
Generating Automatically-Tuned Bitmaps from Outlines

John D. Hobby

Abstract

Consider the problem of generating bitmaps from character shapes given as outlines.

The obvious scan-conversion process does not produce acceptable results unless impor-

tant features such as stem widths are carefully controlled during the scan-conversion

process. This paper describes a method for automatically extracting the necessary fea-

ture information and generating high quality bitmaps without resorting to hand editing.

Almost all of the work is done in a preprocessing step, the result of which is an inter-

mediate form that can be quickly converted into bitmaps once the font size and device

resolution are known.

A heuristically de�ned system of linear equations describes how the ideal outlines

should be distorted in order to produce the best possible results when scan converted

in a straight-forward manner. The Lov�asz basis reduction algorithm then reduces the

system of equations to a form that makes it easy to �nd an approximate solution subject

to the constraint that some variables must be integers.

The heuristic information is of such a general nature that it applies equally well to

Roman fonts and Japanese Kanji.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Gen-

eration|digitizing and scanning ; I.5.4 [Pattern Recognition]: Applications|text pro-

cessing

General Terms: Algorithms

Additional Key Words and Phrases: Scan-conversion; Fonts; Feature recognition; Lov�asz

basis reduction

Generating Automatically-Tuned Bitmaps from Outlines

John D. Hobby

1. Introduction

Hardware and software for electronic typesetting has long made use of outlines to describe

letter shapes, but the actual printing engine or display device usually requires bitmap input. The

outline representation is used because it is compact and it is easily scaled to produce di�erent

type sizes. It is also much easier to design character shapes in outline form, since this avoids the

discreteness of the raster grid imposed by the bitmap representation.

The Screen fonts for the Apple Macintosh exemplify the problems of producing multiple type

sizes by scaling bitmap fonts. The font samples shown in Figure 1 appear in Apple's Technical

Introduction to the Macintosh.[10] One particularly unfortunate aspect of the bitmap scaling process

illustrated in the �gure is how the jagged edges in the original bitmap get magni�ed when scaling

up. For this reason, it is generally considered preferable to start with outlines instead of bitmaps.

�

�

Figure 1: These screen fonts for the Apple Macintosh are generated by scaling 12 point bitmap fonts.

The resolution is about 75 pixels per inch.

The di�culty in generating scaled bitmaps from outlines is that well-known scan-conversion

algorithms usually do not produce good looking bitmap fonts. For instance, Figure 2a shows the

outline of an \m" which the scan-conversion process diagramed in Figure 2b renders as shown in

Figure 2c. Even though all three stems are essentially the same width in the original outline, the

middle stem comes out half again as wide as the others in bitmapped version. This di�erence in

width is a side e�ect of how the relevant parts of the original outline happened to fall on the pixel

grid.

(a) (b) (c)

Figure 2: (a) A character shape and its polygonal outline. (b) The polygonal outline and the pixel

grid with the scan-converted bitmap indicated by shaded squares. (c) The resulting bitmapped

version of the character.

When the outlines for an entire font are scan converted in this manner, features such as stem

widths become quite nonuniform due to the e�ects of the pixel grid. Figure 3 illustrates these

- 2 -

problems in a sample of 18 point Helvetica at 100 pixels per inch.

1

Scan converting outlines at this

low resolution produces a \ransom note" appearance due to asymmetries and excessive variations

in stroke widths. See for example the appearance of \m" in the �rst word on line 4. Much better

bitmapped characters can be obtained by applying the methods described in this paper to the same

Helvetica outlines. Figure 4 gives a sample of the resulting font.

teaching the blessings of liberty regulated by law, and

inculcating love and reverence for the great principles

of government as derived from the inalienable rights of

man to life, liberty, and the pursuit of happiness.

Figure 3: 18 point Helvetica scan converted from outlines at 100 pixels per inch.

teaching the blessings of liberty regulated by law, and

inculcating love and reverence for the great principles

of government as derived from the inalienable rights of

man to life, liberty, and the pursuit of happiness.

Figure 4: Automatically tuned bitmaps for 18 point Helvetica at 100 pixels per inch, generated from

the outlines used to generate Figure 3.

One way to achieve results similar to �gure 4 is to come up with a set of instructions for

adjusting the outlines to control the phase relative to the pixel grid. For instance, R. D. Hersch

presents a technique for using \grid constraints" to adjust the outlines prior to scan conversion. [7]

Other approaches to the problem are discussed by Apley [2]. Unfortunately, whatever form the grid

constraints take they usually have to be generated laboriously by hand.

In order to achieve the results in Figure 4 via a fully automatic process, we need to recognize

features such as stem widths and make sure the scan-conversion process does not distort them more

than necessary. Thus the two main subproblems are feature recognition and minimization of the

distortion of important features during scan conversion. The idea of this work is to use the result of

feature recognition to build a function that measures the distortion after scan conversion. By trying

to minimize this function, we can �nd \optimal" or nearly optimal scan-converted bitmaps. These

nearly optimal bitmaps are based on such general concepts that they are appropriate for almost any

kind of characters, including the Japanese Kanji shown in Figures 5 and 6. Compare for example

the widths of the horizontal and vertical strokes in the very �rst character.

� � � � � � � � � 	
 �

�/VW@AB

Figure 5: 30 point Japanese Kanji scan converted from outlines at 100 pixels per inch.

The generality of the approach is achieved by being careful about the kinds of features to

recognize. After these features are introduced in Section 2, the next task is to determine the nature

1

The same e�ects appear in 6 point Helvetica at 300 pixels per inch, but the three-fold magni�cation makes the

illustration clearer and less susceptible to artifacts of the printing process.

- 3 -

� � � � � � � � � 	
 �

�/VW@AB

Figure 6: Automatically tuned bitmaps for 30 point Japanese Kanji at 100 pixels per inch generated

from the outlines used to generate Figure 5.

of the distortion function and the form its argument should take. These ideas are covered in Section 3

where we introduce the distortion function and give techniques for computing the matrix that de�nes

it. A font-wide version of the distortion function covered in Section 4 uses the same principles to

measure nonuniformity in the font as a whole.

Well known ideas based on work by Lov�asz [13] give good approximateminima for both versions

of the distortion function. By implementing this as a two step process, we retain the idea that a single

set of character outlines can be used to generate bitmaps at any desired size. Section 5 describes a

way to generate a fairly compact set of instructions that can be used to �nd low distortion bitmaps

once a scale factor is chosen. Finally, Section 6 explains how to adapt the distortion function to the

case where the character outlines are curved rather than polygonal.

2. Features to Recognize

In order to produce high quality bitmap fonts from outlines, it is necessary to preserve impor-

tant features as well as possible. But what features are important and how are they best preserved?

The answer to this question is necessarily somewhat open-ended, but we can give some important

features and suggest ways of dealing with them. The methods presented in this paper can accom-

modate additional features if desired.

Perhaps the most important features of a character shape are the widths of the strokes that

compose it. For instance, the Helvetica \m" has three vertical strokes connected by two curved

strokes. The widths of these strokes can be measured at various points as shown in Figure 7.

Figure 7: The outline of a Helvetica \m" with thin lines marking the centers of strokes.

It is somewhat more di�cult to measure the stroke widths in a bitmapped character produced

by scan conversion, but it is clear that the middle stem in Figure 2c is three pixels wide and the

other two vertical stems are two pixels wide. (Since all stems are 2.2 pixel units wide in Figure 2a,

the width of three pixels for the middle stem is a signi�cant distortion).

Truly measuring width distortion for strokes that are neither vertical nor horizontal requires

a de�nition of \width" that applies to bitmaps. As explained in [8], this can be done by counting

- 4 -

pixels per unit length but it is more practical with the present application to use some ideas from

[8] and [9] to construct special outlines whose width matches the bitmap.

For example, Figure 8a shows a pair of outlines that have the integer o�set property de�ned

in [8] and [9]. When superimposed on the pixel grid in Figure 8b, the separation between the two

halves of the outline for the upper stroke is such that the vector (1; 2) measured in pixel units just

spans the gap. Similarly, for the outline of the lower stroke, the integer o�set vector (1; 1) just spans

the gap. If we scan convert each stroke by turning on the pixels whose centers lie inside the outline, a

theorem from [9] guarantees that the number of pixels per unit length matches the original outlines.

Thus the lower stroke has 19 pixels turned on along a line about 15:52 pixel units long and the ratio

19=15:52 exactly matches the 1:224 pixel-unit width of the lower stroke in Figure 8a.

(a) (b) (c)

Figure 8: (a) Portions of two strokes with their outlines shown as bold lines. (b) The same outlines

with their integer o�set vectors and the pixel grid with shaded squares for the scan-converted bitmap.

(c) The bitmaps for the two strokes

There will be more discussion of integer o�set vectors in the next section when we give the

distortion function. Figures 9a{c show what can happen when scan converting outlines that do not

have the integer o�set property. All three strokes in Figure 9a have the same width (about 1.48

units), but the scan-converted bitmaps in Figure 9c have two strokes of very di�erent width and one

stroke whose width is very nonuniform.

(a) (b) (c)

Figure 9: (a) Portions of three strokes with their outlines shown as bold lines. (b) The same outlines

with the pixel grid and shaded squares for the scan-converted bitmap. (c) The bitmaps for the three

strokes

Another type of feature that needs to be controlled is the shape of curves near \critical di-

rections." Figures 10a{c show how scan conversion a�ects the appearance of such curves. Each

of the two strokes in Figure 10a is bounded by two identical curves, one above the other. In the

scan-converted versions of these curves in Figure 10c, the upper boundary of the upper stroke has

a long \
at spot," while the lower boundary of the lower stroke has a \pimple." Font designers

know that it is desirable to avoid both pimples and
at spots when scan converting curved outlines.

Further details appear in D. E. Knuth's The METAFONTbook.[11]

Another important feature of character shapes that can easily get lost in the scan-conversion

process is symmetry. The \0" in Figure 11a has symmetry about vertical and horizontal axes, but

when scan converted by turning on the pixels centered inside the outlines, the symmetry is lost as

shown in Figure 11c.

- 5 -

(a) (b) (c)

Figure 10: (a) Portions of two strokes with their outlines shown as bold lines. (b) The same outlines

with the pixel grid and shaded squares for the scan-converted bitmap. (c) The bitmaps for the three

strokes with boundary curves showing various degrees of distortion.

(a) (b) (c)

Figure 11: (a) Outlines for an \0" with dashed lines for symmetry axes. (b) The same outlines with

the pixel grid and shaded squares for the scan-converted bitmap. (c) The resulting bitmap showing

loss of symmetry.

Other important features deal with overall shape and positioning. Most of these are concep-

tually simple and are readily measured by the distortion function as we see in the next section. One

of the less obvious features of this type is the alignment of di�erent parts of a character shape that

fall at similar x or y coordinates. Figure 12 illustrates what can happen when this type of alignment

is poorly controlled. In the outline version of the character in Figure 12a, points A and B have

nearly identical x coordinates, while the corresponding points on the scan-converted characters in

Figure 12c have x coordinates that di�er by one pixel unit. Thus the di�erence in x coordinates

between points A and B is a feature that needs to be controlled in order to get a good bitmap

version of Figure 12a.

This same type of alignment occurs on a font-wide basis in that as characters are lined up

side by side, important parts of di�erent characters can line up at the same y-coordinate. This is so

important that font designers have names for the various heights at which such alignments occur as

shown in Figure 13. This alignment must be preserved when producing bitmap fonts since even a

one pixel variation in baseline tends to be very noticeable on a device such as a laser printer. It is

especially important to consider the relative values of heights that are close together. For example,

the baseline and the overshoot height are so close together in Figure 13 that it would be a bad idea

to let them di�er by one pixel unit on a device where the pixel size is relatively large.

3. The Distortion Function

Since the distortion function is intended to measure how the scan-converted bitmaps distort

the features of the original outlines, one could build such a function by modeling what happens when

the bitmaps are printed, and compare this to the desired outlines. Plass and Hochschild have used

this technique with some success although it takes a lot of computing to �nd bitmaps that minimize

their version of the distortion function.[16]. Their algorithm could be used in place of the standard

- 6 -

�

A

�

B

�

A

�

B

(a) (b) (c)

Figure 12: (a) Outlines for an \e" with points A and B almost vertically aligned. (b) The same

outlines with the pixel grid and shaded squares for the scan-converted bitmap. (c) The resulting

bitmap showing loss of vertical alignment.

�

descender

�

overshoot

�

baseline

�

x-height

�

x-overshoot

�

cap height

�

ascender

Figure 13: Samples of Times Roman showing heights at where parts of many characters line up.

- 7 -

scan-conversion process once the outlines have been adjusted to �t the pixel grid, but it should not

be viewed as a possible replacement for the present work since Plass and Hochschild do not allow

the types of shape changes that result from adjusting the outlines.

To build a function that measures distortion of the features given in Section 2, it is necessary

to allow small changes in the shape of the character so as to make key parts of the character �t the

pixel grid better. For instance, the pimples and
at spots in Figure 10 arise when the boundary

curves from the original outlines have horizontal tangent points near the middle of a pixel square

rather than near the top or bottom edge.

To accommodate this notion of small changes in shape to �t the pixel grid, it is natural to

choose a �xed scan-conversion algorithm and then adjust the outlines prior to scan conversion so

as to minimize the distortion that will result. For example, Figure 14 shows how the outlines from

Figure 2 can be adjusted to improve the scan-converted bitmaps. With these adjusted outlines as

its argument, the distortion function can evaluate what would result from applying the chosen scan-

conversion algorithm. This allows the distortion function to see how the adjusted outline �ts the

pixel grid and impose a penalty based on the magnitude of the adjustments to the original outlines.

