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1. Introduction

Several PORT optimization routines have a common structure and user interface, all similar to that
described in [2]. All controls and tolerances — and all scratch storage — used by these routines are con-
tained in two arrays: IV for integer values, V for floating-point values (REAL in the single-precision ver-
sions, DOUBLE PRECISION in the double-precision versions); this usage summary does not address the
simplified versions of these routines (e.g. SN2F and SMNF) that allocate these arrays for you from the
PORT stack. The discussions below use symbolic subscripts, such as IV(MXITER), in describing various
components of IV and V. Numerical values for these symbolic subscripts appear in §18 and are also given
when a component is discussed, as in ‘‘IV(MXITER) = IV(18) is the maximum number of iterations
allowed.’’ (One exception is the first component of IV, IV(1), which on input says what kind of call this is
and on output contains a return code. It is always called IV(1).)

This usage summary is written to encompass some routines that will not be included in the initial
release of PORT 3, such as routines for nonlinear Poisson, logistic, and robust regression and versions of
the various optimization routines that handle general linear constraints. This summary is designed to
remain valid when such routines are added to the library.

1a. Notation

Given a function f of p variables, the optimization routines attempt to find a p-vector x * that mini-
mizes f (x). Various constraints may be imposed on x: none, simple bounds of the form

b_ x ≤ x ≤ b
_x

(1.1)

(where b_ x and b
_x

are vectors and the inequalities are understood componentwise), or general linear con-
straints of the form

b_ c ≤ Cx ≤ b
_c

(1.2)

(where b_ c and b
_c

are vectors and C is a matrix). The gradient of f at x (vector of first partial derivatives of
f) will be denoted by ∇ f (x), and the Hessian of f at x (matrix of second partial derivatives of f) will be
denoted by ∇2 f (x).

If z is a vector of m components, z = (z 1 , z 2 , . . . , z m ) T , then  z denotes its Euclidean norm
(2–norm),

 z  =


i = 1
Σ
m

zi
2




1 / 2

. (1.3)

MACHEP, which appears in some expressions for default V values, denotes the unit roundoff on the
current machine (the value returned by the PORT function R1MACH(4) or D1MACH(4)).

1b. Caveat

Unless f is convex, the PORT optimization routines may only find a local minimum, even when
‘‘better’’ minima exist. When you think this is a danger, you may wish to try several starting points.

1c. Forward and reverse communication

The optimization routines addressed by this usage summary have at least two levels:

• forward-communication routine
• reverse-communication iteration driver

Forward-communication routines learn about f (x) in the conventional way: you give them a subroutine
they can call to compute f (x). Reverse-communication drivers, on the other hand, return to their caller (e.g.
your main program) whenever they need to know f (x) at a new x. The calling routine must then compute
the necessary information (e.g. f (x) itself or, for some regression routines, a residual vector) and call the
reverse-communication driver again, passing it the information it wants. Usually it is easier to use a
forward-communication optimization routine, but sometimes it is simpler to call a reverse-communication
driver, e.g. when writing a subroutine that computes f (x) is inconvenient.
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Both the forward- and the reverse-communication versions of the optimization routines receive IV
and V as parameters. Parameters to the reverse-communication drivers also include x, as well as either the
values of f (x) and perhaps ∇ f (x) or information sufficient to compute these values (for regression rou-
tines). The driver returns with IV(1) = 1 when it wants to have f evaluated at the current x and with IV(1) =
2 when it wants ∇ f evaluated. Some drivers have other possible returns, such as IV(1) = –1 or –2; see the
appropriate PORT reference sheet for details.

2. Overriding defaults

As explained above, input controls and tolerances are passed in two arrays, IV and V. You may run
with all IV and V input components at their default values by setting IV(1) to 0 before calling the optimiza-
tion routine. (Default values are described in various sections below.) Sometimes you may need to relax
the default stopping tolerances, turn off some of the default printing, or otherwise turn the input knobs. To
do so, you first call subroutine IVSET (for single precision, DIVSET for double) to supply IV and V with
default values. You then assign nondefault values to appropriate components of IV and V. Finally, you
call the relevant optimization routine, passing IV and V to it. The calling sequence for IVSET is

CALL IVSET(KIND, IV, LIV, LV, V)

where KIND is an integer, chosen as in Table 1 below — and specified on the relevant PORT reference
sheet as well.

_ _____________________________________________________
KIND Kind of optimization_ _____________________________________________________

1 unconstrained or simply bounded regression
2 unconstrained or simply bounded general optimization
3 regression with general linear constraints
4 general optimization with general linear constraints_ _____________________________________________________ 














Table 1

The integer parameters LIV and LV give the lengths of the IV and V arrays you are providing. The PORT
reference sheet for the relevant optimization routine gives minimum acceptable values for LIV and LV, val-
ues that are functions of the problem dimensions. It is usually simplest to be liberal in choosing LIV and
LV — to guess (or compute) overestimates of their minimum values; so long as you do not run out of stor-
age, making LIV and LV larger than necessary should cause no harm. If you make LIV or LV too small
(but make LIV at least 21, so that the printing unit number, IV(PRUNIT) = IV(21) can be stored), then a
message giving the minimum acceptable values of LIV and LV will be printed. Also, (if LIV is at least 45)
the optimization routine will store these minimum LIV and LV values in IV(LASTIV) = IV(44) and
IV(LASTV) = IV(45) respectively.

Example: To turn off all printing when calling an unconstrained general optimization routine (e.g.,
MNF or MNG), execute

CALL IVSET(2, IV, LIV, LV, V)
IV(19) = 0

See §6a for more information on print controls.

3. Return codes

When the optimization routines return, IV(1) contains a return code (a number that indicates how the
routine fared). The desirable return codes are 3, 4, 5, and sometimes 6. The meanings of these return codes
are sketched in the list of return codes below and described in more detail in §5. Return codes include:
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Favorable returns:

1–2 — impossible: these are input IV(1) values only (see §1c).

3 — X-convergence: the current iterate appears to be a scaled distance (see §5) of at most
V(XCTOL) = V(33) from a locally optimal point.

4 — relative function convergence: the current objective function value f (x) appears to differ from
a locally optimal value by at most f (x) . V ( RFCTOL ) = f (x) . V ( 32 ).

5 — both X- and relative function convergence (3 and 4 combined).

6 — absolute function convergence: f (x)< V ( AFCTOL ) = V(31). This test is only of interest in
problems where f (x) = 0 means a ‘‘perfect fit’’, such as nonlinear least-squares problems.

Error returns from which restarts (§13) are possible:

7 — singular convergence: x may have too many free components. See §5.

8 — false convergence: the gradient ∇ f (x) may be computed incorrectly, the other stopping toler-
ances may be too tight, or either f or ∇ f may be discontinuous near the current iterate x.

9 — function evaluation limit: no convergence after IV(MXFCAL) = IV(17) evaluations of f (x).

10 — iteration limit: no convergence after IV(MXITER) = IV(18) iterations.

11 — STOPX returned .TRUE.: you supplied a system-dependent STOPX (see §12) routine and hit
the BREAK key.

12–13 — impossible: these are input IV(1) values only. (12 means allocate storage within IV and V and
start the algorithm; this is the default IV(1) value supplied by [D]IVSET. 13 means just allo-
cate storage and return. See §4a for an example.)

14 — storage has been allocated (after a call with IV(1) = 13 — see, for example, §4a below).

Error returns that preclude restarts:

15 — LIV too small.

16 — LV too small.

