Rc— A Shell for Plan 9 and UNI X Systems

Tom Duff

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Rc is a command interpreter for Plan 9. It aso runs on a variety of traditional sys-
tems, including SunOS and the Tenth Edition. It provides similar facilities to Bourne's
/bin/sh, with some small additions and mostly lessidiosyncratic syntax. This paper intro-
duces rc's highlights with numerous examples, and discusses its design and why it varies
from Bourne's.

1. Introduction

Plan 9 needs a command-programming language. As porting the Bourne shell to an incompatible new
environment seemed a daunting task, | chose to write a new command interpreter, called rc because it runs
commands. Although tinkering with perfection is a dangerous business, | could hardly resist trying to
‘improve’ on Bourne'sdesign. Thusrcissimilar in spirit but different in detail from Bourne's shell.

The bulk of this paper describes rc’s principal features with many small examples and a few larger ones.
We close with a discussion of the principles guiding rc’s design and why it differs from Bourne's design.
The descriptive sections include little discussion of the rationale for particular features, as individual details
are hard to justify in isolation. The impatient reader may wish to skip to the discussion at the end before
skimming the expository parts of the paper.

2. Simple commands

For the simplest uses rc has syntax familiar to Bourne-shell users. Thus all of the following behave as
expected:

dat e

con alice

who >user. nanes

who >>user. nanmes

we <file

echo [a-f]*.cC

who | we

who; date

cc *.c &

cyntax *.c & cc -g -o cnd *.c
rm-r junk || echo rmfailed!

3. Quotation
An argument that contains a space or one of rc’s other syntax characters must be enclosed in apostrophes
¢

rm’odd file name’

An apostrophe in a quoted argument must be doubled:



echo 'How ’'s your father?

4. Variables

Rc provides variables whose values are lists of arguments. Variables may be given values by typing, for
example:

path=(. /bin /[usr/bin)
user=td
tty=/dev/tty8

The parentheses indicate that the value assigned to pat h isalist of three strings. The variables user and
t t y are assigned lists containing a single string.

The value of avariable can be substituted into acommand by preceding its name with a$, like this:
echo $path

If pat h had been set as above, thiswould be equivalent to
echo . /bin /usr/bin

Variables may be subscripted by numbers or lists of numbers, like this:

echo $pat h(2)
echo $path(3 2 1)

These are equivalent to

echo /bin
echo /usr/bin /bin .

There can be no space separating the variable’s name from the left parenthesis. Otherwise, the subscript
would be considered a separate parenthesized list.

The number of stringsin a variable can be determined by the $# operator. For example,
echo $#path

would print the number of entriesin $pat h.

The following two assignments are subtly different:

enpt y=()
nul | ="’

The first sets enpt y to a list containing no strings. The second sets nul | to alist containing a single
string, but the string contains no characters.

Although these may seem like more or less the same thing (in Bourne's shell, they are indistinguishable),
they behave differently in almost all circumstances. Among other things

echo $#enpty
prints 0, whereas
echo $#nul

prints 1.
All variables that have never been set have thevalue () .

5. Arguments

When rcisreading itsinput from afile, the file has access to the arguments supplied on rc’s command line.
The variable $* initially has the list of arguments assigned to it. The names $1, $2, etc. are synonyms for
$*(1),%$*(2),etc. Inaddition, $0 isthe name of thefile from which rc'sinput is being read.



6. Concatenation
Rc has a string concatenation operator, the caret ™, to build arguments out of pieces.
echo hully gully
is exactly equivalent to
echo hul lygul ly
Suppose variablei contains the name of acommand. Then
cc -0 $i S$i".c
might compile the command’ s source code, leaving the result in the appropriate file.
Concatenation distributes over lists. The following

echo (abc)" (12 3)
src=(nmai n subr io0)
cc $src”.c

areequivalent to

echo al b2 c3
cc main.c subr.c io.c

In detail, the rule is: if both operands of ~ are lists of the same non-zero number of strings, they are con-
catenated pairwise. Otherwise, if one of the operands is a single string, it is concatenated with each mem-
ber of the other operand in turn. Any other combination of operandsisan error.

