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ABSTRACT

Karmarkar’s linear programming algorithm handles inequality constraints by
changing variables to make all constraints about equally distant; it moves in the steepest-
descent direction seen by the new variables. This paper summarizes four variants of
Karmarkar’s linear programming algorithm (primal affine, primal projective, dual affine,
and dual projective), discusses depicting polytopes (feasible regions), and presents pic-
tures illustrating the latter three variants. These pictures give an algorithm’s eye view of
the variable changes and provide visual verification of some theoretical results.

Introduction

This paper shows an algorithm’s eye view of several variants of Karmarkar’s linear programming
problem. All use changes of variables to bring the current iterate to the center of the feasible region and
move in the steepest-descent direction seen by the changed variables. By considering problems having
three degrees of freedom, we can depict the feasible regions before and after the variable changes, thus
graphically illustrating their effect.

We begin by summarizing four variants of Karmarkar’s linear programming algorithm: primal
affine, primal projective, dual affine, and dual projective; the last is apparently new. Then we discuss
depicting polytopes, i.e., the feasible regions of the linear programming problems, and present pictures that
illustrate the dual affine, dual projective, and primal projective algorithms. (For irrelevant reasons, these
three variants happened to be the most convenient to illustrate.)

The choice of variables matters. With the right choice, used in most of our pictures, the views we
obtain are unique up to rotations, and they illustrate some properties of the projective algorithms. Unfortu-
nately, the pictures in [9] are from a seemingly natural but ‘‘wrong’’ choice of variables. We discuss these
variables at the end and show how differently things look from their perspective.

The norms || . || used below are Euclidean. As usual, I denotes an identity matrix, 0 a matrix or vector
of zeros, ek denotes the kth standard unit vector, and e = Σ k

e k denotes a vector of ones, all of dimension

dictated by context. Other notation is defined as needed below.

The Problem

Linear programming (LP) problems can always be expressed in standard form: Find a vector
x ∈ I Rn (of length n) to

(1a) minimize cT x

subject to

(1b) Ax = b

and

(1c) x ≥ 0 ,

where A ∈ I Rm×n is a given (real m × n) matrix, b ∈ I Rm, and superscript T means ‘‘transposed’’.
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(Superscript T will be omitted when vectors are spelled componentwise.) Associated with (1) is the dual
problem

(2a) maximize b T y

subject to

(2b) A T y ≤ c

(with no sign constraints on y). For simplicity, we assume A has full rank (m).

The hard part about (1) is determining which components of x can be strictly positive in solutions to
(1). (This is equivalent to determining which components of (2b) can only be satisfied as equalities in solu-
tions to (2).) Active set algorithms, such as the simplex method, repeatedly update an estimate of a set of x
components that may be positive; in effect, they only allow a few (at most m) components of x to be posi-
tive at one time. Karmarkar’s algorithm, on the other hand, works with a solution estimate that has all com-
ponents positive. It repeatedly changes variables, computes the steepest descent direction in the changed
variables, moves some distance in that direction, and translates the resulting point back to the original vari-
ables.

Karmarkar’s paper [15] uses projective transformations to make its changes of variables. One can
also use a linear change of variables; the resulting ‘‘affine variant’’ of Karmarkar’s algorithm (references
for which are given below) is a bit easier to describe than the ‘‘projective variant’’. Although the affine
variant is appealing for its simplicity, stronger convergence results are known for the projective variant.

Affine Variant

In the affine variant of Karmarkar’s LP algorithm, we proceed from iterate xk to xk + 1 as follows. We
start with the change of variables x̂ = D − 1 x, where

(3) D = D k = diag (xk )

is the diagonal matrix whose (i ,i) entry is xi
k , the ith component of the current iterate xk . The constraints

(1b,c) become Âx̂ = b and x̂ ≥ 0, where Â = AD, and the objective (1a) becomes ĉ
T

x̂, where ĉ = Dc.
Note that the current iterate xk transforms into a vector of ones (denoted e): x̂

k
: = D − 1 xk = e. The (con-

strained) steepest descent direction is then

(4) p̂ = − P Â ĉ ,

where P B denotes projection onto the orthogonal complement of the row space of a matrix B. A step in this
direction to x̂

k + 1
= x̂

k
+ α̂ p̂ translates into the step xk + 1 = xk + αp = xk − αDP AD Dc in the original

variables, where α = α̂ > 0 is small enough that xk + 1 > 0 (i.e., that all components of x remain positive).
People often choose α in the range [ 0. 9αmax, 0. 99αmax ], where αmax = max{τ > 0 : xk + τp ≥ 0}.

I first learned about the primal affine variant from Karmarkar in late 1984. Several other people or
groups appear to have proposed this variant independently, including [3, 5, 7, 25].

Projective Variant

In [15], Karmarkar assumed the optimal value of cT x * to be zero, that b i = 0 for i < m and that
A m, j = 1 for all j; he showed that one can always transform a problem to this form. There are various
ways to make this transformation or relax these assumptions; see, e.g., [2, 8, 13, 14, 16, 19, 21, 22, 24], and
the Concluding Remarks below. For making pictures it seems most convenient to do things as in [10].

This version of the algorithm computes a sequence of pairs (xk , βk ) that maintain

(5a) Axk = b ,

(5b) xk > 0 ,

and

(5c) βk ≥ − cT x * ,

where cT x * is the optimal objective function value (1a), and that always reduce the ‘‘potential function’’
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(6) φ(x ,β) : = (n + 1 ) log (cT x + β) −
i = 1
Σ
n

log (x i )

by at least a constant amount: φ(xk + 1 ,βk + 1 ) ≤ φ(xk ,βk ) −
5
1_ _. This forces

k→ ∞
lim φ(xk ,βk ) = − ∞; if the

feasible region is bounded, this forces −
k→ ∞
lim βk =

k→ ∞
lim cT xk = cT x *. Later we discuss obtaining x 0 and

β0; for now assume them known.

Given iterate (xk ,βk ), we define D, as before, by (3). This time we use the projective change of vari-
ables

x̂ = ψ(x) : = (eT D − 1 x + 1 ) − 1


 1
D − 1 x


,

whose inverse is

x = ψ − 1 ( x̂) = x̂n + 1
− 1

Dx̂1..n ,

where x̂ 1..n stands for the first n components of x̂. The constraints (1b,c) become

(7a)


eT
AD

1
− b



x̂ = 

1
0


(7b) x̂ ≥ 0 ,

and φ becomes

φ̂( x̂ ,β) =
i = 1
Σ

n + 1

log





x̂ i

cT Dx̂1..n + β x̂ n + 1_ ________________





− log ( det (D) ) .

Let A
_ _

: = (AD , − b),

(8a) u : = P A
_ _ 

 0
Dc

 ,

(8b) v : = P A
_ _ 

1
0
 ,

and

(9) µ(β) : = min{(u + βv) i : 1 ≤ i ≤ n + 1} .

