4141 shltype(o, p) NODE =»p; {

4142 if(o == NAME!! o==REG || o == ICON |{ o == OREG) return(1);
4143 return(oa=UNARY MUL && shumul(p->left)):

4144 }

4145 /% ~coceews o e o o e 1 e e e e o e e e e e e e e o «/
4146

4147 shumul(p) register NODE +p; {

4148 register o;

4149

4150 o = p->0p; '

4151 1f(o == NAME || o == OREG i! o == ICON) return{ STARNM):
4152

4153 - if((o == INCR |! o == ASG MINUS)} &&

4154 { p=>left->0p == REG && p->right->op == ICON)} &&
4155 p->right->name (0] == ‘\0’ &&

4156 spsz(p->left->type, p->right->1lval))}

4157 return(STARREG):

4158

4159 return(0);

4160 } ‘ .

3161 /% s=cece———e= e o o e o o =/
4162

4163 special(p, shape) register NODE #p: {

1164 /+ special shape matching routine +/

4165

4166 switch(shape) {

4167

4168 case SCCON: .
4169 if(p->op == ICON && p->name{Qd]l=='\0’" && p->lval>= -128
4170 &8 p->lval <=127)} return{(1):

4171 break;

4172 :

4173 case SICON: .
4174 if(p->op == ICON && p->name(0]l==2’\0’ && p~>lval>= 0
4175 8& p->1lval <=32767) return(1);
4176 : break;

4177

4178 default:

4179 cerror("bad special shape")

4180

4181 }

4182

4183 recturn(9)3

1184 }

4188 /% ccemmmcccccccrvc s e ———— e m e —— . ———————— —-—»/
4186 :

4187 shtemp(p) register NODE +p; (

4188 if(p->op == UNARY MUL) p = p->left:

4189 if(p->op == REG i| p->op == OREG)

4190 return(!istreg(p-»>rval })i

4191 return(p->op == NAME i p->op == ICON)3

4192 }

4193 /% scmemeeeeccecceacccan——- meemmm—————n - a4

4194

The Portable C Compiler v local2.c (11) 131

14.2 lastchance (4085)

This is called by order at line 1796, for no apparently good reason. However, there are
apparently some situations (not for the PDP11) where one more try may be worthwhile.

14.3 rewfld (4091)

If there is any special hardware that can do part of 'the job of extracting bit fields from words,
then this is the place to show it. Of course if hardware exists to handle the general case, ££14d
(1928) will never be invoked in the first place to call rewf1ld.

14.4 spsz (4096)

spszis called by deltest (2947) and shumul (4147). Its function is to determine whether
normal hardware autoincrement or autodecrement addressing, if used, will adjust a register
pointer by the required amount.

14.5 szty (4126)

This procedure is called from several different procedures to determine the number of type A
registers that will be needed to store a variable type. The answer is two for long integers, and
one otherwise, '

14.6 shltype (4141)

This procedure is called from several places (gencall, match, setrew and stoasg) to
determine if the subtree has the shape of a ‘“‘leaf” i.e. is directly addressable, This procedure
could be virtually eliminated if addressing modes were handled more uniformly. Note also that.
in the way the procedure is used, the first and second arguments are related, viz. o == p->op.

14.7 shumul (4147)

This procedure determines the shape (either STARNM or STARREG, or neither of these) of a
tree that is known to be the subtree of a UNARY MUL operator. Trees of shape STARNM or
STARREG correspond to standard PDP11 addressing modes, as discussed on pages 21 and 23.
It is called by tshapeat line 2317, and by several other procedures.

14.8 special (4163)

special is called by tshape at line 2262 to look for machine dependent shapes, particularly
constants that may be capable of special treatment.

149 shtemp (4187)

shtemp is called by tshape at line 2268 to determine if the shape of the current subtree is
consistent with a value in temporary (stack) storage. It doesn’t actually have to be in the stack,
provided it is not occupying, directly or indirectly. one of the temporary registers.

14.10 flshape (4195)

This procedure is called by tshape at line 2284 to determine whether the subtree of a FLD
operator (which is UTYPE) is ready for generation of the field operation. (It may contain
expressions that still need to be evaluated.) ‘

14.11 acon (4202)

This procedure is called by adrput, conput and upput (all in this file), to insert the value
of a constant into the assembler code stream. Since nodes of type ICON may represent address
constants or arithmetic constants, these have to be distinguished.

4205: CONFMT is defined as "L%d" so that numeric values are generated in terms of their
decimal equivalents. (Since the regular C compiler emits constants in octal, this is
one point where the outputs of the two compilers are noticeably different. In fact.
for some simple programs, this, and the numbering of labels, are almost the only
differences.)

132 local2.c . The Second Pass of

4195 flshape(p) register NODE »p; {

4196 register o = ?—>op;

4197 if(o=aNAME || o==REG ii 0==ICON || 03=0REG) return(1);
4198 return(o==UNARY MUL && shumul(p->left)=xSTARNM);

4199 } .

4200 /% ZREIITITETIRTIAXSASUAAITIXIITIISIIIIIJIAIIITITIATSIIBRARST #/
4201
4202 acon(p) register NODE #p; { /+ print out a constant »/
4203

4204 if(p-»>name(0] == "\0’){ /% constant only =/
4205 printf(CONFMT, p->lval);

4206 printf(".")3

4207 }

4208 else if(p->lval == 0) { /* name only +/
4209 printf("%.8s", p->name);

4210 }

4211 else { /+ name + offsat »/
4212 printf("%.8s+", p->name);

4213 printf(CONFMT, p->lval);

4214 printf(".");

4215 }

4216 } ’

4217 /% ~emmmcemnaa O ————————— ——— o/
4218

4219 adrcon{ val) CONSZ wval; (

4220 printf(CONFMT, val);

4221 }

4222 /% scmmmemeeemeeccmmcemceemmmme—————— B ——————— w/
4223

4224 adrput(p) register NODE ~pi {

4225 /+ output an address, with offsets, from p +/
4226 .

4227 if(p-»>op == FLD -){

4228 p = p->left;

4229 }

4230 switch(p->op){

42231

4232 case NAME:

4233 acon{ p);

4234 return;

4235

4236 case ICON:

4237 /+ addressable value of the constant «/
4238 if(szty(p->type) == 2) {

4239 /+ print the high order value «/

4240 CONSZ save;

4241 save = p->lval;

4242 p->lval = (p->lval >> SZINT) & BITMASK({SZINT);
4243 printf("3");

4244 acon(p }; - .
4245 p->lval = save;

4246 return;

4247 }

4248 printf("s$"):

4249 acon(p)%

2250 return;

4251

4252 case REG:

4253 ' printf("%s", rnames([p->rval]):

4254 return;

4255

4256 case OREG:

4257 if(p-»>rval == R5){ /»* in the argument region +/
4258 if{ p->name(0] != ’\0’) werror("bad arg temp”");
4259 printf(CONFMT, p->lval);

4260 printf(".(rS)");

4261 return;

4262 }

4263 if{ p->lval != 0 !! p->name(0] != °"\0“) acon(p);
4264 printf("(%s)", rnames(p->rval]);

1265 return;

4266

The Portable C Compiler local2.c (I1) 133

4208: Unmodified address constant.

4212: Observe the * +* sign.
14.12 adrcon (4219)

Not much to say here. Called only by expand at line 2410 to output a bitmask for use in a
field operation.

14.13 adrput (4224)

adrput is called primarily by expand at line 2436 to expand the code character A It is also
called by eprint at line 1154 and zzzcode at line 4603. The discussion on addressing
modes in Chapter Two should be read in conjunction with this procedure.

4227: “De-reference’’ an initial FLD operator, if any.

4238: Insert a literal constant into the assembler code stream. If the constant type is LONG or
ULONG (as reported by szty (4126)) emit the high order part of the constant
only here. The other half will be handled appropriately by upput (in due course
or has already been so handled). This involves reducing the value of lwval, and
subsequently restoring it.

4257: In the case of an OREG, if the associated register is R5, then we are dealing with a stack
location, so there had better not be an associated name. Either the varable is an
unnamed temporary variable, or it is an argument or named variable, whose name

_ should have been suppressed in the first pass.

4263: Emit a constant and/or a symbolic name, if appropriate.
4264: Emit the reference to the register (as a pointer or an indexed pointer).
4269: Generate the indirection symbol at the beginning of the address.

4273: Finally, take care of autoincrementing and autodecrementing. Alter the tree to look like
an OREG to fool adrput (4224), and also so that reclaim will find the resuit
in a correctly addressable form.

14.14 conput (4309)

conput is called by expand at line 2438, and also by zzzcode at lines 4556 and 4563.
From expand, it is used to expand the code character C occurring in a matched template.
Such characters occur at lines 5448 and 5460 in connection with the initialization of data
storage. At line 5468, there is a branch instruction, which should only be generated by Fortran
programs,

The calls to conput from zzzcode originate in the templates for bit, ash and ashc
instructions (see lines 5052, 5131 and 5262 respectively).

14.15 insput (4326)

This procedure is null for the PDP11 version. It has a use in the Honeywell version of the
Portable C compiler for generating references to machine registers.

14.16 upput (4331)

This procedure, which is called by expand at line 2440 to expand the code character U, com-
plements adrput, by handling *‘the other half’” for long operands. It should be compared and
contrasted with adxrput (4224).

134 local2.c : The Second Pass of

4267 case UNARY MUL:)

4268 /+ STARNM or STARREG found +/

4269 if({ tshape(p. STARNM)) {

4270 printf("+")3

4271 adrput(p->left);

4272 }

4273 else { /+ STARREG - really auto inc or dec =/
4274 /+ turn into OREG so replacement node will
4275 reflect the value of the expression s/
4276 register i

4277 register NODE =»q, +#1;

4278

4279 1l = p->left;

4280 q = l->left;

4281 . p->»op = OREG;

4282 p->rall = g-»>rall;

4283 p->lval = g-»>1lval;

4284 p->rval = g-»>rval;

4285 for(i=0; i<NCHNAM; i++)

4286 p-»name(i] = g->name(i];
4287 if(lL-»op == INCR) {

4288 adrput(p);

4289 printE("+")3

4290 p->lval -= l->right->lval;
4291 } ,

4292 else { /+ l-»0p == ASG MINUS =/
4293 printf("-");

4294 : adrput(p)

4295 }

4296 tfree(1);

4297 }

4298 return;

4299

4300 default:

43C1 cerror("illegal address");

4302 return;

4303

4304 }

4305

4306 }

4307 /% =memmmmmmm e e e e mme— e m e e s —— - —————— */
4308

43092 conput{ p) register NODE »p; {

4310 switch{ p~->op }{

4311

4312 case ICON:

4313 acon(p)i

4314 return;

4315

4316 case REG:

4317 printf("%s", rnames[p->rval]);

4318 return;

4319

4320 default:

4321 cerror{ "illegal conput”);

4322 }

4323 } ’ »
4324 /% cmmmeecemmce e e m e s s e s o e — e n - ———— - cmmmmm———— 4/
4325

4326 insput(p) NODE +p: {

4327 cerror("insput”);

4328 }

4329 /4 ~mmmmmmmmmcemmeemmmemmema——m——emm—a—mae e -’

The Portable C Compiler local2.c (I1) 135

14.17 rmove (4378)

This procedure is called by reclaim at line 2786 to generate an explicit register-to-register
move (integer or float). This is needed when the result calculated by an expression tree has
been forced into the wrong register and it must be moved to the required register.

14.18 hopcode (4399)

hopcode is called by expand at line 2418 to output an operator name. See the comment at
line 4400. Note that for floating point operations, the character £ is appended to the operation
name.

14.19 zzzcode (4415)

This procedure has been saved until last! It is highly specialized, and depends very much on
the contents of table. It does all the dirty work (i.e. machine-dependent cases) for expand
The latter calls zzzcode when it has encountered’'a ‘2’ in the code string. The following
character from the code string is passed as an argument to zzzcode.

The corresponding procedure for e.g. the VAX11/780 is vastly different from the code
presented here. Since this procedure is likely to be rewritten on an ad hoc basis for any new
version of the Portable C compiler, a detailed analysis is not appropriate

Some sampling may be in order however. It is suggested that the reader should at least look at
the following: \

4419: Generate.byté versions of instructions when appropriate.
4434:; Generate branch statements from within the templates.
4542: More references to toff.

4615: Structure assignment.

136 locall.c The Second Pass of

4330

4331 upput(p) NODE »p; {

4332 /+ output the address of the second word in the
4333 pair pointed to by p (for LONGs)=»/

4334 CONSZ save;

4335

4336 if(p->op == FLD){

4337 p = p->left;

4338 }

4339)

4340 save = p->lval;

4341 switch(p->op){

4342 .

4343 case NAME:

4344 p~>lval += SZINT/SZCHAR;

4345 acon(p)i

4346 break;

4347

4348 case ICON: .

4349 /+ addressable value of the constant »/

4350 p->1lval &= BITMASK(SZINT);

4351 printf("s$");

4352 acon(p);

4353 break;

4354

4355 case REG: .

4356 printf{ "%s", rnames(p->rval+1]);

4357 break;

4358

4359 case OREG:

4360 p->1lval += SZINT/SZCHAR;

4361 : if(p->rval == R5){ /+ in the argument region =/
4362 if(p-»>name(0] != °\0’) werror("bad arg temp” }:
4363 } . .

4364 if(p->lval != 0 || p-»>name[0] != °\0") acon(p }:
4365 printf("(%s)", rnames{p->rvall]);

4366 break:

4367

4368 default:

4369 cerror(“"illegal upper address"):

4370 break:

4371

4372 }

4373 p->lval = save;

4374

4375 }

4376 /4 —==——=a= ——————— e mmm e m e — e ——————————————— - =/
4377

4378 rmove(rt, rs, t) TWORD t:

4379 printf(" . %s %s,%s\n", (t==FLOAT||t==DOUBLE)?
4380 "movE" :"mov", rnames{rs], rnames(rt]):
4381 }

1382 /% mmmemmcccccemccwn e s r e e e —————— - o 2 e »/
4383

4384 struct hoptab { int opmask; char « opstring: } ioptab(l= {
4385

41386 ASG PLUS, "add",
4387 ASG MINUS, "sub",
4388 ASG OR, "bis",
4389 ASG AND, "bic",
4390 ASG ER, "xor",
4391 . ASG MUL, "mul”,
4392 ASG DIV, "div"”,
4393 ASG MOD, "div",
4394 ASG LS, "asl",
4395 ASG RS, "asr",
4396 . .

4397 -1, " }i

1398

The Portable C Compiler

4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411

4412

4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455

4456
4457

4458
4459
4460
4461
4462
4463
4464
4465
© 4466
4467
4468
4469

- T - o W . A U wl W O NS A A G5 A T T O v ok

hopcode(£, o){

locall.c

/+ output the appropriate string from the above table +/

register struct hoptab »q;

for(q = ioptab; qg->opmask>=0; ++q) {
if(g->opmask === o){
printf("%s", g->opstring);
if(£ == ‘F’) printf({ "£");
return;
}
}
cerror("no hoptab for %s", opsto]):
}

zzzcode(p, ¢) NODE »p: {
" register m;

switch(¢){

case ‘B": /+ output b if type is byte =/

if{ p-»type == CHAR || p->type == UCHAR) printf("bd")3

return;

case ‘N’: /= logical ops, turned into 0-1 +/
/» use register given by register 1 +/
cbgen(0, m=agetlab(), ‘I);
deflab(p->label);

printf(" clr %s\n", rnames{getlr(p, "1’

if(p->type == LONG {{ p->type == ULONG)
printf(" clr %s\n",

deflab(m);
return;

case ‘I”:

case ‘F’:
cbgen(p-»>op, p->label, c);
return;

case ‘A’:
case ‘C’:
/+ logical operators for longs
defer comparisons until branch occurs =/

brnode = tcopy(p);
brcase = ¢;
return;

_case ‘H’: /=« fix up unsigned shifts «/

{ register NODE »qg;
register r, 1;
TWORD t;

if(p->op == ASG LS) return:

if(p->op != ASG RS) cerror("ZH bad"

})=->zrvall):

rnames (getlr(p, ‘1’)=->rval + 1});

if(p-»left->op != REG) cerror("SH left bad");

p->left~>rval;
p->1eft->t¥pe:
(t3=LONG {i t == ULONG);

Hrn
nuwy

if(t != UNSIGNED && t != UCHAR &5 t !a ULONG)

return; /» signed is ok «/

/+ there are three cases: right side is a constant,
and has the shift value: right side is
a temporary reg, and has the - shift value,
and right side is something else: A1 has the

- shift value then +/

137

138 locall.c : The Second Pass of

4470 /% in the case where the value is known (constant
4471 rhs), the mask is just computed & put out... «/
4472 .

4473 if(p->right->op == ICON){

4474 int s; 4

4475 S = p=->right-»>lval;

4476 ’ if(1)¢

4477 if(s >= 16){

4478 printf(" clr r¥%d\n", r)
4479 s -= 163

4480 ++T;

4481 }

4482 } .

4483 if(s »>= 16) printf{ " clr r%d\n", r);
4484 else {

4485 m = 0100000

4486 m >»= 5; /+ sign extends... »*/

4487 m <<= 1,

4488 : printf(" bic $%0,.r¥%d\n", m, r)
4489 }

4490 return;

4491 . }

4492

4493 /+ general case »/

4494 '

4495 if(istnode(p->right)) q@ = p->right;

4496 else q = getlr(p, “1°); /» where -shift

4497 is stored »/

4498

4499 /+ f£irst, store the shifted value on the stack +/
4500 printf(" mov r%d.-(sp)\n", r);

4501 if(1) printf(" mov r%d,-(spi\n", r+t1 }:

4502 B

4503 /» now, make a mask */

1504

4505 printf(" mov $100000,r%d\n", r }:

4506 if{ 1) printf(" clr r4d\n", r+1 };

4507 . .

4508 /+ gshift (arithmetically) »/

1509 if(1) expand(g, RNOP, " ashc AR");

4510 else expand(g, RNOP, " ash AR")3

1511 printf(",r%d\n". r)

4512 ’ :

4513 if(1) printf(" ashc $1,x%d\n". r };

4514 else printf(" asl r%d\n", r }:

4515

4516 /+ now, we have a mask: use it to clear sp.

