
Computing Science Technical Report No. 128

Tools for Printing Indexes

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

October, 1986

Tools for Printing Indexes

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes a set of programs for processing and printing the index for a
book or a manual. The input is a set of lines containing index terms and page numbers.
(Disclaimer: these programs do not help with the original creation of index terms!) The
programs collect multiple occurrences of the same terms, compress runs of page numbers,
create permutations (e.g., ‘‘index, book’’ from ‘‘book index’’), and sort them into proper
alphabetic order. The programs can cope with embedded formatting commands (size and
font changes, etc.) and with roman numerals.

The implementation uses an unusual software style: a long pipeline of short awk
programs. This structure makes the programs easy to adapt or augment to meet the spe-
cial requirements that arise in many indexes. The programs were intended to be used
with troff , but can be used with TEX or monk[1] with minor changes.

October, 1986

Tools for Printing Indexes

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Making an Index

There are two major tasks to making an index for a book or manual. The first is deciding on the
proper indexing terms, so that users of the index can readily find what they are looking for. This is hard
intellectual work if done well, and no mechanical aid is likely to do more than help with a rough first draft.
The authors of this paper have between them indexed half a dozen books and as many programmer manu-
als, and have never found a substitute for a lot of thought.

The second task is, given a set of terms and page numbers, to produce and print a properly sorted and
formatted index. This includes collecting multiple instances of an index item into a single list of page num-
bers:

book index 1, 17, 18, 19, 25, 26

permuting index terms:

index, book 1, 17, 18, 19, 25, 26

compressing runs of adjacent page numbers:

book index 1, 17-19, 25-26

sorting correctly in the face of strange characters and formatting commands:

ps -a 34, 91
ps command 34
.ps command, troff 301
PS1 shell variable 36, 82

and a host of similar details.

This second task — mechanical but remarkably time-consuming if not mechanized — is addressed
by the family of programs described here.

The precise task to be performed depends on the style of the index. Some issues are cosmetic: for
example, which of the following styles is desired?

index term, ii, iii, 26.
index term ii, iii, 26
index term ii-iii, 26

Other issues are deeper. This example incorporates a glossary, allows hierarchical entries, and includes see
and see also cross-references:

Insertion: Adding a new element, 168-223.
into arrays, 169.
into binary trees, see Trees.
into linked lists, 200-215, see also Sequences.

How should a program deal with such a multitude of choices? One way is to build a number of
options into a large program, controlled perhaps by various flags. This approach solves many problems,

- 2 -

but it requires a great deal of complex code, since the various options have subtle interactions. And if we
hadn’t foreseen your particular problem, you might find it hard to modify the code.

We have taken an alternate approach to the problem of proliferating options. Our package provides
basic services (permuting terms, compressing runs, sorting correctly) but neglects exotic features (format-
ting options, glossary definitions, hierarchies, cross references). The simple package is sufficient for pro-
ducing simple indexes. Users with more complex needs, must modify the programs; the tools are organized
as a long pipeline of short awk programs to make this easy.

The next two sections describe how to use the package in its current form; nonprogrammers will
probably not want to read past Section 3. Sections 4 and 5 discuss implementation and modification, and
Section 6 contains remarks on the style of programming.

2. Typical Use

The first step is to prepare a list of index terms and page numbers. This can be done completely by
hand if the document is guaranteed to be in its final form, by transcribing the terms and page numbers into a
file. A more satisfactory way, however, is to include in the machine-readable form of a document com-
mands that cause the index terms and their computed page numbers to be emitted when the document is
formatted. For example, with troff , a call of the macro .ix can be used:

This paper describes a set of programs for processing and printing
the index for a book
.ix book index
or a manual. The input is ...

The .ix macro is not part of the standard macro packages like -mm or -ms; fortunately its definition is
short:†

.de ix

.tm ix: \\$1 \\$2 \\$3 \\$4 \\$5 \\$6 \\$7 \\$8 \\$9 \\n%

..

This causes the (up to nine) words of the index term, a tab, and the current page number to be written on
troff’s standard error output. The string ‘‘ix:’’ is added to the front so index terms can later be separated
from anything else that might have been printed on the error output. [Warning: some of troff’s special
characters don’t come through .tm commands at all and others come through in strange ways.]

