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Let Ab represent a perturbation in the right-hand side of alinear system.

If Ax = bthen
A(X + AX) = b + Ab
where
where K(nA) is the condition number of A, K(A) = [|A|| ||JA7|| and |||, is some norm, eg.,

lIX|l: = 3 Ixi]if xisavector.
i=1

The methods used in our linear equation package are guaranteed to provide an accurate answer to a slightly
perturbed problem. If we assume that our method produces the correct answer to a problem where
[|Ab|| < €||b]|, where € is the machine precision, then on the Honeywell 6000 where € is about 1078, arel-
ative error for the above example of 2 x 10™° would not be surprising.

In our example one may consider the first column of B as b in (1.1), and the second column of B as
b + Ab, sothat ||Ab]|/||b]| is approximately .00015 using the ||-]|; norm. If we look at the second solution
asx + Axin (1.1) and the first solution as x, then ||Ax||/]|X]] is approximately .07. Thus equation (1.1) in-
dicates that the condition number is at least 400, and the condition estimate, which at first appeared to be
conservative, wasin fact quite realistic.
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For the input matrix given by:
1. -2 3. 7. -9.
11. -6. 18. -15. -18.
7. 2. =15 273 173.
-9. 50. -18. 6. 1667.

and the following right-hand sides:

30. 29.419
-191. -190.994
133. 133.072
—986. —-985.775

—6496. -6495.553

the following results were obtained on the Honeywell 6000 computer at Bell Labs:

AN ESTI MATE OF THE CONDI TI ON NUMBER CF THE MATRI X = 0. 2759414E 04
THE COWPUTED SOLUTION X | S

2.0000004 2.4800003
4.9999970 4.8709986
2.9999988 2.6439993
-1.0000001 —1.0320001
-3.9999999  -3.9970000

The true solution to this problem is:

2 2.48

5 4.871

3 2.644
-1. -1.032
-4.  -3.997

Notice that a seemingly sight change in the right-hand side causes the solution to change noticeably. Fur-
thermore, the relative error in the solution is about 2 x 10~7. On the Honeywell computer, which has
about 8 decimal digits for single-precision numbers, this represents the loss of about 1.5 decimal digits. A
lossof upto 2 x 107> could be expected in light of the analysis given below.
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See als0:

Authors:

PORT library

February 11, 1993

GEBS, GECE, GEDC, GEFS, GELE, GELU

Linda Kaufman and Doris Ryan

Reference: Cline, A. K., Maler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-

Example:

Linear Algebra

GESS

tion number, SAM J. Numer. Anal. 16 (1979), 368-375.

The following program solves a5 x 5 system with two right-hand sides

INTEGER N, |READ, |1MACH, |, NB, IWRITE, J
REAL A(5,5), B(5,2), COND

N=5

| READ=I 1MACH( 1)

DO 10 =1, N
READ(| READ, 1) (A(I,J),Jd=1,N)
1 FORMAT( 1X, 5F10. 0)
10 CONTI NUE

NB=2
DO 20 =1, N
READ(| READ, 11) (B(1,J), J=1, NB)
11 FORMAT( 1X, 2F10. 3)
20 CONTI NUE
c
C SOLVE AX = B BY CALLI NG GESS
c
CALL GESS(N, A, N, B, N, NB, COND)
| WRI TE=l 1MACH( 2)
VR TE( | VRl TE, 21) COND
21 FORMAT(52H AN ESTI MATE OF THE CONDI TI ON NUMBER OF THE MATRI X =,
1 E14.7)

VR TE( | WRI TE, 22)
22 FORMAT(27H THE COVPUTED SOLUTION X 1S, //)
DO 30 I=1,N
WRI TE( | WRI TE, 23) (B(1,J), J=1, NB)
23 FORMAT( 1H, 5F20. 7)
30 CONTI NUE

STOP
END
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Note 2:
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Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should not use GESS, but should call subpro-
grams GECE, GEFS and GEBS. (See the example of GEDC.) GECE is called once to get
the LU decomposition (see the introduction to this chapter) and then the pair, GEFS (forward
solve) and GEBS (back solve), is caled for each new right-hand side.

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-

ror Handling, Framework Chapter)
Number Error
1 N<1
2 IA<N
3 IB<N
4 NB<1

10 + k* singular matrix whose rank is at least k

Double-precision version: DGESSwith A, B, and COND declared double precision

Complex version: CGESSwith A and B declared complex

Storage:

Time:

Method:

N integer locations and
N real (double precision for DGESS, complex for CGESS) locations of scratch storage in the
dynamic storage stack

N a2 x (% + NB) + N x (% + NB) additions

= * N? x (%+NB) + N x (%+NB) multiplications

2
NT + N x (% + NB) divisions

Gaussian elimination with partial pivoting.
See the reference below for the method used to estimate the condition number.
GESS calls GECE, GEFS, and GEBS.
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GESS — general linear system solution with condition estimation

Pur pose: GESS (GEneral System Solution) solves the system AX = B where A is ageneral matrix. An
estimate of the condition of A is provided.

Usage: CALL GESS(N, A, 1A, B, 1B, NB, COND)

N -

A -

the number of equations

the array, dimensioned (IA, KA) in the calling program,
wherelA = N and KA = N, containing the N x N coefficient matrix
A isoverwritten during the solution.

1A — therow (leading) dimension of A, as dimensioned in the
calling program
B — thematrix of right-hand sides, dimensioned (1B, KB) in
the calling program, where IB = N and KB = NB
« thesolution X
IB — therow (leading) dimension of B, as dimensioned in the
calling program
NB — the number of right-hand sides
COND « anestimate of the condition number of A (see Note 1)
Note 1: The condition number measures the sensitivity of the solution of a linear system to errorsin

the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d - log ;o (COND) correct decimal digits. Thusif COND is greater than 10597, there may be

no correct digits.

