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Let ∆b represent a perturbation in the right-hand side of a linear system.
If Ax = b then

A(x + ∆x) = b + ∆b

where

| |x | |
| | ∆x | |_ _____ ≤ K(A)



 | |b | |

| | ∆b | |_ _____



where K(A) is the condition number of A, K(A) = | |A | | | |A −1 | | and | | . | |, is some norm, e.g.,

| |x | | 1 =
i = 1
Σ
n

|x i | if x is a vector.

The methods used in our linear equation package are guaranteed to provide an accurate answer to a slightly
perturbed problem. If we assume that our method produces the correct answer to a problem where
| | ∆b | | ≤ ε | |b | | , where ε is the machine precision, then on the Honeywell 6000 where ε is about 10−8, a rel-
ative error for the above example of 2 × 10−5 would not be surprising.

In our example one may consider the first column of B as b in (1.1), and the second column of B as
b + ∆b, so that | | ∆b | |/ | |b | | is approximately .00015 using the | | . | | 1 norm. If we look at the second solution
as x + ∆x in (1.1) and the first solution as x, then | | ∆x | |/ | |x | | is approximately .07. Thus equation (1.1) in-
dicates that the condition number is at least 400, and the condition estimate, which at first appeared to be
conservative, was in fact quite realistic.
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For the input matrix given by:

1. −2. 3. 7. −9.
−2. 8. −6. 9. 50.
11. −6. 18. −15. −18.
7. 2. −15. 273. 173.

−9. 50. −18. 6. 1667.

and the following right-hand sides:

30. 29.419
−191. −190.994

133. 133.072
−986. −985.775

−6496. −6495.553

the following results were obtained on the Honeywell 6000 computer at Bell Labs:

AN ESTIMATE OF THE CONDITION NUMBER OF THE MATRIX = 0.2759414E 04
THE COMPUTED SOLUTION X IS

2.0000004 2.4800003
4.9999970 4.8709986
2.9999988 2.6439993

−1.0000001 −1.0320001
−3.9999999 −3.9970000

The true solution to this problem is:

2. 2.48
5. 4.871
3. 2.644

−1. −1.032
−4. −3.997

Notice that a seemingly slight change in the right-hand side causes the solution to change noticeably. Fur-
thermore, the relative error in the solution is about 2 × 10 − 7. On the Honeywell computer, which has
about 8 decimal digits for single-precision numbers, this represents the loss of about 1.5 decimal digits. A
loss of up to 2 × 10 − 5 could be expected in light of the analysis given below.
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See also: GEBS, GECE, GEDC, GEFS, GELE, GELU

Authors: Linda Kaufman and Doris Ryan

Reference: Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SIAM J. Numer. Anal. 16 (1979), 368-375.

Example: The following program solves a 5 × 5 system with two right-hand sides

INTEGER N, IREAD, I1MACH, I, NB, IWRITE, J
REAL A(5,5), B(5,2), COND
N=5
IREAD=I1MACH(1)

C
DO 10 I=1,N

READ(IREAD,1) (A(I,J),J=1,N)
1 FORMAT(1X,5F10.0)

10 CONTINUE
C

NB=2
DO 20 I=1,N

READ(IREAD,11) (B(I,J),J=1,NB)
11 FORMAT(1X,2F10.3)
20 CONTINUE

C
C SOLVE AX = B BY CALLING GESS
C

CALL GESS(N,A,N,B,N,NB,COND)
IWRITE=I1MACH(2)
WRITE(IWRITE,21) COND

21 FORMAT(52H AN ESTIMATE OF THE CONDITION NUMBER OF THE MATRIX =,
1 E14.7)

C
WRITE(IWRITE,22)

22 FORMAT(27H THE COMPUTED SOLUTION X IS,//)
DO 30 I=1,N

WRITE(IWRITE,23) (B(I,J),J=1,NB)
23 FORMAT(1H,5F20.7)
30 CONTINUE

C
STOP
END
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Note 2: Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should not use GESS, but should call subpro-
grams GECE, GEFS and GEBS. (See the example of GEDC.) GECE is called once to get
the LU decomposition (see the introduction to this chapter) and then the pair, GEFS (forward
solve) and GEBS (back solve), is called for each new right-hand side.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

3 IB < N

4 NB < 1

10 + k* singular matrix whose rank is at least k

Double-precision version: DGESS with A, B, and COND declared double precision

Complex version: CGESS with A and B declared complex

Storage: N integer locations and
N real (double precision for DGESS, complex for CGESS) locations of scratch storage in the
dynamic storage stack

Time:
3

N3
___ + N2 × (

2
9_ _ + NB ) + N × (

6
19_ __ + NB ) additions

3
N3
___ + N2 × (

2
5_ _ + NB ) + N × (

6
7_ _ + NB ) multiplications

2
N2
___ + N × (

2
3_ _ + NB ) divisions

Method: Gaussian elimination with partial pivoting.
See the reference below for the method used to estimate the condition number.
GESS calls GECE, GEFS, and GEBS.
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GESS — general linear system solution with condition estimation

Purpose: GESS (GEneral System Solution) solves the system AX = B where A is a general matrix. An
estimate of the condition of A is provided.

Usage: CALL GESS (N, A, IA, B, IB, NB, COND)

N → the number of equations

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix
A is overwritten during the solution.