4517 and reload =/

4518 if(1){

4519 printf ("\tbic\tr#%d, (sp)\n\tmov\t(sp)+,r%d\n",
4520 r+l, r+l1)3

4521 } .

4522 printf("\tbic\tr%d, (sp)\n\tmov\t{sp)+.r%d\n" .r.r}:
4523 /+ whew! #/

4524 return;

4525 }

4526

4327 - case ‘V’:

4528 /+ sign extend or not -- register is one less than the
4529 left descendent »/

4530

4531 m = p-»>left->rval - 1;

4532 : . . ,
4533 if(ISUNSIGNED(p~>type)){

4534 printf(" clr r#%d\n", m)3

4535 }

4536 else {

4537 printf(" SXT r%d\n", m);

4538 }

4539 return;

+540

The Portable C Compiler . ‘] local2.c 139

4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565

4566

4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608

case

case

case

case

case

case

case

/+ stack management macros +/
if(toff ++) printf("-");
printf("(sp)");

return;

141.

if(toff == 0) ++toff; /+ can’t push doubles that way «/
printf("-(sp)");

toff += 4,

return;

.

/+ complemented CR +/
p~>right->lval = 'p->r1ght->lval.
conput(getlr(p, ‘R’) J);
p->right->1lval = -p->right->lval;
return;

‘M’

/+ negated CR +/

p-»>right->lval = -p->right->lval;
conput(getlr(p, 'R’))3
p->right->1lval = -p->right-»lval;
return;

‘L’: /» INIT for long constants »/
{
unsigned hi, lo;
lo = p=->left->lval & BITMASK(SZINT);
hi = (p->left->lval >> SZINT) & BITMASK(SZINT):
printf(" %o; %o\n", hi, lo):
return;

}

ITP .

/* Truncate longs for type conversions'
LONG{ULONG ~-> CHAR!UCHAR|INTIUNSIGNED
increment offset to second word «/

m = p->type;

p = p->left;

switch(p-»op){

case NAME:

case OREG: .
p~>lval += SZINT/SZCHAR;
return;

case REG:
rfree(p->rval, p->type);
p~>rval += 1;
p~->type = m;
rbusy(p->rval, p->type);
return;

default:
cerror("Illegal 2T type conversion”):
return;

}

‘g’
/+ same as AL for exp under Us «/

if(p->left->op == UNARY MUL) {

adrput(getlr(p->left, ‘L’))i .
return;
}

cerror("Illegal 2U");

/e« NO RETURN «/

140 flocai2.c

4609 case °‘W’': /+ structure size =/

4610 if(p->op =a STASG)

4611 printf("%4", p-»>stsize):

4612 else cerror("Not a structure");

4613 return;

4614

4615 case 'S’: /+ structure assignment +/

4616 { :

4617 register NODE +1, «r:

4618 regigter size, count;

4619

4620 if(p->op == STASG){

4621 1 = p->left;

4622 r = p->right;

4623 }

4624 else if(p-»op == STARG){

4625 /+ store an arg onto the stack =/
4626 r = p->left;

4627 } .

4628 else cerror("STASG bad");-

4629)

4630 if(r->op == ICON) r->o0p = NAME;
4631 else if(r->op == REG) r->op = OREG:;
4632 else if(r->op != OREG) cerror("STASG-r"):
4633

4634 size = p->stsize;

4635 count = size / 2;

4636

4637 r-»lval += size;

4638 if(p->op == STASG) l-»lval += size:
4639

4640 while(count~-){ /+ simple load/store lcoop +«/
4641 r->lval -= 2;

4642 expand(r, FOREFF, " mov AR,")3
4643 if(p-»>op == STASG){

4644 l->1lval -= 2;

4645 expand(1, FOREFF. "AR\n" 1
4646 }

4647 else {

4648 printf("~-(sp)\n");

4649 H

4650

4631 }

4652

4653 if(r-»>op == NAME) r->op = ICON;:
4654 else if(r-»>op == OREG) r->op = REG;
4655

4656 }

4657 break;

4658

4659 default:

4660 cerror{ "illegal zzzcode");

1661 }

1662 ?

4663 /% EEZaaRNAIIIISITITTIEIIIITISSUIIAIISIATIIIIIIZIIIISIITISR -/

'Cllaprer 15: The File “‘table.c”

The last file, table.c, begins at line 4664 and consists merely of the initialization of the array
table. This is an array of structures of type optab which was discussed earlier in Section
2.5. Each such structure defines a template that, when matched against a particular subtree,
will result in the rewriting of the tree and the emission of zero, one, or more lines of assembly
code.

To recapitulate briefly, each template speciﬁes an operator, alternatives for the shape and type
of each of the left and right subtrees and ddditional resources that may be needed during the
code sequence. The last part of each template is a (pointer to a) character string, or code siring,
. which, when expanded, becomes the string of instructions.

15.1 Macro Expansion

After a successful template match, the associated code string is expanded macro-fashion into
assembler language statements, and the expression tree is rewritten to reflect the effects of the
code which has been generated.

The style of macro expansion conducted by expand (2376) depends ultimately on the assem-
bler for the target machine. As can be seen at line 4681 for example. upper case letters are
used for macro names. Several of these are standardized and are recognized by expand. For
example:

AL address of the operand derived from the left subtree,

AR address of the operand derived from the right subtree.

A1 address of the temporary operand (usually a register) assigned for the code sequence
(may be the same as either AL or AR if either of the latter may be shared).

UR address of the less significant word of a two-word operand derived from the Ieft sub-
-tree.

U1 “address of the less significant word of a two-word operand in a temporary location.

z first character of a machine-dependent macro. The character immediately following

the Z is passed as an argument 0 zzzcode.
15 2 Table Searching

Searches of table are conducted in a linear fashion. Some of the overhead of conducting
such searches has been removed by the obvious improvement of determining operator-
dependent places from which to begin searching. This improvement, which takes advantage of
the clustering of templates by operator type, is embodied in the procedure setrew (2112).
and in corresponding changes to match (2159). This ensures that when a template match is
made. the amount of searching involved is relatively limited. However the wasted effort can be
considerable in the case where a maich will not be made, since the search proceeds (fruitlessly)
through the rest of the table until the appropriate one of the “*catch-all’® templates at the end
(see lines 3482 10 3517) is encountered. ’

It will often be worthwhile to embark upon judicious reordering of the template groups so that
those operator groups occur towards the end of table that result in relatively frequent unsuc-
cessful matches”. Within each template group. the ones which lead to the most efficient object
code should appear first. Another obvious improvement would be to move the more specific of
the “*catch-all’” templates to carlier points in the table. For example, the template at line 3313

According to Tom London. this has already been done for the VAX11/780 version of the compiler.

142 rable.c

4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
1728
4729
4730
4731
4732

include "mfile2"

define AWD SNAME!SOREG!SCON|STARNM|STARREG!SAREG
define LWD SNAME)SOREG!SCON|SAREG

struct optab table{] = (

ASSIGN, INAREG | FOREFF | FORCC.
AWD., TPOINTITINT!TUNSIGNED|TCHAR|TUCHAR.
SZERO, TANY,
0. RLEFT!RRIGHTRESCC,

" elr2zB AL\n".

ASSIGN, INAREG ! FOREFF | FORCC,
AWD, TINT!TUNSIGNED,
AWD, TCHAR,
NAREG!NASR. RLEFTIRESC1{RESCC,
" movb AR.AT\n mov A1 ,AL\n",

ASSIGN, INAREG ! FOREFF i FORCC,
AWD. TINT!TUNSIGNED,
AWD, TUCHAR,
0. RLEFTIRESCC,
" movb AR,AL\n bic

ASSIGN, INAREG | FOREFF | FORCC.,
AWD, TPOINTITINT!|TUNSIGNED|TCHAR|TUCHAR,
AWD, TPOINT!TINT!|TUNSIGNEDTCHAR!TUCHAR.
0. RLEFTIRRIGHT {RESCC,
" movZB AR.AL\n",

ASSIGN. INAREG ! FOREFF,
LWD, TLONG!TULONG,
SZERO. TANY .
0. RLEFT|RRIGHT.

L]

clr AL\n clr UL\n",

ASSIGN. INAREG | FOREFF.
LWD, TLONG|TULONG.
LWD. TLONG!TULONG,

0. RLEFT!RRIGHT.
" mov AR.AL\n mov UR.UL\R",
ASSIGN. FOREFF | INAREG.
STARNM, TLONG | TULONG, .

LWD, TLONG|TULONG.
NAREG {NASL., RRIGHT,
" mov ZU,AT\n mov AR, (A1)+\n

ASSIGN, FOREFF, .
STARNM. TLONG | TULONG .

AWD, TUNSIGNED!TPOINT,
NAREG!NASL. RRIGHT,

mov Z2U,.A1\n clr (A1)+\n
ASSIGN. FOREFF.
STARNM, TLONG | TULONG.
AWD. TINT, _
NAREG{NASL. RRIGHT.
" mov ZU.A1\n mov AR.2(AT}\n-

"/« PANIC! o/
ASSIGN. FOREFF{ INAREG.
STARNM, TLONG | TULONG,
AWD, TUNSIGNEDITPOINT.
NAREG!NASLINASR. RESC1.
" mov AR.-{(sp)\n mov 2U,A1\n clr
mov (sp)+.{(A1)\nF mov (A1).UT\nF

$!1377.AL\n".

The Second Pass of

UR.(A1)\n",

AR.{(A1)\n",

(A1)\n",

Al\n",

The Portable C Compiler _ . , table.c 143

for *“ASG OPANY" could be moved to follow line 5305 after the ASG template.
15.3 Some Statistics

There are many ways to analyze the contents of table. The following summaries:may be
found of some assistance to the reader.

15.3.1 Template Operators. The accompanying table lists the operatdr for each template
together with the line number at which it occurs. (The ‘‘catch-all’’ templates that begin at line
5484 are not included.)

4671 ASSIGN 4946 OPLOG 5212 ASG MINUS

4677 ASSIGN 4952 OPLOG 5218 ASG OR
4683 ASSIGN 4958 OPLOG 5225 ASG AND
4689 ASSIGN 4964 OPLQG 5231 ASG ER
4695 ASSIGN " 4970 CCODES _ 5240 ASG ER
4701 ASSIGN- 4976 CCODES . 5246 ASG ER
4707 ASSIGN 4982 UNARY MINUS 5252 ASG LS
4713 ASSIGN 4988 UNARY MINUS 5258 ASG RS
4719 ASSIGN 4994 UNARY MINUS 5264 ASG RS
4726 ASSIGN 5000 COMPL 5270 ASG RS
4733 ASSIGN 5006 INCR 5276 ASG RS
4740 ASSIGN 5012 DECR - 5282 ASG OPFLOAT
4746 ASSIGN 5018 INCR 5288 ASG OPFLOAT
4752 ASSIGN 5024 DECR 5294 ASG OPFLOAT
4758 ASSIGN 5030 INCR 5300 ASG OPFLOAT
4764 ASSIGN 5036 DECR 5306 UNARY CALL
4770 ASSIGN 5042 COMPL 5312 UNARY CALL
4776 ASSIGN 5048 AND 5318 SCONV

4782 ASSIGN 5054 ASG MUL 5324 SCONV

4788 ASSIGN 5060 ASG DIV ‘ 5330 SCONV

4794 ASSIGN 5066 ASG MOD 5336 SCONV

4800 ASSIGN 5072 ASG PLUS 5342 SCONV

4807 UNARY MUL 5078 ASG PLUS 5348 SCONV

4813 OPLTYPE 5084 ASG MINUS " 5354 SCONV

4818 OPLTYPE 5090 ASG MINUS 5360 SCONV

4824 OPLTYPE 5096 ASG OR 5366 SCONV

4830 OPLTYPE 5103 ASG AND 5372 SCONV

4836 OPLTYPE 5109 ASG ER 5378 SCONV

4842 OPLTYPE 5115 ASG OPSHFT 5384 SCONV

4849 OPLTYPE 5121 ASG LS 5390 SCONV

4855 OPLTYPE 5127 ASG RS 5396 SCONV

4861 OPLTYPE 5133 ASG RS 5402 SCONV

4867 OPLTYPE 5139 ASG RS 5408 PCONV

4873 OPLTYPE " 5145 ASG RS 5414 PCONV

4879 OPLTYPE 5151 ASG RS 5420 STARG

4885 OPLTYPE 5157 ASG OR 5426 -STASG

4891 UNARY MUL 5164 ASG AND 5432 STASG

4897 OPLTYPE 5170 ASG PLUS 5438 STASG

4903 OPLTYPE 5176 ASG PLUS 5444 INIT

4909 OPLTYPE 5182 ASG PLUS 5450 INIT

4915 OPLTYPE 5188 ASG PLUS 5456 INIT

4921 OPLTYPE 5194 ASG MINUS 5464 GOTO

4927 OPLTYPE 5200 ASG MINUS 5470 GOTO

. 4934 OPLOG 5206 ASG MINUS 5476 GOTO

4940 OPLOG

144 able.c The Second Pass of

4733 ASSIGN, FOREFF | INAREG,

4734 STARKNM, TLONG { TULONG,

1735 AWD. TINT.

4736 NAREG { NASL|NASR., RESC1,

4737 " mov AR,-{sp)\n mov 2ZU,A1\n mov (spl)+.2(AT)\n\
4738 F mov 2(A1),Ul\n sxt (A1)\nF sxt AI\n",
4739

4740 ASSIGN, FOREFF | INAREG,

4741 STARNM, TLONG | TULONG.,

4742 SAREG, TLONG { TULONG.

4743 0, RRIGHT.

4744 " mov AR,AL\n mov 2U,AR\n mov UR,2(AR)\nF mov (AR).AR\a".
4745 .

4746 ASSIGN, INAREG | FOREFF,

4747 LWD, TLONG|TULONG,

4748 AWD, TCHAR,

4749 NAREG. RESC1,

4750 . " movb AR.U1\n mov U1,0L\n SXt AL\nF sxt Al\n",
4751 .

4752 ASSIGN, INAREG | FOREFF,

4753 LWD, TLONG|TULONG,

4754 " AWD, TUCHAR,

4755 0. RLEFT,

4756 " movb AR,UL\n bic $1377,UL\n clr AL\n" .,
4787 .

4758 ASSIGN, INAREG | FOREFF.

4759 LWD, TLONG:TULONG,

4760 AWD. TINT,

4761 0. RLEFT.

4762 " mov AR ,UL\n sxt AL\n".

4763

4764 ASSIGN, INAREG | FOREFF.

4765 LWD. TLONG!TULONG,

4766 AWD, - TUNSIGNED:TPOINT,

41767 ' o, RLEFT. .

4768 " mov AR,UL\n clr AL\n".

4769 ‘

4770 ASSIGN, INBREG! INTBREG | FOREFF,

4771 ~ AWD, TDOUBLE. .

4772 SBREG, TDOUBLE.

4773 : 0. RRIGHT.

4774 " movf AR.AL\n".

4775

4776 ASSIGN, INBREG! INTBREG | FOREFF,

4777 AWD. TFLOAT.

4778 SBREG, TDOUBLE.

4779 0, RRIGHT.

4780 " movfo AR.AL\n".

4781

4782 ASSIGN. INAREG!FOREFF. : "
4783 SFLD. TANY.

4784 SZERO, TANY,

4785 0, RRIGHT.

4786 " bic $M..AL\n",

4787

4788 ASSIGN., INTAREG!INAREG!FOREFF,

1789 SFLD. TANY,

4790 STAREG, TANY.

4791 0. RRIGHT., :

4792 "F mov AR.-(sp)\n ash S$H.,AR\n bic S$!IM..AR\n\
4793 bic 3M.,AL\n bis AR.AL\nf mov (sp)+.AR\n".
4794 ASSIGN, INAREG|FOREFF, ’

4795 SFLD. TANY,

4796 AWD. TANY.

4797 NAREG, RRIGHT.

4798 " mov AR.AI\n ash S$H..A1\n bic S$!M..a1\n\
4799 bic $M..AL\n bis A1.AL\n".

4800 ASSIGN. FOREFF .

4801 AWD, TFLOAT.

4802 AWD. TFLOAT,

4803 NBREG. RESC1.

1804 " movof AR.AI\n ‘movfo A1.,AL\n".

The Portable C Compiler ' , C table.c 145

15.3.2 Operator Summary. The following table gives the various operators that can be matched
together with their frequencies of occurrence. ‘

1 AND 3 ASG OR _ ; 6 OPLOG ;14
3 ASG AND 6 ASG PLUS 19 OPLTYPE

1 ASG DIV 9 ASG RS 2 PCONV

4 ASG ER 22 ASSIGN - 15 SCONV

2 ASG LS 2 CCODES 1 STARG .

6 ASG MINUS 2 COMPL 3 STASG

1 ASG MOD 3 DECR 2 UNARY CALL
1 ASG MUL 3 GOTO 3 UNARY MINUS
4 ASG OPFLOAT 3 INCR 2 UNARY MUL

1 ASG OPSHFT 3 INIT

15.3.3 Visit Summary. The following table lists the various purposes (associated with the idea
of “‘cookie”) for which templates may be used and that occur in table. The numbers give
the frequency of occurrence for each ‘‘visit”’. -

6 FORARG . 2 INBREGiINTBREG

13 FORCC 2 INBREG|INTBREG|FOREFF
11 FOREFF C 9 INTAREG

4 FOREFF | INAREG 14 INTAREG!INAREG
26 INAREG ' 7 INTAREG |INAREG | FOREFF
9 INAREG|FORCC 7 INTBREG

8 INAREG|FOREFF 3 INTBREG{|INBREG

4 INAREG|FOREFF|FORCC 3 INTEMP

5 INAREG|INTAREG

15.3.4 Shape Summary. The following table lists the various tree shapes that occur in table
The numbers give the frequency of occurrence for each shape. :

72 AWD 3 SFLD
38 LWD 2 SICON
60 SANY 2 SNAME
17 SAREG 4 SNAME | SOREG
2 SAREG|SNAME | SOREG| SCON 5 SONE
7 SBREG 15 STAREG
3 SBREG) AWD 10 STARNM
1 SCCON 7 STBREG
11 SCON 5 SZERO

2 SCON|SAREG
15.4 Some Comments

 There is a great deal that can be said about the details of this file. As the reader will now be
aware, the contents of this file have to be read closely in conjunction with the contents of the
the two machine-dependent files order.c and local2.c. Also some of the code which
constitutes the final program is emitted in the first pass of the compiler, and the reader must
turn to the files code.c and local.c, which are not discussed in this document, for details
about these.

