
Sixteen Ways to Stack a Cat

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper presents a series of examples of how to represent stacks in a program. In
doing so it demonstrates some of the fundamental techniques and tradeoffs of data hiding
as seen in languages such as C, Modula2, and Ada. Since all the examples are written in
C++ it also demonstrates the flexibility of C++’s mechanisms for expressing data hiding
and access.

1 Introduction

Consider representing a stack of objects of some type in a program. Several issues will affect our
design of the stack class: ease of use, run time efficiency, cost of recompilation after a change. We will
assume that messing around with the representation is unacceptable so that data hiding for the representa-
tion is a must. We will assume that many stacks are necessary. The type of the elements on the stacks is of
no interest here so we will simply call it cat. The implementations of the various versions of stacks are
left as an exercise for the reader.

Please note that the purpose is to illustrate the diversity of data hiding techniques, not to show how best
to represent stacks in C++. The techniques shown here apply to a variety of types – most of which are more
interesting than stacks – and will be used in conjunction with other techniques. For example, if you actu-
ally wanted to build a better stack for C++ you would probably start by making cat a parameter, that is,
use templates†.

This paper is a fairly lighthearted play with C++ features and techniques. I think it has something to
delight and possibly horrify novices and seasoned C++ programmers alike. Most of the techniques shown
have serious uses, though.

2 Files as Modules

Consider the traditional C notion of a file as a module. First we define the interface as a header file:

// stack interface, stack.h:

typedef int stack_id;

stack_id create_stack(int);
void destroy_stack(stack_id);

void push_stack(stack_id,cat);
cat pop_stack(stack_id);

The integer argument to create_stack is the maximum size of the desired stack. We can now use
stacks like this:

__________________
† See Chapter 14 of Ellis&Stroustrup: The Annotated C++ Reference Manual. Addison Wesley. 1990.



- 2 -

#include "stack.h"

void f(int sz, cat kitty)
{

stack_id s = create_stack(sz);
push_stack(s,kitty);
cat c2 = pop_stack(s);
destroy_stack(s);

}

This is rather primitive, though. Stacks are numbered, rather than named; the concept of the address of
a stack is ill defined; copying of stacks is undefined; the lifetimes of stacks are exclusively under control of
the users; the technique relies on the convention of .h files and on comments to express the concept of a
stack; the names of the stack functions are clumsy.

From a C++ perspective, the problem is that there are no stack objects defined. These stacks do not
obey the general language rules for naming, creation, destruction, access, etc. Instead, little ‘‘cookies’’ (the
stack_ids) are passed to functions that manipulate stack representations.

Note that in many contexts it would be reasonable not to impose a maximum size on a stack. Not
imposing a maximum would allow a noticeable simplification of the stack interface. However, this would
decrease the value of the stack example as a vehicle for discussion of general data hiding issues because
most types do require arguments to the operations that create objects.

3 Stack Identifiers

We can do a little better. First let us make stack_id a genuine type:

// stack interface, stack.h:

struct stack_id { int i; };

stack_id create_stack(int);
void destroy_stack(stack_id);

void push_stack(stack_id,cat);
cat pop_stack(stack_id);

This at least will prevent us from accidentally mixing up stack identifiers and integers:

#include "stack.h"

void f(int sz, cat kitty)
{

stack_id s = create_stack(sz);
push_stack(s,kitty);
cat c2 = pop_stack(sz); // error: stack_id argument expected
destroy_stack(s);

}

This error would not have been caught by the compiler given the first definition of stack_id. These first
two versions both have the nice property that the implementation is completely hidden so that it can be
changed without requiring recompilation of user code as long as the interface remains unchanged.