17 — restart attempted (§13) with problem dimensions changed.

18 — d has a negative component and IV(DTYPE) ≤ 0: see §4.

19–43 — V(IV(1)) is out of range.

44–62 — reserved.

63 — f (x) cannot be computed at the initial x.

64 — bad parameters on an internal call (should not occur).

65 — the gradient could not be computed at x.

66 — bad input array — if this return is relevant, the associated PORT reference sheet will say so and
explain what is good and bad.

67 — bad first parameter (KIND in §2) to IVSET.

68–69 — bugs encountered (should not occur).

70 — couldn’t get initial S matrix by finite differences (regression routines only, and only when
IV(INITS) is at least 3). [The S matrix is an approximation to part of the Hessian matrix, ∇2 f;
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see [1] for details.]

71–79 — reserved.

80 — IV(1) was out of range (e.g. exceeded 14).

81 — bad problem dimensions (e.g. a nonpositive number of variables or, for regression routines,
number of observations).

82 — inconsistent bounds in (1.1): b_ i
x > b

_
i
x

for some i.

83 — inconsistent bounds in (1.2): b_ i
c > b

_
i
c

for some i.

84 — some row of the constraint matrix, C in (1.2), is all zeros.

85 — inconsistent constraints: there is no x that satisfies both (1.1) and (1.2). (Routines that handle
general linear constraints let you specify both (1.1) and (1.2).)

4. Scaling

A scale vector d = (d 1 , d 2 , . . . , d p ) is used both in the convergence tests and in computing trial
values of x. Its choice can profoundly affect the performance of the optimization codes. By default, the
regression routines choose d adaptively (since a reasonable choice is available in this case from the associ-
ated Jacobian matrix), but the general optimization routines require you to provide d as an input parameter.
(The higher level regression routines allocate storage for d within V — see §4b and §4d.) d should be such
that d i

.x iare all ‘‘comparable’’ (e.g. are in comparable units), 1 ≤ i ≤ p. Often you can get a reasonable
choice of d by guessing upper bounds ξ i on x i*and setting d i : = 1 /ξ i .

Many problems are naturally well scaled in the sense that d i : = 1 for all i works well. You can have
d set to all ones by setting V(DINIT) = V(38) to 1.0 and IV(DTYPE) = IV(16) to 0. (For general optimiza-
tion, IV(DTYPE) is 0 by default, so it is unnecessary to change it in this case.)

Below it will be convenient to let D denote the diagonal matrix whose ith diagonal element is d i ,
where d is the current scale vector:

D = diag (d 1 , d 2 , . . . , d p ) . (4.1)

§§4a–c below describe various IV and V components connected with scaling; §4d summarizes the
relevant symbolic subscripts and default input values.

4a. Adaptive scaling for regression

Associated with regression problems is an n×p Jacobian matrix J (described further on the relevant
PORT reference sheet). Let J i denote the ith column of J, J i = (J 1 ,i , J 2 ,i , . . . , Jn,i ) T . The adaptive
choice of d i uses the norm (1.3) of J i to update d i every time a new J is computed:

d i : = max { V ( DFAC ) .d i ,  J i } ; (4.2)

if d i < DTOL i then d i : = d°i (4.3)

for 1 ≤ i ≤ p. The DTOL and d° arrays are stored in V and initialized as explained in §4d below; the fac-
tor V(DFAC) = V(41) that appears in (4.2) is 0.6 by default. This factor is included to keep d i from shrink-
ing too quickly. The DTOL and d° arrays provide a ‘‘floor’’ on the d i values — some problems have
points where  J i gets very small; when  J i gets too small, it is often better to set d i to a larger value,
d° i , than the floor value DTOL i .

Occasionally it may be useful to set individual components of DTOL or d° to different values. To do
this, first call IVSET (see §2), then set V(DTINIT) or V(D0INIT) to 0 and set IV(1) to 13. Next, call the
optimization code: if it finds nothing wrong, it will return with IV(1) = 14, meaning that it has only allo-
cated storage (within IV and V). Now determine from IV(DTOL) — see §4d — where the DTOL and d°
arrays are located and assign whatever values you like to them (making sure to assign all components).
Finally, call the optimization code again: it will begin its algorithm. (The algorithm will not further change
the DTOL and d° arrays, but will use them in adaptively updating the scale vector d by (4.2) and (4.3).)
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4b. Fixed scaling for regression.

For regression problems, you may specify fixed rather than adaptive scaling, in which case you sup-
ply your choice of values for the d vector by a procedure analogous to that in the previous paragraph. First
call IVSET, then set V(DINIT) to –1.0, IV(DTYPE) to 0, and IV(1) to 13, then call the optimization code
and make sure it has set IV(1) to 14 (i.e., has found nothing wrong). Now you can determine from IV(D)
(see §4d) where d is stored and can assign the desired values to it; be sure to assign values to all compo-
nents of d. Finally, call the optimization code again: it will begin its algorithm.

4c. Adaptive scaling for general optimization

An adaptive choice of d is available only to routines such as MNH and MNHB that are explicitly
given the Hessian matrix ∇2 f (x). The adaptive scaling update is similar to (4.2) and (4.3):

d i : =






max { V ( DFAC ) .d i , d°i }

max { V ( DFAC ) .d i , ∇2 f ii (x) 1 / 2 }

otherwise1

if ∇2 f ii (x) 1 / 2 ≥ DTOL i
.

To turn this updating on, you must set IV(DTYPE) to 1 or 2 and must set V(DINIT) to 0.0.

4d. IV and V components that control scaling

The IV and V components below appear in alphabetical order.

IV(D) — IV(27) is the subscript of V at which the d (scaling) array starts [regression only].

IV(DTOL) — IV(59) is the subscript of V at which the DTOL array starts, and IV(DTOL) + p is the
subscript for V at which the d° array starts. Both arrays are used in updating d — see
§4a. (Recall that p is the number of parameters, i.e., components in x.)

IV(DTYPE) — IV(16) tells whether d should be updated (when updating is possible — some opti-
mization codes disallow it and ignore IV(DTYPE)).

0 means do not update d.
1 means update d every iteration.
2 means update d on the first iteration only. This occasionally works better than
IV(DTYPE) = 0.

Default = 1 for regression, 0 for general optimization.

V(D0INIT) — V(40), if positive, is the value to which the d° array used in updating d is initialized —
see §4a.

Default = 1.0.

V(DFAC) — V(41) is used in updating d — see §4a.
Default = 0.6.

V(DINIT) — V(38), if nonnegative, is the value to which the optimization routine initializes all
components of d before it does any updating of d. If V(DINIT) < 0, then the optimiza-
tion routine will not initialize d.

Default = 0.0 for regression, –1.0 for general optimization.

V(DTINIT) — V(39), if positive, is the value to which the optimization routine initializes all compo-
nents of the DTOL array used in updating d — see §4a. If V(DTINIT) ≤ 0, then the
optimization routine will not initialize the DTOL array.

Default = 10 − 6.

__________________
1. The 1984 Usage Summary omitted the factor of V(DFAC) here.
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5. Stopping tolerances

The same stopping tests are available in all PORT optimization routines covered by this usage sum-
mary. These stopping tests are designed so you can say how close x should be to a local minimizer x * or
how close f (x) should be to f (x *) before a favorable ‘‘convergence’’ return occurs. The default stopping
tolerances are stringent enough that such favorable convergence returns are seldom misleading. This strin-
gency may add little to the expense of minimizing f when f (x) is evaluated accurately and when x * is well
defined. But if f is ‘‘noisy’’, e.g. if you must solve a differential equation, do some numerical quadrature,
or perform an elaborate simulation to compute f (x), then you will probably have to relax the default stop-
ping tolerances. See §9 for more discussion of this matter.