The convergence theory requires βk + 1 to satisfy both (5c) and µ(βk + 1 ) ≤ 0. Either µ(βk ) ≤ 0, in which
case βk + 1 : = βk suffices, or else we can choose βk + 1 < βk with µ(βk + 1 ) = 0, in which case duality the-
ory implies βk + 1 ≥ − cT x *: see [10] for details. The steepest-descent direction for φ̂ in the x̂ variables is

p̂ = − P B



βk + 1

Dc 



= − (I −
n + 1
eeT

_ _____ ) (u + βk + 1 v) ,

where B =


eT
AD

1
− b



. The step x̂

k + 1
= x̂

k
+ α̂ p̂ translates back to xk + 1 = xk + αkp k , where

(10) p k = Dp̂ 1..n − p̂ n + 1 xk

and αk =
(n + 1 ) − 1 + α̂ p̂ n + 1

α̂_ ________________. Although a fixed choice of α̂, e.g. α̂ = 1/3, suffices for the convergence

theory, in practice one gets much faster convergence by choosing α = αk to minimize φ(xk + αp k )
approximately.
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Dual Affine Algorithm

The algebra works out nicely when we apply the above algorithms to the dual problem (2). More-
over, the dual affine variant works even when there are considerable errors in the projections. This variant
appears to have been proposed independently in [1] and [20].

To derive the dual algorithms, it is useful to convert (2) to standard form by introducing slack vari-
ables: we define s ∈ I Rn by s = c − A T y. Although we shall compute with y, it is useful to eliminate y in
deriving the dual algorithm. To do this, let A + be any generalized inverse of A, i.e., any matrix with
A = AA + A. (The choice of A + is irrelevant, since A + will not appear in the final formulae. Since we’re
assuming A to have full rank, in fact AA + = I.) Then y = A + T (c − s), so maximizing b T y is the same as
minimizing b T A + T (s − c). Thus (2) is equivalent to

(11a) minimize (A + b) T s − cT A + b

subject to

(11b) (I − A T A + T ) s = (I − A T A + T ) c

and

(11c) s ≥ 0 ,

where I denotes the identity matrix of appropriate dimension (i.e., n×n).

The affine algorithm requires us to compute step direction (4), with Â from (11b):
Â : = (I − A T A + T ) D, where D = diag (s k ) and s k is the current iterate. Fortunately, the rows of AD − 1

span the null space of this constraint matrix: (I − A T A + T ) A T = 0. Thus
P Â = D − 1 A T (AD − 2 A T ) − 1 AD − 1. The constant cT A + b in (11a) is irrelevant to the affine algorithm, so
the ĉ of (4) is DA + b; since AA + = I, the search direction p = Dp̂ boils down to p = − A T (AD − 2 A T ) − 1 b.
But this is a search direction for s; since s = c − A T y, adding αp to s is the same as adding
α(AD − 2 A T ) − 1 b to y.

In short, the dual affine variant takes the form

D : = D k = diag (c − A T yk )

yk + 1 = yk + αk (AD − 2 A T ) − 1 b ,

with αk > 0 chosen to retain c − A T yk + 1 > 0.

Dual Projective Algorithm

The dual projective algorithm must compute the u and v of (8) with
A
_ _

= [ (I − A T A + T ) D , − (I − A T A + T ) c]. As mentioned in [10], the columns of

Q =


 0
D − 1 A T

1
D − 1 c



span the null space of this A
_ _

. Thus (8) becomes u + βv : = Q(Q T Q) − 1 Q T


 β
DA + b



, except that this

ignores constant cT A + b in (11a). As shown in [10], adding a constant to the objective function effectively

adds a constant to β, so (8) really becomes u + βv : = Q(Q T Q) − 1 Q T


β − cT A + b

DA + b 


; correspondingly,

(6) becomes

(12) φ(y ,β) : = (n + 1 ) log (β − b T y) −
i = 1
Σ
n

log (s i ) ,

(where s = c − A T y). But Q T


β − cT A + b

DA + b 



=


 β
AA + b




= 
β

b
, and we end up with
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(13) u + βv : = Q(Q T Q) − 1 
β

b
 .

It is convenient to note that

(14a) (Q T Q) − 1 
β

b
 =



 0
(AD − 2 A T ) − 1 b




+ ν


 1
− (AD − 2 A T ) − 1 AD − 2 c




,

where

(14b) ν =
1 + cT D − 2 c − cT D − 2 A T (AD − 2 A T ) − 1 AD − 2 c

β − cT D − 2 A T (AD − 2 A T ) − 1 b_ ________________________________________ ,

so that

(14c) u + βv =



 ν

D − 1 
A T (AD − 2 A T ) − 1 b + ν .[c − A T (AD − 2 A T ) − 1 AD − 2 c]






.

Rather than working directly with (9), it is convenient to work with ν: if we can choose ν to make the first
n components of (14c) nonnegative, then D − 1 times these components, i.e.,
x : = D − 2 [A T (AD − 2 A T ) − 1 b + ν .(c − A T (AD − 2 A T ) − 1 AD − 2 c) ] is feasible for (1), and
cT x = b T (AD − 2 A T ) − 1 AD − 2 c + ν .(cT D − 2 c − cT D − 2 A T (AD − 2 A T ) − 1 AD − 2 c) is a candidate for
updating β: if cT x < β, then we set β : = cT x. Once β has been updated, the step direction (10) for s
becomes p = A T (AD − 2 A T ) − 1 (b − νAD − 2 c) + ν(c − s), with ν from (14b); since c − s = A T y, this
boils down to the step direction p

_
= (AD − 2 A T ) − 1 (b − νAD − 2 c) + νy for y.

To summarize, the dual projective algorithm works as follows: given βk ≥ cT x * (= b T y *, the opti-
mal objective function value) and yk rendering s k : = c − A T yk > 0, let D : = D k = diag (s k ); if such
exists, let νk be the minimal ν for which

A T (AD − 2 A T ) − 1 b + ν(c − A T (AD − 2 A T ) − 1 AD − 2 c) ≥ 0 ,

and if

βk > cT D − 2 [A T (AD − 2 A T ) − 1 b + νk (c − A T (AD − 2 A T ) − 1 AD − 2 c) ] ,

then set βk + 1 to this value; otherwise let βk + 1 : = βk , and determine νk from (14b) (with β = βk). Com-
pute p

_k
: = (AD − 2 A T ) − 1 (b − νkAD − 2 c) + νky k , choose αk to be a value of α that approximately mini-

mizes φ(yk + αp
_k

, βk + 1 ), and set yk + 1 : = yk + αkp
_k

.