4 Modules

Now let us use a class to specify this stack module. Doing that will allow us to avoid polluting the glo-
bal name space and relying on convention and comments to specify what is and isn’t part of a stack’s inter-
face:



- 3 -

// stack interface, stack.h:

class stack {
public:

struct id { int i; };

static id create(int);
static void destroy(id);

static void push(id,cat);
static cat pop(id);

};

We can use this module like this:

#include "stack.h"

void f(int sz, cat kitty)
{

stack::id s = stack::create(sz);
stack::push(s,kitty);
cat c2 = stack::pop(s);
stack::destroy(s);

}

This looks very much like a Modula-2 module. We don’t have a ‘with’ or ‘use’ construct to avoid the repe-
tition of ‘‘stack::’’. For example:

void f(int sz, cat kitty)
{

use (stack) { // pseudo code
id s = create(sz);
push(s,kitty);
cat c2 = pop(s);
destroy(s);

}
}

However, such a construct for merging name spaces is a syntactic detail and does not always lead to more
readable code. Further, an even more radical simplification of the notation is achieved in section 10.

Note that static member functions were used to indicate that the member functions do not operate on
specific objects of class stack; rather, class stack is only used to provide a name space for stack oper-
ations. This will be made explicit below.

5 Modules with Sealed Identifiers

To make the correspondence to Modula-2 modules more exact, we need to stop people from messing
around with the stack identifiers and stop them from trying to create (C++ style) stack objects:



- 4 -

// stack interface, stack.h:

class stack {
public:

class id {
friend stack;

private:
int i;

};

static id create(int);
static void destroy(id);

static void push(id,cat);
static cat pop(id);

private:
virtual dummy() = 0;

};

The representation of an id is now accessible only to class stack, ‘‘the implementation module for
stacks,’’ and class stack is an abstract class so that no objects of class stack can be created:

stack x; // error: declaration of object of abstract class stack

The use of a pure virtual function to prevent the creation of objects is a bit obscure, but effective. An
alternative technique would have been to give stack a private constructor.

Naturally, the example of stack usage from section 4 works exactly as before.

6 Packages

In the style of Modula-2, we are now passing around ‘‘little cookies’’ (opaque types) used by the imple-
mentation module to identify the objects. If we want we can pass around the objects themselves (or point-
ers to them) in the style of Ada:

// stack interface, stack.h:

class stack {
public:

class rep {
friend stack;

private:
// actual representation of a stack object

};

typedef rep* id;

static id create(int);
static void destroy(id);

static void push(id,cat);
static cat pop(id);

private:
virtual dummy() = 0;

};

The typedef is redundant, but it allows our user code to remain unchanged:



- 5 -

#include "stack.h"

void f(int sz, cat kitty)
{

stack::id s = stack::create(sz);
stack::push(s,kitty);
cat c2 = stack::pop(s);
stack::destroy(s);

}

That rep is very much like an Ada private type. Users can pass it around but not look into it.
One disadvantage is that by placing the representation of stacks in the declaration of class stack we

force recompilation of user code when that representation changes. This can lead to a major increase in
compilation time. Actually, this recompilation isn’t necessary, because the user code and that code’s use of
information about the implementation was left unchanged. A reasonably smart dependency analyser could
deduce that no recompilation of user code is necessary after even a radical change to the representation.
However, a dumb (that is, time stamp on source-file based) dependency analyser will not deduce that and
will recompile user code just because the representation was changed. A smart dependency analyser will
rely on smaller units of change, on understanding of the semantics of C++, or on both to minimize recompi-
lation. Smart dependency analysers are rumored to exist, but they are not widely available.

On the positive side, the representation information is now available to the compiler when compiling
user code so that genuine local variables can be declared and used:

#include "stack.h"

void g(int sz, cat kitty)
{

stack::rep s;
stack::push(&s,kitty);
cat c2 = stack::pop(&s);

}

This is unlikely to work without additional code in the implementation, though, unless some mechanism for
initializing a stack representation exists. This could be done by adding suitable constructors and destructors
to class rep, but it would be more in the spirit of packages to provide an explicit initialization function. It
would also be natural to support use reference arguments to eliminate most explicit pointers.

// stack interface, stack.h:

class stack {
public:

class rep {
friend stack;
// actual representation of a stack object

};

static rep* create(int);
static void destroy(rep&);

static void initialize(rep&,int);
static void cleanup(rep&);

static void push(rep&,cat);
static cat pop(rep&);

private:
virtual dummy() = 0;

};

The create() function is now redundant (a user can write one without special help from the class), but I
have left it in to cater for code and coding styles that relies on it. If needed, it could be made to return a ref-
erence instead of a pointer.



