
81⁄2 , the Plan 9 Window System

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
rob@research.att.com

ABSTRACT

The Plan 9 window system, 81⁄2 , is a modest-sized program of novel design. It
provides ASCII I/O and bitmap graphic services to both local and remote client pro-
grams by offering a multiplexed file service to those clients. It serves traditional UNIX
files like /dev/tty as well as more unusual ones that provide access to the mouse and
the raw screen. Bitmap graphics operations are provided by serving a file called
/dev/bitblt that interprets client messages to perform raster operations. The file
service that 81⁄2 offers its clients is identical to that it uses for its own implementation,
so it is fundamentally no more than a multiplexer. This architecture has some reward-
ing symmetries and can be implemented compactly; indeed 81⁄2 is considerably smaller
than most of its clients.

Introduction

In 1989 I constructed a toy window system from only a few hundred lines of source code using a
custom language and an unusual architecture involving concurrent processes [Pike89]. Although that sys-
tem was rudimentary at best, it demonstrated that window systems are not inherently complicated. Last
year, for the new Plan 9 distributed system [Pike90], I applied some of the lessons from that toy project to
write, in C, a production-quality window system called 81⁄2 . 81⁄2 provides, on black-and-white or grey-
scale but not color displays, the services required of a modern window system, including programmability
and support for remote graphics. The entire system, including the default program that runs in the win-
dow — the equivalent of xterm [Far89] with ‘cutting and pasting’ between windows — is well under 60
kilobytes of text on a Motorola 68020 processor, about half the size of the operating system kernel that
supports it and a tenth the size of the X server [Sche86] without xterm.

What makes 81⁄2 so compact? Much of the saving comes from overall simplicity: 81⁄2 has little
graphical fanciness, a concise programming interface, and a simple, fixed user interface. 81⁄2 also makes
some decisions by fiat — three-button mouse, overlapping windows, built-in terminal program and win-
dow manager, etc. — rather than trying to appeal to all tastes. Although compact, 81⁄2 is not ascetic. It
provides the fundamentals and enough extras to make them comfortable to use. The most important con-
tributor to its small size, though, is its overall design as a file server. This structure may be applicable to
window systems on traditional UNIX-like operating systems.

The small size of 81⁄2 does not reflect reduced functionality: 81⁄2 provides service roughly
equivalent to X windows, other than the lack of support for color terminals. (The provision of that sup-
port would not dramatically increase the code size.) 81⁄2’s clients may of course be as complex as they
choose, although the tendency to mimic 81⁄2’s design and the clean programming interface means they are
not nearly as bloated as X applications.



- 2 -

User’s Model

81⁄2 turns the single screen, mouse, and keyboard of the terminal (in Plan 9 terminology) or works-
tation (in commercial terminology) into an array of independent virtual terminals that may be ASCII ter-
minals supporting a shell and the usual suite of tools or graphical applications using the full power of the
bitmap screen and mouse. The entire programming interface is provided through reading and writing files
in /dev.

Primarily for reasons of history and familiarity, the general model and appearance of 81⁄2 are similar
to those of mux [Pike88]. The right button has a short menu for controlling window creation, destruction,
and placement. When a window is created, it runs the default shell, rc [Duff90], with standard input and
output directed to the window and accessible through the file /dev/cons (‘console’), analogous to the
/dev/tty of UNIX. The name change represents a break with the past: Plan 9 does not provide a
Teletype-style model of terminals. 81⁄2 provides the only way most users ever access Plan 9.

Graphical applications, like ordinary programs, may be run by typing their names to the shell run-
ning in a window. This runs the application in the same window; to run the application in a new window
one may use an external program, window, described below. For graphical applications, the virtual ter-
minal model is extended somewhat to allow programs to perform graphical operations, access the mouse,
and perform related functions by reading and writing files with suggestive names such as /dev/mouse
and /dev/window multiplexed per-window much like /dev/cons. The implementation and seman-
tics of these files, described below, is central to the structure of 81⁄2 .

The default program that runs in a window is familiar to users of Blit terminals [Pike83]. It is very
similar to that of mux [Pike88], providing mouse-based editing of input and output text, the ability to
scroll back to see earlier output, and so on. It also has a new feature, toggled by typing ESC, that enables
the user to control when typed characters may be read by the shell or application, instead of (for example)
after each newline. This feature makes the window program directly useful for many text-editing tasks
such as composing mail messages before sending them.

