
Maintaining Cross References in Manuscripts

ALFRED V. AHO

RAVI SETHI

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Authors face the tedious bookkeeping problem of maintaining the consistency of refer-
ences to figures, citations, and other numbered entities in successive drafts of a
manuscript. If a figure is added to or deleted from the manuscript, the numbers of all
subsequent figures must be adjusted, along with the references to these figures. In this
note, we show how the UNIXTM commands grep, awk, and sed can be used to create a
simple and flexible reference assembler that automatically maintains the consistency of
cross references in manuscripts.

1. A REFERENCE ASSEMBLER

First, prepare a source text for the manuscript in which each reference is symbolic, such as ‘‘Fig. _Out-
put_’’ or ‘‘Page _Section2_’’, rather than an explicit numeric designation, such as ‘‘Fig. 3’’ or ‘‘Page 3’’.
Following Scribe [8], the name of a numbered entity will be called a tag, and a symbolic page number a
page label. Tags represent numbers that are independent of the layout of a manuscript: The number associ-
ated with a tag depends on how many other tag definitions precede it in the source text, and can be deduced
by looking at the source text alone. Page numbers, on the other hand, depend on the final layout of the text.
Section 4 describes a mechanism for handling page labels using the troff text-formatter.

In the source text, define each tag by a line of the form

.@tag countervariable tagname

In a tag definition, @tag is a distinctive keyword, countervariable is an identifier for an integer variable,
and tagname is a string used as a tag. The . in the first position of the definition indicates that the line is
not part of the actual text of the manuscript. Tag definitions and references can appear anywhere in the
source text, but the definitions will be numbered in the order in which they appear.

The initial value of a counter variable is zero. Whenever a new tag definition is encountered, the under-
lying counter variable is incremented and the incremented value of this counter variable is associated with
the new tag name. We can create as many different classes of symbolic references as we wish by using a
distinct counter variable for each class. In this way, citations, figures, examples, sections, footnotes, and
the like can have their own sequence numbers.

Example 1. Figure 1 shows the contents of a file source containing the text of a short manuscript. Lines
3, 6, 8, and 11 contain the tags _Alice_ and _Huckleberry_. Lines 7 and 10 contain the correspond-
ing tag definitions

.@tag CITE _Alice_

.@tag CITE _Huckleberry_

using the counter variable CITE to keep track of citation numbers.

To create the assembled output in which the symbolic references are replaced by numeric ones, execute
the UNIX commands in Fig. 2. These commands constitute a complete reference assembler for tags.

The grep-awk pipe in the first three lines of Fig. 2 creates in the file sedscript a sequence of sed
instructions that will associate the numbers 1 and 2 with the tags _Alice_ and _Huckleberry_,
respectively. Invoked with this script, the sed command in the last line of Fig. 2 replaces all occurrences

August 20, 1991

2 ALFRED V. AHO AND RAVI SETHI

Source Text

.PP
‘‘... ‘and what is the use of a book,’ thought Alice,
‘without pictures or conversations?’ ’’ [_Alice_]
.PP
‘‘... if I’d a knowed what a trouble it was to make a book I
wouldn’t a tackled it and ain’t agoing to no more.’’ [_Huckleberry_]
.@tag CITE _Alice_
.IP [_Alice_]
Carroll, L., Alice’s Adventures in Wonderland, Macmillan, 1865.
.@tag CITE _Huckleberry_
.IP [_Huckleberry_]
Twain, M., Adventures of Huckleberry Finn, Webster & Co., 1885.

Fig. 1. Sample source text.

grep -h "ˆ\.@tag" source | awk ’
{ printf "s/%s/%d/g\n", $3, ++value[$2] }

END { printf "/ˆ\\.@tag/d\n" }
’ > sedscript
sed -f sedscript source

Fig. 2. A reference assembler for tags.

of _Alice_ and _Huckleberry_ in the source text by the corresponding numbers and removes the tag
definitions from the assembled output.

Example 2. Figure 3 shows the assembled output that would be created by applying the commands in Fig.
2 to the source text in Fig. 1. This assembled output might then be processed with a text-formatter like
troff or nroff.

Assembled Output

.PP
‘‘... ‘and what is the use of a book,’ thought Alice,
‘without pictures or conversations?’ ’’ [1]
.PP
‘‘... if I’d a knowed what a trouble it was to make a book I
wouldn’t a tackled it and ain’t agoing to no more.’’ [2]
.IP [1]
Carroll, L., Alice’s Adventures in Wonderland, Macmillan, 1865.
.IP [2]
Twain, M., Adventures of Huckleberry Finn, Webster & Co., 1885.