- 6 -

#include "stack.h"

void h(int sz, cat kitty)
{

stack::rep s;
stack::initialize(s,sz);
stack::push(s,kitty);
cat c2 = stack::pop(s);
stack::cleanup(s);

}

The cleanup() operation is needed because the initialize() operation and/or the push()
operation are likely to grab some free store to hold the elements. Unless we want to rely on a garbage col-
lector we must clean up or accept a memory leak.

Now enough information is available to the compiler to make inlining of operations such as
initialize(), push(), and pop() feasible even in an implementation with genuine separate compi-
lation. The definitions of the functions we want inlined can simply be placed with the type definition:

// stack interface, stack.h:

class stack {
public:

class rep {
friend stack;
// actual representation of a stack object

};

// ...

static cat pop(rep& x)
{ // extract a cat from the representation of stack x

// return that cat
}

// ...
};

Inlining and genuine local variables can be essential to make data hiding techniques affordable in appli-
cations where run time efficiency is at a premium.

7 Packages with Controlled Representations

Alternatively, if we did not want users to allocate reps directly we could control the creation and copy-
ing of reps by making these operations private:



- 7 -

// stack interface, stack.h:

class stack {
public:

class rep {
friend stack;

// actual representation of a stack object

rep(int); // constructor
rep(const rep&); // copy constructor
void operator=(const rep&); // assignment operator

};

static rep* create(int);
static void destroy(rep&);

static void initialize(rep&,int);
static void cleanup(rep&);

static void push(rep&,cat);
static cat pop(rep&);

private:
virtual dummy() = 0;

};

This ensures that only the stack functions can create reps:

stack::rep* stack::create(int i)
{

rep* p = new rep(i); // fine: create is a member of stack
// ...
return p;

}

f()
{

stack::rep s(10); // error: f() cannot access rep::rep(): private member
}

Naturally, the example of stack usage from section 6 works exactly as before.

8 Packages with Implicit Indirection

If we are not interested in inlining but prefer to minimize recompilation costs even when we don’t have
a smart dependency analyser, we can place the representation ‘‘elsewhere:’’



- 8 -

// stack interface, stack.h:

class stack_rep;

class stack {
public:

typedef stack_rep* id;

static id create(int);
static void destroy(id);

static void push(id,cat);
static cat pop(id);

private:
virtual dummy() = 0;

};

This scheme keeps implementation details not only inaccessible to users but also out of sight. With this
definition (alone) a user cannot allocate stack_reps. Unfortunately C++ does not allow you to define a
class ‘‘elsewhere’’ and have its name local to another class. Consequently, the name stack_rep must be
global.

The indirection (implied by the use of id) is implicit to the users of stacks and explicit in the imple-
mentation of stacks.

9 Simple Minded Types

One simple improvement would be to put the operations that create and destroy stack_reps into
class stack_rep. Actually, for a C++ programmer it would be natural to put all the operations into the
rep and rename it ‘‘stack:’’

// stack interface, stack.h:

class stack {
// actual representation of a stack object

public:
typedef stack* id;

static id create(int);
static void destroy(id);

static void initialize(id,int);
static void cleanup(id);

static void push(id,cat);
static cat pop(id);

};

so that we can write:

#include "stack.h"

void f(int sz, cat kitty)
{

stack s;
stack::initialize(&s,sz);
stack::push(&s,kitty);
cat c2 = stack::pop(&s);
stack::cleanup(&s);

}

The redundant use of the typedef ensures that our original program still compiles:



- 9 -

#include "stack.h"

void g(int sz, cat kitty)
{

stack* p = stack::create(sz);
stack::push(p,kitty);
cat c2 = stack::pop(p);
stack::destroy(p);

}

The likely difference between f() and g() is two memory management operations (a new in create
and a delete in destroy).

10 Types

Now all we have to do is to make the functions non-static and give the constructor and destructor their
proper names:

// stack interface, stack.h:

class stack {
// actual representation of a stack object

public:
stack(int size);
˜stack();

void push(cat);
cat pop();

};

We can now use the C++ member access notation:

#include "stack.h"

void f(int sz, cat kitty)
{

stack s(sz);
s.push(kitty);
cat c2 = s.pop();

}

Here we rely on the implicit calls of the constructor and destructor to shorten the code.

