
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Computing Science Technical Report No. 142

DFORMAT — A Program for Typesetting Data Formats

Jon L. Bentley

April, 1988

DFORMAT — A Program for Typesetting Data Formats

Jon L. Bentley

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

ABSTRACT

Data formats ranging from computer words to packets on a data network are often
described by pictures composed of rectangles. The PDP-8, for instance, uses this instruc-
tion format:

PDP-8 Instr Op Code
0 2

Indirect Bit

3

Page-Zero Bit

4
Page Address

5 11

The DFORMAT program allows such diagrams to be included in TROFF documents.
The above diagram is described as

.begin dformat
style bitwid .3
PDP-8 Instr

0-2 Op Code
3 Indirect Bit
4 Page-Zero Bit
5-11 Page Address

.end

DFORMAT is implemented as a preprocessor for the PIC language. Its implementation
(about 100 lines of AWK) is included in this paper.

April, 1988

DFORMAT — A Program for Typesetting Data Formats

Jon L. Bentley

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1. Simple Pictures

This picture shows the format that the IBM System/360 uses for storing short integers, integers, and
floating-point numbers (or shorts, ints, and floats, in C terminology):

Short S
0

Integer
1 15

Int S
0

Integer
1 31

Float S
0

Exponent
1 7

Fraction
8 31

Each line describes a record that contains several fields. The figure was described by this text in the input
file:

.begin dformat
style bitwid 0.12
Short

0 S
1-15 Integer

Int
0 S
1-31 Integer

Float
0 S
1-7 Exponent
8-31 Fraction

.end

The .begin dformat and .end lines delimit the DFORMAT input. The style line states that bits are
rendered as 0.12 inches wide. Lines that start in column 1 name the records; subsequent lines that begin
with white space give the field widths and names, in order. Because DFORMAT is a PIC preprocessor, the
document is compiled with a pipeline like

dformat paper.in | pic | tbl | eqn | troff -ms >paper.out

The System/360 has five instruction formats:

- 2 -

RR Opcode
0 7

R1
8 11

R2
12 15

RX Opcode
0 7

R1
8 11

X2
12 15

B2
16 19

D2
20 31

RS Opcode
0 7

R1
8 11

R3
12 15

B2
16 19

D2
20 31

SI Opcode
0 7

Immediate Op

8 15
B1

16 19
D1

20 31

SS Opcode
0 7

Length
8 15

B1
16 19

D1
20 31

B2
32 35

D2
36 47

Because the ‘‘Immediate Op’’ text in the SI instruction is too long to fit in its box, DFORMAT places the
text below the box and connects it with a line (as it did twice in the PDP-8 instruction format in the
abstract). This picture is described as follows:

.begin dformat
style bitwid 0.08
RR

0-7 Opcode
8-11 R1
12-15 R2

RX
0-7 Opcode
8-11 R1
12-15 X2
16-19 B2
20-31 D2

...

.end

The style command can be viewed as an assignment of the value 0.08 inches to the parameter bitwid.
The widest instruction format of 48 bits is therefore 3.84 inches across. The assignments persist between
DFORMAT diagrams in a document; in most documents, therefore, the bitwid parameter is set only in
the first picture.

Bits can be numbered with zero at the right; here is the instruction format of the UNIVAC 1103A:

Instruction Word OpCode
35 30

U Address
29 15

V Address
14 0

It was produced by this input:

.begin dformat
style bitwid 0.1
Instr

35-30 OpCode
29-15 U Address
14-0 V Address

.end

These examples illustrate the typical use of DFORMAT. Simple pictures are simply described; this
level of detail is sufficient for most users. Section 2 describes additional parameters for controlling pic-
tures, and Section 3 contains several more sophisticated examples. If the built-in parameters aren’t enough,
Section 4 describes how you might tinker with the implementation.

- 3 -

2. Adjusting Parameters

Many computer systems have memory organized like this:

Double Word

Word Word

Half Word Half Word Half Word Half Word

Byte Byte Byte Byte Byte Byte Byte Byte

The picture was drawn by this DFORMAT description:

.begin dformat
style fill on
style bitwid 0.05
style recspread 0
style addr off
style recht 0.2
noname

0-63 Double Word
noname

0-31 Word
32-63 Word

noname
0-15 Half Word
16-31 Half Word
32-47 Half Word
48-63 Half Word

...
.end

Setting the fill parameter to on produces filled boxes. The bitwid parameter of 0.05 makes the 64-bit
record 3.2 inches wide. The recspread parameter is the spread between records; the value of 0 causes
the records to be stacked with no intervening space. Assigning off to addr turns the addresses off; the
default assignment is both, but it can also be set to either left or right. The recht parameter
ensures that each record is depicted by a rectangle 0.2 inches high. All records have the name noname, so
no text appears to the left of the records.