The theory behind the projective algorithms described above assumes exact arithmetic. It should be
possible to use the ideas in [13, 14, 19] to develop variants of the projective algorithms that do not require
exact arithmetic. However, if one computes exact factorizations to do the necessary linear algebra (or runs
some iterative method, e.g., some flavor of conjugate gradients, long enough), then it seems reasonable to
consider running the algorithms described above. In this regard, the denominator in (14b) deserves brief
discussion: it has the form 1 + c̃

T
Bc̃, where B is a projection and hence is positive semi-definite. If we

have a Cholesky factor L of AD − 2 A T = LL T, then we can compute the denominator of (14b) as
1 + ( ||D − 1 c || 2 + ||L − 1 AD − 2 c || 2 ) ( ||D − 1 c || 2 − ||L − 1 AD − 2 c || 2 ); if ever the computed value of ||D − 1 c || 2

is less than that of ||L − 1 AD − 2 c || 2, the computed quantities are probably too inaccurate to justify continuing
the dual projective algorithm, and it seems reasonable to switch to the affine algorithm.

Bounds

Many problems have simple bounds on some of the variables: in addition to (1c), one has the upper-
bound constraints x ≤ u. Of course, we can express these constraints in the standard form (1b,c) by adding

slack variables; this effectively replaces A by Ã = 
I
A

I
0
 and D by D̃ =



 0
D l

D u

0 


, where (D l ) ii = x i

and (D u ) ii = u i − x i . At first glance this looks undesirable, as it increases the size of the linear equation
systems that must be solved. However, by factoring ÃD̃

− 2
Ã

T
appropriately, we can reduce the linear equa-

tions to systems of the same size and sparsity as without upper bounds. Specifically,

January 30, 1987



- 6 -

(15) ÃD̃
− 2

Ã
T

=



0
I

I
ADl

− 2 (Dl
− 2 + Du

− 2 ) − 1





 0
ADl

− 2 Du
− 2 (Dl

− 2 + Du
− 2 ) − 1 A T

Dl
− 2 + Du

− 2
0 






(Dl

− 2 + Du
− 2 ) − 1 Dl

− 2 A T
I

I
0



,

so we end up factoring ADl
− 2 Du

− 2 (Dl
− 2 + Du

− 2 ) − 1 A T rather than AD − 2 A T. (Note that
Dl

− 2 Du
− 2 (Dl

− 2 + Du
− 2 ) − 1 is a diagonal matrix.) For other discussions of simple bounds, see §3 of [6], §2.4

of [11], §5.1 of [23], §6 of [25].

The primal projective algorithm depicted below imposes simple bounds of 104 on all variables, using
(15). This is an ingredient in the Record pictures [9] described at the end. (The dual algorithms depicted
below also use (15), but they can conveniently ignore simple bounds of + ∞.)

Pictures of Polytopes

Any x value that satisfies (1b) and (1c) is called a feasible solution to the LP problem (1). The set of
all such x values is a polytope, i.e., an intersection of finitely many half-spaces. Similarly, any y that satis-
fies (2b) is a feasible solution to the LP problem (2), and the set of all such y values is a polytope.

If A or A T has the right shape — two or three more columns than rows — then we can depict the
polytope of feasible solutions graphically, as we shall now see. The cases m = 2 and n = m + 2 (two
rows or two more columns than rows) can be misleading, since some things that are true in two dimensions
do not carry over to higher dimensions. Moreover, the cases m = 3 and n = m + 3 lead to pictures that
have greater visual appeal. Therefore we shall concentrate on the latter cases.

If m = 3, then for F : = A T and f : = c the feasible region for (2) has the form

(16) { z ∈ I R3 : Fz ≤ f } .

It is easy to visualize such a region. If F i denotes the ith row of F, then each row F i and corresponding
component f i of f define a half-space, { z ∈ I R3 : F i z ≤ f i }, and (16) is the intersection of these half-
spaces. To depict (16), we may simply plot the edges of (16) that are visible when we look in one or more
view directions from one or more vantage points. (We discuss the choice of view direction, vantage point,
and view angle later.)

On the other hand, if n = m + 3, then it is only slightly harder to visualize the feasible region for
(1). This is slightly harder, because it requires a change of variables. Assume A has full rank, and let F by
any matrix whose columns span the null space of A. By assumption, A has full rank, so F has 3 columns;
F ∈ I Rn×3 can be any rank 3 matrix such that AF = 0. If x° ∈ I Rn is any feasible point for (1), then for
any feasible x there is a unique z ∈ I R3 such that x = x° − Fz, and, conversely, if z ∈ I R3 satisfies
Fz ≤ x°, then x : = x° − Fz is feasible for (1). Thus the feasible region for (1) corresponds to (16) with
f : = x°.

One complication with this latest choice of (16) is that F is not unique. Another way to say this is
that, given (16), we could choose some nonsingular G ∈ I R3×3 and change to the variables w : = G − 1 z;
this amounts to replacing F by FG in (16). Such a change of variables can profoundly affect pictures of the
polytope (drawn as suggested above), but it does not affect the polytope’s structure. Indeed, the edges of
(16) may be characterized by a set S = S(F , f ) of quadruples of distinct integers, such that (i , j ,k ,l) ∈ S
corresponds to the edge

(17) { z ∈ I R3 : F i z = f i , F j z = f j , F k z ≤ f k , F l z ≤ f l } .

S remains the same if we change F to FG, i.e., S(FG , f ) ≡ S(F , f ).

We can make F unique, modulo rotations, by insisting that its columns be orthonormal, i.e., that
F T F = I. This has the added benefit that the necessary projections then have a natural interpretation: in
terms of the variables z in (16), they are just FF T. (For most of the pictures shown below, F was orthogo-
nalized by the stabilized Gram-Schmidt algorithm; for views of the original polytope, e.g., figures 2–14,
and for the Record pictures shown at the end, F was not orthogonalized.)
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Generating and Viewing Polytopes

To generate 3 dimensional polytopes, i.e., the feasible regions for linear programming problems (1)
or (2) with n = m + 3 or m = 3, it was convenient to select tangents to an ellipsoid about the origin, and
then to jiggle them in or out a little. Table 1 gives the resulting A, b, and c defining the dual problem (2)
we shall consider below.

