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WHEN M.= 2 THE CONDI TION NO. IS 6.1040422E 03
REL. ERROR IN THE FIRST SOLUTION IS 5. 0114468E- 07
REL. ERROR IN THE SECOND SOLUTION IS 6. 0025235E- 07

WHEN M= 3 THE CONDI TION NO. IS 5.9552785E 02
REL. ERROR IN THE FIRST SOLUTION IS 1. 2554228E- 07
REL. ERROR IN THE SECOND SOLUTION IS 1. 1807790E-07

WHEN M.= 4 THE CONDITION NO. IS 1.0581919E 07
REL. ERROR IN THE FIRST SOLUTION IS 5. 9645883E- 04
REL. ERROR IN THE SECOND SOLUTION IS 2. 1994722E- 03

WHEN ML= 5 THE CONDITION NO. IS 3.2465961E 04
REL. ERROR IN THE FI RST SOLUTION IS 2.4201348E- 06
REL. ERROR IN THE SECOND SOLUTION IS 7. 6222429E-07

WHEN M= 6 THE CONDI TION NO. IS 3.5264744E 07
REL. ERROR IN THE FIRST SOLUTION IS 4.2312816E- 04
REL. ERROR IN THE SECOND SOLUTION IS 2. 4684287E- 03

The above program certainly indicates that there is a correlation between the
relative errors in the solution and the condition number of the coefficient
matrix. Moreover it indicates that the relative error depends also on the
choice of the right-hand side. Although the relative errors for some of the
systens m ght appear quite large, they are not unreasonably large in light of
the foll owi ng anal ysi s:

Let Ab represent a perturbation in the right-hand side of a |inear system

(TAXT] Unbmy ,

If AXx = b then A(x+Ax) = b+Ab where ———— < K(A where K(A) is the
Or 8% om < A e *

condition number of A K(A) = DAD OA™*[J and O OJ is some norm e.g.,

XD, =

IX;|] if xis a vector.

M-

i=1

The methods used in our |inear equation package are guaranteed to provide an
accurate answer to a slightly perturbed problem [|f we assume that our method
produces the correct answer to a problem where [TAb] < e¢dblT] where € is the
machi ne precision, then on the Honeywel | 6000 where € is about 1078, a relative
error for the above probl em (when M.=6) of 3.5x10°' i s not surprising.
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Example: In this exanple several banded |inear systens are solved w th various nunber
of diagonals and two right-hand sides each. Estimates of the condition num
bers of the coefficient matrices are found and the relative errors in the so-
lution are calculated. In the exanple the nonzero elenments of the nmatrix are
given by a;=i+j For each matrix the 2xM.-1 min diagonals are nonzero. The
program fragment packing the matrix A into the array G uses the fact that
traversing a colum of G is equivalent to traversing a row of A The right-
hand sides are determned so that the elenents of the first solution are all
ones and the i™ element of the second solution is i. The subroutine BAM,
which multiplies a vector by a banded matrix packed appropriately into G is
invoked to conpute the right-hand sides.

INTEGER N, 1G M, M I, J, IWRITE, |1NACH
REAL (13, 80), B(80,2), X(80)
REAL START, FLOAT, ERR, ERR2, ABS, COND

1G=13
N=80
DO 60 M.=2, 6
c
C CONSTRUCT THE MATRI X A(I,J)=l+J AND PACK I T INTO G
c
ME2* ML- 1
START=- FLOAT( M M.)
DO 20 1=1,N
(1, 1) =START+FLOAT( 2*1)
IF(MEQ 1) GO TO 20
DO 10 J=2, M
G(J,1)=G(J-1,1)+1.
10 CONTI NUE
20 CONTI NUE
C CONSTRUCT FI RST RI GHT- HAND SIDE SO SOLUTION IS ALL 1S
DO 30 1=1,N
30 X(1)=1

CALL BAML(N, M, M G I G X, B)
C CONSTRUCT THE SECOND COLUMN SO X(1) =l
DO 40 1=1,N
40 X(1) =l
CALL BAML(N, M_,M G I G X, B(1,2))
C SOLVE THE SYSTEM
CALL BASS(N, M., M G I G B, 80, 2, COND)
C COVPUTE THE ERRCRS | N THE SOLUTI ON
ERR=0. 0
ERR2=0. 0
DO 50 1=1,N
ERR=ERR+ABS( B(1 , 1) - 1. 0)
ERR2=ERR2+ABS( B( | , 2) - FLOAT(1))
50 CONTI NUE
ERR=ERR/ FLOAT( N)
ERR2=ERR2/ FLOAT( N (N+1))*2. 0
| VRI TE=I 1MACH( 2)
VIR TE( | WRI TE, 51) M., COND

51 FORMAT(/ 9H WHEN M_=, 1 4, 21H THE CONDI TION NQ. | S, 1PE15. 7)
VR TE( | WRI TE, 52) ERR
52 FORMAT(38H REL. ERROR I N THE FIRST SOLUTION IS , 1PE15.7)
VR TE(| WRI TE, 53) ERR2
53 FORMAT(38H REL. ERROR | N THE SECOND SOLUTION IS , 1PE15. 7)
60 CONTI NUE
70 CONTI NUE
STOP
END

When the above program was executed on on the Honeywel|l 6000 conputer at Bell
Labs, the follow ng was printed.
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Note 2: Users who wish to solve a sequence of problens with the sane coefficient na-
trix, but different right-hand sides notall known in advance, shoul d not use BASS,
but should call subprograns BACE, BAFS and BABS. (See the exanple of BADC.)
BACE is called once to get the LU deconposition (see the introduction to this
chapter) and then the pair, BAFS (forward solve) and BABS (back solve), is
called for each new right-hand side.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an
asteri sk — see Error Handling, Franmewor k Chapter)
Nunber Error

1 N<1

2 M <1

3 M< M

4 IG< M

5 IB <N

6 NB < 1

10 + k* singular matri x whose rank is at |east k

Double-precision version: DBASS with G B, and COND decl ared doubl e preci sion.

Complex version: CBASS with G and B decl ared conpl ex

Storage: N integer locations and NxM. real (double precision for DBASS, conplex for
CBASS) | ocations of scratch storage in the dynam c storage stack

Time: at nost Nx(( ML+M-2) x( NB+1) +Mx( ML+5) +3) additi ons
at nost  Nx((ML+M-2) x( NB+1) +Mx( M.+2) +2) mnul tiplications
Nx( NB+M_+1) di vi si ons

Method: Gaussian elimnation with partial pivoting
See the reference below for the nmethod to estinmate the condition nunber.
BASS cal | s BACE, BAFS, and BABS

See also: BABS, BACE, BADC, BALU, BALE, BAFS
Author: Li nda Kauf man
Reference: Cline, A K, Mler, C B, Stewart, G W, and Wlkinson, J. H, An estimate

for the condition nunber, SAMJ. Numer.Anal.16 (1979), 368-375.
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Purpose:

Usage:

Note 1:

Linear Algebra

BASS —banded |inear systemsolution with condition estination

BASS (BAnded System Sol ution) solves AX=B where A is a general banded natrix.
An estinmate of the condition nunber of A is provided.