Note that the distortion depends on both the original and the adjusted outlines, but the

original outlines remain �xed while adjusted outlines need to be optimized. Thus it is convenient

to build the original outlines into the distortion function so that when �nding tuned bitmaps for

several outline characters, each has its own version of the distortion function.

For simplicity, we shall assume that the outlines are polygonal so that the adjusted outlines can

be identi�ed by the coordinates of the vertices. For instance, the outline of the \m" in Figure 14a

is a polygon with 58 vertices. An adjustment to the outline can be given as a vector

(X

1

; Y

1

; X

2

; Y

2

; . . . ; X

58

; Y

58

)

which can then be an argument to the distortion function.

(a) (b) (c)

Figure 14: (a) An adjusted character shape and its polygonal outline. (b) The same outlines with the

pixel grid and shaded squares for the scan-converted bitmap. (c) The resulting bitmapped character.

A simple way to construct the distortion function would be to write it as a sum of squares

T

2

1

+ T

2

2

+ T

2

3

+ � � � ;

where each T

i

is an expression in the vertex coordinates that represents a particular kind of distortion.

These distortion measures T

1

, T

2

, . . . should be as simple as possible, but it does not su�ce to use

linear combinations of vertex coordinates since positioning relative to the pixel grid depends on the

fractional parts of vertex coordinates. One way to get around this problem is to introduce new

I-variables

I

1

; I

2

; I

3

; . . .

that can only take on integer values. If the distortion function needs to refer to the fractional parts

of X

5

, Y

17

and X

23

, they can then be written X

5

�I

1

, Y

17

�I

2

, and X

23

�I

3

with the understanding

- 8 -

that I

1

, I

2

, and I

3

are to be chosen so as to minimize the distortion function. This requires the

distortion function to be chosen carefully so that the optimal I

1

, I

2

, and I

3

will be what is intended,

but this is easy to verify for the simple cases given below.

It turns out to be fairly simple to give distortion measures that are linear in the vertex coor-

dinates and the auxiliary variables I

1

, I

2

, and I

3

. Naturally, the distortion measures are heuristic

in nature and contain constants whose settings are based on aesthetic criteria. Suggested values

such as �

1

� 1000=H

3

are given when such constants are introduced, but these can be changed to

alter the relative importance of the various types of distortion. The constants are given in terms of

a parameter H that describes the approximate maximum vertical extent of the original character

outlines. Thus we can let H = 41:5 if the original outlines describe a ten point font scaled so that

there are 4.15 pixel units per point. This allows the heuristic weighting factors to be chosen so as

to make the distortion measures independent of the scale of the original outlines.

Actually, the major problem in �nding distortion measures is not the scaling or the heuristics,

but rather the recognition of features whose distortion is to be controlled. Thus the rest of this section

is devoted to the categories of features for which distortion measures are needed. An attempt has

been made to give reasonable distortion measures for important features, but there is plenty of room

for additions and improvements.

Perhaps the easiest class of features to recognize are those that deal with the overall shape of

the character. Thus we begin in Section 3.1 by giving distortion measures for limiting the variation

in shape and position between the original and adjusted outlines. This experience makes it easier to

�nd stroke-like features and create distortion measures for controlling their width. Section 3.2 shows

how to accomplish this task with the aid of Voronoi Diagrams. Next Section 3.3 covers the problem

of �nding places where an outline is horizontal or vertical and needs to be adjusted so that it �ts the

pixel grid. Section 3.4 examines when to use integer o�set vectors and how distortion measures can

be used to enforce them. Section 3.5 then gives methods for �nding approximate symmetry and using

distortion measures to ensure that the adjusted outlines preserve the symmetry. Finally, Section 3.6

gives a method for controlling the relative values of stroke widths and Section 3.7 discusses the

relative positioning of places where the character outlines align vertically or horizontally.

3.1. Controlling Position and Shape Distortion

The reason for controlling the overall shape and positioning of the adjusted outlines is to ensure

that they match the original outlines as closely as possible. In Figures 14 for instance, no part of

the outline is shifted by more than about 0.6 pixel units. (See also Figure 2).

For shape control, we create distortion measures that re
ect the amount by which the adjusted

outlines are shifted, using constants �

i

and �

i

for the original position of the vertex whose adjusted

position is given by the variables X

i

and Y

i

. When outlines are scan converted,

�

�

i

and ��

i

will be used

to indicate linear expressions involving an adjustable scale parameter. Thus there are the original

outlines with vertices given by constants of the form (�

i

; �

i

), scaled outlines with vertices (

�

�

i

; ��

i

),

and adjusted outlines with vertices (X

i

; Y

i

). Since the nominal value for the scale factor is assumed

to be one, the distinction between (�

i

; �

i

) and (

�

�

i

; ��

i

) is unimportant for now except that Section 5

requires distortion measures to be linear in

�

�

i

and ��

i

. (Most distortion measures turn out to be

proportional to the hidden scale factor).

With this notation, consider perpendicular displacements relative to the edge from (

�

�

i

; ��

i

) to

(

�

�

j

; ��

j

). The dispacement of (X

i

; Y

i

) is

�

i

=

(�

i

� �

j

)(X

i

�

�

�

i

) + (�

j

� �

i

)(Y

i

� ��

i

)

p

(�

j

� �

i

)

2

+ (�

j

� �

i

)

2

and the displacement of (X

j

; Y

j

) is

~

�

j

=

(�

i

� �

j

)(X

j

�

�

�

j

) + (�

j

� �

i

)(Y

j

� ��

j

)

p

(�

j

� �

i

)

2

+ (�

j

� �

i

)

2

:

- 9 -

Since the perpendicular displacement varies linearly along the edge, the mean squared displacement

is

Z

1

0

�

�

i

+ t(

~

�

j

��

i

)

�

2

dt =

Z

1

0

�

2

i

+ 2t�

i

(

~

�

j

��

i

) + t

2

(

~

�

j

��

i

)

2

dt

= �

2

i

+�

i

(

~

�

j

��

i

) +

(

~

�

j

��

i

)

2

3

=

�

2

i

+�

i

~

�

j

+

~

�

2

j

3

=

(�

i

+

~

�

j

)

2

4

+

(

~

�

j

��

i

)

2

12

:

Thus adding to the distortion function a weighting factor �

1

� 1000=H

3

times the integral

with respect to arc length of the squared perpendicular displacement is equivalent adding distortion

measures

(�

i

+

~

�

j

)

r

�

1

d

ij

4

and (

~

�

j

��

i

)

r

�

1

d

ij

12

(1)

where

d

ij

=

q

(�

j

� �

i

)

2

+ (�

j

� �

i

)

2

and i and j range over all pairs of consecutive vertices i and j. In practice either j = i + 1, or i is

the highest numbered vertex on a polygonal outline and j is the lowest numbered vertex.

Why does �

1

need to have H

3

in the denominator in order to make (1) independent of H?

One factor of H comes in because the total arc length of the (unscaled) outlines is proportional

to H. The other factor of H

2

allows �

i

and

~

�

j

to be fractions of H.

Using the two distortion measures given by (1) for each edge in the polygonal outlines gives

a good measure of the overall magnitude of the adjustment to the outlines. One way to get a

similar measure for the local distortion of the shape of the outlines is to consider changes in the

length and direction of one segment of the polygonal outlines. Figures 15b and 15c show two ways

the adjusted outlines can distort the edge between vertices i and j shown in Figure 15a. Since

Figure 15b shows a 50% relative error in the length component of the edge in the adjusted outline,

there is 50% stretching distortion in this case. In Figure 15c on the other hand, the edge has

acquired a perpendicular component equal to 31% of the desired length. This represents a 31%

bending distortion.

(

�

�

i

; ��

i

)

(

�

�

j

; ��

j

)

�

�

(X

i

; Y

i

)

(X

j

; Y

j

)

�

�

(X

i

; Y

i

)

(X

j

; Y

j

)

�

�

(a) (b) (c)

Figure 15: (a) A typical edge of the scaled outlines. (b) A corresponding edge from the adjusted

outline showing 50% stretching distortion. (c) An alternative version of the adjusted edge showing

31% bending distortion.

Since the stretching and bending distortions are properties of the edge as a whole, it is not

necessary to integrate with respect to arc length as we did for the perpendicular displacement. All

we need do is give distortion measures for each edge including a square root of arc length factor so

that the sum of squared distortion measures is weighted by arc length. For each pair of adjacent

vertices i; j, the distortion measure for stretching is

p

�

2

d

ij

(�

j

� �

i

)(X

j

�X

i

+

�

�

i

�

�

�

j

) + (�

j

� �

i

)(Y

j

� Y

i

+ ��

i

� ��

j

)

(�

j

� �

i

)

2

+ (�

j

� �

i

)

2

(2)

- 10 -

and the distortion measure for bending is

p

�

3

d

ij

(�

i

� �

j

)(X

j

�X

i

+

�

�

i

�

�

�

j

) + (�

j

� �

i

)(Y

j

� Y

i

+ ��

i

� ��

j

)

(�

j

� �

i

)

2

+ (�

j

� �

i

)

2

: (3)

Note that (2) and (3) contain heuristic weighting factors �

2

� 25=H and �

3

� 25=H. Their

denominators contain only one factor of H because the percentages of stretching and bending dis-

tortion should not depend on H.

3.2. Width Control

The preceding section shows how to construct distortion measures in the relatively easy case

of position and shape control. In the more di�cult case of width control, we can draw on experience

and concentrate on feature recognition. Speci�cally, we need to take a character shape given as a

polygonal outline, and �nd features that can be said to have width. This may be done by the well-

known technique of medial axis decomposition introduced by Blum.[4] Most of the work necessary to

compute the decomposition was done by Montanari[14] and later improved by Lee.[12] The prototype

implementation used Fortune's algorithm for line segment sites.[5]

The resulting medial axis decomposition of a set of polygons is a radius function and a set

of tree-like structures such as those shown in Figure 16a. If the radius function is used to de�ne

a set of circles, one centered at each point on the medial axis structures, then the union of all the

circles is the original polygon. Another way to look at it is that the medial axis structures identify

all interior points equidistant from disjoint parts of the polygonal outlines and the radius function

gives the distance.

(a) (b)

Figure 16: (a) A polygonal outline and its medial axis tree. (b) The same outlines with the medial

axis pruned by using a threshold angle of 146

�

.

The only problem with the medial axis structures shown in Figure 16a is that they include

many extraneous branches that do not appear to be the centers of strokes. What is needed is a way

to cut out the extraneous branches and leave only the truly necessary ones as shown in Figure 16b.

Montanari does this by using a thresholding process based on what may be called the opposition

angle. The opposition angle for a point P on a medial axis of a set of polygonal outlines O is found

by looking at the points where O intersects the P -centered circle de�ned by the radius function as

shown in Figure 17. The medial axis construction guarantees that there must be at least two distinct

intersection points A and B, hence we can �nd an angle APB measured so as to be between zero

and 180

�

. Normally, there are two intersection points and they give the opposition angle APB . If

there are more than two intersection points, the opposition angle is the maximum angle APB over

all pairs of intersection points A and B.

- 11 -

�

A

�

P

�

B

�

A

�

P

�

B

(a) (b)

Figure 17: Thick lines give portions of polygonal outlines, thin lines give corresponding parts of the

medial axis tree, and the dashed circles are as de�ned by the radius function at the points P . The

opposition angle APB is closer to 180

�

in (a) than in (b).

If P is to �t the intuitive notion of a stroke, A and B should be on opposite sides of the stroke

and the opposition angle APB should be close to 180

�

. This suggests scanning the medial axis

structures and throwing away parts where the opposition angle is below some threshold. Figure 18

shows the e�ect of this pruning process for two di�erent thresholds. Figure 18a also introduces an

extended version of the medial axis structures that cover the exterior as well as the interior. These

extended structures, commonly known as Voronoi Diagrams allow the thresholding process to �nd

stroke-like features in the white space. (Voronoi edges that arise from a segment and one of its

endpoints are considered to have opposition angle 0

�

and are therefore removed by the thresholding

process).

(a) (b) (c)

Figure 18: (a) The polygonal outline of an \a" shown in bold with its Voronoi Diagram drawn with

thinner lines. (b) The result of throwing away parts of the Voronoi Diagram where the opposition

angle is less than 157

�

. (c) The same diagram with the threshold set at 146

�

.

Figure 19a illustrates more clearly some of the interesting stroke-like features found in the

white space by applying an opposition angle threshold to the Voronoi Diagram. The medial axis

lines labeled \8" and \10" fall into this category, but the short line labeled \7" is not so interest-

ing. Artifacts such as axis 7 tend to arise when the threshold angle is set high enough to prevent

fragmentation of the medial axis lines in cases like that shown in Figure 18b. Montanari does not

deal with this problem, but it can be avoided by extending his thresholding process to include a

secondary threshold as explained below.

- 12 -

After throwing away parts of the Voronoi Diagram where the opposition angle is less than the

primary threshold, the resulting set of medial axis lines can be pruned further by looking at the

maximum value of the opposition angle on each axis line. For instance, the opposition angle ranges

from 146

�

to 180

�

along the length of axis 6 while it is constant at 151

�

along axis 7. This causes

axis 7 to be thrown away when the secondary threshold is set to require a maximumopposition angle

of at least 157

�

as shown in Figure 19b. Setting the threshold at 166

�

causes three other extraneous

axis lines to be dropped (Figure 19c).