IA → the row (leading) dimension of A, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB ≥ N and KB ≥ NB

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

COND ← an estimate of the condition number of A (see Note 1)

Note 1: The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d − log 10 (COND) correct decimal digits. Thus if COND is greater than 10Bd P , there may be
no correct digits.

If the given matrix, A, is known in advance to be well-conditioned, then the user may wish to
use the routine GELE, which is a little faster than GESS. Ordinarily, however, the user is
strongly urged to choose GESS, and to follow it by a test of the condition estimate.
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CALL GEML(N,A,IA,B,X)
C
C MAKE COPY OF RIGHT HAND SIDE
C

CALL MOVEFR(N,X,B)
C
C SOLVE THE SYSTEM
C

CALL GELE(N,A,IA,B,N,1)
C
C COMPUTE THE RELATIVE ERROR AND THE RELATIVE RESIDUAL
C

CALL GEML(N,AA,IA,B,R)
ERR=0.0
DO 30 I=1,N

ERR=AMAX1(ERR,ABS(B(I)-FLOAT(I)))
R(I)=R(I)-X(I)

30 CONTINUE
XNORM=SAMAX(N,X,1)
RNORM=SAMAX(N,R,1)
RELERR=ERR/XNORM
RELRES=RNORM/(XNORM*GENM(N,AA,IA))
IWRITE=I1MACH(2)
WRITE(IWRITE,31)RELERR,RELRES

31 FORMAT(16H RELATIVE ERROR=,E15.5,19H RELATIVE RESIDUAL=,
1 E15.5)

STOP
END

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed:

RELATIVE ERROR= 0.13554E-06 RELATIVE RESIDUAL= 0.22987E-10

The condition number of the matrix(see the example in GELE) is about 105, and the machine
precision on the Honeywell computer is about 10 − 8. Thus even in the absence of roundoff er-
ror in GEML, a relative error of 10 − 3 would not be surprising. The relative error given
above is quite within reason. The relative residual, as promised, satisfies (1.1) even though
the problem is ill-conditioned.
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Time: N2 additions
N comparisons

See also: GEDC, GELU, GELE, GESS, GECE

Author: Linda Kaufman

Example: The subroutines in the PORT library for solving Ax = b are designed to return computed so-
lutions x such that the residual r = Ax − b satisfies

 A   x 
 r _ ____________ ≤ ε

where ε is the machine precision. In this example we show that if A is ill-conditioned, then
the computed solution need not be very close to the true solution even though equation (1.1)
is satisfied. The subroutine GENM is used to compute the left-hand side of (1.1). The matrix
in this example is given by

a i j =


 i − j + 1 for i≥ j

j − i for i < j

and the true solution is x i = i. The right hand side is generated using GEML and the com-
puted solution is obtained using GELE. The function SAMAX is used to compute the 1-norm
of a vector; i.e.

1≤i≤n
max x i 

INTEGER I, J, L, N, IA, IWRITE, I1MACH
REAL A(50, 50), AA(50, 50), B(50), X(50)
REAL RELERR, RELRES, XNORM, RNORM, ERR, R(50)
REAL GENM, SAMAX
IA = 50

C
C GENERATE MATRIX
C

N=50
DO 20 I=1,N

DO 10 J=I,N
A(I,J)=J-I
A(J,I)=J-I + 1
AA(I,J)=A(I,J)
AA(J,I)=A(J,I)

10 CONTINUE
B(I)=I

20 CONTINUE
C
C GENERATE RIGHT HAND SIDE
C
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GENM — norm of a general matrix

Purpose: GENM (GEneral matrix NorM) computes the norm of a general matrix A. The norm is

defined as
1 ≤ j ≤ n
max

i = 1
Σ
n

a i j 

Type: Real function

Usage: <answer> = GENM (N, A, IA)

N → the number of rows in A

A → the array, dimensioned (IA, KA) in the calling program, where IA ≥ N
and KA ≥ N, containing the N × N coefficient matrix

← the LU decomposition of A (see Note 2)

IA → the row (leading) dimension of A, as dimensioned in
the calling program

<answer> ←
1 ≤ j≤n
max

i = 1
Σ
n

a i j 

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

Double precision version: DGENM with A and DGENM declared double precision

Complex version: CGENM with A declared complex

Storage: None
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C COMPUTE THE RELATIVE ERROR
C

ERR=0.0
DO 40 I=1,N

ERR=ERR + ABS(B(I)-X(I))
40 CONTINUE

ERR=ERR/SASUM(N,X,1)
WRITE(IWRITE,41)ERR

41 FORMAT(19H RELATIVE ERROR IS ,1PE15.7)
WRITE(6,42)COND

42 FORMAT(21H CONDITION NUMBER IS ,1PE15.7)
STOP
END

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed:

TRUE SOLUTION COMPUTED SOLUTION
0.22925607E 00 0.22925687E 00
0.76687502E 00 0.76687336E 00
0.68317685E 00 0.68317838E 00
0.50919111E 00 0.50918986E 00
0.87455959E 00 0.87456071E 00
0.64464101E 00 0.64463982E 00
0.84746840E 00 0.84746962E 00
0.35396343E 00 0.35396226E 00
0.39889160E 00 0.39889258E 00
0.45709422E 00 0.45709377E 00
RELATIVE ERROR IS 1.9705190E-06
CONDITION NUMBER IS 1.3490306E 03

The condition number of the matrix and the precision of the Honeywell computer suggest
that even in the absence of roundoff error in GEML, a relative error of 10 − 5 would not be
surprising. The value computed above is quite reasonable.