The index output is captured in a file, say ix.raw, by redirecting file 2 (stderr):

troff -ms ... >t.out 2>ix.raw

(Typical documents also use refer , pic , tbl , eqn , etc., in a pipeline.) The raw output is processed by the
program make.index:

make.index ix.raw >index.body

Each line written to index.body is preceded by a call to macro .XX, which can be used later to format it.
In addition, a call to the .YY macro is generated before each new letter of the alphabet; after azure and
before Babbage, .YY is called with the two arguments b and B.

The complete index is generated by a later troff run:

troff -ms index.head index.body >index.out

The standard file index.head contains default definitions of the .XX and .YY macros, plus other com-
mands to set multiple columns, etc. This file is set up to produce a three-column index on a normal six-
inch page width, using the .MC macro of the -ms macro package. If you use some other macro package,
you will have to change this file.

The books [2] and [3] illustrate the style of index produced by this program (although those books
used earlier versions).

† The version of the .ix macro in the appendix is slightly more complicated so as to handle index terms contained within
diverted text like floating keeps.

- 3 -

3. Input of Index Terms

A simple language is used within arguments to the .ix macro to control fonts, permutations of
phrases, and order of sorting. The general form of an indexing entry is

.ix this is a phrase

which, if it occurs on page 97, will be written in the ix.raw file as

this is a phrase (tab)97

This will subsequently be converted into four entries by rotating the phrase around each blank:

this is a phrase 97
phrase, this is a 97
a phrase, this is 97
is a phrase, this 97

The character ˜ is translated to a blank, so it may be used to control the automatic rotation:

.ix this˜is˜a phrase

will eventually produce

this is a phrase 97
phrase, this is a 97

If there are multiple occurrences of an indexing phrase on adjacent pages, they will be collected and merged
to appear as, for example, 97, 99, 108-110.

Page numbers in lower case roman numerals (i, ii, iii, ...) are sorted before arabic page numbers.

Within the words of an index phrase, the following special constructs are recognized:

˜ will print as blank
[...] will print ... in CW font
{...} will print ... in italics
_[, _] literal [,]
_{, _} literal {, }
% explicit sort key follows
_% literal %
istart start a range of page numbers
iend end a range

For example,

.ix [pr]˜[-]{n} command

.ix [_[ˆ{...}_]] regular˜expression

.ix [printf] [_%d] specification

produces

%d specification, printf
[ˆ...] regular expression
command, pr -n
pr -n command
printf %d specification
regular expression, [ˆ...]
specification, printf %d

Only the specific nesting [{}] currently works for font changes. There is also no way to print a literal _̃.
Proper handling of _˜_ _ is left as an exercise; see Section 5.

You may want to produce an entry like ‘‘large subject 19-35’’, to indicate a range of pages. Two
special .ix entries can be used to define the range:

- 4 -

.ix istart large subject .. on the first page

.ix iend large subject .. on the last page

Sorting is normally performed with the index term as the sort key. The control commands listed
above are removed from the sort key so they do not affect the order of sorting, as are troff font changes like
\f(CW and \fI, size changes like \s8 and \s-3, and other miscellany.

If the sort order isn’t what you want, you may force a sort key by using the %... construct:

.ix any string%explicit sort key

as in

.ix T\v’.17m’\h’-.12m’E\h’-.12m’\v’-.17m’X%TEX

(Notice that no space precedes the %.)

If you use complicated keys, you will have to study the program gen.key to use explicit keys effec-
tively. For instance, that program controls grouping by prepending a single space to a string that starts with
a number and prepending two spaces to a string that starts with punctuation.

4. Principles of Operation

The indexer consists of a host of small awk programs, intentionally kept separate for easy modifica-
tion. For example, roman numeral page numbers are processed by deroman and reroman. These programs
can only count up to xxx, however, so you must make a simple change to them if you want to count beyond
30. On the other hand, if you don’t have any roman-numeral pages, you don’t need deroman and reroman
at all.

The basic strategy is to sort once to bring together all occurrences of identical index terms so as to
combine their page numbers. Correct sorting in the face of bizarre font controls and the like is achieved by
prefixing a sort key to each line such that sorting on that key creates the proper order; the % command
allows you to override the default sort key.