Plan 9 and 81⁄2

Plan 9 is a distributed system that provides support for UNIX-like applications in an environment
built from distinct CPU servers, file servers, and terminals connected by a variety of networks [Pike90].
The terminals are comparable to modest workstations that, once connected to a file server over a
medium-bandwidth network such as Ethernet, are self-sufficient computers running a full operating sys-
tem. Unlike workstations, however, their role is just to provide an affordable multiplexed user interface
to the rest of the system: they run the window system and support simple interactive tasks such as text
editing. Thus they lie somewhere between workstations and X terminals in design, cost, performance,
and function. (The terminals can be used for general computing, but in practice Plan 9 users do their
computing on the CPU servers.) The Plan 9 terminal software, including 81⁄2 , was developed on a
68020-based machine called a Gnot and has been ported to the NeXTstation, the MIPS Magnum 3000,
and the Sun SPARCstation SLC: all small workstations that we use as terminals.

Heavy computations such as compilation, text processing, or scientific calculation are done on the
CPU servers, which are connected to the file servers by high-bandwidth networks, typically point-to-point
DMA links. For interactive work, these computations can access the terminal that instantiated them. The
terminal and CPU server being used by a particular user are connected to the same file server, although
over different networks; Plan 9 provides a view of the file server that is independent of location in the net-
work.

The components of Plan 9 are connected by a common protocol based on the sharing of files. All
resources in the network are implemented as file servers; programs that wish to access them connect to
them over the network and communicate using ordinary file operations. An unusual aspect of Plan 9 is
that the name space of a process, the set of files that can be accessed by name (for example by an open
system call) is not global to all processes on a machine; distinct processes may have distinct name spaces.
The system provides methods by which processes may change their name spaces, such as the ability to
mount a service upon an existing directory, making the files of the service visible in the directory. (This
is a different operation from its UNIX namesake.) Multiple services may be mounted upon the same



- 3 -

directory, allowing the files from multiple services to be accessed in the same directory. Options to the
mount system call control the order of searching for files in such a union directory.

The most obvious example of a network resource is a file server, where permanent files reside.
There are a number of unusual services, however, whose design in a different environment would likely
not be file-based. Many are described elsewhere [Pike90]; some examples are the representation of
processes for debugging, much like Killian’s process files for the 8th edition [Kill84], and the implemen-
tation of the name/value pairs of the UNIX exec environment as files. User processes may also imple-
ment a file service and make it available to clients in the network, much like the ‘mounted streams’ in the
9th Edition [Pres90]. A typical example is a program that interprets an externally-defined file system
such as that on a CD-ROM or a standard UNIX system and makes the contents available to Plan 9 pro-
grams. This design is used by all distributed applications in Plan 9, including 81⁄2 .

81⁄2 serves a set of files in the conventional directory /dev with names like cons, mouse, and
screen. Clients of 81⁄2 communicate with the window system by reading and writing these files. For
example, a client program, such as a shell, can print text by writing its standard output, which is automati-
cally connected to /dev/cons, or it may open and write that file explicitly. Unlike files served by a
traditional file server, however, the instance of /dev/cons served in each window by 81⁄2 is a distinct
file; the per-process name spaces of Plan 9 allow 81⁄2 to provide a unique /dev/cons to each client.
This mechanism is best illustrated by the creation of a new 81⁄2 client.

When 81⁄2 starts, it creates a full-duplex pipe to be the communication medium for the messages
that implement the file service it will provide. One end will be shared by all the clients; the other end is
held by 81⁄2 to accept requests for I/O. When a user makes a new window using the mouse, 81⁄2 allo-
cates the window data structures and forks a child process. The child’s name space, initially shared with
the parent, is then duplicated so that changes the child makes to its name space will not affect the parent.
The child then attaches its end of the communication pipe, cfd, to the directory /dev by doing a mount
system call:

mount(cfd, "/dev", MBEFORE, buf)

This call attaches the service associated with the file descriptor cfd — the client end of the pipe — to the
beginning of /dev so that the files in the new service take priority over existing files in the directory.
This makes the new files cons, mouse, and so on, available in /dev in a way that hides any files with
the same names already in place. The argument buf is a character string (null in this case), described
below.

The client process then closes file descriptors 0, 1, and 2 and opens /dev/cons repeatedly to con-
nect the standard input, output, and error files to the window’s /dev/cons. It then does an exec sys-
tem call to begin executing the shell in the window. This entire sequence, complete with error handling,
is 28 lines of C.