If the given matrix, A, is known in advance to be well-conditioned, then the user may wish to
use the routine GELE, which is a little faster than GESS. Ordinarily, however, the user is
strongly urged to choose GESS, and to follow it by atest of the condition estimate.
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CALL GEML(N, A, I A B, X)

C
C MAKE COPY OF RI GHT HAND SI DE
c
CALL MOVEFR(N, X, B)
c
C SOLVE THE SYSTEM
C
CALL GELE(N, A, I A B, N, 1)
c
C COVPUTE THE RELATI VE ERROR AND THE RELATI VE RES| DUAL
c
CALL GEML(N, AA | A B R)
ERR=0. 0
DO 30 1=1,N
ERR=AMAX1( ERR, ABS(B(1)- FLOAT(1)))
R(1)=R(1)-X(1)
30 CONTI NUE
XNORMESAMAX( N, X, 1)
RNORMESAMAX( N, R, 1)
RELERR=ERR/ XNORM
RELRES=RNORM ( XNORMF GENM( N, AA, | A) )
| WRI TE=I 1MACH( 2)
VR TE( | WRI TE, 31) RELERR, RELRES
31 FORMAT( 16H RELATI VE ERROR=, E15. 5, 19H RELATI VE RES| DUAL=,
1 El15.5)
STOP
END

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed:

RELATI VE ERROR= 0. 13554E- 06 RELATI VE RESI DUAL= 0. 22987E- 10

The condition number of the matrix(see the example in GELE) is about 10°, and the machine
precision on the Honeywell computer is about 108, Thus even in the absence of roundoff er-
ror in GEML, a relative error of 10”2 would not be surprising. The relative error given
above is quite within reason. The relative residual, as promised, satisfies (1.1) even though
the problem isill-conditioned.

GENM
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Time: N? additions
N comparisons

See also: GEDC, GELU, GELE, GESS, GECE
Author: Linda Kaufman

Example: The subroutines in the PORT library for solving Ax = b are designed to return computed so-
[utions x such that the residual r = Ax — b satisfies

o <e
A OXxOO ™

where ¢ is the machine precision. In this example we show that if A isill-conditioned, then
the computed solution need not be very close to the true solution even though equation (1.1)
is satisfied. The subroutine GENM is used to compute the left-hand side of (1.1). The matrix
in this exampleis given by

0 = Di-i foris
ogi-j + Lforizj

and the true solution is x; =i. The right hand side is generated using GEML and the com-
puted solution is obtained using GELE. The function SAMAX is used to compute the 1-norm

of avector; i.e. max [x; O
1<i<n

INTEGER I, J, L, N, IA IWRITE |1MACH
REAL A(50, 50), AA(50, 50), B(50), X(50)
REAL RELERR, RELRES, XNORM RNORM ERR, R(50)
REAL GENM SAMAX

IA =50
C
C GENERATE MATRI X
C
N=50
DO 20 1=1,N
DO 10 J=I, N
AL, J)=d-1
A, 1)=d-1 + 1
AA(L, J)=A(T, J)
AAT, 1) =A(T, 1)
10 CONTI NUE
B(1)=I
20 CONTI NUE
C
C GENERATE RI GHT HAND S| DE
C

Linear Algebra
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PORT library Linear Algebra

February 11, 1993 GEML

GENM — norm of ageneral matrix

Pur pose: GENM (GEneral matrix NorM) computes the norm of a general matrix A. The norm is
n
defined as max > [ay; O
l<jsni>;

Type: Real function
Usage: <answer>=GENM (N, A, 1A)

N — thenumber of rowsin A

A — thearray, dimensioned (1A, KA) in the calling program, where |A = N

and KA = N, containing the N x N coefficient matrix
« theLU decomposition of A (see Note2)

1A — therow (leading) dimension of A, as dimensioned in
the calling program

n
<answer> . max > [a; O
1<jsni'3y

Error situations:  (All errorsin this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error
1 N<1
2 IA <N

Double precision version:  DGENM with A and DGENM declared double precision

Complex version: CGENM with A declared complex

Storage: None

Linear Algebra
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C COVPUTE THE RELATI VE ERROR
C
ERR=0. 0
DO 40 1=1,N
ERR=ERR + ABS(B(1)-X(1))
40  CONTI NUE
ERR=ERR/ SASUM N, X, 1)
VR TE(| WRI TE, 41) ERR
41  FORMAT(19H RELATI VE ERROR | S , 1PE15. 7)
VRl TE( 6, 42) COND
42  FORMAT(21H CONDI TI ON NUMBER | S , 1PE15. 7)
STOP
END
When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed:
TRUE SOLUTI ON COMPUTED SOLUTI ON
0.22925607E 00 0.22925687E 00
0. 76687502E 00 0. 76687336E 00
0. 68317685E 00 0.68317838E 00
0.50919111E 00 0.50918986E 00
0. 87455959E 00 0. 87456071E 00
0. 64464101E 00 0. 64463982E 00
0. 84746840E 00 0. 84746962E 00
0. 35396343E 00 0.35396226E 00
0. 39889160E 00 0.39889258E 00
0. 45709422E 00 0.45709377E 00
RELATI VE ERROR | S 1. 9705190E- 06
CONDI TI ON NUMBER | S 1. 3490306E 03
The condition number of the matrix and the precision of the Honeywell computer suggest
that even in the absence of roundoff error in GEML, a relative error of 10™° would not be
surprising. The value computed above is quite reasonable.
Linear Algebra

GEML
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This example checks the consistency of GEML and GESS, the linear system solver.