Linear Algebra
— 28 —

GEML



-- --

PORT library Linear Algebra

February 11, 1993 GEML

Example: This example checks the consistency of GEML and GESS, the linear system solver.

First the example uses GEML to compute for a given vector x and matrix A, the vector
b = Ax .

Then the problem is inverted, i.e., GESS is used to find the vector x which satisfies

Ax = b

This x is then compared with the original vector. The 10×10 matrix A is chosen so that

a i j =


 i − j + 1 for i≥ j

j − i for i < j

The vector x is chosen randomly.

INTEGER I, J, IWRITE, I1MACH, N
REAL A(10, 10), X(10), B(10)
REAL ERR, SASUM, UNI, COND
N=10

C
C CONSTRUCT A MATRIX
C

DO 20 I=1,N
DO 10 J=I,N

A(I,J)=J-I
A(J,I)=J-I + 1

10 CONTINUE
20 CONTINUE

C
C CONSTRUCT A RANDOM VECTOR X
C

DO 30 I=1,N
X(I)=UNI(0)

30 CONTINUE
C
C FIND THE VECTOR B=AX
C

CALL GEML(N,A,10,X,B)
C
C SOLVE THE SYSTEM AX=B
C

CALL GESS(N,A,10,B,N,1,COND)
C
C PRINT THE COMPUTED AND TRUE SOLUTION
C

IWRITE=I1MACH(2)
WRITE(IWRITE,31)

31 FORMAT(34H TRUE SOLUTION COMPUTED SOLUTION)
WRITE(IWRITE,32)(X(I),B(I),I=1,N)

32 FORMAT(1H ,2E17.8)
C
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GEML — matrix - vector multiplication

Purpose: GEML (GEneral matrix MuLtiplication) forms the product Ax where A is a general matrix.

Usage: CALL GEML(N, A, IA, X, B)

N → the length of x

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix

IA → the row (leading) dimension of A, as dimensioned in
the calling program

X → the vector x to be multiplied

B ← the vector Ax

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

Double-precision version: DGEML with A, X, and B declared double precision.

Complex version: CGEML with A, X, and B declared complex

Time: N2 additions
N2 multiplications

See also: GECE, GEDC, GELU, GELE, GESS

Author: Linda Kaufman
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SUBROUTINE DET(N,A,IA,DETMAN,IDETEX)
C
C THIS SUBROUTINE COMPUTES THE DETERMINANT OF A
C THE RESULT IS GIVEN BY DETMAN*BETA**IDETEX
C WHERE BETA IS THE BASE OF THE MACHINE
C AND DETMAN IS BETWEEN 1/BETA AND 1
C

INTEGER N, IA, IDETEX
INTEGER E, IPOINT, ISTKGT, I1MACH, ISIGN, I
INTEGER IN(1000)
REAL A(IA, N), DETMAN, BETA, FLOAT, ONOVBE, M, ABS
DOUBLE PRECISION D(500)
COMMON /CSTAK/ D
EQUIVALENCE(D(1),IN(1))

C
C ALLOCATE SPACE FROM THE STACK FOR THE PIVOT ARRAY
C

IPOINT=ISTKGT(N,2)
CALL GELU(N,A,IA,IN(IPOINT),0.0)

C
C THE DETERMINANT IS THE PRODUCT OF THE DIAGONAL ELEMENTS
C AND THE LAST ELEMENT OF THE INTERCHANGE ARRAY
C WE TRY TO COMPUTE THIS PRODUCT IN A WAY THAT WILL
C AVOID UNDERFLOW AND OVERFLOW
C

BETA=FLOAT(I1MACH(10))
ONOVBE=1.0/BETA
ISIGN=IPOINT + N-1
DETMAN=IN(ISIGN)*ONOVBE
IDETEX=1
DO 10 I=1,N

CALL UMKFL(A(I,I),E,M)
DETMAN=DETMAN*M
IDETEX=IDETEX+E
IF(ABS(DETMAN).GE.ONOVBE) GO TO 10

IDETEX=IDETEX-1
DETMAN=DETMAN*BETA

10 CONTINUE
RETURN
END
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Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

10 + k* singular matrix whose rank is at least k

Double-precision version: DGELU with A and EPS declared double precision

Complex version: CGELU with A declared complex

Storage: None

Time:
3

N3
___ −

2
N2
___ +

6
N_ __ additions

3
N3
___ −

2
N2
___ +

6
N_ __ multiplications

2
( N2 − N )_ _______ divisions

Method: Gaussian elimination with partial pivoting

See also: GEBS, GECE, GEDC, GEFS, GELE, GESS

Author: Linda Kaufman

Example: The following subroutine uses GELU to compute a determinant. The subroutine uses the
stack to obtain space for the integer vector INTER. Care is taken to avoid overflow and
underflow during the calculation. The subroutine UMKFL is used to decompose a floating
point number, F, into a mantissa, M, and an exponent E such that

F = MbE

where b is the base of the machine and 1/b ≤ M < 1.
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GELU — LU decomposition of a general matrix

Purpose: GELU (GEneral matrix LU decomposition) finds the LU decomposition of a dense general
matrix using partial pivoting. It allows the user to specify a threshold for considering a ma-
trix singular. GELU is called by the LU decomposition routines GECE and GEDC.