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

8

9

10

11

12

2

4

5

6

8

9

10

12

(a) (b) (c)

Figure 19: Polygonal outlines for an \a" with parts of its Voronoi Diagram selected by various

pruning methods. (a) shows single-stage pruning at 146

�

, and (b) and (c) show two-stage pruning

with the secondary threshold at 157

�

and 166

�

respectively.

Recall that the purpose of the dual threshold process is to produce the information necessary to

create distortion measures for controlling the width of stroke-like features. In addition to the medial

axis lines shown in Figure 19c, this requires knowledge of the points A and B used to compute

the opposition angle for each point P on the medial axis lines. (See Figure 17a). Fortunately,

this information is a byproduct of many Voronoi Diagram construction algorithms. The Voronoi

Diagram is constructed as a set of line segments and parabolic arcs, each of which is \midway

between" two segments, two vertices, or a vertex and a segment. In each case, the points A and B

are easily constructed as shown in Figure 20 once the two segments or vertices are known. Thus

given a point P on a line segment or parabolic arc of the Voronoi Diagram, functions Apoint(P)

and Bpoint(P) are de�ned to lie on the appropriate vertex or segment from the character outline

with the understanding that the point to select on a segment is the one closest to P .

�

P

�

A

�

B

�

P

�

A

�

B

�

P

�

A

�

B

(a) (b) (c)

Figure 20: (a) How to �nd A and B when P is on the line midway between two segments (b) The

same computation when P is on the line midway between two vertices. (c) The same for P on the

parabolic arc generated by a point and a segment.

If A is t

A

of the way from (�

i

; �

i

) to (�

j

; �

j

), it is convenient to let

(�

A

; �

A

) =

�

�

i

+ t

A

(�

j

� �

i

); �

i

+ t

A

(�

j

� �

i

)

�

and de�ne (

�

�

A

; ��

A

) and (X

A

; Y

A

) analogously to be the scaled and adjusted versions of point A.

Similarly, point B will lie some fraction t

B

of the way along some other edge, and this leads to

- 13 -

de�nitions for (�

B

; �

B

) etc. With this notation, the most useful de�nition for the width at P =

(P

x

; P

y

) is

2

w

P

= 2

q

(�

A

� P

x

)

2

+ (�

A

� P

y

)

2

: (4)

Since the distortion measure for width errors must be simple enough to allow for subsequent pro-

cessing, we use an approximation based on a unit vector in the direction from A to B:

d

AB

=

(�

A

� �

B

; �

A

� �

B

)

p

(�

A

� �

B

)

2

+ (�

A

� �

B

)

2

:

The distortion measure for width error as a fraction of w

P

is

p

�

4

s

P

d

AB

� (

�

�

A

�

�

�

B

�X

A

+X

B

; ��

A

� ��

B

� Y

A

+ Y

B

)

w

P

; (5)

where �

4

� 50=H is a weighting factor, � refers to the vector dot product and s

P

is a measure of the

arc length on the medial axis near P .

The meaning of the arc length s

P

is that there are a number of distortion measures (5) for

various points P chosen by dividing the medial axis lines into short intervals and choosing a point

midway along each interval. In this way the contribution to the total distortion is made roughly

proportional to the mean squared relative width error.

3.3. Fitting Verticals and Horizontals to the Pixel Grid

In order for a set of outlines to \�t" the pixel grid, vertical and horizontal parts of the outline

must fall on pixel boundaries. This also holds for curves that pass through vertical or horizontal.

As shown in Figure 10 of Section 2, such curves produce better pixel outlines when the horizontal

or vertical tangent line falls on pixel boundaries.

Figure 21 illustrates the process of �nding vertical and horizontal parts of a character outline.

To �nd important vertical parts, �rst scan the outline and mark the points where the x-coordinate

achieves local minima or maxima as shown in Figure 21a. Next throw away pairs of consecutive

extrema whose x coordinates di�er by no more than 0.5 pixel units or some other �xed threshold.

This causes extrema 3 and 4 to be omitted in Figure 21b. The remaining extrema either lie on

important vertical edges or need to have their positions �xed relative to the raster for other reasons

as explained below.

To �nd any remaining important verticals, consider each pair of consecutive extrema and look

for verticals between them by �nding the portion of the outline that falls in a small range of x-

coordinates x

0

� x � x

0

+�x. If this portion of the outline is an important vertical region, it will

cover a range of y-coordinates of some large size �y. Thus for each pair of consecutive extrema,

the idea is to treat �y as a function of x

0

and �nd all local maxima where �y is greater than some

threshold (at least a few pixel units) and separated from any higher maximum by at least some

other threshold (typically one or two pixel units). This produces an important vertical region AB

between extrema 1 and 2 and a similar region CD between extrema 2 and 1 in Figure 21b.

After using an analogous process to �nd important horizontal regions, the next step is to �nd

distortion measures that force the vertical and horizontal regions to �t the pixel grid. If the grid

lines that divide pixel squares have integer x and y coordinates, there should be distortion measures

that get large when the x and y coordinates of important vertical and horizontal regions get far from

an integer.

Consider the vertical region AB and let M be a point on AB whose y coordinate is midway

between A and B. The point corresponding to M on the adjusted outlines is a weighted average

of the endpoints of the segment it lies on, but it is safer to choose one of these endpoints (�

m

; �

m

)

2

We could just take the distance between points A and B but that is not always a continuous function of P .

- 14 -

�

�

�

�

1

2

3

4

�

�

1

2

x

0

�x

�y

�

�

�

�

A

B

C

D

(a) (b)

Figure 21: (a) A character outline and its x-extrema. (b) The construction for important verticals

between x-extrema. The verticals occur at the intervals AB and CD and at extrema 1 and 2.

and control the position of the adjusted vertex (X

m

; Y

m

). This should have the desired e�ect on the

adjusted version ofM if the segment it is on does not have too much shape distortion. The resulting

distortion measure is

p

�

1

(X

m

+

�

�

M

�

�

�

m

� I

k

); (6)

where �

1

� 10

8

=H

2

is an adjustable weighting parameter, I

k

is a newly introduced integer-valued

variable that will be chosen to minimize the absolute value of (6), and

�

�

M

and

�

�

m

are the scaled

versions x coordinates for M and (�

m

; �

m

). Since this e�ectively imposes an integer restriction on

the coordinates of the adjusted version of M , point M is called an integer adjustment point.

To force the rest of the region AB to be adjusted in a manner similar to M , it is a good idea

to add additional distortion measures whose sum of squares is �

1

times the mean squared di�erence

between the shift amount X

m

�

�

�

m

and the shift amount for other points in AB. Making use of the

trick used to derive (1) in Section 3.1, it su�ces to add distortion measures

r

�

1

d

ij

4d

AB

�

X

i

+X

j

�

�

�

i

�

�

�

j

+ 2

�

�

m

� 2X

m

�

;

r

�

1

d

ij

12d

AB

�

X

i

�X

j

�

�

�

i

+

�

�

j

�

(7)

where i and j range over all pairs of adjacent vertex numbers between A and B, inclusive. Here d

AB

is the arc length between A and B, and d

ij

is the distance from (�

i

; �

i

) to (�

j

; �

j

).

Naturally, the same type of distortion measures can be generated for important horizontal

regions by just using Y and �� in place of X and

�

�. In fact it is possible to control the positions of

45

�

lines by using X + Y and

�

� + ��, although in this case the line is �tted to the pixel grid if it

contains a point (X

M

; Y

M

) with X

M

+ Y

M

� I

k

+

1

2

for some integer I

k

. (The curved portions of

the letter \m" in Figure 14 have been �tted to pixel grid in this fashion).

Another case where distortion measures need not be exactly in the form of (6) or (7) is when

the character outline has a local extreme in x without having much of a vertical edge. This situation

can be identi�ed by using the same test used to locate important vertical extrema: i.e., the part of

the outline near the extreme point with x coordinates falling within the constant �x of the extreme

has a range of y coordinates �y not more than about 2.5 times �x. Performing this test with

�x = 0:6 yields 1.02 pixel units for �y in the case shown in Figure 22a where the outline has a

sharp point at the x extreme. As can be seen from Figures 22b and 22c, the scan-converted bitmap

- 15 -

best preserves the sharpness of the point when the y coordinate of the extreme point is in the middle

of a row of pixels. This suggests a distortion measure

r

�

2

(2:5�x��y)

2:5�x

(Y

m

� I

k

� 0:5); (8)

where �

2

� 5 � 10

7

=H

2

is a weighting parameter, m is the index of the vertex where the extreme

point occurs and I

k

is a newly introduced integer-valued variable. Thus vertex m is also an integer

adjustment point in this case.

�

�x

�y

�

(

�

�

m

; ��

m

)

�

(X

m

; Y

m

)

(a) (b) (c)

Figure 22: (a) An outline and an x extreme that should be treated as a sharp corner because of its

small �y value. (b) The outline and the scan-converted bitmap where the y coordinate indicated

by the dashed line is poorly placed relative to the pixel grid. (c) The outline shifted prior to scan

conversion so that the y coordinate of the dotted line is an integer plus

1

2

.

A somewhat more interesting case occurs in Figure 23 where the outline achieves local extrema

in x and y simultaneously. In that case the scan-converted bitmap seems to preserve the sharp point

best when the outline contains a pixel center near its extreme point as shown in Figure 23b. One

way to derive distortion measures that ensure this is to construct a vector (a; b) that expresses the

desired displacement of the extreme point from a pixel center and express the pixel center in question

as (I

k

+

1

2

; I

k+1

+

1

2

), where I

k

and I

k+1

are two newly introduced integer-valued variables. To place

an integer adjustment point at the vertex m where the extreme point occurs, include distortion

measures

p

�

3

(I

k

+ 0:5 + a�X

m

) and

p

�

3

(I

k+1

+ 0:5 + b� Y

m

); (9)

where �

3

� 10

8

=H

2

is an adjustable weighting factor. The vector (a; b) should be in the direction

of the medial axis pointed outward toward vertex m. A reasonable way to select the magnitude of

this vector is to make max(jaj ; jbj) =

1

2

so that a = 0:5 and b = 0:35 in the case of Figure 23b.

�

(

�

�

m

; ��

m

)

�

�
(X

m

; Y

m

)

(a) (b)

Figure 23: (a) A scan-converted outline with a local extreme point in both x and y poorly positioned

on the pixel grid as indicated by the dashed line through the medial axis. (b) The same outline

shifted so that the medial axis line passes through a pixel center

1

2

pixel unit away.

- 16 -

3.4. Using Integer O�set Vectors

Figures 8 and 9 in Section 2 showed that straight diagonal strokes of constant width look best

when the outlines are adjusted to have integer o�set vectors. Before choosing distortion measures

to enforce integer o�set vectors, it is necessary to decide just what constitutes a \straight diagonal

stroke" and how such strokes should be found.

Fortunately the di�cult problem of �nding strokes was addressed Section 3.2. The techniques

of that section locate the stroke-like features in terms of a set of medial axis lines and a function

that gives the width of the stroke at each point on a medial axis line. For example, the \f" shown

in Figure 24 has six medial axis lines including one very short one (number 5) and one that lies in

the character's white space (number 6).

3

1 2

5

4

6

Figure 24: The outline of an \f" showing the medial axis lines that can be used to decide where

integer o�set vectors are needed.

What properties must the medial axis line and the width function have in order for an integer

o�set vector to be needed? Roughly speaking, the situation must be similar to that shown in

Figure 8. That is, there must be some interval where the medial axis is fairly straight and the width

is nearly constant. Another way to look at it is that the choice of the integer o�set vector depends

on the width and direction, and the variation in these should be small enough to ensure that a single

integer o�set vector can be used.

Suppose an interval along the medial axis has width ranging from w

min

to w

max

and direction

angles between �

min

and �

max

when measured in radians. This means that the integer o�set vector

should have direction angle near �

min

+

�

2

and �

max

+

�

2

and length near w

min

and w

max

. It is di�cult

to know precisely how big the ranges of width and direction can be until integer o�set vectors are

chosen, so we must err on the side of caution. Near a direction angle that corresponds to a simple

rational slope, integer o�set vectors of similar length can di�er in direction by as little as little as

1=w

max

so it is not safe to allow �

max

� �

min

to exceed this magnitude.

On the other hand, it is hard to decide in advance whether the direction angle is su�ciently

close to a su�ciently simple rational slope. Without such special dirction angles, [8] shows that rea-

sonable choices of integer o�set vectors can easily deviate from perpendicular to the stroke direction

by on the order of 1=

p

w

max

even when w

max

= w

min

. Allowing integer o�set vector to be this far

from perpendicular to the medial axis produces about 2

p

w

max

integer o�set vectors per unit change

in width. Thus a single integer o�set vector can be safely used when

�

max

� �

min

�

1

w

max

and w

max

� w

min

�

2

p

w

max

; (10)

- 17 -

where

1

� 0:25 and

2

� 0:25 are adjustable parameters. An interval on a medial axis line that

satis�es (10) is called a feasible integer o�set interval

A good way to �nd such intervals is just to evaluate the width and direction angle at key

points along each medial axis line, obtaining information such as that shown in Figure 25 for medial

axis number 4 from Figure 24. The idea is to scan forward from each key point, keeping track of the

ranges of width and direction angle and stopping when (10) fails. This �nds all the feasible integer

o�set intervals of maximal length as shown in Figure 26.

�

2

�

4

0

0 2 4 6 8 10

0

0:5

1

1:5

2

direction width

Figure 25: Width and direction angle as a function of arc length along medial axis number 4 from

Figure 24.