First the example uses GEML to compute for a given vector x and matrix A, the vector
b = Ax.

Then the problem isinverted, i.e., GESSis used to find the vector x which satisfies
Ax =b
Thisx isthen compared with the original vector. The 10x10 matrix A is chosen so that

a = Hi-i foris]
ogi-j 4+ 1forizj

The vector x is chosen randomly.
INTEGER |, J, IWRITE, |1MACH, N

REAL A(10, 10), X(10), B(10)
REAL ERR, SASUM UNI, COND

N=10
C
C CONSTRUCT A MATRI X
c
DO 20 1=1,N
DO 10 J=I, N
ACLL J)=d-1
A 1)=3-1 + 1
10 CONTI NUE
20 CONTI NUE
C
C CONSTRUCT A RANDOM VECTOR X
c
DO 30 1=1, N
X(1)=UNI (0)
30 CONTI NUE
C
C FIND THE VECTOR B=AX
c
CALL GEM.(N, A 10, X, B)
c
C SOLVE THE SYSTEM AX=B
C

CALL GESS(N, A, 10, B, N, 1, COND)

PRI NT THE COMPUTED AND TRUE SCOLUTI ON

[eNeNe]

| WRI TE=I 1MACH( 2)
WRI TE( | WRI TE, 31)

31  FORMAT(34H TRUE SOLUTION  COVPUTED SOLUTI ON)
VR TE( I WRI TE, 32) (X(1), B(1),1=1, N)

32 FORMAT(1H , 2E17.8)
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— 27 —
GEML



Linear Algebra PORT library

GELU February 11, 1993

GEML — matrix - vector multiplication

Pur pose: GEML (GEneral matrix MuL tiplication) forms the product Ax where A isageneral matrix.

Usage: CALL GEML(N, A, IA, X, B)
N — thelength of x
A — thearray, dimensioned (1A, KA) in the calling program,

wherelA = N and KA = N, containing the N x N coefficient matrix

1A — therow (leading) dimension of A, as dimensioned in
the calling program

X — thevector x to be multiplied
B ~ thevector Ax

Error situations:  (All errorsin this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error
1 N<1
2 IA <N

Double-precision version: DGEML with A, X, and B declared double precision.

Complex version: CGEML with A, X, and B declared complex

Time: N? additions
N2 multiplications

See also: GECE, GEDC, GELU, GELE, GESS

Author: Linda Kaufman
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SUBROUTI NE DET(N, A, | A, DETMAN, | DETEX)
Cc
C TH' S SUBROUTI NE COMPUTES THE DETERM NANT OF A
C THE RESULT | S G VEN BY DETMAN* BETA**| DETEX
C WHERE BETA | S THE BASE OF THE MACHI NE
C AND DETMAN | S BETVEEN 1/ BETA AND 1

c
INTEGER N, |A, | DETEX
I NTEGER E, | PO NT, |STKGT, |1MACH, ISIGN, |
| NTEGER | N( 1000)
REAL A(IA N), DETMAN, BETA, FLOAT, ONOVBE, M ABS
DOUBLE PREC! SI ON D{ 500)
COMMON / CSTAK/ D
EQUI VALENCE(D( 1), I N(1))
c
C ALLOCATE SPACE FROM THE STACK FOR THE PI VOT ARRAY
C
| POl NT=I STKGT(N, 2)
CALL GELU(N, A I A I N(I POINT), 0.0)
C

C THE DETERM NANT | S THE PRODUCT OF THE DI AGONAL ELENMENTS
C AND THE LAST ELEMENT OF THE | NTERCHANGE ARRAY
C VE TRY TO COMPUTE THI'S PRODUCT IN A WAY THAT WLL
C AVO D UNDERFLOW AND OVERFLOW
c
BETA=FLOAT( | 1MACH( 10))
ONOVBE=1. 0/ BETA
I'SIGN=l POINT + N-1
DETMAN=I N( | SI GN) * ONOVBE
| DETEX=1
DO 10 =1, N
CALL UMKFL(A(I,1),E M
DETMAN=DETMAN* M
| DETEX=I DETEX+E
| F( ABS( DETMAN) . GE. ONOVBE) GO TO 10
| DETEX=I DETEX- 1
DETMAN=DETMAN* BETA
10 CONTI NUE
RETURN
END
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Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-

ror Handling, Framework Chapter)

Number Error
1 N<1
2 IA<N
10 + k* singular matrix whose rank is at least k

Double-precision version: DGELU with A and EPS declared double precision

Complex version: CGELU with A declared complex

Storage:

Time:

Method:

See als0:

Author:

Example:

Linear Algebra

GELU

None
N3 N2 N o
- 4+ —
= 5 6 additions
N3 N2 N L .
—— — — + — multiplications
3 2 6 P
(N

2_
(N"-N) divisions
2
Gaussian elimination with partial pivoting
GEBS, GECE, GEDC, GEFS, GELE, GESS

Linda Kaufman

The following subroutine uses GELU to compute a determinant. The subroutine uses the
stack to obtain space for the integer vector INTER. Care is taken to avoid overflow and
underflow during the calculation. The subroutine UMKFL is used to decompose a floating
point number, F, into amantissa, M, and an exponent E such that

F = MbF

where b isthe base of the machineand /b<M < 1.
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Pur pose:

Usage:

Note 1:

Note 2:

Linear Algebra

GELE

GELU — LU decomposition of a general matrix

GELU (GEneral matrix LU decomposition) finds the LU decomposition of a dense genera
matrix using partial pivoting. It allows the user to specify a threshold for considering a ma-
trix singular. GELU is called by the LU decomposition routines GECE and GEDC.