Usage: CALL GELU (N, A, IA, INTER, EPS)

N → the order of the matrix A

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix

← the LU decomposition of A (see Note 2)

IA → the row (leading) dimension of A, as dimensioned in
the calling program

INTER ← an integer vector of length N recording row interchanges
performed during the decomposition (see Note 2)

EPS → if A = LU and u kk  < EPS, for some 1≤k≤N,
the matrix is considered singular.

Note 1: After the execution of GELU, (if the matrix has not been found singular), the value of the de-
terminant is INTER(N) × A(1,1) × A(2,2) × . . . × A(N,N) where INTER(N) contains
the sign of the permutation (the number of row interchanges).

Note 2: INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GELU, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.
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CALL GESS(N,AA,IA,BB,IB,1,COND)
TIMES=FLOAT(ILAPSZ(0)-IT)/64.0
IWRITE=I1MACH(2)
WRITE(IWRITE,31)N,COND

31 FORMAT(8H FOR N= ,I4,20H CONDITION NUMBER = ,E15.7)
WRITE(IWRITE,32)ERR

32 FORMAT(30H MAXIMUM ERROR IN SOLUTION IS ,F15.7)
WRITE(IWRITE,33)TIME

33 FORMAT(34H TIME IN MILLISECONDS FOR GELE IS ,F10.2)
WRITE(IWRITE,34)TIMES

34 FORMAT(34H TIME IN MILLISECONDS FOR GESS IS ,F10.2)
40 CONTINUE

STOP
END

When the program above was run on the Honeywell 6000 machine at Bell Laboratories, the
following was printed.

FOR N= 10 CONDITION NUMBER = 0.1349031E 04
MAXIMUM ERROR IN SOLUTION IS 0.0000003
TIME IN MILLISECONDS FOR GELE IS 13.27
TIME IN MILLISECONDS FOR GESS IS 22.70

FOR N= 50 CONDITION NUMBER = 0.1674143E 06
MAXIMUM ERROR IN SOLUTION IS 0.0000704
TIME IN MILLISECONDS FOR GELE IS 499.30
TIME IN MILLISECONDS FOR GESS IS 597.75

FOR N= 90 CONDITION NUMBER = 0.9745692E 06
MAXIMUM ERROR IN SOLUTION IS 0.0005805
TIME IN MILLISECONDS FOR GELE IS 2602.00
TIME IN MILLISECONDS FOR GESS IS 2919.06
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Secondly, the example illustrates the increase of the error in the solution as the condition
number grows. Notice that as the condition number increases from 1. 3 × 103 to 1 × 106,
the error in the solution grows from 3 × 10 − 7 to 6 × 10 − 4.

The N × N matrix used in the example

a i j =


 i − j + 1 for i≥ j

j − i for i < j

becomes more ill-conditioned as N increases. The right-hand side was chosen to make the
solution vector all 1’s, and the maximum error is computed as

I
maxX (I) − 1. 0, for the so-

lution, X.

The timing subroutine, ILAPSZ, on the Honeywell 6000 system has about 1% accuracy.

INTEGER IA, IB, I1MACH, N, I, J, IT, ILAPSZ, IWRITE
REAL A(100, 100), AA(100, 100), B(100), BB(100)
REAL SUM, ERR, COND, ABS, TIME, TIMES, AMAX1
IA=100
IB =100

C
C GENERATE THE MATRIX AND RIGHT-HAND SIDE
C

DO 40 N=10,90,40
DO 20 I=1,N

SUM=0.0
DO 10 J=1,N

A(I,J)=ABS(I-J)
IF (I.GE.J) A(I,J)=A(I,J) + 1.0
AA(I,J)=A(I,J)
SUM=SUM + AA(I,J)

10 CONTINUE
B(I)=SUM
BB(I)=SUM

20 CONTINUE
C
C CALL GELE AND TIME IT

IT =ILAPSZ(0)
CALL GELE(N,A,IA,B,IB,1)
TIME=FLOAT(ILAPSZ(0)-IT)/64.0

C
C COMPUTE THE MAXIMUM ERROR
C

ERR=0.0
DO 30 I=1,N

ERR=AMAX1(ERR, ABS(B(I)-1.0))
30 CONTINUE

C
C CALL GESS
C

IT =ILAPSZ(0)
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Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

3 IB < N

4 NB < 1

10 + k* singular matrix whose rank is at least k

Double-precision version: DGELE with A and B declared double precision

Complex version: CGELE with A and B declared complex

Storage: N integer locations of scratch storage in the dynamic storage stack

Time: N3/3 + N2/2 + N/6 + NB×(N2−N) additions
N3/3−N2/2 + N/6 + NB×(N2−N) multiplications
(N2−N)/2 + N×NB divisions

Method: Gaussian elimination with partial pivoting.
GELE calls GEDC, GEFS, and GEBS.

See also: GEBS, GECE, GEDC, GEFS, GELU, GESS

Authors: Linda Kaufman and Doris Ryan

Example: Two things are illustrated in the following example. First, the relative efficiencies of GELE
and GESS are compared as a function of the size of the system. The example indicates that
the extra cost associated with computing the condition number (GESS) decreases as the size
of the system increases. When N = 90, GELE is only about 10% faster that GESS. For small
systems with one right-hand side, however, GESS takes almost twice the time required by
GELE.
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GELE — general linear system solution

Purpose: GELE (GEneral Linear Equation solution) solves the system AX = B where A is a dense gen-
eral matrix.