The view of these events from 81⁄2’s end of the pipe is a sequence of file protocol messages from
the new client generated by the intervening operating system in response to the mount and open system
calls executed by the client. The message generated by the mount informs 81⁄2 that a new client has
attached to the file service it provides; 81⁄2’s response is a unique identifier kept by the operating system
and passed in all messages generated by I/O on the files derived from that mount. This identifier is used
by 81⁄2 to distinguish the various clients so each sees a unique /dev/cons; most servers do not need to
make this distinction.

A process unrelated to 81⁄2 may create windows by a variant of this mechanism. When 81⁄2 begins,
it uses a Plan 9 service to ‘post’ the client end of the communication pipe in a public place. A process
may open that pipe and mount it to attach to the window system, much in the way an X client may con-
nect to a UNIX domain socket to the server bound to the file system. The final argument to mount is
passed through uninterpreted by the operating system. It provides a way for the client and server to
exchange information at the time of the mount. 81⁄2 interprets it as the dimensions of the window to be
created for the new client. (In the case above, the window has been created by the time the mount occurs,
and buf carries no information.) When the mount returns, the process can open the files of the new
window and begin I/O to use it.



- 4 -

Because 81⁄2’s interface is based on files, standard system utilities can be used to control its ser-
vices. For example, its method of creating windows externally is packaged in a 12-line shell script, called
window, the core of which is just a mount operation that prefixes 81⁄2’s directory to /dev and runs a
command passed on the argument line:

mount -b $’8.5serv’ /dev
$* < /dev/cons > /dev/cons >[2] /dev/cons &

The window program is typically employed by users to create their initial working environment when
they boot the system, although it has more general possibilities.

Other basic features of the system fall out naturally from the file-based model. When the user
deletes a window, 81⁄2 sends the equivalent of a UNIX signal to the process group — the clients — in the
window, removes the window from the screen, and poisons the incoming connections to the files that
drive it. If a client ignores the signal and continues to write to the window, it will get I/O errors. If, on
the other hand, all the processes in a window exit spontaneously, they will automatically close all connec-
tions to the window. 81⁄2 counts references to the window’s files; when none are left, it shuts down the
window and removes it from the screen. As a different example, when the user hits the DEL key to gen-
erate an interrupt, 81⁄2 writes a message to a special file, provided by Plan 9’s process control interface,
that interrupts all the processes in the window. In all these examples, the implementation works seam-
lessly across a network.

There are two valuable side effects of implementing a window system by multiplexing
/dev/cons and other such files. First, the problem of giving a meaningful interpretation to the file
/dev/cons (/dev/tty) in each window is solved automatically. To provide /dev/cons is the fun-
damental job of the window system, rather than just an awkward burden; other systems must often make
special and otherwise irrelevant arrangements for /dev/tty to behave as expected in a window.
Second, any program that can access the server, including a process on a remote machine, can access the
files using standard read and write system calls to communicate with the window system, and standard
open and close calls to connect to it. Again, no special arrangements need to be made for remote
processes to use all the graphics facilities of 81⁄2 .

Graphical input

Of course 81⁄2 offers more than ASCII I/O to its clients. The state of the mouse may be discovered
by reading the file /dev/mouse, which returns a ten-byte message encoding the state of the buttons and
the position of the cursor. If the mouse has not moved since the last read of /dev/mouse, or if the win-
dow associated with the instance of /dev/mouse is not the ‘input focus’, the read blocks.

The format of the message is:

’m’
1 byte of button state
4 bytes of x, low byte first
4 bytes of y, low byte first

As in all shared data structures in Plan 9, the order of every byte in the message is defined so all clients
can execute the same code to unpack the message into a local data structure.

For keyboard input, clients can read /dev/cons or, if they need character-at-a-time input,
/dev/rcons (‘raw console’). There is no explicit event mechanism to help clients that need to read
from multiple sources. Instead, a small (336 line) external support library can be used. It attaches a pro-
cess to the various blocking input sources — mouse, keyboard, and perhaps a third user-provided file
descriptor — and funnels their input into a single pipe from which may be read (three types of) events in
the traditional style. This package is a compromise. As discussed in a previous paper [Pike89] I prefer to
free applications from event-based programming. Unfortunately, though, I see no easy way to achieve
this in single-threaded C programs, and am unwilling to require all programmers to master concurrent
programming. It should be noted, though, that even this compromise results in a small and easily under-
stood interface. An example program that uses it is given near the end of the paper.