10

8

6

4

2

0

2 4 6 8 10

Figure 26: A graph that describes intervals of arc length along the medial axis where the width

and direction angle functions shown in Figure 25 satisfy (10). The solid line shows the interval

endpoint as a function of the starting point, and the dashed line shows the starting point versus

itself for comparison. The longest interval occurs where the solid line attains maximal height above

the dashed line as shown by the double arrow.

The graph in Figure 26 shows that the longest possible feasible integer o�set interval starts

0.74 pixel units from the beginning of the medial axis line and has a length of 2.68 pixel units. Not

surprisingly, this corresponds to the straight part at the lower end of stroke number 4 in Figure 24.

It remains to be decided whether this is worth bothering with and whether there are any other

intervals to consider.

One way to make these decisions is to choose a heuristic scoring function based on the arc

length a and the range of widths w

min

. . .w

max

. With a function such as

a � 0:75(w

min

+ w

max

)� 1:0

that is positive when the interval is worth considering, it su�ces to �nd the set of non-overlapping

intervals that maximize the total score. This can be done easily using dynamic programming or by

treating it as a problem on interval graphs and using Groetschel, Lov�asz and Shrijver's maximum

weighted independent set algorithm.[6]

- 18 -

Whatever method is used to maximize the total score, the result for the example of Figure 24

is that an integer o�set interval is found on medial axis number 3 and others would be found on

medial axes 1, 2 and 4 if the scoring function were a little more liberal. This brings to light an

important point not considered so far, namely why is medial axis number 2 considered at all when

the techniques of Section 3.3 already force both the top and bottom edges of that stroke to have

integer y coordinates? It is worthwhile to avoid such redundant integer constraints for two reasons:

they make it harder to avoid con
icting systems of integer constraints; and there are time and space

savings that might be signi�cant.

Figure 27 shows the outline of an \f" with open circles marking all the integer adjustment

points on the outline. The short line segments connected via dashed lines to the integer adjustment

points indicate which components are being �xed relative to the pixel grid. For instance, a vertical

segment indicates that the x coordinate is (heavily) penalized for being non-integer, and a horizontal

segment indicates a similar penalty for the y component. Each time there is a restriction on the

y component, integer restrictions are also e�ectively placed a on contiguous portion of the outline

near the integer adjustment point. These integer in
uence zones are shown in the �gure with thicker

lines than the rest of the outline.

3:1

1:1 2:1

4:1

4:2

A

B

Figure 27: A character outline with the integer adjustment points marked. Integer in
uence zones

for y coordinate integer adjustment points are shown in bold. They induce the bracketed integer

adjustment intervals labeled 1.1, 2.1, and 4.2. Arrows show which integer adjustment points induce

the integer adjustment intervals. The bracketed interval labeled 3.1 has no arrows because it is an

integer o�set interval.

When the y coordinate is controlled at an integer adjustment point A, the integer in
uence

zone is bounded by points on the outline that di�er from A in y coordinate by some �xed threshold

near 0.5 pixel units as shown in Figure 27. The portions of a medial axis line where the corresponding

stroke has integer-oriented width restrictions due to y coordinate integer adjustment points is simply

the part where the direction is su�ciently close to horizontal and the Apoint and Bpoint functions

- 19 -

de�ned in Section 3.2 yield points in an integer in
uence zone. For example, any point P in the

interval labeled \2.1" in Figure 27 has Apoint(P) in integer in
uence zone A and Bpoint(P) in

integer in
uence zone B. In this case interval 2.1 is said to be the integer adjustment interval

induced by integer in
uence zones A and B.

Of course integer adjustment intervals also apply to integer adjustment points where x or

x + y or x � y is controlled, the main di�erence is that the integer in
uence zones are determined

by limiting the change in x or x+ y or x� y. An integer adjustment interval is induced any time

Apoint(P) and Bpoint(P) both belong to integer in
uence zones where P is a point on the medial

axis where the direction is su�ciently close to x = 0 or x+ y = 0 or x� y = 0.

Scanning each medial axis line and identifying the integer adjustment intervals yields intervals

1.1, 2.1, 4.1, and 4.2 in the example shown in Figure 27. The remaining portions of each medial axis

line can then be scanned for integer o�set intervals by sampling the width and direction and scoring

feasible integer o�set intervals as explained previously. This produces the integer o�set interval

labeled 3.1 in the case shown in Figure 27.

The remaining task is actually generating the distortion measures that force an integer o�set

interval to have a width consistent with an integer o�set vector. They can be similar to the distortion

measures given in Section 3.2, except that the weight is higher and the adjusted stroke width is not

compared to the unadjusted width, but rather to an expression involving the integer o�set vector.

This is done by introducing a pair of integer-valued variables I

k

and I

k+1

and comparing the actual

width from the adjusted contours to the corresponding component of the vector (I

k

; I

k+1

).

In the notation of Section 3.2 a point P = (P

x

; P

y

) on the medial axis has Apoint(P) = (�

A

; �

A

)

and Bpoint(P) = (�

B

; �

B

), where A is a weighted average of two vertices (�

i

; �

i

) and (�

j

; �

j

), and B

is a weighted average of two other vertices. The adjusted version of A, written (X

A

; Y

A

) is the same

weighted average of the adjust points (X

i

; Y

i

) and (X

j

; Y

j

), and the adjusted version of B is de�ned

analogously. As in Section 3.2, the width is measured in the direction

d

AB

=

(�

A

� �

B

; �

A

� �

B

)

p

(�

A

� �

B

)

2

+ (�

A

� �

B

)

2

:

Using � for the vector dot product, the distortion measure for controlling the width at P is

p

�

4

s

P

d

AB

� (I

k

+X

A

�X

B

; I

k+1

+ Y

A

� Y

B

); (11)

where �

4

� 2� 10

8

=H

3

is an adjustable weighting parameter and s

P

is a measure of the arc length

on the medial axis near P .

The large value of �

4

is needed to make sure the width limitation imposed by the integer o�set

vector is accurately obeyed. This is somewhat dangerous, however, since the component in direction

d

AB

is only an approximation to the width of the adjusted contour. To ensure the accuracy of the

approximation, another distortion measure

p

�

5

s

P

d

AB

� (Y

B

� Y

A

; X

A

�X

B

) (12)

with a somewhat smaller weight parameter �

5

� 2�10

6

=H

3

penalizes changes in the direction from

(X

A

; Y

A

) to (X

B

; Y

B

).

With distortion measures (11) and (12) for various points P along the integer o�set interval,

there is a large contribution to the total distortion proportional to the mean squared deviation of

the width from that given by (I

k

; I

k+1

). It is then the smaller distortion measures given by (5) in

Section 3.2 that come into play if the width given by (I

k

; I

k+1

) deviates from the desired value.

But since these smaller distortion measures control only the component of (I

k

; I

k+1

) perpendicular

to the stroke direction, other distortion measures are needed to control the amount by which the

integer o�set vector deviates from perpendicular to the stroke.

To balance the width control measures (5) that are given relative to the stroke width

w

P

= 2

q

(�

A

� P

x

)

2

+ (�

A

� P

y

)

2

;

- 20 -

the distortion measure for perpendicularity of the integer o�set vector at P is given as 1=w

P

times

the slope of the deviation from perpendicular times a weighting factor based on �

5

� 20=H:

p

�

5

s

P

d

AB

� (I

k+1

;�I

k

)

w

2

P

: (13)

3.5. Enforcing Approximate Symmetry

Even when a character shape as whole is not symmetrical, it often has numerous parts that

are almost symmetrical as shown in Figure 28. In the case of Figure 28a, the three legs labeled

A, B, and C are each symmetrical about their own axis of symmetry and legs A and C together are

almost symmetrical about symmetry axis B. In Figure 28b, there is a di�erent kind symmetry in

which the part of the outline labeled \B" is almost identical to part A except for a horizontal shift.

A B C

P

1

Q

1

P

2

Q

2

A B

(a) (b)

Figure 28: (a) The outline of an \m" with symmetrical parts shown in bold and axes of symmetry

indicated by dashed lines. (b) The same outline with shift-symmetric parts shown in bold.

It is important that the bitmap version of the character retain the approximate symmetry,

since it can be very noticeable if a character part such as a serif comes out one pixel wider on one

side than the other. For this reason, it is a good idea to include distortion measures that force the

adjusted character outlines to retain any approximate symmetries.

Finding approximate symmetries consists of �nding pairs of intervals P

1

. .Q

1

and P

2

. .Q

2

on the original outlines such that for a suitable mappingM, the polygonal linesM(P

1

. .Q

1

) and

P

2

. .Q

2

almost match. For instance when P

1

, Q

1

, P

2

, and Q

2

are as shown in Figure 28a, it is

appropriate to choose

M(x; y) = (2x

B

� x; y) (14)

to re
ect about the symmetry axis x = x

B

. We should also look for symmetries about a horizontal

axis, in which caseM(x; y) is of the form (x; 2y

B

�y). For horizontal and vertical shifting symmetries,

M(x; y) should be (x

B

+ x; y) or (x; y

B

+ y).

Since the mappingM is de�ned by a single parameter that gives the position of the symmetry

axis (or the shift amount for shifting symmetries), it is possible to construct a sweepline algorithm

based on this mapping parameter. Suppose for example, that the de�nition of when polygonal lines

\almost match" is that each vertex of one line must be within a �xed distance � of a segment of

the other and that consecutive vertices P and Q can match di�erent segments S and T only when

the vertices between S and T all match the segment PQ. Then the sweepline algorithm only needs

to keep track of which vertices match which segments for each value of the mapping parameter.

This information is readily derived from the answers to a series of intersection problems like the one

shown in Figure 29.

The remaining question is, given a symmetry mapM and intervals of the character outline

where M(P

1

. .Q

1

) almost matches P

2

. .Q

2

, what distortion measures are needed to enforce the

- 21 -

AB

C

��

Figure 29: A segment shown as a heavy line with the outline of the neighborhood in whichM(A)

must lie in order for vertex A to match the segment under the symmetry mappingM. Intersecting

with the dashed line to give points B and C shows that the x coordinate of the symmetry axis must

be between

1

2

(A

x

+C

x

) and

1

2

(A

x

+ B

x

).

same symmetry in the adjusted outlines? Clearly, this involves comparing points on the adjusted

version of P

1

. .Q

1

to matching points on the adjusted version of P

2

. .Q

2

. The existing vertex-

segment matches thus need to be re�ned by selecting for each vertex (�

i

; �

i

) on P

1

. .Q

1

, the point

on the matching segment closest toM(�

i

; �

i

). Naturally the same process is applied to each vertex

(�

j

; �

j

) on P

2

. .Q

2

, except that the point on the matching segment should be nearM

�1

(�

j

; �

j

).

3

Once each vertex has a matching point, the problem is reduced to �nding distortion measures

for a segment

(�

a1

; �

a1

) . . (�

b1

; �

b1

)

of P

1

. .Q

1

and a segment

(�

a2

; �

a2

) . . (�

b2

; �

b2

)

of P

2

. .Q

2

. It should be understood that a point such as (�

a1

; �

a1

) might lie on the interior of a

segment and hence might represent a weighted average of two vertices (�

i

; �

i

) and (�

j

; �

j

). Then

(X

a1

; Y

a1

) should be understood to refer to the same average of the corresponding adjusted vertices

(X

i

; Y

i

) and (X

j

; Y

j

).

Since it is desirable to allow the adjusted contours to use a slightly di�erent mapping parameter,

the distortion measures are written in terms of a mapping

�

M that uses a newly introduced non-

integer variable F

k

in place of the mapping parameter. Thus

�

M(x; y) = (F

k

� x; y) (15)

ifM is as given by (14). Note that because of the additive nature of the mapping parameter,

�

M(x; y) �

�

M(0; 0) =M(x; y)�M(0; 0)

independent of F

k

. The distortion measures given below refer to this function asM

v

although for

M as given by (14), M

v

simply negates the x coordinate. Using k�k for the Euclidean norm and

A �B for the scalar product of vectors A and B, the mean direction

D =M

v

(�

b1

� �

a1

; �

b1

� �

a1

) + (�

b2

� �

a2

; �

b2

� �

a2

)

is used to de�ne perpendicular displacements

�

a

=

D �

�

(X

a2

; Y

a2

) �

�

M(X

a1

; Y

a1

)

�

kDk

and

�

b

=

D �

�

(X

b2

; Y

b2

)�

�

M(X

b1

; Y

b1

)

�

kDk

3

The inverse mappingM

�1

is the same asM in the case of (14), but for shifting symmetries, the shift amount needs

to be negated.

- 22 -

at (X

a2

; Y

a2

) and (X

b2

; Y

b2

). Using d

ab

=

1

2

kDk, the argument used to derive (1) shows that the

distortion measures

(�

a

+�

b

)

r

�

6

d

ab

4

and (�

b

��

a

)

r

�

6

d

ab

12

(16)

contribute to the total distortion a weighting factor �

6

� 5�10

5

=H

3

times the integral with respect

to arc length of the squared perpendicular displacement.

3.6. Width Matching

Figures 2 and 14 clearly demonstrated the need for controlling relative stroke widths in scan-

converted bitmaps. As suggested previously, this control can be achieved by making sure that the

outlines are adjusted to �t the pixel grid. Of course this depends on the widths being controlled in

the adjusted outlines, so it is a good idea to give distortion measures to penalize for deviations in

relative width.