7. Freecarets

User demand has dictated that rc insert carets in certain places, to make the syntax look more like the
Bourne shell. For example, this:

cc -$flags $stens.c
isequivalent to
cc -"$flags $stens”.c

In general, rc will insert © between two arguments that are not separated by white space. Specifically,
whenever oneof $" * follows a quoted or unquoted word, or an unquoted word follows a quoted word with
no intervening blanks or tabs, a” isinserted between the two. If an unquoted word immediately following
a$ contains a character other than an alphanumeric, underscore or *, a” is inserted before the first such
character.

8. Command substitution

It is often useful to build an argument list from the output of a command. Rc alows a command, enclosed
in braces and preceded by aleft quote, * {. . . }, anywhere that an argument is required. The command is
executed and its standard output captured. The characters stored in the variable i f s are used to split the
output into arguments. For example,

cat ‘{Is -tr|sed 10q}

will catenate the ten oldest filesin the current directory in temporal order.

9. Pipeline branching

The normal pipeline notation is general enough for almost all cases. Very occasionaly it is useful to have
pipelines that are not linear. Pipeline topologies more general than trees can require arbitrarily large pipe
buffers, or worse, can cause deadlock. Rc has syntax for some kinds of non-linear but treelike pipelines.
For example,

cmp <{old} <{new}



will regression test a new version of acommand. < or > followed by a command in braces causes the com-
mand to be run with its standard output or input attached to apipe. The parent command (cnp in the exam-
ple) is started with the other end of the pipe attached to some file descriptor or other, and with an argument
that will connect to the pipe when opened (e.g. / dev/fd/ 6.) On systems without / dev/ f d or some-
thing similar (SunOS for example) this feature does not work.

10. Exit status

When a command exits it returns status to the program that executed it. On Plan 9 status is a character
string describing an error condition. On normal termination it is empty.

Rc captures commands' exit statuses in the variable $st at us. For a simple command the value of
$st at us isjust as described above. For apipeline $st at us is set to the concatenation of the statuses of
the pipeline components with | charactersfor separators.

Rc has a several kinds of control flow, many of them conditioned by the status returned from previously
executed commands. Any $st at us containing only 0’sand | ’s has boolean value true. Any other status
isfalse.

11. Command grouping
A sequence of commands enclosedin{} may be used anywhere acommand is required. For example:

{sl eep 3600;echo "Tinme’’'s up!’'}&
will wait an hour in the background, then print amessage. Without the braces:
sl eep 3600;echo 'Time'’s up!’ &

thiswould lock up the terminal for an hour, then print the message in the background!

12. Control flow —f or

A command may be executed once for each member of alist by typing, for example:
for(i in printf scanf putchar) look $i /usr/td/lib/dw. dat

Thislooks for each of thewordspri nt f, scanf and put char inthegiven file. The genera formis
for(name in list) command

or
f or (name) command

In the first case command is executed once for each member of list with that member assigned to variable
name. If i n listisnot given, $* isused.

13. Conditional execution — i f
Rc aso provides ageneral if-statement. For example:
if(cyntax *.c) cc -g -o cmd *.c

runs the C compiler whenever cynt ax finds no problems with *. ¢c. An ‘if not’ statement provides a
two-tailed conditional. For example:

for(i){
if(test -f /tnp/$i) echo $i already in /tnp
if not cp $i /tnp

}

Thisloops over each filein $* , copying to/ t np those that do not already appear there, and printing a mes-
sage for those that do.



14. Control flow —whi | e
Rc’'s while statement looks like this:

whi | e(newer subr.c subr.o) sleep 5

Thiswaits until subr . o isnewer than subr . ¢ (presumably because the C compiler finished with it.)