Fig. 3. The assembled output for the source text of Fig. 1.

2. HOW THE REFERENCE ASSEMBLER WORKS

For readers unfamiliar with the UNIX commands grep, awk, and sed, this section describes how the ref-
erence assembler in Fig. 2 works. The assembler makes two passes over the source text. In the first pass,
the source text is passed through a pipe consisting of a grep command [10] followed by an awk command
[1] to create a script of sed instructions from the tag definitions in the source file. In the second pass, the
source program is processed by the sed command [5], using the sed script created in the first pass, to

August 20, 1991

Maintaining cross references in manuscripts 3

replace all symbolic references by the corresponding numbers.
Figure 4 depicts what happens when the reference assembler of Fig. 2 is applied to the source text in Fig.

1. The first command

grep -h "ˆ\.@tag" source

extracts all lines from the source text containing tag definitions, since the symbol ˆ in the pattern
ˆ\.@tag matches the beginning of a line, \. matches a period, and @tag matches itself. We enclose the
pattern in quotes to prevent the UNIX shell from interpreting any characters within the pattern. When
grep is applied to more than one source file, it normally places the name of the source file currently being
processed at the beginning of each output line; the -h flag inhibits printing the file name.

SOURCE TEXT

grep -h "ˆ\.@tag"

.@tag CITE _Alice_

.@tag CITE _Huckleberry_

awk ’

{ printf "s/%s/%d/g\n", $3, ++value[$2] }

END { printf "/ˆ\\.@tag/d\n" }

’

s/_Alice_/1/g

s/_Huckleberry_/2/g

/ˆ\.@tag/d

sed -f
SOURCE

TEXT

ASSEMBLED

OUTPUT

Fig. 4. Reference assembler applied to source text of Fig. 1.

The tag definitions extracted by the grep command become the input to the awk command, whose out-
put is directed into the file sedscript. In the second pass over the source text, sed uses the contents of
sedscript as instructions for replacing tags by numbers.

In the awk program, the first statement

{ printf "s/%s/%d/g\n", $3, ++value[$2] }

is executed on each extracted tag definition. This statement transforms a tag definition

.@tag countervariable tagname

into a string of the form

s/tagname/value/g

In the second pass, sed uses this string as an instruction to replace each tagname in the source text by the
corresponding value. Since awk views each input line as a sequence of fields separated by blanks and/or
tabs, the string forming tagname is the third field of a tag definition, which is denoted by $3 in the awk
program. The second field, denoted by $2, is the counter variable. Arrays in awk are indexed by strings,
so the term ++value[$2] in the above awk statement increments the current value of the counter

August 20, 1991

4 ALFRED V. AHO AND RAVI SETHI

variable and returns the incremented value. In awk, the initial value of every variable is zero.
The printf statement associated with the pattern END in the awk program is executed after all the

extracted tag definitions have been processed. This statement prints the string

/ˆ\.@tag/d

which is used in the second pass by sed as an instruction to delete all tag definitions from the source text.
The assembled form of the manuscript is created by processing the source text with the command

sed -f sedscript source

In Fig. 4, the contents of sedscript are enclosed within a dashed box.

Remark. Since the sed editing instruction

s/tagname/value/g

replaces all occurrences of tagname, it is helpful to establish notational conventions that prevent tagname
from inadvertently appearing in other contexts in the source text. The string tagname is treated as a pattern
by sed, so it is best to avoid sed metacharacters like * within tagname [5]. Surprises are also possible if
one tag is a prefix of another.

We have used a leading and trailing underscore to distinguish a symbolic name from other text, but any
similar convention would work just as well. Note that if we had used Alice rather than _Alice_ as a
tag in the source text in Fig. 1, then the lines

.IP [Alice]
Carroll, L., Alice’s Adventures in Wonderland, Macmillan, 1865.

would have been transformed into

.IP [1]
Carroll, L., 1’s Adventures in Wonderland, Macmillan, 1865.

Once the editing script has been created from the tag definitions in the complete source text, individual
sections of the manuscript can be assembled and formatted independently, if desired.

Example 3. Suppose that the source text in Fig. 1 is in two files quotes and refs. Then the editing
script can be constructed by

grep -h "ˆ\.@tag" quotes refs | awk ’
{ printf "s/%s/%d/g\n", $3, ++value[$2] }

END { printf "/ˆ\\.@tag/d\n" }
’ > sedscript

We now have the option of editing just the quotes, using

sed -f sedscript quotes

or the complete source text, using

sed -f sedscript quotes refs

3. MECHANICALLY GENERATED TAGS

Paraphrasing the Scribe Manual [8] slightly, ‘‘the hardest part of using [tags and labels] is in thinking up
the code names.’’ The problem of selecting suitable names for tags is compounded if the manuscript has
more than one author. Chapter 3 of [2] has over two dozen figures containing finite automata; they could
not all be named _Automata_.