In alphabetical order, the IV and V components controlling the stopping tests are:

IV(MXFCAL) — IV(17) is the maximum number of function evaluations allowed. If IV(MXFCAL)
evaluations of f (x) occur before another stopping test is satisfied, then you get a return
with IV(1) = 9.

Default = 200.

IV(MXITER) — IV(18) is the maximum number of iterations allowed. (There is generally one gradient
evaluation per iteration.) If IV(MXITER) iterations occur before another stopping test
is satisfied, then you get a return with IV(1) = 10.

Default = 150.

V(AFCTOL) — V(31) is the absolute function-convergence tolerance. A return with IV(1) = 6 for
absolute function convergence occurs if f (x) < V(AFCTOL). This test is only of
interest on problems where f (x *) = 0 is possible, such as fitting problems with artifi-
cial (exact) data. [The relative function convergence test described below fails when
convergence to a f (x *) = 0 occurs, and the X-convergence test described below fails
when convergence to x * = 0, i.e., x i* = 0 for all i, occurs. People like to construct
simple test examples having both x * = 0 and f (x *) = 0.]

Default = 10 − 20.

V(LMAXS) — V(36) is used in the singular-convergence test described below with V(SCTOL).
Default = 1.0.

V(RFCTOL) — V(32) is the relative function-convergence tolerance. A return with IV(1) = 4 (or 5)
occurs if the algorithm thinks f (x) − f (x *) ≤ V(RFCTOL).f (x).

Default = max { 10 − 10 , MACHEP 2 / 3 }.

V(SCTOL) — V(37) is the singular-convergence tolerance. A return with IV(1) = 7 occurs if a more
favorable stopping test is not satisfied and if the algorithm thinks

f (x) − min { f (y) : D(y − x)  ≤V ( LMAXS ) } < V ( SCTOL ) .f (x),

where D is given by (4.1). When this test is satisfied, it appears that x has too many
degrees of freedom — and you should ponder whether f was properly formulated.

Default = max { 10 − 10 , MACHEP 2 / 3 }.

V(XCTOL) — V(33) is the X-convergence tolerance. A return with IV(1) = 3 (or 5) occurs if the
algorithm thinks the scaled distance from x to x * is at most V(XCTOL). This scaled
distance, ρ(x , x *), is defined by

ρ(x , y) : =
max {d j

.(x j + y j) : 1 ≤ j ≤ p}

max {d i
.x i − y i: 1 ≤ i ≤ p}_ ______________________________ , (5.1)

where d is the scale vector (§4).
Default = MACHEP 1 / 2.

You may change (5.1) to whatever you like by supplying your own function RLDST
(DRLDST in double precision) to compute ρ(x , y). Your RLDST should begin
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REAL FUNCTION RLDST(P, D, X, Y)
INTEGER P
REAL D(P), X(P), Y(P)

V(XFTOL) — V(34) is the false-convergence tolerance. A return with IV(1) = 8 occurs if a more
favorable stopping test is not satisfied and if a step of scaled length at most
V(XFTOL) is tried but not accepted. ‘‘Scaled length’’ is in the sense of (5.1). Such a
return generally means there is an error in computing ∇ f (x), or the favorable conver-
gence tolerances (V(RFCTOL), V(XCTOL), and perhaps V(AFCTOL)) are too tight
for the accuracy to which f (x) is computed (see §9), or ∇ f (or f itself) is discontinuous
near x. An error in computing ∇ f (x) usually leads to false convergence after only a
few iterations — often in the first.

Default = 100.MACHEP.

6. Printed output

The Fortran output unit for printing is IV(PRUNIT) = IV(21), the default for which is the standard
output unit number (I1MACH(2)). All printing may be turned off by setting IV(PRUNIT) to 0.

6a. Print controls

Several IV components determine what printing is done. All such printing is done by default.

IV(COVPRT) — IV(14) [regression routines only] controls printing of a covariance matrix and regres-
sion diagnostic array:

0 means print neither.
1 means print just an estimated covariance matrix.
2 means print just the diagnostic array.
3 means print both.

Default = 3.

If IV(COVPRT) > 0, and if the Hessian approximation used in computing the covari-
ance matrix or regression diagnostics is positive definite, then an upper bound on the
reciprocal of the Euclidean condition number (i.e., an upper bound on the ratio of
smallest to largest eigenvalue) of this Hessian approximation will also be printed. If
this number is very small (say less than .01 or .001), then you should regard the com-
puted covariance matrix with considerable skepticism. In this case, if
IV(COVREQ) is 1 or 2 (see §10) then you are probably ‘‘close’’ to singular conver-
gence (§5). See §10 below for more discussion. The routines that do the printing con-
trolled by IV(COVPRT) are described in the PORT reference sheet for the relevant
iteration driver.

IV(DRADPR) — IV(101) [routines for general linear constraints only] controls printing of messages
about constraints dropped and added:

1 means print which constraints are dropped and added.
0 means omit this printing.

Default = 1.

Routines allowing general linear constraints let you specify both simple bounds (1.1)
and general linear constraints (1.2). In the printing controlled by IV(DRADPR), the
ith simple lower bound constraint x i ≥ b_ i

x is denoted i, and the ith simple upper bound
constraint x i ≤ b

_
i
x

is denoted − i; similarly, the ith general lower bound constraint

j = 1
Σ
p

C i , j x j ≥ b_ i
c is denoted iG, and the ith general upper bound constraint

j = 1
Σ
p

C i , j x j ≤ b
_

i
c

is denoted − iG. Thus 2 means the second simple lower bound con-

straint and –3G means the third general upper bound constraint.
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Subroutine DRADP (DDRADP in double precision) does the printing controlled by
IV(DRADPR): see the source code for details.

IV(OUTLEV) — IV(19) controls the printing of an iteration summary. If IV(OUTLEV) is nonzero,
then an iteration summary is printed every IV(OUTLEV) iterations. If
IV(OUTLEV) = 0, then no iteration summary is printed. For IV(OUTLEV) > 0, long
summary lines are printed, and for IV(OUTLEV) < 0, short summary lines are printed.
See §6b for details.

Default = 1.

Subroutine ITSUM (DITSUM in double precision) does the printing controlled by
IV(OUTLEV): see §6c.

IV(PARPRT) — IV(20) controls printing of nondefault V (and a few nondefault IV) input components.
IV(PARPRT) = 1 causes them to be printed, and IV(PARPRT) = 0 suppresses this
printing.

Default = 1.

Subroutine PARCK (DPARCK in double precision) does the printing controlled by
IV(PARPRT): see §6c.

IV(PRUNIT) — IV(21) is the Fortran unit number on which all printing (other than error messages
from the top-level PORT versions of the optimization codes) is done. You can turn all
this printing off at once by setting IV(PRUNIT) to 0.

Default = standard output unit = I1MACH(2).

IV(SOLPRT) — IV(22) controls printing of the returned x, scale vector d, and (except for routines with
general linear constraints) the gradient ∇ f (x). IV(SOLPRT) = 1 means provide this
printing, and IV(SOLPRT) = 0 means omit it.

Default = 1.