_ ______________________________________________________________________________________________________
i A 1 ,i A 2 ,i A 3 ,i c i i A 1 ,i A 2 ,i A 3 ,i c i_ ______________________________________________________________________________________________________
1 1 0 0 10 48 0.776419 1.1329 –0.891049 2.64
2 –1 0 0 10 49 0.683382 1.1012 –0.696962 2.64
3 0 1 0 10 50 0.516868 0.993245 –0.392579 2.64
4 0 –1 0 10 51 0.465984 0.952607 –0.305981 2.64
5 0 0 1 10 52 0.343589 0.844541 –0.106338 2.64
6 0 0 –1 10 53 0.19781 0.700211 0.118341 2.64
7 –0.948109 0.326798 –0.55927 2.64 54 0.0306888 0.517064 0.361075 2.64
8 –0.959071 0.457124 –0.459551 2.64 55 0.892578 1.1356 –1.03499 2.64
9 –0.920668 0.539314 –0.356824 2.63736 56 0.825649 1.13888 –0.883178 2.64

10 –0.850045 0.594019 –0.248836 2.64132 57 0.723153 1.10255 –0.685394 2.64
11 –0.726585 0.630421 –0.109757 2.64 58 0.631666 1.05054 –0.525279 2.64
12 –0.524343 0.630806 0.0683571 2.63472 59 0.514144 0.967662 –0.333092 2.64
13 –0.281476 0.582318 0.241176 2.6136 60 0.398956 0.873909 –0.155221 2.64
14 –0.277238 0.649988 –0.910721 2.64 61 0.276002 0.763148 0.0256707 2.64
15 –0.273845 0.808338 –0.760027 2.64 62 1.21797 1.02965 –1.27827 2.64
16 –0.26471 0.841367 –0.684334 2.64 63 1.1142 1.16083 –0.985681 2.64
17 –0.220614 0.867007 –0.431214 2.64 64 0.877339 1.09433 –0.624873 2.64
18 –0.183672 0.838421 –0.261174 2.64 65 0.628164 0.956773 –0.302028 2.64
19 –0.144191 0.78565 –0.0980917 2.64 66 0.148637 0.606655 0.247611 2.64
20 –0.0724596 0.652504 0.166939 2.64 67 1.33984 1.14455 –1.11092 2.64
21 –0.0341189 0.566164 0.295867 2.64 68 1.23592 1.15942 –0.93779 2.64
22 0.0403285 0.955243 –0.772093 2.6532 69 1.13625 1.14113 –0.799053 2.64
23 0.0312882 0.935653 –0.435773 2.6268 70 0.997802 1.09404 –0.62453 2.64
24 0.02042 0.817498 –0.110836 2.64 71 0.815322 1.0102 –0.41278 2.64
25 0.0934504 0.977023 –0.589586 2.6664 72 0.586217 0.882642 –0.165629 2.64
26 0.0695163 0.900807 –0.292568 2.64 73 0.335572 0.722656 0.0876082 2.64
27 0.0356949 0.72303 0.0683491 2.63208 74 0.0725957 0.536115 0.337626 2.64
28 0.434916 0.898464 –1.15598 2.64 75 1.64933 1.08863 –1.12758 2.64
29 0.421701 1.03648 –0.982135 2.64 76 1.43556 1.12276 –0.834403 2.63736
30 0.401872 1.05712 –0.877737 2.64 77 1.0079 0.998721 –0.409256 2.6532
31 0.348666 1.04371 –0.655343 2.64 78 0.348205 0.68317 0.142344 2.63208
32 0.297745 0.995979 –0.471783 2.64 79 1.53321 1.13218 –1.01482 2.64
33 0.231351 0.908603 –0.253538 2.64 80 1.39856 1.13052 –0.843658 2.63472
34 0.127643 0.736479 0.0574528 2.64 81 1.21252 1.08733 –0.641492 2.64264
35 0.0380502 0.561958 0.304447 2.64 82 0.689548 0.871521 –0.152374 2.64
36 0.733312 1.11609 –0.995647 2.64 83 1.89625 0.970384 –1.07123 2.64
37 0.695319 1.12071 –0.891662 2.64 84 1.83863 1.02483 –0.968253 2.64
38 0.64696 1.10863 –0.774384 2.64 85 1.64847 1.04786 –0.759851 2.64
39 0.597801 1.0851 –0.664601 2.64 86 1.34597 0.99948 –0.499665 2.64
40 0.532214 1.04265 –0.527407 2.64 87 0.951747 0.882985 –0.205429 2.64
41 0.447604 0.975156 –0.361111 2.64 88 0.492661 0.706316 0.102808 2.64
42 0.366364 0.900473 –0.209721 2.64 89 2.01458 0.842735 –0.834525 2.63736
43 0.292333 0.825726 –0.077384 2.64 90 1.854 0.902107 –0.661818 2.64264
44 0.201976 0.72715 0.0779788 2.64 91 1.56706 0.900002 –0.44401 2.64
45 0.860133 0.904507 –1.28126 2.64 92 1.17334 0.836564 –0.195943 2.64528
46 0.879349 1.02706 –1.22401 2.64 93 0.699656 0.716115 0.0654775 2.63472
47 0.826318 1.12981 –1.012 2.64 94 –7.13499e–16 0.481514 0.404038 2.63208_ ______________________________________________________________________________________________________ 
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Table 1: A and c for (2); b = ( 3. 305617 , 2. 881186 , − 1. 11435 ).

Figure 1 depicts some details of drawing a two-dimensional picture of a three-dimensional polytope.
Before drawing the polytope, we must choose a viewpoint v, view direction d, and angle of view α. We
then imagine a view screen orthogonal to the direction of view and between the viewpoint and the polytope.
(Because of how things scale, the exact position of the view screen is immaterial.) The view angle defines
a view cone whose vertex is at the viewpoint v and whose center lies along the view direction d; we will
only be able to see parts of the polytope that fall within this cone. [We could let the cone have a circular
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cross section, so that its intersection with the view screen would be a circle, but it is more convenient if this
intersection is rectangular. For simplicity we shall insist that this intersection be square, though allowing
separate horizontal and vertical angles of view would complicate matters little.] To draw the polytope, we
project its visible edges onto the view screen; ‘‘visibility’’ is the subject of the next paragraph. To project
an edge, we project the edge’s endpoints and draw the segment between their images on the view screen.
Thus in figure 1, the segment from x ′ to y ′ on the view screen is the image of the polytope edge from x to y.
Finally, we scale the points on the image screen so that those on the edges of the view cone’s intersection
with the view screen are at the edge of our picture.

d

α = view angle

α/2

........

...................

x

y

x ′

y ′

viewpoint

v

view screen

image of
edge e

polytope edge e

hidden
edges

Figure 1

Consider now how to tell what portions of which polytope edges are visible. Because we are using a
rectangular view cone, telling this is easy: we simply adjoin four view-cone constraints to (16) to obtain a
modified polytope (16′); this reduces the visibility problem to that of deciding whether or not each segment
(17) of (16′) is visible. If the viewpoint v is strictly outside the original polytope (16), then edge (17) of
(16′) is visible only if v satisfies F i v ≥ f i or F j v ≥ f j (or both). And if v is inside (16), then all edges of
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the modified polytope (16′) are visible.