This problem can be solved by mechanically modifying the tags in the source text to reflect the numbers
they represent in the assembled form. A typical mechanically generated tag definition in the source text of
[2] looked like

August 20, 1991

Maintaining cross references in manuscripts 5

.@tag FIG _FIG31_

where the tag _FIG31_ was created from the counter variable FIG and its current value 31. These
mechanically generated ‘‘mnemonic’’ tags make the source text (what you see) resemble the assembled
output (what you get). If a new tag definition

.@tag FIG _New_

is inserted into the source text, or if an existing tag definition is removed, fresh tags reflecting the new num-
bering can mechanically be generated to make the source text resemble the assembled output once again.

The approach in Fig. 2 can be used to create such mnemonic tags. The tags in the original source text are
transformed by two successive sed scripts, each generated by a grep-awk pipe like that in Fig. 2. If the
awk command in Fig. 2 is replaced by

awk ’{ printf "s/%s/_@%s%d_/g\n", $3, $2, ++value[$2] }’

then the editing script

s/_Alice_/_@CITE1_/g
s/_Huckleberry_/_@CITE2_/g

is created. Using this script, sed creates an intermediate form of the source text with temporary tags
@CITE1 and _@CITE2_. Then, passing this intermediate form through another invocation of sed with
the editing script

s/_@CITE1_/_CITE1_/g
s/_@CITE2_/_CITE2_/g

replaces the temporary tags by the mnemonic ones to produce the desired version of the source text. This
two-step approach avoids accidental conflicts if any of the newly created tags happen to look like tags in the
original source text. (Some other string can be used instead of @ to make the temporary tags unique.)

Example 4. Suppose that the order of the two books was reversed in the source text (as would happen in
Fig. 1 on page 2 if the books were ordered alphabetically by given name for the authors rather than by pseu-
donym). The sed instructions

s/_CITE2_/_@CITE1_/g
s/_CITE1_/_@CITE2_/g

followed by

s/_@CITE1_/_CITE1_/g
s/_@CITE2_/_CITE2_/g

will interchange the tags _CITE2_ and _CITE1_. An attempt to modify the tags in one step using

s/_CITE2_/_CITE1_/g
s/_CITE1_/_CITE2_/g

will incorrectly replace both _CITE2_ and _CITE1_ by _CITE2_.

Tags with common prefixes allow the pattern matching by sed to be factored. With the script

s/_CITE1_/1/g
s/_CITE2_/2/g
s/_CITE3_/3/g

sed checks each line for an occurrence of each of the patterns _CITE1_, _CITE2_, and _CITE3_ in
turn. If the script is rewritten as

/_CITE/{
s/_CITE1_/1/g
s/_CITE2_/2/g
s/_CITE3_/3/g

August 20, 1991

6 ALFRED V. AHO AND RAVI SETHI

}

then the three patterns are checked only against lines containing the substring _CITE. The time to assem-
ble the source files for Chapter 4 of [2] was cut from more than an hour to less than two minutes in this
way.

Interrupts, due to second thoughts or due to a power failure, during mechanical modification of the
source text can be handled as follows. First, create new files with the modified source text. Second, copy
the original source text. Third, replace the original source text files by the modified versions. The original
source text is then preserved no matter when an interrupt occurs.

4. REFERENCES TO PAGE NUMBERS

The assembler approach of Section 2 can also be used to maintain references to page numbers, although
now we need to make some assumptions about the text-formatting program that does page layouts. In this
section we assume page layout will be done using the troff text-formatter. In the source text, page labels
are defined by lines of the form

.@label pagelabel

where pagelabel is a string used as a symbolic page reference. There is no need for an explicit variable to
keep track of page counts.

A page-number assembler is illustrated in Fig. 5. The grep command extracts the label definitions from
the source text. Suppose, as in the figure, that we are given a table mapping symbolic page labels to edu-
cated guesses of the corresponding page numbers. The editing script created by the command awk 1 maps
page labels to the guessed numbers; the script in the figure would map _PageA_ to 2 and _PageB_ to 4.
No guess is available for _PageC_ so this label is left as is in the source text.