4666: AWD repr&sentsAa combination of shapes which together constitute the concépt of an
**addressable word”® or addressable operand.

4667: LWD represents a restricted version of AWD for operands which may be addressed directly
without the aid of a temporary register. This is an appropriate shape for long
operands. ’

146 rable.c

4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877

/+ put this here so UNARY MUL nodes match OPLTYPE

The Second Pass of

when appropriate «/

UNARY MUL, INTAREG!INAREG,
SANY, TANY,
STARNM, TLONG | TULONG,
NAREGiNASR, RESC1, : .
" mov AL,U1\n mov (U1)+,A1\n mov (ut).,.Uut\n",
OPLTYPE, FOREFF,
SANY. TANY,
LWD., TANY,
0, RRIGHT, :
", /+ throw away computations which don’t do anything «/
OPLTYPE, INTAREG! INAREG,
SANY. TANY,
SZERO, TINT ! TUNSIGNED TPOINT! TCHAR | TUCHAR,
‘ NAREG|NASR, RESC1,
" elr Al\n",
OPLTYPE, INTAREG! INAREG,
SANY, TANY,
SZERO, TLONG | TULONG,
NAREG!NASR, RESC1,
" elx Al\n clr ui\n",
OPLTYPE. INTAREG | INAREG,
SANY. TANY,
SANY, TINT|TUNSIGNED!TPOINT|TCHAR,
NAREG|NASR. RESC1,
" movZB AR.AT\n".
OPLTYPE. INTEMP,
SANY., TANY,
SANY, TINT!TUNSIGNED!TPOINT.
NTEMP, RESC1,
" mov AR.A1T\n",
OPLTYPE, FORCC,
SANY. TANY,
SANY. TINT!TUNSIGNEDTPOINT:TCHARITUCHAR,
g, RESCC.
" tstZB AR\n",
QPLTYPE, FORARG,
SANY, TANY,
SANY, TINT!TUNSIGNED|TPOINT.
0, RNULL.,
" mov AR,Z-\n",
OPLTYPE. INTAREG) INAREG.
'SANY, TANY,
AWD. TUCHAR.
NAREG|NASR, RESC1.
" movb AR,Al\n - bic $1377,A1\n".
OPLTYPE, INTAREG | INAREG.
SANY. TANY,
LWD. TLONG!TULONG.
NAREG, RESC1.
* mov UR,U1T\n mov AR.AT\R",
CPLTYPE. INTAREG: INAREG., /+ for use when there are no free regs «/
SANY, TANY,
LWD, TLONG!TULONG.
NAREGiNASR. RESC1.)
" mov ' AR.~-(sp)\n mov UR.UT\n mov (sp)+.A1\n".
OPLTYPE. INTEMP.
SANY. TANY,
LWD. TLONG,TULONG,
2sNTEMP, RESC1.
" mov . AR,A1\n mov UR,U1\n",

The Portable C Compiler , table.c 147

4671: The first template represents a simple instruction pair (clr and clrb) that can be used
for a variety of purposes. It can be used to clear a register (‘‘INAREG”), or to
zero a word or byte in memory without leaving a result m -2 register
(““FOREFF”), or to set the condition codes (**FORCC”). In the latter case, the
result will be available in the condition codes (‘*RESCC’); otherwise it can be
found at the address of either the right or left operand.

4675: The string "2ZB" is reduced by zzzcode (see line 4419) to either the single character
"p", or to nothing, denoting a character or a word instruction respectively.

4677: This template can be used for the same general purposes as the previous template. It
assigns a character to a word in two stages. A byte is moved into a temporary
‘ register, and then the content of this register is moved to the destination®. The
intermediate register may be an unused temporary register (‘°NAREG"), or it may
be the same as the register used to address the right operand (‘**NASR™), if the
content of that register is not needed for another purpose. As before, the resuit
of the operation may be found in the condition codes (‘*°RESCC’") if the *‘cookie’
was FORCC. If the ‘‘cookie’” was FOREFF, then there is of course no result to
be found and saved.

4730: Notice the explicit use of the sp register at this point.

4737: In the interests of compaciness, not readability, the tab characters in the code string have
. been removed.

4782: Three templates for field assignments begin here.

4813: OPLTYPE represents operations on leaves, mostly for movement from one location ta
another, but also for type conversion. The first template says that any such opera-
tion which is being performed FOREFF is always a null operation.

4849: This template moves a single word represented by a “‘leaf’” node into the stack to sétisfy
the “‘cookie’’ FORARG.

4970: The code generated by this template is more complex than the code string suggests at
first glance. Code to expand ZN.found on line 4974 can be found beginning at
line 4423.

5054: The group of ASG operators begins here. Note that because of the two address instruc-
tions of the PDP11, there are in fact no templates for unadorned binary opera-
tions alone. For example, there are a pair of templates for ASG PLUS, but none
for PLUS alonef. If any attempt is made to match the operator PLUS, a maich
will be made by the template at line 5515. (Because of preparation performed by
setrew (2112), this will be the first template examined, not the last!)y

5102: See the discussion for hardops (3802) in Chapter Thirteen. The comment on this line
is no longer quite accurate.

—————r e

* If this second move is redundant as would occur if the destination were a register. then an etficient ““optimizer™
should be able 1o eliminate it. Actually. Lee Benoy suggests that this case will not occur because an carlier match
of the template found at line 4830 would be made. This has not been verified.

* This need not be so for machines like the VAX11/780 that have three address instructions. However it is difficult
1o exploit the potential of such machines fully so long as the compiler does not construct and manipulate ternary
trees as well as binary trees.

148 table.c , 7 The Second Pass of

4879 OPLTYPE. FORCC,
4880 SANY, TANY,

4881 LWD, TLONG!TULONG,

4882 0. RESCC,

4883 . "ZA",

4884

4885 OPLTYPE, FORARG,

4886 SANY, TANY,

4887 LWD, TLONGI!TULONG,

4888 0. RNULL,

4889 Y mov UR,Z-\n mov AR,Z-\n",
4890 :

4891 UNARY MUL, FORARG,

4892 STARNM, TANY,

4893 SANY, TLONG|TULONG,

4894 NAREG{NASR, RNULL, _ _
4895 " mov AL,AT\n nov 2(A1),2-\n mov (A1),Z-\n",
4896 : :
4897 OPLTYPE, FORARG.

4898 - SANY, TANY,

4899 SBREG, . TDOUBLE,

4900 0, RNULL,

4901 " movf AR,Z4\n",

4902 -

4903 OPLTYPE, INTBREG| INBREG,

4904 SANY, TANY.

4905 AWD, TDOUBLE,

4906 NBREG, RESC1,

4907 " movf AR,A1T\n",

4908

4909 OPLTYPE, INTEMP,

4910 SANY, TANY,

4911 SBREG, TDOUBLE.

4912 4=NTEMP, RESC1,

4913 . " movE AR,AT\n",

4914

4915 OPLTYPE, FORCC,

49186 SANY, TANY,

4917 AWD, TDOUBLE,

4918 o, RESCC,

4919 " £stf AR\n c¢fcc\n”,
4920

4921 OPLTYPE, INTBREG ! INBREG,

4922 SANY, TANY.

4923 AWD, TFLOAT,

4924 NBREG, RESC1,

4925 " movof AR,A1\n",

4926

4927 OPLTYPE, FORCZ,

4928 SANY, TANY,

4929 AWD, TFLOAT.

4930 NBREG. RESCC,

4931 " movof AR,A1T\n cfce\n"”,
4932

4933

4934 OPLOG, FORCC,

4935 AWD, TPOINT|TINT!TUNSIGNED,
4936 AWD, TPOINT)TINT!TUNSIGNED,
4937 . o, RESCC,

4938 " cmp AL,AR\nz1",
4939

4940 OPLOG, FORCC.

4941 AWD, TCHAR|TUCHAR,

4942 AWD, TCHARITUCHAR,

4943 0. RESCC,

1944 " cmpb AL,AR\nZI",
4945

4946 OPLOG, FORCC.

4947 AWD, TCHAR|TUCHAR,

4948 SCCON, TINT, /# look for constants between -128 and 127 «/
4949 0. RESCC. .

4950 - " ecmpb AL,AR\n2IL",

The Poriable C C ompiler' able.c 149

4951

4952 OPLOG, FORCC,

4953 LWD., TLONGI!TULONG,

4954 LWD, TLONG!TULONG,

4955 0, RESCC,

4956 "ZCzZ1",

4957

4958 OPLOG, FORCC,

4959 SBREG, TDOUBLE,

4960 AWD, . TFLOAT, :

4961 NBREG, RESCC,

4962 " movof AR,A1\n cmpf A1,AL\n cfece\nZF”,
4963

4964 OPLOG, FORCC,

4965 SBREG, TDOUBLE,

4966 SBREG!|AWD, TDOUBLE,

4967 : 0, RESCC,. : .

4968 * cmpf AR,AL\n cfcc\nZF",
4969 ‘

4970 CCODES, INTAREG| INAREG,

4971 - SANY, TANY, :

4972 SANY, TINT|TUNSIGNED|TPOINT|TCHAR|TUCHAR,
4973 NAREG, RESC1,

4974 ' " mov 3$1,A1\n2N",

4975 _

4976 CCODES, INTAREG | INAREG,

4977 SANY, TANY, :

4978 SANY, TLONG!TULONG, :

1979 NAREG, - RESC1, ,

4980 " elr Al\n mov $1,U1\n2N",
4981

4982 UNARY MINUS, INTAREG ! INAREG.

4983 . STAREG, . TINTITUNSIGNED,

4984 - SANY, TANY,

4985 0, RLEFT,

4986 . o " neg AL\n",

4987 . ‘

4988 UNARY MINUS, INTAREG | INAREG,

4989 STAREG. TLONG | TULONG,

4990 SANY, - TANY,

4991 © 0, RLEFT,

4992) " neg AL\n neg UL\n sbe¢ AL\n",
4993 ' ,

4994 UNARY MINUS, INTBREG! INBREG,

4995 STBREG, TDOUBLE,

4996 SANY, TANY,

4997 .0, RLEFT,

4998) " negf AL\n",

4999 B

5000 COMPL, INTAREG | INAREG, S
5001 STAREG, TINT | TUNSIGNED,

5002 . SANY, TANY,

5003 0, RLEFT,

5004 " com AL\n",

5005 '

5006 INCR., INTAREG;INAREG|FOREFF.

5007 . AWD, TINT!TUNSIGNED!TPOINT,

5008 SONE, TANY, '

5009 NAREG, RESC1,

5010] "F mov AL,A1\n inc AL\N",
5011 .

5012 DECR. INTAREG!INAREG!FOREFF,

5013 AWD., TINT!TUNSIGNED!TPOINT,

5014 SONE. TANY,

5015 NAREG, RESC1,

5016 e mov. AL,Al\n dec AL\n",
5017 '

5018 INCR, INTAREG!INAREG|FOREFF,

5019 AWD, TINT!TUNSIGNED|TPOINT.

5020 SCON, TANY,

5021 NAREG, RESC1,

5022 "F mov AL.A1\n add AR,ALNn",

150 table.c The Second Pass of
5023

5024 DECR, INTAREG!INAREG)FOREFF,

5025 AWD, TINTTUNSIGNED|}TPOINT,

5026 SCON, TANY,

5027 NAREG, RESC1, .

5028 "F mov AL,AT\n sub AR,AL\n",
5029

5030 INCR, INTAREG|INAREG|FOREFF,

5031 LWD, TLONG!TULONG,

5032 SCON, TANY,

5033 NAREG, RESC1,

5034 "F mov AL,A1\nF mov UL,U1l\n add AR,AL\n add UR.UL\n adec aAL\n".
5035 ‘

5036 DECR, INTAREG!INAREG!FOREFF,

5037 LWD, TLONG{TULONG,

5038 SCON, TANY,

5039 NAREG, RESC1,

5040 "F mov AL,A1\nF mov UL,U1\n sub AR,AL\n sub UR,UL\n sbec AL\n";
5041 .
5042 COMPL, INTAREG.INAREG

5043 STAREG, TLONG-TULONG.

5044 SANY, TANY,

5045 o, RLEFT,

5046 " com AL\n com uL\n",

5047 .

5048 AND, FORCC,

5049 AWD, TINTITUNSIGNEDITPOINT,

5050 SCON, TANY,

5051 a, RESCC,

5052 " bit AL,$2Z2-\n",

5053

5054 ASG MUL, INAREG,

5055 STAREG, TINT | TUNSIGNED!| TPOINT,

5056 AWD, TINT!TUNSIGNEDTPOINT,

5057 NAREG, RLEFT.

5058 " mul AR,AL\n",

5059

5060 ASG DIV, INAREG,

5061 STAREG, TINT I TUNSIGNED| TPOINT,

5062 AWD, TINTI|TUNSIGNED|TPOINT,

5063 NAREG, " RESC1,

5064 "Zv diwv AR,r0O\n", /» since lhs must be in r1 =/
5065

5066 ASG MOD, INAREG,

5067 STAREG. TINT ! TUNSIGNED! TPOINT,

5068 AWD, TINT!TUNSIGNEDITPOINT,

5069 NAREG, RLEFT,

5070 "Zv diwv AR,rO\n", /» since lhs must be in r1 «/
5071 :
5072 ASG PLUS, INAREG:FORCC. "
5073 AWD, TINT.TUNSIGNED-TPOINT:TCHAR.TUC%AR

5074 SONE. TINT,

5075 0, RLEFT | RESCC,

5076 " ine2B AL\n",

5077

5078 ASG PLUS, INAREG | FORCC,

5079 AWD, TINT!|TUNSIGNEDTPOINT,

5080 AWD, TINT|TUNSIGNED)TPOINT,"

5081 : o, RLEFTIRESCC,

5082 " add AR.AL\n",

5083 _

5084 ASG MINUS, INAREG.FORCC

5085 : AWD, TINT|TUNSIGNED{TPOINT|TCHARITUCHAR.

5086 SONE, TINT,

5087 0. RLEFT | RESCC,

5088 " decZB AL\n",

5089

5090 ASG MINUS, INAREG!FORCC,

5091 AWD, TINT|TUNSIGNED|TPOINT,

5092 AWD, TINT!TUNSIGNEDTPOINT,

5093 0. RLEFT|RESCC,

5094

sub AR,AL\n",

5095

5096

5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111

5112
5113
5114
5115
5116
5117
5118
5119
5120
5121

5122
5123
5124
5125

5126

5127
5128

5129 °

5130
5131

5132

5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151

5152

5153
5154
5155
5156

The Portable C Compiler table.c
ASG OR, INAREG) FORCC,
AWD, TINT}TUNSIGNED|TPQINT,
AWD, TINTI!TUNSIGNEDITPOINT.
. a, RLEFT!|RESCC,
" Dbis AR, AL\Nn",
/#* AND transformed to "pdp11 bic" in first pass. «/
ASG AND, INAREG | FORCC,
AWD, TINT|TUNSIGNED|TPOINT,
AWD, TINT!TUNSIGNEDI!TPOINT,
0, RLEFT |RESCC,
* biec AR ,AL\Nn",
ASG ER, INAREG ! FORCC,
: AWD, TINT!TUNSIGNED:TPOINT,
SAREG, TINT ! TUNSIGNED | TPOINT,
0, RLEFT!RESCC,
* xor AR,AL\n",
ASG OPSHFT, ~ INAREG,
SAREG, TINT ! TUNSIGNED ! TPOINT,
SONE, TINT,
0, RLEFT,
" oI AL\nZH",
ASG LS, INAREG, : :
SAREG, TINT | TUNSIGNED | TPOINT,
AWD, TINTITUNSIGNEDTPOINT,
a, RLEFT,
" ash AR,AL\Nn",
ASG RS, INAREG, v
SAREG, TINT | TUNSIGNED| TPOINT.
SCON, TANY,
0, RLEFT,
" ash $2ZM,AL\R2H",
ASG RS, INAREG,
SAREG, TINT | TUNSIGNED TPOINT, '
STAREG, TINT | TUNSIGNED | TPOINT,
0, RLEFT, _
" neg AR\n ash AR ,ALNNZH" ,
ASG RS. INAREG,
SAREG, TINT | TUNSIGNED!| TPOINT,
AWD, TINT!TUNSIGNED,TPOINT,
- NAREGINASR, RLEFT,
" mov AR,AT\n neg Al\n ash A1,AL\nZH",
ASG RS, INAREG,
SAREG, TINT,
AWD, TINT,
0. RLEFT,
" mov AR,-(sp)\n neg (sp)\n ash {sp)+.AL\nZH",
ASG. RS. INAREG,
SAREG, TINT ! TUNSIGNED| TPOINT,
AWD, TINT!TUNSIGNED|TPOINT,
NTEMP, RLEFT, :
" @mov AR,A1\n neg Al\n ash A1,AL\nZH",
ASG OR, INAREG | FORCC,

5157
5158
5159
3160
5161
5162

AWD, TCHARI|TUCHAR.