Diagrams with many long names in short fields can lead to esthetic problems. This picture, for
instance,

CSR Reserved
31 8

Lock

7

Word

6

Single

5

Wake

4

Max Transactions

3 1

Stop

0

was described by this input:

- 4 -

.begin dformat
style bitwid 0.125
CSR

31-8 Reserved
7 Lock
6 Word
5 Single
4 Wake
3-1 Max Transactions
0 Stop

.end

The field names that do not fit in the boxes are placed in channels below the fields, with as many names as
possible in each channel. The lines that connect a field description to its box may pass through other text.
If you prefer that lines not pass through text, then you can set the variable

style linethrutext 0

which results in this picture:

CSR Reserved
31 8

Lock

7

Word

6

Single

5

Wake

4

Max Transactions

3 1

Stop

0

This table contains a complete list of available parameters.
_ ___ __

INITIAL
NAME

VALUE
EXPLANATION

_ __
bitwid 0.125 Width of 1 bit in inches
charwid 0.07 Width of 1 character in inches
recht 0.3 Height of boxes, in inches
recspread 0.15 Spread between boxes, in inches
textht 0.167 Height of text lines below box, in inches
linedisp 0.04 Distance of line from right of box, in inches
linethrutext 1 Nonzero if lines may pass through text
addrht 0.055 Height of addresses above box, in inches
addrdelta 4 Delta point size for printing bits (0≤d≤9)
addr both Where to print addresses (left, right, both, off)
fill off On to fill boxes, off for unfilled boxes_ __ 


































The variables addrht and addrdelta control the addresses printed at the corners of the field boxes;
addrht is their height in inches above the bottom of the box and addrdelta is the decrease in point
size from the default font size (so if it has the value 4 and the point size is 10, the addresses will be printed
in 6-point). The variable charwid is the width of an average character, which is used to decide whether a
text string will fit in its box (0.07 inches is about right for 10-point Times Roman, but any such value is
only an approximation; notice the widths of MMMMM and iiiii). If text does overflow, it is placed beneath
the boxes in channels textht inches high, and vertical lines are drawn down from linedisp inches
from the right end of the box. If linethrutext is zero, then the connecting lines should not pass
through other text. If fill is on, then records are drawn as filled boxes. To adjust the darkness of filled
boxes, one passes an assignment through to PIC:

pic fillval = 0.9

Lower values produce darker backgrounds.

- 5 -

The values of variables are retained from one DFORMAT display to another. This allows you to
define a style for a document by setting all values in the first display. To allow you to use a different style
in a single picture, the old value of a variable is stored when a new value is assigned. The old value of the
variable bitwid, for instance, may be restored by an assignment of the form

style bitwid reset

The address of a field is typically specified by a pair of integers, as in 4-7. The single integer 4 is an
abbreviation for the single-bit range 4-4. These two formats account for most fields, but two other kinds of
specifications support more exotic fields:

_ __________________________________ _________________________________
FORMAT INTERPRETATION_ _________________________________
i Field i..i, width 1
i-j Field i..j, width j − i + 1
l-r-w Field l..r, width w
l-r-w-t Field l..r, width w, box type t_ _________________________________ 







The variables i and j must be integers, w may be a real, and l and r are strings. Under the third format, the
field specified by

lo-hi-3

has left index ‘‘lo’’, right index ‘‘hi’’ and width 3 bits. Under the fourth format, each field may be given a
type of ‘‘dotted’’ or ‘‘dashed’’ or ‘‘solid’’ (as in PIC, ‘‘dot’’ and ‘‘dash’’ are acceptable abbreviations).
These conventions are illustrated in this nonsense figure

A
1

B
2 3

C
lo hi

... D
88 90

described by:

.begin dformat
style bitwid .3
noname

1 A
2-3 B
lo-hi-3 C
--3-invis ...
88-90-3-dash D

.end

Spaces are not allowed in the indices, so if you want spaces in the output you will have to resort to vile trof-
fery such as using ‘‘\|\|’’ to represent two adjacent half spaces. We’ll soon see that elaborate uses of this
notation are somewhat clumsy, but they do get they job done.