The view angle can strongly affect a polytope’s appearance. Figures 2–5, for example, show four
views from outside of the same polytope, with the same view direction but different angles of view (30°,
60°, 90°, and 120° respectively). The view point in each case was chosen to make the larger of the image’s
width and height be 85% of the viewing window’s width and height. (Aside from details about focusing,
the effect shown in figures 2–5 is that of decreasing the focal length of a camera’s lens.)
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Figure 2: view angle 30° Figure 3: view angle 60°
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Figure 4: view angle 90° Figure 5: view angle 120°
I played some with the polytope of figures 2–5, looking for interesting viewpoints and view direc-

tions. Figure 6 shows my favorite perspective, one that my wife and I both liked because it looks some-
thing like a dinosaur’s head.
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Figure 6: view angle 95°, viewpoint (0,5,0), view direction (0,–5,1)
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Fig. 7: d = (0,0,1), 30° view Fig. 8: d = (–10–10,0,1) Fig. 9: Figure 7, rotated 180°
The viewpoint, view direction, and view angle do not completely determine our view of a polytope:

we are still free to rotate it about the view direction. Following Tom Duff’s convention of changing coordi-
nates so the view direction is a positive multiple of (0,1,0), I first rotate things in the (x , y) plane (i.e., about
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the z axis) to zero the first coordinate of the view direction, then rotate things in the (y , z) plane to zero the
third coordinate of the view direction. This determines an orthogonal matrix Q, the product of two Givens
rotations, such that a point p is transformed to p ′ = Q(p − v) before being plotted. (To be visible,
p ′ = (p ′1 , p ′2 , p ′3 ) must have p ′2 > 0 and max{p ′1 / p ′2, p ′3 / p ′2} ≤ tan (α/2 ).)

The above choice of Q makes the least possible change to the vertical, i.e., to the z axis. If the view
direction d is nearly parallel to the z axis, then small changes in d can make big changes in Q. Figures 7–9
illustrate this (with a 30° view angle): d = ( 0 , 0 , 1 ) in figure 7 (and I use no rotation in the (x , y) plane); in
figure 8, d = ( − 10 − 10 , 0 , 1 ) makes the figure turn 90°; and rotating figure 7 by 180° (or, equivalently,
choosing d to be, e.g., ( − 10 − 20 , − 10 − 10 , 1 )) gives figure 9, which is the ‘‘right’’ view relative to figure 2,
as it rotates this figure by 90° about its x axis (rotating the top away from us, the bottom towards us).

Given a Q, say Q ( 1 ) , for a particular view direction d ( 1 ) , and given a second view direction d ( 2 ) , we
could choose an orthogonal Q ( 2 ) to minimize ||Q ( 1 ) − Q ( 2 ) || subject to Q ( 2 ) d ( 2 ) = ||d ( 2 ) || 2 ( 0 , 1 , 0 ), but
it is impossible to make Q a continuous function of d. (Choosing Q(d) to be the negative of the obvious
Householder transformation would give us a discontinuity at d = ( 0 , − 1 , 0 ).)

I have tried to rotate the remaining figures sensibly. This generally means an extra 180° rotation for
figures with view direction d = ( 0 , 0 , 1 ) and no extra rotation for other directions.

I choose a cost vector (c in (1a) or b in (2a)) to make the simplex method (as implemented by XMP
[17]) trace out a picturesque path, one with several zig-zags. Figure 10 shows figure 6 with the path fol-
lowed by the simplex method superimposed; the dotted lines connect vertices visited in phase 1 (while
XMP sought a feasible point), and the heavy solid lines (19 of them) connect the vertices visited in phase 2.
The first phase-1 step is off screen, and the last three phase-1 steps coalesce into what looks like a piece of
solid line outside the polytope.

Pictures of the Dual Affine Algorithm

The next several figures deal with a dual affine version of Karmarkar’s LP algorithm. This version
chooses its step lengths as in [1]: xk + 1 = xk + 0. 99αk

max p k for the first 10 steps and
xk + 1 = xk + 0. 9αk

max p k for the remaining iterations, where αk
max = max{α: xk + αp k ≥ 0} is the max-

imum feasible step. It stops when it succeeds in finding a point at which the Karush-Kuhn-Tucker optimal-
ity conditions hold. (This side computation is an interesting detail to be discussed elsewhere). For the
problem at hand, it finds an optimal point during the 19th iteration.

Figure 11 is similar to figure 10: it shows figure 6 with the dual affine algorithm’s path superim-
posed. But whereas the path in figure 10 runs along edges of the polytope, the path in figure 11 lies strictly
inside the polytope; to understand figure 11, imagine that the path is glowing and the polytope’s faces are
translucent but dark enough that you do not see more polytope edges.

Notice that the latter half of the solution path in figure 11 appears to be following polytope edges.
This accords with the theory in [18], which says that when an affine iterate lies close to a facet, the corre-
sponding search direction should be nearly parallel to the facet.

Figures 12–14 are similar to figure 11, but are drawn from other viewpoints and with a view angle of
30°. (Except where otherwise noted, all the remaining figures use this view angle.) Like figure 11, figures
12 and 13 are from outside the polytope; figure 14, on the other hand, is a view from inside.

The view changes rapidly when one sits at the center (1,1,1) of the affinely transformed polytope
{ x ∈ I Rn : ADx = b , x ≥ 0}, i.e., at the image of the current iterate. View direction d = ( − 1 , 0 , 0 ) proves
interesting in this context. Figures 15–17 show iterations 2–4. For iteration 6, the corresponding view, fig-
ure 18, looks much simpler. But if we turn the magnification up sharply by changing the view angle from
30° to 0.005°, then we get the view in figure 19. The situation is similar for iteration 8: figure 20 shows
view angle 30°, whereas figure 21 shows much more detail with view angle 0.01°.
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Fig. 10: simplex (XMP) path Fig. 11: dual affine path
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Fig. 12: d = (0,0,1), 30° outside view Fig. 13: d = (–1,0,0), outside view
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Fig. 20: dual affine iter 8, 30° view Fig. 21: dual affine iter 8, 0.01° view
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By backing away from the center to (10,0,0) or (20,0,0), we can see the steps the algorithm takes.
Moving to (10,0,0) in the affinely transformed space of iteration 2 (and retaining the view direction (–1,0,0)
used in figures 15–21), for example, we obtain figures 22 and 23. Figure 22 is analogous to figures 11–13,
in that you see the step shining through from inside the polytope. Figure 23, on the other hand, shows a
cutaway view: it is drawn, from outside the polytope, as though the polytope faces were one-way mirrors,
visible only from the inside. Figures 24–27 show similar cutaway views for some other iterations; to make
the step fit, figure 24 is from (20,0,0), while the others are from (10,0,0). Despite the extreme early stretch-
ing shown in figures 18–21, figures 26 and 27 show that later iterations may bring some of the polytope
detail back into view.
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Fig. 22: dual affine iter 2, v = (10,0,0) Fig. 23: cutaway view of fig. 22
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Fig. 24: iter 3, cutaway, v = (20,0,0) Fig. 25: iter 4, cutaway, v = (10,0,0)
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Fig. 26: dual affine iter 10, cutaway Fig. 27: dual affine iter 18, cutaway

Figures 28 and 29 show two outside views of the polytope as affinely transformed in iteration 1; visi-
ble inside it is the step taken. In subsequent iterations, the transformed polytope gets so long and thin that
there would be little point in showing outside views of it.
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94
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45