CALL BASS (N, M., M G IG B, IB, NB, COND

N —» the nunber of equations
M —» the nunber of nonzero bands on and bel ow t he di agonal of A
M — the nunber of nonzero bands of A
G —» a matrix into which the matrix A has been packed as fol-
| ows:
GM+j-i, i) = a

i.e. the leftnost band of Ais in the first rowof G

(See the introduction to this chapter.)

G should be dinmensioned (IGKG in the calling program
where | &M and KGN

Gis overwitten during the solution

I G —» the row (leading) dinension of G as dinmensioned in the
call'ing program

B —» the nmatrix of right-hand sides, dinensioned (1B, KB) in
the calling program where |B=N and KB=NB.

« the solution X

I B —» the row (leading) dinension of B, as dinensioned in the
calling program

NB —» the nunber of right-hand sides

COND « an estimate of the condition nunber of A (See Note1)

The condition nunber neasures the sensitivity of the solution of a |linear sys-
temto errors in the matrix and in the right-hand side. |If the elenents of
the matrix and the right-hand side(s) of your linear system have d decimal
digits of precision, the solution night have as few as d - log,,( COND) correct
decimal digits. Thus if COND is greater than 10%P, there may be no correct
digits.

If the given matrix, A, is known in advance to be well-conditioned, then the
user may wish to use the routine BALE, which is a little faster than BASS.
Odinarily, however, the user is strongly urged to choose BASS, and to follow
it by a test of the condition estimte.

BANM
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M IS 3
THE TRUE NORM=

M IS 4
THE TRUE NORM=

M IS 5
THE TRUE NORM=

M IS 6
THE TRUE NORM=

0. 78000E 03 COVMPUTED NORM-

0. 10780E 04 COVPUTED NORM-

0. 13680E 04 COVMPUTED NORM-

0. 16500E 04 COVPUTED NORM-

0. 78000E 03

0. 10780E 04

0. 13680E 04

0. 16500E 04
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Storage:

Time:

See also:

Author:

Example:

Linear Algebra

BANM
None
N x M addi tions
N conpari sons
BADC, BALU, BALE, BASS, BACE
Li nda Kauf man
In this exanple we verify the correctness of BANM by obtaining norns of five
matrices of various bandw dths whose nonzero elements are given by a; =i + j
For each matrix, the 2xM.-1 mmin diagonals are nonzero. The program fragnent
packing the matrix A into the array G uses the fact that traversing a colum
of Gis equivalent to traversing a row of A The extra values that get put
into G by the programare not referenced by BANM
I'n our exanple the norm conputed by BANMis conpared with the true norm known
to be Mx(N-M_+1) x2, which is obtained by summing the M elenments in colum
N-M_+1.
INTEGER IG M, M N I, J, IWRTE I|1MACH
REAL G(13, 80), START, BANM TRNORM
1613
N=80
DO 30 M.=2, 6
c
C CONSTRUCT THE MATRI X A(1,J)=I+J AND PACK I T INTO G
c
ME2* M- 1
START=- FLOAT( M M.)
DO 20 1=1,N
G 1, | ) =START+FLOAT(2*1)
DO 10 J=2, M
G(J,1)=G(J-1,1)+1.0
10 CONTI NUE
20 CONTI NUE
c
C PRINT OUT THE NORM CALCULATED FROM BANM AND THE TRUE NORM
c
TRNORMEM: (N- ML+1) * 2
| VRI TE=I IMACH( 2)
VR TE(| WRI TE, 21) M.
21 FORMAT(/6H M. 1S ,14)
WRI TE(| WRI TE, 22) TRNORM BANMN, M., M G, | §
22 FORMAT(15H THE TRUE NORM:, E15. 5, 15H COVPUTED NORVE, E15. 5)
30  CONTI NUE
STOP
END
When the above program was executed on the Honeywel| 6000 machine at Bell Lab-
oratories, the follow ng was printed
MIS 2
THE TRUE NORME  0.47400E 03 COVPUTED NORVE 0. 47400E 03
Linear Algebra
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BANM — norm of a banded unsynmetric nmatrix
Purpose: BANM (BAnded matrix NorM conputes the infinity norm of a general banded na-
n
trix A The infinity normis defined as max > [a;0
lsisnj=1
Type: Real function
Usage: <answer> = BANM (N, M, M G 1Q
N — the nunber of rows in A
M —» the nunber of nonzero bands on and bel ow t he di agonal of A
M —» the nunber of nonzero bands in A
G —» a matrix into which the matrix A has been packed as fol-
| ows:
G(M +j-i, i) = a
i.e. the leftnost diagonal of Ais inthe first rowof G
(See the introduction to this chapter.)
G should be dinensioned (IGKG in the calling program
where | GM and KGN
1G —» the row (leading) dinmension of G as dinmensioned in the
cal ling program
n
<answer > « max Y Og;0
1sisnj:1
Error situations: (Al errors in this subprogramare fatal —

see Error Handling, Framewor k Chapt er)

Nunmber

1

2

Error

N<1

M <1

M< M

IG< M

Double-precision version: DBANM wi th G and DBANM decl ared doubl e preci sion

Complex version: CBANM wi th G decl ared conpl ex

Linear Algebra
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When the above program was executed on the Honeywel| 6000 machine at Bell Lab-
oratories, which has a nachine precision of 1.x107% the follow ng was printed

TRUE SOLUTION  COVPUTED SOLUTI ON
0.22925607E 00  0.22925605E 00
0.76687502E 00 0. 76687499E 00
0.68317685E 00 0. 68317685E 00
0.50919111E 00 0. 50919110E 00
0.87455959E 00 0. 87455962E 00
0.64464101E 00 0. 64464102E 00
0.84746840E 00 0. 84746839E 00
0.35396343E 00 0. 35396345E 00
0.39889160E 00  0.39889155E 00
0.45709422E 00 0. 45709425E 00
RELATIVE ERROR |'S 3. 8447574E-08
CONDI TION NUMBER |'S 4. 3333333E 01
The condition nunber of the matrix and the precision of the Honeywell suggest
that even in the absence of roundoff error in BAM.,, a relative error of
4.3x1077 would not be surprising. The value conputed above is quite reason-
abl e.
Linear Algebra
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22