The shell file make.index controls the process:

make.index ix.raw ... >index.out

The specific programs are, in order,

doclean strip excess spaces before the tabs, remove non-ix: lines
deroman map roman numerals to arabic
range.prep prepare to sort (handle istart/iend)
range.sort sort by string then page number
range.collapse resolve istart/iend and merge runs of page numbers
reroman put arabic numerals back into roman
num.collapse put many number pairs onto one line
rotate make rotated copies of each line
gen.key generate a sort key, if one wasn’t provided
final.sort sort using the key
format do font and size changes, etc.

A few implementation details may prove useful. The awk programs rely on features in the awk inter-
preter released in mid-1985 [4]. If your awk gets a syntax error on this program

awk ’{ gsub(/A-Z/, "") }’

to remove capital letters, you must install an up-to-date version. The ‘‘pipeline’’ actually uses temporary
files foo0 , foo1 , ... to connect the stages (some systems have a small limit on the number of filters in a
pipeline; the intermediate files are also useful for debugging), and deletes the files at the end. On a VAX-
11/750, make.index takes a few minutes for a medium-sized book (500 distinct entries, 1500 total
entries).

- 5 -

5. Bells and Whistles

Our programs produce a basic index. If you want additional features, you will have to build them
yourself by adding to or adapting our tools.

To illustrate the process, we’ll consider a simple addition: ‘‘see’’ references of the form

secondary see primary

(The examples in the introduction also illustrate a see also reference to follow a list of page numbers; we’ll
leave that as an exercise.) The see references are contained in the file see.terms in the format

secondary(tab)primary

The general strategy is to have an awk program massage that file into a suitable format, then merge it into
the existing pipeline.

Here are the implementation details. The make.index command is replaced by:

doclean ix.raw | deroman | range.prep | range.sort |
range.collapse | reroman | num.collapse |
rotate | gen.key | final.sort >junk.regular

sort see.terms | see.prep >junk.see
sort -m junk.see junk.regular | format >index.body
rm junk.regular junk.see

The see terms are sorted, processed by see.prep, then merged into the larger file by sort’s -m option.
The program see.prep requires two lines of awk:

awk ’ BEGIN { FS = "\t" }
{ print $1 "\t" $1 "\t\\fIsee\\fP " $2 } ’

This program uses the secondary term as the sort key and as the term itself; it puts ‘‘see primary term’’ in
the third field (which is normally occupied by page numbers). This simple construction assumes that the
terms contain no formatting commands; if they do, you must pipe them through gen.key as well.

If you desire a minor cosmetic change to the style of the index, you will probably have to alter the
troff commands in the header file index.head. Our tastes run to ragged-right columns in the short lines
of an index; if you prefer aligned columns, remove the .na line (and be prepared for some funny line fill-
ing). The .YY macro in that file places the new letter of the alphabet between letter breaks, to show how
that might be done. We prefer just to leave a small space, so we define .YY as

.de YY \" header between letters of the alphabet

.sp 1.5

..

For more radical stylistic changes, you may have to modify the format program as well.

The most obvious missing piece in our suite is hierarchical indexes, which can be arbitrarily com-
plex:

book
composition 23
indexing 45-54

automatic 50
manual 48

production 67

Our tools do not supply hierarchies because the indexes in our books don’t use them (or vice versa).
Rather, we achieve a similar effect by careful use of rotation of phrases:

search 1-10, 12-14, 140-148
search, binary 12-13, 16, 18
search, hash 90, 121, 142-143, 145-146
search, sequential 12, 18, 46

If you really want a hierarchical index, we recommend a two-level hierarchy, in which the primary

- 6 -

and secondary keys are explicitly identified in the input, perhaps as

.ix primary term, secondary term

(More than two levels is hard and not too useful; deducing primary and secondary keys from word strings is
a hit-and-miss operation.) Your implementation can probably get by with changing only the format pro-
gram and the index.head file; you will probably need a new macro .ZZ for secondary terms.

Some people don’t want to collapse runs of adjacent page numbers. They feel that the list ‘‘5, 6, 7’’
implies three scattered references on those pages, while the sequence ‘‘5-7’’ implies a lengthy discussion.
If you are in that camp, you must provide the ranges explicitly using istart and iend commands, then
modify the program range.collapse to avoid merging adjacent page numbers.