Fig. 28: iter 1, outside, d = (0,–1,0) Fig. 29: iter 1, outside, d = (0,0,1)

Pictures of the Dual Projective Algorithm

The next several figures illustrate a dual projective version of Karmarkar’s LP algorithm. This ver-
sion chooses its step lengths by doing a line search on the potential function (6) (using quadratic interpola-
tion until it reduces the directional derivative’s absolute value to at most 0.01 times its initial value). It uses
the same stopping tests as the dual affine algorithm considered above. In fact, it starts out running the dual
affine algorithm and switches to the dual projective algorithm only after it has computed a primal feasible
iterate x (and therewith a valid upper bound on the optimal dual objective function value). For the problem
at hand, it computes a primal feasible x on the first iteration and runs a total of 14 iterations before finding
an optimal solution. The linear objective b T y increases in all but the second and third iterations. (It is easy
to make b T y monotonic by adding the constraint that it remain constant on iterations where it would other-
wise decrease; for the problem at hand this does not change the number of iterations, but does require com-
puting two extra projections.)

In analogy with figure 11, figure 30 shows figure 6 with the path followed by the dual projective
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algorithm showing through from inside. Figures 31 and 32 show the same outside views as figures 12 and
13, but with the dual projective path visible from inside. Figure 33 is similar to figure 14, but is drawn
from a bit further back and with a wider view angle to bring the whole path into view.
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45
83

89

90
91
92
93

7

8

9

10

11
12 13

14

28

45

62

83

89

909192
93

94

Fig. 32: d = (–1,0,0), outside view Fig. 33: 50° view, v = (0,–10,0)

In stark contrast with the dual affine algorithm, the transformed polytopes of the dual projective algo-
rithm stay reasonably round. Indeed, since the image of the current iterate is the center e /(n + 1 ) of the
projectively transformed polytope, whose only inequality constraints are those of the unit simplex, the cen-
ter is at least a distance of 1/√  n(n + 1 ) and at most a distance of √  n /(n + 1 ) from the boundary of the
transformed polytope. Figures 34–46 give an outside view of the projectively transformed polytope in iter-
ations 2–14, all from view direction d = ( 0 , 0 , 1 ). Also showing through from inside the polytopes in these
figures and depicted by heavy arrows are the steps taken. Usually these steps are short (somewhere near
1/√  n(n + 1 ) ) or are nearly parallel to the direction of view, so the arrowhead (which is of fixed size) is
about all that appears. In going from one iteration to the next, the polytope often appears to be rotated a bit
and mildly massaged. The view in figure 46 is not very informative; figure 47 shows the same polytope
from a different view direction, d = ( 0 , − 1 , 0 ). (Since iteration 1 is an affine step, figures 28 and 29
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illustrate its transformed polytope.)
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Fig. 34: dual projective iter 2, outside Fig. 35: dual projective iter 3, outside
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Fig. 36: dual projective iter 4, outside Fig. 37: dual projective iter 5, outside
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Fig. 38: dual projective iter 6, outside Fig. 39: dual projective iter 7, outside
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Fig. 40: dual projective iter 8, outside Fig. 41: dual projective iter 9, outside
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Fig. 42: dual projective iter 10, outside Fig. 43: dual projective iter 11, outside
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Fig. 44: dual projective iter 12, outside Fig. 45: dual projective iter 13, outside
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Fig. 46: dual projective iter 14, outside Fig. 47: iter 14, outside, d = (0,–1,0)

Figures 48–73 show views in direction d = ( − 1 , 0 , 0 ) of the projectively transformed polytope. The
even numbered figures in this range are views from the center of the transformed polytope, and the odd
numbered figures are cutaway views from the center plus (0.2,0,0), i.e., from outside of the polytope, show-
ing the step taken in the current iteration (analogously to figures 23–27). Again from this perspective the
picture changes less wildly than for the dual affine algorithm.
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Fig. 48: dual proj. it. 2, v = center Fig. 49: dual proj. it. 2, v = center+(.2,0,0)
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Fig. 50: dual proj. it. 3, v = center Fig. 51: dual proj. it. 3, v = center+(.2,0,0)
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Fig. 52: dual proj. it. 4, v = center Fig. 53: dual proj. it. 4, v = center+(.2,0,0)
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Fig. 54: dual proj. it. 5, v = center Fig. 55: dual proj. it. 5, v = center+(.2,0,0)
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Fig. 56: dual proj. it. 6, v = center Fig. 57: dual proj. it. 6, v = center+(.2,0,0)
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Fig. 58: dual proj. it. 7, v = center Fig. 59: dual proj. it. 7, v = center+(.2,0,0)
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Fig. 60: dual proj. it. 8, v = center Fig. 61: dual proj. it. 8, v = center+(.2,0,0)
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Fig. 62: dual proj. it. 9, v = center Fig. 63: dual proj. it. 9, v = center+(.2,0,0)
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Fig. 64: dual proj. it. 10, v = center Fig. 65: dual proj. it. 10, v = center+(.2,0,0)
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Fig. 66: dual proj. it. 11, v = center Fig. 67: dual proj. it. 11, v = center+(.2,0,0)

4

5

7 9 10
11

12

13

14
17

19

23

24

26

27

29 30 31

32

33

38
39

40

41

42

43

45
50

51

57

58

59

60

64

65

70

71

77

78

89

90

91

92
93

94

4

5

7
11

12

13

23

27

33

40

42

45 50

56 57

58

59

60

61

62

64

65

69

70

71

72

78

89

90

91

92
93

94

Fig. 68: dual proj. it. 12, v = center Fig. 69: dual proj. it. 12, v = center+(.2,0,0)
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Fig. 70: dual proj. it. 13, v = center Fig. 71: dual proj. it. 13, v = center+(.2,0,0)

January 30, 1987



- 24 -

4

5

65

71

77

81

8990
91

92

93
94

5

65

71
77

78

81

91

92

93
94

Fig. 72: dual proj. it. 14, v = center Fig. 73: dual proj. it. 14, v = center+(.2,0,0)

Pictures of the Primal Projective Algorithm

The next group of figures is for a primal projective version of Karmarkar’s LP algorithm. This ver-
sion uses the same step-length choice as the dual projective algorithm. It uses a less satisfactory termina-
tion test, stopping once cT xk + βk ≤ 10 − 7cT xk. It also runs a separate phase 1 to find a feasible point.
(The dual algorithms add a large bound on the primal variables, which makes finding an initial dual-
feasible point straightforward.) The LP problem of concern here is easy in this regard: only one phase-1
iteration is required. In what follows we restrict our attention to the phase-2 iterations. Of these there are
21, and the linear objective cT x increases on the first two.

