A Weakness in the 4.2BSD Unik TCP/IP Software

Robert T. Morris

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The 4.2 Berkeley Software Distribution of the Unix operating system (4.2BSD for
short) features an extensive body of software based on the "TCP/IP" family of protocols.
In particular, each 4.2BSD system "trusts" some set of other systems, allowing users
logged into trusted systems to execute commands via a TCP/IP network without supply-
ing a password. These notes describe how the design of TCP/IP and the 4.2BSD imple-
mentation allow users on untrusted and possibly very distant hosts to masquerade as users
on trusted hosts. Bell Labs has a growing TCP/IP network connecting machines with
varying security needs; perhaps steps should be taken to reduce their vulnerability to each
other.

February 25, 1985

1 Unix is a Trademark of AT&T Bell Laboratories.

A Weakness in the 4.2BSD Unik TCP/IP Software

Robert T. Morris

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

The Defense Department "TCP/IP" network protocol standard was designed in 1979 to implement an
"internet": a group of networks, highly variable in reliability and speed, connected by computers acting as
gateways. One of the more popular Unix TCP/IP implementations comes with the 4.2BSD system, used
both within Bell Labs and on Defense Department networks. The 4.2BSD Unix TCP/IP software is very
flexible and convenient, but places too much trust in a protocol which provides very little security. The
attack described here requires no modifications to the system it runs on, and is not dependant on the hard-
ware of the network involved.

TCP/IP conceptually divides into two layers, a "Transmission Control Protocol" and an "Internet Pro-
tocol". The IP Iaye+ sends packets of data ("datagrams") from one host to another, via networks and gate-
ways interconnecting them. TéBupports a number of "ports" on each host running IP, providing reliable
and flow controlled "virtual circuits" between these ports; TCP circuits are built on top of the IP datagram
service. Each TCP or IP packet consists of a header full of control information followed by data; in the
case of TCP the data is supplied by the user, while the data in an IP packet is a TCP packet. The important
parts of the TCP header are a source port number, a destination port number, a sequence number, an
acknowledgement number, and some flags. The port numbers identify which virtual circuit is involved, the
sequence and acknowledgement numbers ensure that data is received in the correct order, and the flags
affect the state of the virtual circuit. An IP header consists primarily of source and destination host identi-
fiers; these are 32 bit numbers which uniquely indicate a host and a network. There is also a protocol num-
ber indicating which protocol layer (e.g. TCP) IP should direct the packet data to.

4.2BSD provides a remote execution "server", which listens for TCP connection requests on port
514. When such a request arrives at a machine, the server checks that the originating host is "trusted" by
comparing the source host ID in the IP header to a list of trusted computers. If the source host is OK, the
server reads a user id and a command to execute from the virtual circuit TCP provides. The weakness in
this scheme is that the source host itself fills in the IP source host id, and there is no provision in 4.2BSD or
TCP/IP to discover the true origin of a packet.

The ideal way to produce TCP/IP packets with incorrect source host id's would be to talk directly to
the network involved. 4.2BSD provides no such network interface, so other means must be sought to forge
packets from 4.2BSD systems. 4.2BSD does allow privileged users to send IP packets, though; with mini-
mal effort the IP kernel code can be made to supply the correct protocol number (6), and an incorrect host
id, in the IP header. The details involve creating a 4.2BSD "socket" with type "SRGK", and then
writing on the kernel data structures to change the protocol number associated with FX¥ZKto 6
(that of TCP) and to change the source host id. This requires privileges; however, it is likely that at least
one system on a large network will be insecure enough to supply appropriate powers after a determined
attack.

With appropriate access to IP, a user process can create and manage one end of a TCP circuit without
using the TCP software in the Unix kernel. Each TCP header contains a checksum to detect inaccurate
transmission. This checksum covers not only the TCP header and data, but also some of the IP header.
Hence the user software must predict the contents of the IP header with which the kernel will encapsulate

T Unix is a Trademark of AT&T Bell Laboratories.

1. RFC 791, University of Southern California IS,
Marina del Ray, Cal. 90291

2. RFC 793, Sept 1981

February 25, 1985

the TCP packet. At this stage, a user process can send individual TCP packets.