For general linear constraints, IV(SOLPRT) also controls printing of Lagrange multi-
pliers and a list of the constraints (1.1) and (1.2) that are active or redundant at x final

(the returned x). (‘‘Redundant’’ constraints are those whose normals are linearly
dependent on the normals of the other active constraints. x final would satisfy the same
stopping test with these constraints removed. ‘‘Active’’ constraints are those that the
algorithm regards as equality constraints at x final . The constraints are denoted as
explained above with IV(DRADPR); the signs of the multipliers are explained with
IV(AM) in §14.) IV(SOLPRT) = 1 means provide all this printing, and IV(SOLPRT)
= 0 means omit all of it. Finer control is also possible: use the following procedure to
request some but possibly not all of of this printing.

• Set IV(SOLPRT) to 1.
• If you want to have x final and the returned scale vector d printed, set

IV(SOLPRT) to IV(SOLPRT) + 1.
• If you want to have the indices of the active or redundant constraints

printed, set IV(SOLPRT) to IV(SOLPRT) + 2.
• If you want to have the Lagrange multipliers printed, set

IV(SOLPRT) to IV(SOLPRT) + 4.

Thus, for example, IV(SOLPRT) = 8 has the same effect as IV(SOLPRT) = 1, and
IV(SOLPRT) = 4 causes printing of the Lagrange multipliers to be omitted.

Unless specified otherwise in the relevant PORT reference sheet, subroutine ITSUM
(DITSUM in double precision) does the printing controlled by IV(SOLPRT): see §6c.

IV(STATPR) — IV(23) controls printing of a one-line convergence or error return message and print-
ing of summary statistics once a stopping test has been satisfied. IV(STATPR) = –1
suppresses all this printing; IV(STATPR) = 0 suppresses just the summary statistics;
IV(STATPR) = − n causes printing of return messages only for IV(1) > n. The
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summary statistics include the final f (x), the RELDX, PRELDF, and NPRELDF val-
ues from the iteration summary (§6b) for the final iteration (even if printing of the iter-
ation summary is turned off), the number of function evaluations performed (exclud-
ing those for finite differences and for computing a covariance matrix or regression
diagnostics), the number of gradient evaluations performed (or, for finite-difference
gradients, the number of extra function evaluations done to compute gradients —
again excluding evaluations for computing a covariance matrix or regression diagnos-
tics), and the number of extra function and gradient evaluations (if any) done for com-
puting a covariance matrix or regression diagnostics.

Default = 1.

Subroutine ITSUM (DITSUM in double precision) does the printing controlled by
IV(STATPR): see §6c.

IV(X0PRT) — IV(24) controls printing of the initial x. IV(X0PRT) = 1 means provide this printing,
and IV(X0PRT) = 0 means omit it.

Default = 1.

Subroutine ITSUM (DITSUM in double precision) does the printing controlled by
IV(X0PRT): see §6c.

6b. Iteration summary

Printing of an iteration summary is controlled by IV(OUTLEV) — see §6a above. Either a long or a
short summary is possible; short summary lines are long summary lines with the last two columns omitted.
Columns in the long iteration summary include:

IT — the iteration number for this summary line.

NF — the number of function evaluations (computations of f (x)) so far computed, excluding
those for finite differences. The number of additional function evaluations for finite
differences is reported only in the summary statistics controlled by IV(STATPR) —
see §6a above and IV(NGCALL) in §14.

F — the current value of f (x). For nonlinear least squares, this is half of the residual sum
of squares at x.

RELDF — [ f (xprev ) − f (x) ] / max {f (xprev ), f (x)}, the relative function reduction
achieved in the current iteration (where xprev is the x value from the end of the previ-
ous iteration).

PRELDF — the value of RELDF that the algorithm predicted.

RELDX — ρ(xprev , x), the scaled length of the step taken in this iteration, where ρ is given by
(5.1).

MODEL — [regression routines only] the model or sequence of models used in the iteration: ‘‘G’’
means Gauss-Newton model, ‘‘S’’ means augmented model. See [1] for details on
these models.

STPPAR — step-length (e.g. Levenberg-Marquardt) parameter for the step just taken: 0 means a
full Newton step, positive means a damped step, negative means a damped step in
which the special case described in [3] was detected.

D∗STEP —  D(x − xprev ) , where D is given by (4.1).

NPRELDF — the value of RELDF predicted for a full Newton step (for NPRELDF > 0 or
NPRELDF = STPPAR = 0). This is the quantity used in the relative function-
convergence test described in §5. NPRELDF < 0 means –NPRELDF is the value
against which V(SCTOL) is compared in the singular-convergence test (§5). When
NPRELDF > 0 and STPPAR ≠ 0 (i.e., the algorithm does not take a full Newton step),
PRELDF will generally be less than NPRELDF, since PRELDF corresponds to the
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step actually taken.

Subroutine ITSUM (DITSUM in double precision; see §6c) prints the iteration summary.

6c. Print routine calling sequences

SUBROUTINE ITSUM(D, G, IV, LIV, LV, P, V, X)
INTEGER LIV, LV, P
INTEGER IV(LIV)
REAL D(P), G(P), V(LV), X(P)

SUBROUTINE PARCK(KIND, D, IV, LIV, LV, P, V)
INTEGER KIND, LIV, LV, P
INTEGER IV(LIV)
REAL D(P), V(LV)

In addition to the ubiquitous IV and V (and their lengths LIV and LV), parameters to ITSUM include
the current scale vector D (see §4), the problem dimension P (see §1a), the current gradient vector G =
∇ f (x), and the current iterate X = x.

Parameter KIND to PARCK comes from Table 1 of §2; the other parameters are the same as for
ITSUM (omitting G and X). In addition to optionally printing nondefault IV and V input components,
PARCK initializes IV(LASTIV), IV(LASTV), IV(NEXTIV), and IV(NEXTV) (all described in §14) and
checks the validity of various inputs.

7. Initial step bound

The algorithms maintain an estimate of the diameter of a region about the current x in which they can
predict the behavior of f reasonably well. This region has the form {y:  D(y − x)  ≤ δ}, where D is
given by (4.1). The initial δ (the one used at the start of the very first iteration) is given by V(LMAX0) =
V(35), whose default value is 1.0.

The choice of V(LMAX0) can profoundly affect the performance of the algorithms — different val-
ues sometimes lead to finding different local minimizers x *. Too small or too large a value of V(LMAX0)
causes the algorithm to spend several function evaluations in the first iteration increasing or decreasing δ.
If the iteration summary line (see §6b) for the first iteration (the line with 1 in the IT column) shows more
than one function evaluation performed (the number in the NF column) then you would have saved some
function evaluations had V(LMAX0) had the value in the D∗STEP column of the same summary line. If
you will be solving several similar problems, you may wish to examine the iteration summary for the first
problem and then choose an appropriate nondefault value for V(LMAX0) on the subsequent problems.

8. Finite differences

The following V components affect various finite-difference computations. For noisy functions (§9),
it may be necessary to relax the relevant component(s):

V(DELTA0) — V(44) [regression routines only] helps choose the step sizes for computing a finite-
difference Hessian approximation from gradient differences (i.e., when IV(COVREQ)
= 1 or 2) for use in computing a covariance matrix, regression diagnostics, or initial S
matrix (§17). For differences involving x i , step size

V ( DELTA 0 ) .max {x i, di
− 1 }.sign (x i )

is first tried.
Default = MACHEP 1 / 2.

V(DLTFDC) — V(42) [regression routines only] helps choose the step sizes for computing a finite-
difference Hessian approximation from function differences (i.e., when IV(COVREQ)
= –1 or –2) for use in computing a covariance matrix, regression diagnostics, or initial
S matrix (§17). For differences involving x i , step size
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V ( DLTFDC ) .max {x i, di
− 1 }

is first tried.
Default = MACHEP 1 / 3.