The LP problem is the one presented to the dual algorithms, but with slack variables explicitly added.
Thus if the dual constraints (2b) are A°y ≤ c, then the primal constraints (1b), ignoring bounds, are Ax = b

with A = [A°T , I]; an obvious F with AF = 0 is then F = 
− A°

I 
 . With simple bound constraints on all

the variables, A becomes

(18) A =



 0

I
A°T

I
0
I

0
I
0

I
0
0





and F becomes F = [I , − A° , − I , A°] T, which we then orthogonalize. The simple bound constraints are
superfluous, but do somewhat affect the solution path and pictures.

Figures 74–77 show some outside views of the original polytope, with the primal projective path
showing through from inside. Except for this path, figures 74–76 are the same as figures 30–32; figure 77
shows the path from yet another view direction, d = ( − 1 , 0 , 1 ), halfway between that of figures 75 and 76.
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Fig. 74: primal projective path Fig. 75: d = (0,0,1), 30° outside view
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Fig. 76: d = (–1,0,0), outside view Fig. 77: d = (–1,0,1), outside view

Like the transformed polytopes of the dual projective algorithm, those of the primal projective algo-
rithm stay reasonably round, but they change more rapidly, especially at first. Figures 78–98 show these
polytopes on iterations 2–22 (the phase-2 iterations), with the steps taken showing through from inside; fig-
ure 99 is analogous to figure 47, showing the final polytope from view direction d = ( 0 , − 1 , 0 ).
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Fig. 82: primal projective iter 6, outside Fig. 83: primal projective iter 7, outside
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Fig. 86: primal projective iter 10, outside Fig. 87: primal projective iter 11, outside
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Fig. 88: primal projective iter 12, outside Fig. 89: primal projective iter 13, outside

January 30, 1987



- 28 -

76 80
81

8485

899091

90

91

Fig. 90: primal projective iter 14, outside Fig. 91: primal projective iter 15, outside

77

81

85

86

91

64

69

70

71

76

77

80
81

82

Fig. 92: primal projective iter 16, outside Fig. 93: primal projective iter 17, outside
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Fig. 94: primal projective iter 18, outside Fig. 95: primal projective iter 19, outside
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Fig. 98: primal projective iter 22, outside Fig. 99: iter 22, outside, d = (0,–1,0)

Figures 100–135 are analogous to figures 48–73: they show views of the projectively transformed
polytope in direction d = ( − 1 , 0 , 0 ); the even numbered figures are from the center, the odd numbered
ones from the center plus (0.1,0,0) — cutaway views from outside the polytope.
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Fig. 100: pr. proj. it. 5, v = center Fig. 101: pr. proj. it. 5, v = center+(.1,0,0)
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Fig. 102: pr. proj. it. 6, v = center Fig. 103: pr. proj. it. 6, v = center+(.1,0,0)
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Fig. 104: pr. proj. it. 7, v = center Fig. 105: pr. proj. it. 7, v = center+(.1,0,0)
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Fig. 106: pr. proj. it. 8, v = center Fig. 107: pr. proj. it. 8, v = center+(.1,0,0)
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Fig. 108: pr. proj. it. 9, v = center Fig. 109: pr. proj. it. 9, v = center+(.1,0,0)
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Fig. 110: pr. proj. it. 10, v = center Fig. 111: pr. proj. it. 10, v = center+(.1,0,0)
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Fig. 112: pr. proj. it. 11, v = center Fig. 113: pr. proj. it. 11, v = center+(.1,0,0)
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Fig. 114: pr. proj. it. 12, v = center Fig. 115: pr. proj. it. 12, v = center+(.1,0,0)
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Fig. 116: pr. proj. it. 13, v = center Fig. 117: pr. proj. it. 13, v = center+(.1,0,0)
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Fig. 118: pr. proj. it. 14, v = center Fig. 119: pr. proj. it. 14, v = center+(.1,0,0)
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Fig. 120: pr. proj. it. 15, v = center Fig. 121: pr. proj. it. 15, v = center+(.1,0,0)
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Fig. 122: pr. proj. it. 16, v = center Fig. 123: pr. proj. it. 16, v = center+(.1,0,0)
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Fig. 124: pr. proj. it. 17, v = center Fig. 125: pr. proj. it. 17, v = center+(.1,0,0)
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Fig. 126: pr. proj. it. 18, v = center Fig. 127: pr. proj. it. 18, v = center+(.1,0,0)
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Fig. 128: pr. proj. it. 19, v = center Fig. 129: pr. proj. it. 19, v = center+(.1,0,0)
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Fig. 130: pr. proj. it. 20, v = center Fig. 131: pr. proj. it. 20, v = center+(.1,0,0)
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Fig. 132: pr. proj. it. 21, v = center Fig. 133: pr. proj. it. 21, v = center+(.1,0,0)
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Fig. 134: pr. proj. it. 22, v = center Fig. 135: pr. proj. it. 22, v = center+(.1,0,0)
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Views from ‘‘Natural Variables’’ — the Record Pictures

In making the pictures on pages 6 and 7 of the Record article [9], I used what I thought to be a ‘‘natu-
ral’’ F in (16) — rather than one with orthonormal columns; I hadn’t yet thought about the invariance prop-
erties that come with the latter F. (The Record pictures correspond to at least two different linear program-
ming problems; I had asked that only one be used and had been told my request would be honored, but for-
got to double check this point when the proofs came around.)

The remaining figures depict the same run of the primal projective algorithm as do figures 74–135,
but from the perspective of the variables in which I originally conceived the problem (i.e., using the same F
as for the Record pictures). My idea was to massage the constraints (18) and (7) into the form (16). In
more detail, (7a) with A as in (18) is of the form Bx̂ = em + 1, where

(19) B =





 eT

0
D 1

A°T D 1

eT
D 2

0
D2

eT
0

D 3

0

eT
D 4

0
0

1
− u 2

− u 1

− b 





.