CALL GELU (N, A, 1A, INTER, EPS)

N -

A -

INTER -

EPS -

the order of the matrix A

the array, dimensioned (IA, KA) in the calling program,
wherelA = N and KA = N, containing the N x N coefficient matrix

the LU decomposition of A (see Note2)

the row (leading) dimension of A, asdimensioned in
the calling program

an integer vector of length N recording row interchanges
performed during the decomposition (see Note 2)

if A =LU and Cuy, O< EPS, for some 1<k<N,
the matrix is considered singular.

After the execution of GELU, (if the matrix has not been found singular), the value of the de-
terminant is INTER(N) x A(L1,1) x A(2,2) x --- x A(N,N) where INTER(N) contains
the sign of the permutation (the number of row interchanges).

INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GELU, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.

Linear Algebra
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CALL GESS(N, AA, | A BB, | B, 1, COND)
TI MES=FLOAT( | LAPSZ(0) -1 T)/ 64. 0
| WRI TE=I 1MACH( 2)

WRI TE( | WRI TE, 31) N, COND

31 FORMAT(8H FOR N= , 14, 20H CONDI TI ON NUMBER = , E15. 7)
WRI TE(| WRI TE, 32) ERR
32 FORMAT( 30H MAXI MUM ERROR I N SOLUTION | S , F15.7)
WRI TE(| WRI TE, 33) TI ME
33 FORVAT(34H TIME IN M LLI SECONDS FOR GELE IS | F10. 2)
WRI TE( | WRI TE, 34) TI MES
34 FORMAT(34H TIME I N M LLI SECONDS FOR GESS | S |, F10. 2)
40 CONTI NUE
STOP
END

When the program above was run on the Honeywell 6000 machine at Bell Laboratories, the
following was printed.

FOR N= 10 CONDI TI ON NUMBER = 0. 1349031E 04
MAXI MUM ERROR I N SCLUTION | S 0. 0000003
TIME IN M LLI SECONDS FOR GELE | S 13. 27
TIME I N M LLI SECONDS FOR GESS | S 22.70
FOR N= 50 CONDI TI ON NUMBER = 0. 1674143E 06
MAXI MUM ERRCR I N SCLUTION | S 0. 0000704
TIME IN M LLI SECONDS FOR GELE | S 499. 30
TIME IN M LLI SECONDS FOR GESS | S 597.75
FOR N= 90 CONDI TI ON NUMBER = 0. 9745692E 06
MAXI MUM ERROR I N SCLUTION | S 0. 0005805

TIME I N M LLI SECONDS FOR GELE IS 2602. 00
TIME IN M LLI SECONDS FOR GESS | S 2919. 06

Linear Algebra
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Secondly, the example illustrates the increase of the error in the solution as the condition
number grows. Notice that as the condition number increases from 1.3 x 10° to 1 x 108,
the error in the solution growsfrom 3 x 1077 to 6 x 1074,
The N x N matrix used in the example
g = Hi-i foris]
ogi-j + 1forizj
becomes more ill-conditioned as N increases. The right-hand side was chosen to make the
solution vector al 1's, and the maximum error is computed as mlaxQ((I) - 1.0gfor the so-
[ution, X.
The timing subroutine, ILAPSZ, on the Honeywell 6000 system has about 1% accuracy.
INTEGER I A, IB, I1MACH, N, I, J, IT, ILAPSZ, IWRITE
REAL A(100, 100), AA(100, 100), B(100), BB(100)
REAL SUM ERR, COND, ABS, TIME TIMES, ANMAX1
| A=100
I B =100
C
C GENERATE THE MATRI X AND Rl GHT- HAND S| DE
C
DO 40 N=10, 90, 40
DO 20 1=1,N
SUMEO. 0
DO 10 J=1,N
A(l, J)=ABS(1-J)
IF (1.GEJ) A(I,J)=A(1,J) + 1.0
AA(L, J)=A(1,J)
SUMESUM + AA(1, J)
10 CONTI NUE
B(1)=SUM
BB(1) =SUM
20 CONTI NUE
C
C CALL GELE AND TIME IT
I T =l LAPSZ(0)
CALL GELE(N, A IA B, 1B,1)
TI ME=FLOAT(| LAPSZ(0)-1T)/64.0
C
C COVPUTE THE MAXI MUM ERRCR
C
ERR=0. 0
DO 30 1=1,N
ERR=AMAX1( ERR, ABS(B(!)-1.0))
30 CONTI NUE
C
C CALL GESS
C
I T =l LAPSZ(0)
Linear Algebra
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Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-

ror Handling, Framework Chapter)

Number Error
1 N<1
2 IA<N
3 IB<N
4 NB<1
10 + k* singular matrix whose rank is at least k

Double-precision version: DGELE with A and B declared double precision

Complex version: CGELE with A and B declared complex

Storage:

Time:

Method:

See als0:

Authors:

Example:

Linear Algebra

GELE

N integer locations of scratch storage in the dynamic storage stack

N3/3 + N2/2 + N/6 + NBx(N?-N) additions
N3/3-N2/2 + N/6 + NBx(N2-N) multiplications
(N2-N)/2 + NxNB divisions

Gaussian elimination with partial pivoting.
GELE calls GEDC, GEFS, and GEBS.

GEBS, GECE, GEDC, GEFS, GELU, GESS

Linda Kaufman and Doris Ryan

Two things are illustrated in the following example. First, the relative efficiencies of GELE
and GESS are compared as a function of the size of the system. The example indicates that
the extra cost associated with computing the condition number (GESS) decreases as the size
of the system increases. When N = 90, GELE isonly about 10% faster that GESS. For small
systems with one right-hand side, however, GESS takes almost twice the time required by
GELE.
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Pur pose:

Usage:

Note 1:

Note 2:

Linear Algebra

GEFS

GELE — general linear system solution

GELE (GEneral Linear Equation solution) solves the system AX = B where A is adense gen-
eral matrix.
CALL GELE (N, A, 1A, B, 1B, NB)

N — the number of equations

A — thearray, dimensioned (1A, KA) in the calling program,

wherelA = N and KA = N, containing the N x N coefficient matrix
A isoverwritten during the solution.