V(DLTFDJ) — V(43) [regression routines only] helps choose the step sizes for computing finite-
difference Jacobian approximations. For differences involving x i , step size

V ( DLTFDJ ) .max {x i, di
− 1 }

is first tried.
Default = MACHEP 1 / 2.

V(ETA0) — V(42) [general optimization only] helps choose the step sizes for computing finite-
difference gradient approximations. You should set V(ETA0) to your best guess at a
bound on the relative error in the computed values of f (x): V(ETA0) should be such
that if f̃ (x) is the value computed, then the true value f (x) satisfies
f (x) = f̃ (x) .( 1 + ε), where ε ≤ V(ETA0 ). The scheme used is a slight modifica-
tion of one proposed by Stewart [6]. See [4] for details.

Default = 103 .MACHEP.

The phrase ‘‘first tried’’ deserves explanation. Some of the finite-difference routines multiply the
step size by .5 or –.5 and try again if the first step they try is rejected (§11).

9. Noisy functions

Sometimes evaluating f (x) involves an extensive computation, such as performing a simulation or
adaptive numerical quadrature or integrating an ordinary or partial differential equation. In such cases the
value computed for f (x), say f̃ (x), may involve substantial error (in the eyes of the optimization algorithm).
To eliminate some ‘‘false convergence’’ messages and useless function evaluations, it is necessary to
increase the stopping tolerances and, when finite-difference derivative approximations are used, to increase
the step-sizes used in estimating derivatives.

Intelligently choosing these tolerances requires you to have a good estimate η of the maximum rela-
tive error in f̃ (x), i.e., of η such that

 f̃ (x) − f (x) ≤ η f̃ (x). (9.1)

Often η is an input to the procedure that computes f̃ (x). At other times estimating η may be more difficult;
see §8.5 of [5] for more discussion.

Once you have an approximate η, try setting the convergence tolerances V(RFCTOL) and
V(SCTOL) as follows:

V ( RFCTOL ) = V ( 32 ) : = η or 10η ,

V ( SCTOL ) = V ( 37 ) : = η .

If you are requesting finite-difference derivative approximations (§8), try using η 1 / 2 for V(DELTA0) and
V(DLTFDJ), η 1 / 3 for V(DLTFDC), or η for V(ETA0), as appropriate.

When you can specify η, perhaps as an accuracy tolerance to an integration routine, you will gener-
ally find that the smaller you make η, the more expensive f̃ (x) is to compute. In this case you can reduce
the cost of computing f̃ (x) by requesting only enough accuracy to make the optimization routine happy.
You can see from V(PREDUC) = V(7) what the algorithm predicts V ( F 0 ) − f (x) to be, where V(F0) =
V(13) is the value f (x) had at the start of the iteration, and you will often find it satisfactory to specify
η = 10 − 2 . V ( PREDUC ) / V ( F 0 ) or perhaps even η = 10 − 1 . V ( PREDUC ) / V ( F 0 ). When using
finite-difference derivative approximations, you should probably not tinker with η in this way. And for
regression routines, you should first check IV(MODE) = IV(35): if IV(MODE) > 0, then a finite-difference
Hessian computation is under way, and you should provide accuracy consistent with V(DELTA0) [or
V(DLTFDC)] — see §8.

Gaining access to IV and V (for tinkering with η as in the previous paragraph) deserves some
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discussion. If you call a reverse-communication driver (§1c), then you have immediate access to IV and V
whenever the driver requests a new f (x) value. If you call a forward-communication optimization routine,
then you must provide a subroutine, say CALCF, to compute either f (x) itself (for general optimization) or
the information needed to compute f (x) (for regression). In either case the parameters to both the optimiza-
tion routine and CALCF include ‘‘user’’ integer and floating-point arrays UI and UR; you could pass IV for
UI and V for UR, or you could put IV and V into a common block that CALCF knows about.

10. Covariance, regression diagnostics, and confidence intervals

CAVEAT: An estimated covariance matrix and the confidence intervals derived from it may be
worthless if the assumptions behind the covariance computation are invalid. See the discussion of confi-
dence intervals below.

Regression routines may offer an estimated covariance matrix Ξ and regression diagnostic vector RD
at the computed solution x final , but only for favorable returns (3 ≤ IV(1) ≤ 6 — see §3). The ith component
of RD is an estimate of the square-root of twice the relative2 (or, if f (x final ) = 0, absolute) change that
would occur in f (x final ) if the ith observation were deleted; you may wish to take a closer look at the obser-
vations corresponding to large components of RD. (Because of the square-root used in defining the RD val-
ues, if deleting component i would cause α times the estimated change in x final as deleting component j, and
if both changes were in the same direction, then RD(i) = αRD( j).) The following IV components con-
trol whether and how Ξ and RD are computed:

IV(COVREQ) — IV(15) tells what kind of Hessian approximation H should be used in the computa-
tions:

0, 1 and 2 request a finite-difference H computed from gradient differ-
ences.
–1 and –2 request a finite-difference H computed from function differ-
ences.
3 and –3 request H = JT J, where J is the Jacobian matrix at x final .

For nonlinear least-squares, IV(COVREQ) ≤ 1 requests a covariance matrix of the
form

Ξ = σ2 H − 1 JT J H − 1 ,

IV(COVREQ) = 2 requests a covariance matrix of the form

Ξ = σ2 H − 1 ,

and IV(COVREQ) ≥ 3 requests a covariance matrix of the form

Ξ = σ2 (JT J) − 1 ,

where σ2 is the residual sum of squares divided by max { 1 , n − p}, n being the num-
ber of observations. IV(COVREQ) = 1 is perhaps the most defensible choice, but
the others have their proponents.

Default = 1.

IV(RDREQ) — IV(57) tells whether to compute a covariance matrix or regression diagnostic array:
0 means compute neither;
1 means compute just a covariance matrix;
2 means compute just the regression diagnostic array;
3 means compute both.

Default = 3.

Printing of Ξ and RD is described in §6a. You can obtain their numerical values by looking at the appropri-
ate IV and V components:
__________________
2. The 1984 Usage Summary omitted ‘‘square-root of twice’’ here. To remove dependence on the scale of f, ‘‘relative’’
was added in October, 1990.
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IV(COVMAT) — IV(26), if positive, is the starting subscript in V for the lower triangle of Ξ, which is
stored compactly by rows: Ξ 1 , 1 , Ξ 2 , 1 , Ξ 2 , 2 , Ξ 3 , 1 , Ξ 3 , 2 , Ξ 3 , 3

. . . . Other possible val-
ues for IV(COVMAT) include:

0 for no covariance matrix computation attempted;
–1 for an indefinite H [regard this as similar to singular convergence
(IV(1) = 7 — see §3)].
–2 for too many x values rejected (see §11) during finite-difference com-
putation of H.

IV(REGD) — IV(67), if positive, is the starting subscript in V for the regression diagnostic array RD.
IV(REGD) ≤ 0 means the same as IV(COVMAT) having this value.