Usage: CALL GELE (N, A, IA, B, IB, NB)

N → the number of equations

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix
A is overwritten during the solution.

IA → the row (leading) dimension of A, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB ≥ N and KB ≥ NB

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

Note 1: Unless the given matrix, A, is known in advance to be well-conditioned, the user should use
GESS instead of GELE.

Note 2: Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should not use GELE, but should call subpro-
grams GEDC, GEFS and GEBS. (See the example in GEDC.) GEDC is called once to get
the LU decomposition (see the introduction to this chapter) and then the pair, GEFS (forward
solve) and GEBS (back solve), is called for each new right-hand side.
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Example: In this example we give a general outline of a program to solve a sequence of problems with
the same coefficient matrix but different right-hand sides.

The call to GEDC computes the LU decomposition of the matrix A. This decomposition can
be then used repeatedly (and efficiently) for the sequence of forward solutions (using GEFS)
and back solutions (using GEBS) for each set of right-hand sides.

declare matrix with leading dimension IA
declare right-hand side vector
declare integer vector INTER
assign appropriate values to N and IA
.
compute or read in the coefficient matrix
.
CALL GEDC(N,A,IA,INTER)

10 compute a right-hand side

CALL GEFS(N,A,IA,B,N,1,INTER)
CALL GEBS(N,A,IA,B,N,1)

if sequence of problems is not finished go to 10
.
.
.
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PORT library Linear Algebra

February 11, 1993 GEFS

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

3 IB < N

4 NB < 1

5 elements of INTER out of range

Double-precision version: DGEFS with A and B declared double precision

Complex version: CGEFS with A and B declared complex

Storage: None

Time: ( N2 − N ) × NB / 2 additions
( N2 − N ) × NB / 2 multiplications

See also: GEBS, GECE, GEDC, GELE, GELU, GESS

Author: Linda Kaufman
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Linear Algebra PORT library

GEDC February 11, 1993

GEFS — lower (unit) triangular linear system solution

Purpose: GEFS (GEneral matrix Forward-Solve) solves AX = PB where A is a unit lower triangular
matrix, (i.e. 1’s on the diagonal), and P is a permutation matrix. It can be used for the for-
ward solution phase of a general linear system solver. (It is used in this way by the routines
GESS and GELE.)

Usage: CALL GEFS (N, A, IA, B, IB, NB, INTER)

N → the number of equations

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix
The upper triangular portion of A(including the main diagonal) is not
used or changed.

IA → the row (leading) dimension of A, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB ≥ N and KB ≥ NB

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

INTER → the integer vector of length N recording interchanges performed in
GELU, GEDC, or GECE. To solve a unit lower triangular system, set

INTER(J) = J, J = 1,...,N.

Note 1: GEFS and GEBS can be used directly on the output matrix produced by GEDC, GELU, or
GECE to solve a general linear system.

Note 2: Users who have to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides, not all known in advance, should not call GESS or GELE repeatedly,
but should use the sequence shown in the example on page 3.
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PORT library Linear Algebra

February 11, 1993 GEDC

In the code below, X U is left in the array B U and X L is left in the array B L .

INTEGER INTER(200), I, J, N
REAL C(200, 200), D(200), E(200), F(200, 200)
REAL TEMP(200), BL(200), BU(200)
N=200
.
code for filling in C,D,E,F,BL, and BU belongs here
.

C DO AN LU DECOMPOSITION OF C
CALL GEDC(N,C,200,INTER)

C
C FORM F - EC(INVERSE)D IN F
C

DO 30 J=1,N
DO 10 I=1,N

TEMP(I)=0
10 CONTINUE

TEMP(J)=D(J)
CALL GEFS(N,C,200,TEMP,200,1,INTER)
CALL GEBS(N,C,200,TEMP,200,1)

C TEMP CONTAINS THE JTH COLUMN OF
C C(INVERSE)D

DO 20 I=1,N
F(I,J)=F(I,J) - E(I)*TEMP(I)

20 CONTINUE
30 CONTINUE

C
C FORM BL - EC(INVERSE)BU
C

DO 40 I=1,N
TEMP(I)=BU(I)

40 CONTINUE
CALL GEFS(N,C,200,TEMP,200,1,INTER)
CALL GEBS(N,C,200,TEMP,200,1)
DO 50 I=1,N

BL(I)=BL(I) - E(I)*TEMP(I)
50 CONTINUE

C
C SOLVE FOR LOWER PART OF X
C

CALL GELE(N,F,200,BL,200,1)
C
C FORM RIGHT HAND SIDE TO SOLVE FOR UPPER PART OF X
C

DO 60 I=1,N
BU(I)=BU(I) - D(I)*BL(I)

60 CONTINUE
C
C SOLVE FOR UPPER PART OF X
C

CALL GEFS(N,C,200,BU,200,1,INTER)
CALL GEBS(N,C,200,BU,200,1)
.
.
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Linear Algebra PORT library

GEDC February 11, 1993

However, if C − 1 exists then one can solve AX = B using the fact that



E
C

F

D



=


EC − 1

I

I

0





0

C

F − EC − 1 D

D 



.