This is relatively easy to do now because almost all of the work necessary to derive distortion

measures was done in Section 3.2 with the presentation of distortion measure (5) for measuring the

relative error in the adjusted stroke width. The idea is that it is a lot better for the adjusted stroke

width to be 10% too small all the time than for some parts of some strokes to be 10% too large while

others are 10% too small. Thus it su�ces to use the techniques of Section 3.2 to get expressions for

the relative error in adjusted stroke width at various points and then give distortion measures that

try to force the di�erence between any two of them to be small.

Speci�cally, the distortion measure (5) that controls the relative error in the adjusted stroke

width at a point P on the medial axis of a stroke is just

p

�

4

s

P

times the relative error, where �

4

is a weighting factor and s

P

is a measure of the length of the stroke near P . Thus the relative error

in the adjusted stroke width at P is

E(P) =

d

AB

� (

�

�

A

�

�

�

B

�X

A

+X

B

; ��

A

� ��

B

� Y

A

+ Y

B

)

w

P

;

where the notation is as used in (5). That is, (

�

�

A

; ��

A

) and (X

A

; Y

A

) are the scaled and adjusted

coordinates of Apoint(P) and similar expressions with B subscripts refer to Bpoint(P). Additionally,

w

P

is twice the distance between P and Apoint(P) and d

AB

is a unit vector in the direction of

Apoint(P)� Bpoint (P).

All that remains is to write a distortion measure proportional to E(P

i

)� E(P

j

) for each pair

of points P

i

and P

j

at which the width is to be correlated. This may be done by assuming that

the medial axis of each stroke is divided into intervals where the ith interval has arc length s

i

and

midpoint P

i

. Since each P

i

has its own value for the stroke width w(P

i

) and the medial axis direction

d(P

i

), there can be a weighting function

1

and a distortion measure

�

E(P

i

)�E(P

j

)

�

q

s

i

s

j

1

(w(P

i

); w(P

j

); d(P

i

); d(P

j

)) (17)

for each i and each j. Presumably

1

(w

1

; w

2

; d

1

; d

2

) depends on the width di�erence w

1

� w

2

and

the angle between d

1

and d

2

. This function is somewhat arbitrary, but one reasonable alternative is

1

(w

1

; w

2

; d

1

; d

2

) =

500

H

2

exp

�

�

w

1

� w

2

0:7

�

2

�

�

��(d

1

; d

2

)

9

�

2

!

;

where ��(d

1

; d

2

) is the angle between d

1

and d

2

in radians.

- 23 -

3.7. Vertical and Horizontal Alignment

It is relatively simple to avoid misalignment problems such as that shown in Figure 12 when

using outlines that are adjusted to the pixel grid. All that is required is to use the information

derived in Section 3.3 for determining which points on the character outline are critical for vertical

and horizontal position. In the example of Figure 12, both A and B may be recognized as having

important x coordinates since they are both integer adjustment points with integer-constrained

x coordinates.

Although it is possible to use virtually any criteria to decide which pairs of integer adjustment

points need to have their relative x or y coordinates constrained, the general idea is that two integer

adjustment points need to have their relative x coordinates controlled if the following conditions

hold: they have to be given integer x coordinates; and their x coordinates are only about one or two

pixel units apart on the original contours. This is easily done by including a distortion measure

p

2

(�

m

� �

n

) (X

m

�

�

�

m

+

�

�

n

�X

n

) (18)

for each pair of integer adjustment points (�

m

; �

m

) and (�

n

; �

n

) where x coordinates are given integer

constraints. Similarly a distortion measure

p

2

(�

m

� �

n

) (Y

m

� ��

m

+ ��

n

� Y

n

) (19)

is used when y coordinates are given integer constraints. Note that (

�

�

m

; ��

m

) and (X

m

; Y

m

) are the

scaled and adjusted versions of (�

m

; �

m

) and

2

is a weighting function something like

2

(x) =

100

H

2

exp

�

�

�

x

0:03H

�

2

�

:

4. The Font-Wide Distortion Function

Since some features such as baseline, x-height, and the width of main vertical stems should be

uniform across the font as a whole, it is desirable to have a separate distortion function to allow the

parameters to be chosen once and used for every character in the font.

An important property of the parameters that need font-wide control is that they all have

integer values. For instance, the baseline, the x-height, and all the other heights marked in Figure 13

occur at integer adjustment points that are to be given integer y-values. Additionally, integer values

are also needed to describe width features such as the width of vertical stems.

This suggests that the font-wide parameters can be described by integer-valued variables P

1

,

P

2

, . . ., that can be chosen by minimizing a distortion function of the form

T

2

1

+ T

2

2

+ T

2

3

+ � � � ;

where each T

i

is is a linear expression involving P

1

, P

2

, P

3

, For instance, if P

1

is the cap height

and P

2

is the ascender height, there might be a font-wide distortion measure T

17

= P

1

�P

2

+��

2

���

1

,

where ��

1

and ��

2

represent the desired values of P

1

and P

2

given as a�ne functions of the scale factor.

Since the P -variables P

1

, P

2

, . . . represent features that are controlled by the I-variables for the

characters involved, it makes sense to introduce the P -variables into the single-character distortion

function by substituting combinations of P -variables for I-variables. In the case of Figure 30, this

could be done by writing down the relations

I

10

� I

7

= P

3

= width of curved horizontal strokes

I

4

� I

2

= P

4

= width of straight horizontal strokes

I

12

� I

14

= P

4

= width of straight horizontal strokes

I

10

= P

1

= cap height

I

1

= P

5

= baseline height (20)

- 24 -

and solving them to obtain the substitutions

I

1

= P

5

I

4

= I

2

+ P

4

I

7

= P

1

� P

3

I

10

= P

1

I

12

= I

14

+ P

4

:

3:1

1:1 2:1

4:1

4:2

I

1

I

2

I

3

I

4

I

6

I

7

I

8

I

9

I

10

I

11

I

12

I

13

I

14

I

16

Figure 30: A character outline with medial axis lines and integer adjustment points marked as

in Figure 27. Square brackets mark integer adjustment intervals and integer o�set intervals, and

dashed lines connect the integer adjustment points to symbols that indicate which coordinate is to

be adjusted. These symbols are labeled with the corresponding I-variables.

In addition to enforcing font-wide uniformity, these substitutions can also allow the font-

wide distortion function to be in
uenced by the ideas discussed in Section 3. In Figure 30 for

example, it may be possible to get a lower bound on the single-character distortion that depends on

I

10

�I

7

+I

2

�I

4

. Since I

10

�I

7

+I

2

�I

4

= P

3

�P

4

, this could lead to a font-wide distortion measure

involving P

3

� P

4

. In fact it will be shown in Section 5 that distortion measures involving only

font-wide parameters are a natural consequence of reducing single-character distortion functions to

a form that is easily minimized. The resulting distortion measures can only be used at the font-wide

level.

The selection of other font-wide distortion measures reduces to controlling the relative values

of similar height and width parameters using ideas adapted from Sections 3.6 and 3.7. In other

words, if P

i

and P

j

represent a pair of heights or widths with ideal values �

i

and �

j

, there is a

distortion measure

(P

i

� P

j

+ ��

j

� ��

i

)

q

3

(�

i

; �

j

); (21)

- 25 -

where the weighting function

3

depends on whether P

i

and P

j

are heights or widths. A possible

weighting function for heights is

3

(�

1

; �

2

) =

570A

tot

H

3

exp

�30

�

�

i

� �

j

H

�

2

!

;

where A

tot

is the total arc length of all medial axes in the entire font.

4

For widths, it may be better

to use

3

(�

1

; �

2

) =

0:057A

tot

1

4

(�

i

+ �

j

)

2

H

exp

�12

�

�

i

� �

j

�

i

+ �

j

�

2

!

:

In spite of the complexity of the suggested weighting functions, the hard part of the process

is not creating the distortion measures, but deciding what font-wide parameters are needed among

all the integer-constrained heights and widths. The problems of selecting font-wide parameters

and deciding which heights and widths correspond to which parameters are covered in Sections 4.1

and 4.2.

4.1. Height Clustering

As the heading implies, the selection of critical heights to control on a font-wide basis is

essentially a clustering problem. If the critical heights shown in Figure 13 are to be recognized

automatically without speci�c knowledge about letter shapes, it must be done by noting that for

several character shapes, some integer adjustment points on the original outlines have almost the

same y coordinates.

Suppose we scan a set of character outlines and �nd all the y coordinate integer adjustment

points that occur at important horizontal regions. In other words, use the techniques of Section 3.3

to �nd all the y coordinate integer adjustment points except those of the type shown in Figures 22

and 23. Each integer adjustment point P is then assigned a weight

4

(P) according to a heuristic

function

4

. (A prototype implementation used the range of x coordinates covered by the integer

in
uence zone for P plus a constant on the order of ten percent of the cap height).

The goal of the clustering process is to �nd small ranges of heights that maximize the total

weight of all adjustment points in the height interval. This would be quite di�cult if the size of

height intervals were not known in advance, but the present application is compatible with a �xed

value on the order of half a pixel unit. Some of the problems that can arise when the height interval

size is not known in advance can be seen from the work of Pavlidis and Van Wyk. [15] The half-pixel

limit for our application implies a height interval size of

3

� 0:5=�

hi

, where �

hi

is an upper limit

on the factor � by which the outlines are to be scaled.

5

With this setting of the interval size, the

total weight as a function of height for a Times Roman font is as shown in Figure 31. The reason

for showing separately the weight of integer adjustment points with white space above and white

space below is to simplify the process of separating clusters.

Even with no further processing, Figure 31 shows a number of sharp peaks that could be used

to pick height clusters. A closer examination reveals that many of the peaks correspond to heights

marked in Figure 13 but other peaks appear to be extraneous. The apparently extraneous peaks

on the upper graph between 0.5 and 1.6 are particularly noticeable. These correspond to the upper

edges of strokes whose lower edge is at the baseline height or the overshoot height (corresponding

to the large peaks at 0 and �0:3 on the lower graph). Similarly, the peaks between 16.1 and 16.7

in the lower graph are due to the lower edges of strokes whose upper edges are at yhe cap height or

the ascender height (corresponding to the twin peaks at 17.2 and 17.5 in the upper graph).

4

Typically A

tot

� 345H for fonts like Helvetica or Times Roman, but a complete set of Japanese Kanji has A

tot

�

68000H

5

This assumes that the original outlines are drafted carefully enough so that critical heights are within

3

of their

intended values.

- 26 -

0

100

200

300

400

500

0

100

200

300

400

�5

0 5 10 15 20

Figure 31: The lower graph is based on the weight of integer adjustment points with white space

below, and the upper graph is based on points with white space above. Each shows the total weight

in a height interval versus the height at the center of the interval. The data come from outlines for

a Times Roman font with �

hi

= 4.

- 27 -

It would be nice to eliminate the extraneous peaks between 16.1 and 16.7 after picking clusters

for the integer adjustment points that contribute to the main peaks at 17.2 and 17.5. This amounts

to looking for \partners" of the integer adjustment points that go into a new cluster, and removing

the e�ect of the partners from the weight totals for other height intervals. In fact, it is not very

hard to �nd these partners because the process of �nding integer adjustment intervals as outlined in

Section 3.4 involves pairing up such integer adjustment points. For example, each integer adjustment

interval in Figure 30 is shown with arrows pointing to the two integer adjustment points that were

used to create it.

After using this technique to remove the e�ects of partners of integer adjustment points that

contribute to the six highest peaks in Figure 31, the remaining weight for each height interval is as

shown in Figure 32. This makes the main peaks predominate so clearly that the rest of the data

look like noise, indicating that there is probably no need to look for more clusters.

0

100

200

300

400

500

0

100

200

300

400

�5

0 5 10 15 20

Figure 32: Two graphs of the total weight in a height interval versus the height at the center of the

interval. The lower graph is based on integer adjustment points with white space below, and the

upper graph uses only integer adjustment points with white space above. Each graph excludes the

weight of integer adjustment points with partners that contribute to the six highest peaks.

One way to recognize this situation where there are no more clusters worth considering is to

remove the main peaks chosen so far, and estimate the number of disjoint height intervals where the

weight is within some �xed percentage of the weight of the heaviest height interval. For instance,

a successful prototype was designed to stop looking for height clusters when more than �fteen are

found or when

4

� 10 height intervals each have total weight at least

5

= 0:65 times the weight of

the heaviest interval.

Thus the overall height clustering algorithm is as follows:

1. Let S be the set of all y coordinate integer adjustment points for which the distortion measures

are given by (6); i.e., omit integer adjustment points of the types shown in Figures 22 and 23.

2. Assign each point P 2 S a weight equal

4

(P).

- 28 -

3. Divide the points of S into two subsets S

1

and S

2

according to whether or not there is white

space below them.

4. For each subset S

i

and each h that is the height of a point in S

i

, add the weights of the points

in S

i

whose height is in the interval [h; h+

3

].

5. Scan the height intervals for S

1

and S

2

in order of increasing height and count the number of

non-overlapping intervals with weight at least

5

times the weight of the heaviest interval.

6. Stop if the count is more than

4

. Otherwise output the heaviest height interval by creating a

new P -variable and using it for all the integer adjustment points that went into that interval.

7. Remove from all height intervals the integer adjustment points just outputted and their part-

ners. Then go back to step 5.

4.2. Width Clustering

Width clustering is very much like height clustering, except that it deals with features where

there are integer constraints on the stroke width. Like height clustering, width clustering involves

enforcing uniformity by introducing P -variables for each cluster. It di�ers from height clustering in

that there are two types of integer-width features to consider.