CONFIDENCE INTERVALS for nonlinear least squares: You may wish to know confidence inter-
vals for the components x i of the returned solution. You have several options, but explaining them requires
some notation. Suppose you have n observations and a model φ that attempts to explain them — φ =
(φ 1 (x), φ 2 (x), . . . , φ n (x) ) T . You decide to estimate the model parameters x by least squares:

f (x) : =
2
1_ __

j = 1
Σ
n

(φ j (x) − y j )2. The diagonal entries of the covariance matrix computed with

IV(COVREQ) = 1 are estimates of the variances (i.e., standard deviations squared) of the x i . Two
assumptions underlie these estimates: (1) that the observations y j are subject to independent errors whose
variances are well estimated by 1 / (n − p) times the residual sum of squares (i.e., 2. f (x final ) / (n − p)),
and (2) that approximating f by a second-order Taylor expansion does not introduce ‘‘too much’’ error into
the estimated covariance matrix. The first assumption is a standard one, but it may not apply to your prob-
lem — if you have a better estimate σbetter

2 for the variances of the y j , then you should scale the returned
covariance matrix by

2
1_ __ . σbetter

2 . (n − p) / V(F), where V(F) = V(10) = f (x final ). The second assumption

generally founders when the variances of the y j are too large, where ‘‘large’’ depends on how nonlinear φ
is; you might have to resort to Monte-Carlo techniques to compute a realistic covariance matrix and confi-
dence intervals. (If you do, see the end of §17.) At any rate, in posing the problem to the regression rou-
tine, it is important that you scale the components of φ and y (correspondingly) so the variances of the
errors to which they are subject are all about the same.

The following code sets STDDEV(i) to an estimate of the standard deviation of x i in the case where
you know σbetter

2 :

T = 0.5∗ σbetter
2 ∗MAX0(1,N-P)/V(F)

II = IV(COVMAT) – 1
DO 10 I = 1, P

II = II + I
STDDEV(I) = SQRT(T∗V(II))

10 CONTINUE

If assumption (1) is valid, omit the first line as well as ‘‘T∗’’ in the penultimate line.

After making further assumptions about the errors, you can relate STDDEV(i) to a confidence inter-
val for x i . For example, if the errors in the y j are normally distributed with zero mean, then [xi

final –
1. 96.STDDEV(i), xi

final + 1. 96.STDDEV(i)] is a 95% confidence interval for x i . (Change 1.96 to 1.645 to
get a 90% confidence interval and to 2.576 to get a 99% confidence interval.)

11. Identifying (or rejecting) x

When you compute ∇ f (x) analytically, you must often use intermediate quantities that are also
needed for computing f (x). You may find it convenient to save such quantities for use in computing
∇ f (x). But there is a complication: the optimization routine may first ask for f (xa ), then f (xb ), then
∇ f (xa ), i.e., the x at which ∇ f is evaluated may not be the one at which f was most recently evaluated. It
usually suffices to save two sets of intermediate quantities, corresponding to the two x values at which f was
most recently evaluated. You can use the invocation count for f to identify these sets of intermediate
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quantities. If you use a forward-communication optimization routine, one to which you supply, say, sub-
routines CALCF and CALCG for computing f (x) and ∇ f (x), then the calling sequence for these subrou-
tines includes an integer parameter NF that you can use to identify x. For CALCF, NF is the invocation
count for CALCF (i.e., the number of times CALCF has been called); for CALCG, NF is the value that was
supplied to CALCF when CALCF was called with the x now being passed to CALCG. If you are calling a
reverse-communication routine (§1c), then the NF value that would be passed to CALCF is in
IV(NFCALL) = IV(6), and the NF value that would be passed to CALCG is in IV(NFGCAL) = IV(7). (Do
not change IV(NFCALL) or IV(NFGCAL); subroutines CALCF and CALCG should not change NF unless
they wish to reject x, as described in the next paragraph.)

Rejecting x: Sometimes the optimization routine will attempt too large a step or will otherwise
request that f be evaluated outside its effective domain. You can tell the routine to back off and try a
shorter step as follows: if you are using a forward-communication routine (to which you pass CALCF),
then have CALCF set NF to 0 and return; if you are calling a reverse-communication routine, set
IV(TOOBIG) = IV(2) to 1. (CALCG can also reject x by setting NF to 0, or you can reject x by setting
IV(TOOBIG) to 1 when a reverse-communication iteration driver asks you to compute ∇ f (x), but then you
will get an error return: the routines assume something serious is wrong if they encounter an x where f (x)
can be evaluated but ∇ f (x) cannot.)

12. STOPX

If you use the PORT optimization routines in an interactive environment, then you can arrange for
them to respond to the ‘‘BREAK’’ key — to check before each evaluation of f (x) whether ‘‘BREAK’’ has
been pressed and to return in a way that allows restarts (§13) if so. To do this, you must supply a logical
function STOPX that returns .TRUE. exactly when ‘‘BREAK’’ has been pressed since the last time STOPX
was called. Your STOPX (which will likely be written in a language other than Fortran) should behave as
though it began

LOGICAL FUNCTION STOPX(DUMMY)
INTEGER DUMMY

STOPX should ignore its parameter DUMMY (which is required by the syntax of Fortran 66). When
STOPX returns .TRUE., you get a return with IV(1) = 11.

13. Restarting

If you get a return with IV(1) < 12 (from either a forward- or reverse-communication optimization
routine — see §1c and §3), then you can resume the algorithm where it left off. Just invoke the routine
again, usually after changing the IV or V input components responsible for the return you got. You can
even write the IV and V arrays, x, and other parameters (as appropriate) on an auxiliary storage device, read
them in later (perhaps in another session), and then resume the algorithm. This is sometimes useful for
checkpointing or debugging.

14. Output IV components

You can probably skip this section. It describes IV components (listed alphabetically) that are given
values by the relevant PORT optimization routines.

IV(A) — IV(98) [general linear constraints only] is the starting subscript in IV for a permutation
array, a = (a 1 , a 2 , . . . , a m + p ), where m is the number of general constraints (1.2).
Together with IV(ME), IV(ME1), IV(MC), and IV(PC) (all described below), a tells
how the algorithm regards the various constraints at x final , the returned x: for 1 ≤ i ≤
IV(ME1), constraint a i is a redundant equality constraint (see IV(SOLPRT) in §6a);
for IV(ME1) < i ≤ IV(ME1) + IV(ME), constraint a i is a (nonredundant) equality con-
straint; and for IV(ME1) + IV(ME) < i ≤ IV(ME1) + IV(ME) + IV(MC), constraint a i

is an active inequality constraint. (If IV(MC) + IV(PC) > p, then the last p – [IV(MC)
+ IV(PC)] such inequality constraints are redundant at x final .)

The numbering within a of the constraints deserves an explanation. Routines that
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handle general linear constraints allow both simple bounds (1.1) and general linear
constraints (1.2). The constraints are numbered as follows: for 1 ≤ i ≤ p, the simple
lower-bound constraint b_ i

x ≤ x i has index i and the simple upper-bound constraint
x i ≤ b

_
i
x

has index − i; for 1 ≤ i ≤ m, the general lower-bound constraint

b_ i
c ≤

j = 0
Σ
p

C i j x j has index i + p and the general upper-bound constraint

j = 0
Σ
p

C i j x j ≤ b
_

i
c

has index − (i + p).

IV(AI) — IV(91) [general linear constraints only] is the starting subscript in IV for an array ã of
indices of the Lagrange multipliers corresponding to x final . (The entries in this array
also appear in the a array described above with IV(A), but in a different order — here
they are sorted on their absolute values. For more on the multipliers themselves, see
IV(AM) below.) There are p – IV(PC) such multipliers (see IV(PC) below).