1A — therow (leading) dimension of A, as dimensioned in the
calling program
B — thematrix of right-hand sides, dimensioned (1B, KB) in

the calling program, where IB = N and KB = NB

« thesolution X

IB — therow (leading) dimension of B, as dimensioned in the
calling program
NB — the number of right-hand sides

Unless the given matrix, A, is known in advance to be well-conditioned, the user should use
GESS instead of GELE.

Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should not use GELE, but should call subpro-
grams GEDC, GEFS and GEBS. (See the example in GEDC.) GEDC is called once to get
the LU decomposition (see the introduction to this chapter) and then the pair, GEFS (forward
solve) and GEBS (back solve), is caled for each new right-hand side.

Linear Algebra
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Example:

Linear Algebra

GEFS

In this example we give a general outline of a program to solve a sequence of problems with

the same coefficient matrix but different right-hand sides.

The call to GEDC computes the LU decomposition of the matrix A. This decomposition can
be then used repeatedly (and efficiently) for the sequence of forward solutions (using GEFS)

and back solutions (using GEBS) for each set of right-hand sides.

10

declare matrix with | eading dinmension | A
decl are right-hand side vector

decl are integer vector |INTER

assign appropriate values to N and | A
conpute or read in the coefficient matrix
CALL GEDC(N, A, | A, | NTER)

conpute a right-hand side

CALL GEFS(N, A, I
CALL GEBS(N, A, I

A B, N, 1, | NTER)
A B, N, 1)

if sequence of problens is not finished go to 10

PORT library

February 11, 1993
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Error situations:  (All errorsin this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error
1 N<1
2 IA<N
3 IB<N
4 NB<1
5 elements of INTER out of range

Double-precision version: DGEFSwith A and B declared double precision

Complex version: CGEFSwith A and B declared complex

Storage: None

Time: (N?-N) x NB/2 additions
(N?2=N) x NB/2 multiplications

See also: GEBS, GECE, GEDC, GELE, GELU, GESS

Author: Linda Kaufman

Linear Algebra
— 17—
GEFS
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GEDC February 11, 1993

GEFS — lower (unit) triangular linear system solution

Pur pose: GEFS (GEneral matrix Forward-Solve) solves AX = PB where A is a unit lower triangular
matrix, (i.e. 1's on the diagonal), and P is a permutation matrix. It can be used for the for-
ward solution phase of a general linear system solver. (It isused in this way by the routines

GESSand GELE.)
Usage: CALL GEFS(N, A, 1A, B, IB, NB, INTER)

N — the number of equations

A — thearray, dimensioned (1A, KA) in the calling program,
wherelA = N and KA = N, containing the N x N coefficient matrix
The upper triangular portion of A(including the main diagonal) is not
used or changed.

1A — therow (leading) dimension of A, as dimensioned in the
calling program

B — thematrix of right-hand sides, dimensioned (1B, KB) in

the calling program, where IB > N and KB = NB

« thesolution X

IB — therow (leading) dimension of B, as dimensioned in the
calling program
NB — the number of right-hand sides
INTER —, the integer vector of length N recording interchanges performed in

GELU, GEDC, or GECE. To solve aunit lower triangular system, set
INTER(J) =J,J=1,....N.

Note 1: GEFS and GEBS can be used directly on the output matrix produced by GEDC, GELU, or
GECE to solve agenera linear system.

Note 2: Users who have to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides, not all known in advance, should not call GESS or GELE repeatedly,
but should use the sequence shown in the example on page 3.

Linear Algebra
— 16—
GEFS
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Linear Algebra

February 11, 1993 GEDC
In the code below, X, isleftinthearray B, and X, isleftinthearray B, .
I NTEGER | NTER(200), I, J, N
REAL C(200, 200), D(200), E(200), F(200, 200)
REAL TEMP(200), BL(200), BU(200)
N=200
code for filling in C D E F,BL, and BU bel ongs here
C DO AN LU DECOMPOSI TION OF C
CALL GEDC(N, C, 200, | NTER)
C
C FORMF - EC(INVERSE)D IN F
C
DO 30 J=1, N
DO 10 1=1,N
TEMP(1) =0
10 CONTI NUE
TEMP(J) =D( J)
CALL GEFS(N, C, 200, TEMP, 200, 1, | NTER)
CALL GEBS(N, C, 200, TEMP, 200, 1)
C TEMP CONTAINS THE JTH COLUWN OF
C C( 1 NVERSE) D
DO 20 1=1,N
F(l,J)=F(1,J3) - E(I)*TEMP(I)
20 CONTI NUE
30 CONTI NUE
C
C FORM BL - EC(| NVERSE) BU
C
DO 40 1=1,N
TEMP( 1) =BU(I)
40 CONTI NUE
CALL GEFS(N, C, 200, TEMP, 200, 1, | NTER)
CALL GEBS(N, C, 200, TEMP, 200, 1)
DO 50 1=1,N
BL(1)=BL(I) - E(1)*TEMP(I)
50 CONTI NUE
C
C SOLVE FOR LOAER PART OF X
C
CALL GELE(N, F, 200, BL, 200, 1)
C
C FORM RI GHT HAND SI DE TO SOLVE FOR UPPER PART OF X
C
DO 60 1=1,N
BU(1)=BU(I) - D(1)*BL(I)
60 CONTI NUE
C
C SOLVE FOR UPPER PART OF X
C
CALL GEFS(N, C, 200, BU, 200, 1, | NTER)
CALL GEBS(N, C, 200, BU, 200, 1)
Linear Algebra
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However, if C™* exists then one can solve AX =B using the fact that