11 Types with Implicit Indirection

If we want the ability to change the representation of a stack without forcing the recompilation of users
of a stack we must reintroduce a representation class rep and let stack objects hold only pointers to
reps:



- 10 -

// stack interface, stack.h:

class stack {

struct rep {
// actual representation of a stack object

};

rep* p;
public:

stack(int size);
˜stack();

void push(cat);
cat pop();

};

The indirection is invisible to the user.
Naturally, to take advantage of this indirection to avoid re-compilation of user code after changes to the

implementation we must avoid inline functions in stack. If our dependency analyser is dumb we might
have to pace representation class rep ‘‘elsewhere’’ as was done in section 8 above.

12 Multiple Representations

In all of the examples above, the binding between the name used to specify the operation to be per-
formed (e.g. push) and the function invoked were fixed at compile time. This is not necessary. The fol-
lowing examples show different ways to organize this binding. For example, we could have several kinds
of stacks with a common user interface:

// stack interface, stack.h:

class stack {
public:

virtual void push(cat) = 0;
virtual cat pop() = 0;

};

Only pure virtual functions are supplied as part of the interface. This allows stacks to be used, but not cre-
ated:

#include "stack.h"

void f(stack& s, cat kitty)
{

s.push(kitty);
cat c2 = s.pop();

}

Since no representation is specified in the stack interface, its users are totally insulated from implementa-
tion details.

We can now provide several distinct implementations of stacks. For example, we can provide a stack
implemented using an array



- 11 -

// array stack interface, astack.h:

#include "stack.h"

class astack : public stack {
// actual representation of a stack object
// in this case an array
// ...

public:
astack(int size);
˜astack();

void push(cat);
cat pop();

};

and elsewhere a stack implemented using a linked list:

// linked list stack interface, lstack.h:

#include "stack.h"

class lstack : public stack {
// actual representation of a stack object
// in this case a linked list
// ...

public:
lstack(int size);
˜lstack();

void push(cat);
cat pop();

};

We can now create and use stacks:

#include "astack.h"
#include "lstack.h"

void g()
{

lstack s1(100);
astack s2(100);

cat ginger;
cat blackie;

f(s1,ginger);
f(s2,snowball);

}

13 Changing Operations

Occasionally, it is necessary or simply convenient to replace a function binding while a program is run-
ning. For example, one might want to replace lstack::push() and lstack::pop() with new and
improved versions without terminating and restarting the program. This is fairly easily achieved by taking
advantage of the fact that calls of virtual functions are indirect through some sort of table of virtual func-
tions (often called the vtbl).

The only portable way of doing this requires cooperation from the lstack class; it must have a con-
structor that does no work except for setting up the vtbl that all constructors do implicitly:



- 12 -

class noop {};

lstack::lstack(noop) {} // make an uninitialized lstack

Fortunately such a constructor can be added to the program source text without requiring recompilation that
might affect the running program that we are trying to update (enhance and repair).

Using this extra constructor we define a new class which is identical to lstack except for the rede-
fined operations:

// modified linked list stack interface, llstack.h:

#include "stack.h"

class llstack : public lstack {
public:

llstack(int size) : lstack(size) {}
llstack(noop x) : lstack(x) {}

void push(cat);
cat pop();

};

Given an lstack object we can now update its pointer to its table of virtual functions (its vtbl) thus
ensuring that future operations on the object will use the llstack variants of push() and pop():

#include "llstack.h"

void g(lstack& s)
{

noop xx;
new(&s) llstack(xx); // turns s into an llstack!

}

Naturally, we must rely on some form of dynamic linking to make it possible to add g() to a running pro-
gram. Most systems provide some such facility.

This use of operator new assumes that

// place an object at address ‘p’:
void* operator new(size_t,void* p) { return p; }

has been defined and relies on the llstack::llstack(noop) constructor for suppressing
(re)initialization of the data of s and for updating s’s vtbl.

This trick allows us to change the vtbl for particular objects without relying on specific properties of
an implementation (that is, portably). There is no language protection against misuse of this trick.