- 5 -

Graphical output

The file /dev/screen may be read by any client to recover the contents of the entire screen,
such as for printing (see Figure 1). Similarly, /dev/window holds the contents of the current window.
These are read-only files.

Figure 1. A representative 81⁄2 screen, running on a NeXTstation under Plan 9 (with no NeXT
software). In the upper right, a program announces the arrival of mail. In the upper left is a map
displayed by the CPU server that shows the radar reflectance of precipitation in the eastern United
States. In the lower right there is a screen editor, sam [Pike87], and in the lower left an 81⁄2 run-
ning recursively and, inside that instantiation, a previewer for troff output. Underneath the faces
is a small window running the command that prints the screen by passing /dev/screen to the
bitmap printing utility.

To perform graphics operations in their windows, client programs access /dev/bitblt. It
implements a protocol that encodes bitmap graphics operations. Most of the messages in the protocol
(there are 14 messages in all) are transmissions (via a write) from the client to the window system to per-
form a graphical operation such as a bitblt [PLR85] or character-drawing operation; a few include
return information (recovered via a read) to the client. As with /dev/mouse, the /dev/bitblt pro-
tocol is in a defined byte order. Here, for example, is the layout of the bitblt message:

’b’
2 bytes of destination id
2x4 bytes of destination point
2 bytes of source id
4x4 bytes of source rectangle
2 bytes of boolean function code

The message is trivially constructed from the bitblt subroutine in the library, defined as



- 6 -

void bitblt(Bitmap *dst, Point dp, Bitmap *src, Rectangle sr, Fcode c).

The ‘id’ fields in the message belie another property of 81⁄2 : the clients do not store the actual data
for any of their bitmaps locally. Instead, the protocol provides a message to allocate a bitmap, to be
stored in the server, and returns to the client an integer identifier, much like a UNIX file descriptor, to be
used in operations on that bitmap. Bitmap number 0 is conventionally the client’s window, analogous to
standard input for file I/O. In fact, no bitmap graphics operations are executed in the client at all; they are
all performed on its behalf by the server. Again, using the standard remote file operations in Plan 9, this
permits remote machines having no graphics capability, such as the CPU server, to run graphics applica-
tions. Analogous features of the original Andrew window system [Gos86] and of X [Sche86] require
more complex mechanisms.

Nor does 81⁄2 itself operate directly on bitmaps. Instead, it calls another server to do its graphics
operations for it, using an identical protocol. The operating system for the Plan 9 terminals contains an
internal server that implements that protocol, exactly as does 81⁄2 , but for a single client. That server
stores the actual bytes for the bitmaps and implements the fundamental bitmap graphics operations. Thus
the environment in which 81⁄2 runs has exactly the structure it provides for its clients; 81⁄2 reproduces the
environment for its clients, multiplexing the interface to keep the clients separate.

This idea of multiplexing by simulation is applicable to more than window systems, of course, and
has some side effects. Since 81⁄2 simulates its own environment for its clients, it may run in one of its
own windows (see Figure 1). A useful and common application of this technique is to connect a window
to a remote machine, such as a CPU server, and run the window system there so that each subwindow is
automatically on the remote machine. It is also a handy way to debug a new version of the window sys-
tem or to create an environment with, for example, a different default font.

Implementation

To provide graphics to its clients, 81⁄2 mostly just multiplexes and passes through to its own server
the clients’ requests, occasionally rearranging the messages to maintain the fiction that the clients have
unique screens (windows). To manage the overlapping windows it uses the layers model, which is han-
dled by a separate library [Pike83a]. Thus it has little work to do and is a fairly simple program; it is
dominated by a couple of modest-sized switch statements to interpret the bitmap and file server protocols.
The built-in window program and its associated menus and text-management support are responsible for
most of the code.

The operating system’s server is also compact; the version for the 68020 processor, excluding the
implementation of a half dozen bitmap graphics operations, is 1153 lines of C; the graphics operations are
another 1118 lines.

81⁄2 is structured as a set of communicating coroutines, much as discussed in a 1989 paper [Pike89].
One coroutine manages the mouse, another the keyboard, and another is instantiated to manage the state
of each window and associated client. When no coroutine wishes to run, 81⁄2 reads the next file I/O
request from its clients, which arrive serially on the full-duplex communication pipe. Thus 81⁄2 is entirely
synchronous.