IV(AM) — IV(95) [general linear constraints only] is the starting subscript in V for the Lagrange
multiplier array λ mentioned with IV(AI) above. IV(SOLPRT) (see §6a) controls the
printing of this array. The multipliers λ i are such that if C in (1.2) is expanded to
include (1.1) in the first p rows and C i denotes the ith row of this expanded C, then

i = 1
Σ

p − IV(PC)

λ i sign ( ã i ) C ã i = ∇ f (x final ) ,

where ã is the index array described with IV(AI) above.

IV(COVMAT) — see §10.

IV(D) — IV(27) [regression routines only] is the starting subscript in V for the scale vector d
(§4).

IV(G) — IV(28) [except for some reverse-communication iteration drivers] is the starting sub-
script in V for the gradient vector ∇ f (x final ).

IV(LASTIV) — IV(44) is the minimum acceptable value for LIV, the length of the IV array.

IV(LASTV) — IV(45) is the minimum acceptable value for LV, the length of the V array.

IV(MC) — IV(83) [general linear constraints only] is the number of inequality constraints (1.1) or
(1.2) active at x final , excluding equality constraints (see IV(ME) and IV(ME1) below
and IV(A) above).

IV(ME) — IV(86) [general linear constraints only] is the number of nonredundant equality con-

straints — linearly independent constraints b_ i
x ≤ x i ≤ b

_
i
x

or b_ i
c ≤

j = 0
Σ
p

C i j x j ≤ b
_

i
c

from (1.1) and (1.2) having b_ i
x = b

_
i
x

or b_ i
c = b

_
i
c
. See also IV(A) above.

IV(ME1) — IV(87) [general linear constraints only] is the number of equality constraints being
ignored because they are linearly dependent on the nonredundant equality constraints
(see IV(ME) above). The total number of equality constraints is thus IV(ME) +
IV(ME1). See also IV(A) above.

IV(NEXTIV) — IV(46) is the subscript of the next free component in IV. For most routines it should
have the value IV(LASTIV) + 1, but some routines give it a smaller value (if they
release scratch space used only when they start up).

IV(NEXTV) — IV(47) is the subscript of the next free component in V. Analogously to
IV(NEXTIV), it usually has the value IV(LASTV) + 1.

IV(NFCALL) — IV(6) is the number of function evaluations (evaluations of f (x)) performed, including
evaluations for computing a covariance matrix or regression diagnostics but excluding
extra evaluations for computing finite-difference derivative approximations (see
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IV(NGCALL) below).

IV(NFCOV) — IV(52) [regression only] is the number of function evaluations performed just for
computing a covariance matrix or regression diagnostics, excluding extra evaluations
for computing finite-difference derivative approximations (see IV(NGCALL) below).
The number of function evaluations reported in the summary statistics controlled by
IV(STATPR) (see §6a) is IV(NFCALL) – IV(NFCOV).

IV(NGCALL) — IV(30) is either the total number of gradient evaluations performed (when you provide
analytic derivatives) or the number of additional function evaluations required to com-
pute finite-difference derivative approximations. In the latter case, the total number of
function evaluations is thus IV(NFCALL) + IV(NGCALL).

IV(NGCOV) — IV(53) is the number of additional gradient evaluations performed just for computing
a covariance matrix or regression diagnostics. The number of gradient evaluations
reported in the summary statistics controlled by IV(STATPR) (see §6a) is
IV(NGCALL) – IV(NGCOV).

IV(NITER) — IV(31) is the number of iterations performed. The number of gradient evaluations
(aside from those used in covariance or regression diagnostic computations) is usually
IV(NITER) + 1 or IV(NITER), depending whether or not the final iteration produced
an acceptable new iterate.

IV(PC) — IV(90) [general linear constraints only] is the dimension of the free variable space at
x final ; see IV(A) above.

IV(SUSED) — IV(64) [regression only] describes the sequence of models for f considered in the last
iteration (see [1]); IV(SUSED) determines what gets printed in the MODEL column
of the iteration summary (§6b): 1 means ‘‘G’’, 2 means ‘‘S’’, 3 means ‘‘G–S’’ (i.e.,
the algorithm first tried the ‘‘G’’ model, then switched to the ‘‘S’’ model), 4 means
‘‘S–G’’, 5 means ‘‘G–S–G’’ (i.e., the algorithm first tried the ‘‘G’’ model, then the
‘‘S’’ model, then returned to the ‘‘G’’ model), and 6 means ‘‘S–G–S’’.

15. Output V components

This is another section most people can ignore. It describes (alphabetically) V components to which
various PORT optimization routines supply values.

V(DGNORM) — V(1) =  D − 1 ∇ f (x final ) , where D is given by (4.1).

V(DSTNRM) — V(2) =  D(x − xprev ) , the scaled Euclidean length of the last step taken (or, if the
final iteration did not change x, of the last step attempted).

V(F) — V(10) is the current function value, f (x final ). For nonlinear least squares, this is half
the current residual sum of squares.

V(F0) — V(13) is the function value of f (x) at the start of the last iteration.

V(NREDUC) — V(6), if positive (or zero with V(STPPAR) = 0), is the maximum reduction in f that
the algorithm thinks is yet possible. V(NREDUC) = 0 with V(STPPAR) > 0 means
the current Hessian (or, for general linear constraints, projected Hessian — projected
onto the free-variable space) is not positive definite. If V(NREDUC) < 0, then
− V(PREDUC) / V(F0) is the quantity against which V(SCTOL) is compared in the
singular-convergence test — see §5. The quantity NPRELDF described in §6b is
V(NREDUC) / max{V(F), V(F0)}.

V(PREDUC) — V(7) is the function reduction predicted for the last step taken or attempted (the step
corresponding to V(DSTNRM)). The quantity PRELDF described in §6b is
V(PREDUC) / max{V(F), V(F0)}.

V(RADIUS) — V(8) is the current trust-region radius δ, described in §7.
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V(RCOND) — V(53) [regression only — and only when a covariance matrix or regression diagnostic
array is requested] is the reciprocal of the square-root of a lower bound on the
Euclidean condition number of the final Hessian ∇2 f (x final ). Printing of
V(RCOND)2 is controlled by IV(COVPRT) — see §6a.

V(RELDX) — V(17) is the scaled length, defined by (5.1), of the last step taken or attempted (the
step corresponding to V(DSTNRM)).

V(STPPAR) — V(5) is the step-length parameter described in §6b.

16. Other V components

There are a few obscure input V components with which you should seldom have to tinker. They are
described in §3.15 of [2]. V(COSMIN), V(FUZZ), and V(RLIMIT) pertain only to regression, and their
subscript values have changed: now V(COSMIN) = V(47), V(FUZZ) = V(45), and V(RLIMIT) = V(46).
The other input V components described in §3.15 of [2] retain their old subscript values and apply to all the
optimization routines covered by this usage summary.

17. Initial S matrix

This section applies to regression routines only. These routines use a ‘‘secant update’’ to obtain an
approximation S to part of ∇2 f — see [1] for details in the case of nonlinear least squares. By default the
initial S matrix is set to all zeros. Occasionally it is useful to initialize S to a finite-difference estimate of
the thing it approximates. (This is useful, for instance, if you want to start at a point where the Jacobian
matrix vanishes but ∇2 f is nonzero — and there exist people who want to do this!) You can have this done
by setting IV(INITS) = IV(25) to 3 or 4; 3 means to use differences of function values to estimate the initial
S, and 4 means to use differences of gradients4. You can also supply your own initial S matrix. The proce-
dure for doing so is similar to the one described in §4a. First call IVSET (DIVSET for double precision —
see §2), then set IV(INITS) to 2 (or to 1 if you want the Gauss-Newton model — the one that ignores S —
to be tried first) and IV(1) to 13. Next, call the appropriate optimization routine and make sure it has set
IV(1) to 14 (i.e., has found nothing wrong). Now IV(S) = IV(62) is the starting subscript in V for the lower
triangle of S. Store your initial S there (compactly by rows: S 1 , 1 , S 2 , 1 , S 2 , 2 , S 3 , 1 , S 3 , 2 , S 3 , 3

. . . ). Finally,
call the optimization routine again: it will begin its algorithm.