Changing the vtbl for every object of class lstack in one operation, that is, changing the contents of
the vtbl for class lstack rather than simply changing pointers to vtbls in the individual objects, can-
not be done portably. However, since that operation will be messy and non-portable I will not give an
example of it.

14 Changing Representations

A more interesting – and probably more realistic – challenge is to replace both the representation and
the operations for an object at run time. For example, convert a stack from an array representation to a
linked list representation at run time without affecting its users. To ensure that the cutover from one repre-
sentation to another can be done by a single assignment we reintroduce the rep type and make push()
and pop() simple forwarding functions to operations on the rep:



- 13 -

// stack interface, stack.h:

class stack {
rep* p;

public:
stack(int size);
˜stack();

rep* get_rep() { return p; }
void put_rep(rep* q) { p = q; }

void push(cat c) { p->push(c); }
cat pop() { return p->pop(); }

int size() { return p->size(); }
};

The idea is to have operations that convert between the different representations and then let them use
get_rep() and put_rep() to update the pointer to the representation. In a real system get_rep()
and put_rep() would most likely not be publicly accessible functions.

First we define rep exactly as we did stack before :

// stack interface, rep.h:

class rep {
public:

virtual void push(cat) = 0;
virtual cat pop() = 0;
virtual int size() = 0;

};

and use it as a base for the different implementations:

// array stack interface, astack.h:

#include "rep.h"

class astack : public rep {
// actual representation of a stack object
// in this case an array
// ...

public:
astack(int size);
˜astack();

void push(cat);
cat pop();

int size();
};

Elsewhere we can define a stack implemented using a linked list:



- 14 -

// linked list stack interface, lstack.h:

#include "rep.h"

class lstack : public rep {
// actual representation of a stack object
// in this case a linked list
// ...

public:
lstack(int size);
˜lstack();

void push(cat);
cat pop();

int size();
};

Now we can convert the representation of a stack from a astack* to a lstack* by changing
stack::p using stack::get_rep() and stack::put_rep() and (in general) also copying the
elements:

rep* convert_from_a_to_l(stack& s)
{

rep* rp = s.get_rep();
astack* ap = new astack(s.size());
// copy s’s elements to *ap
s.put_rep(ap);
return rp;

}

In other words, we solve the problem by introducing yet another indirection†. This assumes that the size
argument from the original constructor has been stored away somewhere so that it can be used as the argu-
ment to the new astack. In a real system we would also need to check that s really had an appropriate
representation and would most likely also have to provide some further consistency checking and interlock-
ing. However, the fundamental idea is illustrated.

15 Changing the Set of Operations

Finally, I will show a version of the stack example that is somewhat un-C++-like in that it dispenses
with static type checking of the operations. The idea is to completely disconnect the users and the imple-
menters and simulate a dynamically type-checked language. Overreliance on such techniques can make
systems slow and messy. However, the flexibility offered can be important in localized contexts where the
inevitable problems caused by lack of formal structure and of run-time checking can be contained.

In this and the following examples a bit of scaffolding is needed to make the programming techniques
convenient. This makes the toy examples somewhat longer to define but does not, in fact, noticeably
increase the size of a realistic system relying on them. The most primitive building block for this example
is lists of (operation_identifier,function) pairs:

__________________
† The first law of computer science: Every problem is solved by yet another indirection.



- 15 -

typedef cat (*PcatF)(void*,cat);

struct oper_link {
oper_link* next;
int oper;
PcatF fct;

oper_link(int oo, PcatF ff, oper_link* nn)
: oper(oo), fct(ff), next(nn) {}

};

Using oper_links we can specify a class cat_object that allows us to invoke an unspecified set of
functions on an unspecified representation:

class cat_object {
void* p; // pointer to representation
oper_link* oper_table; // list of operations

public:
cat_object(oper_link* tbl = 0, void* rep = 0)

: oper_table(tbl), p(rep) { }

cat operator()(int oper, cat arg = 0);

void add_oper(int, PcatF);
void remove_oper(int);

};

Default arguments are user to spare the programmer the bother of specifying arguments where they are not
in fact necessary for a particular operation. This technique is elaborated in section 16 below.