C COVPUTE

30

31

32

FORMAT( 1H , 2E17. 8)
THE RELATI VE ERROR

ERR=0. 0
DO 30 1=1,N
ERR=ERR+ABS(B(1)- X(1))
CONTI NUE
ERR=ERR/ SASUM N, X, 1)
VIR TE(| WRI TE, 31) ERR
FORMAT( 19H RELATI VE ERRCR IS , 1PE15. 7)
VR TE( | WRI TE, 32) COND
FORVAT( 20H CONDI TI ON NUMVBER | S, 1PE15. 7)
sTOP
END
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February 11, 1993



PORT library

February 11, 1993

Time:

See also:

Author:

Example:

Linear Algebra

BAML
MxN addi ti ons
MxN mul tiplications
BABS, BACE, BADC, BALU, BALE, BASS
Li nda Kauf nman
Thi s exanpl e checks the consistency of BAML and BASS t he banded system sol ver
First the exanple uses BAML to conpute for a given vector x and a given matrix
A the vector b = Ax. Then the problemis inverted, i.e., BASS is used to find
the vector x which satisfiesAx = b. This x is then conpared with the origi-
nal vector. The vector x is generated randomy and the 10x10 matrix A is
gi ven by
0o 1 2
1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1
2 1 0
INTEGER IG M M, N, |, IWRITE, |1NACH
REAL G(5,20), X(20), B(20), UNI, ERR SASUM ABS, COND
1G5
MES
N=10
M.=3
c
C CONSTRUCT THE A MATRI X AND PACK | T INTO G
c
DO 10 1=1,N
q1,1)=2.0
q2,1)=1.0
G(3,1)=0.0
Q(4,1)=1.0
Q5,1)=2.0
10 CONTI NUE
c
C CONSTRUCT A RANDOM VECTCR
c
DO 20 1=1,N
X(1)=UNI (0)
20 CONTI NUE
c
C CONSTRUCT B=AX
c
CALL BAML(N, M., M G I G X, B)
c
C SOLVE THE SYSTEM AX=B
c
CALL BASS(N, M., M G | G B, N, 1, COND)
c
C PRINT OUT THE TRUE SOLUTI ON AND THE COVPUTED SOLUTI ON
c
I VR TE=I 1IMACH( 2)
WRI TE(| WRI TE, 21)
21 FORMAT(34H TRUE SOLUTION  COMPUTED SOLUTI ON)
VR TE(I WRI TE, 22) (X(1), B(1),1=1, N)
Linear Algebra
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BAML —banded natrix - vector nultiplication
Purpose: BAML natrix (BAnded matrix MiLtiplication) forns the product Ax where A is a
general banded matrix stored in packed form
Usage: CALL BAML (N, M., M G IG X B)
N —» the order of the matrix A
M —» the nunber of nonzero bands on and bel ow t he di agonal of A
M — the nunber of nonzero bands of A
G —» a matrix into which the matrix A has been packed as fol-
| ows:
GM +j-i, i) = a
i.e. the leftnost band of Ais in the first rowof G
(See the introduction to this chapter.)
G should be dinmensioned (IGKG in the calling program
where | &M and KGN
I G —» the row (leading) dinension of G as dinmensioned in the
calling program
X _» the vector x to be nmultiplied
B « the vector Ax
Error situations: (Al errors in this subprogramare fatal —
see Error Handling, Framewor k Chapter)
Nunber Error
1 N<1
2 M <1
3 M< M
4 IG< M
Double-precision version: DBAML with G X, and B decl ared doubl e precision
Complex version: CBAML with G X, and B decl ared conpl ex
Storage: None
Linear Algebra

BAML

— 24—



PORT library

February 11, 1993

Author:

Example:

Linear Algebra

BALU
Li nda Kauf man
The program bel ow conputes the determnant of a band matrix stored in G in
packed form  After the call to BALU the determinant is just INT(N) x the
product of the elements in the first row of G Since the subroutine BADET re-
quires the user to provide only the space needed to hold the original matrix,
it uses the stack nechanism provided in PORT to get the extra space needed by
BALU. The subroutine tries to avoid underflow and overflow during the cal cu-
lation. The subroutine UWFL is used to deconpose a floating-point nunber, F,
into a mantissa, S, and an exponent E such that F = Sb® where b is the base
of the machine and 1/b < [BO< 1
SUBROUTI NE BADET(N, M., M A, | A, DETMAN, | DETEX)
c
C THI'S SUBROUTI NE COMPUTES THE DETERM NANT OF A
C BANDED NMATRI X STORED | N PACKED FORM I N A
C THE DETERM NANT |'S COMPUTED AS DETMAN* BETA* * | DETEX,
C WHERE BETA |'S THE BASE OF THE MACH NE AND
C DETMAN | 'S BETVEEN 1/ BETA AND 1 | N ABSOLUTE VALUE
c
INTEGER M., M N, IA, |DETEX
INTEGER E, |SPAC, |ALOW ISTKGT, ISIGN, INTER I, MJ
I NTEGER | N( 1000)
REAL A(IA, 1), DETMAN, BETA, ONOVBE, S
REAL R(1000)
DOUBLE PRECI S| ON D( 500)
COMMON / CSTAK/ D
EQUI VALENCE( (1), R(1)), (D(1), I N(1))
c
C ALLOCATE SPACE FROM THE STACK FCR THE PI VOT ARRAY
C AND THE EXTRA SPACE TO HOLD THE LOWER TRI ANGLE
c
| SPAC=(M.- 1) *N
| ALOWEI STKGT( | SPAC, 3)
| NTER=I STKGT(N, 2)
CALL BALU(N, M., M A, | A, R(I ALOW, M.- 1, | N(I NTER) , MJ, 0. 0)
c
C THE DETERM NANT |'S THE PRODUCT OF THE ELEMENTS OF
C RON1 OF A TIMES THE LAST ELEMENT I N THE ARRAY | NTER
C VE TRY TO COVPUTE THI'S PRODUCT I N A WAY THAT WLL
C AVO D UNDERFLOW AND OVERFLOW
c
BETA=FLOAT( | LMACH( 10))
ONOVBE=1. 0/ BETA
I'SI G\El NTER#N- 1
DETMAN=I N( | SI GN) * ONOVBE
| DETEX=1
DO 10 1=1,N
CALL UWKFL(A(1,1),E, S)
DETMAN=DETMAN* S
| DETEX=I DETEX+E
I'F (ABS(DETMAN) . GE. ONOVBE) GO TO 10
| DETEX=I DETEX- 1
DETMAN=DETMAN* BETA
10 CONTI NUE
CALL | STKRL(2)
RETURN
END
Linear Algebra
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Note 1: After execution of BALU, (if the matrix is not found to be singular), the
value of the determinant is INTER(N x (1,1) x 1,2) x . . . x 1,N.