The simplest type of width feature arises from integer adjustment intervals. These are created

according to the rules given in Section 3.4 by �nding pairs of integer adjustment points that lie on

what can be called opposite sides of the same stroke. For example, Figure 30 shows four integer

adjustment intervals numbered 1.1, 2.1, 4.1, and 4.2, each of which is associated with a pair of

integer adjustment intervals as indicated by arrows. Intervals 1.1, 2.1, and 4.2 are associated with

y coordinate integer adjustment points and have stroke width controlled by the vertical component

of the separation between the associated integer adjustment points. In the case of interval 4.1 where

the associated integer adjustment points control the y � x component, the width parameter is the

component of their separation in the direction (�1; 1).

Since horizontal and vertical stroke widths often need to be adjusted separately, it seems safe

to group integer adjustment intervals according to the direction in which the width parameter is

measured, then do separate clustering for each group as was done for the white-above versus white

below distinction in Section 4.1. This allows the algorithm described in Section 4.1 to be used with

the width parameter instead of the height. The only other change is that the weight is computed by

estimating the arc length of the medial axis of the integer adjustment interval instead of �nding the

size of the integer in
uence zone. This produces an assignment of P -variables to integer adjustment

intervals, at which point the P -variables are set equal to the di�erence between the I-variables for

the appropriate pair of integer adjustment points as in (20).

Width clustering should also be done for integer o�set intervals, but these are somewhat more

di�cult to work with because they must be grouped according to both width and direction. A

further complication is the requirement that clusters must be based on width and direction ranges

of non-uniform size in order to obey (10) as explained in Section 3.4.

One way to deal with these problems is to relax the constraints slightly and introduce a

mapping (�; w) 7! (u; v) such that a rectangle in (�; w) space of the maximum size allowed by (10)

roughly corresponds to a

1

by

2

rectangle in (u; v) space. In other words, u should change by

about

1

when � changes by

1

=w for �xed w, and a change in w of

2

=

p

w should change v by

approximately

2

. This suggests

@u

@�

= w and

@v

@w

=

p

�, leading to a mapping like

(u; v) =

�

(� � �

0

)w;

2

3

w

3=2

�

: (22)

- 29 -

With this mapping, it is reasonable to subdivide (u; v) space into

1

=3 by

2

=3 rectangular

buckets and allow any three-by-three block of such buckets to form a cluster. In other words, each

integer o�set interval is assigned a width and a direction angle and is placed into the appropriate

bucket. The clustering process then looks at all possible three-by-three blocks of such buckets and

computes the total weight of the integer o�set intervals in each block. Figure 33 shows the regions

in (�; w) space assigned to typical buckets and blocks of buckets. Direction angles near � = 0

�

and � = 90

�

can safely be excluded because integer o�sets intervals are intended only for diagonal

strokes. This allows (�; w) pairs with 90

�

< � < 180

�

to be mapped separately with �

0

= 135

�

.

0

1

2

3

4

0

�

15

�

30

�

45

�

60

�

75

�

90

�

Figure 33: Square buckets of size

1

3

in (u; v) space mapped into (�; w) space by using

1

=

2

= 1

and �

0

= 45

�

in (22). Potential width clusters for integer o�set intervals are three-by-three blocks

such as the one outlined in bold.

Besides creating the need for the mapping from (u; v) space, integer o�sets require a few other

changes to the clustering algorithm: Since integer o�set intervals require two I-variables, clusters

of them require two P -variables. Another change is that the termination condition needs to be

modi�ed to account for the large numbers of empty buckets and the lack of a linear ordering when

buckets are laid out in a two dimensional space. This can be done by ordering the buckets according

to the total weight in the blocks they belong to. This is implemented in the following integer o�set

clustering algorithm:

1. Scan the font to �nd all integer o�set intervals, assigning each a weight equal to the arc length

along its medial axis.

2. Find the width and direction angle for each integer o�set interval and place it in the bucket

corresponding to the (u; v) obtained from (22).

3. Each bucket belongs to up to nine three-by-three blocks of buckets. For each non-empty

bucket B, let B(B) be the one of the nine blocks having the greatest total weight and call this

weight W (B(B)).

4. Find B

1

so as to maximizeW (B(B

1

)). Then add up the weight ratios W (B)=W (B(B)) for all

B with W (B(B)) at least 65% of W (B(B

1

)), and stop if the sum is at least ten.

5. Output B(B

1

) by creating two new P -variables and using them in place of the I-variables for

each integer o�set interval in B(B

1

). Then remove these integer o�set intervals from their

buckets and go back to step 3.

5. The Encoding

The distortion functions described in Sections 3 and 4 have been carefully chosen to be as easy

as possible to minimize. Both can be described as a rectangular sparse matrix A times a column

vector V that contains variables and constant parameters. The problem is to choose values for the

variable entries in V so as to minimize the squared Euclidean norm

kAV k

2

: (23)

- 30 -

We want to do as much of the work as possible in advance so that we create an intermediate form

that makes it easy to �nd the rest of V once the scale factor � is given.

In the case of Section 4, V contains the integer-valued P -variables followed by the constant

one and a scale factor �. Since the object is to �nd good values for the P -variables, it is convenient

to think of V as being partitioned into a vector V

P

of P -variables and a vector V

1

that contains the

two constant parameters.

It is a least-squares problem to choose V

P

so as to minimize (23) for a �xed value of �.

Without the integer constraints on the P -variables, it would be easy to �nd a solution by �nding the

QR decompositionA = QR where Q is orthogonal and R is upper triangular. Then kAV k

2

= kRV k

2

and some elements of the vector RV are zero or determined by the �xed values of �.

Speci�cally, if A is M by N

V

and V has N

V

elements, then the lastM �N

V

rows of R are all

zeros and elements N

V

� 1 and N

V

of RV are �xed. Thus the total distortion can be minimized by

considering only the �rst N

V

� 2 rows of R as shown in Figure 34. With the block structure shown

in the �gure, the problem reduces to �nding an integer vector V

P

so as to minimize

kR

PP

V

P

+R

P1

V

1

k (24)

R

PP

R

P1

0

V

P

V

1

Figure 34: Block structure for the reduced problem

Van Emde Boas has shown that this problem is NP -complete [17], but good approximate

solutions can often be found using the Lov�asz lattice basis reduction algorithm.[13] (See also Babai [3]

for more details and an analysis of the approximation algorithm). When applied to R

PP

, the

algorithm �nds a transformed matrix R

PP

T such that the matrices T and T

�1

both have integer

entries and the columns of R

PP

T are in some sense \more orthogonal" those of R

PP

. (See [13] for

details). The point is that a straight-forward rounding process is likely to do a better job of �nding

�nd an integer vector

�

V

P

that makes

(R

PP

T)

�

V

P

� �R

P1

V

1

than the same process would do when choosing an integer vector V

P

to make R

PP

V

P

approximate

the same right-hand side. Thus we can �nd

�

V

P

and then use the relationship V

P

= T

�1

�

V

P

to �nd

V

P

.

This straight-forward rounding process involves choosing the entries of

�

V

P

one at a time using

knowledge about previously chosen entries to compute the ideal values for the other entries. A

good way to do this is �rst to use the QR factorization algorithm to �nd an orthogonal matrix

�

Q

and an upper triangular matrix

�

R so that R

PP

T =

�

Q

�

R. The remaining approximation problem is

�

R

�

V

P

� Z, where

Z = �

�

Q

T

R

P1

V

1

: (25)

This be solved by via a slight variation on the standard back substitution algorithm where each

element of

�

V

P

is rounded to an integer as soon as it is computed as shown in Figure 35.

Figure 36 gives the overall algorithm for �nding low-distortion P -variable values given � and

the matrix A that de�nes the distortion measures. The running time for steps 1, 3, and 4 is

dominated by the O(MN

2

V

) time to for the QR-factorization of A. This �ne when M is not too

- 31 -

for k N

V

� 2; N

V

� 3; . . . ; 1

do

�

V

P

[k] round

�

1

�

R[k; k]

�

Z[k]�

N

V

�2

X

j=k+1

�

R[k; j]

�

V

P

[k]

��

Figure 35: How to use back substitution with rounding to �nd an N

I

-element integer vector

�

V

P

so

that

�

R

�

V

P

� Z.

large, but it is faster in practice to �nd an alternative that takes full advantage of the fact that A has

only a constant number of nonzeros per row. This can be done by computing A

T

A and then taking

the Cholesky factorization, resulting in an O(M + N

3

V

) time bound.

6

One of these alternatives is

likely to be fast enough so that the overall running time is dominated the Lov�asz basis reduction

in Step 2. Fortunately, this algorithm is reasonably fast for practical values of the problem size N

V

even though the time bound given in [13] is worse than O(N

5

V

).

1. Find the matrix R from the QR-factorization of A.

2. Apply the Lov�asz basis reduction algorithm to the subblock R

PP

, keeping track of the trans-

formation matrix T used to create the reduced basis matrix R

PP

T .

3. Find the QR factorization R

PP

T =

�

Q

�

R and use it to evaluate (25).

4. Use back substitution with rounding to �nd an integer vector

�

V

P

where

�

R

�

V

P

� Z as shown in

Figure 35.

5. Use the relation V

P

= T

�1

�

V

P

to �nd V

P

.

Figure 36: An algorithm for �nding P -variables that make the font-wide distortion small

A noteworthy feature of the distortion minimization algorithm is that the time consuming

steps involving QR factorization and Lov�asz basis reduction are all done before the scale factor � is

needed in steps 4 and 5. Section 5.1 shows how to take advantage of this by producing an output �le

that contains encoded instructions for performing steps 4 and 5 once � is known. Evaluating these

encoded instructions produces a vector V

P

of low-distortion P -variables that can be substituted into

the single-character distortion function of Section 3.

Section 5.2 then shows how to use the transformed P -variables in the single-character distortion

function and create a similar set of encoded instructions for �nding low-distortion adjusted character

outlines once � is known. Both this character encoding and the font-wide version are substantially

more e�cient when their input is modi�ed to increase sparsity as explained in Section 5.3. The

overall process of producing both kinds of encoding are then summarized in Section 5.4.

5.1. The Encoded Form for the Font-Wide Problem

Once the the scale factor � is known, the last two steps of the algorithm in Figure 36 can be

reduced to evaluating linear combinations of known quantities and rounding some of the results to

integers. Thus encoded instructions for minimizing the font-wide distortion amount to a sequence

of linear combinations that need to be represented as compactly as possible. They are expressed in

terms of the transformed P -variables that are elements of

�

V

P

. All the linear combinations de�ne

transformed P -variables in terms of other such variables. These are the expressions that get rounded

in the second line of Figure 35.

6

This method is more prone to numerical error than QR factorization, but no di�culties were encountered in a 64-bit

oating-point implementation.

- 32 -

The simplest way to encode linear combinations is just by listing the coe�cients in some �xed

order. After investigating that, we can see about saving space by not representing zero coe�cients

explicitly. The goal is to get a good estimate of the space required without going into the details

of exactly what encoding to use. The �rst step is to take a closer look at the coe�cients and see

exactly how many of them need to be encoded.

For the expression that gets rounded in the second line of Figure 35, there are N

V

� 2 � k

coe�cients of the form

�

R[k; j]

�

R[k; k]

plus whatever coe�cents arise from

Z[k]

�

R[k; k]

:

Since (25) de�nes the vector Z to be linear in V

1

, the element Z[k] is really a function of V

1

with

one coe�cient for each of the two entries in V

1

. This makes N

V

� k coe�cients in the expression to

be rounded in the second line of Figure 35. Summing this over the indicated values of k produces a

total of

N

V

�2

X

k=1

N

V

� k = N

V

(N

V

� 2)�

(N

V

� 1)(N

V

� 2)

2

coe�cients to be encoded in Step 4 of Figure 36.

Step 5 of the algorithm in Figure 35 can be avoided if we are willing to settle for

�

V

P

instead

of V

P

, but this optimization turns out to be of marginal importance. The N

V

�2 linear combinations

needed to evaluate T

�1

�

V

P

have a total of (N

V

� 2)

2

coe�cients, namely the entries of T

�1

. Thus

the entire encoding requires

(N

V

� 2)

2

+

�

N

V

�

N

V

� 1

2

�

=

3

2

(N

V

� 2)(N

V

� 1) (26)

coe�cients.

Consider an example based on a 121-character Times Roman font with original outlines de-

signed for 6-point at 300 dots/inch. With �

hi

= 4, the range of sizes covered is 6 to 24 points. This

font requred 13 P -variables so that N

V

= 15. For this example, (26) says that 273 coe�cients are

required to encode the �nal steps of Figure 36. The coe�cients that come from the T

�1

matrix are

small integers, and the coe�cients from the expression in Figure 35 are real numbers most of which

have absolute value less than or equal to one. These coe�cients need to be represented to enough

precision so that the resulting error in each linear combination is much less than one.

While the space required to encode 273 coe�cients of modest precision is not excessive, it is

instructive to consider the savings obtainable from the sparseness of the coe�cient vectors. In the

Times Roman example, there are 104 real-valued coe�cients from Step 4 of Figure 36, and 61 of

them are nonzero. A more signi�cant saving is obtained with the T

�1

matrix from Step 5: only 23

of the 169 coe�cients are nonzero. The actual savings will not be quite as large as these statistics

indicate since additional information must be encoded to indicate which coe�cients are nonzero.

Even so, the savings from using sparseness are signi�cant and they will be more so when we consider

how to encoding rules for �nding low-distortion character outlines.

5.2. The Encoded Form of a Character

The font-wide encoding discussed in Section 5.1 can be used to �nd good values for the P -

variables once the scale parameter is known, but this leaves the problem of �nding low-distortion

adjusted character outlines. This is very much like the font-wide problem in that the distortion can

also be written

AV

2

, where A is a sparse, rectangular matrix that de�nes the distortion function.