15. Control flow —sw t ch
Rc provides a switch statement to do pattern-matching on arbitrary strings. Its general formis

swi t ch(word) {
case pattern...
commands
case pattern ...
commands

Rc attempts to match the word against the patterns in each case statement in turn. Patterns are the same as
for filename matching, except that / and thefirst charactersof . and. . need not be matched explicitly.

If any pattern matches, the commands following that case up to the next case (or the end of the switch) are
executed, and execution of the switch is complete. For example,

swit ch( $#*) {
case 1
cat >>$1
case 2
cat >>$2 <$1
case *
echo ' Usage: append [fron] to’
}

isan append command. Called with one file argument, it tacks standard input to itsend. With two, the first
is appended to the second. Any other number elicits a usage message.

Thebuilt-in™ command also matches patterns, and is often more concise than a switch. Itsargumentsare a
string and a list of patterns. It sets $st at us to true if and only if any of the patterns matches the string.
The following example processes option arguments for the man(1) command:

opt =()
while(™ $1 -* [1-9] 10){
swi tch($1){
case [1-9] 10
sec=$1 secn=$1
case -f
c=f s=f
case -[qgwnt]
cmd=%$1
case -T*
T=%$1
case -*
opt =( $opt $1)
}
shift



16. Functions
Functions may be defined by typing
fn name { commands }

Subsequently, whenever a command named name is encountered, the remainder of the command’s argu-
ment list will assigned to $* and rc will execute the commands. The value of $* will be restored on com-
pletion. For example:

fnag{
gre -e $1 *.[hcyl]
}

defines g pattern to look for occurrences of patternin all program source filesin the current directory.
Function definitions are deleted by writing

fn name

with no function body.

17. Command execution

Up to now we've said very little about what rc does to execute a simple command. If the command name
is the name of afunction defined using f n, the function is executed. Otherwise, if it is the name of a built-
in command, the built-in is executed directly by rc. Otherwise, if the name contains a/ , it is taken to be
the name of a binary program and is executed using exec(2). If the name contains no / , then directories
mentioned in the variable $pat h are searched until an executable file is found.

18. Built-in commands

Several commands are executed internally by rc because they are difficult or impossible to implement oth-
erwise.
[-i] file..
Execute commands from file. $* is set for the duration to the reminder of the argument list follow-
ing file. $pat h isused to search for file. Option - i indicatesinteractive input — a prompt (found in
$pr onpt ) is printed before each command is read.

builtin command...
Execute command as usual except that any function named command isignored. For example,

fn cd{
builtin cd $* && pwd

}
defines a replacement for the cd built-in (see below) that announces the full name of the new direc-
tory.
cd [dir]

Change the current directory to dir. The default argument is $hone. $cdpat h isalist of placesin
which to search for dir.

eval [arg..]
The arguments are catenated separated by spaces into a string, read as input to rc, and executed. For
example,

x="$y’
y=Doody
eval echo Howdy, $x

would echo
Howdy, Doody

since the arguments of eval would be



echo Howdy, $y

after substituting for $x.

shift [n]
Delete thefirst n (default 1) elements of $* .

wait [ pid]
Wait for the process with the given pid to exit. If no pid is given, all outstanding processes are
waited for.

whati s name...
Print the value of each name in aform suitable for input to rc. The output is an assignment to a vari-
able, the definition of a function, acall to bui | t i n for a built-in command, or the path name of a
binary program. For example,

whatis path g cd who
might print

path=(. /bin /usr/bin)
fn g {gre -e $1 *.[hycl]}
builtin cd

/ bi n/ who

~ subject pattern ...
The subject is matched against each pattern in turn. Onamatch, $st at us isset to true. Otherwise,
itissetto’ no mat ch’ . Patterns are the same as for filename matching. The patterns are not sub-
jected to filename replacement before the ™ command is executed, so they need not be enclosed in
quotation marks, unless of course, aliteral match for * [ or ? isrequired. For example

T %12
matches any single character, whereas
T 81 ?”

only matches aliteral question mark.