I NTER(N) contains the sign of the pernutation.

Note 2: After execution of BALU, the arrays INTER and AL are suitable for input into
the forward solve subroutine BAFS and G is suitable for input into the back
sol ve subroutine BABS. The LU deconposition of A satisfies the equation PA=LU
where P is a permutation matrix, L is a unit lower triangular matrix and Uis
an upper triangular matrix. On return from BALU the element u; is contained
in j-i+l,i), so that the main diagonal occupies the first row of the G na-
trix, the first super diagonal occupies the second row, etc. The matrix P can
be obtained from INTER (see the introduction to this chapter), and the i" col -
um of the L matrix appears pernuted in the i™ colum of the AL array. Since
the diagonal elenments of L are all 1, they are not stored.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an
asteri sk — see Error Handling, Franmewor k Chapter)
Nunber Error
1 N<1
2 M <1
3 M< M
4 IG< M
5 IAL <M -1
10 + k* singular matri x whose rank is at |east k

Double-precision version: DBALU with G AL and EPS decl ared doubl e preci sion.

Complex version: CBALU with G and AL decl ared conpl ex
Storage: None
Time: Nx( M.-1) di vi sions

(M-1) xNx( M-M_) <rrul ti pli cati ons <(ML-1) xNx( M-1)
(M-1) xNx( M-M_) < addi ti ons <(M.-1) xNx( M-1)

Method: Gaussian elimnation with partial pivoting
See also: BADC, BAFS, BABS, BACE, BALE, BASS
Linear Algebra
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Purpose:

Usage:

Linear Algebra

BALE

BALU — LU deconposition of a banded unsymmetric natrix

BALU (BAnded matrix LU deconposition) finds the LU deconpostion of a general
banded matrix A using partial pivoting. It allows the user to specify a
threshold for considering a matrix singular. BALU is called by the LU decom
position routines BACE and BADC.

CALL BALU (N, M., M G IG AL, I|AL, INTER MJ, EPS)

N —» the order of the matrix A
M —» the nunber of nonzero bands on and bel ow t he di agonal of A
M —» the nunber of nonzero bands in A
G —» a matrix into which the matrix A has been packed as fol -
| ows:
G(M +j-i, i) = a

i.e. the leftnost diagonal of Ais inthe first rowof G
(See the introduction to this chapter.)

G should be dinensioned (IG KG in the calling program
where | GM and KGN

« the upper triangular factor of A (see Note2)

I G —» the row (leading) dinension of G as dinmensioned in the
call'ing program

AL « the lower triangular factor of A (see Note2)

I AL —» the row (leading) dinension of AL, as dinensioned in the
calling program

I NTER « an integer vector of length N recording the row inter-
changes perforned during the deconposition (see Note2)

MJ « the nunber of nonzero bands in the upper triangular factor

EPS — if A= LU and there exists an index k such that [u,O < EPS
then A is considered singular
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NIS 50 MIS 3 NBIS 1
TIME FOR BASS IN M LLI SECONDS |'S 50.0
TIME FOR BALE IN M I LI SECONDS IS 20.0

NIS 50 MIS 3 NBIS 10
TIME FOR BASS IN M LLI SECONDS | S 99.0
TIME FOR BALE IN M I LI SECONDS | S 58.2

NIS 50 MIS 19 NBIS 1
TIME FOR BASS IN M LLI SECONDS | S 200. 8
TIME FOR BALE IN M I LI SECONDS |'S 147.8

NIS 50 MIS 19 NBIS 10
TIME FOR BASS IN M LLI SECONDS | S 397.5
TIME FOR BALE IN M| LI SECONDS | S 315.8

NIS 100 MIS 3 NBIS 1
TIME FOR BASS IN M LLI SECONDS | S 102.8
TIME FOR BALE IN M I LI SECONDS | S 36.4

N 1S 100 MIS 3 NBIS 10
TIME FOR BASS IN M LLI SECONDS | S 204.0
TIME FOR BALE IN M I LI SECONDS |'S 112.9

NIS 100 MIS 19 NBIS 1
TIME FOR BASS IN M LLI SECONDS | S 416.6
TIME FOR BALE IN M| LI SECONDS | S 302. 4

N 1S 100 MIS 19 NB IS 10
TIME FOR BASS IN M LLI SECONDS |'S 859.0
TIME FOR BALE IN M I LI SECONDS | S 680. 3

The above exanple indicates that the overhead for conputing the condition es-
timate in BASS can be quite substantial for narrow banded systens with one
right-hand side, but inconsequential if the bandwidth is large or if the sys-
tem has many right-hand sides. The exanple also indicates that the execution
time is linear in the nunber of equations, but certainly not linear in the
nunber of right-hand sides. Users with many right-hand sides, which are known
in advance and which all correspond to the sanme coefficient matrix, should ob-
viously not invoke BALE for each new right-hand side, but call BALE once with
NB set appropriately.
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STOP
END

When the above program was run on the Honeywel | 6000 nachine at Bell

an optim zing conpiler,

the foll owing was printed:
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wi th about a 1% accuracy.
It counts in 1/64 mlliseconds.

INTEGER I1G IMRITE, I1IMACH, N, M, 11, MP1, I, K
INTEGER 1B, NB, IT, |LAPSZ
REAL G(19, 100), B(100, 10), BB(100, 10), GX 19, 100)
REAL COND, TIMEL, TIME2, UNI
c
C TH' 'S PROGRAM SOLVES BANDED SYSTEMS USI NG BALE AND
C BASS AND COVPARES THE TIME FOR EACH OF THEM THE
C SYSTEMS HAVE VARI QUS BANDW DTHS, DI MENSI ONS, AND
C NUMBERS OF RI GHT- HAND SI DES
DOUBLE PRECI SI ON D( 600)
COMVON / CSTAK/ D
C MAKE SURE THE STACK MECHANI SM HAS SUFFI CI ENT SPACE
C FOR BASS
CALL I STKI N( 1200, 3)
1G=19
I VIR TE=I 1MACH( 2)
1 B=100
DO 70 N=50, 100, 50
DO 60 M.=2, 10, 8
ME2*ML - 1
MP1=M+1
DO 50 NB=1, 10, 9
VR TE( | WRI TE, 1) N, M NB
1 FORMAT(/5H N 1S, 14,6HMIS ,13, 7THNB IS ,13)
c
C CONSTRUCT THE MATRI X A(l,J)=ABS(1-J) AND PACK I T INTO G
C AND MAKE A COPY OF THE MATRI X SO THE SYSTEM CAN BE
C SOLVED W TH BOTH BALE AND BASS