AWD, TCHAR{TUCHAR.
g, RLEFTIRESCC,
" bisb AR.AL\n",

151

152 rable.c

5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188

5189

5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230

/+« AND transformed to "pdpl11 bic" in f£irst pass.
ASG AND, INAREG | FORCC,
AWD, TCHAR|TUCHAR,
AWD, TINTI!TUNSIGNEDITPOINT!TCHAR|TUCHAR,
0, RLEFT IRESCC,
" bieb AR,AL\n",

ASG PLUS, INAREG, :
LWD, TLONGiTULONG, :
SICON, TINT | TLONG | TULONG,

0, RLEFT,
* add UR,UL\n adce AL\n",
ASG PLUS, INAREG,
STARNM., TLONG | TULONG,
LWD., TLONG!TULONG,
NAREG, RLEFT,

" mov 2U,A1\n add AR, (A1)+\n add UR,(Al)\n

ASG PLUS, INAREG,
LWD, TLONG|TULONG,
LWD, TLONG|TULONG,
0, RLEFT,
" add AR, AL\n add UR,UL\n

ASG PLUS, INAREG,
AWD, TPOINT,
LWD, TLONGI!TULONG,
9, RLEFT,
" add UR,AL\n",

ASG MINUS, INAREG,
LWD, TLONG!TULONG,

SICON, TINT | TLONG | TULONG,
a, RLEFT, 1 _
" sub UR, UL\n sbc AL\n",
ASG MINUS, INAREG,
STARNM, TLONG | TULONG,
LWD, TLONG!TULONG, _
NAREG, RLEFT,

" mov 2U,AT\n sub AR, (A1)+\n sub

ASG MINUS., INAREG,
LWD, TLONG|TULONG,
LWD, TLONG!TULONG,
0, RLEFT,
7 sub AR,AL\n sub UR.UL\n

ASG MINUS, INAREG,
AWD, TPOINT.
‘LWD, TLONGI{TULONG,
0, RLEFT,
" sub UR,AL\n",

ASG OR, INAREG,
LWD. TLONG|TULONG,
LWD. TLONG|TULONG,
0. RLEFT,
" bis AR, AL\n bis UR,.UL\n",

/% AND transformed to "pdp11 bic" in first pass.
ASG AND, INAREG. :
LWD, TLONG!TULONG,
LWD, TLONG!TULONG.
0, RLEFT,
" bic AR ,AL\Dn bic UR,UL\n",

*/

adc

The Second Pass of

adc -(Aa1)\n".

AL\n",

UR,{A1)\n sbe¢

sbe

»/

AL\n",

-(A1)\n",

The Portable C Compiler table.c - 133

5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241

5242
5243
5244
5245
5246
5247
5248
5249
5250
5251

5252
5253
5254
5255
5256
5257
5258
5259
5260
5261

5262
5263
5264
5265
5266
5267
5268

5269

5270
3271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
. 5295
5296
5297
5298
5299
5300
5301
5302
5303
5304

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ASG

ER, INAREG,
LWD, TLONGITULONG,
SAREG, TLONG | TULONG,
0. RLEFT,
" xor AR, AL\n xor UR,UL\n",
/+« table entries for * which correspond to the usual way of doing
business (rhs in a temp register) =/
ER, INAREG| INTAREG,
STAREG, TLONG | TULONG,
LWD, TLONG|TULONG, -
0, RLEFT,
" mov AL,-(sp)\n mov UR,AL\n\
) Xor AL,UL\n mov AR,AL\n xor AL,(sp)\n mov (sp)+.AL\n",
ER, INAREG!INTAREG,
STAREG, TINT! TUNSIGNED{ TPOINT,
AWD, TINTITUNSIGNED!TPOINT,
0, RLEFT, ‘
" mow AL,-(sp)\n} mov AR,AL\n xor AL,(sp)\n mov {sp)+.AL\n",
LS. INAREG,
SAREG, TLONG | TULONG,
AWD, TINT|TUNSIGNED|TPOINT,
0, RLEFT,
" ashc AR,AL\n",
RS, INAREG,
SAREG, TLONG { TULONG,
SCON, TANY,
Q. RLEFT,
" ashe $2ZM,AL\nZzZH",
RS, INAREG.
SAREG, TLONG | TULONG,
STAREG, TINT | TUNSIGNED i TPOINT,
0. RLEFT,
" neg AR\n ashc AR,AL\nZH",
RS. INAREG.,
SAREG, TLONG | TULONG,
AWD, TINT|TUNSIGNED)TPOINT,
NAREG | NASR, RLEFT,
" mov AR,A1\n neg AI\n ashc A1,AL\nzZH",
RS, INAREG,
SAREG, TLONG | TULONG,
AWD, TINT|TUNSIGNED|TPOINT,
NTEMP, RLEFT, :
" mov AR,Al1\n neg Al\n ashc A1,AL\nZH",
OPFLOAT, INBREG ! INTBREG,
STBREG, ' TDOUBLE,
SBREG:AWD., TDOUBLE.
0. RLEFT | RESCC,
" QF AR,AL\n".
OPFLOAT, INBREG | INTBREG,
STBREG, TDOUBLE,
AWD, TFLOAT,
NBREG|NBSR. RLEFT{RESCC, -
" movof AR,A1\n OF A1 ,AL\n",
OPFLOAT, FORCC,
STBREG., TDOUBLE,
SBREG|AWD, TDOUBLE,
0. RESCC.,
" OF AR.,AL\n cfcec\n”,
OPFLOAT. FORCC,
STBREG, TDOUBLE,

AWD, TFLOAT,
NBREG | NBSR, RESCC,
" movof AR,A1\n OF A1,AL\n cfce\n”,

The Second Pass of

{sp)+.Ul\n",

154 1able.c .

5305

5306 UNARY CALL, INTAREG,

5307 SAREG! SNAME | SOREG| SCON, TANY,

5308 SANY, TINT|TUNSIGNED)TPOINT|TCHAR)TUCHAR |TLONG |TULONG,
5309 NAREG |NASL, RESC1, /% should be register 0 =/
5310 " jsr pc, +AL\n",

5311

5312 UNARY CALL, INTBREG,

5313 SAREG| SNAME | SOREG | SCON, TANY,

5314 SANY, TDOUBLE:TFLOAT,

5315 NBREG, RESC1, /+ should be register FRO «/
5316 " jsr pc,*AL\n",

5317 ‘

5318 SCONV, INTAREG, .

5319 STAREG, TINT | TUNSIGNED | TPOINT | TCHAR | TUCHAR,
5320 SANY, TUCHAR,

5321 0, RLEFT,

5322 * bic $1377,AL\n",

5323

5324 SCoONV, INTAREG,

5325 AWD. TINT!TUNSIGNED!TPOINT|TCHAR|TUCHAR,

5326 SANY, TCHAR|TINT,

5327 NAREGINASL., RESC1,

5328 " movZB AL,A1T\n".

5329

5330 SCONV. INAREG! INTAREG,

5331 LWD, TLONGITULONG,

5332 SANY, TINTTUNSIGNED!TPOINT!TCHAR|TUCHAR,

5333 0. RLEFT,

5334 nzT",

5335

5336 SCONV, INTAREG,

5337 AWD, TUCHAR.

5338 SANY, TLONG|TULONG,

5339 NAREG{NASL, RESC1,

5340 " movb AL,U1I\n bic $1377,01\n clr Al\n".
5341

5342 SCONV, INTAREG,

3343 AWD, TINT.

5344 SANY, TLONG)TULONG,

5345 NAREG!INASL, RESC1,

5346 " mov AL,Ut\n sxt Al\n",

5347

5348 SCONV. INTAREG.

5349 AWD, TUNSIGNED;TPOINT,

5350 SANY, TLONG|TULONG,

5351 NAREG|NASL, RESC1, -
5382 " mov AL,U1\n clr Al\n",

5353 :

5354 SCONV, INTAREG,

5355 SBREG, TDOUBLE,

5356 SANY, TINT!TUNSIGNEDTPOINTTCHAR |TUCHAR.

5357 NAREG, RESC1, :

5358 " movfi AL.A1\n",

5359

5360 SCONV, INTAREG,

5361 STBREG. TDOUBLE.

5362 SANY. TLONGI:TULONG,

5363 NAREG. RESC1,

5364 * getl\n movfi AL,~{sp)\n seti\n mov (sp)+,Al\n mov
5365

5366 SCONV, FORARG.,

5367 STBREG., TDOUBLE.

5368 SANY., TLONG.TULONG,

5369 0. RNULL.

3370 ¥ setl\n movfi AL.Z4\n seti\n".
5371

5372 SCCONV. INTBREG.

5373 SAREG., TLONG,

5374 SANY, TANY.

5375 NBREG. RESC1. :

3376 " mov UL,-(sp)\n mov AL,-i{spl\n setli\n\

The Portable C Compiler - able.c 153

5377 movif (sp)+,A1\n seti\n",

5378 SCONV, INTBREG,

5379 LWD, TLONG,

5380 SANY., TANY,

5381 NBREG, RESC1, .
5382 " getl\n movif AL,A1\n seti\n”,
5383

5384 SCONV, INTBREG,

5385 AWD, TINT.

5386 SANY, TANY,

5387 NBREG. RESC1,

5388 : " movif AL,A1\n",

5389

5390 SCONV, - " INTBREG,

5391 SAREG, TULONG,

5392 SANY, TANY,

5393 NBREG, RESC1,

5394 : " mov UL,-(sp)\n mov AL,~(sp)\n setl\n movif (spl)+.Al1\n\
5395 S seti\n cfce\n bpl 1£f\n addf $050200.A1\n1:\n".
5396 SCONV, INTBREG, .
5397 LWD, TULONG,

5398 SANY, TANY,

5399 NBREG, RESC1,

5400 " getl\n movif AL.AI\n seti\n c¢fce\n bpl 1£\n\
5401 addf 3$050200,A1\nt1:\n",

5402 SCONV, - INTBREG, .

5403 STAREG, TUNSIGNEDI TPOINT,

5404 SANY, TANY,

5405 NBREG, RESC1,

5406 o . " movif AL,A1\n cfce\n bpl 1£\n addf $044200,A1\n1:\n".
5407

5408 PCONV, INTAREG,

5409 AWD, TCHAR|TUCHAR,

5410 SANY, TPOINT,

5411 ~ NAREGINASL, RESC1,

5412 " movb AL,A1\n",

5413

5414 PCONV, INAREG | INTAREG,

5415 LWD, TLONGI{TULONG,

5416 SANY, TPOINT.

5417 0, RLEFT,

5418 "ZT",

5419 '

5420 STARG, .~ FORARG,

5421 SNAME | SOREG . TANY,

5422 . SANY, TANY,

5423 0, RNULL,

5424 "zZs",

5425

5426 STASG, FOREFF,

5427 SNAME|SOREG. TANY, '
5428 . " SCON|SAREG, TANY,

5429 , 0. RNOP,

5430 : "zs",

5431 :

5432 STASG, INTAREG { INAREG.

5433 SNAME | SOREG. TANY,

5434 STAREG. TANY,

5435 0, RRIGHT.

5436 "Zs",

5437

5438 STASG, INAREG!INTAREG,

5439 SNAME | SOREG, TANY,

5440 SCON{SAREG. TANY,

5441 NAREG, RESC1,

5442 "Zs mov AR,A1\n",

5443

5444 INIT, FOREFF, :

5445 SCON, TANY,

5446 , SANY, TINT!TUNSIGNEDITPOINT.

5447 _ 0, RNOP .

3448 " CL\n",

156 rable.c

5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462

5463

5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5508
5507
5508
5509
5510
5511
5512
5513
3514
5515
3516
5517

INIT, FOREFF,
SCON, TANY,
SANY, TLONG)TULONG,
o, RNOP,

"
"oy, .

INIT, FOREFF,
SCON, TANY,
SANY, TCHAR|TUCHAR,
0, RNOP,
" .byte CL\n",

/+ for the use of fortran only «/
GOTO, FOREFF,
SCON, TANY,
SANY, TANY,
0, RNOP,
" 4br CL\n",
GQTO, FOREFF,
SNAME, TLONG | TULONG,
SANY, TANY,
0, RNOP,
" imp «UL\n",
GOTO. FOREFF,
SNAME, TINT | TUNSIGNED | TCHAR | TUCHAR | TPOINT,
SANY, TANY,
0, RNOP,
" jmp +AL\n",
_ /+« Default actions for hard trees ... »/
define DF(x) FORREW,SANY,TANY,SANY,TANY,REWRITE,x,""
UNARY MUL, DF(UNARY MUL),
INCR, DF(INCR),
DECR, DF(INCR),
ASSIGN, DF(ASSIGN),
STASG, DF(STASG),
OPLEAF, DF(NAME),
OPLOG, FORCC,
SANY, TANY,

SANY, TANY,
REWRITE, BITYPE,

OPLOG, DF(NOT),
COMOP, DF(COMOP),
INIT. DF(INIT),

OPUNARY, DF(UNARY MINUS),

ASG OPANY, DF(ASG PLUS),
OPANY, DF(BITYPE),

FREE, FREE, FREE, FREE, FREE, FREE, FREE, FREE, "help:

I'm in trouble\n”

e

Chapter 16: Conclusion

It will be impossible for the reader to have reached this point without having formulated, as the
writer has done, some definite opinions about the state of the second pass of the Portable C
compiler in the PDP11 version.

First, it must be agreed that the Portable C compiler is a significant achievement: it does exist.
it does work, it has been ported to several diverse computer species, and the effort 1o do so is
bounded. For the PDP11, the code generated does not-suffer unduly in comparison with that
‘of the highly tuned production compiler. The source code which is examined in this document
is neither excessively long nor excessively opaque.

While the Portable C compiler is a significant milestone along the road to portable code genera-
tion, it is not the end of the road. Nor have its authors made such claims. It is a springboard
from which next major leap forward can be made. .

Even though grand strategy for code generation used by the Portable C compiler is clear
enough, the tactics in particular situations are often convoluted and unobvious. The grand
design has become overburdened with special cases. A person who would implement a new
version of the compiler has a task which is not straightforward or even easily specified. There
are really very few tables which can be initialized in mechanical fashion to specify the charac-
teristics of the target machine. Even table, the array of templates, is a hand-crafted expan-
~ sion of the information contained in the processor handbook. -

At many points in the code, the author’s intent is difficult to fathom. At many points. the
reader must ask himself: is this something that had to done? or could only be done this way?
or did it seem like a good idea at the time? or is it an important. heuristically determined
optimization? In too many cases, the answer is not clear, and the reader is left wondering in
many situations why certain cases are accorded special attention, when apparently equally
undeserving cases seem to be ignored entirely. Can it be shown that the iatter cases will never
happen? If so, the evidence is often very deeply buried.

This is a criticism which hardly confined to the Portable C compiler, but which can be leveled
at perhaps the majority of programs, which have undergone extensive refinement and develop-
ment since their original conception. : :

In these pages are a number of suggestions for detailed improvements to the present program.
- However the real gains will come from a major reexamination of the problems with code gen-
eration in the light of the experience already gained with the Portable C compiler. The next
generation program should maintain much more information in tabular form: should provide
for the mechanical generation of templates from much more condensed manually provided
information; and should provide easier-to-use mechanisms for recognizing and handling subtree
species.

In the opinion of the present writer, the continued development of the Portable C compiler is
essential, even long after the present document will have become obsolete. The several ver-
sions of the Portable C compiler which already exist are generating centrifugal forces. which. if
not restrained by the centralizing forces of a strong, continuing development of the compiler,
will destroy one of its principal achievements. namely a family of consistenr compilers for a sin-
gle language.

158 Cross-reference

Appendix A. Cross-reference

Variables that are only referenced once, and many variables whose name
as p have been omitted from this listing.

A
ALDOUBLE
ALSTACK
AND
3218
5225
ANDAND
1575

0773
1738
3211

3410.

3797
4389
4453
5084
5127
5170
5212
5258
5300
ASGFLG
0769
0782
2088
ASGOPFLG
0773
2096
ASSIGN
3453
4707
4752
4794
AUTOINIT
AWD
4690
4754
4802
4936
5013
5073
5098
5153
5248
5302

B

BACKTEMP

BITMASKI()

BITOOR()

BITYPE
0758

‘0765

0772
Q779
0786
0793
0800
1128
3088

BTMASK

2435
0261
0266
0012
3895

0017
1647
0105
0183
0128
0775
1773
3216
3419
3798
4390
4454
5090
5133
5176
5218
5264
5513
0142
0771
0783
2090
0152
0775

0074
4671
4713
4758
4800
0269
4666
4691
4760
4857
4941
5019
5079
5104
5158
5254
5325

2421
0298
3697
0331
0138
0759
0766
0773
g780
0787
0794
0801
1275
5501
0189

3992
2656
1011
0750
3902

0765
1872
0797
0203
0756
0777
3030
3217
3464
3902
4391
5054
5096
5139
5182
5225
5270

0157
0773
0802
2096
0756
0777

0769
4677
4719
4764
5492
3759
4672
4715
4766
4905
4942
5025
5080
5105
5159
5272
5337

4419
2652
4242
2530
0694
0760
0767
0774
0781
0788
0795
0802
1439
5515
0195

4439
2668

0761
4389

1213
3076

0758
Q779
3031
3218
3790

.4153

4392
5060
5103
5145
5188
5231
5276

0756
0775
0803
2100
0758
0779

1741
4683
4726
4770

4678
4721
4771
4917
4947
5049
5085
5110
5165
5278
5343

4350

0709
0761
0768
0775
0782
0789
0796
0803
1591

0196

0762
5048

1245
3247

0760
04781
3032
3219
3791
4386
4393
5066
5109
5151
5194
5240
5282

0758
0777
0804
2102
0760
0781

1753
4689
4733
4776

4679
4728
4777
4923
4960
5056
5091
5123
5166
5284
5349

4570

0755
0762
0769
0776
0783
0790
0797
0804
1758

0204

1768
5103

1362

0762
1720
3209
3408
3792
4387
4394
5072
5115
5157
5200
5246
5288

0760
0779
2084
2149
0762
0802

3025
4695
4740

4782

4684
4735
4796
4929
4966
5062
5092
5141
5189
5290
5385

4571

0756
0763
0770
0777
0784
0791
0798
0805
2230

0205

1954
5164

1459

0771
1727
3210
3409

3796

4388
4395
5078
5121
5164
5206
5252
5294

0762
0781
2086
2186
0771
0803

3158
4701
4746
4788

4685
4748
4801
4935
5007
5068
£097
5147
5213
5296
5409

0757
0764
0771
0778
0785
0792

0799 -

1104
2932

BTYPE()
BYTEQFF()

c

CALL
1348
1686

5306

CALLFLG
0786
CAST
CBRANCH
CCODES

4976

CHAR

3413
cM
COLON
COMMFLG

0779
coMop

1606
COMPL

5042
CONFMT
CONSZ

2379

DECR
© 5036

DECREF ()
DELAYS
DF.()

5496
DIV

3209

5060
DIVFLG

2090 .