- 33 -

In this case, the vector V that gives the variables and constant parameters is signi�cantly

more complicated than corresponding vector for the font-wide problem: it contains the F -variables

introduced in Section 3.5 followed by the X and Y -variables that describe the adjusted outlines, the

integer-valued I-variables, the P -variables that are �xed in advance to ensure font-wide uniformity,

and the constant one and a scale factor �. As shown in Figure 37, the font-wide vector V is the tail

end of the vector V used in this section.

single

character V

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

F variables

X and Y variables

I-variables

P -variables

1

�

9

=

;

font-wide V

Figure 37: The structure of the vector V

Choosing V to minimize the distortion is a least-squares problem complicated by the constraint

that the I-variables must have integer values. The basic approach is to �nd an upper-triangular

matrix R such that kAV k

2

= kRV k

2

for all V . As in the font-wide problem, this can be done by

�nding the QR factorization of A or by computing A

T

A and then �nding the Cholesky factorization

A

T

A = R

T

R, where the latter method is faster because A is very sparse and has many more rows

than columns.

Since there is no need to consider elements of the vector RV that are �xed once the scale

parameter � is known, we can restrict our attention to the �rst N

F

+ 2N

X

+ N

I

+ N

P

rows of R,

where N

F

, N

X

, N

I

, and N

P

are the numbers of F , X, I, and P -variables respectively. Thus the

remaining problem has the block structure shown in Figure 38 where V

P

and V

1

are the known parts

of V and V

F

, V

X

, and V

I

are to be chosen to make kRV k

2

small.

R

FF

R

FX

R

FI

R

FP

R

F1

R

XX

R

XI

R

XP

R

X1

R

II

R

IP

R

I1

R

PP

R

P1

0

V

F

V

X

V

I

V

P

V

1

Figure 38: Block structure for the problem remaining after choosing � and the P -variables. The

vector of F -variables in V is V

F

; the X and Y -variables are in V

X

; V

I

and V

P

contain the I-variables

and P -variables respectively; and V

1

= (1 �)

T

.

Once V

P

is known, the R

PP

V

P

+R

P1

V

1

is �xed and the minimization of kRV k

2

can be based

on the rest of RV . However, it is relevant to the font-wide problem that kR

PP

V

P

+R

P1

V

1

k

2

is a

lower bound for kRV k

2

. Adding this lower bound to the font-wide distortion function as suggested

in Section 4 involves simply letting the elements of R

PP

V

P

+ R

P1

V

1

written as expressions in P -

variables be font-wide distortion measures.

The problem of trying to minimize kRV k

2

is further simpli�ed by noting that with the block

structure shown in Figure 38, the variables in V

F

and V

X

are not constrained to be integers and

- 34 -

hence can be chosen so that

V

F

= �R

�1

FF

(R

FX

V

X

+ R

FI

V

I

+ R

FP

V

P

+R

F1

V

1

)

V

X

= �R

�1

XX

(R

XI

V

I

+R

XP

V

P

+ R

X1

V

1

);

This zeros out the �rst N

F

+ 2N

X

rows of the product RV leaving only the problem of �nding an

integer vector V

I

so as to try to minimize

kR

II

V

I

+R

IP

V

P

+R

I1

V

1

k

This is essentially the same as (24) except that the matrix is R

II

instead of R

PP

, the variable

vector is V

I

instead of V

P

, and the constant vector is R

IP

V

P

+ R

I1

V

1

instead of R

P1

V

1

. Thus the

methods used to make (24) small can be applied here. The �rst step is to use Lov�asz basis reduction

to �nd a transformed version R

II

T ofR

II

and substitute T

�1

�

V

I

for V

I

. Next we use QR factorization

to �nd an upper triangular matrix

�

R so that R

II

T =

�

Q

�

R. The remaining approximation problem

can then be written

�

R

�

V

I

� Z, where

Z = �

�

Q

T

(R

IP

V

P

+ R

I1

V

1

): (27)

This allows

�

V

I

to be found by back substitution with rounding as shown in Figure 35. The adjusted

character outlines are then obtained by evaluating

V

X

= �R

�1

XX

(R

XI

T

�1

�

V

I

+R

XP

V

P

+R

X1

V

1

); (28)

thus concluding the distortion minimization algorithm that is summarized in Figure 39

1. Find the matrix R from the QR-factorization of A.

2. Apply the Lov�asz basis reduction algorithm to the subblock R

II

, keeping track of the trans-

formation matrix T used to create the reduced basis matrix R

II

T .

3. Find the QR factorization R

II

T =

�

Q

�

R and use it to evaluate (27).

4. Use back substitution with rounding to �nd an integer vector

�

V

I

where

�

R

�

V

I

� Z as shown in

Figure 35, except with

�

V

I

and N

I

instead of

�

V

P

and N

V

� 2.

5. Use (28) to evaluate V

X

and obtain the X and Y -variables that de�ne the adjusted contours.

Figure 39: An algorithm for �nding low-distortion character outlines for the distortion function

determined by the matrix A.

Since � and the P -variables are not needed until step 4 of Figure 39, it makes sense to produce

encoded instructions for completing Steps 4 and 5 once � and the P -variables are chosen. This

encoding problem is very much like the font-wide encoding discussed in Section 5.1, except that the

linear combinations to be encoded involve

�

V

I

, V

P

, and V

1

instead of just V

P

and V

1

.

Since (27) makes the Z vector linear in V

P

and V

1

, the element Z[k] in the second line of

Figure 35 has to be encoded as a linear combination of V

P

and V

1

. Using N

I

instead of N

V

� 2 in

Figure 35 gives N

I

� k terms in the summation for a total of N

P

+ 2 + N

I

� k coe�cients in the

linear combination to be encoded. Taking into account the loop in Figure 35 gives a total of

N

I

X

k=1

N

P

+ 2 + N

I

� k = N

I

(N

I

+ N

P

+ 2)�

N

I

(N

I

+ 1)

2

coe�cients to encode in Step 4 of Figure 39.

- 35 -

To count the coe�cients to encode for Step 5 of Figure 39, note that (28) makes each of the

2N

X

elements of V

X

linear in

�

V

I

, V

P

, and V

1

. This gives N

I

+N

P

+2 coe�cients to encode for each

element of V

X

. Adding the coe�cient count from Step 4 gives the total

(2N

X

+ N

I

)(N

I

+N

P

+ 2)�

N

I

(N

I

+ 1)

2

: (29)

Once all these coe�cients have been encoded, they give an intermediate form that can be

used to �nd the low-distortion character outlines whose vertices are given by V

X

. To do this, use

the font-wide encoding discussed in Section 5.1 to �nd V

P

, then use the coe�cients from Step 4 of

Figure 39 to evaluate the linear combinations whose rounded values give the elements of

�

V

I

. The

remaining coe�cients give linear combinations for the elements of V

X

. A small amount of additional

information is then needed to determine which elements of V

X

belong to which character outlines.

Consider an example taken from a set of Times Roman outlines with a cap height of 17.5 and

�

hi

= 4. (This size is appropriate for a 6-point font on a 300 dot/inch device). The \a" had N

X

= 80

vertices and the distortion measures used N

I

= 14 I-variables and N

P

= 13 P -variables. Of the

4941 coe�cients accounted for by (29), only 1935 turned out to be nonzero. For all 121 characters

in the font, the total number of coe�cients was 591,922 or which 217,798 or 37% were nonzero.

Clearly, there is much to be gained by encoding only the nonzero coe�cients.

This provides the motivation for the next section where we see how to adjust the coe�cient

vectors so that they have signi�cantly fewer nonzero elements yet produce almost the same low-

distortion character outlines. Applying these techniques in the above example reduces the number

of nonzero coe�cients from 217,798 to 129,316. The actual number of bytes occupied by the encoded

form of these coe�cients depends on the encoding scheme, but a prototype implementationmanaged

to use only 177,465 bytes for the whole font. This also includes the auxiliary information necessary

to determine which linear combinations give vertex coordinates for adjusted character outlines.

It is instructive to compare the 177,465 bytes for the encoded form of the font with what

it would take to store the original character outlines. There are a total of 7804 vertices in all the

character outlines, and each vertex coordinate is a nine-bit integer. Thus the total space requirement

for the original outlines is about 17,600 eight-bit bytes, and the cost of storing encoded instructions

for generating low-distortion character outlines is approximately a factor of ten. Hint-based schemes

such as the Adobe Type 1 font format [1] are not as expensive but they are also not as
exible and

they are di�cult to generate automatically. Since hint-based schemes generally do not use polygonal

character outlines, further discussion of their relative space e�ciency is delayed until Section 6.

5.3. Increasing the Sparsity

Consider the linear combinations that go into the encoded forms described in Sections 5.1

and 5.2. If it were not for the fact that some of the encoded linear combinations are to have their

results rounded to integers, all of the linear combinations could be reduced to expressions of the form

a�+b for real numbers a and b, where � is the scale factor. This would mean that all of the variables

in the vector V could be expressed in the form a�+b. In fact, the variables can be so expressed only

approximately, but there can still be times when it is pro�table to use a linear expression in � instead

of referring to a variable. The purpose of this section is to use this idea to reduce the number of

nonzero terms in the linear combinations that need to be encoded. As mentioned above, the savings

are signi�cant, reducing the number of nonzero coe�cients in the encoding for our Times Roman

example from 217,798 to 129,316.

Suppose a linear combination contains the terms

c

i

P

i

+ c

a

� + c

b

; (30)

where P

i

is known to be in an interval bounded by a� + b� d. The upper bound U

i

for variable P

i

is the maximum of a�+ b+ d for 1 � � � �

hi

, where �

hi

is an upper bound on �. The coe�cient c

i

- 36 -

cannot be treated as zero unless U

i

jc

i

j is less than the error bound �

1

, but it may be that d jc

i

j is

su�ciently small while U

i

jc

i

j is not. In this case (30) can be simpli�ed to c

0

a

�+c

0

b

, where c

0

a

= c

a

+ac

i

and c

0

b

= c

b

+ bc

i

.

Thus the strategy is to obtain an expression of the form a�+b�d for each variable used in the

linear combinations to be encoded, and use the uncertainty d to decide when terms can be removed

by adjusting the � coe�cients and constant terms. The simpli�ed linear combinations can then be

used in the encoded forms discussed in Sections 5.1 and 5.2, thus reducing their sizes considerably.

The reduction from 217,798 nonzeros to 129,316 for the Times Roman example was achieved with

the error bound �

1

= 0:05

The task of �nding an expression of the form a� + b � d for each variable reduces to de�ning

arithmetic operations on such � expressions. Addition and scalar multiplication are easy to de�ne:

(a

1

� + b

1

� d

1

) + (a

2

� + b

2

� d

2

) = (a

1

+ a

2

)� + (b

1

+ b

2

)� (d

1

+ d

2

);

c(a� + b� d) = (ac)� + bc� cd:

The only other operation that is needed is rounding to the nearest integer. This could be implemented

by just adding

1

2

to the uncertainty d, but the pseudo-code in Figure 40 shows how to get better

results by taking advantage of the fact that � is known to be in the range 1 . . .�

hi

.

x

lo

 a+ b;

x

hi

 a�

hi

+ b;

i

lo

 round(x

lo

� d);

i

hi

 round(x

hi

+ d);

if i

hi

= i

lo

f a 0; d 0; b i

hi

g

else d min(d+

1

2

; max (i

hi

� x

lo

; x

hi

� i

lo

));

Figure 40: The algorithm for rounding a � expression a� + b � d to the nearest integer.

This completes the set of operations necessary to perform Steps 4 and 5 of Figure 36 or

Figure 39 by using arithmetic on � expressions. It is then a simple matter to take each linear

combination and �nd the uncertainty d

i

in the � expression for each term of the form c

i

P

i

or c

i

I

i

.

Whenever this is less than the tolerance �

1

, we can set c

i

 0 and add a

i

to the � coe�cient and b

i

to the constant term.

5.4. Summary of the Encoding Process

It is now time to summarize the steps required to go from the original outlines to the encoded

output. This involves a number of di�erent types of intermediate results that are generated by one

process and used by another. This is diagramed in Figure 41 with the processes shown as boxes and

the
ow of intermediate results indicated by arrows going from one box to another. Many of the

processes are adequately identi�ed by the names shown in the boxes, but further information can

be found by referring the indicated sections.

Since each process needs its input to be computed before it can run, the arrows represent

constraints on the order in which the various processes can be run. In particular, clustering and

P -variable assignment cannot be done until after scanning all of the character outlines for the whole

font. Since the resulting P -variable substitutions are needed before any of the character encodings

can be found, there clearly have to be multiple passes over the input data. Some of the intermediate

results can be saved away, but the large, dense R matrices are best recomputed. This suggests the

following algorithm for the complete encoding process.

1. For each character, �nd the medial axes, the integer adjustment points, and the integer in
u-

ence zones.

2. Use the resulting integer adjustment data for clustering and P -variable assignment.

- 37 -

Original outlines

Find medial axes x3.2

Find single-character

distortion measures

x3.1, 3.5, 3.6, 3.7

Find integer adjust-

ment points and in-

teger in
uence zones

x3.3, 3.4

QR factorization x5.2

Find character

encoding x5.2,5.3

Clustering and P var-

iable assignment

x4.1, 4.2

font-wide QR

factorization x5

Character

encoding

Find font-wide dis-

tortion measures x4

Find font-wide

encoding x5.2,5.3

Font-wide

encoding

int. adjust-

ment data

integer

adjustment data

P -variable

substitutions

R matrix

font-wide

distortion

measures

� expressions

for P -variables

R matrix

distortion

measures

cluster

data

Figure 41: The
ow of intermediate results when going from outlines to the encoded forms.