c
K=ML - 1
DO 20 1=1, M
1=wPL - |
DO 10 J=1,N
q1,3)=K
(1, J) =K
q11,3)=K
aq(11,3)=K
10 CONTI NUE
K=K - 1
20 CONTI NUE
c

C CONSTRUCT RANDOM RI GHT- HAND SI DES
C AND MAKE A COPY

c
DO 40 1=1, NB
DO 30 11=1,N
B(I1,1)=UNI(0)
BB(I1,1)=B(11,1)
30 CONTI NUE
40 CONTI NUE
c
C SOLVE THE SYSTEM USI NG BOTH BASS AND BALE
c
| T=I LAPSZ( 0)
CALL BASS(N, M, M G | G B, | B, NB, COND)
TI ME1=(1 LAPSZ(0)-1T)/64.0
VIR TE( | WRI TE, 41) Tl MEL
a1 FORMAT( 34H TI ME FOR BASS | N M LLI SECONDS IS , F10. 1)
| T=I LAPSZ( 0)
CALL BALE(N, M., M GG, | G BB, | B, NB)
TI ME2=(1 LAPSZ(0)-1T)/64.0
VR TE( | WRI TE, 42) TI NE2
42 FORMAT(34H TI ME FOR BALE IN M I LI SECONDS IS |, F10. 1)
50 CONTI NUE
60 CONTI NUE
70 CONTI NUE

— 18—
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Nurber Error

1 N<1

2 M <1

3 M< M

4 IG< M

5 IB < N

6 NB < 1

10 + k* singular matrix whose rank is at |east k

Double-precision version: DBALE with G and B decl ared doubl e preci sion.

Complex version: CBALE with G and B decl ared conpl ex

Storage: N i nteger locations of scratch storage in the dynami c storage
st ack

Time: at nmost Nx( Mx(M.+1) +( ML+M-2) x(NB-1) ) additions

at nmost Nx( MLxMH( ML+M-2) x(NB-1)) nul tiplications
Nx( NB+M_-1) di vi si ons

Method: Gaussian elimnation with partial pivoting.
Transformations to A are not saved.

See also: BABS, BACE, BADC, BAFS, BASS, BALU
Author: Li nda Kauf man
Example: In this exanple the relative efficiencies of BALE and BASS

are conpared for systens of various bandw dths and di nensi ons
and various nunbers of right-hand sides. The subroutine

BASS solves a linear systemwi th a banded natrix and al so
returns an estinmate of the condition number of the matrix.

The matrix used in this exanple is given by the formula

a; = 0-j0O

Si nce each di agonal of the matrix A corresponds to a particular
row of the array G, and since all the elenents on any di agonal
of the matrix in our exanple

are the sane, each row of G

in the program bel ow was set to a constant.

The right-hand sides were chosen randomy.

The function ILAPSZ is a timer on the Honeywell 6000 machi ne

Linear Algebra
— 17—
BALE
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BADC

Purpose:

Usage:

Note 1:

Note 2:

Error situations:

Linear Algebra

BALE

PORT library

February 11, 1993

BALE —banded |inear system sol ver

BALE (BAnded Linear Equation solution) solves AX = B where A is a general banded

matri x.

CALL BALE (N, M,

N

M

NB

—

M G IG B, IB, NB)

the nunber of equations

the nunber of nonzero bands on and bel ow t he di agonal of A
the nunber of nonzero bands of A

a matrix into which the matrix A has been packed as foll ows:
GM +j-i, i) = a

i.e. the leftnost band of Ais in the first rowof G

(See the introduction to this chapter.)

G shoul d be dinmensional (IGKG in the calling program where | GM
and KGN

Gis overwitten during the solution.

the row (| eading) dinension of G as dinensioned in the calling program
the matrix of right-hand sides, dinensioned (IB,KB) in the calling
program

where | B=N and KB=NB.

the solution X

the row (I eading) dinension of B, as dinensioned in the calling program

the nunber of right-hand sides

Unl ess the given natrix, A is known in advance to be well-conditioned,

the user should use the routine BASS in place of BALE.

Users who wish to solve a sequence of problens

ri ght-hand sides

not all known in advance,
shoul d not use BALE, but should call subprogranms BADC, BAFS and BABS.

with the same coefficient matrix, but different

(See the exanple in BADC.)

BADC is called once to get the LU deconposition (see the
introduction to this chapter) and then the pair,

BAFS (forward solve) and BABS (back solve), is called

for each new right-hand side.

*(The user can elect to ‘recover’ from
those errors nmarked with an asterisk —
see Error Handling, Framewor k Chapter)
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JG= | STKGT(MN, 3)
JAL = | STKGT ((M.-1)*N, 3)
JINTER = | STKGT(N, 2)
CALL JAC(N,M M., X, R(JG), M
CALL BADC(N, M., M R(JH), M R(JAL), M.- 1, | ST(JI NTER) , MJ)
LI M=0
10  CALL FUN(N, X, F)
FU=SNRM2( N, F, 1)
c
C CHECK FOR CONVERGENCE OR | F | TERATION LIM T |'S REACHED
c
IF (FU.LE. EPS.OR LIM GT. LIM T) RETURN
LI MELI M1
C SOLVE THE LI NEAR SYSTEM
CALL BAFS(N, M., R(JAL), M.- 1, | ST(JINTER), F, N, 1)
CALL BABS(N, R(JG,MF, N, 1, MJ)
C CORRECT THE CURRENT ESTI MATE OF THE SOLUTI ON
DO 20 =1, N
X(1)Y=X(1)-F(1)
20 CONTI NUE
GO TO 10
END

Linear Algebra
— 15—
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Method:

See als0:

Author:

Example:

Linear Algebra

BADC

PORT library

February 11, 1993

Gaussian elimination with partial pivoting
BADC calls BALU after setting EPS = [TJA[T1 € where € is the machine precision, i.e. the
value returned by RIMACH(4) (or, for double precision, by DIMACH(4)).

BALU, BAFS, BABS, BACE, BALE, BASS
Linda Kaufman

In this example we implement a linearized version of Newton’s method for solving f(x)=0
where f and x are vectors of length N. Newton's method is normally given as

Setk to 0. Initialize x(@
Until 00f (x®) Ok iterate as fol lows:

Solve J(xW)y = f(x®)

whereJ; | = aTi.Setx(k”) = x0 -y
|

Setktok+1

In some problems, especially those occurring in algorithms for solving time-varying partial
differential equations, J is banded and costly to evaluate. Thus to solve f(x)=0, a linearized
Newton's method is used in which x®*1 s updated according to the formula
XK+ = x®O - 3(x@)~1£(xM). In the following subroutine, implementing a linearized
Newton method, FUN and JAC are assumed to be user provided functions which evaluate the
function and its Jacobian. The function SNRM2 carefully computes the 2-norm of a vector.