If B is partitioned into

B =


 B L

B U_ ___



where B U has length n, then, applying the inverse,



EC −1

I

I

0



−1

=


− EC −1

I

I

0



,

to AX = B, we see that X is the solution to



 0

C

F − E C −1 D

D 



X =


B L − E C −1 B U

B U 



Finally, if X is partitioned into

X =


 X L

X U_ ___



where X U has length n, then X can be found by the following algorithm:

(1) replace F by F − EC −1 D
(2) replace B L by B L − EC −1 B U

(3) solve FX L = B L

(4) replace B U by B U − DX L

(5) solve CX U = B U

Of course in steps (1) and (2) we do not form C −1 explicitly, but solve a system of equations
with C as the coefficient matrix. Thus steps (1),(2), and (5) solve systems with the same
coefficient matrix but different right-hand sides. Moreover, the right-hand side for step (5) is
not known until after the first two systems have been solved so that GELE, the general linear
equation solver, cannot be used to solve all three simultaneously. The correct approach is to
compute the LU factorization of C once, and to use it three times. Then subroutine GEFS
forward solves with the L portion and GEBS back solves with the U portion.
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PORT library Linear Algebra

February 11, 1993 GEDC

Complex version: CGEDC with A declared complex

Storage: None

Time:
3

N3
___ +

2
N2
___ +

6
N_ __ additions

3
N3
___ −

2
N2
___ +

6
N_ __ multiplications

2
( N2 − N )_ _______ divisions

Method: Gaussian elimination with partial pivoting. GEDC calls GELU after setting EPS = Aε,
where ε is machine precision, i.e. the value returned by R1MACH(4) (or, for double preci-
sion, by D1MACH(4)).

See also: GEBS, GECE, GEFS, GELE, GELU, GESS

Author: Linda Kaufman

Example: In this example, we illustrate, for a special case, how the building blocks, GEDC, GEFS and
GEBS of our linear equation solver can be used to circumvent a limitation in memory space.

We consider a matrix A which has the special form

A =


E
C

F

D



where C and F are dense n × n matrices, and D and E are n × n diagonal matrices. (Thus D
and E can be stored in vectors of length n.) If n is 200, and the problem is to be solved on a
computer with only 100K words of data space, the set of linear equations cannot be solved by
either the general subprogram GELE or the band package, BALE, because too much addi-
tional storage would be required. The sparse matrix package is also eliminated because those
subroutines demand additional storage for additional column indices for each nonzero ele-
ment.
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Linear Algebra PORT library

GECE February 11, 1993

GEDC — LU decomposition of a general matrix

Purpose: GEDC (GEneral matrix DeComposition) computes the LU decomposition of a dense general
matrix using partial pivoting. It is called by GELE as the first step of the solution of a general
linear system.

Usage: CALL GEDC (N, A, IA, INTER)

N → the order of the matrix A

A → the array, dimensioned (IA, KA) in the calling program, where IA ≥ N
and KA ≥ N, containing the N × N coefficient matrix

← the LU decomposition of A (see Note)

IA → the row (leading) dimension of A, as dimensioned in
the calling program

INTER ← an integer vector of length N recording row interchanges performed
during the decomposition (see Note)

Note: INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GEDC, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

10 + k* singular matrix whose rank is at least k

Double-precision version: DGEDC with A declared double precision

Linear Algebra
— 12 —

GEDC



-- --

PORT library Linear Algebra

February 11, 1993 GECE

The first solution above is inaccurate, as would have been expected from the estimate of the condi-
tion number for the matrix. The iterative refinement algorithm successfully improved the solution to
this problem because the matrix and the right-hand side could be represented exactly in the machine.
(Also the condition number was not high.) Often the input matrix cannot be represented exactly and
the iterative refinement algorithm produces a very accurate, but worthless, solution to a slightly in-
correct problem.
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Linear Algebra PORT library

GECE February 11, 1993

ESTIMATED CONDITION NUMBER OF THE MATRIX A,
USING ONE CALL TO GECE = 0.7263499E 07

THE FIRST SOLUTION X,
(USING CALLS TO GECE, GEFS, AND GEBS) =

−5.9872369
−4.9984942
−8.0019742

4.9995200
−6.9999477

THE RESIDUAL R = B − AX =

0.0000020
−0.0000190

0.0000215
−0.0000073
−0.0000473

THE NEW SOLUTION X = X + DELTA X =

−6.0000002
−5.0000000
−7.9999999

5.0000000
−7.0000000

THE RESIDUAL R = B − AX =

0.0000001
−0.0000001
−0.0000004

0.0000026
−0.0000011

THE NEW SOLUTION X = X + DELTA X =

−6.0000000
−5.0000000
−8.0000000

5.0000000
−7.0000000
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PORT library Linear Algebra

February 11, 1993 GECE

C
WRITE(IWRITE,71)

71 FORMAT(/36H THE NEW SOLUTION X = X + DELTA X = )
C
C DETERMINE NORM OF CORRECTION AND ADD IN CORRECTION
C

RNORM=0.0
DO 80 I=1,N

B(I) = B(I) + R(I)
RNORM=RNORM + ABS(R(I))

80 WRITE(IWRITE,51) B(I)
C
C TEST FOR CONVERGENCE
C

IF(RNORM.LT.R1MACH(4)∗BNORM) GO TO 100
90 CONTINUE

WRITE(IWRITE,91)
91 FORMAT(/29H ITERATIVE IMPROVEMENT FAILED)

100 CONTINUE
STOP
END

For the input matrix
1. −2. 3. 7. −9.

−2. 8. −6. 2. 50.
3. −6. 18. −15. −18.
7. 2. −15. 273. 174.

−9. 50. −18. 173. 1667.

with the following right-hand side:

78.
−320.
−81.
215.