& pU 0O o & D O
0=0_, 00 .0
F EC' 1 9 F-EC™'DQ

If Bis partitioned into

where B, has length n, then, applying the inverse,

~1
01 o' 0 o
D -1 D - D -1 I:l [l
EC™ Ig TEC™ I

to AX =B, we see that X isthe solution to

Uc D U U By U
0 LL0X =0 1 O
00O F-ECDg ML - EC "By

Finally, if X is partitioned into

D(UD
X = O—0

e

where X, has length n, then X can be found by the following algorithm:

(1) replace F by F —~EC™1D

(2) replace B, by B, ~EC™1B,
(3) &)lVeFXL = BL

(4) replace By by By — DX,
(5) &)lVeCXU = BU

PORT library

February 11, 1993

Of course in steps (1) and (2) we do not form C™ explicitly, but solve a system of equations
with C as the coefficient matrix. Thus steps (1),(2), and (5) solve systems with the same
coefficient matrix but different right-hand sides. Moreover, the right-hand side for step (5) is
not known until after the first two systems have been solved so that GELE, the general linear
equation solver, cannot be used to solve all three simultaneously. The correct approach is to
compute the LU factorization of C once, and to use it three times. Then subroutine GEFS

forward solves with the L portion and GEBS back solves with the U portion.

— 14—
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Linear Algebra

Complex version: CGEDC with A declared complex

Storage:

Time:

Method:

See als0:

Author:

Example:

None
NE N2 N o

+ — + — additions
3 2 6 .
N3 N2 N L
— ——— + — multiplications
3 2 6 P

2_
M divisions

Gaussian elimination with partial pivoting. GEDC calls GELU after setting EPS = [TA[TE,
where € is machine precision, i.e. the value returned by RIMACH(4) (or, for double preci-
sion, by DIMACH(4)).

GEBS, GECE, GEFS, GELE, GELU, GESS
Linda Kaufman

In this example, weillustrate, for a special case, how the building blocks, GEDC, GEFS and
GEBS of our linear equation solver can be used to circumvent alimitation in memory space.

We consider amatrix A which has the special form

& pU

T

where C and F aredense n x n matrices, and D and E are n x n diagonal matrices. (Thus D
and E can be stored in vectors of length n.) If nis 200, and the problem is to be solved on a
computer with only 100K words of data space, the set of linear equations cannot be solved by
either the general subprogram GELE or the band package, BALE, because too much addi-
tional storage would be required. The sparse matrix package is also eliminated because those
subroutines demand additional storage for additional column indices for each nonzero ele-
ment.

GEDC

Linear Algebra

GEDC
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PORT library

February 11, 1993

GEDC — LU decomposition of a general matrix

GEDC (GEneral matrix DeComposition) computes the LU decomposition of a dense general
matrix using partia pivoting. It is called by GELE as the first step of the solution of a general
linear system.

CALL GEDC (N, A, IA,INTER)
N _, theorder of the matrix A

A —, thearray, dimensioned (IA, KA) in the calling program, where IA > N
and KA = N, containing the N x N coefficient matrix

« the LU decomposition of A (see Note)

1A — therow (leading) dimension of A, as dimensioned in
the calling program

INTER « aninteger vector of length N recording row interchanges performed
during the decomposition (see Note)

INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GEDC, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-

ror Handling, Framework Chapter)

Number Error
1 N<1
2 IA<N
10 + k* singular matrix whose rank is at least k

Double-precision version: DGEDC with A declared double precision

GECE
Pur pose:
Usage:
Note:
Linear Algebra

GEDC
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February 11, 1993 GECE

The first solution above is inaccurate, as would have been expected from the estimate of the condi-
tion number for the matrix. The iterative refinement algorithm successfully improved the solution to
this problem because the matrix and the right-hand side could be represented exactly in the machine.
(Also the condition number was not high.) Often the input matrix cannot be represented exactly and
the iterative refinement algorithm produces a very accurate, but worthless, solution to a dlightly in-
correct problem.

Linear Algebra
— 11—
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GECE February 11, 1993

ESTI MATED CONDI TI ON NUMBER OF THE MATRI X A,
USI NG ONE CALL TO GECE = 0. 7263499E 07

THE FI RST SOLUTI ON X,
(USI NG CALLS TO GECE, CEFS, AND GEBS) =

-5.9872369
—4.9984942
-8.0019742

4.9995200
—-6.9999477

THE RESIDUAL R = B

AX =

0.0000020
—0.0000190
0.0000215
—0.0000073
—0.0000473

THE NEW SCLUTION X = X + DELTA X =

—6.0000002
—5.0000000
—7.9999999

5.0000000
—7.0000000

THE RESIDUAL R = B

AX =

0.0000001
-0.0000001
-0.0000004

0.0000026
-0.0000011

THE NEW SOLUTI ON X

X + DELTA X =

—6.0000000
—5.0000000
—8.0000000

5.0000000
—7.0000000

Linear Algebra
— 10—
GECE



PORT library Linear Algebra

February 11, 1993 GECE
c
VR TE( | WRI TE, 71)
71 FORMAT(/ 36H THE NEW SOLUTION X = X + DELTA X =)
c
C DETERM NE NORM OF CORRECTI ON AND ADD | N CORRECTI ON
c
RNORME0. 0
DO 80 I=1, N
B(1) = B(I) + R(I)
RNORMERNORM + ABS(R(1))
80 WRI TE( | WRI TE, 51) B(I)
c
C TEST FOR CONVERGENCE
C

| F(RNORM LT. RLMACH( 4) (BNORM) GO TO 100
90 CONTI NUE
VR TE(| WRI TE, 91)
91 FORMAT(/29H | TERATI VE | MPROVEMENT FAI LED)
100 CONTI NUE
STOP
END