The application operator simply looks for an operation in its list and executes it (if found):

cat cat_object::operator()(int oper, cat arg)
{

for (oper_link* pp = oper_table; pp; pp = pp->next)
if (oper == pp->oper) return pp->fct(p,arg);

return bad_cat;
}

If the operation fails the distinguished object bad_cat is returned.
Given this feeble framework we can now build a stack:

// stack interface, stack.h:
enum stack_oper { stack_destroy = 99, stack_push, stack_pop };

cat_object* make_stack(cat_object* = 0);

As usual, the implementation of the stack is left as an exercise to the reader. However, here is a hint:

#include "stack.h"

struct rep {
// ...
void push(cat);
cat pop();

};



- 16 -

static cat stack_push_fct(void* p, cat c)
{

((rep*) p)->push(c);
return bad_cat;

}

static cat stack_pop_fct(void* p, cat)
{

return ((rep*) p)->pop();
}

static cat stack_destroy_fct(void* p, cat) { /* ... */ }

cat_object* make_stack(cat_object* p)
{

if (p == 0) p = new cat_object(0,new rep); // get a clean object
p->add_oper(stack_push,&stack_push_fct); // and make it
p->add_oper(stack_pop,&stack_pop_fct); // behave
p->add_oper(stack_destroy,&stack_destroy_fct); // like a stack
return p;

}

We can now create and use stacks:

#include "stack.h"

void g(cat kitty)
{

cat_object& s = *make_stack();
s(stack_push,kitty);
cat c2 = s(stack_pop);
s(stack_destroy);

}

We can add operations to a stack at run time. For example, we might want an operation for peeking at
the top cat without popping:

enum { stack_peek = stack_pop+1 };
cat stack_peek_fct(void*,cat);

void h(cat_object& s)
{

s.add_oper(stack_peek,&stack_peek_fct);

cat top = s(stack_peek);
}

Note that the operations on these stacks do not involve addresses; they can be transmitted between address
spaces without special effort. This technique for invoking operations is often called message passing.

16 Tailoring

The dynamically typed stack above could be improved in many ways. For example, the operation
lookup could be made faster, an inheritance mechanism could be added, the naming of operations could be
made more general and safer, the method for passing arguments could be made more general and safer, etc.
Here I will just demonstrate two techniques of more general interest.

Firstly, the message passing mechanism can be hidden behind an interface that provides notational con-
venience and type safety for the key stack operations. The point is that combinations of the techniques
described in this paper can be used to handle more delicate cases. In particular, any data abstraction tech-
nique can be used to hide ugliness in an implementation:



- 17 -

// improved stack interface, Stack.h:

#include "stack.h"
class stack : public cat_object {
public:

stack() { make_stack(this); }
˜stack() { (*this)(stack_destroy); }
void push(cat c) { (*this)(stack_push,c); }
cat pop() { return (*this)(stack_pop); }

};

This allows us to write

#include "Stack.h"

void g(int sz, cat kitty)
{

stack s;

// compile time checked uses:

s.push(kitty);
cat c2 = s.pop();

// run time checked uses:

s.add_oper(stack_peek,&stack_peek_fct);
cat top = s(stack_peek);

}

This uses the unchecked ‘‘message passing’’ notation only where needed.
Secondly, in the dynamically typed stack example I dodged the issue of argument types and argument

type checking by simply providing a fixed number of arguments of fixed type. Similarly, I simply had all
operations return a cat. That is surprisingly often a viable choice for the sort of interfaces for which you
actually need ‘‘message passing.’’ A larger class of problems can be handled by allowing arguments of a
fixed number of types. For example:

class argument {
enum type_indicator { non_arg, int_arg, ptr_arg, string_arg, cat_arg };
type_indicator t;
union {

int i;
void* p;
char* s;
cat c;

};
public:

argument(noop) :t(non_arg) { }
argument(int ii) : i(ii), t(int_arg) { }
argument(void* pp) : p(pp), t(ptr_arg) { }
argument(char* ss) : s(ss), t(string_arg) { }
argument(cat cc) : c(cc), t(cat_arg) { }

operator int() { return t==int_arg ? i : -1; }
operator void*() { return t==ptr_arg ? p : 0; }
operator char*() { return t==string_arg ? s : 0; }
operator cat() { return t==cat_arg ? c : bad_cat; }