−10856.

the following results were obtained on the Honeywell 6000 computer at Bell Labs:
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Linear Algebra PORT library

GECE February 11, 1993

C
C SAVE THE MATRIX AND RIGHT-HAND SIDE (WHICH WILL BE OVERWRITTEN)
C

DO 40 I=1,N
SAVEB(I)=B(I)
DO 30 J=1,N

30 SAVEA(I,J)=A(I,J)
40 CONTINUE

C
C SOLVE AX = B USING SEPARATE CALLS TO GECE, GEFS, GEBS
C

CALL GECE(N,A,IA,INTER,COND)
IWRITE=I1MACH(2)
IF (COND.GE.1.0/R1MACH(4)) WRITE(IWRITE,41)

41 FORMAT(49H CONDITION NUMBER HIGH,ACCURATE SOLUTION UNLIKELY)
C

CALL GEFS(N,A,IA,B,IB,NB,INTER)
C

CALL GEBS(N,A,IA,B,IB,NB)
WRITE(IWRITE,42)

42 FORMAT(44H ESTIMATED CONDITION NUMBER OF THE MATRIX A,)
WRITE(IWRITE,43) COND

43 FORMAT(27H USING ONE CALL TO GECE = ,E15.7)
BNORM=0.0
WRITE(IWRITE,44)

44 FORMAT(/22H THE FIRST SOLUTION X,)
WRITE(IWRITE,45)

45 FORMAT(41H (USING CALLS TO GECE, GEFS, AND GEBS) = )
C
C COMPUTE NORM OF SOLUTION
C

DO 50 I=1,N
BNORM=BNORM + ABS(B(I))

50 WRITE(IWRITE,51) B(I)
51 FORMAT(1X, 5F20.7)

C
C REFINE THE SOLUTION DEPENDING ON THE LENGTH OF THE MANTISSA
C

IEND=I1MACH(11)∗IFIX(R1MACH(5)/ALOG10(2.0) + 1.0)
DO 90 ITER=1,IEND

C COMPUTE RESIDUAL R = B - AX, IN DOUBLE PRECISION
C

WRITE(IWRITE,52)
52 FORMAT(/27H THE RESIDUAL R = B - AX = )

DO 70 I=1,IA
DSDOT=0.0
DO 60 J=1,N

60 DSDOT = DSDOT + DBLE(SAVEA(I,J))∗B(J)
R(I) = SAVEB(I) - DSDOT

70 WRITE(IWRITE,51) R(I)
C
C SOLVE LU∗(DELTA X) = R USING SEPARATE CALLS TO GEFS AND GEBS
C

CALL GEFS(N,A,IA,R,IB,NB,INTER)
CALL GEBS(N,A,IA,R,IB,NB)

C
C THE NEW SOLUTION X = X + DELTA X
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PORT library Linear Algebra

February 11, 1993 GECE

Example: The example below is an encoding of the iterative refinement algorithm which can be used to
obtain a highly accurate solution to a system of linear equations with an ill-conditioned
coefficient matrix. If the condition number is not excessively high, the program usually re-
turns a solution that is accurate to the working precision of the machine.

The iterative refinement algorithm is essentially:

(1) Solve Ax = b
(2) Set tol = ε Σ x i

where ε is the precision of the machine
(3) Compute in double precision the residual

r = Ax − b
(4) Solve A δx = r
(5) Compute norm = Σ δx i
(6) Set x to x + δ x
(7) If norm ≤ tol stop, else return to step 3

In our code, step (1) is accomplished using the three lower-level subroutines GECE, GEFS,
and GEBS. The subroutine GECE factors A into LU where L is lower triangular and U is
upper triangular. Then GEFS forward solves with L and GEBS back solves with U. Since A
is overwritten by GECE and needed in step (3) of the algorithm, a copy of the A matrix is
saved. In step (4) the decomposition created earlier in GECE is reused and only GEFS and
GEBS are called. Since it is possible that the matrix is so ill-conditioned that the iterative
refinement algorithm will diverge, steps (3) through (7) in our code are performed only a
finite number of times. This number is chosen to be an upper bound on the number of bits in
the mantissa of the floating-point number supported by the machine.

This algorithm is not yet included in PORT because the double-precision version of the pro-
gram would require the residuals to be computed in extended precision.

INTEGER N, IA, IB, NB, INTER(5), IREAD, I1MACH
INTEGER I, J, IWRITE, ITER, IEND
REAL A(5, 5), SAVEA(5, 5), B(5), SAVEB(5), R(5)
REAL COND, BNORM, R1MACH, ABS, RNORM
DOUBLE PRECISION DSDOT

C
N=5
IA=5
IB=5
NB=1
IREAD=I1MACH(1)

C
DO 10 I=1,N

10 READ(IREAD,11) (A(I,J),J=1,N)
11 FORMAT(1X,5F8.0)

DO 20 I=1,IB
20 READ(IREAD,21) B(I)
21 FORMAT(F8.0)
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Linear Algebra PORT library

GECE February 11, 1993

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

10 + k* singular matrix whose rank is at least k

Double-precision version: DGECE with A and COND declared double precision

Complex version: CGECE with A declared complex

Storage: N real (double precision for DGECE, complex for CGECE) locations of scratch storage in
the dynamic storage stack

Time:
3

N3
___ +

2
9_ _ N2 +

6
19_ __ N additions

3
N3
___ +

2
5_ _ N2 +

6
7_ _ N multiplications

2
N2
___ +

2
3_ _ N divisions

Method: Gaussian elimination with partial pivoting.
See the reference below for the method used to estimate the condition number.
GECE calls GELU after setting EPS to 0.