19. Advanced I/O Redirection

Rc alows redirection of file descriptors other than 0 and 1 (standard input and output) by specifying the file
descriptor in square brackets[ ] after the< or >. For example,

cc junk.c >[2]junk.diag
saves the compiler’sdiagnosticsinj unk. di ag.

File descriptors may be replaced by a copy, in the sense of dup(2), of an aready-open file by typing, for
example

cc junk.c >[2=1]

This replaces file descriptor 2 with a copy of file descriptor 1. It is more useful in conjunction with other
redirections, like this
cc junk.c >junk.out >[2=1]

Redirections are evaluated from left to right, so this redirects file descriptor 1 to j unk. out , then points
file descriptor 2 at the samefile. By contrast,

cc junk.c >[2=1] >junk. out
Redirects file descriptor 2 to a copy of file descriptor 1 (presumably the terminal), and then directs file

descriptor 1 at afile. Inthefirst case, standard and diagnostic output will be intermixed inj unk. out . In
the second, diagnostic output will appear on the terminal, and standard output will be sent to the file.

File descriptors may be closed by using the duplication notation with an empty right-hand side. For



example,
cc junk.c >[27]
will discard diagnostics from the compilation.
Arbitrary file descriptors may be sent through a pipe by typing, for example
cc junk.c |[[2] grep -v ' ¥
This deletes those ever-so-annoying blank lines from the C compiler’s output. Note that the output of
gr ep still appears on file descriptor 1.

Very occasionally you may wish to connect the input side of a pipe to some file descriptor other than zero.
The notation

cmdl | [5=19] cnd2
creates a pipeline with crrd1’ s file descriptor 5 connected through a pipe to cnd2’ s file descriptor 19.

20. Heredocuments

Rc procedures may include data, called ‘* here documents’’, to be provided as input to commands, as in this
version of the tel command

for(i) grep $i <<!

nls 2T-402 2912
norman 2C-514 2842
pj w 2T-502 7214

A here document isintroduced by the redirection symbol <<, followed by an arbitrary eof marker (! inthe
example). Lines following the command, up to aline containing only the eof marker are saved in a tempo-
rary filethat it connected to the command’ s standard input when it is run.

Rc does variable substitution in here documents. The following subst command:

ed $3 <<ECF
g/ $1/s//%$2/ g
w

EOF

changes all occurrences of $1 to $2 infile $3. To include aliteral $ in a here document, type $$. If the
name of avariable isfollowed immediately by ~ , the caret is deleted.

Variable substitution can be entirely suppressed by enclosing the eof marker following << in quotation
marks.

Here documents may be provided on file descriptors other than O by typing, for example
cmd <<[ 4] End

End

21. Signals

Rc scripts normally terminate when an interrupt is received from the terminal. A function with the name of
asignal, in lower case, is defined in the usua way, but called when rc receives the signal. Signals of inter-
est are:

si ghup
Hangup. The controlling teletype has disconnected from rc.
si gi nt
Theinterrupt character (usualy ASCII del) was typed on the controlling terminal.



sigquit
The quit character (usually ASCII fs, ctrl-\) was typed on the controlling terminal.

sigterm

Thissignal isnormally sent by kill(1).
sigexit

An artificial signal sent when rc is about to exit.
Asan example,

fn sigint{
rm/tnp/junk
exit

}

sets atrap for the keyboard interrupt that removes atemporary file before exiting.

Signals will beignored if the signal routineisset to {} . Signals revert to their default behavior when their
handlers' definitions are del eted.

22. Environment

The environment is alist of name-value pairs made available to executing binaries. On Plan 9, the environ-
ment is stored in afile system named #e, normally mounted on/ env. The value of each variableis stored
in a separate file, with components terminated by ASCII nuls. (Thisis not quite as horrendous as it sounds,
the file system is maintained entirely in core, so no disk or network access is involved.) The contents of
/ env are shared on a per-process group basis — when anew process group is created it effectively attaches
/ env to anew file system initialized with a copy of the old one. A consequence of this organization is that
commands can change environment entries and see the changes reflected in rc.