DFORMAT has two final features that are useful for connecting fields in one record to fields in
another record: field names and the ability to pass commands through to PIC. This picture

Record 1 Field 1
1 8

Record 2 Field 2
1 16

....

. .

was produced by this description.

- 6 -

.begin dformat
style bitwid .2
Record 1

F1: 1-8 Field 1
Record 2

F2: 1-16 Field 2
pic line dotted from F1.sw to F2.nw
pic line dotted from F1.se to F2.ne
.end

Field lines have leading white space; if the first string in such a line ends in a colon, it is interpreted as a
name of the corresponding PIC box (recall that PIC names must begin with capital letters). If the first field
on a line is the word ‘‘pic’’, then the rest of the line is passed through to be processed by PIC. We’ll
shortly see an application of these mechanisms.

3. Additional Examples

DFORMAT can be used to prepare overhead transparencies and other material that requires oversize
text. This large version of two System/360 instruction formats

RR Opcode
0

R1
8

R2
12

RX Opcode
0

R1
8

X2
12

B2
16

D2
20

was described in this form:

.ps +10

.begin dformat
style bitwid 0.15
style recht 0.6
style recspread 0.3
style addrdelta 8
style addrht 0.1
style addr left
RR

0-7 Opcode
8-11 R1
12-15 R2

RX
0-7 Opcode
8-11 R1
12-15 X2
16-19 B2
20-31 D2

.end

.ps -10

The TROFF .ps +10 command increments the point size from 10 points to 20 points. The series of
style commands sets the parameters to be more appropriate for this larger format. (I started by doubling
any parameter that ‘‘looked funny’’ in the regular form, and then twiddled them to look a little better.) The
assignment of left to the parameter addr causes only the left bit addresses to be printed (printing both
looks a little crowded).

- 7 -

The next figure shows the packets used in a data communications network. It represents the most
complex kind of figure that can (well, more accurately, should) be drawn with DFORMAT.

Frame Frame Frame Frame ...

Flags
8

Status
8

Chunk 1 Chunk 2 ... Chunk m CRC
16

Flags
8

Data1
8

Data2
8

Data3
8

Data4
8

... Datan − 1
8

Datan
8

Length
6

Channel #
10

...

. .

..

. .

The description uses complex field descriptions, named fields, PIC pass-throughs, and embedded EQN.

.begin dformat
style bitwid 0.08
style charwid 0
style recspread 0.3
noname

--16 Frame
--16 Frame

A1: --16 Frame
--16 Frame
--8-dash ...

noname
A2: 8--8 Flags

8--8 Status
--8 @roman Chunk sub 1@

B1: --8 @roman Chunk sub 2@
--8-dash ...
--8 @roman Chunk sub m@
16--16 CRC

A3: 8--8 Flags
noname

B2: 8--8 @roman Data sub 1@
8--8 @roman Data sub 2@
8--8 @roman Data sub 3@
8--8 @roman Data sub 4@
--8-dash ...
8--8 @roman Data sub {n-1}@
8--8 @roman Data sub n@
6--6 Length

B3: 10--10 Channel #
pic line dotted from A1.sw to A2.nw
pic line dotted from A1.se to A3.ne
pic line dotted from B1.sw to B2.nw
pic line dotted from B1.se to B3.ne
.end

4. DFORMAT Implementation

I hope that many users of DFORMAT will rarely need material beyond that contained in Section 1,
and that Sections 2 and 3 cover most of the exceptions. If you want to go even further, there are no addi-
tional bells and whistles in DFORMAT; you must modify the program. This section begins by describing a
miniature version of the program and then presents the entire source code.

This trivial version of DFORMAT draws simple data formats. It does not support parameters and
style assignments, nor does it place long strings below their boxes.