See also: GEBS, GEDC, GEFS, GELE, GELU, GESS

Authors: Doris Ryan and Linda Kaufman

Reference: Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SIAM J. Numer. Anal. 16 (1979), 368-375.
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PORT library Linear Algebra

February 11, 1993 GEBS

GECE — LU decomposition of a general matrix with condition estimation

Purpose: GECE (GEneral matrix Condition Estimation) gives a lower bound for the condition number
of a real general matrix A. It also supplies the LU decomposition of the matrix A using par-
tial pivoting and may be used to replace GEDC or GELU in a linear equation package.

Usage: CALL GECE (N, A, IA, INTER, COND)

N → the order of the matrix A

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N coefficient matrix

← the LU decomposition of A (see Note 2)

IA → the row (leading) dimension of A, as dimensioned in
the calling program

INTER ← an integer vector of length N recording row interchanges performed
during the decomposition (see Note 2)

COND ← an estimate of the condition number of A (see Note 1)

Note 1: The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d − log 10(COND) correct decimal digits. Thus if COND is greater than 10Bd P , there may be
no correct digits.

Note 2: INTER and the LU decomposition returned in A are suitable for input into GEFS and GEBS.
The LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix,
L is a unit lower triangular matrix, and U is an upper triangular matrix. On return from
GECE, U occupies the upper triangular portion of A, P can be obtained from INTER (see the
introduction to this chapter), and the elements of L appear permuted in the strictly lower tri-
angular portion of A. Since the diagonal elements of L are all 1, they are not stored.
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Linear Algebra PORT library

GEBS February 11, 1993

INTEGER N, I, J, IWRITE, I1MACH
REAL A(15,15), B(15)
N=15

C
C FORM THE MATRIX AND SET THE RIGHT-HAND SIDE
C TO THE LAST COLUMN OF THE IDENTITY MATRIX

DO 20 I=1,N
DO 10 J=I,N

A(I,J) = -1.0
10 CONTINUE

A(I,I) = 1.0
B(I) = 0.0

20 CONTINUE
B(N)=1.0

C FIND THE LAST COLUMN OF THE INVERSE MATRIX
CALL GEBS(N,A,15,B,N,1)
IWRITE=I1MACH(2)
WRITE(IWRITE,21)(I,B(I),I=1,N)

21 FORMAT(3H B(,I3,3H )=,F15.4)
STOP
END

Execution on the Honeywell 6000 computer at Bell Labs yields the result:

B( 1 )= 8192.0000
B( 2 )= 4096.0000
B( 3 )= 2048.0000
B( 4 )= 1024.0000
B( 5 )= 512.0000
B( 6 )= 256.0000
B( 7 )= 128.0000
B( 8 )= 64.0000
B( 9 )= 32.0000
B( 10 )= 16.0000
B( 11 )= 8.0000
B( 12 )= 4.0000
B( 13 )= 2.0000
B( 14 )= 1.0000
B( 15 )= 1.0000
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PORT library Linear Algebra

February 11, 1993 GEBS

Complex version: CGEBS with A and B declared complex

Storage: None

Time: ( N2 / 2 − N / 2 ) × NB additions
( N2 / 2 − N / 2 ) × NB multiplications
N × NB divisions

See also: GECE, GEDC, GEFS, GELE, GELU, GESS

Author: Linda Kaufman

Example: Usually the subroutine GEBS is used as part of a package designed for general matrices as in
the example for GECE. However it may also be used to solve a linear system with a triangu-
lar matrix as in the following example. In this example the last column of the inverse of the
triangular matrix

1 −1 −1 . . . −1
1 −1 . . . −1

1 . . . −1
. . . .

. . .
1 −1

1

is computed by setting the right-hand side to the vector (0, 0, . . . , 0, 1).

Although the determinant of the matrix is 1, the inverse can have large off-diagonal elements.
In fact as the size of this matrix increases, the off-diagonal elements of the inverse increase
and the matrix becomes more ill-conditioned.
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GEBS — upper triangular linear system solution

Purpose: GEBS (GEneral matrix Back-Solve) solves AX = B where A is an upper triangular matrix. It
can be used for the back solution phase of a general linear system solution. (It is used in this
way by the routines GESS and GELE.)

Usage: CALL GEBS (N, A, IA, B, IB, NB)

N → the number of equations

A → the array, dimensioned (IA, KA) in the calling program,
where IA ≥ N and KA ≥ N, containing the N × N upper triangular ma-
trix
The strictly lower triangular portion of A is not
used or changed.

IA → the row (leading) dimension of A, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB ≥ N and KB ≥ NB

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

Note: GEFS and GEBS can be used directly on the output matrix produced by GEDC, GELU, or
GECE to solve a general linear system.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 IA < N

3 IB < N

4 NB < 1

10 + k* singular matrix with k th diagonal element 0.0

Double-precision version: DGEBS with A and B declared double precision
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Appendix 1

GENERAL MATRICES

GEBS - Back Solve
GECE - Condition Estimation
GEDC - DeComposition
GEFS - Forward Solve
GELE - Linear Equation solution
GELU - LU decomposition
GEML - MuLtiplication
GENM - NorM
GESS - System Solution