There is not currently a way on Plan 9 to place functions in the environment, although this could easily
done by mounting another instance of #e on another directory. The problem is that currently there can be
only oneinstance of #e per process group.

23. Local Variables

It is often useful to set avariable for the duration of a single command. An assignment followed by a com-
mand has this effect. For example

a=gl obal
a=l ocal echo $a
echo %a

will print

| ocal
gl obal

Thisworks even for compound commands, like

f=/fairly/long/filelnanme {
{ we $f; spell $f; diff $f.old $f } |
pr -h 'Facts about '$f | Ip -ddp

24. Examples— cd, pwd

Hereisa pair of functions that provide enhanced versions of the standard cd and pwd commands. (Thanks
to Rob Pike for these.)



-10-

psl="%" # default pronpt
t ab=" ’ # a tab character
fn pbd{

/bin/pwd|sed 's;.*/;;’
}
fn cd{

builtin cd $1 &&
swi t ch($#*) {
case 0
di r =$hone
pronpt =($ps1l $t ab)
case *
swi t ch($1)
case /*
dir=%$1
pronmpt =(* { pbd} " $psl $tab)
case */* .. *
dir=()
pronpt =(‘ { pbd} "~ $psl $tab)
case *
di r=()
pronpt =($1"$psl $t ab)
}
}
}
fn pwd{
if(" $#dir 0)
di r="{/bi n/ pwd}
echo $dir
}
Function pwd is a version of the standard pwd that caches its value in variable $di r , because the genuine
pwd can be quite slow to execute.
Function pbd is a helper that prints the last component of a directory name. Function cd calls the cd
built-in, and checks that it was successful. If so, it sets $di r and $pr onpt . The prompt will include the
last component of the current directory (except in the home directory, where it will be null), and $di r will
be reset either to the correct value or to () , so that the pwd function will work correctly.

25. Examples— man
The man command prints pages from of the Programmer’s Manual. It iscalled, for example, as

man 3 isatty
man rc
man -t cat

In the first case, the page for isatty in section 3 is printed. In the second case, the manual page for rc is

printed. Since no manual section is specified, all sections are searched for the page, and it is found in sec-
tion 1. Inthethird case, the page for cat istypeset (the-t option).



-11-

cd /n/bowel | /usr/man || {
echo $0: Manual not on line! >[1=2]
exit 1

}

NT=n # default nroff
s='*' # section, default try al
for(i) switch($i){
case -t
NT=t
case -n
NT=n
case -*
echo Usage: $0 '[-nt] [section] page ...’  >[1=2]
exit 1
case [1-9] 10
s=$i
case *
eval ’'pages=man’' $s/$i’.*’
for(page in $pages)
if(test -f $page)
$NT rof f -nman $page
if not
echo $0: $i not found >[1=2]
}
}

Note the use of eval to make alist of candidate manual pages. Without eval , the* stored in $s would
not trigger filename matching — it’s enclosed in quotation marks, and even if it weren't, it would be
expanded when assigned to $s. Eval causes its arguments to be re-processed by rc’s parser and interpreter,
effectively delaying evaluation of the* until the assignment to $pages.

26. Examples— holmdel

The following rc script plays the deceptively simple game holmdel, in which the players alternately name
Bell Labslocations, the winner being the first to mention Holmdel.

This script isworth describing in detail (rather, it would be if it weren’t so silly.)

Variable $t is an abbreviation for the name of a temporary file. Including $pi d, initidlized by rc to its
process-id, in the names of temporary files insures that their names won't collide, in case more than one
instance of the script isrunning at atime.

Function r ead’s argument is the name of a variable into which aline gathered from standard input is read.
$i f s issettojust anewline. Thusr ead’sinput isnot split apart at spaces, but the terminating newlineis
deleted.