If you do a Monte-Carlo covariance matrix computation (by repeatedly choosing pseudorandom
errors, adding them to your observations, and calling the regression routine again), then it is reasonable to
have the starting guess for the second and subsequent calls on the regression routine be the solution from
the previous call. In this case it is reasonable to set IV(INITS) to IV(MODEL) = IV(5), so that you start
with the S matrix and model preference (i.e., initial decision whether to use S in computing the next step —
see [1]) from the previous run.

__________________
3. Mention of the possibility of setting IV(INITS) to 4 was omitted from the 1984 Usage Summary.
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18. Numerical values for symbolic subscripts

The following symbolic subscripts for IV and V are discussed in the indicated sections:

_ _______________________________________________________
IV symbolic subscript values, sorted alphabetically_ _______________________________________________________

Symbol Value Sections Symbol Value Sections

A 98 14 NEXTIV 46 6c, 14
AI 91 14 NEXTV 47 6c, 14
AM 95 6a, 14 NFCALL 6 11, 14
COVMAT 26 10, 14 NFCOV 52 14
COVPRT 14 6a, 15 NFGCAL 7 11
COVREQ 15 6a, 8, 10 NGCALL 30 6b, 14
D 27 4d, 14 NGCOV 53 14
DRADPR 101 6a NITER 31 14
DTOL 59 4d OUTLEV 19 6a
DTYPE 16 3, 4c PARPRT 20 6a
G 28 14 PC 90 14
INITS 25 3, 17 PRUNIT 21 2, 6a
LASTIV 44 2, 6c, 14 RDREQ 57 10
LASTV 45 2, 6c, 14 REGD 67 10
MC 83 14 S 62 17
ME 86 14 SOLPRT 22 6a, 14
ME1 87 14 STATPR 23 6b, 14
MODE 35 9 SUSED 64 14
MODEL 5 17 TOOBIG 2 11
MXFCAL 17 3, 5 X0PRT 24 6a
MXITER 18 1, 3, 5_ _______________________________________________________ 






















































































_ _________________________________________________________
V symbolic subscript values, sorted alphabetically_ _________________________________________________________

Symbol Value Sections Symbol Value Sections

AFCTOL 31 3, 5 FUZZ 45 16
COSMIN 47 16 LMAX0 35 7
D0INIT 40 4a LMAXS 36 5
DELTA0 44 8, 9 NREDUC 6 15
DFAC 41 4a PREDUC 7 9, 15
DGNORM 1 15 RADIUS 8 15
DINIT 38 4b RCOND 53 15
DLTFDC 42 8, 9 RELDX 17 15
DLTFDJ 43 8, 9 RFCTOL 32 3, 5, 9
DSTNRM 2 15 RLIMIT 46 16
DTINIT 39 4d SCTOL 37 5, 6b, 9, 15
ETA0 42 8, 9 STPPAR 5 15
F 10 10, 15 XCTOL 33 3, 5
F0 13 9, 15 XFTOL 34 5_ _________________________________________________________ 





























































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_ _______________________________________________________
IV symbolic subscript values, sorted numerically_ _______________________________________________________

Value Symbol Sections Value Symbol Sections

2 TOOBIG 11 35 MODE 9
5 MODEL 17 44 LASTIV 2, 6c, 14
6 NFCALL 11, 14 45 LASTV 2, 6c, 14
7 NFGCAL 11 46 NEXTIV 6c, 14

14 COVPRT 6a, 15 47 NEXTV 6c, 14
15 COVREQ 6a, 8, 10 52 NFCOV 14
16 DTYPE 3, 4c 53 NGCOV 14
17 MXFCAL 3, 5 57 RDREQ 10
18 MXITER 1, 3, 5 59 DTOL 4d
19 OUTLEV 6a 62 S 17
20 PARPRT 6a 64 SUSED 14
21 PRUNIT 2, 6a 67 REGD 10
22 SOLPRT 6a, 14 83 MC 14
23 STATPR 6b, 14 86 ME 14
24 X0PRT 6a 87 ME1 14
25 INITS 3, 17 90 PC 14
26 COVMAT 10, 14 91 AI 14
27 D 4d, 14 95 AM 6a, 14
28 G 14 98 A 14
30 NGCALL 6b, 14 101 DRADPR 6a
31 NITER 14_ _______________________________________________________ 






















































































_ _________________________________________________________
V symbolic subscript values, sorted numerically_ _________________________________________________________

Value Symbol Sections Value Symbol Sections

1 DGNORM 15 36 LMAXS 5
2 DSTNRM 15 37 SCTOL 5, 6b, 9, 15
5 STPPAR 15 38 DINIT 4b
6 NREDUC 15 39 DTINIT 4d
7 PREDUC 9, 15 40 D0INIT 4a
8 RADIUS 15 41 DFAC 4a

10 F 10, 15 42 DLTFDC 8, 9
13 F0 9, 15 42 ETA0 8, 9
17 RELDX 15 43 DLTFDJ 8, 9
31 AFCTOL 3, 5 44 DELTA0 8, 9
32 RFCTOL 3, 5, 9 45 FUZZ 16
33 XCTOL 3, 5 46 RLIMIT 16
34 XFTOL 5 47 COSMIN 16
35 LMAX0 7 53 RCOND 15_ _________________________________________________________ 






























































19. Fortran variations

The source code covered by this usage summary may be converted from4 Fortran 77 to Fortran 66 by
changing to a blank the ‘‘C’’ in column 1 of lines that come after a ‘‘C/6’’ line and before a line that
begins ‘‘C/7’’ and by commenting out all lines between a line that begins ‘‘C/7’’ and a line that begins
‘‘C/’’. For example, change
__________________
4. The 1984 Usage Summary described conversion to Fortran 77 from Fortran 66. PORT tapes distributed since mid-1990
have been in Fortran 77 form, and the PORT source available from netlib has always been in Fortran 77 form.
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C/6
C DATA A/98/, AI/91/, AM/95/, MC/83/, ME/86/, ME1/87/, PC/90/,
C 1 PRUNIT/21/, SOLPRT/22/
C/7

PARAMETER (A=98, AI=91, AM=95, MC=83, ME=86, ME1=87, PC=90,
1 PRUNIT=21, SOLPRT=22)

C/

to

C/6
DATA A/98/, AI/91/, AM/95/, MC/83/, ME/86/, ME1/87/, PC/90/,
1 PRUNIT/21/, SOLPRT/22/

C/7
C PARAMETER (A=98, AI=91, AM=95, MC=83, ME=86, ME1=87, PC=90,
C 1 PRUNIT=21, SOLPRT=22)
C/

Some modules have several sets of such lines. These changes convert some PARAMETER statements to
DATA statements, turn CHARACTER variables into numeric variables, change quoted strings in DATA
statements into Hollerith constants, and remove SAVE statements that may save a bit of execution time on
some computers.
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