The interesting TCP connection states are LISTEN, SSENT, SYN RCVD, and ESTAB-
LISHED. Each TCP connection also maintains a sequence number as part of its state. The packet flags
SYN, ACK, and RST (synchronize, acknowledge, and reset), as well as the packet acknowledgement num-
ber, affect the state. One end of a connection starts by sending a SYN and enterifge RYNhe other
end starts out in LISTEN state. In the abbreviated state table following, each message is represented by a
packet flag, the packet sequence number, the acknowledgement number, and possibly some data. Each
state/event combination usually leads to a packet being sent, a state change, or possibly an error; each of the
boxes in the diagram indicates a packet to be sent and a state to be entered. M means the sequence number
of the packet just received; N means the sequence number remembered as part of the state of the TCP port.
For instance, M would refer to the X in the received packet ACK,X,Y.

0 MSYN,X,Y OACK,X,Y,data O
cLISTEN TSYNN++ M+ 3 g
0 mSYN_RCVD [error 0
OSYN_SENT MACKNM+1 O O
. MESTABLISHED U error O
SYN.RCVD pRSTNM 0 .
0 [merror 1 ESTABLISHED [
LESTABLISHED I RST,N,M U ACK,N,M+data let
E %error U ESTABLISHED

O i (send data to user)

Data is sent by ACK,N,M,data when both sides of the connection are in the ESTABLISHED state, after
which N is incremented by the length of the data. There are also other states and flags having to do with
closing connections which are not relevant here.

4.2BSD maintains a global initial sequence number, which is incremented by 128 each second and by
64 after each connection is started; each new connection starts off with this number. When a SYN packet
with a forged source is sent from a host, the destination host will send the reply to the presumed source
host, not the forging host. The forging host must discover or guess what the sequence number in that lost
packet was, in order to acknowledge it and put the destination TCP port in the ESTABLISHED state.
Guessing the lost sequence number is easy when the destination runs 4.2BSD; one need only create a real
connection, look in the kernel for the sequence number received, and add 64 to it. Once the forging pro-
gram acknowledges this sequence number, the connection is fully set up and data may be sent, though not
received, by the program.

Unfortunately, the SYN packet sent by the destination to the putative source does not just disappear.
The supposed source sees it as a packet on a non-existent circuit, and sends a packet with a RST flag to the
destination. This causes the destination to throw away the forged circuit. For instance: Host A sends a
forged packet to B, claiming the source was C. B sends a SYN packet to C, and C sends a RST packet to
B. B throws away the circuit that A is forging to it. The only ports on C that won't always generate RSTs
in this situation are those which are waiting, or listening, for connections. Those listening ports have finite
length queues of connections waiting to be set up; if this queue length is exceeded, the requesting SYN
packet will be thrown away, but no reset will be generated. The originator is expected to resend the SYN
packet after timing out. Note that original SYN packets and response SYN packets look the same. Thus it
suffices for the forging process to claim that the packets are coming from a port on the supposed source that
has a server listening for connections, and for the forger to flood that port with connection requests.

In summary, suppose the forging program is named A, its destination host is named B, the source to
be forged is named C. The port on B involved is number 514, the remote execution server’'s port; A will
forge packets from port 21 on host C, which is usually waiting for connections. The chain of events on A is
as follows:

February 25, 1985

Swamp port 21 on C with connection requests.

Create a real connection to a port on B, and record the
sequence number returned by B.

Create a raw IP socket, change its protocol to that of TCP,
and change its source to C (by writing in the kernel).

Send a SYN packet from port 21 (supposedly on C) to port 514 on B.
(A then sends a SYN to port 21 on C, which is silently ignored because
C’s queue for 21 is full.)

Send an ACK packet to B with the acknowledgement number equal to the
sequence number previously recorded plus 64.

Send data to B, taking care to increment the sequence number each time
by the amount of data sent. Port 514 expects a null, followed
by a user name, followed by a command.

If all goes well, and B trusts C, B will execute the command.

Accuracy has been sacrificed for clarity, such as it is.

This scheme, with the details filled in, does in fact work fairly reliably. It allows machines on a
TCP/IP network to run commands on any connected 4.2BSD system that "trusts" any other system. There
are a number of possible defences. The sequence numbers that the forger must guess could be made very
random; they are in a 32 bit word, so brute force search is unprofitable. However, the forger can ask for an
arbitrarily large number of test connections to determine regularities in the random number algorithm; at
best randomness will make the forger’s job somewhat harder. A better approach might be to require that all
networks IP uses supply genuine source host id’s. This is network hardware dependent, and in any case
will not work if gateways are involved. A workable solution might be to only trust hosts on the same phys-
ical network, and modify gateways to reject packets that claim to, but do not in fact, come from directly
connected networks.

February 25, 1985