A handler is set to catch si gi nt, si gquit, and si ghup, and the artificial si gexit signal. It just
removes the temporary file and exits.

Thetemporary fileisinitialized from a here document containing a list of Bell Labs |ocations, and the main
loop starts.

First, the program guesses a location (in $I ab) using the f or t une program to pick a random line from
thelocation list. It printsthe location, and if it guessed Holmdel, prints a message and exits.

Then it usesther ead function to get lines from standard input and validity-check them until it gets a legal
name. Note that the condition part of awhi | e can be a compound command. Only the exit status of the
last command in the sequence is checked.

Again, if theresult isHolmdel, it prints a message and exits. Otherwise it goes back to the top of the loop.



-12 -

t =/ t np/ hol ndel $pi d
fn read{
$1="{awk '{print;exit}’'}
}
ifs=
’ # just a newine
fn sigexit sigint sigquit sighup{
rm-f $t
exit
}
cat <<'I’ >$t
Al | ent own
Atl ant a
Cedar Crest
Chest er
Col unbus
El mhur st
Ful l erton
Hol ndel
Indian Hill
Merri mack Vall ey
Morri st own
Pi scat away
Readi ng
Short Hills
South Plainfield
Sumni t
Whi ppany
West Long Branch
|
whil e(true)(
| ab=*{/usr/ganes/fortune $t}
echo $l ab
if(~ $lab Hol ndel){
echo You | ose.
exit
}
while(read lab; ! grep -i -s $lab $t) echo No such | ocation.
if(” $lab [hH ol ndel){
echo You win.
exit

}
27. Discussion

Steve Bourne’'s / bi n/ sh is extremely well-designed; any successor is bound to suffer in comparison. |
have tried to fix its best-acknowledged shortcomings and to simplify things wherever possible, usualy by
omitting unessential features. Only when irresistibly tempted have | introduced novel ideas. Obviously |
have tinkered extensively with Bourne's syntax, that being where his work was maost open to criticism.

The most important principlein rc’s design is that it’s not a macro processor. Input is never scanned more
than once by the lexical and syntactic analysis code (except, of course, by the eval command, whose
raison d etreisto break the rule).

Bourne shell scripts can often be made to run wild by passing them arguments containing spaces. These
will be split into multiple arguments using | FS, often as inopportune times. In rc, values of variables,
including command line arguments, are not re-read when substituted into a command. Arguments have
presumably been scanned in the parent process, and ought not to be re-read.

Why does Bourne re-scan commands after variable substitution? He needs to be able to store lists of



-13-

arguments in variables whose values are character strings. If we eliminate re-scanning, we must change the
type of variables, so that they can explicitly carry lists of strings.

This introduces some conceptual complications. We need a notation for lists of words. There are two dif-
ferent kinds of concatenation, for strings — $a” $b, and lists — ($a $b) . The difference between ()
and '’ is confusing to novices, although the distinction is arguably sensible — a null argument is not the
same as no argument.

Bourne also rescans input when doing command substitution. This is because the text enclosed in back-
guotes is not properly a string, but a command. Properly, it ought to be parsed when the enclosing com-
mand is, but this makesit difficult to handle nested command substitutions, like this:

size=*w -1 \'ls -t|sed 1q\‘"*

The inner back-quotes must be escaped to avoid terminating the outer command. This can get much worse
than the above example; the number of \ ’s required is exponential in the nesting depth. Rc fixes this by
making the backquote a unary operator whose argument is a command, like this:

size="{we -1 ‘{ls -t]|sed 1q}}
No escapes are ever required, and the whole thing is parsed in one pass.

For similar reasons rc defines signal handlers as though they were functions, instead of associating a string
with each signal, as Bourne does, with the attendant possibility of getting a syntax error message in
response to typing the interrupt character. Since rc parses input when typed, it reports errors when you
make them.