The program source is small and compiles in about 10 seconds in our Plan 9 environment. There
are ten source files and one makefile totaling 3860 lines. This includes the source for the window
management process, the cut-and-paste terminal program, the window/file server itself, and a small
coroutine library (proc.c). It does not include the layer library (another 610 lines) or the library to han-
dle the cutting and pasting of text displayed in a window (898 lines), or the general graphics support
library that manages all the non-drawing aspects of graphics — arithmetic on points and rectangles,
memory management, error handling, clipping, — plus events and non-primitive drawing operations such
as circles and ellipses (a final 1797 lines). Not all the pieces of these libraries are used by 81⁄2 itself; a
large part of the graphics library in particular is used only by clients. Thus it is somewhat unfair to 81⁄2
just to sum these numbers, including the 2271 lines of support in the kernel, and arrive at a total imple-
mentation size of 9436 lines of source to implement all of 81⁄2 from the lowest levels to the highest. But
that number gives a fair measure of the complexity of the overall system.



- 7 -

The implementation is also efficient. 81⁄2’s performance is competitive to X windows’. Com-
pared using Dunwoody’s and Linton’s gbench benchmarks on the 68020, distributed with the ‘‘X Test
Suite’’, circles and arcs are drawn about half as fast in 81⁄2 as in X11 release 4 compiled with gcc for
equivalent hardware, probably because they are currently implemented in a user library by calls to the
point primitive. Line drawing speed is about equal between the two systems. Text is drawn about 20%
faster in 81⁄2 and the bitblt test is about four times faster. These numbers vary enough to caution
against drawing sweeping conclusions, but they suggest that 81⁄2’s architecture does not penalize its per-
formance. Finally, 81⁄2 boots in under a second and creates a new window apparently instantaneously.

An example

Here is a complete program that runs under 81⁄2 . It prints the string "hello world" wherever
the left mouse button is depressed, and exits when the right mouse button is depressed. It also prints the
string in the center of its window, and maintains that string when the window is resized.

#include <u.h>
#include <libc.h>
#include <libg.h>

void
ereshaped(Rectangle r)
{

Point p;

screen.r = r;
bitblt(&screen, screen.r.min, &screen, r, Zero); /* clear window */
p.x = screen.r.min.x + Dx(screen.r)/2;
p.y = screen.r.min.y + Dy(screen.r)/2;
p = sub(p, div(strsize(font, "hello world"), 2));
string(&screen, p, font, "hello world", S);

}

main(void)
{

Mouse m;

binit(0, 0); /* initialize graphics library */
einit(Emouse); /* initialize event library */
ereshaped(screen.r);
for(;;){

m = emouse();
if(m.buttons & RIGHTB)

break;
if(m.buttons & LEFTB){

string(&screen, m.xy, font, "hello world", S);
/* wait for release of button */
do; while(emouse().buttons & LEFTB);

}
}

}

The complete loaded binary is a little over 18K bytes on a 68020. This program should be compared to
the similar ones in the excellent paper by Rosenthal [Rose88]. (The current program does more: it also
employs the mouse.) The clumsiest part is ereshaped, a function with a known name that is called
from the event library whenever the window is reshaped or moved, as is discovered inelegantly but ade-
quately by a special case of a mouse message. (Simple so-called expose events are not events at all in
81⁄2 ; the layer library takes care of them transparently.) The lesson of this program, in deference to
Rosenthal, is that if the window system is cleanly designed a toolkit should be unnecessary for simple
tasks.



- 8 -

Status

81⁄2 is in regular daily use by almost all the 60 people in our research center. Some of those people
use it to access Plan 9 itself; others use it as a front end to remote UNIX systems, much as one would use
an X terminal. It has been fairly stable for almost a year.

Some things about 81⁄2 may change. It would be nice if its capabilities were more easily accessible
from the shell. A companion to this paper [Pike91] proposes one way to do this, but that does not include
any graphics functionality. Perhaps an ASCII version of the /dev/bitblt file is a way to proceed;
that would allow, for example, awk programs to draw graphs directly. Finally, 81⁄2 offers no ‘iconization’
of its clients, and probably never will. But it would be helpful for it to provide some quick mechanism
for managing a cluttered screen, and some ideas are being considered. By the time this paper appears, 81⁄2
will probably address this issue. The code is unlikely to grow substantially as a result, however, and
clients will be unaffected by the changes.