When troff formats the source text, we learn the actual page numbers for the labels. A byproduct of
formatting is an index table emitted by troff into an ‘‘error’’ file separate from the formatted text. Each
index-table entry consists of a page label, the actual page number associated with it, and its previous
guessed page number. From the index table in Fig. 5, the previous page number was correct for _PageA_,
incorrect for _PageB_, and no information was available for _PageC_. The command awk 2 checks that
the second and third fields of each index-table entry agree, and if they don’t, warns the user of the inconsis-
tent information. The index table created on one formatting pass becomes the table of guesses for the next
pass. If the new page numbers do not agree with old ones in the index table, we reformat the source text
using the new page numbers. As soon as the new page numbers agree with the old, we know we have a
correct page numbering. A possible user interface is marked by dotted lines.

The editing script created by the command awk 1 replaces each line

.@label pagelabel

in the source text by a line

.@label guess pagelabel

Occurrences of pagelabel everywhere else in the source text are replaced by guess. The editing script for
the example in Fig. 5 is

/ˆ\.@label/{ do the following on lines starting with .@label
s/ .*/&&/ replace .@label pagelabel by .@label pagelabel pagelabel
s/_PageA_/2/ replace first copy of _PageA_ by 2
s/_PageB_/4/ replace first copy of _PageB_ by 4

}
/ˆ\.@label/!{ do the following on lines that do not start with .@label

s/_PageA_/2/g replace all copies of _PageA_ by 2
s/_PageB_/4/g replace all copies of _PageB_ by 4

}

The index table can be created by using troff instructions of the form

August 20, 1991

Maintaining cross references in manuscripts 7

SOURCE TEXT

grep -h "ˆ\.@label"

.@label _PageA_

.@label _PageB_

.@label _PageC_

awk 1

sed -f sedscript troff -ms

PageA 2 2

PageB 3 4

PageC 5 _PageC_

INDEX

awk 2

GUESSES

PageA 2

PageB 4

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FORMATTED

OUTPUT

MESSAGES

new pages

PageB 3

PageC 5

SOURCE

TEXT

Fig. 5. Page-number assembler.

.tm string

This instruction emits string to the standard error file. The troff number register % holds the current page
number. Its value replaces the string \n% in the output, so the troff instruction

(1).tm _PageB_ \n% 4

emits _PageB_ and its new and old page numbers.
This simple approach works only if the .tm command is printed immediately on the current page. If the

command appears in a ‘‘keep’’ or a footnote that spills onto the next page, then \n% will incorrectly be
replaced by the page number when the .tm command is first seen, rather than the page number when the
block of text containing the command is printed.

There is a way to determine whether a block of text is about to be printed in troff: test if register .z
contains the empty string. The command

(2).if ’\n(.z’’ .tm _PageB_ \n% 4

executes the .tm command if register .z contains the empty string; otherwise no action occurs. For text
that might be squirreled away and reread some number of times by troff, the test can be done recur-
sively, each time the text is reread. The following macro .@l can be used; (troff interprets

.@label 4 _PageB_

as the application of macro .@l to three arguments: abel, 4, and _PageB_).

August 20, 1991

8 ALFRED V. AHO AND RAVI SETHI

.de @l

.ie ’\\n(.z’’ .tm \\$3 \\n% \\$2

.el \\!.@label \\$2 \\$3

..

Here, .ie corresponds to .if in (2) and .el is the ‘‘else’’ part containing the recursive call to .@l. The
\\! before .@l delays the recursive call until the text is reread. The ms macro package [3] may reread
text upto three times.

Appendix A contains the code for an assembler that maintains symbolic references to both tags and page
labels.

5. CONCLUDING REMARKS

The main point of this note is to show that the problem of maintaining cross references can be flexibly
solved with a few lines of grep, awk, and sed code. In addition, when dealing with tags, the problem can
be solved independently of text formatting. The reference assembler described in Section 1 does not even
need to know that the source text will be formatted. An assembler of this nature was used to maintain cross
references to the more than one thousand numbered algorithms, equations, examples, exercises, figures, and
footnotes in the successive drafts of the source text for [2].

Facilities for resolving cross references to tags and page labels have appeared before in text-formatters.
Reid [7] mentions that Scribe’s cross-referencing facility is styled after the counter and referencing mecha-
nism used in Pub [9]. McIlroy [4] relates that around 1972, ‘‘One clever Roffer did the job by Roffing a
whole document with printing turned off, gathering cross references, then doing it again with printing
turned on . . . This is all very well, except that depending on the size of the numbers inserted, subtle
changes in pagination of the document could happen the second time through.’’

Miller [6] has implemented a cross-reference assembler in C.

References

[1] AHO, A. V., B. W. KERNIGHAN, AND P. J. WEINBERGER [1979]. ‘‘Awk – a pattern scanning and process-
ing language,’’ Software—Practice and Experience 9:4, 267-280.