For al this trouble, we gain substantial semantic simplifications. There is no need for the distinction
between $* and $@ There is no need for four types of quotation, nor the extremely complicated rules that
govern them. Inrc you use quotation marks exactly when you want a syntax character to appear in an argu-
ment. | FSisno longer used, except in the one case where it was indispensable: converting command out-
put into argument lists during command substitution.

This aso avoids an important security hole [Ree88]. System(3) and popen(3) call / bi n/ sh to execute a
command. It is impossible to use either of these routines with any assurance that the specified command
will be executed, even if the caller of system or popen specifies afull path name for the command. This can
be devastating if it occurs in a set-userid program. The problem is that | FS is used to split the command
into words, so an attacker can just set | FS=/ in his environment and leave a Trojan horse named usr or
bi n in the current working directory before running the privileged program. Rc fixes this by not ever res-
canning input for any reason.

Most of the other differences between rc and the Bourne shell are not so serious. | eliminated Bourne's
peculiar forms of variable substitution, like

echo ${a=b} ${c-d} ${e?error}
because they are little used, redundant and easily expressed in less abstruse terms. | deleted the builtins

export,readonly, break, continue,read,return,set,tinmes andunset becausethey seem
redundant or only marginally useful.

Where Bourn€e's syntax draws from Algol 68, rc's is based on C or Awk. This is harder to defend. |
believe that, for example

if(test -f junk) rmjunk
is better syntax than
if test -f junk; then rmjunk; fi

because it is less cluttered with keywords, it avoids the semicolons that Bourne requires in odd places, and
the syntax characters better set off the active parts of the command.

The one bit of large-scale syntax that Bourne unquestionably does better than rc isthei f statement with
el se clause. Rc'si f hasnoterminating f i -like bracket. Asaresult, the parser cannot tell whether or not
to expect an el se clause without looking ahead initsinput. The problem isthat after reading, for example



-14 -

if(test -f junk) echo junk found

in interactive mode, rc cannot decide whether to execute it immediately and print $pronpt (1), or to
print $pr onpt (2) and wait for the el se to be typed. In the Bourne shell, thisis not a problem, because
thei f command must end with f i , regardless of whether it containsan el se or not.

Rc’'s admittedly feeble solution is to declare that the el se clause is a separate statement, with the semantic
proviso that it must immediately follow ani f,andtocall iti f not rather than el se, asareminder that
something odd is going on. The only noticeable consequence of this is that the braces are required in the
construction

for(i){
if(test -f $i) echo $i found
if not echo $i not found

}

and that rc resolvesthe *‘ dangling else’’ ambiguity in opposition to most peopl€’ s expectations.

It is remarkable that in the four most recent editions of the UNIX system programmer’s manual the Bourne
shell grammar described in the manual page does not admit the command who| we. Thisis surely an over-
sight, but it suggests something darker: nobody really knows what the Bourne shell’s grammar is. Even
examination of the source code is little help. The parser is implemented by recursive descent, but the rou-
tines corresponding to the syntactic categories al have a flag argument that subtly changes their operation
depending on the context. Rc’s parser isimplemented using yacc, so | can say precisely what the grammar
is.

Itslexical structure is harder to describe. | would simplify it considerably except for two things. Thereisa
lexical kludge to distinguish between parentheses that immediately follow a word with no intervening
spaces and those that don’t that | would eliminate if there were a reasonable pair of characters to use for
subscript brackets. | could also eliminate the insertion of free caretsif users were not adamant about it.

28. Acknowledgements

Rob Pike, Howard Trickey and other Plan 9 users have been insistent, incessant sources of good ideas and
criticism. Some examples in this document are plagiarized from [Bou78], as are most of rc’s good features.

29. References

Bou78. S. R. Bourne, ‘*UNIX Time-Sharing System: The UNix Shell,”" Bell System Technical Journal
57(6), pp- 1971-1990 (July-August 1978).

ReeB8. J. Reeds, ‘‘/ bi n/ sh: the biggest UNIX security loophole,”” 11217-840302-04TM, AT&T Bell
Laboratories (1988).