The programs do not deal directly with complicated material like mathematics in index terms. As it
stands, these can be handled best by explicit sort keys, which is probably adequate if there are not too many
such items.

Although our tools were designed to work with troff , it is straightforward to adapt them to other doc-
ument production systems, such as monk or TEX. The first part of the job is to produce an analog of the
.ix macro to emit index terms and page numbers. For example, \index{term} in LATEX [5] is essen-
tially identical to our .ix macro, while monk uses |index(term). You must then modify doclean to
sweep up any loose ends and format to produce output of the right form; the rest of the pipe is
unchanged. Your last job is to incorporate the resulting output into the document, using a mechanism like
index.head.

We have also used the .ix macro to generate text and page numbers for tables of contents. A macro
for producing section heads, for instance, might be augmented to produce lines of the form

.ix CONTENTS Section Number Section Title

A subsequent program separates table-of-contents items from index terms and prepares them in a format
suitable for troff . (This is why doclean_ ______ filters out lines that contain the string ‘‘CONTENTS’’.)

As a final observation, indexing is often done late in the game, under intense time pressure. In such
circumstances, there is no disgrace in using sed or even (as a last resort) a text editor to fix up things that
just don’t work right.

6. Comments on Programming Style

This is the third version of a family of indexing programs started more than a decade ago. The first
and second versions used a pipeline of C programs and increasingly complicated sed scripts and sort
options in a largely unsuccessful attempt to control sorting order; they are sketched in the index of [6]. As
capabilities were added over the years, the programs degraded into write-only code, penetrable only with
substantial effort.

Our motivation to build the current suite of awk programs was preparing the index to Reference [2].
That index was substantially different from those processed by the existing programs: it had no font
changes (which contributed greatly to the complexity of the C programs), but it did employ other niceties,
such as ranges of pages and breaks between letters. Rather than modifying the existing suite, we spent a
few hours building a single-shot awk pipeline for the task (37 lines of awk in 6 programs).

Several months later we built the current indexing suite, which is a functional superset of its two pre-
decessors. We worked with a colleague who was preparing the index to a manual, and to whom we had
described the prototype. We wrote the new code, debugged it, added several necessary features, and pro-
vided initial documentation, all within a week. The final version of the C program, the initial awk program,
and the final awk program are summarized in Table 1.

- 7 -

_ __ ___
PROGRAM C PROTOTYPE AWK PROTOTYPE AWK PRODUCTION_ ___
doclean 3 sed 11
deroman 7 sed 7 17
range.prep 9
range.sort 4 sh
range.collapse 43
reroman 4 sed 10 22
num.collapse 49 C 4 12
rotate 60 C 6 21
gen.key 18 sed 34
final.sort 1 sh 1 sh 4 sh
format 30 sed 10 47_ ___
Total Lines 172 37 224_ ___ 
















































Table 1. Lines of Source Code

Table 1 has been massaged to compare incomparables. The C suite, for instance, did not have sepa-
rate programs for deroman_______ and reroman_ ______; it performed those tasks in its sed-script versions of gen.key_ ______ and
format_ _____, so we redistributed the line counts. (More details on the C programs shortly.) The C suite did not
support ranges, which were entered explicitly by the user in the first awk system, so neither prototype had
the three programs that compute ranges. The prototype awk programs performed no font changes, but were
careful with roman numerals.

The final awk suite is six times longer than the prototype, due to improvements in several important
dimensions.

Functionality. The programs support computed ranges, font changes, and several other additions.

Error-checking. An error message is produced when a range was started but not ended, for instance.

Bomb-proofing. Sanity is maintained for a wide class of invalid inputs, such as huge roman numer-
als.

Performance. Improvements ranging from more sophisticated algorithms to awk coding tricks
reduced the run time of some individual filters by an order of magnitude.

Readability. Although this may stretch the imagination of some readers, the first version was much
less readable than the code presented in the appendix. (Fifty of the 224 lines are comments.)

These issues were not important in a single-shot prototype, but do matter in a production program. Improv-
ing the C prototype might well also increase its length by a factor of six.