DOUBLE
327
DSIZE

EQ

1839

4001
ER

4390
EXIT

F
FCON
FIELDOPS
FLD

3097
FLOAT

3257

4022
FLOFLG

0760
FORARG

4897
FORCC

4002

0196 2342
0329 0330

2427 3993
0086 0751
1399 1426
1687 3067
5312

0149 0159
0805

0125 0209
0123 0799
0108 0735

0165 0198
3421 3607
0072 0767
0016 0764
0145 0755
0780 0781
0079 0768
1893 3251
0089 0739

0274 2424
0273 0483
3613 4096

0091 0783
5490

0205 0844
0505 0508
5484 5486
5504 5506
0080 0770
3256 3788

0146 0770

0170 2368
3503 3675
0209 0724

00922 0787
1916-3069
4004 4010
0014 0780
5109 5231
0577 0578

2392 4010
0008 0734
1311. 1925
0115 0744
3441 3447
0169 2366
3271 3341
41135 4379
0147 0755
0770 0771
0388 3664
5366 5420
0386 1851
4671 4677

The Second Pass of

is a single letter such

4407

1657
3460
2775
3503

4756
2099
3734

1866
4683

2423

4002
1247
1578
3178

0752

1367

2297

2772
4420
3628

0761
2086
1253

3508

4213
1054
4240

3205

4101
1262
54990
5510
1766
3794

0772

3020
4118
2110

1820
3979

1770
5246

4435

1937
3512
3020
3533

0757
2100
4849

1914
4689

4440
1248
1579
3872
0753
1573
271S
3273
3671
0762

1356

3914

4220
1057
4334

5012

5492
5513
3031
3797

0773

3212
4379
2127

1827
3994

3258

2282
4227
3135
3608

0758

4885

2712
4842

1338
1684
4048
0785
1620
4970
3329
3867
0778
1571
5000
4259
1987

5024

5494
5315
3054
4392
2089

3257

1838
3999

3419

2985
4336
3212
3675

0759
4891

3996
4879

The Poriable

4915
4964
5103
FORCE
FOREFP
1717
4671
4713
4758
4800
5036
5476
FORREW
FORTCALL
1349
1680
FREE
1224
1706
1909
3468
FTN

GE
i 3979
GOTO
GT
3967

2431
ICON -
: 2032
3369
4142
4236
INAREG
3424
3575
4677
- 4733
4788
4861
5006
5054
5096
5139
5182
5225
: 5270
INBREG
3504
3731
4994
INCR
1728
‘ 5006
INCREF()
INIT
5508
-INT
2772
3220
INTAREG
1749
3475
3595
4788
4867
5012

C Compiler

4927
5048
5109
0122
0381
1784
4677
4719
4764
4813
5426

4934
5072
5157
0740
1196
1894
4683
4726
4770
5008
5444

0389
0087
1428
0320
0109
1266
1789
2117
3630
0182

2169
0752
1431
3021
0645
1268
1877
2129
3638
0202

0096 0791
0045

0097
3968

0745
0792
3969
2400 4448
1635
4425
0007
2053
3636
4151
4312
0382
3487
3590
4683
4740
4794
4867
5012
5060
5103
5145
5188
5231
5276
0384
3518
3732
5282
ac90
2949
5018
0204
0124

1852
4434
0733
2146
3831
4154
4348
1664
3499
3731
4689
4746
4807
4970
5018
5066
5109
5151
5194
5240
5330
1664
3536
4080
5288
0782
3204
5030
3a32
0741

0167
2844
3274
0383
1750
3536
3730
4807
4970
5018

0199
2845
3411
1617
3370
3540
3735
4818
4976
5024

4940
5078
5164
1572
1198
2393
4689
4733
4776
5012
5450

4077
0786
1582
4022
0658
1611
1885
2172
3826

3879

1804

5464
1804
3970

1857

1150
2183
3846
4169
4473
1849
3518
3732
4695
4752
4818
4976
5024
5072
5115
5157
5200
5246
5414
1849
3558
4770

1259
3458
5488
3837
1673

Q200
2848
3sg48
1630
3374
3558
4049
4824
4982
5030

4946
5084
5294
1614
1607
2704
4695
4740
4782
5018
5456

4081
1251
1583

0670
1623
1890
2694
3909

1824

5470
1825
3979

1868

1832
2255
3877
4174
4630
3370
3536
4045
4701
4758
4824
4982
5030
5078
5121
5164
5206
5252
5432
3424
3571
4776

1712
3461
5490
3879
5444

0300
2922
3869
1637
3385
357
4078
4830
4988
5036

4952
5090
5300
3021
1703
4642
4701
4746
4788
5024
5464

5484
1252
1677

0678
1624
1895
2765
5517

1843

5476
1844

1915

1956
2278
3897
4191
4653
3374
3558
4080
4707
4764
4830
4988
5036
5084
5127
5170
5212
5258
5438
3487
3575
4903

1720
4153

5450

1941
2923
4111
1654
3391
3575
4078
4855
5000
5042

4958
5096
5498
30871
1705
4645
4707
4752
4794
5030

5470

1339
1679

0684
1644
1908

3467

5517
3072

3071

1916

1974
3107
3905
4197

3414
3571
4671
4726
4782
4855
5000
5042
5090
5133
5176
5218
5264

3499
3590
4921

1727
4287

5456

2354
2926

1670
3474
3590
4080
4861
5006
5240

LOGFLG

5246
5348
INTBREG
1750
3575
4770
5312
INTEMP
- 2980
3558
4836
ISARY()
ISFTN()
ISPTR()
- . 4100

5306
5354
0385
3474
3590
4776
5372
0387
2987
3571
4873
0203
0202
0201
4103

5318 -
5360
1617
3475
3595
4903
5378
1358
2990
3575
4909
0848
0847
0846

Cross-reference

5324
5408
1630
3536
3730
4921
5384
1366
2993
3590

2336
2333

ISUNSIGNED() €197 4533

L

4603
LB
LE

3979

0788
0795
LONG

3335

3792
LS

5121
LT

3967
LTYPE

0733

1276
LWD

- 4753

4881
5178
5208
5242

M
MAXRVAR
MDONE
MINRVAR
MINUS
1727
2056
4387
5200
MNOPE
MOD
3210
5066
MUL
1658
2975
3211
‘3333
3496
3790
4267
MULFLG
2088
MUSTDO
2778
3049
MYREADER ()

N
NACQUNT

2191

0070
0094

0143
0789
0796
0168
3679
3812
0082
5252
0095
3968
0136
0734
1334
4667
4759
4887
5183
5214
5331

2404
0288
0376
0289
ao10
1728
2060
4982
5206
0375
0081
3256

0a11
1702
2986
3256
3366
3507
3793
4391
0150

0449
3014
3056
0348

2405
0436

2226

0798
0789

0158
0790
2097
0198
3787
4130
Q774

6790
3969
0693
0735
1445
4696
4765
4953
5184
5219
5379

2410
3750
1560
3743
0748
1764
3217
4988
5212
1562
0772
3789

0749
1765
3030
3258
3390
3512
3796
4602
Q759

1171
3021
3063
1031

4423
2500

2413

1804

0738
0791

1941
3788
4428

0775

1804

3970
07298
0736
2093
4702
4815
4954
5190
5220
5397

4560

1793
3750
0757
2008
3368
4994
5510
2209
n773
3792

0759
1999
3053
3279
3437
3533
3825
4807
0750

1173
3036
3064

5330
5414
1637
3540
4049
4994
5390
1413
2997
3733

3221

2623

1822

0765
Q792

2364
3789
4459
1771

1823
3279
0730
1103
2227
4703
4863
5031
5195
5226
5415

2207

0758
2032
3410
5084

1767
3795

0760
2315
3101
3a2g
3441
3607
4143
4891
0770

1633
3042
3082

S336
5432
1670
3isss8
4078
5282
5396
2268
3000
4079

3274

3697

1841

0766
0793

3276
3790

4394
1842

0731
1127
loe7
4709
4889
5037
5202
5227

4051

1663
2037
3464
5090

3032
3798

1344
2633
3103
3282
3448
3644
4188
5054
a771

2559
3043

159

5342
5438
1749
3871
4080
5288
5402
2977
3536
4080

3312

4567

3074

0787
0794

3277
3791

4453
3073

0732
1207
3134
4747
487S
5171
5207
5232

1720
2053
4153
5194

3055
4393

1345
2955
3145
jaas
3480
3787
4198
5486
2087

2776
3048

160 Cross-reference

NAMASK
NAME
2270
4151
4653
NAREG
4729
4833
5009
5063
5327
5441
NASL
4736
NASR
4821
5273
NBCOUNT
NBMASK
NBREG
4961
‘ 5393
NBSL
NBSR
NCHNAM
2763
NE
1915
NESTCALLS
NIL
1685
NODE
0510
0654
0966
1221
1420
1988
2238
2629
2909
3093
3398
3668
4021
4147
4309
NOPREF
2560
3078
NOT
1649
NTEMP

5279

NTMASK

QOFFS2
- 0877
OPANY
OPFLOAT
OPLEAF
OPLQG .
4964
OPLTYPE
4842
4885
OPSHFT
OPSIMP
OPUNARY
OR
3409
OREG

0437
0005
2276
4191
5496
0435
4736
4858
5015
5069
5339

0438
5309
0439
4827

0441
0442
0440
5291
5399
0443
0444
0237
2904
0093
3070
0352
0245
1692
0240
0511
0666
1088
1233
1451
1992
2376
2677
2910
3122
3401
3699
4026
4163
4326
0450
2779
3841
ooss
1888
0445

0446

0278
0879
0366
0368
0365
0367
5498
0370
4849
4897
0369
0360
0364
0013
4388
0107

2502
0729
2956
4197

2505
4749
4864
5021
5142
534S

2623
5327
2624
4833

2509
2511
2514
5303

5405 .

2623
2624
0472
4285
0788
3965
1410
0638
2147
0245
0513
0675
1093
1263
1524
1996
2452
2678
2913
3295
3492
3802
4032
4187
4331
1107
3012
3847
0738
3075
2527

2518

0553
0880
5513
5282
5496
4934
5504
4813
4855
4903
5115
2140
5510
0778
5096
0732

2563
1151
3389
4232

4680
4797
4870
5027
5179
5351

4710
5339
4680
4858

2570
4803
5315

5291
0482

1804
3966

1290
2735
0473
0638
0682
1134
1281
1529
2159
2493
2679
2947
3318
3525
3805
4075
4195
4415
11692
3026
38638
1243
5504
4839

2527

0554
3756
5515
5288

4940
4818
4861
4909
2145
0779

5157
1152

2590
1667
3640
4343

4710
4810
4894
5033
5203
5357

4716
5345
4729
4870

2593
49086
5375

5303
1120

1821
3979

1296
2741
0474
0640
0688
1180
1307
1806
2166
2546
2681
2960
3363
3526
3jsas
4085
4202
4449
1957
3037
3878
1369

4876

0555

5294
4946
4824
4867
4915
2177
1769

5218
2066

2595
2146
383¢
4584

4716
4821
4973
5039
5273
5363

4722
5351
4736
4894

4924
5381

1122
1838

1592

Q508
0643
0699
1183
1325
1928
2213
2582
2839
2968
3378
3604
3891
4091
4224
4617
1970
3045
3915
1463

4912

0556

5300
4952
4830
4873
4921
2182
3219

2146

2183
4142
4630

4722
4827
4979
5057
5309
5411

4729
5411
4810
5142

4930

5387.

2069
1840

1678

0509
0652
0884
1202
1392
1931
2214
2620
2891
3006
l3s3
3623
3926
4141
4277

1975
3059

1577

5154

0875

4958
4836

4879
4927

3258

2183

2270

2956

4189

4632
CROR

1576

PCONV
PLUS

1735

3107

5072
PMCONV
PTR

2922
PUTCHAR{)
PVCONV

QUEST
1574

0306
0310
2047
2636
2845
0335

REG
1669
2501
2956
3836
435s5
REGLOOP()
REGSZ
4729
4833
4912
5027
5339
5387
2728
RESCC
4845
4955
5093
5291
RETURN
REWRITE
RLEFT
4698
4997
5087
5130
5173
5215
5261
5333
RNOP
5429
RNULL
1869
4006
RRIGHT
4710
4791
RS
4454
5264
RTOLBYTES

2312
3389
4197
4654
0018
1648

0117
0009
1763
3216
5078
0118
0181

2926
0586
0118

0015
1627

3082
3043
0593
2793
2923
4257
2194
0106
2001

2510
3384
4142
4455
0530
0333
4736
4839
4924
5033
5345
5393
0460
0461

4882
4961

5099
5297
0044
0447
0456
4704
5003
5093
5136
5179
5221

5267
5417
0462
5447
0455
1917
4852
0457
4716
4797
0083
5127
5270
0299

2519
3646
4256

0766
1880

0743
0755
2008
3258
5170
0800
0201

0984
0801

0763
1899

4022
3063
2635
2844
0311
4361
2229
0528
2016
2640
3420
4154
4588
2465
0530
4749
4858
4973
S039
5351
5399
2729
2712
4918
4967
5106
5303
0802
2118

2725

4755
5045
5099
5142
5185
5228
5273

2694
5453
1036
2694
4888
2726
4722
4816
0776
5133
5276
1944

The Second Pass of

2634
3649
4281

1214
3077

5408
0756
2016
3368
5176

0204
2385

1212
3249

0307
3064
2791
2922
3048

2624
0731
2033
27M
3486
4189

4631

2484
2453
4803
4864
4979
5063
5357
5405

4674
4930
5051
5112

2200
4674
4761
5057
5106
5148
5191
5234
5279

2823
5439
1634
2704
4894
4674
4743
5435
0777
5139

2288

2790
3835
4359

1246
3248

5414
1720
2032
3408

‘5182

0236

1244

3036
0590
2843
0592
3049

4556
1116
2034
2841
3495
4197
4654
2536
0458
4810
4870
5009
5309
5363
5411

4680

4937 .

5075
5160

5484
4680
4767
5069
5112
5154
5197
5243
5285

3657
5467
1725
2818
4900
4692
4773

1772
5145

2842
4142
4585

1363

1727
2033
3840
5188

2844

1364

3042
2027
2921
2636
3063

4563
1146
2054
2919
3502
4252

2727

4821

4876
5013
5315
S$375
5441

4686
4943
5081
5167

5501
4686
4985
5075
5118
5160
5203
5249
5291

4509
5473
1742
3454
5369
4698
4779

1969
5151

2920
4151
4631

1460

1728
2053
4386
5513

28438

1461

3056
2028
0591
2794
0315

1639
2300
2949
3517
4316

4680
4827
4906
5021
5327
5381
0459

4692
4949
5087
5285

4692
4991
5081
5124
5167
5209
5255
5321

4510
5479
1785
3659
5423
4704
4785

4395
5258

The Portable

SANY
‘ 4831
4851
4893
4971
5002
5338
5380
5422
5484
SAREG
3721
5116
5233

5313

SBREG .
4778
5296
sce
SCCON
SCON
5020
5307
5465
scoNv
5342
5384
SETOFF ()
3684
SETSTO()
2987
SFLD
SHFFLG
2102
SHORT
SICON
SIMPFLG
0762
SMONE
SNAME
4667
5471
SONE
5086
SOREG
4666
5439
SPECTIAL
1498
SPFLG
STAREG
3719
5043
5266
STARG
3633
STARNM
4666
4809
STARREG
4157
STASG
3068
5432
STBREG
4995
STCALL
1249
1580
3141
STOARG()

- 0166

0110

C Compiler

2396
0394
4832
4856
4898
4972
5044
5344
5386
5446
5499
0395
3751
5122
5253
5373
0397
4899
5355
0399
4168
0401

5026
5313

4615
2266
4837
4862
4904
4977
5308
5350
5392
5452
5500
2307
3751
5128
5259
$391
0526
4911

2298
4948

5032
5428

0116
5348
5390
0225
3688
0532
2990
0402
01351

0742
5354
5396
1011
3761
1358
2993
2283
0774

2349
5172
0755
0779
2254
2277
5313

4173
0144
0778
1501
0400
5307
5477
1500
5117
0403
4667

2253

5307

0344
1502
0153
0396
3720
5055
5319
0111
3683
0404
4708
4892
0405
4666

0346
2248
2103
0527
3751
5061
5403
0746
4624
3508
4714
5177
3448

0804
3183 4610
5438
0398
5283
0112
1250
1581
3178
0337

0527
5289
0753
1340
1691

1400

2279

2313

5494

4808
4838
4868
4910
4978
5314
5356
5398
5458

2309
4666
5134
5265
5428
2307
4959

3499
5038
5440

5318
5360
5402
2656

1366
2997
4783
0775

2772
5196
0756
0780

2258

3499
5421

2257

3499
313

0407

2145
2309
4790
5067
5434
1109
5420
3732
4720
5201
3508

1109
4620

2309
5295
0805
1350
1693

4814
4843
4874
4916
4984
5320
5362
5404
5466

3718
4667
5140
5271
5440
3723
4965

3732
5050
5445

5324
5366

2668

1413
3000
4789
0776

0757
0781

3732
5427

5008

3732
5421

0408

2182
2467
4983
5135

1159

4151
4727

3534

1160
4638

2471
5301
1110
1402
1694

4819
4844
4880
4922
4990
5326
5368
5410
5472

3719
4742
5146
5277

3724

4966

4666
5129
5451

5330

5372

3676
2977

4795
0777

0758
2083

3735
5433

5014

3735
5427

0409

2564
4989
5241

2521

4198
4734

3609

1731
4643

2571
5361
1157
1427
2521

4825
4850
4886
4928
4996
5332
5374
5416
5478

3720
5111
5152
5307

4772

5284

4667

5260
5457

5336
5378

3680

2980

2101

0761
2084

4666
5439

5074

4045
5433

0410

3718
5001
5247

2752

4269
4741

3732

2522
5426

3723
5367
1158
1430
2522

STOFARG()
STOSTARG()
STREF
STRING
STRTY .
SWADD
SZCHAR
. 4360

SZERO

4784
SZINT

4132

4586
SZLONG

TANY
4789
4819
4862
4904
4984
5026
5307
5404
5439
5472
TBUSY
TCHAR
4748
4972
5308
: 5458
TDOUBLE
4905
5283
5355
TFLOAT
- 4929
TINT
4691
4844
5001
5056
5079
5098
5122
5146
5247
5319
5446
TLONG
4709
4747
4869
4978
5177
5201
5226
5259
5344
5452
TMASK
TMPREG
TNEXT()
TPOINT
4728
4935
5049
5073
5098
5123
5153