SUBROUTI NE NEWION( N, M M., X, EPS, FUN, JAC, LIM T, F)
C
C TH'S SUBROUTI NE | MPLEMENTS A LI NEARI ZED FORM OF NEWIONS
C METHOD TO FI ND THE ZERO OF A FUNCTI ON F DEFI NED BY
C FUN, WHOSE BAND JACCBI AN (W TH BANDW DTH M AND M.
C LOWER DI AGONALS) |'S EVALUATED IN JAC. LIMT Q VES
C A BOUND ON THE NUMBER OF | TERATI ONS AND N F THE
C FINAL FUNCTI ON VALUE |'S RETURNED.
C

INTEGERN, M., M LIMT

INTEGER JG JAL, JINTER |STKGT, MJ, LIM |

| NTEGER | ST(1000)

REAL EPS, X(N), F(N)

REAL FU, SNRM2, R(1000)

DOUBLE PRECI S| ON D( 500)

EXTERNAL FUN, JAC

COMMON / CSTAK/ D

EQUI VALENCE (D(1), R(1)), (D(1),1ST(1))

Cc
C GET SPACE FOR G I NTER, AND AL FROM
C THE STORAGE STACK

— 14—
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Note 1: After execution of BADC, the arrays INTER and AL are suitable for input into the forward
solve subroutine BAFS and G is suitable for input into the back solve subroutine BABS. The
LU decomposition of A satisfies the equation PA=LU where P is a permutation matrix, L isa
unit lower triangular matrix and U is an upper triangular matrix. On return from BADC the
element u;; is contained in G(j—i+1,i), so that the main diagonal occupies the first row of the
G matrix, the first super diagonal occupies the second row, etc. The matrix P can be obtained
from INTER(see the introduction to this chapter), and the i!" column of the L matrix appears
permuted in the i ™ column of the AL array. Since the diagonal elements of L are dl 1, they
are not stored.

Note 2: MU<M

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error
1 N<1
2 ML<1
3 M <ML
4 IG<M
5 IAL <ML -1
10 + k* singular matrix whose rank is at least k

Double-precision version: DBADC with G, AL and EPS declared double precision.

Complex version: CBADC with G and AL declared complex

Storage: None

Time: MxN+(ML-1)xNx(M-ML) < additions < (ML-1)xNx(M-1)+NxM
(ML-1)xNx(M-ML) < multiplications < (ML-1)xNx(M-1)
Nx(ML-1) divisions

Linear Algebra
— 13—
BADC
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PORT library

BACE February 11, 1993
BADC — decomposition of a banded unsymmetric matrix
Pur pose: BADC (BAnded matrix DeComposition) finds the LU decompostion of a general banded
matrix A using partial pivoting.
Usage: CALL BADC (N, ML, M, G, IG, AL, IAL, INTER, MU)

N the order of the matrix A

ML the number of nonzero bands on and below the diagonal of A

M the number of nonzero bandsin A

G amatrix into which the matrix A has been packed as follows:

G (ML +j—i, |) = aij

i.e. the leftmost diagonal of A isinthefirst row of G
(See the introduction to this chapter.)
G should be dimensional (IG,KG) in the calling program, where |G=M
and KG=N.
the upper triangular factor U of A (see Note1)

IG the row (leading) dimension of G, as dimensioned in the
calling program

AL the lower triangular factor of A (see Note 1)

IAL the row (leading) dimension of AL, asdimensioned in the
calling program

INTER an integer vector of length N recording the row interchanges per-
formed during the decomposition (see Note 1)

MU the number of nonzero bands in the upper triangular factor (MU<M)

Linear Algebra

BADC
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M IS 2
CONDI TI ON ESTI MATE | S
TRUE CONDITION NO | S

M IS 3
CONDI TI ON ESTI MATE | S
TRUE CONDITION NO. | S

M IS 4
CONDI TI ON ESTI MATE | S
TRUE CONDI TION NO. IS

M IS 5
CONDI TI ON ESTI MATE | S
TRUE CONDITION NO | S

M IS 6
CONDI TI ON ESTI MATE | S

3

. 1040422E
. 8941539E

. 9552785E
. 1467948E

. 0581919E
. 9246300E

. 2465961E
. 7086635E

5264744E

TRUE CONDI TION NO. IS 8.6640243E

03
04

02
03

07
07

04
04

07
07

Linear Algebra

BACE

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed:

In the comparison above of the condition number estimated by BACE and the true condition
number, the order of magnitude of the estimate is correct, which is al one is usually inter-
ested in. Note that the inverse of a band matrix is usually afull nxn matrix, and should rarely

be calculated.

Linear Algebra
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10 CONTI NUE

20 CONTI NUE
C
C DETERM NE AN ESTI MATE OF THE CONDI TI ON NUMBER
C AND COWPUTE THE LU DECOVPCSI TI ON

c
CALL BACE(N, M., M G |G GL, | GL, | NTER, MJ, COND)
C
C DETERM NE THE NORM OF THE | NVERSE MATRI X BY
C SOLVI NG FOR ONE COLUMN OF THE | NVERSE MATRI X
C AT A TIME
c
Al NNO=0. 0
DO 50 I=1,N
c
C FIND THE | TH COLUMN OF THE | NVERSE MATRI X BY
C SETTI NG THE RI GHT HAND SI DE TO THE | TH COLUWN
C OF THE | DENTI TY MATRI X
c
DO 30 J=1,N
B(J) =0. 0
30 CONTI NUE
B(1)=1.0

CALL BAFS(N, M., GL, | GL, | NTER, B, 80, 1)
CALL BABS(N, G I G B, 80, 1, MJ)
C FIND THE NORM OF THE | TH COLUMN
Al'NNOI =0. 0
DO 40 J=1,N
Al NNOI =Al NNOI +ABS( B(J) )
40 CONTI NUE
| F(AI NNO . GT. Al NNO) Al NNO=AI NNO
50 CONTI NUE
VR TE( | WRI TE, 51) M
51 FORMAT(/6H M. IS ,14)
VRl TE(| VRl TE, 52) COND
52 FORMAT( 22H CONDI TI ON ESTI MATE | S, 1PE15. 7)
CONDNO=AI NNO* FLOAT( M ( N- ML+1) *2)
VR TE( | WRI TE, 53) CONDNO