The essence of the final suite is a long pipeline of short awk programs. Is that a good approach? A
pipeline proved to be a very effective decomposition for this task: each program follows the pipe philoso-
phy of performing one task well, and is only slightly muddled by the format of its input and output. We are
familiar with one monolithic program for producing an index for troff books; it is 350 lines of prototype-
quality C (and makes use of several system utilities). Fragmenting the job into a large number of small
pieces makes it easy to add or change pieces; this seems especially important for indexing, where there is a
wide variety of styles. It also leaves open the possibility of recoding some critical part for speed. (For a
discussion of decomposition strategies applied to making a KWIC index, a simpler problem, see [7].)

For ease of implementation, the awk language is a substantial improvement over C: awk is much bet-
ter suited to the combination of string handling, pattern matching and arithmetic. There is an order-of-
magnitude difference between lines of C code and lines of awk code for the prototype versions of
num.collapse_ __________ and rotate_ ____; this ratio appears to be typical for tasks of this nature. The shorter awk version is
also much closer to being correct. (Any automatic process can create insidious errors if its output is
accepted blindly. For one instance, the index entry for kill -3 in the index of Reference [1] was rendered
as kill iv; the reader might enjoy trying to infer the combination of circumstances that caused this
gaffe.)

Performance does suffer in the awk version. The index to Reference [1] (1770 input lines) takes 109
seconds with the old C version and 234 seconds with the new one on a VAX-11/750. This factor of two is

- 8 -

acceptable for a program that is run only occasionally. The run times of the new programs and the size of
the data flowing between them are presented in this profile:

lines words chars
times program

1770 6606 53483
18.1u 1.2s 21r doclean

1681 4276 33568
8.1u 1.2s 10r deroman

1681 4276 33688
12.4u 1.5s 16r range.prep

1681 4276 35369
19.6u 1.4s 23r range.sort

1681 4276 35369
26.5u 1.8s 33r range.collapse

1639 4203 32978
9.0u 1.3s 11r reroman

1639 4174 32858
11.3u 1.3s 15r num.collapse

1161 3464 25680
21.8u 1.6s 25r rotate

1825 7141 45142
27.4u 1.9s 32r gen.key

1825 11722 74292
18.2u 1.8s 26r final.sort

1825 11722 74292
43.8u 2.6s 51r format

3675 9029 66443

Here is a similar profile of the C prototype:
lines words chars

times program
1770 6606 53483

5.2u 0.7s 6r sed -f doclean_deroman
1770 4836 37181

3.7u 0.5s 5r rotate
3028 10296 76409

22.6u 1.5s 25r sed -f gen.key
2595 10836 65629

41.0u 2.9s 58r final.sort
2595 10836 65629

3.5u 0.6s 7r num.collapse
1793 8664 51227

23.8u 2.9s 47r sed -f format_reroman
3586 8855 65303

(The file sizes are close but not equal: we used one input file as input to two programs with slightly differ-
ent functionality.)

Acknowledgments

We are grateful to Al Aho, Ted Kowalski, Doug McIlroy, Ravi Sethi, Chris Van Wyk and Pamela
Zave for comments on this paper. Pamela Zave also gave us much help with shaking down the current pro-
gram. Ravi Sethi provided the .ix macro in the appendix.

References

1. Murrel, S. L. and Kowalski, T. J., Typing Documents on the UNIX System: Using Monk 0.3, Bell
Laboratories internal memorandum (December 10, 1985).

2. Brian W. Kernighan and Rob Pike, The Unix Programming Environment, Prentice-Hall (1984).

3. Jon L. Bentley, Programming Pearls, Addison-Wesley (1986).

4. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, ‘‘AWK: A Pattern Scanning and Pro-
cessing Language (User’s Manual),’’ CSTR 118 (June 1985).

5. Leslie Lamport, LATEX: A Document Preparation System, Addison-Wesley (1986).

6. Brian W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley (1976).

7. David L. Parnas, ‘‘On the criteria to be used in decomposing systems into modules,’’ Communica-
tions of the ACM 15(12), pp. 1053-1058 (December 1972).