For the input matrix

3. -6 18. -15. -18.
7. 2. =15, 273 174.
-9. 50. -18. 173. 1667.

with the following right-hand side:

78.
-320.
-81.
215.
—-10856.

the following results were obtained on the Honeywell 6000 computer at Bell Labs:

Linear Algebra

GECE
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OO0

[eNeNe]

OO0

[eNeNe]

[eNeNe]

PORT library

February 11, 1993

SAVE THE MATRI X AND RI GHT- HAND SI DE (WHI CH W LL BE OVERWRI TTEN)

30
40

DO 40 1=1,N
SAVEB( 1) =B(I)
DO 30 J=1, N
SAVEA( 1, J)=A(1, J)
CONTI NUE

SOLVE AX = B USI NG SEPARATE CALLS TO GECE, CEFS, GEBS

41

42

43

44

45

CALL GECE(N, A, I A | NTER, COND)

| WRI TE=I 1MACH( 2)

| F (COND. GE. 1. 0/ RLMACH(4)) WRI TE(| VRl TE, 41)

FORMAT( 49H CONDI TI ON NUMBER HI GH, ACCURATE SOLUTI ON UNLI KELY)

CALL GEFS(N, A I A B, | B, NB, | NTER)

CALL GEBS(N, A I A B, 1B, NB)

VR TE( | VRl TE, 42)

FORMAT( 44H ESTI MATED CONDI TI ON NUMBER OF THE MATRI X A,)
VR TE( | WRI TE, 43) COND

FORMAT(27H USI NG ONE CALL TO GECE = , E15. 7)

BNORME=0. 0

VR TE( | WRI TE, 44)

FORMAT(/ 22H THE FI RST SOLUTI ON X, )

VR TE( | WRI TE, 45)

FORMAT(41H (USI NG CALLS TO GECE, GEFS, AND GEBS) =)

COVPUTE NORM OF SOLUTI ON

50
51

DO 50 I=1,N
BNORMEBNORM + ABS(B(1))
VR TE( | WRI TE, 51) B(I)
FORMAT(1X, 5F20.7)

REFI NE THE SOLUTI ON DEPENDI NG ON THE LENGTH OF THE MANTI SSA

| END=I 1MACH( 11) O FI X( RLMACH( 5) / ALOGLO( 2. 0) + 1.0)
DO 90 | TER=1, | END

COVWPUTE RESIDUAL R = B - AX, | N DOUBLE PRECI SI ON

52

60

70

VR TE( | WRI TE, 52)
FORMAT(/ 27H THE RESIDUAL R = B - AX =)
DO 70 1=1,1A
DSDOT=0. 0
DO 60 J=1, N
DSDOT = DSDOT + DBLE(SAVEA(I, J)) B(J)
R(1) = SAVEB(I) - DSDOT
WRI TE( | WRI TE, 51) R(I)

SOLVE LU DELTA X) = R USING SEPARATE CALLS TO GEFS AND GEBS

CALL GEFS(N, A I A R | B, NB, | NTER)
CALL GEBS(N, A | A R | B, NB)

THE NEW SOLUTION X = X + DELTA X
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February 11, 1993

Example:

Linear Algebra

GECE
The example below is an encoding of the iterative refinement algorithm which can be used to
obtain a highly accurate solution to a system of linear equations with an ill-conditioned
coefficient matrix. If the condition number is not excessively high, the program usually re-
turns a solution that is accurate to the working precision of the machine.
Theiterative refinement algorithm is essentially:
(1) SolveAx=Db
(2) Settol=¢ 3 xiO
where € is the precision of the machine
(3) Computein double precision the residual
r=Ax-b
(4) SolveAdx=r
(5 Computenorm= % DX
(6) Setxtox+dx
(7) If norm<tol stop, elsereturnto step 3
In our code, step (1) is accomplished using the three lower-level subroutines GECE, GEFS,
and GEBS. The subroutine GECE factors A into LU where L is lower triangular and U is
upper triangular. Then GEFS forward solves with L and GEBS back solves with U. Since A
is overwritten by GECE and needed in step (3) of the algorithm, a copy of the A matrix is
saved. In step (4) the decomposition created earlier in GECE is reused and only GEFS and
GEBS are called. Since it is possible that the matrix is so ill-conditioned that the iterative
refinement algorithm will diverge, steps (3) through (7) in our code are performed only a
finite number of times. This number is chosen to be an upper bound on the number of bitsin
the mantissa of the floating-point number supported by the machine.
This algorithm is not yet included in PORT because the double-precision version of the pro-
gram would require the residuals to be computed in extended precision.
INTEGER N, |A 1B, NB, INTER(5), |READ, |1MACH
INTEGER I, J, IWRITE, ITER |END
REAL A(5, 5), SAVEA(5, 5), B(5), SAVEB(5), R(5)
REAL COND, BNORM RLMACH, ABS, RNORM
DOUBLE PRECI SI ON DSDOT
C
N=5
| A=5
| B=5
NB=1
| READ=I 1MACH( 1)
C
DO 10 1=1,N
10 READ(| READ, 11) (A(1,J),J3=1,N)
11 FORMAT( 1X, 5F8. 0)
DO 20 1=1,1B
20 READ( | READ, 21) B(1)
21 FORMAT( F8. 0)
Linear Algebra

GECE
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PORT library

February 11, 1993

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-

ror Handling, Framework Chapter)

Number Error
1 N<1
2 IA<N
10 + k* singular matrix whose rank is at least k

Double-precision version: DGECE with A and COND declared double precision

Complex version: CGECE with A declared complex

Storage:

Time:

Method:

See als0:

Authors:

Reference:

Linear Algebra

GECE

N real (double precision for DGECE, complex for CGECE) locations of scratch storage in
the dynamic storage stack

N 9 , 19 "
—— + =—N*“ + =N additions
3 "2 6 '

N3 5., .7 S
—— + =N + —N multiplications
3 2 6 P

2
NT + %N divisions

Gaussian elimination with partial pivoting.
See the reference below for the method used to estimate the condition number.
GECE calls GELU after setting EPSto 0.