};

This assumes that cat is declared so that == and ?: can be applied.
The error handling for the conversion operators could be improved, but even as it stands this would

allow the cat_object class to be written:



- 18 -

typedef argument (*PargumentF)(void*,argument);

struct oper_link {
oper_link* next;
int oper;
PargumentF fct;

oper_link(int oo, PcatF ff, oper_link* nn)
: oper(oo), fct(ff), next(nn) {}

};

and can be used like this:

#include "stack.h"

void g(cat kitty)
{

argument_object& s = *make_stack();
s(stack_push,kitty); // converts ‘kitty’ to argument
cat c2 = s(stack_pop); // converts argument to cat
s(stack_destroy);

}

The object no_arg is passed (by default) to indicate that no argument was specified by the user.
You may have noticed that the size argument to the stack create operation disappeared when

we moved to the message passing style. The reason was to avoid the complication of dealing with
arguments of different types until we had the mechanism to do so. Putting that argument back in
is now left as an exercise to the reader.

Adding ‘‘list of arguments’’ to the list of acceptable argument types is left as yet another
exercise to the reader. Allowing such lists again increases the range of applications for which the
message passing technique is acceptable.

17 Dynamic Classes

Note that the concept of a class was almost lost in the message passing examples above. Each
object had its own list of acceptable operations that could be modified independently of the lists of
any other object. This could be seen as too flexible for many applications and also not sufficiently
amenable to space and time optimizations. These problems can be alleviated by re-introducing the
notion of a class as an object containing information common to a set of objects. Here we will
only represent the set of acceptable operations on an object of one of these ‘‘dynamic classes.’’

class argument_class_rep {
public:

oper_link* oper_table; // list of operations

void add_oper(int, PargumentF);
void remove_oper(int);

};

The reader can easily extend this notion, though.
The objects looks much as they did before. The only change is that an indirection through an

object representing a class has been introduced on the path to the table of operations:



- 19 -

class argument_object {
void* p; // pointer to representation
argument_class_rep* crep; // class

public:
argument_object(argument_class_rep* cc, void* rep = 0)

: crep(cc), p(rep) { }

argument operator()(int oper, argument arg = no_arg);
};

Given this we can create an object representing stacks and provide an operation for gaining access
to it:

static argument_class_rep stack_class; // the object representing stacks

argument_class_rep* get_stack_class()
{

if (stack_class->oper_table == 0) {
stack_class.add_oper(stack_push,&stack_push_fct);
stack_class.add_oper(stack_pop,&stack_pop_fct);
stack_class.add_oper(stack_destroy,&stack_destroy_fct);

}
return &stack_class;

}

Finally, we can provide a function for making stacks

argument_object* make_stack()
{

return new argument_object(get_stack_class());
}

and use it exactly as the previous versions:

void g(cat kitty)
{

argument_object& s = *make_stack();
s(stack_push,kitty); // converts ‘kitty’ to argument
cat c2 = s(stack_pop); // converts argument to cat
s(stack_destroy);

}

This version, however, does not allow operations for an individual object to change. It does how-
ever, open the possibility of trivially changing the operations on all objects of a dynamic class.

18 Conclusions

C++ covers the spectrum of data hiding techniques from C (files as modules) through Modula-
2 (modules) and Ada (packages) to C++ (classes), and beyond. Given a free choice a C++ pro-
grammer would naturally choose one of the class-based strongly-typed techniques (sections 10, 11,
or 12), but the other techniques can occasionally be useful.

19 Acknowledgements

Andrew Koenig, Brian Kernighan, and Doug McIlroy lent ears and blackboard to some of
these little puzzle programs. Jim Coplien suggested the extension of the range of examples to
include function binding examples. The nine-plus cat lives in this paper are dedicated to Dave
McQueen who once in desperation proposed the death penalty for presenting ‘‘yet another stack
example.’’ Also thanks to Andy for giving me a practical demonstration of the difficulty of stack-
ing cats.