- 9 -

Appendix: The Programs

This appendix lists the programs verbatim in the order in which they are used; the programs are avail-
able from the authors. But first, a summary of the commands. Fields in square brackets [] are optional.

doclean
Input: string (blanks and tab) number
Output: string (tab) number

deroman
Input: string (tab) arab or roman
Output: string (tab) arab
Roman numeral n is replaced by arab n-1000 (i.e., iii -> -997)

range.prep
Input: [istart/iend] string (tab) number
Output: string (tab) [b/e] (tab) number

range.sort
Sort by $1 (string), $2 (string), then $3 (number)

range.collapse
Input: string (tab) [b/e] (tab) number
Output: string (tab) num [(space) num]

reroman
Input: string (tab) arab1 [(space) arab2]
Output: string (tab) roman1 [-roman2]

num.collapse
Input: string (tab) roman1 [-roman2]
Output: string (tab) numlist

rotate
Input: string [%optional sort key] (tab) numlist
Output: rotations of string (1/line) (tab) [key] (tab) numlist

gen.key
Input: string (tab) [opt explicit key] (tab) numlist
Output: sort key (tab) string (tab) numlist

final.sort
Sort by $1 (string) folded to lower case

format
Input: sort key (tab) string (tab) numlist
Output: troff format, commands interpreted

ix.macro:
.de ix
.ie ’\\n(.z’’ .tm ix: \\$1 \\$2 \\$3 \\$4 \\$5 \\$6 \\$7 \\$8 \\$9 \\n%
.el \\!.ix \\$1 \\$2 \\$3 \\$4 \\$5 \\$6 \\$7 \\$8 \\$9
..

index.head:
.\" This version is for the -ms macro package.
.\" if you use -mm, you will want to change .SH
.\" to some form of .HU "heading", and .LP to .P 0.
.\" the number registers PS and VS are different too.
.
.
.pn 999 \" page number for first page; set it to taste
.de XX \" this macro precedes each index term
.br \" break
.ti -.2i \" outdent first line of each entry
.ne 2 \" need two lines for typical entry
..
.de YY \" header between letters of the alphabet
.sp 1.5 \" space 1.5 lines
.ne 3 \" need 3 lines on this page
.ce \" center next output line
- \\$1 - \" print the letter
.sp .5 \" space .5 line
..
.SH \" provide heading
Index
.LP \" text is coming
.nr PS 8 \" index looks better in small type
.nr VS 9 \" and small spacing
.MC 1.9i \" 3 columns with default-size page
.na \" no-adjust gives ragged right lines
.in .2i \" outdent first line by 0.2 inches
.hy 0 \" don’t hyphenate

make.index:
doclean $* >foo1
deroman foo1 >foo2
range.prep foo2 >foo3
range.sort foo3 >foo4
range.collapse foo4 >foo5
reroman foo5 >foo6
num.collapse foo6 >foo7
rotate foo7 >foo8
gen.key foo8 >foo9
final.sort foo9 >junk.regular

see.prep see.terms | gen.key | final.sort >junk.see
sort -mfd junk.see junk.regular | format >junk.all
cat index.head junk.all

rm foo* junk*

- 10 -

doclean:
awk ’ # doclean
Input: string (blanks and tab) number
Output: string (tab) number

BEGIN { FS = OFS = "\t" }
$0 !˜ /ˆix: / { print "doclean: non index line: " $0 | "cat 1>&2"; next }
/CONTENTS/ { next } # CONT. marks table of contents stuff

{ sub(/ˆix: /, "", $1) # rm leading "ix: "
sub(/ +$/, "", $1) # rm trailing blanks
print
}

’ $*

Piping the output of a print statement through cat 1>&2 is an awk idiom for sending output to the standard
error.

deroman:
awk ’ # deroman
Input: string (tab) [arab or roman]
Output: string (tab) [arab]

Roman numeral n is replaced by arab n-1000 (e.g., iii -> -997)
BEGIN { FS = OFS = "\t"

set a["i"] = 1, a["ii"] = 2, ...
s = "i ii iii iv v vi vii viii ix x"
s = s " xi xii xiii xiv xv xvi xvii xviii xix xx"
s = s " xxi xxii xxiii xxiv xxv xxvi xxvii xxviii xxix xxx"
n = split(s, b, " ")
for (i = 1; i <= n; i++) a[b[i]] = i

}
$2˜/ˆ[ivxlc]+$/ { if ($2 in a) $2 = -1000 + a[$2]

else print "deroman: bad number: " $0 | "cat 1>&2"
}
{ print }

’ $*

This program uses awk’s strings and split command to initialize the array a; this idiom is used in several later
programs.