- 8 -

awk ’
inlang == 0 { if ($0 !˜ /ˆ\.begin[\t]/ || $2 != "dformat") print

else { inlang = 1; print ".PS"; boxacnt = 0 }
next

}
/ˆ\.end/ { inlang = 0; print ".PE"; next }
/ˆ[ˆ \t]/ { printf "BoxA: box invis ht 0.3 wid 0"

if (boxacnt++) printf " with .n at BoxA.s - (0,0.15)"
printf "\n"
printf " \"%s: \" rjust at BoxA.w\n", $0
printf " BoxB: box invis ht 0.3 wid 0 at BoxA\n"
next

}
/./ { range = $1; $1 = ""

gsub(/ˆ[\t]+/, ""); gsub(/[\t]+$/, ""); text = $0
n = split(range, x, "-")
rlo = x[1]
rhi = (n >= 2) ? x[2] : rlo
rwid = rhi - rlo + 1
printf " BoxB: box %s ht .3 wid %g with .w at BoxB.e\n",

btype, rwid*.2
printf " \"%s\" at BoxB.c\n", text
printf "\t\" \\s-4%s\\s+4\" ljust at BoxB.sw + (0,.06)\n", rlo
printf "\t\"\\s-4%s\\s+4 \" rjust at BoxB.se + (0,.06)\n", rhi

}
’ $*

This sample input

.begin dformat
Record 1

0-7 Field 1a
8-15 Field 1b

Record 2
0-5 Field 2a
6 2b

.end

produces this picture

Record 1: Field 1a
0 7

Field 1b
8 15

Record 2: Field 2a
0 5

2b
6 6

by making this PIC file:

- 9 -

.PS
BoxA: box invis ht 0.3 wid 0
"Record 1: " rjust at BoxA.w
BoxB: box invis ht 0.3 wid 0 at BoxA
BoxB: box ht .3 wid 1.6 with .w at BoxB.e

"Field 1a" at BoxB.c
" \s-40\s+4" ljust at BoxB.sw + (0,.06)
"\s-47\s+4 " rjust at BoxB.se + (0,.06)

BoxB: box ht .3 wid 1.6 with .w at BoxB.e
"Field 1b" at BoxB.c

" \s-48\s+4" ljust at BoxB.sw + (0,.06)
"\s-415\s+4 " rjust at BoxB.se + (0,.06)

BoxA: box invis ht 0.3 wid 0 with .n at BoxA.s - (0,0.15)
"Record 2: " rjust at BoxA.w
BoxB: box invis ht 0.3 wid 0 at BoxA
BoxB: box ht .3 wid 1.2 with .w at BoxB.e

"Field 2a" at BoxB.c
" \s-40\s+4" ljust at BoxB.sw + (0,.06)
"\s-45\s+4 " rjust at BoxB.se + (0,.06)

BoxB: box ht .3 wid 0.2 with .w at BoxB.e
"2b" at BoxB.c

" \s-46\s+4" ljust at BoxB.sw + (0,.06)
"\s-46\s+4 " rjust at BoxB.se + (0,.06)

.PE

The complete program produces similar PIC output; here is the source code.

- 10 -

awk ’
function error(s) { print "dformat error: " s " near input line " NR | "cat 1>&2" }

BEGIN { s = "recht 0.3 addrht 0.055 recspread 0.15 "
s = s "charwid 0.07 textht 0.167 addrdelta 4 "
s = s "bitwid 0.125 linedisp 0.04 addr both "
s = s "fill off linethrutext 1"
n = split(s, x)
for (i = 1; i <= n-1; i += 2) oparm[x[i]] = parm[x[i]] = x[i+1]

}

inlang == 0 { if ($0 !˜ /ˆ\.begin[\t]/ || $2 != "dformat") print
else {

inlang = 1; print ".PS"; boxacnt = 0
if (firstpic != 1) { firstpic = 1; print "fillval = 0.9" }

}
next

}
/ˆ\.end/ { inlang = 0; print ".PE"; next }

$1 == "style" { if (!($2 in parm)) error("unrecognized name: " $2)
else if ($3 == "reset") {

t = oparm[$2]; oparm[$2] = parm[$2]; parm[$2] = t
} else {

oparm[$2] = parm[$2]; parm[$2] = $3
}
next

}

$1 == "pic" { $1 = ""; print $0; next }

/ˆ[ˆ \t]/ { printf "BoxA: box invis ht %g wid 0", parm["recht"]
if (boxacnt++) printf " with .n at BoxA.s - (0,%g)",

parm["recspread"] + maxdy*parm["textht"]
printf "\n"
maxdy = sumboxlen = 0
gsub(/[\t]+$/, "")
if ($0 != "noname") {

printf " \"%s \" rjust at BoxA.w\n", $0
printf " box invis with .e at BoxA.w ht 0 wid %g\n",

parm["charwid"] * (length($0) + 3)
}
printf " BoxB: box invis ht %g wid 0 at BoxA\n", parm["recht"]
next