53 FORVAT(22H TRUE CONDI TION NO. 1S, 1PE15.7)
60 CONTI NUE

STOP

END

PORT library

February 11, 1993
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Time:

Method:

See als0:

Author:

Reference:

Example:

Linear Algebra

BACE
at most Nx(MxML+6xM+ML) additions
at most Nx(MLxM+3xM+ML-1) multiplications
Nx(ML+1) divisions
Gaussian elimination with partial pivoting
See the reference below for the method used to estimate the condition number.
BACE calls BALU with EPS=0.0
BADC, BAFS, BABS, BALU, BALE, BASS
Linda Kaufman
Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SAM J. Numer. Anal. 16 (1979), 368-375.
In the following example we obtain estimates of the condition numbers of five matrices
whose nonzero elements are given by a;; = i + | For each matrix, the 2xML-1 main diago-
nals are nonzero. The program fragment packing the matrix A into the array G uses the fact
that traversing a column of G is eguivalent to traversing arow of A. The extravalues that get
put into G by the program below are made zero inside the subroutine BACE.
In this example we compare the condition number K = DA DA ™! [ with the esti-
mate obtained by BACE. In the program below A~ is computed one column at a time and
K is computed using the 1-norm. In the 1-norm, [TA[T]is the maximum column sum. In our
example [TA[Mlis Mx(N-ML+1)x2, which is obtained by summing the M elements in col-
umn N-ML+1.
INTEGER IG IG, N M, M I, J, MJ IWRITE |1MACH
| NTEGER | NTER( 80)
REAL G(13, 80), B(80), X(80), GL(6, 80)
REAL START, FLOAT, AINNO, COND, CONDNO, ABS, Al NNO
| G=13
| GL=6
N=80
| WRI TE=I 1MACH( 2)
DO 60 M.=2, 6
C
C CONSTRUCT THE MATRI X A(l,J)=I+J AND PACK I T INTO G
ME2* M. - 1
START=- FLOAT( M M.)
DO 20 I1=1,N
G(1, |) =START+FLOAT( 2*1)
DO 10 J=2, M
&I, 1)=G(J-1,1)+1.
Linear Algebra

BACE



Linear Algebra PORT library

BACE February 11, 1993

Note 1: The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d - log10(COND) correct decimal digits. Thusif COND is greater than 1089, there may be
no correct digits.

Note 2: After execution of BACE, the arrays INTER and AL are suitable for input into the forward
solve subroutine BAFS, and G is suitable for input into the back solver BABS. The LU de-
composition of A satisfies the equation PA=LU where P is a permutation matrix, L is a unit
lower triangular matrix and U is an upper triangular matrix. On return from BACE the ele-
ment u;; is contained in G(j—i+1,i), so that the main diagona occupies the first row of the G
matrix, the first super diagonal occupies the second row, etc. The matrix P can be obtained
from INTER (see the introduction to this chapter), and the i™ column of the L matrix appears
permuted in the i™" column of the AL array. Since the diagonal elements of L are al 1, they
are not stored.

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error
1 N<1
2 ML<1
3 M <ML
4 IG<M
5 IAL <ML -1
10 + k* singular matrix whose rank is at least k

Double-precision version: DBACE with G, AL and EPS declared double precision.

Complex version: CBACE with G and AL declared complex

Storage: N real (double precision for DBACE, complex for CBACE) locations of scratch storage in
the dynamic storage stack

Linear Algebra

BACE
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Pur pose:

Usage:

Linear Algebra

BABS

BACE — LU decomposition of a banded unsymmetric matrix with condition estimation

BACE (BAnded matrix Condition Estimation) gives alower bound for the condition humber
of ageneral banded matrix A. It also returns the LU decomposition of the matrix and may be
used in place of BADC in alinear equation package.

CALL BACE (N, ML, M, G, IG, AL, IAL, INTER, MU, COND)

N

ML

AL

IAL

INTER

MU

COND

the order of the matrix A
the number of nonzero bands on and below the diagonal of A
the number of nonzero bandsin A

amatrix into which the matrix A has been packed as follows:
G (ML +j—i, |) = aij
i.e. the leftmost diagonal of A isinthefirst row of G
(See the introduction to this chapter.)
G should be dimensional (IG,KG) in the calling program, where |G=M
and KG=N.
the upper triangular factor of A (see Note2)

the row (leading) dimension of G, as dimensioned in the
calling program

the lower triangular factor of A (see Note2)

the row (leading) dimension of AL, asdimensioned in the
calling program

an integer vector of length N recording the row interchanges per-
formed during the decomposition (see Note 2)

the number of nonzero bands in the upper triangular factor

an estimate of the condition number of A (see Note 1)

Linear Algebra
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END

PORT library

February 11, 1993

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,

which has about 8 decimal digits of precision, the following was printed:

EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR
EIGENVECTOR

1.00000000
0.49999998
0.49999996
0.49999994
0.49999991
0.49999989
0.49999986
0.49999982
0.49999976
0.99999938

Since the true eigenvector is (1.0,0.5,0.5,...,0.5,1.0) T, the fact that the eigenvector was

computed by solving an ill-conditioned linear system did not affect our answer.
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JJ=1 SAMBX( N, EVEC, 1)
SC2=1. 0/ EVEC(JJ)

C COWPUTE CONVERGENCE CRI TERI A

40

C TEST

D1=0. 0
DO 40 =1, N
IXI =I%- 1+
DL=AMAXL( D1, ABS( ( R(JXI ) - BET*EVEC( 1)) *SC2))
CONTI NUE
sc=sc2
CALL SSCAL(N, SC, EVEC, 1)
FOR CONVERGENCE AND | F | TERATI ON LI M T EXCEEDED
| F (DLl. GT. EPS. AND. LIMLT.LIMT) GO TO 30
CALL LEAVE
RETURN
END

To show that the above program works, a mainline program was written that packed into G

the matrix

=75
-5

-5
1.0
-1.0

-1.0
1.0
-1.0

-1.0
10 -1
-1.0 1.0

-1.0

-1.0
1.0
-5

-5
=75

and invoked EIGVEC with the eigenvalue at -1.0.

10

20
21

INTEGER N, | IWRITE, |1MACH
REAL (3, 200), EVEC(100)
N=10
DO 10 =1, N
&1,1)=-1.0
&2,1)=1.0
&3,1)=-1.0
CONTI NUE
&2 ,1)=.75
&2, N=.75
G3,1)=.5
&1,2)=.5
&1,N=.5
&3,N1)=.5
| WRI TE=I 1MACH( 2)
CALL EI GVEQ(N, 3, 2, G 3, - 1. 0, EVEC, 2)
DO 20 I1=1,N
VR TE( | WRI TE, 21) EVEC( | )
CONTI NUE
FORMAT( 12H El GENVECTCR, F16. 8)
STOP

Linear Algebra
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PORT library

February 11, 1993

though the computed vectors x, will not be necessarily close to the true solutions of the lin-
ear systems, after these vectors are scaled, they will approach an eigenvector of the matrix.