range.prep:
awk ’ # range.prep
Input: [istart/iend] string (tab) number
Output: string (tab) [b/e] (tab) number

BEGIN { FS = OFS = "\t" }
{ f2 = "" }

$1 ˜ /ˆ%begin/ { f2 = "b"; sub(/ˆ%begin */, "", $1) }
$1 ˜ /ˆ%end/ { f2 = "e"; sub(/ˆ%end */, "", $1) }

{ print $1, f2, $2 }
’ $*

range.sort:
range.sort
Input/Output: string (tab) [b/e] (tab) number
Sort by $1 (string), $3 (number), then $2 (string)

this version doesn’t work with page numbers like 4-56

sort -u ’-t ’ +0 -1 +2n +1 -2 $*

range.collapse:
awk ’ # range.collapse
Input: string (tab) [b/e] (tab) number
Output: string (tab) num [(space) num]
function error(s) {

print "range.collapse: " s " near pp " rlo "-" rhi | "cat 1>&2"
}
function printoldrange() {

if (range == 1) { error("no %end for " term); rhi = "XXX" }
if (NR > 1) {

if (rlo == rhi)
print term, rlo

else
print term, (rlo " " rhi)

}
rlo = rhi = $3 # bounds of current range

}

BEGIN { FS = OFS = "\t" }
$1 != term { printoldrange(); term = $1; range = 0 }
$2 == "e" { if (range == 1) { range = 0; rhi = $3 }

else { printoldrange(); error("no %begin for " term); rlo = "XXX" }
next
}

$3 <= rhi + 1 { rhi = $3}
$3 > rhi + 1 { if (range == 0) printoldrange() }
$2 == "b" { if (range == 1) error("multiple %begin for " term); range = 1 }
END { if (NR == 1) NR = 2; printoldrange() }
’ $*

This program would be much shorter without error checking.

- 11 -

reroman:
awk ’ # reroman
Input: string (tab) arab1 [(space) arab2]
Output: string (tab) roman1 [-roman2]

BEGIN { FS = OFS = "\t"
set a[1] = "i", a[2] = "ii", ...
s = "i ii iii iv v vi vii viii ix x"
s = s " xi xii xiii xiv xv xvi xvii xviii xix xx"
s = s " xxi xxii xxiii xxiv xxv xxvi xxvii xxviii xxix xxx"
split(s, a, " ")

}
$2 < 0 { n = split($2, b, " ")

for (i = 1; i <= n; i++) {
if (b[i] >= 0) continue
j = 1000 + b[i]
if (j in a) b[i] = a[j]
else print "reroman: bad number: " $0 | "cat 1>&2"

}
$2 = b[1]
if (n > 1) $2 = b[1] " " b[2]

}
{ print }

’ $*

num.collapse:
awk ’ # num.collapse
Input: string (tab) roman1 [-roman2]
Output: string (tab) numlist

BEGIN { FS = OFS = "\t" }

{ sub(/ /, "\\(en", $2) } # use - if there is no en dash

$1 != p { p = $1
if (NR > 1) printf "\n"
printf "%s\t%s", $1, $2
next

}
{ printf " %s", $2 }

END { if (NR > 0) printf "\n" }
’ $*

The variable p_ is the previous value. The output uses space as a separator between numbers in the list.

rotate:
awk ’ # rotate
Input: string [%key sort key] (tab) numlist
Output: several rotations of string (tab) [key] (tab) numlist(with commas)

BEGIN { FS = OFS = "\t" }

{ # convert page page page into page, page, page
ought to be in num.collapse
gsub(/ /, ", ", $2) # commas between page numbers

}

/ %key / { i = index($1, " %key ")
print substr($1, 1, i-1), substr($1, i+6), $2
next

}
{ print $1, "", $2

i = 1
while ((j = index(substr($1, i+1), " ")) > 0) {
i += j
printf("%s, %s\t\t%s\n", substr($1, i+1), substr($1, 1, i-1), $2)

}
}

’ $*

The tricky code in the last while loop makes quite a difference in run time.