- 38 -

3. For each character, �nd the medial axes and combine these with the integer adjustment data

to �nd the single-character distortion measures. As each character is processed, do the QR

factorization and save the font-wide distortion measures.

4. Use the cluster data to �nd font-wide distortion measures and combine these with the font-wide

distortion measures already saved away. Then do the QR factorization and �nd the font-wide

encoding, saving away the � expressions for P -variables used in the encoding.

5. Scan each character again, �nding the medial axes and the distortion measures and doing

the QR factorization as in Step 3. As each character's R matrix is produced, refer to the

� expressions for P -variables and �nd the character encoding.

Once we have the font-wide encoding and all the character encodings, they can be used to

generate low-distortion outlines for any scale factor � between 1 and �

hi

. First, we use the font-

wide encoding to �nd the P -variables, then we use the character encodings to generate the vertex

coordinates for the low-distortion outlines.

The font-wide encoding starts with a sequence of linear combinations involving � and previous

results. The �rst few results are rounded to integers to give transformed P -variables and the �nal

P -variables are given as linear combinations of these. For single-character encodings, the �rst few

linear combinations are rounded to integers to give I-variables which then appear in subsequent

linear combinations whose values give vertex coordinates for the adjusted outlines.

6. Curved Outlines

Since character outlines usually contain smooth curves, they are most naturally and concisely

represented as splines. When given character outlines expressed as smooth curves, it would be nice to

adjust them to �t the pixel grid without having to replace the curves by polygonal approximations.

Since a polygonal outline needs many segments to approximate a curve, signi�cant space savings

generally result from representing the curves directly.

It is di�cult to make direct comparisons, but the polygonal outlines like those in Figure 13

appear to have about six vertices for every B�ezier cubic curve segment in commercially available

outlines given in Adobe Type 1 format. [1] Since B�ezier cubics require three coordinate pairs per curve

segment, the number of coordinates is cut in half. In fact the overall savings would be somewhat

less than this estimate since there are no savings on straight parts of a character outline.

Suppose piecewise cubic outlines do reduce the number of coordinates to encode by a factor of

two. If we can generalize the distortion function and the encoding techniques of Section 5 so they

apply to such outlines, we may be able to cut the size of the encoding in half as well. This would

reduce the encoding space for the Times Roman example of Section 5.2 from 177,465 bytes to about

89,000 bytes. For comparison, an Adobe Type 1 font typically requires about 25,000 bytes.

How do we generalize the distortion function to work with curved outlines? The key ideas are

that a curved outline is determined by a sequence of control points and any point on the outline is

a linear function of the control points. For polygonal outlines, the control points are the vertices

and points on the outline are obtained by interpolating between adjacent vertices. For B�ezier cubic

outlines, every third point is the junction between two cubic curves, and points on the ith cubic

curve are given by the well-known formula

(1� t)

3

(X

3i

; Y

3i

) + 3t(1� t)

2

(X

3i+1

; Y

3i+1

) + 3t

2

(1� t)(X

3i+2

; Y

3i+2

) + t

3

(X

3i+3

; Y

3i+3

): (31)

For each t between zero and one, this gives a point on the curve as a linear function of four control

points.

Equation (31) gives the outlines after they are adjusted to �t the pixel grid. With the naming

scheme from Section 3, the original outlines are similar, but with control points of the form (�

j

; �

j

)

- 39 -

instead of (X

j

; Y

j

). After scaling but before grid adjustment, the control points are (

�

�

j

; ��

j

), where

�

�

j

and ��

j

are a�ne functions of the scale parameter �. The new X

j

and Y

j

values take the place of

the vertex coordinates in the V vector of Section 5, and the distortion measures are required to be

linear functions of V .

Most of the distortion measures given in Section 3 can be written in terms of the B�ezier control

points, although some care is required to keep them linear in V . A potential stumbling block is the

need to generalize the algorithms for feature recognition to work with B�ezier cubic outlines. For

instance, the Voronoi Diagram is needed for identifying strokes and stroke-like features, but it is

impractical to construct the Voronoi for B�ezier cubics due to the tremendous complexity of the

required medial axis curves. (See [18] for a discussion of how to compute Voronoi Diagrams for

another family of curves).

A convenient way to avoid the di�culty in �nding the Voronoi Diagram is to introduce an

apporoximation that provides adequate medial axis information. Since stroke-like features are not

very sensitive to small changes in the outlines, we can just �nd polygonal approximations to the

B�ezier cubics and use the approximations when �nding the Voronoi Diagram and identifying stroke-

like features. This polygonal approximation is used only for intermediate computations, not for the

�nal adjusted outlines.

To �nd a polygonal approximation to the B�ezier cubic (31), divide the t interval into some

number k

i

of equal pieces and take a polygonal line through the points obtained by evaluating (31)

at

t =

0

k

i

;

1

k

i

;

2

k

i

; . . . ;

k

i

k

i

:

The number k

i

may be selected by repeatedly subdividing the t interval until the polygonal line falls

within some fractional-pixel error tolerance of the desired curve. The beauty of this scheme is that

it provides a natural correspondance between points on the polygonal approximation and points on

the true curve. For example, the point

1

3

of the way from the t =

j

k

i

vertex to the t =

j+1

k

i

vertex

corresponds to the value of (31) at

t =

j +

1

3

k

i

:

When the distortion measures at the end of Section 3.2 need points A and B on the true

outlines corresponding to a point P on the medial axis, we can identify A and B on the polygonal

approximation as described in Section 3.2 and then take the corresponding points on the true

outlines. We can then use A and B in (4) to de�ne the stroke width at P .

Now that we have the medial axis information and a way of �nding points A and B on the

character outlines corresponding to a point P on a medial axis, the distortion measures in Sections

3.2, 3.4, 3.6, and 3.7 make sense for Bezier cubic outlines. However, this is not the case for Section 3.1

where the distortion measures (1) require the outlines to be made up of straight line segments. The

easiest way to get around this problem is to recall that the distortion measures were chosen to

contribute to the distortion function a weighting factor �

1

times the integral with respect to arc

length of squared perpendicular displacement. A reasonable approximation to this integral can be

obtained by sampling the curve at k

i

points and having one distortion measure for the perpendicular

displacement of the adjusted outline at each sample point.

Let (X

ij

; Y

ij

) be the value of (31) at

t =

j +

1

2

k

i

; (32)

let (�

ij

; �

ij

) and (

�

�

ij

; ��

ij

) be the corresponding points on the original and scaled outlines; and let

(u

ij

; v

ij

) be the derivative of (31) with respect to t evaluated at (32). Then the distortion measure

for the jth t interval is

v

ij

(X

ij

�

�

�

ij

)� u

ij

(Y

ij

� ��

ij

)

q

u

2

ij

+ v

2

ij

p

�

1

s

ij

; (33)

- 40 -

where s

ij

is the arc length associated with the jth t interval.

The distortion measures (7) in Section 3.3 are designed to give the arc-length integral of squared

horizontal displacement. Doing this for a curved segment of the outline requires subdividing the

curve and giving distortion measures like (33), but with (u

ij

; v

ij

) replaced by (1; 0).

The last area where curved outlines present a problem is in the recognition of approximate

symmetries. Since the algorithm in Section 3.5 is not readily adaptable to curved outlines, it should

be applied to the polygonal approximations instead of the true outlines. The algorithm identi�es

intervals of the polygonal outlines that approximately match under a symmetry mappingM in the

sense that M(P

1

. .Q

1

) almost matches P

2

. .Q

2

. It also �nds a sequence of intermediate points

A

1

, A

2

, A

3

, . . . , on P

1

. .Q

1

and a similar sequence B

1

, B

2

, B

3

, . . . , on P

2

. .Q

2

such that

M(A

j

) � B

j

for all j. We can then �nd one distortion measure for each j involving the points (X

aj

; Y

aj

) and

(X

bj

; Y

bj

) on the adjusted versions of the curved outlines that correspond to points A

j

and B

j

on

the polygonal outlines. Thus the distortion measure that replaces (16) is

p

�

6

s

j

(v

j

;�u

j

) �

�

(X

bj

; Y

bj

) �

�

M(X

aj

; Y

aj

)

�

q

u

2

j

+ v

2

j

;

where s

j

is the arc length associated with B

j

, and (u

j

; v

j

) is a measure of the direction tangent

to the outline curve at B

j

. The mapping

�

M is a version of M where the mapping parameter is

replaced by a newly introduced variable F

k

as de�ned by (15).

This completes out study of how to construct distortion measures for curved outlines. All of

them are a�ne functions of the scale factor, the I, P , and F variables, and the X and Y variables

that give the B�ezier control points for the adjusted outlines. These distortion measures and the

font-wide measures from Section 4 can be encoded and used to �nd low-distortion solutions for the

X and Y variables as described in Section 5. These give the control points that de�ne the desired

low-distortion curved outlines.

7. Conclusions

Numerous examples in preceding sections have shown the bene�ts that can be achieved by

using adjusted outlines to generate bitmap fonts rather than simply scaling the original outlines.

In addition, the encoded forms allow most of the di�cult work to be done in advance so that the

decoding algorithm involves simply reading o� coe�cients and evaluating linear combinations of

previously-computed values.

Just how rapid is the decoding process? A prototype implementation on a VAX 8550 is fast

enough to generate the adjusted contours in only twice the time required to write out the coordinates

to a text �le. It required nine seconds to generate adjusted contours for a 121 character Times Roman

font and one to three seconds to scan convert them, depending on the scale factor. This is in stark

contrast to the ninety minutes of processing time required to generate the 177,000 bytes of encoded

character information for this font.

The 177,000 byte space requirement is not too bad considering that a wide range of sizes can

be generated from a single encoded font description, but it is ten times the 17,600 bytes for the

original outlines. (A single bitmap font of 121 characters with capitals 28 pixels high requires about

6,300 bytes). Encoded outlines for the same font based on B�ezier cubic curves would probably requre

about 90,000 bytes. One way to reduce the space requirement still further would be to modify the

encoding to make use of common subexpressions when giving the linear combinations that describe

coordinates of the adjusted contours.

Another important area where there is room for improvement is in the design of the distortion

function. This heuristic function is the key to the quality of the bitmap fonts that result from decod-

ing and scan conversion. Sections 3 and 4 describe a reasonable prototype for this function, but there

- 41 -

is always room for improvement by adjusting weighting factors and adding new heuristics. Possible

improvements include making better use of P -variables in single-character distortion functions and

improving the treatment of approximate symmetry.

One advantage of the approach adopted here is that there is no need to write programs based

on speci�c knowledge about character shapes. Instead of dealing with high-level concepts such as

serifs, we use distortion measures to state concisely which low-level features should be preserved

after the scan-conversion process. By using powerful techniques such as lattice basis reduction, we

can treat competing distortion measures simultaneously to control complex features that arise from

their interaction. This process is general enough that distortion measures given here are equally

applicable to the Latin alphabet and Japanese Kanji.

References

[1] Adobe Systems Incorporated. Adobe type 1 font format, 1990.

[2] P. G. Apley. Automatic generation of digital typographic images from outline masters. Course

note of ACM SIGGRAPH 88, Course 14: Digital Typography, 1988.

[3] L. Babai. On Lov�asz' lattice reduction and the nearest lattice point problem. Combinatorica,

6(1):1{13, 1986.

[4] H. Blum and R. N. Nagel. Shape description using weighted symmetric axis features. Pattern

Recognition, 10(3):167{180, 1978.

[5] S. Fortune. Sweepline algorithms for voronoi diagrams. Algorithmica, 2:153{174, 1987.

[6] M. Gr�otschel, L. Lov�asz, and A. Shrijver. Relaxation of vertex packing. Journal of Combina-

torial Theory, Series B, 40(3):330{343, 1986.

[7] R. D. Hersch. Character generation under grid constraints. Computer Graphics, 21(4):243{251,

1987.

[8] J. D. Hobby. Digitized Brush Trajectories. PhD thesis, Dept. of Computer Science, Stanford

University, 1985.

[9] J. D. Hobby. Rasterizing curved lines of constant width. Journal of the ACM, 36(2):209{229,

April 1989.

[10] Apple Computer Inc. Technical Introduction to the Macintosh Family. AddisonWesley, Reading,

Massachusetts, 1987.

[11] D. E. Knuth. Computers and Typesetting, volume D. Addison Wesley, Reading, Massachusetts,

1986.

[12] D. T. Lee. Medial axis transformation of a planar shape. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-4:363{369, 1982.

[13] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. Factoring polynomials with rational coe�-

cients. Mathematische Annalen, 261:515{534, 1982.

[14] U. Montanari. Continuous skeletons from digital images. Journal of the ACM, 16(3):534{549,

1969.

- 42 -

[15] T. Pavlidis and C. J. Van Wyk. An automatic beauti�er for drawings and illustrations. Com-

puter Graphics, 19(3):225{234, July 1985.

[16] M. F. Plass and P. H. Hochschild. Optimal rendering of characters and images on discrete

devices. to appear.

[17] P. van Emde Boas. Another NP-complete partition problem and the complexity of computing

short vectors in a lattice. Report 81-04, Math. Institute, Univ. of Amsterdam, 1981.

[18] C. K. Yap. An O(n logn) algorithm for the voronoi diagram of a set of simple curve segments.

Discrete and Computational Geometry, 2:365{393, 1987.