0339
0340
0085
0006
0171
0406
0250
4586
0408
4820
0251
4242

0254

0429
4790
4825
4868
4910
4990
5032
5313
5421
5440
5478
2451
0417
4820
5073
5319
5477
0422
4911
5284
5361
0421
4960
0419
4721
4851
5007
5061
5080
5104
5123
5147
5248
$325
5477
0420
4714
4753
4875
4989
5178
5202
5227
5265
5350
5471

0186

0335
0650
0423
4766
4936
5055
S079
5104
5128
5166

1406
1403
0784
0730
2351
2270
1111

1499
4826
1947
4344

4132

2328
4795
4831
4874
4916
4996
5038
5374
5422
5445
5484
2537

2348

4832
5085
5325

2369
4917
5289
5367
2367
5290
2355
4735
4935
5013
5062
5085
5105
5128
5152
5254
5326

2365
4720
4759
4881
5031
5183
5207
5232
S$271
5362

0201
2520
0637
2342
4820
4972
5056
5080
5105
5134
5189

Cross-reference

1112
2252

2291
4350

4673
4796
4837
4880
4922
5002
5044
5380
5427
5451
5484
2603
4672
4844
5158
5326

4771
4959
5235

4777
5302
4672
4760
4936
5019
5067
5086
5110
5134
5153
5266
5332

4696
4727
4765
4887
5037
5184
5208
5233
5277
5368

0202

4672
4832
5007
5061
5085
5110
5135
5213

2523
2256

2524
4360

4697
4808
4843
4886
4928
5008
5050
5386
5428
5457
5499
2604
4679
4941
5159
§332

4772
4965
5296

4801
5314
4678
4820
4948
5025
5068
5091
5111
5138
5166
5272
5343

4702
4734
4809
4893
5043
5190
5214
5241
5308
5373

0203

4690
4838
5013
5062
5091
5111
5140
5247

3760
4673

26640
4570

4783
4814
4850
4892
4971
5014
5129
5392
5433
5465
5500
2610
4690
4942
5165
5358

4778
4966
5301

4802

4684
4832
4972
5049

5073

5092
S116
5140
5172
5278
S356

4703
4741
4826
4953
517
5195
5219
5242
5331
5379

4691
4844
5019
5067
5092
5116
5141
5248

161

4344
4697

2666
4571

4784
4815
4856
4898
4977
5020
5260
5398
5434
5466

4691

4947
5166
5409

4899
4995
5314

4923

4690
4838
4983
5055
5074
5097
5117
5141
5196
5308
5385

4708
4742
4863
4954
5172
5196
5220
5253
5338
5415

4715
4851
5025
5068
5097
5122
5152
5254

162 Cross-reference

5266
5349
TPTRTO
TREESZ
2669
TSHIFT
TSHORT
TSTRUCT
TUCHAR
4754
4972

5308

5409
TULONG
4709
4747
4869
4978
$177
5201
5226
5259
5344
5452
TUNSIGNED
4691
4844
5007
5061
5085
5110
5135
5248
5325
TUSHORT
TWORD
2325
4096
TYFLG
TYPE

4]
UCEAR)
3413
UGE

3973
CGT

3970
ULE

3971
ULONG

3679

3812
ULT

3971

0753
1339
1578
1684
2522
3140
3338
3496
4048
4891
5486
UNIONTY
UNSIGNED
3274
UPKFOFF()
UPKFSZ ()

5272
5356
0428
0218

0191
0418
0430
0424
4820
5073
5319
5458
0427
4714
4753
4875
4989
5178
5202
§227
S$265
5350
5471
0426
4715
4851
5013
5062
5091
5111
5140
5254

5332

0425

- 0241

2854
4126
0141
0041

2439
0175
3422
0100
3979
0101
3971
0098
3979
0178
3793
4131
0099
3972
0129
1110
1340
1580
1687
2633
3141
3366
3507
4143
4982
5510
0172
0177
3411
0232
0231

5278
5403
2333
0220

0204
2350
2353
2361
4844
5085
5320
5477
2363
4720
4759
4881
5031
5183
5207
5232
5271
5362

2357
4728
4935
5019
5067
5092
5116
5141
5266
5349
2359
0470
2874
4378
0156
0736

4600
0197
3608
0794

0793
3972
0796

0197
3794
4428
0795
3973
0748
1158
1344
1582
1691
2955

3145

3390
3512
4188
4988

2352
0199
4112
1945
1943

5308
5410
2339
0510

0205

4672
4857
5158
5325

4696
4727
4765
4887
5037
5184
5208
5233
5277
5368

4672
4766
4936
5025
5068
5097
5122
5152
5272
5356

0480

3605
4451
2092

2360
4107
1804

1804
3973
1804

2362
3795
4459
1804
3974
0749
12438
1345
1658
1694
2975
3279
3437
3533
4198
4994

0200
4461
1947
2287

5319
5416
2343
0563

4685
4941
5159
5332

4702
4734
4809
4893
5043
5190
5214
5241
5308
5391

4678
4820
4972
5049
5073
5098
5123
5153
5278
5403

0489
3613

2094

2773
4420
1818

1819
3974
1816

3276
3796
4461
1817
3979
0750
1250
1426
1663
1702
2986
3281
3441
3607
4267
5306

2356

2289

5325
5446

0645

4690
4942
5165
5337

4703
4741
4826
4953
5171
5195
5219
5242
5331
5397

4684
4832
4983
5055
5079
5104
5128
5166
5308
5446

0496
3783

2098

3273
4461
1855

1836
3979
1837

3277
3797

1858

0751
1252
1427
1677
1999
3101
3282
3448
3644
4602
5312

2774

2291

5332
5477

0650

4691
4947
5166
5356

4708
4742
4863
4954
5172
5196
5220
5253
5338
5415

4690
4838
5001
5056
5080
5105
5134
5247
5319
5477

o821
3808

2104

3330
3969

1838
3987
3967

3336
3798

3968

0752
1338
1428
1680
2315
3103
3285
3480
3825
4807
5486

3220

USHORT
UTYPE
0742
0750
2091

ZCHAR
ZFLOAT
ZLONG

acon()
4345
adrcon()
adrput()
4603
again
1671
1751
allchk().
allo()
arge
argsize()
argv
asgop() -
3822
asop

base
baseoff
2662
brcase
brnode
busy
2588
2609
2867

callchk()
callflag
1432
callop()
callreg()
calltype
canon()
3648
cbgen()
3981
cbranch()
1882
cebranchas
cexror()
: 0995
1518

3igso
4411
4632
cform
cleanup
1696
cnames
codgen ()
1637
conput ()
constore()
convert
cook
1784
cookie
1501
1563

0176
0137
0743
0751
2934

3118
3120
3119

4202
4352
2410
1154

1423
1710
1754
0582
2202
0890
3668
0890
0157
4079
3159

1055
0555
2671
3700
3699
0522
2599
2610
2882

0582
0535

0159
2555
1392
1289
3928
1635
4425
1622
1883
3935
0607
1014
1604
2782
2981
3987
3454
4660
0524
1561
1780
1473
1196
1849

2428

1370
3815
1524
1791
1281
1502
1563

2358
0715
0744
0752
3138

3195
3195
3195

4233
4364
4219
2436

1444
1713
1759
1038
2493
0900
3672
0901
1345

3221

1070
0879

3950
3996
2308
2600
2781
2884

2701
0886

2554
4021

1396

1307

1852
4436
1628
1889
3999
0621
1043
2123
2797
3390
4179
4455

2739

1612

1506
1198
1851
4309
1451
3821
1536
1793
1302
1507
1598

The Second Pass of

2773
0738
0745
0753

3196
3196
3196

4244

4224

1534
1721
1774
2479
0897
0961
4037
0961
1380

0992

3996
4002
2453
2601
2795

1341
2699

1399
1538

1857

1651
1896
4001
0660
1064
22123
2801
3462
4301
4595

2740
1645

1510
1281
1866
4556
1464

1596
1796
1492
1528
1609

0739
0746
1208

3225

3225
3225

4249

4271

1618
1729
1796

2458
0968

0968
1934

0998

4002
4006
2466
2602
2796

1353

1402
1744

1868

1806
1902
4004
0670
1077
2486
2863
3465
4321
4606

1855

1607
1894
4563

1617
4085
1498
1536
1681

0740
0748
1375

3305
3305
3305

4263

4288

1660
1732

0974

0974
2973

1003

4015
4016
2485
2603
28900

1408

3472

1915

1874
1903
4011
0683
1082
2586
2866
3578
4327
4612

1682

1609
1914

1703

1499
1543
1688

0741
0749
1441

3331
3342
3337

4313

4294

1665
1736

0977

0978
3200

1025

4445
4444
2537
2504
2863

1411

3645
1916

1875
1905

0949
1113
2732
2868
3649
4369
4628

1689

1630

1717

1500
1560
1695

The Portable

2159
2677
4032
count
cp
0949
2020
2060
2381
2422
crslab
cstring

deflab()
- 1907

delay()

1216
- deli
deltest()
deltrees
dope

0815
dopeop
dopest
dopaval

0717

3036

0712

3088
down

1137

3013

edebug
3755
eprint()
eprint
eread()
expand ()
4510

false
1876
1907
££14()
filename
files
0973
flab
flag
2831
ldshf
fldsz
flshape()
fltused
fn
fop
fprint£()
0629
freereqg()
freetemp()
fregs .
3045
3257
£tanno
ftype
func
functbl
fwalk()
1747

genargs()

C Compiler

2169
2690
4075
4618.
0894
0965
2024
2062
2382
2428
33561
0548

1636
3358
1035
1229
0506
1261
0508
0156
2128
0727
0727
0727
1928
3078
1928

0699
1139
3014
0574

0567

-1028

0515
2205
4642

1806

1883
1916
1312
0572
0895
0974
1810
1496
2832
0573
0573
2284
0349
3770
3782
0605
0630
2502
2523
0537
3058
3743
0559
3783
3784
3781
0699

3623

2190
2704
4077
4635
0901
1020
2038
2065
2385
2432
3354
2205

1638
4005
1183
1195
1181
2947
1180
0157
2149
0814
0812
0815
1934
3082
1935

0705
1141
3027

0866

1134
1293
1026
2376
4645

1828
1889

1928
0860
0898
0975
1900
1505

2079
2079
4195
2943
3772
3814
0606
0631

2511

2527
0883
3063
3746
0861
3815
3880
3806
0710

3629

2205
2712
4078
4640
0902
1021
2038
29070
2389
2436

1876
4426
1219
1233
1194

1198
0158

.2186

0815

0700
3008
3087
3908

0712
1928

0915

1545

1089
3657

1829

1896

1020
0953
0977
1903
1508

2289
2287

3022

3815
0514

2546
2647
1358
3142
3749
0997

1028

4041

2206
2740
4079

0903
1995
2041
2378
2393
2440

1884
4431
1191
1275
1198

1264
0159

0816

0703
3014
0700
3012

0717
1937

1028

1747
1127
3996

1868
1900

1022
0957
0978
1907
1509

2291
2291

3763

0615

1366

3180
3751
0999

1293

2376
4026

0906
2004
2045
2376
2410
3613

1904
1202

1276
1262

0246

0705
3021
0703
3027
1134
3006

1291

1128
4002

1873
1900

0962
1048

2807

2401
2397

3764

0616

1382
3185

3762

1313

2393
4028

0907
2019
2059
2381
2418

1906

1208

1264

0724

0710
3026
0705
3037
1136
3010

1012

4509

1875
1905

0968

2828

2409
2407

0625

3034
3213

1545

Cross-reference

gencall() 0341 1688 4028
gencase 3214 3223
genfcall() 0341 1681
genscall{) 1695 402§
getchar(} 0980 0983 0994
1113 1119
getlab() 1628 1635 1651
1901 1902 3353 3995
getlr() 0S17 2191 2194
2432 2436 2440 2632
4556 4563 4603
gotit 2742 2750Q
hardops({) 3802 3927
hi 4569 4571 4572
hopcode() 2418 4399
hoptab 4384 4402
indope 0727 0814
insput() 2432 4326
int: ’ 0688 0699
ioptab 4384 4404
isbreg(} 0526 2307 2589
istnode() 0528 3265 3532
3582 3594 4495
istreg() 0527 0528 2308
2795 2796 2800 2862
2885 2885 4190
3984 3995 4001 4005
lab 1810 1812 1873
1882 1884 1902 1904
’ 4004 4011 ’
label 0491 1653 1865
lastchance() 1796 4085
lastfree 0640 0646 0656
lbranches 3964 3994
leftadr 3427 3432 3486
lflag 0574 0864 0911
linedid () 1022 3770
lineno 0571 0882 1019
lo 4569 4570 4572
logop(} 0158 1845 3188
lshape 0542 2192
1t '3262 3268 3271
ltype 0543 2193
lval 0483 1103 1621
1962 1963 1978 2002
2068 2256 2257 2258
2512 2523 2527 2530
2902 2950 -3653 3655
3881 3906 4156 4169
4205 4208 4213 4241
4259 4263 4283 4290
4360 4364 4373 4475
4564 4564 4570 4571
4641 4644
1527 1635 1638
mamask 2082 2145 2182.
markcall() 1357 1365 1420
mask 2241 2279 2280
match() 1560 1793 2159
max(m 3115 3149 3162
3197 3230 3236 3239
3308 3312 3313
maxa 2454 2462 2468
maxb 2454 2462 2472
maxoff 0554 0877 0998
2670 3758
maxtemp 0S56 0880 1000
maxtregq @558 0882 0993

4032

1013

1873
4425
2214
4427

3557

2485
2865

1874
3981

2414

0ssS8

1022
1022
3532
3274

1640
2035
2271
2530
3aas
4170
4242
4340
4555
4586

1440
2307
4049
3169
3239

2469
2473
1003

2662
3743

1020
1881

2422
4430

3s7¢

2586
2882

1876
3986

4426

3549
3276

1832
2055
2422
2716
3850
4174
4242
4344
4557
4637

1462
2309

3173
3252

2564
2571
1011

2671

163

1062
1900

2428
4496

3574

2598
2884

1881
3999

4436

1959
2058
2503
2761
3853
4175
4245
4350
4562
4638

2310

3185
3252

2661

164 Cross-reference

mform
min()

mina

minb
mxadrs()
mkdope()
mkzrall()
nade

more
myreadex ()

name
2004
2059
2529
4174
4362
ncopy(}
ndu
needs
negrel
nerrors
0977
nextcook()
niceuty()
node
nomat
1733
noswap
notoff ()
nr
3185
3236
nrecur

odebug
offstar()
3497
3585
opfunc
opmask
opmtemp
2186
opptr
opst
1604
opstring
optab

4669

opty
optype(}
1332
3130
order()
1705
3414
3518
3595
ormake

1529
1664
1608
1630
1643
3452
pc
plb
4004
popargs(}
precook()
printf ()

0524
3116
2454
2454
1383
0811
3043
3981
Q702
0348

0472
2019
2060
2764
4204
4364
1223
0240
0546
1804
0244
1049
1563
3553
0510
1564
1755
3265
2065
3128
3194
3239
0561

0574
1659
3509
3647
3785.
4384
2144

2110
0247
3578
4384
0539
3gss8
0689
0156
1437

1300
1749
3424
3536
3664
2005

1590
1724
1609
1633
1644
3455
1095
3983

4050
1492
04846

2742
3197
2463
2463

2968

0953
3049
4010
0713
3926

0482
2021
2062
2904
4209

1267
0465
2118
1827
0596

4075
3562
0645
1603
1776
3280
3613
3131
3197
3252
0863

0867
1709
3513

3814
4404
2145

2153
0725
3988
4406
2108
3929
0691
0691
1549

1302
1750
3474
3540
4045
2029

1607
1726
1610
1633
1740
3459

1119

3994

4055
1543
0847

3312
2468
2472

3064
0718

1119
2024
2070
3849
4212

1610
2200
0603

3566
0646
1669
1798
3283

3149
3213
3257
1034

0919
3363
3535

4405
2149

2170
0727
4411

2110

0693
G707
2227

1524
3370
3475
3558
1309
2048

1622
1727
1611
1634
1743
3474
1120
3998

1596
0848

2564
2571

3093

2120

1833
2036
2255
3880
4258

2891
2497
0607

3584
0650
1681

3286

3162
3228
3308
1517

1541
3438
3554

2150

0816

2114

0694
1102
2230

1654
3374
3487
3571
1315
2064

1628
1529
1621
1637
1749
3475
1122
3999

1598
0850

2126

1961
2042
2504
4155
4263

2916

0623

3604

0669
1688

3303

3169
3230
3312

1594
3442
3563

2181

1143

2165

1206
2930

1664
3385
3499
3575
1988

1658
1591
1623
1641
1750
0890

4000

2690
1138

1979
2045
2513
4169
4286

0668

1695

3173
3236
3313

1747
3481
3567

2182

1599

2493

1239
3016

1670
3o
3504
3590

1659
1592
1629
1642
3401
0968

4001

1141

1143
1169
1500
1595
2414
2831
3765
4064
4213
4260
4356
4429
4506
4537
ql
2028
2054
qq .
‘ 2729
qr
2026
2054
2792
radebug
rall
1171
1957
3013
3108
4282
rallo()
3087
rbusy ()
2926
reount ()
rdebug
rdin()
1098
2839
reclaim()
1917
recres
reread
resc
2504
2523
2729
respref
revrel
rew
rewfld()
rewrite
rfree()
4589
rmove ()
rnames
4253
4427
rs
‘rshape
rstatus
2571
rt
4380
rtype
rval
1641
2028
2308
2638