- 12 -

gen.key:
awk ’ # gen.key
Input: string (tab) [opt explicit key] (tab) numlist
Output: sort key (tab) string (tab) numlist

BEGIN { FS = OFS = "\t" }

$2 == "" { # generate key if none specified
$2 = $1
Remove these troff commands:
gsub(/\\f\(..|\\f.|\\s[+-][0-9]|\\s[0-9][0-9]?/, "", $2)
Def 1: keep blanks, letters, digits only
gsub(/[ˆa-zA-Z0-9]+/, "", $2)
Def 2: remove index commands []{}, and % before literals
quote character is %, space character is ˜
quoted = 0
if ($2 ˜ /%/) { # hide literals in Q

quoted = 1
gsub(/%%/, "QQ0QQ", $2)
gsub(/%\[/, "QQ1QQ", $2)
gsub(/%\]/, "QQ2QQ", $2)
gsub(/%\{/, "QQ3QQ", $2)
gsub(/%\}/, "QQ4QQ", $2)
gsub(/%˜/, "QQ5QQ", $2)

}
gsub(/%e/, "\\", $2) # troff escape
gsub(/˜/, " ", $2)
gsub(/[%\[\]\{\}]/, "", $2) # remove font-changing []{} and %, ˜
if (quoted) { # replace literals

gsub(/QQ0QQ/, "%", $2)
gsub(/QQ1QQ/, "[", $2)
gsub(/QQ2QQ/, "]", $2)
gsub(/QQ3QQ/, "{", $2)
gsub(/QQ4QQ/, "}", $2)
gsub(/QQ5QQ/, "˜", $2)

}
if ($2 ˜ /ˆ[ˆa-zA-Z]+$/) # pure punctuation goes first

$2 = " " $2
else if ($2 ˜ /ˆ[0-9]/) # leading digits come next

$2 = " " $2
otherwise whatever final.sort does

}

{ print $2, $1, $3 }
’ $*

Under Definition 1, the sort key consists of all alphanumeric characters in the string; that is commented out. Defini-
tion 2 is active; it tries to remove formatting commands.

final.sort:
final.sort
Input/Output: sort key (tab) string (tab) numlist
Sort by $1 (string)

###sort -fd $*
sort -t’ ’ +0fd -1 -t’ ’ +0f -1 $*

- 13 -

format:
awk ’ # format
Input: sort key (tab) string (tab) numlist
Output: troff format, commands interpreted

BEGIN { FS = "\t"
s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz "
set upper["a"] = "A"
for (i = 1; i <= 27; i++) upper[substr(s,i+27,1)] = substr(s,i,1)
set lower["a"] = lower["A"] ="a"
for (i = 1; i <= 27; i++) {

lower[substr(s,i,1)] = substr(s,i+27,1)
lower[substr(s,i+27,1)] = substr(s,i+27,1)

}
}
{ # mark change between letters with .YY

find first non-punctuation char
for (i = 1; (c = substr($1,i,1)) != ""; i++)

if (c ˜ /[a-zA-Z0-9]/)
break

this = c
if (!(this in lower)) lower[this] = " "
this = lower[this]
if (this != last && this != " ")

print ".YY", this, upper[last=this]
quoted = 0

interpret font change language

$0 = $2 " " $3 # discard sort key, leave term .. numlist

if ($0 ˜ /%/) {
quoted = 1
gsub(/%%/, "QQ0QQ", $0)
gsub(/%\[/, "QQ1QQ", $0)
gsub(/%\]/, "QQ2QQ", $0)
gsub(/%\{/, "QQ3QQ", $0)
gsub(/%\}/, "QQ4QQ", $0)
gsub(/%˜/, "QQ5QQ", $0)

}
gsub(/%e/, "\\e", $0) # %e -> \e
gsub(/˜/, " ", $0) # unpaddable spaces go away at last
if (gsub(/\[/, "\\\\&\\f(CW", $0))

gsub(/\]/, "\\fP", $0)
if (gsub(/\{/, "\\f2", $0))

gsub(/\}/, "\\fP", $0)
if (quoted) {

gsub(/%/, "", $0)
gsub(/QQ0QQ/, "%", $0)
gsub(/QQ1QQ/, "[", $0)
gsub(/QQ2QQ/, "]", $0)
gsub(/QQ3QQ/, "{", $0)
gsub(/QQ4QQ/, "}", $0)
gsub(/QQ5QQ/, "˜", $0)

}
print ".XX"; printf "\\&%s\n", $0

}
’ $*

There is no good way to convert cases in awk .