Can this style of window system be built on other operating systems? A major part of the design of
81⁄2 depends on its structure as a file server. In principle this could be done for any system that supports
user processes that serve files, such as any system running NFS or AFS [Sun89, Kaza87]. One require-
ment, however, is 81⁄2’s need to respond to its clients’ requests out of order: if one client reads
/dev/cons in a window with no characters to be read, other clients should be able to perform I/O in
their windows, or even the same window. Another constraint is that the 81⁄2 files are like devices, and
must not be cached by the client. NFS cannot honor these requirements; AFS may be able to. Of course,
other interprocess communication mechanisms such as sockets could be used as a basis for a window sys-
tem. One may even argue that X’s model fits into this overall scheme. It may prove easy and worthwhile
to write a small 81⁄2-like system for commercial UNIX systems to demonstrate that its merits can be won
in systems other than Plan 9.

Conclusion

In conclusion, 81⁄2 uses an unusual architecture in concert with the file-oriented interprocess com-
munication of Plan 9 to provide network-based interactive graphics to client programs. It demonstrates
that even production-quality window systems are not inherently large or complicated and may be simple
to use and to program.

Acknowledgements

Helpful comments on early drafts of this paper were made by Doug Blewett, Stu Feldman, Chris
Fraser, Brian Kernighan, Dennis Ritchie, and Phil Winterbottom. Many of the ideas leading to 81⁄2 were
tried out in earlier, sometimes less successful, programs. I would like to thank those users who suffered
through some of my previous 71⁄2 window systems.

References

[Duff90] Tom Duff, ‘‘Rc - A Shell for Plan 9 and UNIX systems’’, Proc. of the Summer 1990 UKUUG
Conf., London, July, 1990, pp. 21-33
[Far89] Far too many people, XTERM(1), Massachusetts Institute of Technology, 1989
[Gos86] James Gosling and David Rosenthal, ‘‘A window manager for bitmapped displays and UNIX’’,
in Methodology of Window Management, edited by F.R.A. Hopgood et al., Springer, 1986
[Kaza87] Mike Kazar, ‘‘Synchronization and Caching issues in the Andrew File System’’, Tech. Rept.
CMU-ITC-058, Information Technology Center, Carnegie Mellon University, June, 1987
[Kill84] Tom Killian, ‘‘Processes as Files’’, USENIX Summer Conf. Proc., Salt Lake City June, 1984
[Pike83] Rob Pike, ‘‘The Blit: A Multiplexed Graphics Terminal’’, Bell Labs Tech. J., V63, #8, part 2,
pp. 1607-1631
[Pike83a] Rob Pike, ‘‘Graphics in Overlapping Bitmap Layers’’, Trans. on Graph., Vol 2, #2, 135-160,
reprinted in Proc. SIGGRAPH ’83, pp. 331-356
[Pike87] Rob Pike, ‘‘The Text Editor sam’’, Softw. - Prac. and Exp., Nov 1987, Vol 17 #11, pp. 813-845
[Pike88] Rob Pike, ‘‘Window Systems Should Be Transparent’’, Comp. Sys., Summer 1988, Vol 1 #3,
pp. 279-296



- 9 -

[Pike89] Rob Pike, ‘‘A Concurrent Window System’’, Comp. Sys., Spring 1989, Vol 2 #2, pp. 133-153
[Pike90] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, ‘‘Plan 9 from Bell Labs’’, Proc.
of the Summer 1990 UKUUG Conf., London, July, 1990, pp. 1-9
[Pike91] Rob Pike, ‘‘A Minimalist Global User Interface’’, USENIX Summer Conf. Proc., Nashville,
June, 1991, this volume
[PLR85] Rob Pike, Bart Locanthi and John Reiser, ‘‘Hardware/Software Tradeoffs for Bitmap Graphics
on the Blit’’, Softw. - Prac. and Exp., Feb 1985, Vol 15 #2, pp. 131-152
[Pres90] David L. Presotto and Dennis M. Ritchie, ‘‘Interprocess Communication in the Ninth Edition
Unix System’’, Softw. - Prac. and Exp., June 1990, Vol 20 #S1, pp. S1/3-S1/17
[Rose88] David Rosenthal, ‘‘A Simple X11 Client Program -or- How hard can it really be to write
‘‘Hello, World’’?’’, USENIX Winter Conf. Proc., Dallas, Jan, 1988, pp. 229-242
[Sche86] Robert W. Scheifler and Jim Gettys, ‘‘The X Window System’’, ACM Trans. on Graph., Vol 5
#2, pp. 79-109
[Sun89] Sun Microsystems, NFS: Network file system protocol specification, RFC 1094, Network Infor-
mation Center, SRI International, March, 1989.