. 1516

1939

1147
1171
1501
1597
2424
28133
3772
4067
4214
4264
4365
4478
4511
4543

1153
1172
1502
1599
2687
2859
3986
4070
4220
4270
4379
4483
4513
4544

1996
2033
2057
2678
2731
1996
2027
2055

20009
2034
2058
2723
2735
2010
2028
2059

2793
0575
0469
1173
1970
3042
3473
4282
1539
3088
1118
4592

2795
0869
0479
1539
1975
3048
3841

1745
3111
2784

0575
0565
1103

0868
0990
1104

1036 1634
2206 2677
2681 2723
0971 1048
0511 2224
2510 2511
2527 2529

0524 2682
3979 4010
3423 3434
4091
2200
2841

0547
2785

2786
0569
4264
4430
4378
0544
0521
3717
3262

4378
1147
4317

4380
2195
0526
3751
3269

0545
0484
1942
2028
2502
2641

2196
0528
1960
2047
2511
2717

1537

The Second Pass of

1161
1173
1508
2245
2689
2879
3999
4205
4243
4289
4406
4488
4514
4549

2016
2042
2060
2725
2741
2016
2032

2792
0927
0488
1608
2559
3063
3847

3006
3473
2874

2168
0923
0992
1106

1725
3454
2731

2452
2512
2530
2739
3445
2206
2844

1173
4356

0527
3271

1104
1977
2087
2520
2762

1162
1175
1510
2331
2691
3010
4001
4206
4248
4293

4407

4500
4519
4572

2017
2045
2062
2726

2017
2035

2794
3010
0495
1629
2776
3098
3868

3045
2919
2686
0993
1111
1742
3659
2741
2501
2513
2540

3728

2845

2859
4365

2467
3273

1118
2003
20867
2540
2780

1166
1292
1542
2397
2819
3359
4004
4209
4253
4317
4420
4501
4522
4611

2019
2047

2727
2021
2036
2736
1107
1633
2778
3098
3878
3056
2922
2858
1019
1112
1785
4006

2502
2519
2727

3729

2848

2879
4380

2471
3277

1147
2027
2286
2635
2785

1168
1499
1544
2401
2824
3762
4011
4212
4239
4351
4427
4505
4534
4648

2027
2047

2728

2024
2053

1169
1745
2900
3104
3915

3059
2923
2878
1055
2697

1869

2503
2520
2728

2854

3706
4380

2564
4378

1633
2027
2307
2636
2786

The Poriable

2787
2918
4284
4457

2726
2830
rwnames
rwprint()
rwtable

save
sdebug
setasg()
satasop()
setbin() .
setincr()
setregs()
setrew()
setstr()
shape

2258

2283
shareit()
gshltype()
shp

1973

1980
shtemp()
shumul ()

4147
sign
size

4059

- 4240

C Compiler

2791
3851
4317
4531
2677
2727

2793
3gs2
4356
4589
2688
2728

2808
2688
2108

2829
2806
2119

4241
0870
3492
3398
3525
3378
3739
2112
3383
2245
2266
2310
2602
2184
1968
1975

0575
1754
1736
1759
1713
1007
0956
1732
2238
2262
2298
2601
2147
1931
1974

2268
2317
4198
1056
3625
4060

4187
3146

1059
3635
4070

4638 -

speciall()
. spoff
spsz()
ssu
stalign
stderr
0629
stoarg()
stoasg()
stocook
store()
: 1388
stotree
stsize
4611
su-
1366
3135
3173
3239
3332
3495
sucomp()
sul
3195
3265
3313
sux :
3196
3265
3400
swap
sztyl)
2641
3194

table

3127

2262
3756
2950
3296
0499
0605
0630
1352
1345
0532
1295
1409
0509
0498
4634
0471
1382
3142
3180
3252
3332
3531
1309
3127
3197
31279
3400

4163
3758
4096
3299
1112
0606
0631
1392
1380
0533
1325
1414
0532
1111

0481
2974
3149
3185
3308
3338
3552
3122
3156
3228
3285
3403
3157
3225
3299
3430
3274
1947
2859
4238

3197
3293
3404
3271
1941
2781
4126

0550 2117

2794
4190
43561
4590
26%4
2729

2833

2800
4253
4365
4592
2704
2806

2169

4245
0935

2248
2268
2313
2615
2964
1969
1976

3448

1065

3653
4618

3759
4156

1162
0614

1396
2960
0885
1351
1468
0884
1161

0490
2976
3156
3197
3312
3343
3552

3160
3230
3293
3420
3162
3226
3305

3282

2017
2864

2129

4334
2244

2250
2270
2317
2620
4044
1970
1977

3534

1071
3655
4634

3760

3684
0615

1300
1359

1290
2523

0497
2979
3157
3228
3323
3347
3582

3169
3234
3299
3434
3166
3236
3306

3288

2026
2879

4669

2840
4257
4427

2712
2818

4340

2256
2277
4163

4141
1971
1978

3609

4055
4635

3761

0616

1376

1296
3635

1175
2996
3162
3230
3325
3403

3173
3239
3308

3173
3239
3312

3298
2054
2883

2903
4264
4430

2725
2823

4373

2257
2280
4166

1972
1979

4143

4058
4637

3762

0625

1387

1300
3685

1358
3132
3169
3236
3332
3404

3185
3252
3312

3185
3252
3313

2595
3131

talloe()
2916
tcheck()
tcopy!()
2933
tdebug ’
temp
2018
2068
tfree()
4296
tinit()
tlab
tmpoff
2660
2671
tnames
toff
4550
tprint()
true .
1875
1901
tahape()
4269
ttype()
tword
2343
2361
Ly
1275
1549
1976
3134
type
) 1167
1976
2196
2773
2841
3020
3221
3412
3675
3848
4156
4589
typedef

u
udebug
uerroxr()
upput ()
usable()
ushare()

val ’
1074
2410
visit

walkf()
2697

werrox()

where()

xdebug
zap

zum()
zzzcode()

0514
3839
0665
0516
2935
0575
0963
2035
4034
0675
0676
0642
1810
0553
2661

2672
0824
3702

0821

1806
1881
1905
1791

2193
2325
2348
2363
1203
1276
1591
3008
3138

0470

1642
2017
2595
2774
2501

3131

3257
3413
3679
3869
4238
4591

0240

¢604
0574
0599
2440
2556
2623

g302
1084
2422
0541

0678
3927
0612
0604

0574

3318
3195

2389

0653
3844
1039
1264
3452
0871
0990
2039
4037
1643
0678
0671
1901
0875
2662

0850
3930

1167
1826
1883
1906
2192

2196
2328
2350
2365
1206
1329
1932
3016

0480
1941
2017
2641
2775
2901
3135
3268
3421
3679
3879
4420
4592
0241

0939
0872
1674
4331
2560
2624

1057
2379
2423
2190

0688
3929
4258
0613

0873
3331

3196
4415

Cross-reference

1099
igés6

1724
4444
0931
0997
2055
4038
2071
0682
(969
1903
0992
2666

4058

1828
1884
1915
2195

2325
2331
2353
2367
1207
1332
1941
3os7

0489
1947
2026
2755
2781
2919
3194
3269
3422
3811
3879
4428

0940
2565
2629
1060
2406
2424
0693

4362
0622

0945

3337
3225

1955
3876

1740

2330

09959

2056
4050
2706

1906
1025
2668

4059

1882
1889
1916
2218

2339
2333
2355
2369
1208
1334
1952
3088

0496
1952
2054
2772
2784
2950
3212
3327
35013
asgaz
3916
4458

2572

1064
2407
4219

0694

3776
3744

3342
3305

1968
3913

2758

1997
2058

2714

2656
2670

4543

1857
1896

2742

2339
2357

1237
1375
1958
3127

1106
1958
2065
2772
2785
3Q08
3212
3411
3533
3837
3916

45233,

2582

1070
2408
4220

1315

3746

3318

165

1973
2910

2002
2065

2759

2659
2670

4548

1865
1901

3508

2342
2359

1239
1526
1971
3130

1118
1971
2193
2772
2786
3017
3220
3411
3607
3842
4022
4581

1072
2409

1319

166 Defined Symbols

Appendix B. Defined Symbois

Symbols that are defined for the Second Pass of the Portable C Compiler are given here. Those

that are not in fact used are flagged with an asterisk.

LIE IR N I *

4+

* 2

$ + * @

0258
0261
0260
0259
0262
0264
0263
0266
0265
0012
0017
0268
0285
0103
0183
0128
0142
Q152
0031
0074
0269
4666
0297
0298
0210
3697
Q331
0138
0049
0189
0190
0196
0329
0086
0149
0055
0125
0123
0108
0281
0165
0042
0072
0016
0145
0079
0089
0274
0273
0050
0091
0205
0054
0505
g200
5484
0213
0080
0146
0034
0052
9084
04170
0209
Q047
0057
0300
0173

ALCHAR

ALDQUBLE
ALFLOAT
ALINT

ALLONG

ALPOINT
ALSHORT
ALSTACX
ALSTRUCT
AND ‘

AUTOINIT
AWD
BACKAUTO
BACKTEMP
BCSZ
BITMASK(n)
BITOOR(x)
BITYPE
BREAK
BTMASK
BTSHIFT -
BTYPE(x)
BYTEQFF(x)
CALL
CALLFLG
CASE
CAST
CBRANCH
CCODES
CCTRANS (x)
CHAR
CLASS

cH

COLON
COMMFLG
COMOP
COMPL
CONFMT
CONSZ
CONTINUE
DECR
DECREF(x)
DEFAULT
DELAYS
DEUNSIGN(x}
DF(x)
DIMTABSZ
DIV
DIVFLG
DIVOP

DO

DOT
DOUBLE
DSIZE
ELSE
ENUM

8

16
16
16

48

SNAME | SOREG | SCON | STARNM | STARREG | SAREG

100 /» size of table to save break

((1L<<n)=1)

((x)>>3) /« bit offset to oreg offset »/

010

41

017

4
(x&BTMASK)
((x)&01)

({{x>>TSHIFT)&~BTMASK) | {X&BTMASK))

46
20

((x)+(INT-UNSIGNED))
FORREW, SANY, TANY, SANY, TANY,REWRITE,x,""
750 /» size of the dimension/size table »/

CAST+1 /+ size of the dope array =/

39
49

ENUMSIZE(high,low) INT

ENUMTY

10

/+ basic type of x »/

The Second Pass of

The Portable C Compiler

« 0199
0092

0014
+ 0004
0578
0164
0008
0115
0169
0147
» 0053
0388
0386
0122
0381
. 0389
+ 0087
0320
0321
0322
0323
0324
0325
0109
g182
0096
0045
0097
0007
» 0046
0382
0384
« 0036
Qo090
0204
0124
0167

LR I I A

0383°

0385
0387
0203
0202
0201
0197
« 0293
a070
« 0068
0094
0143
0168
+ 0066
0082
0095
« 0148
0136
4667
0288
0376
0289
Q010
0375
0081
*« 0195
» 0174
0011
0150
0449
« 0348
0436
0437
0005
0435S
0438

ENUNSIGN (x)

INCR
INCREF(x)
INIT

INT
INTAREG
INTBREG |
INTEMP
ISARY(x)
ISFTN(x)
ISPTR(x)

ISUNSIGNED(X)

LABFMT

MOD
MODTYPE(x,¥)
MOETY

MUL

MULFLG
MUSTDO
MYREADER(p)
NACOUNT
NAMASK
NAME

NAREG

NASL

Defined Symbols

((x)+(UNSIGNED-INT))
80

27

19

1

exit

1

)

103

[

0400
45
020000.
040
108 .
01 /» compute for effects only +/

040000 /» search the table for a rewrite rule «/
73

/» compute for an argument of a function +/
/» compute for condition codes only s/

38

02 /+ compute into a register s/
010 /+ compute into a lvalue register »/
30 :
78

(((x6.~BTMASK) <<TSHIFT) | PTR{ (x&BTMASK))

110

4 :
- 04 /+ compute into a scratch register =/

020 /+ compute into a scratch lvalue register s/
010000 /» compute into a temporary location e/ |
((X&TMASK)==ARY) /+ is x an array type =/

((x&TMASK)==FTN) /+ is x a function type «/

((x&TMASK) ==PTR)

((x)<aULONG&A& (x) >=UCHAR)

"L%d"

54

52

82

02 -
SNAME | SOREG | SCON | SAREG
4 .

010001

2 .
8

010000

62

x = (X&(~BTMASK)) iy

11

11

04000

010000 /» force register requirements »/
myreader (p)

03

017

2

01

04 /+ share left register «/

167

168 Defined Symbols

* r s

0439
0441
0442
0440
0443
0444
0237
0093
0352
0131
0227
0235
0450
Qo088
0132
0563
0445
0446
0278
0366
0361
0363
0368
0365
0367
0370
0362
0369
0360
0364
Q013
0107
0018
0214
0317
0117
0230
0009
0118
0181
0586
0119
0015
0306
0307
0310
0590
0593
0591
0592
Q311
0312
0315
0071
0069
0106
0530
0333
Q032
0458
0459
0460
0461
0104
0044
0447
0456
0462
0455
0067
Q457
0083
0299
0394

NASR
NBCQUNT
NBEMASK
NBREG
NBSL
NBSR
NCHNAM
NE
NESTCALLS
NOASG
NOFIT(x,y.2)
NOLAB
NOPREF
NOT
NOUNARY
NRECUR
NTEMP
NTMASK'
OPFSZ2
OPANY
OPCOMM
OPDIV
OPPLOAT
OPLEAF
OPLOG
OPLTYPE
OPMUL
OPSHFT
OPSIMP
OPUNARY
OR

OREG
OROR
PARAMSZ
PC

PCONV
PKFIELD(s,0)
PLUS
PMCONV
PTR
PUTCHAR (x)
PVCONV
QUEST

RO

R1

R2

R2TEST (%)
R2UPK1 (x)
R2UPK2(x)
R3

R4

RS

RB

RC

REG
REGLOOP (1)
REGSZ
RELOP
RESC1
RESC2
RESC3
RESCC
RESETBIT
RETURN
REWRITE
RLEFT
RNOP
RNULL

RTOLBYTES
SANY

The Second Pass of

010
060
0360
020
0100
0200
8 /» number of characters in a name =/
81

/» share right register «/

(-1)+
((x%z + y) > z)

{=1)

020000 /» no preference for register assignment =/
76
(=2)+
(10+TREESZ)
0400
07400
long
010014 /+ any op... */
010002 /» +, &, |, ~ #/
010006 /» /, % =/
010020 /» +, -, », or / (for floats) =/
010012 /» leaves +/
010016 /+ logical ops »/
010024 /+ lsaf type nodes (e.g, NAME, ICON) »/
010004 /= =, / =/
010022 /» <<, >> »/
010000 /» +, =, &, |, = +/
010010 /» unaxy ops +/
17
95
24
100 /+ size of the parameter stack +/
7 /+ program counter #/
105
{(0<<6)!s)
6
106
020
putchar(x)
107
21
0
1
2 .

(0200#((x)+1)+y)
((x)>=20200)
(({x)>>7)=1)
((x)80177)

3

4 .
S /+ frame pointer «/
55

53

94

for(i=0;i<REGSZ;++1)

010000 7+ DANGER: can cause loops.. »/
4] /+ clobber result »/

01 /+ same as FOREFF «/

The Portable C Compiler

0395

» 0327
0397
0399

» 0344
: 0401
0116

= 0102
0225
0532
0402
0151

+ 0035
0166

» 0346
0144

+ 0056
« 0073
» 0410
0400

» 0409
. 0403
+ 0316
0407
0153
0396
0111
0404
0405
0110
0398
0112

» 0292
» 0284
0337
0339
0340
0085
06006

= 0038
0171

» 0043

0406

« 0048

* 0215
- 0212
0250

» 0253

0408
+ 0252
0251
0254
« 0256
« 0255
» 0429
2451
0417
0422
+« 0103
0421
0419
0420
0186
« 0187
« 0188
0335
0650
» 0236
0423
0428
0218
0220
0191
0418

SAREG
SAVEREGION
SBREG

scCC

SCCON

SCON

SCONV
SETBIT
SETOFF(x,y)
SETSTO(x,y)
SFLD
SHFFLG
SHIFTOP
SHORT
SICON
SIMPFLG
SIZEOF,

SM

SMONE
SNAME

SONE

SOREG

SP

SPECIAL
SPFLG
STAREG
STARG -
STARNM
STARREG
STASG

' STBREG

STCALL
STDPRTREE
STKREG
STOARG (D)
STOFARG(p)
STOSTARG (p)
STREF. :

.STRING

STROP
STRTY
STRUCT
SWADD
SWITCH
SWITSZ
SYNTSZ
SZCHAR
SZDOUBLE _
SZERO
SZFLOAT
SZINT
SZLONG
SZPOINT
SZSHORT
TANY .
TBUSY
TCHAR
TDOUBLE
TESTBIT
TFLOAT
TINT
TLONG
TMASK
TMASK1
TMASK2
TMPREG
TNEXT(p)
TNULL
TPOINT
TPTRTO
TREESZ
TREESZ
TSHIFT
TSHORT

Defined Symbols

02 /» same as INAREG »/
8 /» number of bytes for save area =/
010 /» same as INBREG »/
040 /+ same as FORCC =»/
(SPECIAL+100)

0200

104

90

if(x%y 12 0) x = ((x/y + 1) = y)
(stotree=(x),stocook=(y))
0400

0410000

29

3

(SPECIAL+101)

040

48

57

(SPECIAL|2)

06100

(SPECIAL!1)

01000

%

"6 /» gstack pointer »/

0100000

040000

04 /+ same as INTAREG =/
99

02000

04000

28

020 /» same as INTBREG »/
100

5 .
/% just evaluate the arguments,

250 /» size of switch table «/

450 /+ size of the symbol table +/
8

64

. SPECIAL

32
16
32
16
16 . .
010000 /+ matches anything within reason =/
Q1000 -

01 :

040

91

020

04 .

010

060

0300 .