}
/./ { boxname = ""

if ($1 ˜ /:$/) {
boxname = substr($1, 1, length($1)-1)
$1 = ""; $0 = " " $0

}
range = $1; $1 = ""
gsub(/ˆ[\t]+/, ""); gsub(/[\t]+$/, ""); text = $0
n = split(range, x, "-")
rlo = x[1]
rhi = (n >= 2) ? x[2] : rlo
cwid = (rhi >= rlo) ? rhi - rlo + 1 : rlo - rhi + 1
rwid = (n >= 3) ? (0 + x[3]) : cwid
btype = x[4]
if (btype !˜ /ˆ(dot|dash|invis)/) btype = "solid"
textlen = parm["charwid"] * length(text)
boxlen = parm["bitwid"] * rwid
dy = 0
if (textlen > boxlen) { # set dy, the channel for this text

chan[maxdy+1] = -999
for (dy = 1; chan[dy]+textlen > sumboxlen; dy++) ;
if (dy > maxdy) maxdy = dy
if (parm["linethrutext"] == 0)

for (k = 1; k <= dy; k++)
chan[k] = sumboxlen+boxlen

else
chan[dy] = sumboxlen

}

- 11 -

sumboxlen += boxlen
fill = ""
if (parm["fill"] == "on") fill = " fill "
if (boxname != "") printf " %s:", boxname
printf " BoxB: box %s %s ht %g wid %g with .w at BoxB.e\n",

fill, btype, parm["recht"], boxlen
if (dy == 0) printf " \"%s\" at BoxB.c\n", text
else { if (rwid < 2) start = "BoxB.s"

else start = "BoxB.se - (" parm["linedisp"] ",0)"
printf " line from %s down %g\n",

start, dy*parm["textht"]
printf " \"%s\\|\" at last line .s rjust\n", text
printf " box invis with .e at last line .s ht 0 wid %g\n",

textlen
}
if (parm["addr"] ˜ /ˆ(left|right|both)$/) {

dp = int(parm["addrdelta"]) # Delta Point size
if (dp < 0 || dp > 9) error("bad addrdelta value: " dp)
dah = parm["addrht"] # Delta Addr Height
pb = parm["addr"] # Parameter for Bits
if (rlo == rhi) {

printf " \"\\s-%d%s\\s+%d\" at BoxB.s + (0,%g)\n",
dp, rlo, dp, dah

} else {
if (pb == "left" || pb == "both")

printf "\t\"\\|\\s-%d%s\\s+%d\" ljust at BoxB.sw + (0,%g)\n",
dp, rlo, dp, dah

if (pb == "right" || pb == "both")
printf "\t\"\\s-%d%s\\s+%d\\|\" rjust at BoxB.se + (0,%g)\n",

dp, rhi, dp, dah
}

}
}

END { if (inlang) error("eof inside begin/end") }
’ $*

I built DFORMAT for a colleague who wanted to include data formats in a document. He described
the problem to me on a Friday afternoon. I wrote the first version in a couple of hours on Saturday; it was a
tad larger and dirtier than the simple version presented above. After my colleague agreed that the output
was in the right ballpark, I spent six hours on Sunday adding parameters, error checking, and several other
fancinesses. The program had just one user for a couple of months, but I described it to a number of other
people. After several requests for the code, I spent a few days polishing the program and writing this docu-
ment. Thus the paper in your hand now, complete with code, represents roughly one staff-week of pro-
grammer time.

Were one to insist on putting more effort into this project, there are several obvious choices. Field
names that overflow the boxes are usually handled pretty well by the simple algorithm in the current pro-
gram, but some users might like to be able to control the process explicitly. One could build a
DFORMAT-like language for other typesetting systems, such as TEX. If you don’t have access to sophisti-
cated output devices, you could write a program to translate from a DFORMAT-like language into a char-
acter array:

RR |Opcode| R1| R2|

0 8 12

RX |Opcode| R1| X2| B2| D2 |

0 8 12 16 20

- 12 -

Acknowledgments

I am grateful for the helpful comments of Sandy Fraser, Brian Kernighan, and Ravi Sethi.

Summary of Features Added Since Original Version

The fill style parameter now permits filled boxes, and the linethrutext parameter avoids
lines that pass through text.