Here D is the diagonal matrix D = diag (D 1 , D 2 , D 3 , D 4 ), with D 1 , D 3 ∈ I R3×3 and D 2 , D 4 ∈ I Rm×m;
u 1 ∈ I R3 and u 2 ∈ I Rm are upper bound vectors. By doing row operations on B, we may first eliminate
the (3,2) block of (19), then the (4,2), (4,3), and (4,4) blocks, and finally the (1,5), (2,5), and (3,5) blocks to
obtain F in (16); the f of (16) comes from doing the corresponding row operations to the right-hand side
em + 1. With this F and f, we get interesting views by looking forwards and backwards in the direction of
the current step. (When F is orthogonal, such forward and backward view directions swing so wildly that it
is hard to make sense out of the resulting pictures.) Figures 136–177 show these views for all 21 phase-2
iterations; the even-numbered figures are forward views, and the odd-numbered ones are corresponding
backward views, all from the center of the projectively transformed polytope. In the first three iterations
the view changes rapidly. Then the unimportant constraints — those not binding at the solution — are
pushed further and further behind, until they are no longer visible in the final two iterations.
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Fig. 136: pr.p.it. 2, d = ahead, nat. vars. Fig. 137: pr.p.it. 2, d = behind, nat. vars.
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Fig. 138: pr.p.it. 3, d = ahead, nat. vars. Fig. 139: pr.p.it. 3, d = behind, nat. vars.
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Fig. 142: pr.p.it. 5, d = ahead, nat. vars. Fig. 143: pr.p.it. 5, d = behind, nat. vars.
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Fig. 144: pr.p.it. 6, d = ahead, nat. vars. Fig. 145: pr.p.it. 6, d = behind, nat. vars.
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Fig. 146: pr.p.it. 7, d = ahead, nat. vars. Fig. 147: pr.p.it. 7, d = behind, nat. vars.
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Fig. 148: pr.p.it. 8, d = ahead, nat. vars. Fig. 149: pr.p.it. 8, d = behind, nat. vars.
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Fig. 150: pr.p.it. 9, d = ahead, nat. vars. Fig. 151: pr.p.it. 9, d = behind, nat. vars.
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Fig. 152: pr.p.it. 10, d = ahead, nat. vars. Fig. 153: pr.p.it. 10, d = behind, nat. vars.
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Fig. 154: pr.p.it. 11, d = ahead, nat. vars. Fig. 155: pr.p.it. 11, d = behind, nat. vars.
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Fig. 154: pr.p.it. 12, d = ahead, nat. vars. Fig. 155: pr.p.it. 12, d = behind, nat. vars.
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Fig. 158: pr.p.it. 13, d = ahead, nat. vars. Fig. 159: pr.p.it. 13, d = behind, nat. vars.
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Fig. 160: pr.p.it. 14, d = ahead, nat. vars. Fig. 161: pr.p.it. 14, d = behind, nat. vars.
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Fig. 162: pr.p.it. 15, d = ahead, nat. vars. Fig. 163: pr.p.it. 15, d = behind, nat. vars.
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Fig. 164: pr.p.it. 16, d = ahead, nat. vars. Fig. 165: pr.p.it. 16, d = behind, nat. vars.
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Fig. 166: pr.p.it. 17, d = ahead, nat. vars. Fig. 167: pr.p.it. 17, d = behind, nat. vars.

January 30, 1987



- 42 -

77 86

87

77
86

87

92

Fig. 168: pr.p.it. 18, d = ahead, nat. vars. Fig. 169: pr.p.it. 18, d = behind, nat. vars.
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Fig. 170: pr.p.it. 19, d = ahead, nat. vars. Fig. 171: pr.p.it. 19, d = behind, nat. vars.
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Fig. 172: pr.p.it. 20, d = ahead, nat. vars. Fig. 173: pr.p.it. 20, d = behind, nat. vars.
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Fig. 174: pr.p.it. 21, d = ahead, nat. vars. Fig. 175: pr.p.it. 21, d = behind, nat. vars.
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Fig. 176: pr.p.it. 22, d = ahead, nat. vars. Fig. 177: pr.p.it. 22, d = behind, nat. vars.

The view direction in iteration 16 (figures 164–165) differs substantially from that in iterations 15
and 17, despite monotonic reductions of both the linear objective cT x and the potential function.

Notice how the forward and backward views of the last two iterations appear to be mirror images.
This is so because the transformed polytope (as seen by the ‘‘natural’’ variables) is much longer in the
(0,1,0) direction than in the (1,0,0) or (0,0,1) directions. Indeed, an outside view, analogous to figures
101–135, of the the transformed polytope from iteration 22 is simply a horizontal line. By turning up the
magnification in figures 175 and 177, we can see where all the nonbinding constraints have gone: figure
178 is like figure 175, but with view angle 0.5°, and figure 179 is like figure 177, but with view angle
0.15°.
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Fig. 178: It. 21, d = behind, v = 0.5° Fig. 179: It. 22, d = behind, v = 0.15°

Concluding Remarks

The pictures shown above of the dual affine and dual projective algorithms come from solving the
same single problem, while those of the primal projective algorithm come from a closely related problem. I
have not yet looked at enough other problems to make any claims about how typical the above pictures are
(of problems having three degrees of freedom).

The algorithm’s eye views shown above — at least those corresponding to an orthogonal F in (16) —
change much faster for the affine dual variant than for the projective ones; views of the primal affine vari-
ant presumably would behave similarly to those of the dual affine variant, just as the primal and dual pro-
jective views are qualitatively similar. (For F orthogonal, the search direction has a nice interpretation: it
is the projection, by FF T, of a gradient vector into the viewing space.) The final figures show that the pro-
jective views can change more rapidly from the vantage point of a nonorthogonal F.

For any continuous choice of F, we can make the pictures change as slowly as we want by taking
small enough steps. This leads naturally to considering differential forms of the algorithms — see [1, 4] —
and to making movies in which the transformed polytope deforms smoothly. (Nearly everyone who sees
the above pictures suggests making a movie. I would like to do so when time permits. And I look forward
to some future time when we’ll all have workstations powerful enough to display such a movie in real
time.)

Outside views of the transformed feasible regions for the primal and dual projective variants visually
support the well-known fact that the transformed polytopes have inscribed and circumscribed spheres
whose diameters have a bounded ratio.

Only the first few steps are long enough to be seen on the plots of the solution paths (figures 11–14,
30–33, 74–77). This gives hope for the possibility of devising fast stopping tests.

Many authors like to consider problems in Karmarkar’s canonical form, i.e., to have b = em and
A T em = e in (1b). Explicit conversion to this form should have little effect on the pictures considered in
this paper, as it generally adds as many new variables as new equality constraints (e.g. two of each in [8]);
the main effect would come from perturbing the orthogonalization of F in (16).

We could also make pictures depicting Anstreicher’s extension [2] of Karmarkar’s algorithm to frac-
tional linear programming problems. Anstreicher’s step computation is similar to the primal projective step
computation described above and should yield similar pictures.

For starting, some authors also like to arrange that e / n be feasible, usually by adding a new variable
(at high cost), with no corresponding additional constraint, as in [24]. This is cleaner than doing a separate
phase-1 calculation to find a feasible starting point x°, as it is not troubled by ‘‘null variables’’, i.e., compo-
nents of x that vanish in all feasible solutions. But it adds a degree of freedom, which makes drawing pic-
tures of the transformed feasible regions much harder.
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One can regard Karmarkar’s linear programming algorithm as an interior penalty-function method
with a special choice of the penalty parameter. One may then be tempted to make other choices of the
penalty parameter; see [11] and [12] for details. It is unclear how useful the approach of this paper might
be in presenting an algorithm’s eye view of such penalty methods. For problems like those considered
above having three degrees of freedom, we might make a linear change of variables to turn the Hessian of
the penalty function into the identity matrix I; pictures of the resulting transformed feasible region would
then show the constraints as the algorithm sees them. Of course, for problems having two degrees of free-
dom, conventional level contour plots would also be informative.
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