0360

RS S

{p== &node[TREESZ-1]?node:p+1)

PTR /+ pointer to UNDEF +/

0100)

04000 /+ pointer to one of the above «/
3150 /+ space for building parse tree =/

1000

2

02

169

170 Defined S ymbols

0430 TSTRUCT
0424 TUCHAR
0427 TULONG
0426 TUNSIGNED
0425 TUSHORT
0141 TYFLG
0041 TYPE
0175 UCHAR
0100 UGE
0101 UGT
0098 ULE
0178 ULONG
0099 ULT
G129 UNARY

+ 0163 UNDEF
0172 UNIONTY

« 0037 UNOP

« 0198 UNSIGNABLE(x)
0177 UNSIGNED
0232 UPKFOFF(v)
0231 UPKFSZ(v)
0176 USHORT
0137 UTYPE

+» 0051 WHILZ
3118 ZCHAR -
3120 ZFLOAT
3119 ZLONG
0157 "asgop(o)

« 0582 callchk(x)
0152 callop(o)

+ 0341 genfcall(a,b)

« 0526 isbreg(r)
0528 istnode(p)
0527 istregir)

=« 0158 1logop{o)

» 0302 makecc(val,i)
3115 max(x,y)
3116 min(x,y)

« 0156 optypelo}
0330 wdal(k)

020000 /» structure or union s/
0200
02000
01000
0400
016

33

12

88

89

86

15

87

Z+

0

9

31

((x) <=LONG&&(x) >»=CHAR)
14
(v>>6)
(v&077)
13

04

43

01

04

02

{dope (0] AASGFLG)

allchk(x)

(dope (0] &CALLFLG)

gencall(a,b)

(rstatus [r]&SBREG) .
(p->0p==REG && istreg(p-»rval))
(rstatus (r]&(STBREG|STAREG))
(dope [0]&LOGFLG)

lastecon = i ? (val<<8)}lastcon : val
((x)<(y)?(y):(x))
((x)<(y)?2(x):(y))

(dope (0]&TYFLG)

(BYTEOFF (k)==0)

The Second Pass of

The Portable C Compiler

Appendix C. Procedure Calls Arranged by Caller

Procedure Calls, by Caller 171

This table gives references to procedure calls (caller/callee) arranged alphabetically by caller.
Recursion is denoted by an asterisk.

acon
adrcon
adrput
: acon

$ ¢ wem—-

*
cerror
szty
tfree
tshape
werroxr
llchk

* cerror
llo
~$reereg
t
;reetemp
[
..allo0
argsize
IR
callreg
canon
$£ld

——mreceel aefl ceccrsacecccnen e ———-

13
fwalk
?reg2

[
sucomp
M

1]
Yalkf
' v

bgen

cerxor
deflab
fxpand

1
getlab
reclaim
branch
?bgen

]
)
]
1
(]
]
*
*
-
»
”
L J
-
L3
-
codgen

eflab

e e cecmaaema.—c—— e ————————————— oo (] —-————————-—{] - nme m-——— e

]
(]
'
)
1]
'
'
'
d

(S

4202

4219
4224
4233
4244
4249
4263
4271
4288
4294
4301
42138
4296
4269
4258
2479
2486
2493
2502
2511

2523

2527

2458

3668
3672
4021
1307

1312

1313
1313
1309
1315
1309
1319
1315
1319

3981 -

3987
4005

3996

4002
3995
4006
1806
1852
1857
1868
1915
1916
1874
1875
1882
1883
1889
1896
1902
1903
1905
1849
1851
1866
1894
1914
1876

- -

etlab

————
————————t] -———

feclaim
t . .
cerrorx

! where:
codgen

! canon
eprint
fwalk '’
?rder
) .
store
onput

acon
cerror
onstore

»
markcall
store:
deflab
delay
?odgen

cmemen(] ceme(] e ———————

)
delay1
delay2
elay1

delay

»*

»

»

ncopy
elay2

»

- -
deltest
ncopy
tcopy

P . WPy , U

deltest

! spsz
eobl2
eprint

{ adrput
! tprint
eread

: cerror
»*

“
rbusy
rdin

1
talloc
xpand

D wemcmmcccene c-—---——-

1884
1904
1906
1907
1873
1881
1900
1901
1902
1869
1917
0621

0622 -

1281
1289
1293
1293
1300
1302
1295
4309

4313

4321

1451

1464
1462
1468
3358
1183

1196

.1198

1191
1195
1202
1219
1208
1216

- 1229

1223
1233
1275
1276
1261

1267
1264
2947
2950
3755
1134
1154
1167
1089
1113
1127
1128
1118
1098
1103
1104
1106
1111

1112
1099
2376

e) e me e cnemamen) e e -

cmrcesemcsneif] crocmarcrcrcm -

Y

adrcon
adrput
conput
etlr

- -]

hopcode
insput
upput
zzzcode
£la

rewfld
'?zty

]
tallaoc
.

]

H :
lshape -
shumul
reereg’ |
‘callregqg
$sable

-

freetemp:
fwalk
; *'n,“;
7enargs :
. canon
[.
.. Cerror
~expand
-
offstar
order
reclaim
encall
argsize
genargs
match
orderx
popargs
shltype
?enscall
. gencall
getlab
etlr
H cerror
hardops
cerror
talloe

- -

opcode
cerror

" lastchan

lineid

- & 2

2410
2436
2428
2422
2428
2432
2436

2440

2418
2432
2440
2389
1928
1839
1941
1247
1955
1968
1973

4195 . =
4198 -

2546
2555

2556

2560

2565
2572

2647

0699 . -

0710

13623

3645
3648
3649
3657
3629
3647
3664
3659
4032
4037
4041
4049
4045
4050
4044
4026
4028
3353
2214
2233
3802
3859
3839
3844
3866

. 3876

4399
4411
4326
4327
4085
3770

arnemrcvermrverarsnene]] ol Tecrmm T, e, o ———————————

B
»
A
o

allchk
$error
2
delay
eobl2
eprint
eread
fwalk
lineid
p2init
fdin

reclaim
setregs
tcheck
tinit
arkcall

- -

.mkadrs

' cerror
mkdope.
mkrall

H rallo
myreader

: canon
hardops
optim2
Yalkf

]

PErE Ty

ncopy
nextcook
niceuty

H shumul
notof?f
offstar

' order
! :
optim2

H talloc
order

) canon

]

cbgen
cbranch
H

]

1]

cerror

LI L Y T L

09861
1038
0995
1014
1043
10358
1012
1028
1026
1028
1022
09648
0990
0992
0993
1019
1036
1007
1039
0969
1420
1440
2159
2202
2208
2191

2194
2168
2206
2184
2192
2195
2193
2196
2968
2981

0811

3093
3111

3926
3928
3927
3929
3927
3929
2891
407%
3604
3609
3613
3363
3370
3374
3388
3913
1524
1538
1744
1638
1622
1628
1651

1604

172 Procedure Calls, by Caller

odgen

eflab
print

walk

Yy YT - S

gencall
genscall
getlab

]

aatch
i
neOpy

offsvar

]
3]
D
X'

w
[
et
[¢]

i mem=T 4 B K # E P ==

roount -
veclainm
E

L]

setasg
setasop
setbin
setincy
setstr
tcopy

H

tfree
tshape

g g g e S e e R

cerrox
mkdope
setrew
BIIRRNYS
pxccck
xalla

i ———is
a8
~
]
»
[
)

cotf mmm e e ot b
L I

lastchan

nextcook

szty

H
count

cerrow
din

cerrox

1
ecl2
rfrea
]
1
()
]
1]
1

eclaim
Ceryror

prcook
rhiusy
recl2
rfree
rmove
rwprint
sziy
tenpy
tfese

]

]

1]
tshapga
walkf
rewfld
rfree
CRYTOr

R T T T T TRy Iy eeyupupuy guny | g

zty

el -

racve
rwprint
setagy

. offstax
;

.

order

i

H
tshape
setasop
canon
?erro:

1%
)
w
3
(o1

'

[y | N
2]
.
o
131

rallo
reclaim
shumul
tcopy
etbin
cerror
?iceuty

o e e o {f) o i e e e A2 e e A3 1eus s r i mem aea mrm A [} e e e a e mm——-

)

1]

]

1
offstar

2879
2883
1516
1518
1055
1064
1677
1082
2839
2841
2844
2845
2848
2677
2732
2748
2782
2797
2801
2690
2784
2697
2785
2786
2688
2781
2758

2706

2866
2868
2359
2964
4378
2306
3492

197
3509
3513
3499
3504
3518
3308
3:i98
3472
3462
34€5
3438
3442
3481
3414
2424
3474
3475
3487
3473
3454
3448
3452
3525
3578
3553
3562
3566
3584
3535

rder

S « Y s

shumul
setincr
Setregs
setrew
cexror
shltype
setstr
cerror
?rder

I

[}
hareit

ushare

: -

| JTy 7 S

: cerror
spsz
stoarg

5
‘ constore
, aarkcall
; H

) mkadrs

: stoarg

! stoasg

: 1]

]

1

)

)

i

:

'

H

SLty
talloe

H cerror
tcheck

‘ cerror
H tinit
tcopy

1 ncopy
fbusy

]

)

[}

]

'
talloc

3554
3563
3567
3585
3536
3540
3558
3571
3575
3590
3595
3534
3378
3739
2112
2123
2147
3383
3390
3385
33
2620
2623
%2624
4141
4143
4187
4147
4156
4163
4179
4096
1392
1396
1409
1414
2960
2964
1325
1370
1357
1365
1383

1352

1345
1380
1351
1359
1376
1387
1388
3122
3146
3131
3194
3195
3196
3225
3305
4126
0653
0660
0665
0670
0671
2910
2916
2919
2922
2923
2926
2916

. 4o o e > > = O P & D A e W e e L e e A s A8 B e P A T e el S D e

Thé Second Pass of

(2}

-+
-
ree .
?free1

walkf
reel

cerror
tinit
tprint
tshape
: flshape
" shtemp

c(f mmmc et m———
"

]

H

8

1

13

: special
ttype

H ®
uerror

i cerror
! ¢

' where
upput

' acon

H

]

)
cerror
werror

P

gsable

cerrnr
shareit
i
t
"
szty
shaxe
getlr
s5zty
alkf

R 4

cmef meer(mmmmm——

L4

- %
n
P
>
[s]
H

where
where

zum
zzzcode
adrput
?bqen)

-

cerrox
[}

onput

eflab

xpand

crmwan) eefl mo() cecemm—con———

"
o
11
f
|+
o

?etlr

rbusy
rfree
tcopy

shumul

Thef ,Por!qble C Compiler

Appendix D. Procedure Calls Arranged by Callee

This table gives

acon

a?rput

conput
g?puc

adrcon
expand H
adrput
‘eprint
‘expand
zzzcode

- -

, alléhk
fpain ;

match H
aliloo0
p2init :
argsize
gencall \
: callreg
freersy H
canon
godgen 5 1
g?nargs

fyreader
order

)

)
Setasop

[B el

cbge
¢branch i

1
order
Z?zcoda
1
, .ebranct
qrder
i
“¥
]

. cerro
adrput
allchk
cbgen
conput
eread -
genargs
getlr
hardops,
hopcode
insput
main

S S

R
+
'

)

o -.----‘(‘-.‘—--—-‘-Z-

Procedure Calls, by Callee 173

references to procedure calls (caller/callee) arranged alphabetically by callee.

4202
4233
4244
4249
4263
4313
4345
4352
4364
4219
2410
4224
1154
2436
4603
2479

038

493
2202
2458
0897
3668
4037
4021
1555
1307
1289
3645
3648
3928
1538
1744
3472
3981
1852
1@57
1868
1915
1916
1635
4425
4436
1806
1622
1628
1651
0621
4301
2486
3987
4321
1113
3649
2233
3859
4411
4327
0995
1014
1043

setbin

store

‘Gchgen
,g?ranch

mkadrs -
order
p2init
rbusy
rcount
rdin

H

!
reclaim

s

tasap

a1
) wmmeth m———————
)]
®
[}

setrew
setstr
special
talloc
tcheck
tfree1
uerror
upput
usable
z;zcode

- —— -

codge
ranch

O

[}
]
M

0o
N Lt s B B P o o
-
»
<

. - conpw
expand
zzzcode
]
]
constore
)

i b
defla?

-

mmm et memm e e e me e mm e e e - o e e o S e e e e e e o = = e e e e e et o e

- ————

2981
1604
0949

2886
1518

1064
1077
1082

02732

2748
2782
2797
2801

+2863

2866
2868
3462
3465
3578
2123

13390

4179

..0660
..0670

by

0683

0607

4369
2586
4454

4455

4595
4606
4612
4628
4632
4660
1281
1849
1851
1866
1894
1914
1196
1198
1607
1609
1630

.1637

4309
2428
4556
4563
1451

1370

3358

.-4005
1876

1884
1904
1906

] 1

' 1
order)
H :
zzzcode s
+]
delay

delayl H
main H
delay1

delay :
delay2

delay Pl
deltest
delay?2 :
eobl2

main :
.eprint

codgen H
main H
order \
H H
eread

main)
expand

cbgen 1
i :
genargs H
match H
zzzcode E}
: 3

' o
££1d

canon H
1 H
flshape
tshape H

free:e?“

allo '
1 H
freetemp

allo '
] H
fwalk

canon T
codgen i
‘pain H
\arder H
} :
-genargs
gencall i
gencall
genscalk H
‘arder H
genscall
.oxder - ‘K
getlab

‘ebgen H
*e?ranch i
. H

3

1907

1636

1638

4426

4431

1183

1219
1035
1202
1191
1233
1195
2947
1261
3755
1012
1134
1293
1028
1545
1747
1089
1026
2376
3996
4002
3657
2205
4509
4510
4642
4645
1928
1312
1313

4195

2284
2546
2502
2511
2647
2523

. 2827

0699
1313
1293
1028
1545
1747
3623
4041
4032
4028
1688
4026
1695
3353
3995
1873
1881

.
R v

‘setbin
. »

rt
Q
o4

usharé -
zzzcole:

gy g & S

o wewwm—w—

hardops
dyreaderxr :
Hopeode
dxpand o
insput
‘expand H
) lastchan
order :
'lindié
B 1}
main
markcall
constare
sﬁore
]

main

o niate
gencal¥
order !

1]
1]

cemea=ly camema

wkadrs
store ~¢: YT)
B mfdﬁp:
sk

p2init 5
-mﬁhqll

rallo
kd

e
e =

myreader
. acogy
delay1
delay2:
order -
tcopy

- o

order

1
1]
13
1 »

1900
1901
1902

© 1628

1635
1651
4425
2214
2422
2428
2432

2436
2440
2191
2194
2632
4427
4430
1496
4556
4563
4603
3802
3927
4399
2418
1326
2432
4085
1796
3770
1022
0961
1420
1462
1357
1165
2159
4049
1560
1793
2968
1383
0811
955
3093
3043
3049
3064
3926
2891
1223
1267
161Q
2916

nextcooi: ¥075
3B 63

niceuty 3604

3553
3562

174 Procedure Calls, by Callee

5 1
4]
[}]
] .]
notoff
oreg2 :
offstar
genargs
aorder
¥

i

5
o]
a
[]
1)
(e}

wu

() memm (B wmoe

tbin

rt
]
7]
(o]
g

optim2
myreader H
order
codgen i
]
genargs
gencall
o?fscar
L)
secasg
i
H
s?tasop

u

B comoommmmnrna em——ane

sexvstr

oregq
canon
)
1)

mm] - —————— e —————— - . > M e = e -

p2init
main H
popargs
gencall H
prcoak
order :
i
'
reclaim
rall
mkrall
ofder
setasop
rbus

ced cmmoomee(=emome -

eread

3566
3584
3613
2065
3363
3647
1659
1709
3497
31509

.3513

3438
3442
3481
3535
3554
3563
3567
3585
3888
3929
1524
1300
1302
3664
4045
3370
3374
3499
3504
3518
3414
3424
3474
3475
3487
3536
3540
3558
3571
3575
3590
3595
3385
33n
1988
1309
1315
0890
0968
4055
4050
1492
1543
1596
1598
2630
3006
KRR N
1539
1745
3473
2874
1118

match '
order '

eread
1

2]

e m) me———————
-
o]

recl2
reclaim H
reclaim
cbgen !
cbranch

H

genardgs
main
match
order

reclaim
zzzcode

[a]
o
£
m
)
cecrcemc e wmfl mmm—me———————————————

rmove
reclaim H
rvprint
reclaim)
setasg

order 1
setasop

order '
setbin

order H
setincy

order 1
setregs

main !
setrew

p2init i
setstr

order :
shareit
uﬁable :

2784
2919
2922
2923
2926
4592
1516
2168

1537

1055
1098
1103
1104
1106
1111
1112
0990
0992
0993
1019
2839
2697
2677
4006
1869
1917
3659
1036
2206
1634
1725
1742
1785
3454
4091
1939
2854
2841
2844
2845
2848
2785
4589
4378
2786
2806
2688
3422
1754
3398
1736
3525
1759
3378
1713
3739
1007
2112
0956
3383
1732
2620
2601
2602

1
shltype
gencall :
match
setrew
stoasg

shtemp
tshape H
shumul
flshape :
niceuty
setasop
setbin
shltype
sucomp
tshape

- ————— - -

special
tshape :
" spsz
deltest \
shumul H
stoarg
store '
stoasg
store H
] 13
1 H
store
codgen :
constore
stoarg
1
sucom
canon
1

in
N
(34
- .

[l
[P
[+
ot

(A

o

o
q

N

2]
(A 2K1

. =
[
P
B

" "

aefC eebh @ ~=lF —-=-H ~-ih
g
0
<

sucomp
usable
ushare

tallo
eread
f?ld

]
hardops

optim2
tcopy

[. S U U RPN

I
(4]
7
o
Q
-—x

main
tcopy

2615
4141
4044
2184
2147
2964
4187
2268
4147
4198
3609
3448
3534
4143
3146
2317
4163
2262
4096
2950
4156
1392
1352
2960
1345
1380
1325
12985
1468
1409
1414
3122
1309
1319
4126
4238
1941
1947
2017
2026
2054
2879
2883
2781
2859
2864
3131
3194
2595
2641
06353
1099
1955
1968
1973
3g39
3844
3866
ig7e6
3913
2916
0665
1039
2910

delay2 :
order H
H H
reclainm H
setasop i
zzzcode :
tfree

adrput :
order !
oreg2 '
reclaim |
H H

H !
tfreel

tfree H
H H
tinit

main ‘
tcheck H
tprint

eprint '
tshape

adrpuc :
match E
1 1
order :
reclaim :
.setasg :
ttype

match 1
H H
uerror

order H
upput

expand H
usable
freerag H
H :

[)

1] L]

1] []

. 1
ushare
shareit i
H :
walkf

canon H
H !
ayreader E
) 1
reclaim :
tfree H
werror

adrput :
upput i
whersa

cerror H
uerror H
werror H
zum

sucomp i
: :

H :
1] [}

] 1
zzzcod?

13

expand

1264
1724
1740
2758
3452
4444
0675
4296
1643
2071
2706

	0001
	0002
	0007
	0008
	0009
	000a
	001
	002
	003
	004
	005
	006
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	055
	056
	057
	059
	060
	061
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	back