[2] AHO, A. V., R. SETHI, AND J. D. ULLMAN [1986]. Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Mass.

[3] LESK, M. E. [1976]. ‘‘Typing documents on the UNIX system: using the -ms macros with nroff
and troff,’’ Computing Science Technical Report 49, AT&T Bell Laboratories, Murray Hill, N.J.
See UNIX Programmer’s Manual Volume 2.

[4] MCILROY, M. D. [1973]. ‘‘Roff text formatter,’’ MHCC-005, Revision 1, AT&T Bell Laboratories,
Murray Hill, New Jersey.

[5] MCMAHON, L. E. [1979]. ‘‘Sed – a noninteractive text editor,’’ Computing Science Technical Report
77, AT&T Bell Laboratories, Murray Hill, N.J. See UNIX Programmer’s Manual Volume 2.

[6] MILLER, C. D. F. [1985]. ‘‘Lbl – symbolic labels in text documents,’’ manuscript, Heriot-Watt Univ.,
Edinburgh, Scotland.

[7] REID, B. K. [1980]. ‘‘Scribe: a document specification language and its compiler,’’ Report CMU-CS-
81-100, Carnegie-Mellon Univ., Pittsburgh, Pa.

[8] REID, B. K. AND J. H. WALKER [1980]. Scribe User’s Manual, Third Edition, Unilogic Ltd., 605
Devonshire St., Pittsburgh, Pa. 15213.

[9] TESLER, L. [1972]. ‘‘Pub: the document compiler,’’ Report ON-70, Artificial Intelligence Project,
Stanford Univ.

[10] THOMPSON, K. [1968]. ‘‘Regular expression search algorithm,’’ Comm. ACM 11:6, 419-422.

August 20, 1991

Maintaining cross references in manuscripts 9

APPENDIX A

NAME

xref — create sed script to resolve cross references

SYNOPSIS

xref f iles

DESCRIPTION

xref reads f iles containing lines of the form

.@tag counter tag

.@label pagelabel

and an optional file xref.index mapping page labels to expected page numbers. It creates a sed
script to replace tags and page labels by numbers. Label definitions are replaced by troff com-
mands to emit lines of the form

.@index pagelabel pagenumber oldpagenumber

destined for file xref.index

Typical usage is

xref f iles >.script
sed -f .script f iles |pic|tbl|eqn| troff -ms >out f ile 2>xref.index

The command

awk ’
$3!=$4 { change = change sprintf("%s %s\n",$2,$3);

}
END { if (change != "")

system(sprintf("cat 1>&2 <<\!\nnew pages\n%s!\n", change));
}

’ xref.index

warns of changed entries in the index.

FILES

xref.index index mapping page labels to page numbers
xref.tmp temporary file

SEE ALSO

sed(1)

DIAGNOSTICS

Detects reuse of a name as a tag or label.

CODE

Tags alone are much easier to handle than page labels. Delete the commands between lines beginning
with ## to restrict the code to tags.

Extract tag and label definitions.
grep -h "ˆ\.@" $* >xref.tmp

Create commands for replacing tags, and check for redeclarations.
awk ’
$1==".@label" { check($2, $1);

August 20, 1991

10 ALFRED V. AHO AND RAVI SETHI

}
$1==".@tag" { check($3, $1);

printf "s/%s/%d/g\n", $3, ++value[$2];
}

END { printf "/ˆ\\.@tag/d\n"
}

func check(name,cmd) {
if (seen[name])

system("echo "name" redeclared in "cmd" 1>&2");
else seen[name] = 1;

}
’ xref.tmp

Create commands for replacing page labels.
Delete up to just before "rm xref.tmp" if tags only are needed.
cat <<\!
1i\
.de @l\
.ie ’\\\\n(.z’’ .tm .@index \\\\$3 \\\\n% \\\\$2\
.el \\\\!.@label \\\\$2 \\\\$3\
..
/ˆ\.@label/{

s/ .*/&&/
!
if test -f xref.index
then {

awk ’
$1==".@label" { seen[$2] = 1;

}
$1==".@index" { if (!seen[$2]) continue;

s1 = sprintf("%s\ts/%s/%d/\n", s1, $2, $3);
sg = sprintf("%s\ts/%s/%d/g\n", sg, $2, $3);

}
END { printf "%s}\n", s1;

printf "/ˆ\\.@label/!{\n%s\n", sg;
}

’ xref.tmp xref.index
}
fi
echo "}"
Delete up to here if tags only are needed.

rm xref.tmp

BUGS
Special characters in tags and page labels are interpreted by sed; tags and labels can safely be made
up of letters, digits, and underscores.

August 20, 1991