O0O0000O000O0

SUBRQUTI NE ElI GVEC(N, M M., G, | G EVAL, EVEC, LIM T)

G VEN A BANDED MATRI X PACKED | NTO G W TH

N ROAS, M NONZERO DI AGONALS AND M. NONZERO DI AGONALS

ON AND BELOW THE DI AGONAL AND G VEN AN El GENVALUE OF THE
MATRI X I N EVAL, TH S SUBROUTI NE USES | NVERSE | TERATI ON TO
DETERM NE THE CORRESPONDI NG ElI GENVECTOR AND RETURNS | T

I'N EVEC.

LIMT IS A BOUND ON THE NUMBER OF | TERATI ONS

INTEGERN, M M, IG LIMT
INTEGER |, JAL, |STKGT, JINTER JX, MJ, |ERR NERROR
INTEGER LIM JJ, |SAMAX, JXI, | ST(1000)
REAL G(IG N), EVEC(N), EVAL
REAL BANM SIZE, RIMACH, EPS, SC, BET, DI, SC2, ABS
REAL R(1000)
DOUBLE PRECI S| ON D( 500)
COMMON / CSTAK/ D
EQUI VALENCE (D(1),1ST(1)), (R(1), D(1))
CALL ENTER(1)
DETERM NE | TERATI ON TOLERANCE
CALL BANMN, M., M G, | G, SI ZE)
EPS=SI ZE* RLMACH( 4)
SUBTRACT EI GENVALUE FROM DI AGONAL OF G
DO 10 =1, N
G(M, 1)=G(M, 1) - EVAL
10  CONTI NUE
GET SPACE FROM STACK FOR AL, | NTER, AND SCRATCH VECTOR
JAL =I STKGT( N+ (M.-1), 3)
JI NTER=I STKGT(N, 2)
JX=I STKGT(N, 3)
GET LU DECOWPCSI TI ON OF MATRI X
CALL BALU(N, M., M G | G R(JAL), M.- 1, | ST(JI NTER) , MJ, EPS)
OBTAIN I NI TI AL RI GHT HAND SI DE
| F (NERROR(| ERR) . NE. 0) CALL ERROFF
DO 20 1=1,N
EVEC(1)=1.0
20  CONTI NUE
CALL BABS(N, G, | G EVEC, N, 1, MJ)
LI M=0
JJ=I SAMAX( N, EVEC, 1)
SC=1. 0/ EVEC(JJ)
SCALE FI RST RHS TO HAVE | NFI NI TY NORM CF 1
CALL SSCAL(N, SC, EVEC, 1)
| TERATI VE PHASE BEGI NS HERE
30 LIMeLI M1
MAKE A COPY OF OLD APPROXI MATI ON
CALL MOVEFR(N, EVEC, R(JX))
GET NEW APPROXI MATI ON OF El GNVECTOR
CALL BAFS(N, M., R(JAL), M.- 1, | ST(JI NTER) , EVEC, N, 1)
CALL BABS(N, G, | G EVEC, N, 1, MJ)
BET=1. 0/ EVEC(JJ)
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Double-precision version: DBABS with G and B declared double precision.

Complex version: CBABSwith G and B declared complex

Storage: None

Time: NBxNx(MU - 1) additions
NBxNx(MU - 1) multiplications
NBxN divisions

See also: BAFS, BADC, BALU, BACE, BASS, BALE

Author: Linda Kaufman

Reference: Martin, R. S., and Wilkinson, J. H., Solution of Symmetric and Unsymmetric Band Equa-
tions and the Calculation of Eigenvectors of Band Matrices, Numer. Math. 9 (1967) 279-301.

Example: In this example we present a subroutine which implements the inverse iteration for finding
the eigenvector x corresponding to a specified real eigenvalue A of a banded matrix A. The
algorithm is essentially

Determine X, aninitial approximation to the eigenvector
Until convergence
Solve (A-Al) X 41 = Oy Xg

where 1/a . isthe element of x, of maximum modulus.

Given the LU decomposition of A —Al, the starting vector x, is usually set to U~ e, where e
is the vector whose elements are all unity. As the above reference indicates, a suitable stop-
ping criteriais (DA e = IO -1 Xk-1 — PrXk) o [,

where € is the machine precision given by RIMACH(4) and 1/ is the element of x, in the
same position as the unit element of o 1 X, 1.

In the subroutine EIGVEC below, BABS is referenced twice, once to obtain the initia ap-
proximation and once within the iterative loop. If A isan eigenvalue of A, A—Al istheoreti-
cally a singular matrix and hence when BALU is invoked, one would expect the subroutine
to terminate with a recoverable error. Thus after calling BALU the error flag is turned off if
necessary. If BALU determines that a diagonal element of the U matrix is not greater than
EPS in magnitude, that diagonal element is set to EPS and the computation continues. Al-

Linear Algebra
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BABS — band upper triangular linear system solution

Pur pose: BABS (BAnded matrix Back Solution) solves AX = B where A is a banded upper triangular
matrix. It can be used for the back solution phase of a banded linear system solution. (It is
used in thisway by the routines BASS and BALE.)

Usage: CALL BABS(N, G, IG, B, IB, NB, MU)
N the number of equations
G amatrix (which may have been created by the routines BACE, BADC,
or BALU) into which A has been packed as follows:
G (J'l + 1, |) :aij
i.e. the diagonal isthefirst row of G,
(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG=MU and KG=N.
IG the row (leading) dimension of G, as dimensioned in the calling pro-
gram
B the matrix of right-hand sides, dimensioned (1B,KB) in the calling pro-
gram, where IB=N and KB=NB
the solution X
IB the row (leading) dimension of B, as dimensioned in the calling pro-
gram
NB the number of right-hand sides
MU the number of nonzero bandsin A
Notes: BAFS and BABS can be used directly on the output matrix produced by BADC, BALU, or

BACE to solve agenera linear system.

Error situations:  *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Linear Algebra

BABS

Number Error

1 N<1

2 IG<MU

3 IB<N

4 NB<1

5 MU<1

10 + k* singular matrix with 0.0 in the kth position on the di-
agonal



BABS
BACE
BADC
BAFS
BALE
BALU
BAML
BANM
BASS

Appendix 3

BANDED MATRICES

Back Solve

Condition Estimation
DeComposition

Forward Solve

Linear Equation solution
LU decomposition
MulLtiplication
NorM

System Solution