GEBS, GEDC, GEFS, GELE, GELU, GESS
Doris Ryan and Linda Kaufman

Cline, A. K., Maler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SAM J. Numer. Anal. 16 (1979), 368-375.
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Pur pose:

Usage:

Note 1:

Note 2:

Linear Algebra

GEBS

GECE — LU decomposition of a general matrix with condition estimation

GECE (GEneral matrix Condition Estimation) gives a lower bound for the condition number
of areal general matrix A. It aso supplies the LU decomposition of the matrix A using par-
tial pivoting and may be used to replace GEDC or GELU in alinear equation package.

CALL GECE (N, A, IA, INTER, COND)
N _, theorder of the matrix A

A — thearray, dimensioned (1A, KA) in the calling program,
wherelA = N and KA = N, containing the N x N coefficient matrix

« the LU decomposition of A (see Note?2)

1A — therow (leading) dimension of A, as dimensioned in
the calling program

INTER « aninteger vector of length N recording row interchanges performed
during the decomposition (see Note 2)

COND « anestimate of the condition number of A (see Note 1)

The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d - log;0(COND) correct decimal digits. Thusif COND is greater than 1089, there may be
no correct digits.

INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GECE, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.

Linear Algebra

GECE
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INTEGER N, I, J, IWRITE, |1MACH
REAL A(15,15), B(15)
N=15
c
C FORM THE MATRI X AND SET THE RI GHT- HAND S| DE
C TO THE LAST COLUWN OF THE | DENTI TY MATRI X
DO 20 1=1,N
DO 10 J=I, N
A(l,J) =-1.0
10 CONTI NUE
A(l, 1) =1.0
B(I) =0.0
20 CONTI NUE
B(N)=1.0
C FIND THE LAST COLUWN OF THE | NVERSE MATRI X
CALL GEBS(N, A, 15, B, N, 1)
| WRI TE=I 1MACH( 2)
WRI TE(I WRI TE, 21) (1, B(1),1=1, N)
21 FORMAT(3H B(, I3, 3H )=, F15. 4)
STOP
END
Execution on the Honeywell 6000 computer at Bell Labs yields the result:
B( 1)= 8192.0000
B( 2)=  4096.0000
B( 3)= 2048.0000
B( 4)= 1024.0000
B( 5)= 512.0000
B( 6)=  256.0000
B( 7)=  128.0000
B( 8)= 64.0000
B( 9)= 32.0000
B(10)= 16.0000
B(11)= 8.0000
B(12)= 4.0000
B(13)= 2.0000
B(14)= 1.0000
B(15)= 1.0000
Linear Algebra

GEBS
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Complex version: CGEBSwith A and B declared complex
Storage: None
Time: (N2/2-N/2) x NB additions
(N?/2-N/2) x NB multiplications
N x NB divisions
See also: GECE, GEDC, GEFS, GELE, GELU, GESS
Author: Linda Kaufman
Example: Usually the subroutine GEBS is used as part of a package designed for general matrices asin
the example for GECE. However it may also be used to solve alinear system with atriangu-
lar matrix as in the following example. In this example the last column of the inverse of the
triangular matrix
1 -1 -1 . . . -1
1 -1 . . . -1
R
1 -1
1
is computed by setting the right-hand side to the vector (0, O, . . ., 0, 1).
Although the determinant of the matrix is 1, the inverse can have large off-diagonal elements.
In fact as the size of this matrix increases, the off-diagonal elements of the inverse increase
and the matrix becomes more ill-conditioned.
Linear Algebra
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GEBS — upper triangular linear system solution

Pur pose: GEBS (GEneral matrix Back-Solve) solves AX = B where A is an upper triangular matrix. It
can be used for the back solution phase of a general linear system solution. (It is used in this
way by the routines GESS and GELE.)

Usage: CALL GEBS(N, A, 1A, B, IB, NB)
N the number of equations
A the array, dimensioned (IA, KA) in the calling program,
where |A > N and KA = N, containing the N x N upper triangular ma-
trix
The strictly lower triangular portion of A is not
used or changed.
1A the row (leading) dimension of A, as dimensioned in the
calling program
B the matrix of right-hand sides, dimensioned (1B, KB) in
the calling program, where IB > N and KB = NB
the solution X
IB the row (leading) dimension of B, as dimensioned in the
calling program
NB the number of right-hand sides
Note: GEFS and GEBS can be used directly on the output matrix produced by GEDC, GELU, or

GECE to solve ageneral linear system.

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Double-precision version:

Linear Algebra

GEBS

Number Error
1 N<1
2 IA<N
3 IB<N
4 NB<1
10 + k* singular matrix with k™ diagonal element 0.0

DGEBSwith A and B declared double precision



GEBS
GECE
GEDC
GEFS
GELE
GELU
GEML
GENM
GESS

Appendix 1

GENERAL MATRICES

Back Solve

Condition Estimation
DeComposition
Forward Solve

Linear Equation solution
LU decomposition
MuLtiplication

NorM

System Solution



